Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
NASA Astrophysics Data System (ADS)
Lassen, J.; Li, R.; Raeder, S.; Zhao, X.; Dekker, T.; Heggen, H.; Kunz, P.; P. Levy, C. D.; Mostanmand, M.; Teigelhöfer, A.; Ames, F.
2017-11-01
Developments at TRIUMF's isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.
Quantum Phenomena in High Energy Density Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murnane, Margaret; Kapteyn, Henry
The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV
Laser stripping of hydrogen atoms by direct ionization
Brunetti, E.; Becker, W.; Bryant, H. C.; ...
2015-05-08
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
Laser stripping of hydrogen atoms by direct ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetti, E.; Becker, W.; Bryant, H. C.
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
Particle in cell simulation on plasma grating contrast enhancement induced by infrared laser pulse
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Wang, J. X.; Luo, S. N.
2018-05-01
The dynamics of plasma grating contrast enhancement (PGCE) irradiated by an infrared laser pulse is investigated with one dimensional particle-in-cell simulation where field ionization and impact ionization are simultaneously considered for the first time. The numeric results show that the impact ionization dominates the PGCE process. Upon the interaction with the laser pulse, abundant free electrons are efficiently accelerated and subsequently triggered massive impact ionizations in the density ridges of the plasma grating for the higher local plasma energy density, which efficiently enhances the grating contrast. Besides the dynamic analysis of PGCE, we explore the parameter space of the incident infrared laser pulse to optimize the PGCE effect, which can provide useful guidance to experiments related to laser-plasma-grating interactions and may find applications in prolonging the duration of the plasma grating.
Efficient ionisation of calcium, strontium and barium by resonant laser pumping
NASA Technical Reports Server (NTRS)
Skinner, C. H.
1980-01-01
Efficient ionization has been observed when an atomic vapor of strontium, barium or calcium was illuminated with a long pulse tunable laser at the frequency of the atomic resonance line. The variation in the degree of ionization with neutral density and laser intensity has been measured using the 'hook' method. The maximum ionization observed was 94%. Excited state populations were measured yielding an excitation temperature (depending on exact experimental conditions) in the region of 0.4 eV. The decay of ion density after the laser pulse was monitored and the recombination coefficients determined. The results are interpreted in terms of an electron heating model.
Efficient and robust photo-ionization loading of beryllium ions
NASA Astrophysics Data System (ADS)
Wolf, Sebastian; Studer, Dominik; Wendt, Klaus; Schmidt-Kaler, Ferdinand
2018-02-01
We demonstrate the efficient generation of Be^+ ions with a 60 ns and 150 nJ laser pulse near 235 nm for two-step photo-ionization, proven by subsequent counting of the number of ions loaded into a linear Paul trap. The bandwidth and power of the laser pulse are chosen in such a way that a first, resonant step fully saturates the entire velocity distribution of beryllium atoms effusing from a thermal oven. The second excitation step is driven by the same light field causing efficient non-resonant ionization. Our ion-loading scheme has a similar efficiency as compared to former pathways using two-photon continuous wave laser excitation, but with an order of magnitude lower than average UV light power.
NASA Astrophysics Data System (ADS)
Naubereit, P.; Marín-Sáez, J.; Schneider, F.; Hakimi, A.; Franzmann, M.; Kron, T.; Richter, S.; Wendt, K.
2016-05-01
The generation of tunable laser light in the green to orange spectral range has generally been a deficiency of solid-state lasers. Hence, the formalisms of difference frequency generation (DFG) and optical parametric processes are well known, but the DFG of pulsed solid-state lasers was rarely efficient enough for its use in resonance ionization spectroscopy. Difference frequency generation of high-repetition-rate Ti:sapphire lasers was demonstrated for resonance ionization of sodium by efficiently exciting the well-known D1 and D2 lines in the orange spectral range (both ≈589 nm). In order to prove the applicability of the laser system for its use at resonance ionization laser ion sources of radioactive ion beam facilities, the first ionization potential of Na was remeasured by three-step resonance ionization into Rydberg levels and investigating Rydberg convergences. A result of EIP=41449.455 (6) stat(7) syscm-1 was obtained, which is in perfect agreement with the literature value of EIPlit =41449.451(2)cm-1 . A total of 41 level positions for the odd-parity Rydberg series n f 2F5/2,7/2o for principal quantum numbers of 10 ≤n ≤60 were determined experimentally.
Optimizing the ionization and energy absorption of laser-irradiated clusters
NASA Astrophysics Data System (ADS)
Kundu, M.; Bauer, D.
2008-03-01
It is known that rare-gas or metal clusters absorb incident laser energy very efficiently. However, due to the intricate dependencies on all the laser and cluster parameters, it is difficult to predict under which circumstances ionization and energy absorption are optimal. With the help of three-dimensional particle-in-cell simulations of xenon clusters (up to 17256 atoms), it is shown that for a given laser pulse energy and cluster, an optimum wavelength exists that corresponds to the approximate wavelength of the transient, linear Mie-resonance of the ionizing cluster at an early stage of negligible expansion. In a single ultrashort laser pulse, the linear resonance at this optimum wavelength yields much higher absorption efficiency than in the conventional, dual-pulse pump-probe setup of linear resonance during cluster expansion.
High-order harmonic generation in a capillary discharge
Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.
2010-06-01
A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.
Ionization cross section, pressure shift and isotope shift measurements of osmium
NASA Astrophysics Data System (ADS)
Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan
2017-11-01
In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.
NASA Astrophysics Data System (ADS)
Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi
2017-01-01
Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balz, J.G.; Bernheim, R.A.; Gold, L.P.
1987-01-01
Multiphoton ionization spectra of /sup 7/Li/sub 2/, /sup 6/Li/sub 2/, and /sup 7/Li/sup 6/Li vapors have been measured in the 570--650 nm region using a single, low resolution, multimode cw dye laser. A number of wavelengths provide selective multiphoton ionization of one isotopic species demonstrating the possibility of efficient laser-driven isotopic separation in lithium in this wavelength region.
Feng, Dan; Xia, Yan
2018-07-19
Covalent organic framework (COF) was explored as a novel matrix with a high desorption/ionization efficiency for direct detection of small molecules by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). By using COF as an LDI MS matrix, we could detect not only biological micro molecules such as amino acids and fatty acids, but also emerging environmental pollutants like bisphenol S (BPS) and pyrene. With COF as the matrix, higher desorption/ionization efficiency, and less background interference were achieved than the conventional organic matrices. Good salt tolerance (as high as 500 mM NaCl) and repeatability allowed the detection limit of amino acids was 90 fmol. In addition, COF matrix performed well for amino acids analysis in the honey sample. The ionization mechanism was also discussed. These results demonstrate that COF is a powerful matrix for small molecules analysis in real samples by MS. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2015-06-27
Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less
Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro
2016-06-01
Multiphoton ionization processes of parent-polycyclic aromatic hydrocarbons (PPAHs), nitro-PAHs (NPAHs), and amino-PAHs (APAHs) were examined by gas chromatography combined with time-of-flight mass spectrometry using a femtosecond Ti:sapphire laser as the ionization source. The efficiency of multiphoton ionization was examined using lasers emitting in the far-ultraviolet (200 nm), deep-ultraviolet (267 nm), and near-ultraviolet (345 nm) regions. The largest signal intensities were obtained when the far-ultraviolet laser was employed. This favorable result can be attributed to the fact that these compounds have the largest molar absorptivities in the far-ultraviolet region. On the other hand, APAHs were ionized more efficiently than NPAHs in the near-ultraviolet region because of their low ionization energies. A sample extracted from a real particulate matter 2.5 (PM2.5) sample was measured, and numerous signal peaks arising from PAH and its analogs were observed at 200 nm. On the other hand, only a limited number of signed peaks were observed at 345 nm, some of which were signed to PPAHs, NPAHs, and APAHs. Thus, multiphoton ionization mass spectrometry has potential for the use in comprehensive analysis of toxic environmental pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of Ionization and Beam Quality on Interaction of TW-Peak CO2 Laser with Hydrogen Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman
3D numerical simulations of the interaction of a powerful CO2 laser with hydrogen jets demonstrating the role of ionization and laser beam quality are presented. Simulations are performed in support of the plasma wakefield accelerator experiments being conducted at the BNL Accelerator Test Facility (ATF). The CO2 laser at BNL ATF has several potential advantages for laser wakefield acceleration compared to widely used solid-state lasers. SPACE, a parallel relativistic Particle-in-Cell code, developed at SBU and BNL, has been used in these studies. A novelty of the code is its set of efficient atomic physics algorithms that compute ionization and recombinationmore » rates on the grid and transfer them to particles. The primary goal of the initial BNL experiments was to characterize the plasma density by measuring the sidebands in the spectrum of the probe laser. Simulations, that resolve hydrogen ionization and laser spectra, help explain several trends that were observed in the experiments.« less
The laser and optical system for the RIBF-PALIS experiment
NASA Astrophysics Data System (ADS)
Sonoda, T.; Iimura, H.; Reponen, M.; Wada, M.; Katayama, I.; Sonnenschein, V.; Takamatsu, T.; Tomita, H.; Kojima, T. M.
2018-01-01
This paper describes the laser and optical system for the Parasitic radioactive isotope (RI) beam production by Laser Ion-Source (PALIS) in the RIKEN fragment separator facility. This system requires an optical path length of 70 m for transporting the laser beam from the laser light source to the place for resonance ionization. To accomplish this, we designed and implemented a simple optical system consisting of several mirrors equipped with compact stepping motor actuators, lenses, beam spot screens and network cameras. The system enables multi-step laser resonance ionization in the gas cell and gas jet via overlap with a diameter of a few millimeters, between the laser photons and atomic beam. Despite such a long transport distance, we achieved a transport efficiency for the UV laser beam of about 50%. We also confirmed that the position stability of the laser beam stays within a permissible range for dedicated resonance ionization experiments.
Threshold ionization spectroscopic investigation of supersonic jet-cooled, laser-desorbed Tryptophan
NASA Astrophysics Data System (ADS)
Taherkhani, Mehran; Armentano, Antonio; Černý, Jiří; Müller-Dethlefs, Klaus
2016-07-01
Tryptophan (Trp) was studied by two-colour Photoionization Efficiency (PIE) and Mass Analysed Threshold Ionization (MATI) spectroscopy using a laser desorption apparatus. Conformer A of Trp was excited into the S1 state (34,878 cm-1) and the second laser was scanned around the D0 cation ground and the D1 excited state. No ionization signal into the D0 state could be found, but a clear threshold was observed for the D1 state with an ionization energy of 66,704 ± 3 cm-1 (8.27 eV). This observation is explained in terms of the electronic configurations of the S1 and cationic states.
Detection limits of organic compounds achievable with intense, short-pulse lasers.
Miles, Jordan; De Camillis, Simone; Alexander, Grace; Hamilton, Kathryn; Kelly, Thomas J; Costello, John T; Zepf, Matthew; Williams, Ian D; Greenwood, Jason B
2015-06-21
Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.
NASA Astrophysics Data System (ADS)
Tu, Shao-yong; Yuan, Yong-teng; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Jiang, Shao-en; Ding, Yong-kun
2016-01-01
Efficient multi-keV x-ray sources can be produced using nanosecond laser pulse-heated middle-Z underdense plasmas generated using gas or foam. Previous experimental results show that an optimal initial target density exists for efficient multi-keV x-ray emission at which the laser ionization wave is supersonic. Here we explore the influence of the laser intensity and the pulse duration on this optimal initial target density via a one-dimensional radiation hydrodynamic simulation. The simulation shows that the optimal initial density is sensitive to both the laser intensity and the pulse duration. However, the speed of the supersonic ionization wave at the end of the laser irradiation is always maintained at 1.5 to 1.7 times that of the ion acoustic wave under the optimal initial density conditions.
Gilbert-López, Bienvenida; Schilling, Michael; Ahlmann, Norman; Michels, Antje; Hayen, Heiko; Molina-Díaz, Antonio; García-Reyes, Juan F; Franzke, Joachim
2013-03-19
In this work, the combined use of desorption by a continuous wave near-infrared diode laser and ionization by a dielectric barrier discharge-based probe (laser desorption dielectric barrier discharge ionization mass spectrometry (LD-DBDI-MS)) is presented as an ambient ionization method for the mass spectrometric detection of nonvolatile chemicals on surfaces. A separation of desorption and ionization processes could be verified. The use of the diode laser is motivated by its low cost, ease of use, and small size. To achieve an efficient desorption, the glass substrates are coated at the back side with a black point (target point, where the sample is deposited) in order to absorb the energy offered by the diode laser radiation. Subsequent ionization is accomplished by a helium plasmajet generated in the dielectric barrier discharge source. Examples on the application of this approach are shown in both positive and negative ionization modes. A wide variety of multiclass species with low vapor pressure were tested including pesticides, pharmaceuticals and explosives (reserpine, roxithromycin, propazine, prochloraz, spinosad, ampicillin, dicloxacillin, enrofloxacin, tetracycline, oxytetracycline, erythromycin, spinosad, cyclo-1,3,5,7-tetramethylene tetranitrate (HMX), and cyclo-1,3,5-trimethylene trinitramine (RDX)). A comparative evaluation revealed that the use of the laser is advantageous, compared to just heating the substrate surface.
Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J-C; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.
2017-01-01
Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency. PMID:28224987
Abdelhamid, Hani Nasser; Chen, Zhen-Yu; Wu, Hui-Fen
2017-08-01
In most applications of quantum dots (QDs) for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), one side of QDs is supported by a solid substrate (stainless - steel plate), whereas the other side is in contact with the target analytes. Therefore, the surface capping agent of QDs is a key parameter for laser desorption/ionization mass spectrometry (LDI-MS). Cadmium telluride quantum dots (CdTe QDs) modified with different capping agents are synthesized, characterized, and applied for surface tuning laser desorption/ionization mass spectrometry (STLDI-MS). Data shows that CdTe quantum dot modified cysteine (cys@CdTe QDs) has an absorption that matches with the wavelength of the N 2 laser (337 nm). The synergistic effect of large surface area and absorption of the laser irradiation of cys@CdTe QDs enhances the LDI-MS process for small - molecule analysis, including α-, β-, and γ-cyclodextrin, gramicidin D, perylene, pyrene, and triphenylphosphine. Cys@CdTe QDs are also applied using Al foils as substrates. Aluminum foil combined with cys@CdTe QDs enhances the ionization efficiency and is cheap compared to traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with a stainless - steel plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegfried, M.
2015-10-14
The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For thismore » study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.« less
First results on Ge resonant laser photoionization in hollow cathode lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpa, Daniele, E-mail: daniele.scarpa@lnl.infn.it; Andrighetto, Alberto; Barzakh, Anatoly
2016-02-15
In the framework of the research and development activities of the SPES project regarding the optimization of the radioactive beam production, a dedicated experimental study has been recently started in order to investigate the possibility of in-source ionization of germanium using a set of tunable dye lasers. Germanium is one of the beams to be accelerated by the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. The three-step, two color ionization schemes have been tested using a Ge hollow cathode lamp. The slow and the fast optogalvanic signals were detected and averaged by an oscilloscope as amore » proof of the laser ionization inside the lamp. As a result, several wavelength scans across the resonances of ionization schemes were collected with the fast optogalvanic signal. Some comparisons of ionization efficiency for different ionization schemes were made. Furthermore, saturation curves of the first excitation transitions have been obtained. This investigation method and the setup built in the laser laboratory of the SPES project can be applied for the photo-ionization scheme studies also for the other possible radioactive elements.« less
Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz
2015-09-21
Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.
NASA Astrophysics Data System (ADS)
Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.
2017-07-01
Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.
Silina, Yuliya E; Volmer, Dietrich A
2013-12-07
Analytical applications often require rapid measurement of compounds from complex sample mixtures. High-speed mass spectrometry approaches frequently utilize techniques based on direct ionization of the sample by laser irradiation, mostly by means of matrix-assisted laser desorption/ionization (MALDI). Compounds of low molecular weight are difficult to analyze by MALDI, however, because of severe interferences in the low m/z range from the organic matrix used for desorption/ionization. In recent years, surface-assisted laser desorption/ionization (SALDI) techniques have shown promise for small molecule analysis, due to the unique properties of nanostructured surfaces, in particular, the lack of a chemical background in the low m/z range and enhanced production of analyte ions by SALDI. This short review article presents a summary of the most promising recent developments in SALDI materials for MS analysis of low molecular weight analytes, with emphasis on nanostructured materials based on metals and semiconductors.
Peng, Ivory X; Shiea, Jentaie; Ogorzalek Loo, Rachel R; Loo, Joseph A
2007-01-01
We have constructed an electrospray-assisted laser desorption/ionization (ELDI) source which utilizes a nitrogen laser pulse to desorb intact molecules from matrix-containing sample solution droplets, followed by electrospray ionization (ESI) post-ionization. The ELDI source is coupled to a quadrupole ion trap mass spectrometer and allows sampling under ambient conditions. Preliminary data showed that ELDI produces ESI-like multiply charged peptides and proteins up to 29 kDa carbonic anhydrase and 66 kDa bovine albumin from single-protein solutions, as well as from complex digest mixtures. The generated multiply charged polypeptides enable efficient tandem mass spectrometric (MS/MS)-based peptide sequencing. ELDI-MS/MS of protein digests and small intact proteins was performed both by collisionally activated dissociation (CAD) and by nozzle-skimmer dissociation (NSD). ELDI-MS/MS may be a useful tool for protein sequencing analysis and top-down proteomics study, and may complement matrix-assisted laser desorption/ionization (MALDI)-based measurements. Copyright (c) 2007 John Wiley & Sons, Ltd.
Coherent control of strong-field two-pulse ionization of Rydberg atoms.
Fedorov, M; Poluektov, N
2000-02-28
Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.
Laser resonance ionization spectroscopy on lutetium for the MEDICIS project
NASA Astrophysics Data System (ADS)
Gadelshin, V.; Cocolios, T.; Fedoseev, V.; Heinke, R.; Kieck, T.; Marsh, B.; Naubereit, P.; Rothe, S.; Stora, T.; Studer, D.; Van Duppen, P.; Wendt, K.
2017-11-01
The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.
A laser-based FAIMS detector for detection of ultra-low concentrations of explosives
NASA Astrophysics Data System (ADS)
Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Tugaenko, Anton V.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Eugene M.
2014-06-01
A non-contact method for analyzing of explosives traces from surfaces was developed. The method is based on the laser desorption of analyzed molecules from the surveyed surfaces followed by the laser ionization of air sample combined with the field asymmetric ion mobility spectrometry (FAIMS). The pulsed radiation of the fourth harmonic of a portable GSGG: Cr3+ :Nd3+ laser (λ = 266 nm) is used. The laser desorption FAIMS analyzer have been developed. The detection limit of the analyzer equals 40 pg for TNT. The results of detection of trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX) and cyclotetramethylenetetranitramine (HMX) are presented. It is shown that laser desorption of nitro-compounds from metals is accompanied by their surface decomposition. A method for detecting and analyzing of small concentrations of explosives in air based on the laser ionization and the FAIMS was developed. The method includes a highly efficient multipass optical scheme of the intracavity fourthharmonic generation of pulsed laser radiation (λ = 266 nm) and the field asymmetric ion mobility (FAIM) spectrometer disposed within a resonator. The ions formation and detection proceed inside a resonant cavity. The laser ion source based on the multi-passage of radiation at λ = 266 nm through the ionization region was elaborated. On the basis of the method the laser FAIMS analyzer has been created. The analyzer provides efficient detection of low concentrations of nitro-compounds in air and shows a detection limit of 10-14 - 10-15 g/cm3 both for RDX and TNT.
NASA Astrophysics Data System (ADS)
Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.
2009-03-01
On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsen, Joseph
2015-12-16
Using an X-ray free electron laser (XFEL) at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p-1s transition in singly-ionized neon, an inner-shell X-ray laser was demonstrated at 849 eV in singly-ionized neon gas several years ago. It took decades to demonstrate this scheme, because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electron in neon on a timescale comparable to the intrinsic Auger lifetime in neon of 2 fs. In this paper, we model the neon inner shell X-ray laser under similar conditions to those usedmore » in the XFEL experiments at the SLAC Linac Coherent Light Source (LCLS), and show how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also show how the XFEL could be used to photo-ionize L-shell electrons to drive gain on n = 3–2 transitions in singly-ionized Ar and Cu plasmas. Furthermore, these bright, coherent, and monochromatic X-ray lasers may prove very useful for doing high-resolution spectroscopy and for studying non-linear process in the X-ray regime.« less
NASA Astrophysics Data System (ADS)
Omenetto, N.; Smith, B. W.; Winefordner, J. D.
1989-01-01
Several theoretical considerations are given on the potential and practical capabilities of a detector of fluorescence radiation whose operating principle is based on a multi-step excitation-ionization scheme involving the fluorescence photons as the first excitation step. This detection technique, which was first proposed by MATVEEVet al. [ Zh. Anal Khim.34, 846 (1979)], combines two independent atomizers, one analytical cell for the excitation of the sample fluorescence and one cell, filled with pure analyte atomic vapor, acting as the ionization detector. One laser beam excites the analyte fluorescence in the analytical cell and one (or two) laser beams are used to ionize the excited atoms in the detector. Several different causes of signal and noise are evaluated, together with a discussion on possible analytical atom reservoirs (flames, furnaces) and laser sources which could be used with this approach. For properly devised conditions, i.e. optical saturation of the fluorescence and unity ionization efficiency, detection limits well below pg/ml in solution and well below femtograms as absolute amounts in furnaces can be predicted. However, scattering problems, which are absent in a conventional laser-enhanced ionization set-up, may be important in this approach.
NASA Astrophysics Data System (ADS)
Bulgakov, A. V.; Mirza, I.; Bulgakova, N. M.; Zhukov, V. P.; Machulka, R.; Haderka, O.; Campbell, E. E. B.; Mocek, T.
2018-06-01
Transmission measurements for femtosecond laser pulses focused in air with spectral analysis of emission from the focal region have been carried out for various pulse energies and air pressures. The air breakdown threshold and pulse attenuation due to plasma absorption are evaluated and compared with calculations based on the multiphoton ionization model. The plasma absorption is found to depend on the pulse repetition rate and is considerably stronger at 1 kHz than at 1–10 Hz. This suggests that accumulation of metastable states of air molecules plays an important role in initiation of air breakdown, enhancing the ionization efficiency at high repetition rates. Possible channels of metastable-state-assisted air ionization and the role of the observed accumulation effect in laser material processing are discussed.
Abdul-Aziz, Karolin Kamel; Tuorkey, M J
2010-04-02
The ionizing radiations could be taken in considerate as an integral part in our life, since, living organisms are actually exposed to a constant shower of ionizing radiations whether from the natural or artificial resources. The radio-protective efficiency of several chemicals has been confirmed in animal trails, whereas, due to their accumulative toxicity, their clinical utility is limited. Therefore, we aimed in the present work to investigate the possibility of using argon laser to recuperate the damaged tissues due to exposing to the ionizing radiation. The rabbits were used in this study, and they were designed as control, gamma irradiated, laser, and gamma plus laser groups. Lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and glucose-6-phosphate dehydrogenase (G-6-PD) in blood and liver were evaluated. As well as, the level of protein thiol was evaluated in the plasma among each group. Results of this study revealed the potential therapeutic performance of the treatment by laser argon to decline the damaging effect of the ionized radiation whether at systematic or local levels. In conclusion, argon laser therapy appears propitious protective effect against the hazard effects of gamma radiation. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuan; Gottwald, T.; Mattolat, C.
We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less
Liu, Yuan; Gottwald, T.; Mattolat, C.; ...
2017-03-20
We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less
Duong, Vu Thi Thuy; Duong, Vu; Lien, Nghiem Thi Ha; Imasaka, Tomoko; Tang, Yuanyuan; Shibuta, Shinpei; Hamachi, Akifumi; Hoa, Do Quang; Imasaka, Totaro
2016-03-01
Polychlorinated biphenyls (PCBs) in transformer and food oils were measured using gas chromatography combined with multiphoton ionization mass spectroscopy. An ultrashort laser pulse emitting in the far-ultraviolet region was utilized for efficient ionization of the analytes. Numerous signal peaks were clearly observed for a standard sample mixture of PCBs when the third and fourth harmonic emissions (267 and 200nm) of a femtosecond Ti:sapphire laser (800nm) were employed. The signal intensities were found to be greater when measured at 200nm compared with those measured at 267nm, providing lower detection limits especially for highly chlorinated PCBs at shorter wavelengths. After simple pretreatment using disposable columns, PCB congeners were measured and found to be present in the transformer oils used in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten
2015-06-01
Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.
Laser ion source for multi-nucleon transfer reaction products
NASA Astrophysics Data System (ADS)
Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.
2015-06-01
We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of lifetimes of the β-decayed nuclei with N = 126 .
Diode-laser-based RIMS measurements of strontium-90
NASA Astrophysics Data System (ADS)
Bushaw, B. A.; Cannon, B. D.
1998-12-01
Double- and triple-resonance excitation schemes for the ionization of strontium are presented. Use of single-mode diode lasers for the resonance excitations provides a high degree of optical isotopic selectivity: with double-resonance, selectivity of >104 for 90Sr against the stable Sr isotopes has been demonstrated. Measurement of lineshapes and stable isotope shifts in the triple-resonance process indicate that optical selectivity should increase to ˜109. When combined with mass spectrometer selectivity this is sufficient for measurement of 90Sr at background environmental levels. Additionally, autoionizing resonances have been investigated for improving ionization efficiency with lower power lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Gottwald, T.; Mattolat, C.
We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less
Liu, Y.; Gottwald, T.; Mattolat, C.; ...
2015-05-08
We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less
Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju
2011-12-15
The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.
On the SIMS Ionization Probability of Organic Molecules.
Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas
2017-06-01
The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .
Applicability of post-ionization theory to laser-assisted field evaporation of magnetite
Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; ...
2014-12-15
Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperaturesmore » also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.« less
Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization
NASA Astrophysics Data System (ADS)
Dumitrache, Ciprian
Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the gas temperature is suitable for combustion (T=2000-3000 K). This technique is demonstrated by attempting ignition of various mixtures of propane-air and it is shown to have distinct advantages when compared to the classical approach: lower ignition energy for given stoichiometry than conventional laser ignition ( 20% lower), extension of the lean limit ( 15% leaner) and improvement in combustion efficiency. Moreover, it is demonstrated that careful alignment of the two pulses influences the fluid dynamics of the early flame kernel growth. This finding has a number of implications for practical uses as it demonstrates that the flame kernel dynamics can be tailored using various combinations of laser pulses and opens the door for implementing such a technique to applications such as: flame holding and flame stabilization in high speed flow combustors (such as ramjet and scramjet engines), reducing flame stretching in highly turbulent combustion devices and increasing combustion efficiency for stationary natural gas engines. As such, the work presented in this dissertation should be of interest to a broad audience including those interested in combustion research, engine operation, chemically reacting flows, plasma dynamics and laser diagnostics.
Intense laser pulse propagation in ionizing gases
NASA Astrophysics Data System (ADS)
Bian, Zhigang
2003-10-01
There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The intensity on the inner wall of the capillary is monitored to assure realistic simulations, consistent with optical breakdown of the waveguide material. Generally speaking the intensity on the wall increases with gas pressure due to the scattering of the lowest order capillary mode. Finally, the high order harmonic generation (HHG) in a capillary is investigated. The phase matching condition is studied to increase the conversion efficiency for high order harmonics generation. The phase matching occurs as a balance of the dispersion of the neutral gas, plasma and the waveguide.
Nanoengineering of strong field processes in solids
NASA Astrophysics Data System (ADS)
Almalki, S.; Parks, A. M.; Brabec, T.; McDonald, C. R.
2018-04-01
We present a theoretical investigation of the effect of quantum confinement on high harmonic generation in semiconductor materials by systematically varying the confinement width along one or two directions transverse to the laser polarization. Our analysis shows a growth in high harmonic efficiency concurrent with a reduction of ionization. This decrease in ionization comes as a consequence of an increased band gap resulting from the confinement. The increase in harmonic efficiency results from a restriction of wave packet spreading, leading to greater recollision probability. Consequently, nanoengineering of one and two-dimensional nanosystems may prove to be a viable means to increase harmonic yield and photon energy in semiconductor materials driven by intense laser fields.
NASA Astrophysics Data System (ADS)
Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.
2017-10-01
We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.
Zhao, Xiaofan; Yang, Zining; Hua, Weihong; Wang, Hongyan; Xu, Xiaojun
2017-04-17
Although the diode pumped alkali laser (DPAL) works in a three-level scheme, higher energy-state excitation and ionization processes exist during operation, which may lead to deleterious effects on laser performance. In this paper, we report the ionization degree measurement in the gain medium of an operational hydrocarbon-free Rb DPAL by using the optogalvanic method. The results show that, at the pulsed mode with a duration of ~1 ms, a maximal ionization degree of ~0.06% is obtained at a pump power of 140 W. While in the CW mode, the plasma reaches an ionization degree as high as ~2% at a pump power of 110 W, which is mainly due to the enough time for sufficient plasma development. A comparison with our previous work [Opt. Lett.39, 6501 (2014)] as well as modeling results is made and discussed. The influences of different population transfer channels on laser performance are simulated and analyzed. The results show that, for a typical hydrocarbon-free Rb laser (pump intensity of 15 kW/cm2, helium pressure of 10 atm and cell temperature of 438 K), all the high-energy excitation effects give an overall negative influence on laser efficiency of ~3.78%, while the top two influencing channels are the photoionization (~1.8%) and the energy pooling (~1.53%). The work in this paper experimentally reveals the influence of the macroscopic ionization evolution process on an operational DPAL for the first time, which would be helpful for a more comprehensive understanding of the physics in DPALs.
Mass Spectrometric Imaging Using Laser Ablation and Solvent Capture by Aspiration (LASCA)
NASA Astrophysics Data System (ADS)
Brauer, Jonathan I.; Beech, Iwona B.; Sunner, Jan
2015-09-01
A novel interface for ambient, laser ablation-based mass spectrometric imaging (MSI) referred to as laser ablation and solvent capture by aspiration (LASCA) is presented and its performance demonstrated using selected, unaltered biological materials. LASCA employs a pulsed 2.94 μm laser beam for specimen ablation. Ablated materials in the laser plumes are collected on a hanging solvent droplet with electric field-enhanced trapping, followed by aspiration of droplets and remaining plume material in the form of a coarse aerosol into a collection capillary. The gas and liquid phases are subsequently separated in a 10 μL-volume separatory funnel, and the solution is analyzed with electrospray ionization in a high mass resolution Q-ToF mass spectrometer. The LASCA system separates the sampling and ionization steps in MSI and combines high efficiencies of laser plume sampling and of electrospray ionization (ESI) with high mass resolution MS. Up to 2000 different compounds are detected from a single ablation spot (pixel). Using the LASCA platform, rapid (6 s per pixel), high sensitivity, high mass-resolution ambient imaging of "as-received" biological material is achieved routinely and reproducibly.
Stolee, Jessica A; Vertes, Akos
2013-04-02
Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.
Montsko, Gergely; Vaczy, Alexandra; Maasz, Gabor; Mernyak, Erzsebet; Frank, Eva; Bay, Csaba; Kadar, Zalan; Ohmacht, Robert; Wolfling, Janos; Mark, Laszlo
2009-10-01
Neutral steroid hormones are currently analyzed by gas or liquid chromatography/mass spectrometry based methods. Most of the steroid compounds, however, lack volatility and do not contain polar groups, which results in inadequate chromatographic behavior and low ionization efficiency. Derivatization of the steroids to form more volatile, thermostable, and charged products solves this difficulty, but the derivatization of compounds with unknown chemical moieties is not an easy task. In this study, a rapid, high-throughput, sensitive matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method is described using C(70) fullerene as a matrix compound. The application of the method is demonstrated for five general sex steroids and for synthetic steroid compounds in both negative and positive ionization modes.
Biomedical applications of laser photoionization
NASA Astrophysics Data System (ADS)
Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.
1991-07-01
Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.
Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency
NASA Astrophysics Data System (ADS)
Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato
2016-04-01
Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.
NASA Astrophysics Data System (ADS)
Louchev, Oleg A.; Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Iwasaki, Masahiko; Wada, Satoshi
2016-09-01
We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α ) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by generated free electrons. Developed expressions validated by order of magnitude estimations and available experimental data allow us to identify the area for the operation under high input laser intensities avoiding the onset of full-scale discharge, loss of efficiency and inhibition of generated L-α radiation. Calculations made reveal an opportunity for scaling up the output energy of the experimentally generated pulsed L-α radiation without significant enhancement of photoionization.
NASA Astrophysics Data System (ADS)
Psikal, J.; Matys, M.
2018-04-01
Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.
Attosecond-recollision-controlled selective fragmentation of polyatomic molecules.
Xie, Xinhua; Doblhoff-Dier, Katharina; Roither, Stefan; Schöffler, Markus S; Kartashov, Daniil; Xu, Huailiang; Rathje, Tim; Paulus, Gerhard G; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus
2012-12-14
Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work demonstrates an efficient and selective way of predetermining fragmentation and isomerization reactions in polyatomic molecules on subfemtosecond time scales.
NASA Astrophysics Data System (ADS)
Gudipati, Murthy S.; Yang, Rui
2012-09-01
Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Lyα radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K—close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies—the first glimpses into interstellar ice chemistry through analog studies—show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.
A Versatile Integrated Ambient Ionization Source Platform.
Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei
2018-04-30
The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. Graphical abstract ᅟ.
A Versatile Integrated Ambient Ionization Source Platform
NASA Astrophysics Data System (ADS)
Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei
2018-04-01
The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.
Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...
2016-08-30
Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.
Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less
Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency.
Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato
2016-04-01
Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ.
Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng
2016-01-01
Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644968
Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.
Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M
2015-03-27
An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19} W/ cm^{2}. Highly charged gold ions with kinetic energies up to >200 MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.
NASA Astrophysics Data System (ADS)
Wendt, Klaus; Gottwald, Tina; Hanstorp, Dag; Mattolat, Christoph; Raeder, Sebastian; Rothe, Sebastian; Schwellnus, Fabio; Havener, Charles; Lassen, Jens; Liu, Yuan
2010-02-01
Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. A recent trend is the complementary installation of reliable state-of-the-art all solid-state Ti:Sapphire laser systems. To date, 35 elements of the Periodic Table are available at laser ion sources by using these novel laser systems, which complements the overall accessibility to 54 elements including use of traditional dye lasers. Recent progress in the field concerns the identification of suitable optical excitation schemes for Ti:Sapphire laser excitation as well as technical developments of the source in respect to geometry, cavity material as well as by incorporation of an ion guide system in the form of the laser ion source trap LIST.
Supression of laser breakdown by pulsed nonequilibrium ns discharge
NASA Astrophysics Data System (ADS)
Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.
2016-10-01
The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.
NASA Astrophysics Data System (ADS)
Silina, Yuliya E.; Meier, Florian; Nebolsin, Valeriy A.; Koch, Marcus; Volmer, Dietrich A.
2014-05-01
A simple approach for synthesis of palladium and silver nanostructures with readily adjustable morphologies was developed using galvanic electrochemical deposition, for application to surface-assisted laser desorption/ionization (SALDI) of small biological molecules. A range of fatty acids, triglycerides, carbohydrates, and antibiotics were investigated to assess the performance of the new materials. Intense analyte cations were generated from the galvanic surfaces upon UV laser irradiation such as potassium adducts for a film thickness <100 nm (originating from impurities of the electrolyte solution) and Pd and Ag cluster ions for films with a thickness >120 nm. Possible laser desorption/ionization mechanisms of these galvanic structures are discussed. The films exhibited self-organizing abilities and adjustable morphologies by changing electrochemical parameters. They did not require any stabilizing agents and were inexpensive and very easy to produce. SALDI analysis showed that the materials were stable under ambient conditions and analytical results with excellent measurement reproducibility and detection sensitivity similar to MALDI were obtained. Finally, we applied the galvanic surfaces to fast screening of natural oils with minimum sample preparation.
Bernier, Matthew C; Wysocki, Vicki H; Dagan, Shai
2015-07-01
Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are attractive options due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3 , in microparticle (μP) powder forms, can efficiently facilitate ionization of various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/µL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under laser desorption ionization. Qualitatively, the WO3 μP showed improved detection of apigenin, sodiated glucose, and precharged analyte choline, while the ReO3 μP allowed better detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/µL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than α-cyano-4-hydroxycinnaminic acid. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to those used with α-cyano-4-hydroxycinnaminic acid. Copyright © 2015 John Wiley & Sons, Ltd.
A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser
NASA Astrophysics Data System (ADS)
Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.
The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.
NASA Astrophysics Data System (ADS)
Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho
2016-05-01
Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.
We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.
THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses
NASA Astrophysics Data System (ADS)
Nguyen, A.; González de Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L.
2018-03-01
We numerically study the influence of chirping and delaying several ionizing two-color light pulses in order to engineer terahertz (THz) wave generation in air. By means of comprehensive 3D simulations, it is shown that two chirped pulses can increase the THz yield when they are separated by a suitable time delay for the same laser energy in focused propagation geometry. To interpret these results, the local current theory is revisited and we propose an easy, accessible all-optical criterion that predicts the laser-to-THz conversion efficiencies given any input laser spectrum. In the filamentation regime, numerical simulations display evidence that a chirped pulse is able to produce more THz radiation due to propagation effects, which maintain the two colors of the laser field more efficiently coupled over long distances. A large delay between two pulses promotes multi-peaked THz spectra as well as conversion efficiencies above 10‑4.
Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project
NASA Astrophysics Data System (ADS)
Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.
2014-02-01
SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.
Benigni, Paolo; DeBord, J. Daniel; Thompson, Christopher J.; Gardinali, Piero; Fernandez-Lima, Francisco
2016-01-01
Thousands of chemically distinct compounds are encountered in fossil oil samples that require rapid screening and accurate identification. In the present paper, we show for the first time, the advantages of gas chromatography (GC) separation in combination with atmospheric-pressure laser ionization (APLI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the screening of polyaromatic hydrocarbons (PAHs) in fossil oils. In particular, reference standards of organics in shale oil, petroleum crude oil, and heavy sweet crude oil were characterized by GC-APLI-FT-ICR MS and APLI-FT-ICR MS. Results showed that, while APLI increases the ionization efficiency of PAHs, when compared to other ionization sources, the complexity of the fossil oils reduces the probability of ionizing lower-concentration compounds during direct infusion. When gas chromatography precedes APLI-FT-ICR MS, an increase (more than 2-fold) in the ionization efficiency and an increase in the signal-to-noise ratio of lower-concentration fractions are observed, giving better molecular coverage in the m/z 100–450 range. That is, the use of GC prior to APLI-FT-ICR MS resulted in higher molecular coverage, higher sensitivity, and the ability to separate and characterize molecular isomers, while maintaining the ultrahigh resolution and mass accuracy of the FT-ICR MS separation. PMID:27212790
New developments of the in-source spectroscopy method at RILIS/ISOLDE
NASA Astrophysics Data System (ADS)
Marsh, B. A.; Andel, B.; Andreyev, A. N.; Antalic, S.; Atanasov, D.; Barzakh, A. E.; Bastin, B.; Borgmann, Ch.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Dehairs, M.; Derkx, X.; De Witte, H.; Fedorov, D. V.; Fedosseev, V. N.; Focker, G. J.; Fink, D. A.; Flanagan, K. T.; Franchoo, S.; Ghys, L.; Huyse, M.; Imai, N.; Kalaninova, Z.; Köster, U.; Kreim, S.; Kesteloot, N.; Kudryavtsev, Yu.; Lane, J.; Lecesne, N.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Molkanov, P. L.; Nicol, T.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Schweikhard, L.; Seliverstov, M. D.; Sels, S.; Sjödin, A. M.; Truesdale, V.; Van Beveren, C.; Van Duppen, P.; Wendt, K.; Wienholtz, F.; Wolf, R. N.; Zemlyanoy, S. G.
2013-12-01
At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi, Tl and Po) has been extended to include the gold and astatine isotope chains. Several developments were specifically required for the feasibility of the most recent measurements: new ionization schemes (Po, At); a remote controlled narrow line-width mode of operation for the RILIS Ti:sapphire laser (At, Au, Po); isobar free ionization using the Laser Ion Source Trap, LIST (Po); isobar selective particle identification using the multi-reflection time-of-flight mass separator (MR-ToF MS) of ISOLTRAP (Au, At). These are summarized as part of an overview of the current status of the in-source resonance ionization spectroscopy setup at ISOLDE.
Multi-Wavelength Laser Transmitter for the Two-Step Laser Time-of-Flight Mass Spectrometer
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Li, Steven X.; Fahey, Molly E.; Grubisic, Andrej; Farcy, Benjamin J.; Uckert, Kyle; Li, Xiang; Getty, Stephanie
2017-01-01
Missions to diverse Outer Solar System bodies will require investigations that can detect a wide range of organics in complex mixtures, determine the structure of selected molecules, and provide powerful insights into their origin and evolution. Previous studies from remote spectroscopy of the Outer Solar System showed a diverse population of macromolecular species that are likely to include aromatic and conjugated hydrocarbons with varying degrees of methylation and nitrile incorporation. In situ exploration of Titan's upper atmosphere via mass and plasma spectrometry has revealed a complex mixture of organics. Similar material is expected on the Ice Giants, their moons, and other Outer Solar System bodies, where it may subsequently be deposited onto surface ices. It is evident that the detection of organics on other planetary surfaces provides insight into the chemical and geological evolution of a Solar System body of interest and can inform our understanding of its potential habitability. We have developed a prototype two-step laser desorption/ionization time-of-flight mass spectrometer (L2MS) instrument by exploiting the resonance-enhanced desorption of analyte. We have successfully demonstrated the ability of the L2MS to detect hydrocarbons in organically-doped analog minerals, including cryogenic Ocean World-relevant ices and mixtures. The L2MS instrument operates by generating a neutral plume of desorbed analyte with an IR desorption laser pulse, followed at a delay by a ultraviolet (UV) laser pulse, ionizing the plume. Desorption of the analyte, including trace organic species, may be enhanced by selecting the wavelength of the IR desorption laser to coincide with IR absorption features associated with vibration transitions of minerals or organic functional groups. In this effort, a preliminary laser developed for the instrument uses a breadboard mid-infrared (MIR) desorption laser operating at a discrete 3.475 µm wavelength, and a breadboard UV ionization laser operating at a wavelength of 266 nm. The MIR wavelength was selected to overlap the C-H stretch vibrational transition of certain aromatic hydrocarbons, and the UV wavelength provides additional selectivity to aromatic species via UV resonance-enhanced multiphoton ionization effects. The use of distinct laser wavelengths allows efficient coupling to the vibrational and electronic spectra of the analyte in independent desorption and ionization steps, mitigating excess energy that can lead to fragmentation during the ionization process and leading to selectivity that can aid in data interpretation.
Improving the efficiency of x-ray lasers
NASA Astrophysics Data System (ADS)
Tallents, Gregory J.; Zeitoun, Philippe; Behjat, A.; Demir, A.; Holden, M.; Krishnan, J.; Lewis, Ciaran L. S.; MacPhee, Andrew G.; Warwick, P. J.; Nantel, Marc; Jamelot, Gerard; Rus, Bedrich; Jaegle, Pierre; Klisnick, Annie; Goedtkindt, P.; Carillon, Antoine; Fill, Ernst E.; Li, Yuelin; Pretzler, Georg; Schloegl, Dieter; Steingruber, Juergen; Neely, David; Norreys, Peter A.; Key, Michael H.; Zhang, Jie; Pert, Geoffrey J.; Healy, S. B.; Plowes, J. A.
1995-09-01
Current successful approaches for achieving soft x-ray lasing typically require pumping laser pulses of duration approximately ns and energy approximately kJ (collisionally pumped schemes) or approximately ps pulses and powers of approximately several TW (recombination-pumped schemes). For applications, it is important to improve the efficiency of soft x-ray lasers and so reduce the required power of pumping lasers. The effect of pre- pulse on neon-like collisionally pumped lasers has been investigated using the LULI laser (Ecole Polytechnique, France). A small pre-pulse level approximately 10-3 of the main pulse energy was found to increase the J equals 0 minus 1 neon-like zinc laser output at 21 nm by an order-of-magnitude with a comparable increase in efficiency. A double pumping laser pulse on neon-like yttrium lasing output at 15 nm obtained with the VULCAN laser (Rutherford Appleton Laboratory, England) was also found to increase the x-ray lasing efficiency. With adiabatically cooled recombination lasing, it is shown that approximately 2 ps pulses are optimum for achieving the desired ionization balance for lasing output. The possibility of achieving recombination lasing at short wavelengths on lithium-like ions with longer pulse lasers has been investigated using the ASTERIX laser (Max-Planck Quantenoptik, Germany). These results are presented and interpreted to provide possible directions for improving the efficiency of x-ray lasers.
NASA Astrophysics Data System (ADS)
Szilagyi, John; Parchamy, Homaira; Masnavi, Majid; Richardson, Martin
2017-01-01
The absolute spectral irradiances of laser-plasmas produced from planar zinc targets are determined over a wavelength region of 150 to 250 nm. Strong spectral radiation is generated using 60 ns full-width-at-half-maximum, 1.0 μm wavelength laser pulses with incident laser intensities as low as ˜5 × 108 W cm-2. A typical radiation conversion efficiency of ˜2%/2πsr is measured. Numerical calculations using a comprehensive radiation-hydrodynamics model reveal the strong experimental spectra to originate mainly from 3d94s4p-3d94s2, 3d94s4d-3d94s4p, and 3d94p-3d94s, 3d94d-3d94p unresolved-transition arrays in singly and doubly ionized zinc, respectively.
Optimization of laser-plasma injector via beam loading effects using ionization-induced injection
NASA Astrophysics Data System (ADS)
Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.
2018-05-01
Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .
Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.
Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A
2004-06-01
Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.
Hydrazide and hydrazine reagents as reactive matrices for MALDI-MS to detect gaseous aldehydes.
Shigeri, Yasushi; Ikeda, Shinya; Yasuda, Akikazu; Ando, Masanori; Sato, Hiroaki; Kinumi, Tomoya
2014-08-01
The reagents 19 hydrazide and 14 hydrazine were examined to function as reactive matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to detect gaseous aldehydes. Among them, two hydrazide (2-hydroxybenzohydrazide and 3-hydroxy-2-naphthoic acid hydrazide) and two hydrazine reagents [2-hydrazinoquinoline and 2,4-dinitrophenylhydrazine (DNPH)] were found to react efficiently with carbonyl groups of gaseous aldehydes (formaldehyde, acetaldehyde and propionaldehyde); these are the main factors for sick building syndrome and operate as reactive matrices for MALDI-MS. Results from accurate mass measurements by JMS-S3000 Spiral-TOF suggested that protonated ion peaks corresponding to [M + H](+) from the resulting derivatives were observed in all cases with the gaseous aldehydes in an incubation, time-dependent manner. The two hydrazide and two hydrazine reagents all possessed absorbances at 337 nm (wavelength of MALDI nitrogen laser), with, significant electrical conductivity of the matrix crystal and functional groups, such as hydroxy group and amino group, being important for desorption/ionization efficiency in MALDI-MS. To our knowledge, this is the first report that gaseous molecules could be derivatized and detected directly in a single step by MALDI-MS using novel reactive matrices that were derivatizing agents with the ability to enhance desorption/ionization efficiency. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.
2016-02-01
We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.
Interatomic Coulombic decay cascades in multiply excited neon clusters
Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.
2016-01-01
In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867
Kim, Eunjin; Kang, Hyunook; Choi, Insung; Song, Jihyeon; Mok, Hyejung; Jung, Woong; Yeo, Woon-Seok
2018-05-09
Detection and quantitation of flavonoids are relatively difficult compared to those of other small-molecule analytes because flavonoids undergo rapid metabolic processes, resulting in their elimination from the body. Here, we report an efficient enrichment method for facilitating the analysis of vicinal-diol-containing flavonoid molecules using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In our strategy, boronic-acid-functionalized polyacrylamide particles were used, where boronic acids bound to vicinal diols to form boronate monoesters at basic pH. This complex remained intact during the enrichment processes, and the vicinal-diol-containing flavonoids were easily separated by centrifugation and subsequent acidic treatments. The selectivity and limit of detection of our strategy were confirmed by mass spectrometry analysis, and the validity was assessed by performing the detection and quantitation of quercetin in mouse organs.
Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco
2015-05-01
The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Lai, Samuel Kin-Man; Cheng, Yu-Hong; Tang, Ho-Wai; Ng, Kwan-Ming
2017-08-09
Systematically controlling heat transfer in the surface-assisted laser desorption/ionization (SALDI) process and thus enhancing the analytical performance of SALDI-MS remains a challenging task. In the current study, by tuning the metal contents of Ag-Au alloy nanoparticle substrates (AgNPs, Ag55Au45NPs, Ag15Au85NPs and AuNPs, ∅: ∼2.0 nm), it was found that both SALDI ion-desorption efficiency and heat transfer can be controlled in a wide range of laser fluence (21.3 mJ cm -2 to 125.9 mJ cm -2 ). It was discovered that ion detection sensitivity can be enhanced at any laser fluence by tuning up the Ag content of the alloy nanoparticle, whereas the extent of ion fragmentation can be reduced by tuning up the Au content. The enhancement effect of Ag content on ion desorption was found to be attributable to the increase in laser absorption efficiency (at 355 nm) with Ag content. Tuning the laser absorption efficiency by changing the metal composition was also effective in controlling the heat transfer from the NPs to the analytes. The laser-induced heating of Ag-rich alloy NPs could be balanced or even overridden by increasing the Au content of NPs, resulting in the reduction of the fragmentation of analytes. In the correlation of experimental measurement with molecular dynamics simulation, the effect of metal composition on the dynamics of the ion desorption process was also elucidated. Upon increasing the Ag content, it was also found that phase transition temperatures, such as melting, vaporization and phase explosion temperature, of NPs could be reduced. This further enhanced the desorption of analyte ions via phase-transition-driven desorption processes. The significant cooling effect on the analyte ions observed at high laser fluence was also determined to be originated from the phase explosion of the NPs. This study revealed that the development of alloy nanoparticles as SALDI substrates can constitute an effective means for the systematic control of ion-desorption efficiency and the extent of heat transfer, which could potentially enhance the analytical performance of SALDI-MS.
Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey; Shneider, Mikhail; PU Team
2016-09-01
Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.
Gholipour, Yousef; Nonami, Hiroshi; Erra-Balsells, Rosa
2008-12-15
Underivatized carbohydrates of tulip bulb and leaf tissues were characterized in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by using carbon nanotubes (CNTs) as matrix. Two sample preparation methods--(i) depositing CNTs on the fresh tissue slices placed on the probe and (ii) locating semitransparent tissues on a dried layer of CNTs on the probe--were examined. Furthermore, practicability of in situ starch analysis by MALDI-TOF MS was examined by detection of glucose originated from on-probe amyloglucosidase-catalyzed degradation of starch on the tissue surface. Besides, CNTs could efficiently desorb/ionize natural mono-, di-, and oligosaccharides extracted from tulip bulb tissues as well as glucose resulting from starch enzymatic degradation in vitro. These results were compared with those obtained by in situ MALDI-TOF MS analysis of similar tissues. Positive ion mode showed superior signal reproducibility. CNTs deposited under semitransparent tissue could also desorb/ionize neutral carbohydrates, leading to nearly complete elimination of matrix cluster signals but with an increase in tissue-originated signals. Furthermore, several experiments were carried out to compare the efficiency of 2,5-dihydroxybenzoic acid, nor-harmane, alpha-cyano-4-hydroxycinnamic acid, and CNTs as matrices for MALDI of neutral carbohydrates from the intact plant tissue surface and for enzymatic tissue starch degradation; these results are discussed in brief. Among matrices studied, the lowest laser power was needed to acquire carbohydrate signals with high signal-to-noise ratio and resolution when CNTs were used.
O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.
2017-10-31
A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.
Space-based laser-driven MHD generator: Feasibility study
NASA Technical Reports Server (NTRS)
Choi, S. H.
1986-01-01
The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.
A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging
NASA Astrophysics Data System (ADS)
Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih
2018-02-01
Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.
Esparza, Cesar; Borisov, R S; Varlamov, A V; Zaikin, V G
2016-10-28
New composite matrices have been suggested for the analysis of mixtures of different synthetic organic compounds (N-containing heterocycles and erectile dysfunction drugs) by thin layer chromatography/matrix-assisted laser desorption ionization time-of-flight mass spectrometry (TLC/MALDI-TOF). Different mixtures of classical MALDI matrices and graphite particles dispersed in glycerol were used for the registration of MALDI mass spectra directly from TLC plates after analytes separation. In most of cases, the mass spectra possessed [M+H] + ions; however, for some analytes only [M+Na] + and [M+K] + ions were observed. These ions have been used to generate visualized TLC chromatograms. The described approach increases the desorption/ionization efficiencies of analytes separated by TLC, prevent spot blurring, simplifies and decrease time for sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
2016-02-01
Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less
Characteristics of light reflected from a dense ionization wave with a tunable velocity.
Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V
2009-11-20
An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.
Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching
2016-04-01
In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates.
Feenstra, Adam D.; Ames Lab., Ames, IA; O'Neill, Kelly C.; ...
2016-10-13
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe 3O 4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionicmore » phosphatidylethanolamine (PE) and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.« less
González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L
2016-06-03
We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.
González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.
2016-01-01
We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689
KrF laser pumping by electron beam discharge
NASA Astrophysics Data System (ADS)
Bonnet, J.; Fournier, G.; Pigache, D.
1981-09-01
The pumping of excimer lasers used in nuclear fusion and isotope separation is considered. Homogeneous ionization with an electron beam permitted discharge pumping of a KrF laser with a discharge-energy/beam-energy ratio 5. This high value is obtained to the detriment of an energy density and an efficiency which are about half the best values obtained under other conditions. This result does not modify a recent conclusion indicating that an electron beam controlled discharge has no significant advantage over a pure electron beam as regards pumping high energy KrF lasers at high repetition rate.
Interaction of intense ultrashort pulse lasers with clusters.
NASA Astrophysics Data System (ADS)
Petrov, George
2007-11-01
The last ten years have witnessed an explosion of activity involving the interaction of clusters with intense ultrashort pulse lasers. Atomic or molecular clusters are targets with unique properties, as they are halfway between solid and gases. The intense laser radiation creates hot dense plasma, which can provide a compact source of x-rays and energetic particles. The focus of this investigation is to understand the salient features of energy absorption and Coulomb explosion by clusters. The evolution of clusters is modeled with a relativistic time-dependent 3D Molecular Dynamics (MD) model [1]. The Coulomb interaction between particles is handled by a fast tree algorithm, which allows large number of particles to be used in simulations [2]. The time histories of all particles in a cluster are followed in time and space. The model accounts for ionization-ignition effects (enhancement of the laser field in the vicinity of ions) and a variety of elementary processes for free electrons and charged ions, such as optical field and collisional ionization, outer ionization and electron recapture. The MD model was applied to study small clusters (1-20 nm) irradiated by a high-intensity (10^16-10^20 W/cm^2) sub-picosecond laser pulse. We studied fundamental cluster features such as energy absorption, x-ray emission, particle distribution, average charge per atom, and cluster explosion as a function of initial cluster radius, laser peak intensity and wavelength. Simulations of novel applications, such as table-top nuclear fusion from exploding deuterium clusters [3] and high power synchrotron radiation for biological applications and imaging [4] have been performed. The application for nuclear fusion was motivated by the efficient absorption of laser energy (˜100%) and its high conversion efficiency into ion kinetic energy (˜50%), resulting in neutron yield of 10^6 neutrons/Joule laser energy. Contributors: J. Davis and A. L. Velikovich. [1] G. M. Petrov, et al Phys. Plasmas 12 063103 (2005); 13 033106 (2006) [2] G. M. Petrov, J. Davis, European Phys. J. D 41 629 (2007) [3] G. M. Petrov, J. Davis, A. L. Velikovich, Plasma Phys. Contr. Fusion 48 1721 (2006) [4] G. M. Petrov, J. Davis, A. L. Velikovich, J. Phys. B 39 4617 (2006)
Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric
2017-05-29
The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.
Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas.
Popmintchev, Dimitar; Hernández-García, Carlos; Dollar, Franklin; Mancuso, Christopher; Pérez-Hernández, Jose A; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L; Tarazkar, Maryam; Romanov, Dmitri A; Levis, Robert J; Gaffney, Jim A; Foord, Mark; Libby, Stephen B; Jaron-Becker, Agnieszka; Becker, Andreas; Plaja, Luis; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio
2015-12-04
High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching--the constructive addition of x-ray waves from a large number of atoms--favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth-limited pulse trains of ~100 attoseconds. Copyright © 2015, American Association for the Advancement of Science.
The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas
Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; ...
2015-12-04
High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams inmore » the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Tyler; Kuznetsov, Ilya; Willingham, David
The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument hasmore » a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.« less
Resonance-modulated wavelength scaling of high-order-harmonic generation from H2+
NASA Astrophysics Data System (ADS)
Wang, Baoning; He, Lixin; Wang, Feng; Yuan, Hua; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang
2018-01-01
Wavelength scaling of high-order harmonic generation (HHG) in a non-Born-Oppenheimer treatment of H2+ is investigated by numerical simulations of the time-dependent Schrödinger equation. The results show that the decrease in the wavelength-dependent HHG yield is reduced compared to that in the fixed-nucleus approximation. This slower wavelength scaling is related to the charge-resonance-enhanced ionization effect, which considerably increases the ionization rate at longer driving laser wavelengths due to the relatively larger nuclear separation. In addition, we find an oscillation structure in the wavelength scaling of HHG from H2+. Upon decreasing the laser intensity or increasing the nuclear mass, the oscillation structure will shift towards a longer wavelength of the laser pulse. These results permit the generation of an efficient harmonic spectrum in the midinfrared regime by manipulating the nuclear dynamics of molecules.
Cometary particulate analyzer. [mass spectrometry of laser plasmas
NASA Technical Reports Server (NTRS)
Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.
1979-01-01
A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.
A simple resonance enhanced laser ionization scheme for CO via the A1Π state
NASA Astrophysics Data System (ADS)
Sun, Z. F.; von Zastrow, A. D.; Parker, D. H.
2017-07-01
We investigate the laser ionization process taking place when the CO molecule is exposed to vacuum ultraviolet (VUV) radiation resonant with the CO A1Π (v = 0) ← X1Σ+ (v = 0) transition around 154 nm, along with the ultraviolet (UV) and visible (Red) radiation used to generate VUV by four-wave difference-frequency mixing. By measuring the CO+ ion recoil and a room temperature gas spectrum, it is possible to assign the ionization process as 1 + 1' + 1'' REMPI where the one-photon steps refer to the VUV, UV, and Red radiation, respectively. Resonance enhanced ionization of rotational states around J = 12 arise due to the overlap of the fixed wavelength UV (˜250 nm) with the R band-head of a transition assigned to CO E1Π (v = 6) ← A1Π (v = 0) with a term value of 104 787.5 cm-1. The REMPI process is efficient and polarization sensitive and should be useful in a wide range of studies involving nascent CO.
The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs
NASA Astrophysics Data System (ADS)
Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John
1994-03-01
The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.
Abdelhamid, Hani Nasser; Bhaisare, Mukesh L; Wu, Hui-Fen
2014-03-01
A new ceria (CeO2) nanocubic modified surfactant is used as the basis of a novel nano-based microextraction technique for highly sensitive detection of pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus). The technique uses ultrasound enhanced surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME) with and without ceria (CeO2) followed by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). In order to achieve high separation efficiency, we investigated the influential parameters, including extraction time of ultrasonication, type and volume of the extraction solvent and surfactant. Among various surfactants, the cationic surfactants can selectively offer better extraction efficiency on bacteria analysis than that of the anionic surfactants due to the negative charges of bacteria cell membranes. Extractions of the bacteria lysate from aqueous samples via UESA-DLLME-MALDI-MS were successfully achieved by using cetyltrimethyl ammonium bromide (CTAB, 10.0 µL, 1.0×10(-3) M) as surfactants in chlorobenzene (10.0 µL) and chloroform (10.0 µL) as the optimal extracting solvent for P. aeruginosa and S. aureus, respectively. Ceria nanocubic was synthesized, and functionalized with CTAB (CeO2@CTAB) and then characterized using transmission electron microscopy (TEM) and optical spectroscopy (UV and FTIR). CeO2@CTAB demonstrates high extraction efficiency, improve peaks ionization, and enhance resolution. The prime reasons for these improvements are due to the large surface area of nanoparticles, and its absorption that coincides with the wavelength of MALDI laser (337 nm, N2 laser). CeO2@CTAB-based microextraction offers lowest detectable concentrations tenfold lower than that of without nanoceria. The present approach has been successfully applied to detect pathogenic bacteria at low concentrations of 10(4)-10(5) cfu/mL (without ceria) and at 10(3)-10(4) cfu/mL (with ceria) from bacteria suspensions. Finally, the current approach was applied for analyzing the pathogenic bacteria in biological samples (blood and serum). Ceria assist surfactant (CeO2@CTAB) liquid-liquid microextraction (LLME) offers better extraction efficiency than that of using the surfactant in LLME alone. © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru; University of Nizhny Novgorod, Nizhny Novgorod 603950
2015-05-15
When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCDmore » corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogino, Yousuke; Ohnishi, Naofumi
A thrust power of a gas-driven laser-propulsion system is obtained through interaction with a propellant gas heated by a laser energy. Therefore, understanding the nonequilibrium nature of laser-produced plasma is essential for increasing available thrust force and for improving energy conversion efficiency from a laser to a propellant gas. In this work, a time-dependent collisional-radiative model for air plasma has been developed to study the effects of nonequilibrium atomic and molecular processes on population densities for an air-driven type laser propulsion. Many elementary processes are considered in the number density range of 10{sup 12}/cm{sup 3}<=N<=10{sup 19}/cm{sup 3} and the temperaturemore » range of 300 K<=T<=40,000 K. We then compute the unsteady nature of pulsively heated air plasma. When the ionization relaxation time is the same order as the time scale of a heating pulse, the effects of unsteady ionization are important for estimating air plasma states. From parametric computations, we determine the appropriate conditions for the collisional-radiative steady state, local thermodynamic equilibrium, and corona equilibrium models in that density and temperature range.« less
NASA Astrophysics Data System (ADS)
Rath, Asawari D.; Kundu, S.; Ray, A. K.
2018-02-01
Laser induced photoionization of atoms shows significant dependence on the choice of polarizations of lasers. In multi-step, multi-photon excitation and subsequent ionization of atoms different polarization combinations of the exciting lasers lead to distinctly different ion yields. This fact is exploited in this work to determine total angular momenta of odd-parity energy levels of U I lying at ∼ 4 eV from its ground level using resonance ionization laser polarization spectroscopy in time of flight mass spectrometer. These levels are populated by two-step resonant excitation using two pulsed dye lasers with preset polarizations of choice followed by nonresonant ionization by third laser. The dependence of ionization yield on specific polarizations of the first two lasers is studied experimentally for each level under consideration. This dependence when compared to simulations makes possible unambiguous assignment of J angular momenta to these levels.
Magnetically switched power supply system for lasers
NASA Technical Reports Server (NTRS)
Pacala, Thomas J. (Inventor)
1987-01-01
A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.
Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Louchev, Oleg A; Iwasaki, Masahiko; Wada, Satoshi
2016-04-04
We report an experimental generation of ns pulsed 121.568 nm Lyman-α radiation by the resonant nonlinear four-wave mixing of 212.556 nm and 845.015 nm radiation pulses providing a high conversion efficiency 1.7x10-3 with the output pulse energy 3.6 μJ achieved using a low pressure Kr-Ar mixture. Theoretical analysis shows that this efficiency is achieved due to the advantage of using (i) the high input laser intensities in combination with (ii) the low gas pressure allowing us to avoid the onset of full-scale discharge in the laser focus. In particular, under our experimental conditions the main mechanism of photoionization caused by the resonant 2-photon 212.556 nm radiation excitation of Kr atoms followed by the 1-photon ionization leads to ≈17% loss of Kr atoms and efficiency loss only by the end of the pulse. The energy of free electrons, generated by 212.556 nm radiation via (2 + 1)-photon ionization and accelerated mainly by 845.015 nm radiation, remains during the pulse below the level sufficient for the onset of full-scale discharge by the electron avalanche. Our analysis also suggests that ≈30-fold increase of 845.015 nm pulse energy can allow one to scale up the L-α radiation pulse energy towards the level of ≈100 μJ.
2015-06-01
OF A CONTINUOUS WAVE LASER FOR RESONANCE IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS by Sunny G. Lau June 2015 Thesis...IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS 5. FUNDING NUMBERS 6. AUTHOR(S) Sunny G. Lau 7. PERFORMING ORGANIZATION NAME(S) AND...200 words) The application of resonance ionization mass spectroscopy (RIMS) to nuclear forensics involves the use of lasers to selectively ionize
Laser-based methods for the analysis of low molecular weight compounds in biological matrices.
Kiss, András; Hopfgartner, Gérard
2016-07-15
Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Savoca, Marco; Lagutschenkov, Anita; Langer, Judith; Harding, Dan J; Fielicke, André; Dopfer, Otto
2013-02-14
Vibrational spectra of mixed silicon carbide clusters Si(m)C(n) with m + n = 6 in the gas phase are obtained by resonant infrared-vacuum-ultraviolet two-color ionization (IR-UV2CI for n ≤ 2) and density functional theory (DFT) calculations. Si(m)C(n) clusters are produced in a laser vaporization source, in which the silicon plasma reacts with methane. Subsequently, they are irradiated with tunable IR light from an IR free electron laser before they are ionized with UV photons from an F(2) laser. Resonant absorption of one or more IR photons leads to an enhanced ionization efficiency for Si(m)C(n) and provides the size-specific IR spectra. IR spectra measured for Si(6), Si(5)C, and Si(4)C(2) are assigned to their most stable isomers by comparison with calculated linear absorption spectra. The preferred Si(m)C(n) structures with m + n = 6 illustrate the systematic transition from chain-like geometries for bare C(6) to three-dimensional structures for bare Si(6). In contrast to bulk SiC, carbon atom segregation is observed already for the smallest n (n = 2).
Barreiro, J R; Ferreira, C R; Sanvido, G B; Kostrzewa, M; Maier, T; Wegemann, B; Böttcher, V; Eberlin, M N; dos Santos, M V
2010-12-01
Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bernier, Matthew; Wysocki, Vicki; Dagan, Shai
2015-01-01
Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization (LDI) with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are an attractive option due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3, in microparticle (μP) powder forms, can efficiently ionize various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/μL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under LDI. Qualitatively, the WO3 μP showed an improved detection of apigenin, sodiated glucose, and the precharged analyte choline, while the ReO3 μP allowed detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/μL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than CCA. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to that used with CCA. PMID:26349643
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.
2018-01-01
We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.
NASA Astrophysics Data System (ADS)
Popczun, Nicholas James
The work presented in this dissertation is focused on increasing the fundamental understanding of molecular secondary ion mass spectrometry (SIMS) ionization probability by measuring neutral molecule behavior with femtosecond, mid-infrared laser post-ionization (LPI). To accomplish this, a model system was designed with a homogeneous organic film comprised of coronene, a polycyclic hydrocarbon which provides substantial LPI signal. Careful consideration was given to signal lost to photofragmentation and undersampling of the sputtered plume that is contained within the extraction volume of the mass spectrometer. This study provided the first ionization probability for an organic compound measured directly by the relative secondary ions and sputtered neutral molecules using a strong-field ionization (SFI) ionization method. The measured value of ˜10-3 is near the upper limit of previous estimations of ionization probability for organic molecules. The measurement method was refined, and then applied to a homogeneous guanine film, which produces protonated secondary ions. This measurement found the probability of protonation to occur to be on the order of 10-3, although with less uncertainty than that of the coronene. Finally, molecular depth profiles were obtained for SIMS and LPI signals as a function of primary ion fluence to determine the effect of ionization probability on the depth resolution of chemical interfaces. The interfaces chosen were organic/inorganic interfaces to limit chemical mixing. It is shown that approaching the inorganic chemical interface can enhance or suppress the ionization probability for the organic molecule, which can lead to artificially sharpened or broadened depths, respectively. Overall, the research described in this dissertation provides new methods for measuring ionization efficiency in SIMS in both absolute and relative terms, and will inform both innovation in the technique, as well as increase understanding of depth-dependent experiments.
Ionization Waves of Arbitrary Velocity
NASA Astrophysics Data System (ADS)
Turnbull, D.; Franke, P.; Katz, J.; Palastro, J. P.; Begishev, I. A.; Boni, R.; Bromage, J.; Milder, A. L.; Shaw, J. L.; Froula, D. H.
2018-06-01
Flying focus is a technique that uses a chirped laser beam focused by a highly chromatic lens to produce an extended focal region within which the peak laser intensity can propagate at any velocity. When that intensity is high enough to ionize a background gas, an ionization wave will track the intensity isosurface corresponding to the ionization threshold. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced that propagated both forward and backward relative to the ionizing laser. All backward and all superluminal cases mitigated the issue of ionization-induced refraction that typically inhibits the formation of long, contiguous plasma channels.
NASA Astrophysics Data System (ADS)
Neumayer, Paul; Kritcher, Andrea; Landen, Otto; Lee, Haeja; Offerman, Dustin; Shipton, Eric; Glenzer, Siegfried
2006-10-01
X-ray Thomson scattering using short pulse laser generated intense line radiation has a great potential as a time-resolved temperature and density diagnostic for high-energy density states of matter. We present recent results characterizing Chlorine K-alpha and K-beta line emission obtained by irradiating Saran foil with 50 Terawatt laser pulses from the Callisto laser (Jupiter Laser Facility, Lawrence Livermore National Laboratory). Spectra from front and rear side emission are recorded simultaneously with high resolution HOPG spectrometers employing imaging plate detectors. Conversion efficiencies of laser pulse energy into x-ray line emission of several 10-5 are achieved and are maintained throughout up to 7 J of laser energy, thus constituting a short pulsed narrow band x-ray source of more than 10^11 photons. When the target size is reduced to 50 micrometer (``micro-dot'') a significant blue-shift of up to 5 eV is clearly observed. This can be attributed to higher ionization states of the target atoms indicating achievement of a high-temperature solid density state. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and LDRD 05-ERI-003.
NASA Astrophysics Data System (ADS)
Dalichaouch, Thamine; Davidson, Asher; Xu, Xinlu; Yu, Peicheng; Tsung, Frank; Mori, Warren; Li, Fei; Zhang, Chaojie; Lu, Wei; Vieira, Jorge; Fonseca, Ricardo
2016-10-01
In the past few decades, there has been much progress in theory, simulation, and experiment towards using Laser wakefield acceleration (LWFA) as the basis for designing and building compact x-ray free-electron-lasers (XFEL) as well as a next generation linear collider. Recently, ionization injection and density downramp injection have been proposed and demonstrated as a controllable injection scheme for creating higher quality and ultra-bright relativistic electron beams using LWFA. However, full-3D simulations of plasma-based accelerators are computationally intensive, sometimes taking 100 millions of core-hours on today's computers. A more efficient quasi-3D algorithm was developed and implemented into OSIRIS using a particle-in-cell description with a charge conserving current deposition scheme in r - z and a gridless Fourier expansion in ϕ. Due to the azimuthal symmetry in LWFA, quasi-3D simulations are computationally more efficient than 3D cartesian simulations since only the first few harmonics in are needed ϕ to capture the 3D physics of LWFA. Using the quasi-3D approach, we present preliminary results of ionization and down ramp triggered injection and compare the results against 3D LWFA simulations. This work was supported by DOE and NSF.
Analysis of chirality by femtosecond laser ionization mass spectrometry.
Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael
2012-09-01
Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.
Fukuyama, Yuko; Kolender, Adriana A; Nishioka, Masae; Nonami, Hiroshi; Matulewicz, María C; Erra-Balsells, Rosa; Cerezo, Alberto S
2005-01-01
Three xylan fractions isolated from the red seaweed Nothogenia fastigiata (Nemaliales) were analyzed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOFMS). UV-MALDI-TOFMS was carried out in the linear and reflectron modes, and as routine in the positive and negative ion modes. Of the several matrices tested, nor-harmane was the only effective one giving good spectra in the positive ion mode. The number-average molar masses of two of the fractions, calculated from the distribution profiles, were lower than those determined previously by (1)H NMR analysis, suggesting a decrease in the ionization efficiency with increasing molecular weight; weight-average molar mass and polydispersity index were also determined. As the xylans retained small but significant quantities of calcium salts, the influence of added Ca(2+) as CaCl(2) on UV-MALDI-MS was investigated. The simultaneous addition of sodium chloride and calcium chloride was also analyzed. Addition of sodium chloride did not change the distribution profile of the native sample showing that the inhibitory effect is due to Ca(2+) and not to Cl(-). Addition of calcium chloride with 1:1 analyte/salt molar ratio gave spectra with less efficient desorption/ionization of oligomers; the signals of these oligomers were completely suppressed when the addition of the salt became massive (1:100 analyte/salt molar ratio). Copyright (c) 2005 John Wiley & Sons, Ltd.
Resonance ionization laser ion sources for on-line isotope separators (invited).
Marsh, B A
2014-02-01
A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.
Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas
NASA Astrophysics Data System (ADS)
Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.
1998-05-01
Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, D.K.
1989-01-01
This volume of the LLE Review, covering the period October--December 1989, contains an article discussing saturation effects and power-balance considerations in the design of high-power lasers and an article describing numerical modeling of the effects of power imbalances on target behavior. The advanced technology section reports on the development of a liquid crystal laser-beam apodizer and an experiment to study the high-intensity ionization of noble gases. Finally, the activities of the National Laser Users Facility and the GDL and OMEGA laser facilities are summarized. The highlights of this issue are: The problem of achieving power balance in high-efficiency, multibeam lasersmore » has been studied in terms of gain-saturation effects and the nonlinear nature of harmonic frequency conversion. It is shown that power imbalance can be minimized by balancing the gains and losses in equivalent amplification stages in each beamline. The effects of target implosion behavior of various power-imbalance sources in the OMEGA laser system have been studied using the two-dimensional hydrodynamics code ORCHID. The simulations show good agreement with an experiment in which a deliberate power imbalance was applied to the target drive. Laser-beam apodizers with large clear apertures have been fabricated using cholesteric liquid crystals. A soft-edge profile has been achieved by filling a cell with two separate liquid crystals with different selective-reflection bands, and allowing them to partially mix at the interface. A study of the ionization of noble gases in the tunneling regime using high- intensity, 1-ps pulses from the tabletop terawatt laser (T{sup 3}) has been carried out. The measured ion production is well predicted by a Coulomb barrier suppression ionization theory.« less
Two-color ionization injection using a plasma beatwave accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, C. B.; Benedetti, C.; Esarey, E.
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Two-color ionization injection using a plasma beatwave accelerator
Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...
2018-01-10
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Brentan Silva, Denise; Aschenbrenner, Anna-Katharina; Lopes, Norberto Peporine; Spring, Otmar
2017-05-10
Helianthus annuus (sunflower) displays non-glandular trichomes (NGT), capitate glandular trichomes (CGT), and linear glandular trichomes (LGT), which reveal different chemical compositions and locations in different plant tissues. With matrix-assisted laser desorption/ionization (MALDI) and laser desorption/ionization (LDI) mass spectrometry imaging (MSI) techniques, efficient methods were developed to analyze the tissue distribution of secondary metabolites (flavonoids and sesquiterpenes) and proteins inside of trichomes. Herein, we analyzed sesquiterpene lactones, present in CGT, from leaf transversal sections using the matrix 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA) (mixture 1:1) with sodium ions added to increase the ionization in positive ion mode. The results observed for sesquiterpenes and polymethoxylated flavones from LGT were similar. However, upon desiccation, LGT changed their shape in the ionization source, complicating analyses by MSI mainly after matrix application. An alternative method could be applied to LGT regions by employing LDI (without matrix) in negative ion mode. The polymethoxylated flavones were easily ionized by LDI, producing images with higher resolution, but the sesquiterpenes were not observed in spectra. Thus, the application and viability of MALDI imaging for the analyses of protein and secondary metabolites inside trichomes were confirmed, highlighting the importance of optimization parameters.
Ionization Waves of Arbitrary Velocity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turnbull, D.; Franke, P.; Katz, J.
The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less
Ionization Waves of Arbitrary Velocity
Turnbull, D.; Franke, P.; Katz, J.; ...
2018-05-31
The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less
NASA Astrophysics Data System (ADS)
Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl
2007-07-01
This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.
Resonant- and avalanche-ionization amplification of laser-induced plasma in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yue; Zhang, Zhili, E-mail: zzhang24@utk.edu; Jiang, Naibo
2014-10-14
Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to showmore » relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.« less
Coulomb-repulsion-assisted double ionization from doubly excited states of argon
NASA Astrophysics Data System (ADS)
Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen
2017-08-01
We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.
ON-LINE ANALYSIS OF AQUEOUS AEROSOLS BY LASER DESORPTION IONIZATION. (R823980)
In this work the effects of water on the laser desorption ionization mass spectra of single aerosol particles are explored. Aqueous aerosols are produced by passing dry particles through a humid environment so that they undergo deliquescent growth. Laser desorption ionization is ...
Femtosecond laser-induced cell-cell surgical attachment.
Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R; Elezzabi, Abdulhakem Y
2014-04-01
Laser-induced cell-cell surgical attachment using femtosecond laser pulses is reported. We have demonstrated the ability to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser. To check that the cells did not go through a cell-fusion process, a fluorescent dye Calcein AM was used to verify that the fluorescent dye did not migrate from a dyed cell to a non-dyed cell. The mechanical integrity of the attached joint was assessed using an optical tweezer. Attachment of cells was performed without the induction of cell-cell fusion, with attachment efficiency of 95%, and while preserving the cells' viability. Cell-cell attachment was achieved by delivery of one to two trains of femtosecond laser pulses lasting 15 ms each. Laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane. The inner cell membrane remained intact during the attachment procedure, and isolation of the cells' cytoplasm from the surrounding medium was obtained. A strong physical attachment between the cells was obtained due to the bonding of the membranes' ionized phospholipid molecules and the formation of a joint cellular membrane at the connection point. The cellular attachment technique, femtosecond laser-induced cell-cell surgical attachment, can potentially provide a platform for the creation of engineered tissue and cell cultures. © 2014 Wiley Periodicals, Inc.
Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets
Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.
2008-01-01
We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311
Thermal emittance from ionization-induced trapping in plasma accelerators
Schroeder, C. B.; Vay, J. -L.; Esarey, E.; ...
2014-10-03
The minimum obtainable transverse emittance (thermal emittance) of electron beams generated and trapped in plasma-based accelerators using laser ionization injection is examined. The initial transverse phase space distribution following ionization and passage through the laser is derived, and expressions for the normalized transverse beam emittance, both along and orthogonal to the laser polarization, are presented. Results are compared to particle-in-cell simulations. Ultralow emittance beams can be generated using laser ionization injection into plasma accelerators, and examples are presented showing normalized emittances on the order of tens of nm.
Study of Laser Created Metal Vapor Plasmas.
1979-11-16
Leventhal(1 indicate a value closer to 10-1 cm. might be expected. In the case of’ laser induced penniinf, ionization., wec -,;4-,rit LIP 32 LIP L J where...modified Kramer’s formulae.(25) In figure 11 we demonstrate the impact of associative ionization and laser induced penning ionization upon the temporal...34Laser Induced Fluorescence and Environmental Sensing", Invited paper for Optical Society of America, Topical Mcetixg on "Applications of Laser
Resonance Ionization Mass Spectrometry System for Measurement of Environmental Samples
NASA Astrophysics Data System (ADS)
Pibida, L.; McMahon, C. A.; Nörtershäuser, W.; Bushaw, B. A.
2002-10-01
A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4×10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed.
Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.
Gallais, Laurent; Monneret, Serge
2016-07-15
We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.
Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)
2002-01-01
The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.
Theory of terahertz emission from femtosecond-laser-induced microplasmas
NASA Astrophysics Data System (ADS)
Thiele, I.; Nuter, R.; Bousquet, B.; Tikhonchuk, V.; Skupin, S.; Davoine, X.; Gremillet, L.; Bergé, L.
2016-12-01
We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on microplasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel ionization of neutral atoms, and the resulting plasma is heated by collisions. Electrons are driven by electromagnetic, convective, and diffusive sources and produce a macroscopic current which is responsible for THz emission. The model naturally includes both ionization current and transition-Cherenkov mechanisms for THz emission, which are usually investigated separately in the literature. The latter mechanism is shown to dominate for single-color multicycle laser pulses, where the observed THz radiation originates from longitudinal electron currents. However, we find that the often discussed oscillations at the plasma frequency do not contribute to the THz emission spectrum. In order to predict the scaling of the conversion efficiency with pulse energy and focusing conditions, we propose a simplified description that is in excellent agreement with rigorous particle-in-cell simulations.
Effects of ultrashort laser pulses on angular distributions of photoionization spectra.
Ooi, C H Raymond; Ho, W L; Bandrauk, A D
2017-07-27
We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.
NASA Astrophysics Data System (ADS)
Burton, A. S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.; Moore, J. F.
2018-04-01
Laser microprobe of surfaces utilizing a two laser setup whereby the desorption laser threshold is lowered below ionization, and the resulting neutral plume is examined using 157nm Vacuum Ultraviolet laser light for mass spec surface mapping.
High Resolution Laser Mass Spectrometry Bioimaging
Murray, Kermit K.; Seneviratne, Chinthaka A.; Ghorai, Suman
2016-01-01
MSI (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10 μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. PMID:26972785
High resolution laser mass spectrometry bioimaging.
Murray, Kermit K; Seneviratne, Chinthaka A; Ghorai, Suman
2016-07-15
Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. Copyright © 2016 Elsevier Inc. All rights reserved.
[Research on cells ablation characters by laser plasma].
Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen
2012-08-01
The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Hiroyuki
Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.
Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field
NASA Astrophysics Data System (ADS)
Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François
2016-01-01
Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.
Gode, David; Volmer, Dietrich A
2013-05-15
Magnetic beads are often used for serum profiling of peptide and protein biomarkers. In these assays, the bead-bound analytes are eluted from the beads prior to mass spectrometric analysis. This study describes a novel matrix-assisted laser desorption/ionization (MALDI) technique for direct application and focusing of magnetic beads to MALDI plates by means of dedicated micro-magnets as sample spots. Custom-made MALDI plates with magnetic focusing spots were made using small nickel-coated neodymium micro-magnets integrated into a stainless steel plate in a 16 × 24 (384) pattern. For demonstrating the proof-of-concept, commercial C-18 magnetic beads were used for the extraction of a test compound (reserpine) from aqueous solution. Experiments were conducted to study focusing abilities, the required laser energies, the influence of a matrix compound, dispensing techniques, solvent choice and the amount of magnetic beads. Dispensing the magnetic beads onto the micro-magnet sample spots resulted in immediate and strong binding to the magnetic surface. Light microscope images illustrated the homogeneous distribution of beads across the surfaces of the magnets, when the entire sample volume containing the beads was pipetted onto the surface. Subsequent MALDI analysis of the bead-bound analyte demonstrated excellent and reproducible ionization yields. The surface-assisted laser desorption/ionization (SALDI) properties of the strongly light-absorbing γ-Fe2O3-based beads resulted in similar ionization efficiencies to those obtained from experiments with an additional MALDI matrix compound. This feasibility study successfully demonstrated the magnetic focusing abilities for magnetic bead-bound analytes on a novel MALDI plate containing small micro-magnets as sample spots. One of the key advantages of this integrated approach is that no elution steps from magnetic beads were required during analyses compared with conventional bead experiments. Copyright © 2013 John Wiley & Sons, Ltd.
Laser-induced volatilization and ionization of microparticles
NASA Technical Reports Server (NTRS)
Sinha, M. P.
1984-01-01
A method for the laser vaporization and ionization of individual micron-size particles is presented whereby a particle is ionized by a laser pulse while in flight in the beam. Ionization in the beam offers a real-time analytical capability and eliminates any possible substrate-sample interferences during an analysis. An experimental arrangement using a high-energy Nd-YAG laser is described, and results are presented for ions generated from potassium biphthalate particles (1.96 micron in diameter). The method proposed here is useful for the chemical analysis of aerosol particles by mass spectrometry and for other spectroscopic and chemical kinetic studies.
Extreme ionization of Xe clusters driven by ultraintense laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidenreich, Andreas; Last, Isidore; Jortner, Joshua
We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of themore » inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length control mechanism of extreme ionization products.« less
Wiggler magnetic field assisted third harmonic generation in expanding clusters
NASA Astrophysics Data System (ADS)
Vij, Shivani
2018-04-01
A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2010-11-01
Modeling of laser-induced ionization and heating of conduction-band electrons by laser radiation frequently serves as a basis for simulations supporting experimental studies of laser-induced ablation and damage of solid dielectrics. Together with band gap and electron-particle collision rate, effective electron mass is one of material parameters employed for the ionization modeling. Exact value of the effective mass is not known for many materials frequently utilized in experiments, e.g., fused silica and glasses. Because of that reason, value of the effective mass is arbitrary varied around "reasonable values" for the ionization modeling. In fact, it is utilized as a fitting parameter to fit experimental data on dependence of ablation or damage threshold on laser parameters. In this connection, we study how strong is the influence of variations of the effective mass on the value of conduction-band electron density. We consider influence of the effective mass on the photo-ionization rate and rate of impact ionization. In particular, it is shown that the photo-ionization rate can vary by 2-4 orders of magnitude with variation of effective mass by 50%. Impact ionization shows a much weaker dependence on effective mass, but it significantly enhances the variations of seed-electron density produced by the photo-ionization. Utilizing those results, we demonstrate that variation of effective mass by 50% produces variations of conduction-band electron density by 6 orders of magnitude. In this connection, we discuss the general issues of the current models of laser-induced ionization.
NASA Astrophysics Data System (ADS)
Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.
2009-06-01
The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy deposition. These findings may suggest a role of the modifier as a moderator in the energy dissipation and relaxation process. The relatively low internal energy content of SPALDI-produced ions indicates that this is a "soft" desorption technique, with potential advantages in the analysis of labile compounds.
Laser ablation-miniature mass spectrometer for elemental and isotopic analysis of rocks.
Sinha, M P; Neidholdt, E L; Hurowitz, J; Sturhahn, W; Beard, B; Hecht, M H
2011-09-01
A laser ablation-miniature mass spectrometer (LA-MMS) for the chemical and isotopic measurement of rocks and minerals is described. In the LA-MMS method, neutral atoms ablated by a pulsed laser are led into an electron impact ionization source, where they are ionized by a 70 eV electron beam. This results in a secondary ion pulse typically 10-100 μs wide, compared to the original 5-10 ns laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer (MMS) and measured in parallel by a modified CCD array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LA-MMS offers a more quantitative assessment of elemental composition than techniques that detect ions directly generated by the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the wavelength of the laser beam, and the not well characterized ionization efficiencies of the elements in the process. The above problems attendant to the direct ion analysis has been minimized in the LA-MMS by analyzing the ablated neutral species after their post-ionization by electron impaction. These neutral species are much more abundant than the directly ablated ions in the ablated vapor plume and are, therefore, expected to be characteristic of the chemical composition of the solid. Also, the electron impact ionization of elements is well studied and their ionization cross sections are known and easy to find in databases. Currently, the LA-MMS limit of detection is 0.4 wt.%. Here we describe LA-MMS elemental composition measurements of various minerals including microcline, lepidolite, anorthoclase, and USGS BCR-2G samples. The measurements of high precision isotopic ratios including (41)K/(39)K (0.077 ± 0.004) and (29)Si/(28)Si (0.052 ± 0.006) in these minerals by LA-MMS are also described. The LA-MMS has been developed as a prototype instrument system for space applications for geochemical and geochronological measurements on the surface of extraterrestrial bodies. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isselhardt, Brett H.
2011-09-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less
NASA Astrophysics Data System (ADS)
Yalcin, Talat; Li, Liang
2009-12-01
Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.
Fragmentation of neutral amino acids and small peptides by intense, femtosecond laser pulses.
Duffy, Martin J; Kelly, Orla; Calvert, Christopher R; King, Raymond B; Belshaw, Louise; Kelly, Thomas J; Costello, John T; Timson, David J; Bryan, William A; Kierspel, Thomas; Turcu, I C Edmond; Cacho, Cephise M; Springate, Emma; Williams, Ian D; Greenwood, Jason B
2013-09-01
High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.
Influence of field ionization effect on the divergence of laser-driven fast electrons
NASA Astrophysics Data System (ADS)
Lang, Y.; Yang, X. H.; Xu, H.; Jin, Z.; Zhuo, H. B.
2018-07-01
The effect of field ionization on the divergence of fast electrons (E k ≥ 50 keV), driven by ultrashort-ultraintense laser pulse interaction with plasma, is studied by using 2D3V particle-in-cell simulations. It is found that, due to temperature anisotropy of the fast electrons in the ionizing target, strong fluctuant magnetic fields in the preplasma region is generated through Weibel instability. In turn, the field induces an enhancement of the hot electron divergence for the target with ionization process. Meanwhile, compared with the target without an ionization process, larger divergence of hot electrons can also be seen in the ionizing target with laser intensity varying from 5 × 1019 W/cm2 to 5 × 1020 W/cm2 and the divergence is weakly dependent on target materials for a fixed profile of preplasma. The results here are useful for the application of laser-driven fast electron beams.
Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization
NASA Astrophysics Data System (ADS)
Liang, Sheng-Ping; Lu, I.-Chung; Tsai, Shang-Ting; Chen, Jien-Lian; Lee, Yuan Tseh; Ni, Chi-Kung
2017-10-01
Ultraviolet laser pulses at 355 nm with variable pulse widths in the region from 170 ps to 1.5 ns were used to investigate the ionization mechanism of matrix-assisted laser desorption/ionization (MALDI) for matrices 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The mass spectra of desorbed ions and the intensity and velocity distribution of desorbed neutrals were measured simultaneously for each laser shot. These quantities were found to be independent of the laser pulse width. A comparison of the experimental measurements and numerical simulations according to the multiphoton ionization, coupled photophysical and chemical dynamics (CPCD), and thermally induced proton transfer models showed that the predictions of thermally induced proton transfer model were in agreement with the experimental data, but those of the multiphoton ionization model were not. Moreover, the predictions of the CPCD model based on singlet-singlet energy pooling were inconsistent with the experimental data of CHCA and SA, but were consistent with the experimental data of DHB only when some parameters used in the model were adjusted to extreme values. [Figure not available: see fulltext.
Li, Daojin; Yin, Danyang; Chen, Yang; Liu, Zhen
2017-05-19
Protein phosphorylation is a major post-translational modification, which plays a vital role in cellular signaling of numerous biological processes. Mass spectrometry (MS) has been an essential tool for the analysis of protein phosphorylation, for which it is a key step to selectively enrich phosphopeptides from complex biological samples. In this study, metal-organic frameworks (MOFs)-based monolithic capillary has been successfully prepared as an effective sorbent for the selective enrichment of phosphopeptides and has been off-line coupled with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for efficient analysis of phosphopeptides. Using š-casein as a representative phosphoprotein, efficient phosphorylation analysis by this off-line platform was verified. Phosphorylation analysis of a nonfat milk sample was also demonstrated. Through introducing large surface areas and highly ordered pores of MOFs into monolithic column, the MOFs-based monolithic capillary exhibited several significant advantages, such as excellent selectivity toward phosphopeptides, superb tolerance to interference and simple operation procedure. Because of these highly desirable properties, the MOFs-based monolithic capillary could be a useful tool for protein phosphorylation analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Data acquisition, remote control and equipment monitoring for ISOLDE RILIS
NASA Astrophysics Data System (ADS)
Rossel, R. E.; Fedosseev, V. N.; Marsh, B. A.; Richter, D.; Rothe, S.; Wendt, K. D. A.
2013-12-01
With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.
Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard
2008-09-15
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.
How the laser-induced ionization of transparent solids can be suppressed
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2013-12-01
A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.
Nanoparticles generated by laser in liquids as contrast medium and radiotherapy intensifiers
NASA Astrophysics Data System (ADS)
Restuccia, Nancy; Torrisi, Lorenzo
2018-01-01
The synthesis of Au and Ag nanoparticles (NP) though laser ablation in liquids as a function the laser parameters is presented. Spherical NPs with diameter distribution within 1 and 100 nm were prepared by laser ablation in water. The nanoparticles characterization was performed using optical spectroscopy and electronic microscopy (SEM and TEM) measurements. Studies of the possible use of metallic nanoparticles as intensifier of diagnostics imaging contrast medium and absorbing dose from ionizing radiations in traditional radiotherapy and protontherapy are presented. Examples of in vitro (in tissue equivalent materials) and in vivo (in mice), were conducted thank to simulation programs permitting to evaluate the enhancement of efficiency in imaging and therapy as a function of the NPs concentrations and irradiation conditions.
High sensitive and throughput screening of Aflatoxin using MALDI-TOF-TOF-PSD-MS/MS
USDA-ARS?s Scientific Manuscript database
We have achieved sensitive and efficient detection of aflatoxin B1(AFB1) through matrix-assisted laser desorption/ionization time-of-flight-time-of-flight mass spectrometry (MALDI-TOF-TOF) and post-source decay (PSD) tandem mass spectrometry (MS/MS) using an acetic acid – a-cyano-4-hydroxycinnamic a...
Post-filament self-trapping of ultrashort laser pulses.
Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Andriukaitis, G; Flöry, T; Pugžlys, A; Fedotov, A B; Mikhailova, J M; Panchenko, V Ya; Baltuška, A; Zheltikov, A M
2014-08-15
Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.
Non-traditional applications of laser desorption/ionization mass spectrometry
NASA Astrophysics Data System (ADS)
McAlpin, Casey R.
Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then protonated free analyte molecules. Expanded applications of MOLI MS were developed following description of the ionization mechanism. A series of experiments were carried out involving treatment of metal oxide surfaces with reagent molecules to expand MOLI MS and develop enhanced MOLI MS methodologies. It was found that treatment of the metal oxide surface with a small molecule to act as a proton source expanded MOLI MS to analytes which did not form acidic adsorbed species. Proton-source pretreated MOLI MS was then used for the analysis of oils obtained from the fast, anoxic pyrolysis of biomass (py-oil). These samples are complex and produce MOLI mass spectra with many peaks. In this experiment, methods of data reduction including Kendrick mass defects and nominal mass z*-scores, which are commonly used for the study of petroleum fractions, were used to interpret these spectra and identify the major constituencies of py-oils. Through data reduction and collision induced dissociation (CID), homologous series of compounds were rapidly identified. The final chapter involves using metal oxides to catalytically cleave the ester linkage on lipids containing fatty acids in addition to ionization. The cleavage process results in the production of spectra similar to those observed with saponification/methylation. Fatty acid profiles were generated for a variety of micro-organisms to differentiate between bacterial species. (Abstract shortened by UMI.)
Infrared photodissociation spectroscopy of protonated neurotransmitters in the gas phase
NASA Astrophysics Data System (ADS)
MacLeod, N. A.; Simons, J. P.
2007-03-01
Protonated neurotransmitters have been produced in the gas phase via a novel photochemical scheme: complexes of the species of interest, 1-phenylethylamine, 2-amino-1-phenylethanol and the diastereo-isomers, ephedrine and pseudoephedrine, with a suitable proton donor, phenol (or indole), are produced in a supersonic expansion and ionized by resonant two photon ionization of the donor. Efficient proton transfer generates the protonated neurotransmitters, complexed to a phenoxy radical. Absorption of infrared radiation, and subsequent evaporation of the phenoxy tag, coupled with time of flight mass spectrometry, provides vibrational spectra of the protonated (and also hydrated) complexes for comparison with the results of quantum chemical computation. Comparison with the conformational structures of the neutral neurotransmitters (established previously) reveals the effect of protonation on their structure. The photochemical proton transfer strategy allows spectra to be recorded from individual laser shots and their quality compares favourably with that obtained using electro-spray or matrix assisted laser desorption ion sources.
Martínez-Ceron, María C; Giudicessi, Silvana L; Marani, Mariela M; Albericio, Fernando; Cascone, Osvaldo; Erra-Balsells, Rosa; Camperi, Silvia A
2010-05-15
Optimization of bead analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) after the screening of one-bead-one-peptide combinatorial libraries was achieved, involving the fine-tuning of the whole process. Guanidine was replaced by acetonitrile (MeCN)/acetic acid (AcOH)/water (H(2)O), improving matrix crystallization. Peptide-bead cleavage with NH(4)OH was cheaper and safer than, yet as efficient as, NH(3)/tetrahydrofuran (THF). Peptide elution in microtubes instead of placing the beads in the sample plate yielded more sample aliquots. Successive dry layers deposit sample preparation was better than the dried droplet method. Among the matrices analyzed, alpha-cyano-4-hydroxycinnamic acid resulted in the best peptide ion yield. Cluster formation was minimized by the addition of additives to the matrix. Copyright 2010 Elsevier Inc. All rights reserved.
Strong field control of the interatomic Coulombic decay process in quantum dots
NASA Astrophysics Data System (ADS)
Haller, Anika; Chiang, Ying-Chih; Menger, Maximilian; Aziz, Emad F.; Bande, Annika
2017-01-01
In recent years the laser-induced interatomic Coulombic decay (ICD) process in paired quantum dots has been predicted (Bande, 2013). In this work we target the enhancement of ICD by scanning over a range of strong-field laser intensities. The GaAs quantum dots are modeled by a one-dimensional double-well potential in which simulations are done with the space-resolved multi-configuration time-dependent Hartree method including antisymmetrization to account for the fermions. As a novelty a complementary state-resolved ansatz is developed to consolidate the interpretation of transient state populations, widths obtained for the ICD and the competing direct ionization channel, and Fano peak profiles in the photoelectron spectra. The major results are that multi-photon processes are unimportant even for the strongest fields. Further, below- π to π pulses display the highest ICD efficiency while the direct ionization becomes less dominant.
NASA Astrophysics Data System (ADS)
Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.
2018-05-01
We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.
Multiphoton laser ionization for energy conversion in barium vapor
NASA Astrophysics Data System (ADS)
Makdisi, Y.; Kokaj, J.; Afrousheh, K.; Mathew, J.; Nair, R.; Pichler, G.
2013-03-01
We have studied the ion detection of barium atoms in special heated ovens with a tungsten rod in the middle of the stainless steel tube. The tungsten rod was heated indirectly by the oven body heaters. A bias voltage between the cell body and the tungsten rod of 9 V was used to collect electrons, after the barium ions had been created. However, we could collect the electrons even without the bias voltage, although with ten times less efficiency. We studied the conditions for the successful bias-less thermionic signal detection using excimer/dye laser two-photon excitation of Rydberg states below and above the first ionization limit (two-photon wavelength at 475.79 nm). We employed a hot-pipe oven and heat-pipe oven (with inserted mesh) in order to generate different barium vapor distributions inside the oven. The thermionic signal increased by a factor of two under heat-pipe oven conditions.
Optimizing the Ar-Xe infrared laser on the Naval Research Laboratory's Electra generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Giuliani, J. L.; Wolford, M. F.
2008-07-01
The Ar-Xe infrared laser has been investigated in several series of experiments carried out on the Naval Research Laboratory's Electra generator. Our primary goals were to optimize the efficiency of the laser (within Electra's capabilities) and to gain understanding of the main physical processes underlying the laser's output as a function of controllable parameters such as Xe fraction, power deposition, and gas pressure. We find that the intrinsic efficiency maximizes at {approx}3% at a total pressure of 2.5 atm, Xe fraction of 1%, and electron beam power deposition density of 50-100 kW cm{sup -3}. We deployed an interferometer to measuremore » the electron density during lasing; the ionization fractions of 10{sup -5}-10{sup -4} that it detected well exceed previous theoretical estimates. Some trends in the data as a function of beam power and xenon fraction are not fully understood. The as-yet incomplete picture of Ar-Xe laser physics is likely traceable in large part to significant uncertainties still present in many important rates influencing the atomic and molecular kinetics.« less
LaForge, A. C.; Drabbels, M.; Brauer, N. B.; Coreno, M.; Devetta, M.; Di Fraia, M.; Finetti, P.; Grazioli, C.; Katzy, R.; Lyamayev, V.; Mazza, T.; Mudrich, M.; O'Keeffe, P.; Ovcharenko, Y.; Piseri, P.; Plekan, O.; Prince, K. C.; Richter, R.; Stranges, S.; Callegari, C.; Möller, T.; Stienkemeier, F.
2014-01-01
Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields. PMID:24406316
NASA Astrophysics Data System (ADS)
Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen
2017-07-01
Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.
Pre-Ionization Controlled Laser Plasma Formation for Ignition Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, Mikhail
The presented research explored new physics and ignition schemes based on laser induced plasmas that are fundamentally distinct from past laser ignition research focused on single laser pulses. Specifically, we consider the use of multiple laser pulses where the first pulse provides pre-ionization allowing controlled absorption of the second pulse. In this way, we can form tailored laser plasmas in terms of their ionization fraction, gas temperature (e.g. to achieve elevated temperature of ~2000 K ideally suited for an ignition source), reduced energy loss to shock waves and radiation, and large kernel size (e.g. length ~1-10 cm). The proposed researchmore » included both experimental and modeling efforts, at Colorado State University, Princeton University and University of Tennessee, towards the basic science of the new laser plasma approach with emphasis on tailoring the plasmas to practical propulsion systems. Experimental results (CSU) show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The main theoretical and computational parts of the work were done at Princeton University. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.« less
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.
2017-08-01
In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.
Wang, Dingyi; Huang, Xiu; Li, Jie; He, Bin; Liu, Qian; Hu, Ligang; Jiang, Guibin
2018-03-13
We report a graphene-doped resin target fabricated via a 3D printing technique for laser desorption/ionization mass spectrometry analysis. The graphene doped in the target acts as an inherent laser absorber and ionization promoter, thus permitting the direct analysis of samples without adding matrix. This work reveals a new strategy for easy designing and fabrication of functional mass spectrometry devices.
Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Huaming; Yang, Bo; Mao, Xianglei
We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less
Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel
Hou, Huaming; Yang, Bo; Mao, Xianglei; ...
2018-05-10
We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less
ERIC Educational Resources Information Center
Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.
2010-01-01
Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…
Optical field ionization of atoms and ions using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fittinghoff, D. N.
1993-12-01
This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He(+2), Ne(+2), and Ar(+2). The ion yields for He(+1), Ne(sup +1) and Ar(sup +1) agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved the following: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.
Energy dependence of effective electron mass and laser-induced ionization of wide band-gap solids
NASA Astrophysics Data System (ADS)
Gruzdev, V. E.
2008-10-01
Most of the traditional theoretical models of laser-induced ionization were developed under the assumption of constant effective electron mass or weak dependence of the effective mass on electron energy. Those assumptions exclude from consideration all the effects resulting from significant increase of the effective mass with increasing of electron energy in real the conduction band. Promotion of electrons to the states with high effective mass can be done either via laserinduced electron oscillations or via electron-particle collisions. Increase of the effective mass during laser-material interactions can result in specific regimes of ionization. Performing a simple qualitative analysis by comparison of the constant-mass approximation vs realistic dependences of the effective mass on electron energy, we demonstrate that the traditional ionization models provide reliable estimation of the ionization rate in a very limited domain of laser intensity and wavelength. By taking into account increase of the effective mass with electron energy, we demonstrate that special regimes of high-intensity photo-ionization are possible depending on laser and material parameters. Qualitative analysis of the energy dependence of the effective mass also leads to conclusion that the avalanche ionization can be stopped by the effect of electron trapping in the states with large values of the effective mass.
Bartels, Benjamin; Svatoš, Aleš
2015-01-01
This short review aims to summarize the current developments and applications of mass spectrometry-based methods for in situ profiling and imaging of plants with minimal or no sample pre-treatment or manipulation. Infrared-laser ablation electrospray ionization and UV-laser desorption/ionization methods are reviewed. The underlying mechanisms of the ionization techniques–namely, laser ablation of biological samples and electrospray ionization–as well as variations of the LAESI ion source for specific targets of interest are described. PMID:26217345
Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF).
Andersson, Patrik U; Lönn, Benny; Holmlid, Leif
2011-01-01
A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤10(12) W cm(-2) is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.
Plasma expansion into a waveguide created by a linearly polarized femtosecond laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemos, N.; Grismayer, T.; Cardoso, L.
2013-06-15
We demonstrate the efficient generation of 4 mm and 8 mm long plasma waveguides in hydrogen and helium. These waveguides have matching spots sizes for 13 to 34 μm laser beams. The plasma waveguides are created by ultra-short laser pulses (sub-picosecond) of moderate intensities, ∼10{sup 15}–10{sup 16} W cm{sup −2}, that heat the plasma to initial temperatures of tens of eV in order to create a hot plasma column that will expand into a plasma waveguide. We have determined that the main heating mechanism when using fs laser pulses and plasma densities ∼10{sup 18–19} cm{sup −3} is Above Threshold Ionization.more » Detailed time and space electron density measurements are presented for the laser produced plasma waveguides.« less
NASA Astrophysics Data System (ADS)
Karras, Gabriel; Lockyer, Nicholas P.
2014-05-01
A systematic mass spectrometric study of two of the most common analgesic drugs, paracetamol and ibuprofen, is reported. The drugs were studied by means of secondary ion mass spectrometry (SIMS) and secondary neutral mass spectrometry (SNMS) using laser post-ionization (LPI) both in pure samples and in a two-component mixture. Ion suppression within the two-component system observed in SIMS mode is ameliorated using LPI under room temperature analysis. However, suppression effects are apparent in LPI mode on performing the analysis at cryogenic temperatures, which we attribute to changes in the desorption characteristics of sputtered molecules, which influences the subsequent post-ionization efficiency. This suggests different mechanisms of ion suppression in SIMS and LPI modes.
Injection and trapping of tunnel-ionized electrons into laser-produced wakes.
Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C
2010-01-15
A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.
NASA Astrophysics Data System (ADS)
Chen, Yong; Luo, Guanghong; Diao, Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos
2007-04-01
Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3×ω Nd:YAG laser in air, SF6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ~2 µm in SF6 gas and to ~5 µm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (~10×) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.
Terahertz emission driven by two-color laser pulses at various frequency ratios
NASA Astrophysics Data System (ADS)
Wang, W.-M.; Sheng, Z.-M.; Li, Y.-T.; Zhang, Y.; Zhang, J.
2017-08-01
We present a simulation study of terahertz radiation from a gas driven by two-color laser pulses in a broad range of frequency ratios ω1/ω0 . Our particle-in-cell simulation results show that there are three series with ω1/ω0=2 n , n +1 /2 , n ±1 /3 (n is a positive integer) for high-efficiency and stable radiation generation. The radiation strength basically decreases with the increasing ω1 and scales linearly with the laser wavelength. These rules are broken when ω1/ω0<1 and much stronger radiation may be generated at any ω1/ω0 . These results can be explained with a model based on gas ionization by two linear-superposition laser fields, rather than a multiwave mixing model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.
2016-01-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the U-235/U-238 ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the U-235/U-238 ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. Development of this model has highlighted several important considerations for properly interpreting experimental results.« less
Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; ...
2015-12-07
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/ 238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less
Yeung, Edward S.; Chang, Yu-chen
1999-06-29
The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.
USDA-ARS?s Scientific Manuscript database
High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...
Yeung, E.S.; Chang, Y.C.
1999-06-29
The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.
High efficiency direct detection of ions from resonance ionization of sputtered atoms
Gruen, Dieter M.; Pellin, Michael J.; Young, Charles E.
1986-01-01
A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.
High efficiency direct detection of ions from resonance ionization of sputtered atoms
Gruen, D.M.; Pellin, M.J.; Young, C.E.
1985-01-16
A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.
Correlated multielectron dynamics in mid-infrared laser pulse interactions with neon atoms.
Tang, Qingbin; Huang, Cheng; Zhou, Yueming; Lu, Peixiang
2013-09-09
The multielectron dynamics in nonsequential triple ionization (NSTI) of neon atoms driven by mid-infrared (MIR) laser pulses is investigated with the three-dimensional classical ensemble model. In consistent with the experimental result, our numerical result shows that in the MIR regime, the triply charged ion longitudinal momentum spectrum exhibits a pronounced double-hump structure at low laser intensity. Back analysis reveals that as the intensity increases, the responsible triple ionization channels transform from direct (e, 3e) channel to the various mixed channels. This transformation of the NSTI channels leads to the results that the shape of ion momentum spectra becomes narrow and the distinct maxima shift towards low momenta with the increase of the laser intensity. By tracing the triply ionized trajectories, the various ionization channels at different laser intensities are clearly identified and these results provide an insight into the complex dynamics of the correlated three electrons in NSTI.
Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?
NASA Astrophysics Data System (ADS)
Labeye, Marie; Risoud, François; Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard
2018-05-01
Weak-field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain of validity for different model systems by confronting them to exact numerical results, obtained by solving the time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we show that error compensation plays a crucial role in the fair agreement between exact and analytical results.
Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen
2016-04-04
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE
NASA Astrophysics Data System (ADS)
Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus
2017-08-01
At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.
High resolution resonance ionization imaging detector and method
Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.
1999-01-01
A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.
Observation of ionization enhancement in two-color circularly polarized laser fields
NASA Astrophysics Data System (ADS)
Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.
2017-08-01
When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.
Atomic and Molecular Systems in Intense Ultrashort Laser Pulses
NASA Astrophysics Data System (ADS)
Saenz, A.
2008-07-01
The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some peculiar molecular strong-field effects and the possibility of strong-field control mechanisms will be demonstrated. This includes phenomena like enhanced ionization and bond softening as well as the creation of vibrational wavepacket in the non-ionized electronic ground state of H_2 by creating a Schrodinger-cat state between the ionized and the non-ionized molecules. The latter, theoretically predicted phenomenon was very recently experimentally observed and lead to the real-time observation of the so far fastest molecular motion.
Maximizing energy deposition by shaping few-cycle laser pulses
NASA Astrophysics Data System (ADS)
Gateau, Julien; Patas, Alexander; Matthews, Mary; Hermelin, Sylvain; Lindinger, Albrecht; Kasparian, Jérôme; Wolf, Jean-Pierre
2018-07-01
We experimentally investigate the impact of pulse shape on the dynamics of laser-generated plasma in rare gases. Fast-rising triangular pulses with a slower decay lead to early ionization of the gas and depose energy more efficiently than their temporally reversed counterparts. As a result, in both argon and krypton, the induced shockwave as well as the plasma luminescence are stronger. This is due to an earlier availability of free electrons to undergo inverse Bremsstrahlung on the pulse trailing edge. Our results illustrate the ability of adequately tailored pulse shapes to optimize the energy deposition in gas plasmas.
NASA Astrophysics Data System (ADS)
Yoshida, Tsuyoshi; Saito, Naoaki; Ohmura, Hideki
2018-03-01
Intense (5.0 × 1012 W cm-2) nanosecond Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light generated by an interferometer-free Fourier-synthesized laser field generator induce orientation-selective ionization based on directionally asymmetric molecular tunneling ionization (TI). The laser field generator ensures adjustment-free operation, high stability, and high reproducibility. Phase-sensitive, orientation-selective molecular TI provides a simple way to estimate the relative phase differences between the fundamental light and each harmonic by data-fitting analysis. This application of Fourier-synthesized laser fields will facilitate not only lightwave engineering but also the control of matter.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2014-12-01
Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photoionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irradiance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.
HV discharge acceleration by sequences of UV laser filaments with visible and near-infrared pulses
NASA Astrophysics Data System (ADS)
Schubert, Elise; Rastegari, Ali; Feng, Chengyong; Mongin, Denis; Kamer, Brian; Kasparian, Jérôme; Wolf, Jean-Pierre; Arissian, Ladan; Diels, Jean-Claude
2017-12-01
We investigate the triggering and guiding of DC high-voltage discharges over a distance of 37 cm by filaments produced by ultraviolet (266 nm) laser pulses of 200 ps duration. The latter reduce the breakdown electric field by half and allow up to 80% discharge probability in an electric field of 920 kV m–1. This high efficiency is not further increased by adding nanosecond pulses in the Joule range at 532 and at 1064 nm. However, the latter statistically increases the guiding length, thereby accelerating the discharge by a factor of 2. This effect is due both to photodetachment and to the heating of the plasma channel, that increases the efficiency of avalanche ionization and reduces electron attachment and recombination.
Ionizing laser propagation and spectral phase determination
NASA Astrophysics Data System (ADS)
Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.
2017-03-01
Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.
NASA Astrophysics Data System (ADS)
Zhong, Xunqi; Miao, Zhiming; Zhang, Linlin; Jiang, Hongbing; Liu, Yunquan; Gong, Qihuang; Wu, Chengyin
2018-03-01
We investigate the 391-nm lasing dynamics from ionized nitrogen molecules in 800-nm femtosecond laser fields. By comparing the radiation intensity, spectrum shape, and temporal profile of the 391-nm lasing at various experimental conditions, we conclude that the lasing dynamics contains not only the generation and the decay of ionized nitrogen molecules, but also the seed-built coherence among emitters as well as the propagation effect in the plasma filamentation. These results provide reliable guidance for optimizing the 391-nm lasing from ionized nitrogen molecules in 800-nm femtosecond laser fields, which have potential applications for remote sensing in the atmosphere.
Limits to Sensitivity in Laser Enhanced Ionization.
ERIC Educational Resources Information Center
Travis, J. C.
1982-01-01
Laser enhanced ionization (LEI) occurs when a tunable dye laser is used to excite a specific atomic population in a flame. Explores the origin of LEI's high sensitivity and identifies possible avenues to higher sensitivity by describing instrument used and experimental procedures and discussing ion formation/detection. (Author/JN)
Advanced capabilities for in situ planetary mass spectrometry
NASA Astrophysics Data System (ADS)
Arevalo, R. D., Jr.; Mahaffy, P. R.; Brinckerhoff, W. B.; Getty, S.; Benna, M.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Cornish, T.; Hovmand, L.
2015-12-01
NASA GSFC has delivered highly capable quadrupole mass spectrometers (QMS) for missions to Venus (Pioneer Venus), Jupiter (Galileo), Saturn/Titan (Cassini-Huygens), Mars (MSL and MAVEN), and the Moon (LADEE). Our understanding of the Solar System has been expanded significantly by these exceedingly versatile yet low risk and cost efficient instruments. GSFC has developed more recently a suite of advanced instrument technologies promising enhanced science return while selectively leveraging heritage designs. Relying on a traditional precision QMS, the Analysis of Gas Evolved from Samples (AGES) instrument measures organic inventory, determines exposure age and establishes the absolute timing of deposition/petrogenesis of interrogated samples. The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars 2018 rover employs a two-dimensional ion trap, built analogously to heritage QMS rod assemblies, which can support dual ionization sources, selective ion enrichment and tandem mass spectrometry (MS/MS). The same miniaturized analyzer serves as the core of the Linear Ion Trap Mass Spectrometer (LITMS) instrument, which offers negative ion detection (switchable polarity) and an extended mass range (>2000 Da). Time-of-flight mass spectrometers (TOF-MS) have been interfaced to a range of laser sources to progress high-sensitivity laser ablation and desorption methods for analysis of inorganic and non-volatile organic compounds, respectively. The L2MS (two-step laser mass spectrometer) enables the desorption of neutrals and/or prompt ionization at IR (1.0 up to 3.1 µm, with an option for tunability) or UV wavelengths (commonly 266 or 355 nm). For the selective ionization of specific classes of organics, such as aromatic hydrocarbons, a second UV laser may be employed to decouple the desorption and ionization steps and limit molecular fragmentation. Mass analyzers with substantially higher resolving powers (up to m/Δm > 100,000), such as the Advanced Resolution Organic Molecule Analyzer (AROMA) and multipass QMS instruments now under development, offer the potential to disambiguate key chemical signatures in complex mass spectra. Other innovative technologies being pursued include: ion inlet systems; tunable lasers; high-temp pyrolysis ovens; and, sample capture/enrichment techniques.
NASA Astrophysics Data System (ADS)
Uchimura, Tomohiro; Onoda, Takayuki; Lin, Cheng-Huang; Imasaka, Totaro
1999-08-01
An optical parametric oscillator and a Ti:sapphire laser are used as a pump source for the generation of high-order vibrational stimulated Raman emission in the vacuum ultraviolet region. This tunable laser is employed as an excitation/ionization source in a supersonic jet/multiphoton ionization/time-of-flight mass spectrometric study of benzene. The merits and potential advantages of this approach are discussed in this study.
Ultrafast laser-induced modifications of energy bands of non-metal crystals
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2009-10-01
Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.
Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios
NASA Astrophysics Data System (ADS)
Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng
2017-12-01
In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=1 :2 . We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=1 :4 and 2 ∶3 . We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.
Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios.
Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng
2017-12-08
In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω_{2}/ω_{1}=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω_{2}/ω_{1}=1:4 and 2∶3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.
Laser Desorption Mass Spectrometry. II. Applications to Structural Analysis.
1982-02-02
the various Processes are shown in rigure 2. Ions Produced directly in the region of the laser pulse (V will be generated only while the laser • ,J...of the laser pulse , which frequently has not been considered in wavelength dependence studies. Although the time-orofie of the laser pulse is a simple...dominate (10). Models of Volatilization/Ionization - There are at least five processes to be considered when discussing volatilization/ionization by
Mechanisms of two-color laser-induced field-free molecular orientation.
Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul
2012-09-14
Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of
Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei
2017-04-21
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei
2017-01-01
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds. PMID:28430138
In-gas-cell laser ionization studies of plutonium isotopes at IGISOL
NASA Astrophysics Data System (ADS)
Pohjalainen, I.; Moore, I. D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.
2016-06-01
In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of 238-240,242Pu and 244Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Jaroslaw H.
2011-03-15
In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency {omega} (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to {omega}{sup 4} for H(1s) and H(2s) atoms, to {omega}{sup 6} for H(2p{sub x}) and H(2p{sub y})more » atoms, and to {omega}{sup 8} for H(2p{sub z}) atoms. The analytical expressions for asymptotic ionization rates (which become nearly accurate in the limit {omega}{yields}0) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared) these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.« less
Yang, Xixiang; Imasaka, Tomoko; Imasaka, Totaro
2018-04-03
A standard sample mixture containing 51 pesticides was separated by gas chromatography (GC), and the constituents were identified by mass spectrometry (MS) using femtosecond lasers emitting at 267, 400, and 800 nm as the ionization source. A two-dimensional display of the GC/MS was successfully used for the determination of these compounds. A molecular ion was observed for 38 of the compounds at 267 nm and for 30 of the compounds at 800 nm, in contrast to 27 among 50 compounds when electron ionization was used. These results suggest that the ultraviolet laser is superior to the near-infrared laser for molecular weight determinations and for a more reliable analysis of these compounds. In order to study the conditions for optimal ionization, the experimental data were examined using the spectral properties (i.e., the excitation and ionization energies and absorption spectra for the neutral and ionized species) obtained by quantum chemical calculations. A few molecules remained unexplained by the currently reported rules, requiring additional rules for developing a full understanding of the femtosecond ionization process. The pesticides in the homogenized matrix obtained from kabosu ( citrus sphaerocarpa) were measured using lasers emitting at 267 and 800 nm. The pesticides were clearly separated and measured on the two-dimensional display, especially for the data measured at 267 nm, suggesting that this technique would have potential for use in the practical trace analysis of the pesticides in the environment.
NASA Technical Reports Server (NTRS)
Fetzer, G. J.; Stockley, J. E.
1992-01-01
A 3+1 resonant multiphoton ionization process in naturally occurring argon is studied at 314.5 nm as a candidate for providing a long ionized channel through the atmosphere. Results are presented which indicate peak electron densities up to 10 exp 8/cu cm can be created using laser intensities on the order of 10 exp 8 W/sq cm.
Study of transport of laser-driven relativistic electrons in solid materials
NASA Astrophysics Data System (ADS)
Leblanc, Philippe
With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.
Månsson, Viktor; Gilsdorf, Janet R; Kahlmeter, Gunnar; Kilian, Mogens; Kroll, J Simon; Riesbeck, Kristian; Resman, Fredrik
2018-03-01
Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.
Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation
Glownia, James H.; Sander, Robert K.
1985-01-01
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation
Glownia, J.H.; Sander, R.K.
1982-06-29
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
Yao, Ning; Chen, Hemei; Lin, Huaqing; Deng, Chunhui; Zhang, Xiangmin
2008-03-21
Human serum contains a complex array of proteolytically derived peptides (serum peptidome), which contain biomarkers of preclinical screening and disease diagnosis. Recently, commercial C(8)-functionalized magnetic beads (1-10 microm) were widely applied to the separation and enrichment of peptides in human serum, prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. In this work, laboratory-prepared C(8)-functionalized magnetic nanoparticles (about 50 nm) were prepared and applied to the fast separation and the enrichment of peptides from serum. At first, the C(8)-magnetic nanoparticles were synthesized by modifying amine-functionalized magnetic nanoparticles with chlorodimethyloctylsilane. These synthesized C(8)-amine-functionalized magnetic particles have excellent magnetic responsibility, high dispersibility and large surface area. Finally, the C(8)-magnetic nanoparticles were successfully applied to fast and efficient enrichment of low-abundance peptides from protein tryptic digestion and human serum followed by MALDI-TOF-MS analysis.
Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...
2015-07-01
Few-photon ionization and relaxation processes in acetylene (C 2H 2) and ethane (C 2H 6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the samemore » FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less
NASA Astrophysics Data System (ADS)
Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.
2000-10-01
We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.
Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie; Ho, Hsiu-O
2014-06-01
Writings made with erasable pens on paper surfaces can either be rubbed off with an eraser or rendered invisible by changing the temperature of the ink. However, trace ink compounds still remain in the paper fibers even after rubbing or rendering. The detection of these ink compounds from erased handwritings will be helpful in knowing the written history of the paper. In this study, electrospray-assisted laser desorption ionization/mass spectrometry was used to characterize trace ink compounds remaining in visible and invisible ink lines. The ink compounds were desorbed from the paper surface by irradiating the handwritings with a pulsed laser beam; the desorbed analytes were subsequently ionized in an electrospray plume and detected by a quadrupole time-of-flight mass spectrometry mass analyzer. Because of the high spatial resolution of the laser beam, electrospray-assisted laser desorption ionization/mass spectrometry analysis resulted in minimal damage to the sample documents. Copyright © 2014 John Wiley & Sons, Ltd.
Sampson, Jason S.; Murray, Kermit K.; Muddiman, David C.
2013-01-01
We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid-and solid-state peptide and protein samples by desorption with an infrared laser (2.94 µm) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive β-elimination chemistry, is also demonstrated. PMID:19185512
Pulse length of ultracold electron bunches extracted from a laser cooled gas
Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.
2017-01-01
We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879
Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays
Vertes, Akos [Reston, VA; Chen, Yong [San Diego, CA
2011-12-27
The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.
Generation of electron vortex states in ionization by intense and short laser pulses
NASA Astrophysics Data System (ADS)
Vélez, F. Cajiao; Krajewska, K.; Kamiński, J. Z.
2018-04-01
The generation of electron vortex states in ionization by intense and short laser pulses is analyzed under the scope of the lowest-order Born approximation. For near-infrared laser fields and nonrelativistic intensities of the order of 1016 W /cm2 , we show that one has to modify the nonrelativistic treatment of ionization by accounting for recoil and relativistic mass corrections. By using the corrected quasirelativistic theory, the requirements for the observation of electron vortex states with non-negligible probability and large topological charge are determined.
Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Weickhardt, C.; Grun, C.; Grotemeyer, J.
1998-12-01
Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent.
Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yue; Sawyer, Jordan C.; Su, Liu
2016-05-07
Here we present quantitative measurements of total electron numbers in laser-induced air breakdown at pressures ranging from atmospheric to 40 bar{sub g} by 10 ns and 100 ps laser pulses. A quantifiable definition for the laser-induced breakdown threshold is identified by a sharp increase in the measurable total electron numbers via dielectric-calibrated coherent microwave scattering. For the 10 ns laser pulse, the threshold of laser-induced breakdown in atmospheric air is defined as the total electron number of ∼10{sup 6}. This breakdown threshold decreases with an increase of pressure and laser photon energy (shorter wavelength), which is consistent with the theory of initialmore » multiphoton ionization and subsequent avalanche processes. For the 100 ps laser pulse cases, a clear threshold is not present and only marginal pressure effects can be observed, which is due to the short pulse duration leading to stronger multiphoton ionization and minimal collisional avalanche ionization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong Huifeng; Yuan Hong; Tang Zhiping
When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times whichmore » show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.« less
NASA Technical Reports Server (NTRS)
Misra, Prabhakar; Haridass, C.; Major, H.
1999-01-01
A detailed study of combustion mechanisms in flames, employing laser-based diagnostics, has provided good knowledge and understanding of the physical phenomena, and led to better characterization of the dynamical and chemical combustion processes, both under low-gravity (in space) and normal gravity (in ground based facilities, e.g. drop towers). Laser induced fluorescence (LIF), laser-induced incandescence (LII) and LIF thermometry have been widely used to perform nonintrusive measurements and to better understand combustion phenomena. Laser optogalvanic (LOG) spectroscopy has well-established applications in ion mobility measurements, atomic and molecular spectroscopy, ionization rates, recombination rates, velocity measurements and as a combustion probe for trace element detection. Absorption spectra of atomic and molecular species in flames can be obtained via LOG spectroscopy by measuring the voltage and current changes induced by laser irradiation. There are different kinds of processes that contribute to a discharge current, namely: (1) electron impact ionization, (2) collisions among the excited atoms of the discharge species and (3) Penning ionization. In general, at higher discharge currents, the mechanism of electron impact ionization dominates over Penning ionization, whereby the latter is hardly noticeable. In a plasma, whenever the wavelength of a laser coincides with the absorption of an atomic or molecular species, the rate of ionization of the species momentarily increases or decreases due to laser-assisted acceleration of collisional ionization. Such a rate of change in the ionization is monitored as a variation in the transient current by inserting a high voltage electrode into the plasma. Optogalvanic spectroscopy in discharges has been useful for characterizing laser line-widths and for providing convenient calibration lines for tunable dye lasers in the ultraviolet, visible and infrared wavelength regions. Different kinds of quantitative information, such as the electron collisional ionization rate, can be extracted from the complex processes occurring within the discharge. In the optogalvanic effect (OGE), there is no problem of overlap from background emissions, and hence even weak signals can be detected with a high signal-to-noise ratio, which makes the optogalvanic effect sensitive enough to resolve vibrational changes in molecular bonds and differences in energy levels brought about by different electron spins. For calibration purposes, neon and argon gaseous discharges have been employed most extensively, because these gases are commonly used as buffer gases within hollow-cathode lamps and provide an acceptable density of calibration lines. In the present work, our main aim has been to understand the dominant physical processes responsible for the production of the OGE signal, based on the extensive time resolved optogalvanic waveforms recorded, and also to extract quantitative information on the rates of excited state collisional processes.
Characterization of the spectral phase of an intense laser at focus via ionization blueshift
Mittelberger, D. E.; Nakamura, K.; Lehe, R.; ...
2016-01-01
An in situ diagnostic for verifying the spectral phase of an intense laser pulse at focus is shown. This diagnostic relies on measuring the effect of optical compression on ionization-induced blueshifting of the laser spectrum. Experimental results from the Berkeley Lab Laser Accelerator, a laser source rigorously characterized by conventional techniques, are presented and compared with simulations to illustrate the utility of this technique. These simulations show distinguishable effects from second-, third-, and fourth-order spectral phase.
Nanosecond laser-cluster interactions at 109-1012 W/cm 2
NASA Astrophysics Data System (ADS)
Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.
2017-08-01
An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.
NASA Astrophysics Data System (ADS)
Schmidt, Jacob B.; Sands, Brian; Scofield, James; Gord, James R.; Roy, Sukesh
2017-05-01
Absolute number densities of atomic species produced by nanosecond (ns)-duration, repetitively pulsed electric discharges are measured by two-photon-absorption laser-induced fluorescence (TALIF). Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF) that offers a number of advantages over more conventional nanosecond (ns)-pulse-duration laser techniques, such as higher-fidelity quenching rate measurements over a wide pressure range, significantly reduced photolytic interference (including photo-dissociation and photo-ionization), ability to collect two-dimensional images of atomic-species number densities with high spatial resolution aided by higher signal level, and efficient and accurate measurements of atomic-species number densities due to the higher repetition rates of the laser. For full quantification of these advantages, atomic-oxygen TALIF signals are collected from an atmospheric-pressure plasma jet employing both ns- and fs-duration laser-excitation pulses and the results are compared and contrasted.
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Root, R. G.; Wu., P. K. S.; Caledonia, G. E.; Pirri, A. N.
1976-01-01
CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient.
Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H
2015-01-01
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.
MALDI TOF Imaging of Latent Fingerprints a Novel Biosignature Tool
2010-04-23
old man have been lightly coated with ointment containing tocopherol and imprinted on stainless-steal MALDI plate. Application of low-concentrated... tocopherol allows efficient laser ionization without use of matrixes or additional treatment of the fingerprint. The result of the MS imaging scan...resolution and contrast. Interestingly, MS method optimized for molecular peak and main fragments of tocopherol (395 m/z) gave signal increase of over
Zhao, Xiaoyong; Shen, Shanshan; Wu, Datong; Cai, Pengfei; Pan, Yuanjiang
2017-09-08
Analysis of carbohydrates based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is still challenging and researchers have been devoting themselves to efficient matrices discovery. In the present study, the design, synthesis, qualitative and quantitative performance of non-derivative ionic liquid matrices (ILMs) were reported. DHB/N-methylaniline (N-MA) and DHB/N-ethylaniline (N-EA), performing best for carbohydrate detection, have been screened out. The limit of detection for oligosaccharide provided by DHB/N-MA and DHB/N-EA were as low as 10 fmol. DHB/N-MA and DHB/N-EA showed significantly higher ion generation efficiency than DHB. The comparison of capacity to probe polysaccharide between these two ILMs and DHB also revealed their powerful potential. Their outstanding performance were probably due to lower proton affinities and stronger UV absorption at λ = 355 nm. What is more, taking DHB/N-MA as an example, quantitative analysis of fructo-oligosaccharide mixtures extracted and identified from rice noodles has been accomplished sensitively using an internal standard method. Overall, DHB/N-MA and DHB/N-EA exhibited excellent performance and might be significant sources as the carbohydrate matrices. Copyright © 2017 Elsevier B.V. All rights reserved.
Sato, Miki; Maeda, Yuki; Ishioka, Toshio; Harata, Akira
2017-11-20
The detection limits and photoionization thresholds of polycyclic aromatic hydrocarbons and their chlorides and nitrides on the water surface are examined using laser two-photon ionization and single-photon ionization, respectively. The laser two-photon ionization methods are highly surface-selective, with a high sensitivity for aromatic hydrocarbons tending to accumulate on the water surface in the natural environment due to their highly hydrophobic nature. The dependence of the detection limits of target aromatic molecules on their physicochemical properties (photoionization thresholds relating to excess energy, molar absorptivity, and the octanol-water partition coefficient) is discussed. The detection limit clearly depends on the product of the octanol-water partition coefficient and molar absorptivity, and no clear dependence was found on excess energy. The detection limits of laser two-photon ionization for these types of molecules on the water surface are formulated.
Nye, Leanne C; Hungerbühler, Hartmut; Drewello, Thomas
2018-02-01
Inspired by reports on the use of pencil lead as a matrix-assisted laser desorption/ionization matrix, paving the way towards matrix-free matrix-assisted laser desorption/ionization, the present investigation evaluates its usage with organic fullerene derivatives. Currently, this class of compounds is best analysed using the electron transfer matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB), which was employed as the standard here. The suitability of pencil lead was additionally compared to direct (i.e. no matrix) laser desorption/ionization-mass spectrometry. The use of (DCTB) was identified as the by far gentler method, producing spectra with abundant molecular ion signals and much reduced fragmentation. Analytically, pencil lead was found to be ineffective as a matrix, however, appears to be an extremely easy and inexpensive method for producing sodium and potassium adducts.
Müller, Anne D; Artemyev, Anton N; Demekhin, Philipp V
2018-06-07
Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.
NASA Astrophysics Data System (ADS)
Müller, Anne D.; Artemyev, Anton N.; Demekhin, Philipp V.
2018-06-01
Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.
Mass spectrometry imaging under ambient conditions.
Wu, Chunping; Dill, Allison L; Eberlin, Livia S; Cooks, R Graham; Ifa, Demian R
2013-01-01
Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI for example the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information on the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue diagnostic purposes. Finally, we discuss the challenges in ambient MSI and include perspectives on the future of the field. Copyright © 2012 Wiley Periodicals, Inc.
Mass Spectrometry Imaging under Ambient Conditions
Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.
2012-01-01
Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue diagnostic purposes. Finally, we discuss the challenges in ambient MSI and include perspectives on the future of the field. PMID:22996621
Ionization assisted self-guiding of femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Morozov, A.; Goltsov, A.; Chen, Q.; Scully, M.; Suckewer, S.
2018-05-01
We propose a new mechanism for the self-guiding of ultra-intense sub-picosecond laser pulses in gaseous media. It can be realized via optical field ionization by a laser pulse as it propagates inside an expanding cylindrical shock wave launched into ambient gas by a decayed plasma filament. In experiments, the filament was created in a hydrogen jet by a low energy femtosecond laser pre-pulse line focused with axicon lens. We demonstrated ionization-assisted guiding in structures with diameter as small as 14 μm and up to 3.5 mm long. The intensity reached 5 × 1017 W/cm2 in a single mode propagating for more than 100 Rayleigh lengths.
Johnson, Paul V; Hodyss, Robert; Beauchamp, J L
2014-11-01
Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.
RLE (Research Laboratory of Electronics) Progress Report Number 125.
1983-01-01
Optical Communications 32 7.3 Picosecond Optics 35 7.4 Ultrashort Pulse Formation 37 7.5 Femtosecond Laser System 37 7.6 Parametric Scattering with...Figure 3-2: The cross section for 4 photon ionization of atomic hydrogen as calculated by 10 Reinhardt for a single frequency laser . To facilitate...profiles produced by laser intensity I* and at five times that intensity 11 510. As the laser intensity is increased, the ionization profile becomes
Investigating tunneling process of atom exposed in circularly polarized strong-laser field
NASA Astrophysics Data System (ADS)
Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing
2017-03-01
We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.
Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Luo, Hai
2013-03-15
With the rapid development of ambient mass spectrometry, the hybrid laser-based ambient ionization methods which can generate multiply charged ions of large biomolecules and also characterize small molecules with good signal-to-noise in both positive and negative ion modes are of particular interest. An ambient ionization method termed high-voltage-assisted laser desorption ionization (HALDI) is developed, in which a 1064 nm laser is used to desorb various liquid samples from the sample target biased at a high potential without the need for an organic matrix. The pre-charged liquid samples are desorbed by the laser to form small charged droplets which may undergo an electrospray-like ionization process to produce multiply charged ions of large biomolecules. Various samples including proteins, oligonucleotides (ODNs), drugs, whole milk and chicken eggs have been analyzed by HALDI-MS in both positive and negative ion mode with little or no sample preparation. In addition, HALDI can generate intense signals with better signal-to-noise in negative ion mode than laser desorption spay post-ionization (LDSPI) from the same samples, such as ODNs and some carboxylic-group-containing small drug molecules. HALDI-MS can directly analyze a variety of liquid samples including proteins, ODNs, pharmaceuticals and biological fluids in both positive and negative ion mode without the use of an organic matrix. This technique may be further developed into a useful tool for rapid analysis in many different fields such as pharmaceutical, food, and biological sciences. Copyright © 2013 John Wiley & Sons, Ltd.
Demonstration of self-truncated ionization injection for GeV electron beams
Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N. A. M.; Chen, M.; Li, G. Y.; Zhu, Q. J.; Liao, H.; Sokollik, T.; Liu, F.; Ma, Y. Y.; Chen, L.M.; Sheng, Z. M.; Zhang, J.
2015-01-01
Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications. PMID:26423136
USDA-ARS?s Scientific Manuscript database
We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...
Qiao, Xiaoqiang; Zhou, Yuan; Hou, Chunyan; Zhang, Xiaodan; Yang, Kaiguang; Zhang, Lihua; Zhang, Yukui
2013-03-01
The cationic reagent 1-(3-aminopropyl)-3-butylimidazolium bromide (BAPI) was exploited for the derivatization of carboxyl groups on peptides. Nearly 100% derivatization efficiency was achieved with the synthetic peptide RVYVHPI (RI-7). Furthermore, the peptide derivative was stable in a 0.1% TFA/water solution or a 0.1% (v/v) TFA/acetonitrile/water solution for at least one week. The effect of BAPI derivatization on the ionization of the peptide RI-7 was further investigated, and the detection sensitivity was improved >42-fold via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), thus outperforming the commercial piperazine derivatization approach. Moreover, the charge states of the peptide were largely increased via BAPI derivatization by electrospray ionization (ESI) MS. The results indicate the potential merits of BAPI derivatization for high sensitivity peptide analysis by MS.
Recent progress in microchip electrophoresis-mass spectrometry.
Kitagawa, Fumihiko; Otsuka, Koji
2011-06-25
This review highlights the methodological and instrumental developments in microchip electrophoresis (MCE)-mass spectrometry (MS) from 1997. In MCE-MS, the development of ionization interface is one of the most important issues to realize highly sensitive detection and high separation efficiency. Among several interfaces, electrospray ionization (ESI) has been mainly employed to MCE-MS since a simple structure of the ESI interface is suitable for coupling with the microchips. Although the number of publications is still limited, laser desorption ionization (LDI) interface has also been developed for MCE-MS. The characteristics of the ESI and LDI interfaces applied to the electrophoresis microchips are presented in this review. The scope of applications in MCE-MS covers mainly biogenic compounds such as bioactive amines, peptides, tryptic digests and proteins. This review provides a comprehensive table listing the applications in MCE-MS. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, C.-H.; Itoh, K.; Tomita, H.; Obara, M.
1995-07-01
Theoretical analysis of the output performance of a transverse discharge pumped neon Penning laser (585.3 nm) using a mixture of Ne/H2 is described. The validity of the kinetic model is confirmed by comparing the results to the experimental discharge and laser performance. It is theoretically shown that the optimum mixing ratio of the Ne/H2 mixture is 1:2.5, and the optimum operating pressure is about 56 Torr. The model also predicts that the intrinsic efficiency reaches a peak of 8.5×10-6 at an excitation rate of 0.5 MW/cm3 under the optimum mixing ratio and operating pressure conditions. At excitation rates in excess of 0.5 MW/cm3 the laser output power is slowly increasing and then saturates due to electron collisional quenching of the upper laser level. The laser power extraction is increased by laser injection seeding in order to rapidly build up the lasing. The improved intrinsic efficiency is about two times higher than without the injection seeding. The improved specific laser output is 8 W/cm3, therefore, a discharge volume of 125 cm3 will be able to generate the peak laser power reaching 1 kW. This power value is sufficient to obtain the same treatment effect as the gold vapor laser used in photodynamic therapy. Moreover, by fitting this model to the experimental results of the laser output energy with a Ne/D2 mixture, it is shown that the Penning ionization rate constant of H2 is larger than that of D2.
Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS
Dong, Xiaoli; Cheng, Jinsheng; Li, Jinghong; Wang, Yinsheng
2010-01-01
Graphene was utilized for the first time as matrix for the analysis of low-molecular weight compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Polar compounds including amino acids, polyamines, anticancer drugs and nucleosides could be successfully analyzed. Additionally, nonpolar compounds including steroids could be detected with high resolution and sensitivity. Compared with conventional matrix, graphene exhibited high desorption/ionization efficiency for nonpolar compounds. The graphene matrix functions as substrate to trap analytes, and it transfers energy to the analytes upon laser irradiation, which allowed for the analytes to be readily desorbed/ionized and interference of intrinsic matrix ions to be eliminated. The use of graphene as matrix avoided the fragmentation of analytes and provided good reproducibility and high salt tolerance, underscoring the potential application of graphene as matrix for MALDI-MS analysis of practical samples in complex sample matrices. We also demonstrated that the use of graphene as adsorbent for the solid-phase extraction of squalene could improve greatly the detection limit. This work not only opens a new field for applications of graphene, but also offers a new technique for high-speed analysis of low-molecular weight compounds in areas such as metabolism research and natural products characterization. PMID:20565059
Ren, Xinxin; Liu, Jia; Zhang, Chengsen; Sun, Jiamu; Luo, Hai
2014-01-15
It is difficult to directly analyze carboxylic acids in complex mixtures by ambient high-voltage-assisted laser desorption ionization mass spectrometry (HALDI-MS) in negative ion mode due to the low ionization efficiency of carboxylic acids. A method for the rapid detection of carboxylic acids in negative HALDI-MS has been developed based on their inclusion with β-cyclodextrin (β-CD). The negative HALDI-MS signal-to-noise ratios (S/Ns) of aliphatic, aromatic and hetero atom-containing carboxylic acids can all be significantly improved by forming 1:1 complexes with β-CD. These complexes are mainly formed by specific inclusion interactions which are verified by their collision-induced dissociation behaviors in comparison with that of their corresponding maltoheptaose complexes. A HALDI-MS/MS method has been successfully developed for the detection of α-lipoic acid in complex cosmetics and ibuprofen in a viscous drug suspension. The negative HALDI-MS S/Ns of carboxylic acids can be improved up to 30 times via forming non-covalent complexes with β-CD. The developed method shows the advantages of being rapid and simple, and is promising for rapid detection of active ingredients in complex samples or fast screening of drugs and cosmetics. Copyright © 2013 John Wiley & Sons, Ltd.
Tip-Enhanced Photoinduced Electron Transfer and Ionization on Vertical Silicon Nanowires.
Chen, Xiaoming; Wang, Tao; Lin, Leimiao; Wo, Fangjie; Liu, Yaqin; Liang, Xiao; Ye, Hui; Wu, Jianmin
2018-05-02
Nanostructured semiconductors are one of the most potent candidates for matrix-free laser desorption/ionization mass spectrometric (LDI-MS) analysis of low-molecular-weight molecules. Herein, the enhanced photoinduced electron transfer and LDI on the tip of a vertical silicon nanowire (SiNW) array were investigated. Theoretical simulation and LDI detection of indigo and isatin molecules in negative ion mode revealed that the electric field can be enhanced on the tip end of SiNWs, thereby promoting the energy and electron transfer to the analytes adsorbed on the tip of SiNWs. On the basis of this finding, a tip-contact sampling method coupled with LDI-MS detection was established. In this strategy, the tip of SiNWs can be regarded as microextraction heads for the sampling of molecules when they come in contact with analytes. Impression of skin, tissue, and pericarp on the vertical SiNW array can effectively transfer endogenous metabolites or exogenous substances onto the tip. Upon laser irradiation, the adsorbed molecules on the SiNW tip can be efficiently ionized and detected in negative ion mode because of the tip-enhanced electron transfer and LDI effect. We believe this work may significantly expand the application of LDI-MS in various fields.
Laser ablation with applied magnetic field for electric propulsion
NASA Astrophysics Data System (ADS)
Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc
2012-10-01
Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.
Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria
2017-01-01
Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas. PMID:28098175
Propagation of a laser-driven relativistic electron beam inside a solid dielectric.
Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B
2012-09-01
Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J
This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of thismore » coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC/ESI-MS analysis revealed successful laser ablation, capture and, with HPLC, the separation of the two compounds. The ablated circular area was about 70 m in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.« less
Effects of Ionization in a Laser Wakefield Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuffey, C.; Schumaker, W.; Matsuoka, T.
2010-11-04
Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.
Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie
2016-01-01
Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Lai, Yin-Hung; Wang, Yi-Sheng
2017-01-01
Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed. PMID:28959517
Effects of the Carrier-Envelope Phase in the Multiphoton Ionization Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581; Watanabe, Shuntaro
2006-06-02
We theoretically investigate the effects of the carrier-envelope phase of few-cycle laser pulses in the multiphoton ionization regime. For atoms with low ionization potential, total ionization yield barely exhibits phase dependence, as expected. However, population of some bound states clearly shows phase dependence. This implies that the measurement of the carrier-envelope phase would be possible through the photoemission between bound states without energy-and-angle-resolved photoelectron detection. The considered scheme could be particularly useful to measure the carrier-envelope phase for a light source without an amplifier, such as a laser oscillator, which cannot provide sufficient pulse energy to induce tunneling ionization.
Coupling of laser energy into plasma channels
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2007-04-01
Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.
Bound-Electron Nonlinearity Beyond the Ionization Threshold.
Wahlstrand, J K; Zahedpour, S; Bahl, A; Kolesik, M; Milchberg, H M
2018-05-04
We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.
Bound-Electron Nonlinearity Beyond the Ionization Threshold
NASA Astrophysics Data System (ADS)
Wahlstrand, J. K.; Zahedpour, S.; Bahl, A.; Kolesik, M.; Milchberg, H. M.
2018-05-01
We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li
In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction,more » the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.« less
Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to investigate whole and freeze thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtai...
Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A
2015-03-01
In this study, the influence of surface morphology, reagent ions and surface restructuring effects on atmospheric pressure laser desorption/ionization (LDI) for small molecules after laser irradiation of palladium self-assembled nanoparticular (Pd-NP) structures has been systematically studied. The dominant role of surface morphology during the LDI process, which was previously shown for silicon-based substrates, has not been investigated for metal-based substrates before. In our experiments, we demonstrated that both the presence of reagent ions and surface reorganization effects--in particular, melting--during laser irradiation was required for LDI activity of the substrate. The synthesized Pd nanostructures with diameters ranging from 60 to 180 nm started to melt at similar temperatures, viz. 890-898 K. These materials exhibited different LDI efficiencies, however, with Pd-NP materials being the most effective surface in our experiments. Pd nanostructures of diameters >400-800 nm started to melt at higher temperatures, >1000 K, making such targets more resistant to laser irradiation, with subsequent loss of LDI activity. Our data demonstrated that both melting of the surface structures and the presence of reagent ions were essential for efficient LDI of the investigated low molecular weight compounds. This dependence of LDI on melting points was exploited further to improve the performance of Pd-NP-based sampling targets. For example, adding sodium hypophosphite as reducing agent to Pd electrolyte solutions during synthesis lowered the melting points of the Pd-NP materials and subsequently gave reduced laser fluence requirements for LDI. Copyright © 2015 John Wiley & Sons, Ltd.
Propagation of ultrashort laser pulses in optically ionized gases
NASA Astrophysics Data System (ADS)
Morozov, A.; Luo, Y.; Suckewer, S.; Gordon, D. F.; Sprangle, P.
2010-02-01
Propagation of 800 nm, 120 fs laser pulses with intensities of 4×1016 W/cm2 in supersonic gas jets of N2 and H2 is studied using a shear-type interferometer. The plasma density distribution resulting from photoionization is resolved in space and time with simultaneously measured initial neutral density distribution. A distinct difference in laser beam propagation distance is observed when comparing propagation in jets of H2 and N2. This is interpreted in terms of ionization induced refraction, which is stronger when electrons are produced from states of higher ionization potential. Three dimensional particle-in-cell simulations, based on directly solving the Maxwell-Lorentz system of equations, show the roles played by the forward Raman and ionization scattering instabilities, which further affect the propagation distance.
Propagation of intense short laser pulses in the atmosphere.
Sprangle, P; Peñano, J R; Hafizi, B
2002-10-01
The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.
Laser-driven acceleration of electrons in a partially ionized plasma channel.
Rowlands-Rees, T P; Kamperidis, C; Kneip, S; Gonsalves, A J; Mangles, S P D; Gallacher, J G; Brunetti, E; Ibbotson, T; Murphy, C D; Foster, P S; Streeter, M J V; Budde, F; Norreys, P A; Jaroszynski, D A; Krushelnick, K; Najmudin, Z; Hooker, S M
2008-03-14
The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.
Inutan, Ellen D.; Trimpin, Sarah
2013-01-01
The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551
Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry
Vertes, Akos; Walker, Bennett N.; Stolee, Jessica A.; Retterer, Scott T.
2016-11-08
The production and use of semiconducting nanopost arrays made by nanofabrication is described herein. These nanopost arrays (NAPA) provide improved laser ionization yields and controllable fragmentation with switching or modulation capabilities for mass spectrometric detection and identification of samples deposited on them.
Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio
2014-01-01
A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686
All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.
Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian
2016-02-01
We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.
Filamentation instability of a fast electron beam in a dielectric target.
Debayle, A; Tikhonchuk, V T
2008-12-01
High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.
Corona discharge induced snow formation in a cloud chamber.
Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan
2017-09-18
Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.
Gasper, Gerald L.; Carlson, Ross; Akhmetov, Artem; Moore, Jerry F.; Hanley, Luke
2010-01-01
This paper describes the development of laser desorption 7.87 eV vacuum ultraviolet postionization mass spectrometry (LDPI-MS) to detect antibiotics within intact bacterial colony biofilms. As >99% of the molecules ejected by laser desorption are neutrals, vacuum ultraviolet (VUV) photoionization of these neutrals can provide significantly increased signal compared to detection of directly emitted ions. Postionization with VUV radiation from the molecular fluorine laser single photon ionizes laser desorbed neutrals with ionization potentials below the 7.87 eV photon energy. Antibiotics with structures indicative of sub-7.87 eV ionization potentials were examined for their ability to be detected by 7.87 eV LDPI-MS. Tetracycline, sulfadiazine, and novobiocin were successfully detected neat as dried films physisorbed on porous silicon oxide substrates. Tetracycline and sulfadiazine were then detected within intact Staphylococcus epidermidis colony biofilms, the former with LOD in the micromolar concentration range. PMID:18704905
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias
2014-01-01
RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width)more » setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 um. Conclusions: A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry.« less
Ovchinnikova, Olga S; Bhandari, Deepak; Lorenz, Matthias; Van Berkel, Gary J
2014-08-15
Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) set up to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V™ ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. The estimated capture efficiency of laser-ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~2.8 mm(2) ) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution not only of particulates, but also of gaseous products of the laser ablation. The use of DIRECTOR(®) slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 µm was demonstrated for stamped ink on DIRECTOR(®) slides based on the ability to distinguish features present both in the optical and in the chemical image. This imaging resolution was 20 times better than the previous best reported results with laser ablation/liquid sample capture mass spectrometry imaging. Using thin sections of brain tissue the chemical image of a selected lipid was obtained with an estimated imaging resolution of about 50 µm. A vertically aligned, transmission geometry laser ablation liquid vortex capture probe, electrospray ionization mass spectrometry system provides an effective means for spatially resolved spot sampling and imaging with mass spectrometry. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Analysis of plasma-mediated ablation in aqueous tissue
NASA Astrophysics Data System (ADS)
Jiao, Jian; Guo, Zhixiong
2012-06-01
Plasma-mediated ablation using ultrafast lasers in transparent media such as aqueous tissues is studied. It is postulated that a critical seed free electron density exists due to the multiphoton ionization in order to trigger the avalanche ionization which causes ablation and during the avalanche ionization process the contribution of laser-induced photon ionization is negligible. Based on this assumption, the ablation process can be treated as two separate processes - the multiphoton and avalanche ionizations - at different time stages; so that an analytical solution to the evolution of plasma formation is obtained for the first time. The analysis is applied to plasma-mediated ablation in corneal epithelium and validated via comparison with experimental data available in the literature. The critical seed free-electron density and the time to initiate the avalanche ionization for sub-picosecond laser pulses are analyzed. It is found that the critical seed free-electron density decreases as the pulse width increases, obeying a tp-5.65 rule. This model is further extended to the estimation of crater size in the ablation of tissue-mimic polydimethylsiloxane (PDMS). The results match well with the available experimental measurements.
NASA Astrophysics Data System (ADS)
Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun
2018-05-01
We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos
2013-01-01
This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged frommore » full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.« less
NASA Technical Reports Server (NTRS)
Getty, Stephanie; Brickerhoff, William; Cornish, Timothy; Ecelberger, Scott; Floyd, Melissa
2012-01-01
RATIONALE A miniature time-of-flight mass spectrometer has been adapted to demonstrate two-step laser desorption-ionization (LOI) in a compact instrument package for enhanced organics detection. Two-step LDI decouples the desorption and ionization processes, relative to traditional laser ionization-desorption, in order to produce low-fragmentation conditions for complex organic analytes. Tuning UV ionization laser energy allowed control ofthe degree of fragmentation, which may enable better identification of constituent species. METHODS A reflectron time-of-flight mass spectrometer prototype measuring 20 cm in length was adapted to a two-laser configuration, with IR (1064 nm) desorption followed by UV (266 nm) postionization. A relatively low ion extraction voltage of 5 kV was applied at the sample inlet. Instrument capabilities and performance were demonstrated with analysis of a model polycyclic aromatic hydrocarbon, representing a class of compounds important to the fields of Earth and planetary science. RESULTS L2MS analysis of a model PAH standard, pyrene, has been demonstrated, including parent mass identification and the onset o(tunable fragmentation as a function of ionizing laser energy. Mass resolution m/llm = 380 at full width at half-maximum was achieved which is notable for gas-phase ionization of desorbed neutrals in a highly-compact mass analyzer. CONCLUSIONS Achieving two-step laser mass spectrometry (L2MS) in a highly-miniature instrument enables a powerful approach to the detection and characterization of aromatic organics in remote terrestrial and planetary applications. Tunable detection of parent and fragment ions with high mass resolution, diagnostic of molecular structure, is possible on such a compact L2MS instrument. Selectivity of L2MS against low-mass inorganic salt interferences is a key advantage when working with unprocessed, natural samples, and a mechanism for the observed selectivity is presented.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, Ralph H.
1994-01-01
In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.
Measurements of the energy distribution of a high brightness rubidium ion beam.
Ten Haaf, G; Wouters, S H W; Nijhof, D F J; Mutsaers, P H A; Vredenbregt, E J D
2018-07-01
The energy distribution of a high brightness rubidium ion beam, which is intended to be used as the source for a focused ion beam instrument, is measured with a retarding field analyzer. The ions are created from a laser-cooled and compressed atomic beam by two-step photoionization in which the ionization laser power is enhanced in a build-up cavity. Particle tracing simulations are performed to ensure the analyzer is able to resolve the distribution. The lowest achieved full width 50% energy spread is (0.205 ± 0.006) eV, which is measured at a beam current of 9 pA. The energy spread originates from the variation in the ionization position of the ions which are created inside an extraction electric field. This extraction field is essential to limit disorder-induced heating which can decrease the ion beam brightness. The ionization position distribution is limited by a tightly focused excitation laser beam. Energy distributions are measured for various ionization and excitation laser intensities and compared with calculations based on numerical solutions of the optical Bloch equations including ionization. A good agreement is found between measurements and calculations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Premasiri, Amaranath; Happawana, Gemunu; Rosen, Arye
2007-02-01
Photodynamic therapy (PDT) is an approved treatment modality for Barrett's and invasive esophageal carcinoma. Proper Combination of photosentizing agent, oxygen, and a specific wavelength of light to activate the photosentizing agents is necessary for the cytotoxic destruction of cancerous cells by PDT. As a light source expensive solid-state laser sources currently are being used for the treatment. Inexpensive semiconductor lasers have been suggested for the light delivery system, however packaging of semiconductor lasers for optimal optical power output is challenging. In this paper, we present a multidirectional direct water-cooling of semiconductor lasers that provides a better efficiency than the conventional unidirectional cooling. AlGaAsP lasers were tested under de-ionized (DI) water and it is shown that the optical power output of the lasers under the DI water is much higher than that of the uni-directional cooling of lasers. Also, in this paper we discuss how direct DI water-cooling can optimize power output of semiconductor lasers. Thereafter an optimal design of the semiconductor laser package is shown with the DI water-cooling system. Further, a microwave antenna is designed which is to be imprinted on to a balloon catheter in order to provide local heating of esophagus, leading to an increase in local oxygenation of the tumor to generate an effective level of singlet oxygen for cellular death. Finally the optimal level of light energy that is required to achieve the expected level of singlet oxygen is modeled to design an efficient PDT protocol.
NASA Astrophysics Data System (ADS)
Moser, Simon
2008-03-01
To get insight to time resolved inner atomic or molecular processes, laser pulses of few femtoseconds or even attoseconds are needed. These short light pulse techniques ask for broad frequency spectra, control of dispersion and control of phase. Hence, linear optics fails and nonlinear optics in high electromagnetic fields is needed to satisfy the amount of control that is needed. One recent application of attosecond laser pulses is time resolved visualization of tunnel ionization in atoms applied to high electromagnetic fields. Here, Ne atom electrons are excited by an extreme ultraviolet attosecond laser pulse. After a while, a few cycles nearly infrared femtosecond laser pulse is applied to the atom causing tunnel ionization. The ion yield distribution can be measured as function of the delay time between excitation and ionization and so deliver insight to the time resolved mechanisms.
Mode transition of plasma expansion for laser induced breakdown in Air
NASA Astrophysics Data System (ADS)
Shimamura, Kohei; Matsui, Kohei; Ofosu, Joseph A.; Yokota, Ippei; Komurasaki, Kimiya
2017-03-01
High-speed shadowgraph visualization experiments conducted using a 10 J pulse transversely excited atmospheric (TEA) CO2 laser in ambient air provided a state transition from overdriven to Chapman-Jouguet in the laser-supported detonation regime. At the state transition, the propagation velocity of the laser-supported detonation wave and the threshold laser intensity were 10 km/s and 1011 W/m2, respectively. State transition information, such as the photoionization caused by plasma UV radiation, of the avalanche ionization ahead of the ionization wave front can be elucidated from examination of the source seed electrons.
LASER DESORPTION/IONIZATION OF SINGLE ULTRAFINE MULTICOMPONENT AEROSOLS. (R823980)
Laser desorption/ionization characteristics of single
ultrafine multicomponent aerosols have been investigated.
The results confirm earlier findings that (a) the negative
ion spectra are dominated by free electrons and (b) the ion
yield-to-mass ratio is higher for ...
Wang, Zhenzhen; Deguchi, Yoshihiro; Yan, Junjie; Liu, Jiping
2015-01-01
The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS) and laser breakdown time-of-flight mass spectrometry (LB-TOFMS). Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application. PMID:25769051
Bolt beam propagation analysis
NASA Astrophysics Data System (ADS)
Shokair, I. R.
BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.
Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V
2015-02-01
Laser-assisted Penning ionization (LAPI) is detected in a Ne/Eu hollow cathode (HC) discharge lamp using the pulsed optogalvanic (OG) method. In the Ne/Eu discharge, doubly ionized europium excited energy levels Eu[4f(7)(P(7/2,5/2)6)] lie within the thermal limit (∼kT) from the laser-excited neon's energy level [2p(5)(P3/202)3p or 2p(8) (in Paschen notation)] lying at 149,848 cm(-1). Therefore, Penning ionization (PI) of europium atoms likely to occur into its highly excited ionic states is investigated. To probe the PI of europium, the temporal profiles of its counterpart neon OG signal are studied as a function of discharge current for the transitions (1s(4)→2p(8)) and (1s(2)→2p(2)), corresponding to 650.65 and 659.89 nm wavelengths, respectively. It is observed that PI of europium alters the overall discharge characteristics significantly and, hence, modifies the temporal profile of the OG signals accordingly. The quasi-resonant ionizing energy transfer collisions between laser-excited Ne 2p(8) atoms and electronically excited europium P(9/2)10 atoms are used to explain the LAPI mechanism. Such LAPI studies carried out in HC discharge could be useful for the discharge of a metal-vapor laser with appropriate Penning mixtures.
Zhou, Manshui; Wu, Chunping; Akhmetov, Artem; Edirisinghe, Praneeth D.; Drummond, James L.; Hanley, Luke
2007-01-01
Bisphenol A diglycidyl methacrylate (Bis-GMA) was adsorbed onto or covalently bound to a porous silicon oxide surface. Laser desorption 10.5 eV postionization mass spectrometry (LDPI-MS) was previously demonstrated for surface analysis of adsorbed and surface bound Bis-GMA, but signal to noise levels were low and ion fragmentation was extensive. 7.87 eV postionization using the fluorine laser was demonstrated here for Bis-GMA. However, signal levels remained low for LDPI-MS of Bis-GMA as its ionization potential was only ∼7.8 eV, near threshold for single photon ionization by the 7.87 eV fluorine laser. It is known that aromatic tagging of molecular analytes can lower the overall IP of the tagged molecular complex, allowing 7.87 eV single photon ionization. Therefore, Bis-GMA was also derivatized with several tags whose IPs were either below or above 7.87 eV: the tag with an IP below 7.87 eV enhanced single photon ionization while the tags with higher IPs did not. However, signal intensities were enhanced by resonant laser desorption for two of the derivatized Bis-GMAs. Intact ions of Bis-GMA and its derivatives were generally observed by 7.87 eV LDPI-MS, consistent with the formation of ions with relatively little internal energy upon threshold single photon ionization. PMID:17449273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zvorykin, V. D., E-mail: zvorykin@sci.lebedev.ru; Ionin, A. A.; Levchenko, A. O.
2015-02-15
Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shownmore » that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.« less
Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee
2004-11-30
A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.
Mass spectrometry imaging for visualizing organic analytes in food.
Handberg, Eric; Chingin, Konstantin; Wang, Nannan; Dai, Ximo; Chen, Huanwen
2015-01-01
The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xu, Tong-Tong; Ben, Shuai; Guo, Pei-Ying; Song, Kai-Li; Zhang, Jun; Liu, Xue-Shen
2017-07-01
We use the classical ensemble method to investigate the nonsequential double ionization (NSDI) process of Mg atoms in circularly polarized laser fields at a lower laser intensity. We illustrate the temporal correlation of the ‘side-by-side’ and the ‘back-to-back emission’. It indicates that the two electrons are more likely to be emitted at the same time for the ‘side-by-side emission’. We demonstrate the electronic trajectories from recollision-induced ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). The distribution of the angle between the two ionized directions of the two electrons and the ion momentum distribution show that the anticorrelation distribution is dominant in the RESI mechanism and correlation distribution is dominant in the RII mechanism. The momentum distributions of Mg atoms for the slow and the fast electrons present a similar structure to the experimental observation of Ar atoms by Liu et al 2014 (Phys. Rev. Lett. 112 013003).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui, E-mail: ryang73@ustc.edu; Gudipati, Murthy S., E-mail: gudipati@jpl.nasa.gov
2014-03-14
In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry,more » previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings.« less
Nonsequential double ionization with mid-infrared laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less
Nonsequential double ionization with mid-infrared laser fields
Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai; ...
2016-11-18
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less
Ionization and dissociation of molecular ion beams by intense ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Ben-Itzhak, Itzik
2007-06-01
Laser-induced dissociation and ionization of a diatomic molecular-ion beam were simultaneously measured using coincidence 3D momentum imaging, with direct separation of the two processes even where the fragment kinetic energy is the same for both processes. We mainly focus on the fundamental H2^+ molecule in 7-135 fs laser pulses having 10^13-10^15 W/cm^2 peak intensity. At high intensities the kinetic energy release (KER) distribution following ionization of H2^+ was measured to be broad and structureless. Its centroid shifts toward higher energies as the laser intensity is increased indicating that ionization shifts to smaller internuclear distances. In contrast, a surprising structure is observed near the ionization threshold, which we call above threshold Coulomb explosion (ATCE) [1]. The angular distributions of the two H^+ fragments are strongly peaked along the laser polarization, and the angular distribution is described well by [cos^2θ]^n, where n is the number of photons predicted by our ATCE model [1]. Our data indicates that n varies with the laser wavelength as predicted by the model. The KER and angular distributions of H2^+ dissociation change dramatically with decreasing pulse width over the 7-135 fs range in contrast to the reported trend for longer pulses. Others contributing to this work: A.M. Sayler, P.Q. Wang, J. McKenna, B. Gaire, Nora G. Johnson, E. Parke, K.D. Carnes, and B.D. Esry. Thank are due to Professor Zenghu Chang for providing the intense laser beams and Dr. Charles Fehrenbach for his help with the ion beams. [1] B.D. Esry, A.M. Sayler, P.Q. Wang, K.D. Carnes, and I. Ben-Itzhak, Phys. Rev. Lett. 97, 013003 (2006).
Energy coupling in short pulse laser solid interactions and its impact for space debris removal.
Neely, David; Allott, Ric; Bingham, Bob; Collier, John; Greenhalgh, Justin; Michaelis, Max; Phillips, Jonathan; Phipps, Claude R; McKenna, Paul
2014-11-01
Significant advances have been made over the last decade to improve the performance, efficiency, and contrast of high peak and average power laser systems, driven by their use in a wide variety of fields, from the industrial to the scientific. As the contrast of the lasers has improved, interactions with contrasts of 1012 are now routinely undertaken. At such high contrasts, there is negligible preplasma formation and the ionized surface layer created by subpicosecond-duration pulses typically forms a highly reflective "plasma mirror" capable of reflecting between 70% and 90% of the incident energy. Although such interactions are of significant interest for applications such as harmonic source production and to enable the underlying physics to be studied, their low absorption can limit their usefulness for applications such as space debris removal.
Abdelmaksoud, Hazem H; Guinan, Taryn M; Voelcker, Nicolas H
2017-02-15
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a high-throughput analytical technique ideally suited for small-molecule detection from different bodily fluids (e.g., saliva, urine, and blood plasma). Many SALDI-MS substrates require complex fabrication processes and further surface modifications. Furthermore, some substrates show instability upon exposure to ambient conditions and need to be kept under special inert conditions. We have successfully optimized mesoporous germanium (meso-pGe) using bipolar electrochemical etching and efficiently applied meso-pGe as a SALDI-MS substrate for the detection of illicit drugs such as in the context of workplace, roadside, and antiaddictive drug compliance. Argon plasma treatment improved the meso-pGe efficiency as a SALDI-MS substrate and eliminated the need for surface functionalization. The resulting substrate showed a precise surface geometry tuning by altering the etching parameters, and an outstanding performance for illicit drug detection with a limit of detection in Milli-Q water of 1.7 ng/mL and in spiked saliva as low as 5.3 ng/mL for cocaine. The meso-pGe substrate had a demonstrated stability over 56 days stored in ambient conditions. This proof-of-principle study demonstrates that meso-pGe can be reproducibly fabricated and applied as an analytical SALDI-MS substrate which opens the door for further analytical and forensic high-throughput applications.
Palladium modified porous silicon as multi-functional MALDI chip for serum peptide detection.
Li, Xiao; Chen, Xiaoming; Tan, Jie; Liang, Xiao; Wu, Jianmin
2017-02-14
Interest in using mesoporous materials for peptidomic research has increased recently. The present study reports a new type of matrix assisted laser desorption/ionization (MALDI) plate derived from electrochemically etched porous silicon (PSi) whose surface was modified with palladium nanoparticles (PdNPs). Owing to the well-tailored pore size and the molecular filtration effect of the PSi, peptides in serum samples can be selectively captured and enriched in the pore channel, thereby eliminating the interference from large proteins in subsequent MALDI-MS detection. On the other hand, the PdNPs with localized surface plasmon resonance (LSPR) effect can help to enhance the efficiency of energy absorption in the UV region. Meanwhile, the charge separation effect between the PSi semiconductor and PdNPs also can be applied to promote the accumulation of positive charges on PdNPs, resulting in an improvement in laser desorption/ionization (LDI) efficiency under positive linear detection mode. The interplay among these unique properties of PSi and PdNPs can synergistically increase the overall sensitivity in serum peptide detection. Using this technology, serum sample can be directly detected on the PSi-PdNPs chip without complicated pretreatment process. Therefore, a high fidelity serum peptide fingerprint can be acquired in a high throughput way. With the assistance of statistical analysis, colorectal cancer patients and healthy people can be accurately distinguished based on the serum peptide fingerprints.
Matrix-assisted laser desorption/ionization (MALDI) was performed on individual,
size-selected aerosol particles in the 2-8 mu m diameter range, Monodisperse aerosol droplets
containing matrix, analyte, and solvent were generated and entrained in a dry stream of air, The dr...
Hadamard Transform Time-of-Flight Spectroscopy
2010-01-26
determines the mass range of the experiment. For pulsed ionization techniques including laser-based methods such as MALDI(Tanaka, Waki et al. 1988...Review of Biochemistry 47(1): 819-846. Tanaka, K., H. Waki , et al. (1988). "Protein and polymer analyses up to m/z 100 000 by laser ionization time-of
LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)
On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
sent into a linear time-of-flight mass spectrometer where they are ablated w...
NASA Astrophysics Data System (ADS)
Anija, M.; Philip, Reji
2009-09-01
We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 10 15 W/cm 2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.
Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields
NASA Astrophysics Data System (ADS)
Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George
2007-04-01
A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.
Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.
Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George
2007-04-16
A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.
NASA Technical Reports Server (NTRS)
Kovalenko, L. J.; Philippoz, J.-M.; Bucenell, J. R.; Zenobi, R.; Zare, R. N.
1991-01-01
The distribution of PAHs in the Allende meteorite has been measured using two-step laser desorption and laser multiphoton-ionization mass spectrometry. This method enables in situ analysis (with a spatial resolution of 1 mm or better) of selected organic molecules. Results show that PAH concentrations are locally high compared to the average concentration found by analysis of pulverized samples, and are found primarily in the fine-grained matrix; no PAHs were detected in the interiors of individual chondrules at the detection limit (about 0.05 ppm).
Development of a gas cell-based laser ion source for RIKEN PALIS
NASA Astrophysics Data System (ADS)
Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Noto, T.; Iimura, H.; Matsuo, Y.; Kubo, T.; Shinozuka, T.; Wakui, T.; Mita, H.; Naimi, S.; Furukawa, T.; Itou, Y.; Schury, P.; Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y.; Hirayama, Y.
2013-04-01
We developed a prototype laser ionization gas cell with a beam extraction system. This device is for use of PArasitic Laser Ion-Source (PALIS), which will be implemented into RIKEN's fragment separator, BigRIPS as a part of SLOWRI. Off-line resonant laser ionization for stable Co, Cu, Fe, Ni, Ti, Nb, Sn, In and Pd inside the gas cell, ion extraction and transport to the high-vacuum region via SPIG and QMS have been confirmed (Sonoda et al, Nucl Instrum Meth B 295:1, 2013).
NASA Astrophysics Data System (ADS)
Engel, Thierry; Kane, M.; Fontaine, Joel
1997-08-01
During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.
NASA Astrophysics Data System (ADS)
Yan, Hong; Xu, Ning; Huang, Wen-Yi; Han, Huan-Mei; Xiao, Shou-Jun
2009-03-01
An improved DIOS (desorption ionization on porous silicon) method for laser desorption/ionization mass spectrometry (LDI MS) by electroless plating of silver nanoparticles (AgNPs) on porous silicon (PSi) was developed. By addition of 4-aminothiophenol (4-ATP) into the AgNO3 plating solution, the plating speed can be slowed down and simultaneously 4-ATP self-assembled monolayers (SAMs) on AgNPs (4-ATP/AgNPs) were formed. Both AgNPs and 4-ATP/AgNPs coated PSi substrates present much higher stability, sensitivity and reproducibility for LDI MS than the un-treated porous silicon ones. Their shelf life in air was tested for several weeks to a month and their mass spectra still displayed the same high quality and sensitivity as the freshly prepared ones. And more 4-ATP SAMs partly play a role of matrix to increase the ionization efficiency. A small organic molecule of tetrapyridinporphyrin (TPyP), oligomers of polyethylene glycol (PEG 400 and 2300), and a peptide of oxytocin were used as examples to demonstrate the feasibility of the silver-plated PSi as a matrix-free-like method for LDI MS. This approach can obtain limits of detection to femtomoles for TPyP, subpicomoles for oxytocin, and picomoles for PEG 400 and 2300, comparable to the traditional matrix method and much better than the DIOS method. It simplifies the sample preparation as a matrix-free-like method without addition of matrix molecules and homogenizes the sample spread over the spot for better and more even mass signals.
Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms
NASA Astrophysics Data System (ADS)
Lin, Hou-Yu; Hsu, Hsu Chen; Lu, I.-Chung; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung
2014-10-01
Matrix-assisted laser desorption ionization (MALDI) has been widely used in the mass analysis of biomolecules; however, there are a lot of debates about the ionization mechanisms. Previous studies have indicated that S1-S1 annihilation might be a key process in the generation of primary ions. This study investigates S1-S1 annihilation by examining the time-resolved fluorescence spectra of 12 matrices. No S1-S1 annihilation was observed in six of these matrices (3-hydroxy-picolinic acid, 6-aza-2-thiothymine, 2,4-dihydroxy-acetophenone, 2,6-dihydroxy-acetophenone, 2,4,6-trihydroxy-acetophenone, and ferulic acid). We observed two matrix molecules reacting in an electronically excited state (S1) in five of these matrices (2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxy-acetophenone, 2,3-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid), and S1-S1 annihilation was a possible reaction. Among these five matrices, no S1-S1 annihilation was observed for 2,3-dihydroxybenzoic acid in typical peak power region of nanosecond laser pulses in MALDI, but a very small value of reaction rate constant was observed only in the high peak power region. The excited-state lifetime of sinapinic acid was too short to determine whether the molecules reacted in an electronically excited state. No correlation was observed between the ion generation efficiency of MALDI and S1-S1 annihilation. The results indicate that the proposal of S1-S1 annihilation is unnecessary in MALDI and energy pooling model for MALDI ionization mechanism has to be modified.
NASA Astrophysics Data System (ADS)
Christensen, Justin; Hucul, David; Campbell, Wesley; Hudson, Eric
2017-04-01
133 Ba+ combines many of the advantages of commonly used trapped ion qubits. 133Ba+ has a nuclear spin 1/2, allowing for a robust hyperfine qubit with simple state preparation and readout. The existence of long-lived metastable D-states and a lack of low-lying F-states simplifies shelving, which will allow high fidelity state detection. The visible wavelength optical transitions enable the use of high-power lasers, low-loss fibers, high quantum efficiency detectors, and other optical technologies developed for visible wavelength light. Furthermore, background-free qubit readout, where the readout is insensitive to laser scatter, is possible in 133Ba+, and simplifies its use in small ion traps and the study of ions near surfaces. We report progress on realizing this qubit. We load barium ions into an ion trap using thermal ionization from a platinum ribbon. We experimentally demonstrate the isotopic purification of large numbers of barium ions using laser heating and cooling along with mass filtering to produce isotopically pure chains of any naturally-occurring barium isotope. This purification process has allowed us to laser cool rare, naturally-occurring barium isotopes 132Ba+and130Ba+, and we report the isotope shifts from 138Ba+ of the P1/2 to D3/2 transitions near 650 nm for the first time. In addition, we have developed an ion gun to produce high luminosity ion beams with adjustable mean kinetic energy by combining a surface ionization source and ion optics.
Fe(+) chemical ionization of peptides.
Speir, J P; Gorman, G S; Amster, I J
1993-02-01
Laser-desorbed peptide neutral molecules were allowed to react with Fe(+) in a Fourier transform mass spectrometer, using the technique of laser desorption/chemical ionization. The Fe(+) ions are formed by laser ablation of a steel target, as well as by dissociative charge-exchange ionization of ferrocene with Ne(+). Prior to reaction with laser-desorbed peptide molecules, Fe(+) ions undergo 20-100 thermalizin collisions with xenon to reduce the population of excited-state metal ion species. The Fe(+) ions that have not experienced thermalizing collisions undergo charge exchange with peptide molecules. Iron ions that undergo thermalizing collisions before they are allowed to react with peptides are found to undergo charge exchange and to form adduct species [M + Fe(+)] and fragment ions that result from the loss of small, stable molecules, such as H2O, CO, and CO2, from the metal ion-peptide complex.
Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms
Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...
2015-09-11
Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less
Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
NASA Astrophysics Data System (ADS)
Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Internuclear separation dependent ionization of the valence orbitals of I2 by strong laser fields.
Chen, H; Tagliamonti, V; Gibson, G N
2012-11-09
Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σ(g)(2)π(u)(4)π(g)(4)σ(u)(0). We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σ(g)) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.
Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields
NASA Astrophysics Data System (ADS)
Chen, H.; Tagliamonti, V.; Gibson, G. N.
2012-11-01
Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.
Multi-Orbital contributions in High Harmonic Generation
NASA Astrophysics Data System (ADS)
Guehr, Markus
2009-05-01
The high harmonic spectrum generated from atoms or molecules in a strong laser field contains information about the electronic structure of the generation medium. In the high harmonic generation (HHG) process, a free electron wave packet tunnel-ionizes from the molecular orbital in a strong laser field. After being accelerated by the laser electric field, the free electron wave packet coherently recombines to the orbital from which is was initially ionized, thereby emitting the harmonic spectrum. Interferences between the free electron wave packet and the molecular orbital will shape the spectrum in a characteristic way. These interferences have been used to tomographically image the highest occupied molecular orbital (HOMO) of N2 [1]. Molecular electronic states energetically below the HOMO should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. We have observed evidence of HHG from multiple orbitals in aligned N2 [2]. The tunneling ionization (and therefore the harmonic generation) is most efficient if the orbital has a large extension in the direction of the harmonic generation polarization. The HOMO with its σg symmetry therefore dominates the harmonic spectrum if the molecular axis is parallel to the harmonic generation polarization, the lower bound πu HOMO-1 dominates in the perpendicular case. The HOMO contributions appear as a regular plateau with a cutoff in the HHG spectrum. In contrast, the HOMO-1 signal is strongly peaked in the cutoff region. We explain this by semi-classical simulations of the recombination process that show constructive interferences between the HOMO-1 and the recombining wave packet in the cutoff region. The ability to monitor several orbitals opens the route to imaging coherent superpositions of electronic orbitals. [1] J. Itatani et al., Nature 432, 867 (2004)[2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)
Ion formation mechanisms in UV-MALDI.
Knochenmuss, Richard
2006-09-01
Matrix Assisted Laser Desorption/Ionization (MALDI) is a very widely used analytical method, but has been developed in a highly empirical manner. Deeper understanding of ionization mechanisms could help to design better methods and improve interpretation of mass spectra. This review summarizes current mechanistic thinking, with emphasis on the most common MALDI variant using ultraviolet laser excitation. A two-step framework is gaining acceptance as a useful model for many MALDI experiments. The steps are primary ionization during or shortly after the laser pulse, followed by secondary reactions in the expanding plume of desorbed material. Primary ionization in UV-MALDI remains somewhat controversial, the two main approaches are the cluster and pooling/photoionization models. Secondary events are less contentious, ion-molecule reaction thermodynamics and kinetics are often invoked, but details differ. To the extent that local thermal equilibrium is approached in the plume, the mass spectra may be straightforwardly interpreted in terms of charge transfer thermodynamics.
Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.
Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang
2013-07-12
We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.
The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...
NASA Astrophysics Data System (ADS)
Gets, A. V.; Krainov, V. P.
2018-01-01
The yield of spontaneous photons at the tunneling ionization of atoms by intense low-frequency laser radiation near the classical cut-off is estimated analytically by using the three-step model. The Bell-shaped dependence in the universal photon spectrum is explained qualitatively.
ERIC Educational Resources Information Center
Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.
2007-01-01
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…
Ionization studies in laser-excited alkaline-earth vapors.
Hermann, J P; Wynne, J J
1980-06-01
We report on the time behavior of ionization signals produced by laser excitation of Ca and Ba atomic vapor to high-Rydberg states. A space-charge-limited thermionic diode detector shows a long-lived (>I-msec) ionization signal. However, optical detection of atomic ions (Ca+, Ba+) shows that these species live for much shorter times (<100 microsec). These results, in conjunction with published results on mass-spectrometric studies of high-density atomic beams, suggest that our ionization signal is primarily due to molecular species (Ca2+, Ba2+). We also observed optically pumped amplified spontaneous emission and stimulated electronic Raman scattering in Ca+ and Ba+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.
The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less
In-Situ Geochronology: Extending Larims to Pb-Pb Isocrhons
NASA Astrophysics Data System (ADS)
Whitaker, Tom; Anderson, Scott; Levine, Jonathan
2016-04-01
Introduction: We have previously described development of Laser Ablation Resonance Ionization Mass Spectrometry (LARIMS) for in-situ determination of the radiometric age of rocks using isotope ratios of Rb and Sr [1,2]. LARIMS uses laser resonance excitation of the target elements, which provides elemental selectivity, thus eliminating isobaric interferences with little or no sample preparation and allowing thousands of samples to be measured in significantly shorter periods of time than traditional methods. We have recently begun research that aims to extend the Rb-Sr capability to include Pb-Pb measurements. Preliminary measurements of Standard Reference Material 612 (SRM-612) from the National Institute of Standards and Technology (NIST) demonstrate that resonance ionization of Pb can measure samples with as little as 0.12 ppm total Pb. Background: In-situ LARIMS will enable measurements of 1) isotope geochemistry relevant for chronology and igneous evolution, 2) light isotopes relevant for habitability, life, and climate history, as well as 3) elemental abundances relevant to understanding local and regional geology. In particular, the elemental selectivity of LARIMS makes isotopic geochronology measurements possible that heretofore required extensive sample preparation and were thought to be practically impossible for in-situ measurements. For example, we have used Rb-Sr LARIMS to analyze a piece of the Martian meteorite Zagami and the Duluth Gabbro, a lunar analogue. In these measurements, we obtained isochron ages consistent with the published ages within 200 Ma. Pb-Pb geochronology is well-suited for LARIMS analysis. The use of a single element simplifies the laser system and eliminates inter-element fractionation that can be problematic in Rb-Sr analysis or other multi-element LARIMS measurements. In general, there is less interference at masses corresponding to Pb isotopes than at lighter masses. However, there are potential interferences such as Hg and HfO2, which have been known to cause problems in Inductively Coupled Plasma Mass Spectrometry (ICPMS) of Pb isotopes [3]. LARIMS enables a simple check for interfering species by detuning the laser wavelength off the Pb resonance. The resonance ionization signal for the desired species should disappear when the resonance laser is detuned. Any residual signal is due to an interfering species. Three resonance ionization laser schemes were examined for initial LARIMS analysis of Pb: 1) a 2+1 scheme that uses λ1 = λ2 = 450.3 nm (the first transition in this scheme is a simultaneous two-photon excitation), 2) a 1+1+1 scheme using λ1 = 283.3 nm, λ2 = 600.2 nm and λ3 < 1270 nm, and 3) a 1+1 scheme that uses λ1 = λ2 = 283.3 nm. One-photon resonance excitations have cross-sections that are orders of magnitude greater than either two-photon resonance excitations or photoionization processes. Therefore, although schemes 1) and 3) have the advantage of requiring fewer lasers, they also require high-intensity blue or UV wavelengths. This adversely affects the selectivity of the resonance ionization process. Scheme 2) uses low-intensity UV and visible wavelengths and a high-intensity IR wavelength. This is the preferred scheme and was selected for our initial Pb LARIMS measurements. Preliminary Results: A laser system capable of producing the required wavelengths for scheme 2) was assembled. A Nd:YAG laser pumped dye laser produces 566.6 nm light, which is frequency-doubled in a beta barium borate crystal. A second Nd:YAG pumped dye laser produces the 600.2 nm light for the second resonance in scheme 2). The fundamental of one of the Nd:YAG lasers (1064 nm) is used for the final photoionization step. We focus the fifth harmonic (213 nm) of another Nd:YAG laser onto the sample to ablate material off the surface. Electric fields suppress the ions created in the ablation process, preventing these ions from entering the mass spectrometer. The three resonance ionization laser lasers spatially overlap the ablated plume about 1 mm off the surface. These three resonance ionization wavelengths are synchronized in time with each other but delayed with respect to the ablation laser pulse. For Pb, the resonance ionization signal peaks at about 9 μsec delay. The electric field that initially suppressed ablated ions is reversed before the resonance lasers are fired, thus extracting the ions selectively created by resonance ionization into a multi-bounce time-of-flight mass spectrometer (MBTOF-MS). The MBTOF-MS separates the isotopes in time, allowing analysis of isotope ratios. We have used this technique to analyze NIST SRM-612, a glass wafer containing 38.57 ppm Pb along with a number of other constituents. The mass spectrum shows all of the Pb isotopes, with the even isotopes in the expected ratios. However, we have found that the Pb-207 peak height is very sensitive to the exact wavelength of the 600.2 nm light used for the second excitation. The height of this odd isotope can be significantly modified with minute changes in the 600.2 nm wavelength that don't affect the peak heights of the even isotopes. This is due to the well-known odd-even isotope anomaly in resonance ionization. Because of the sensitivity of the Pb-207 peak to the exact wavelength, a standard with known Pb isotope ratios is analyzed frequently to allow calibration of the isotope ratios. In very preliminary LARIMS spectra obtained for SRM-612, the measured Pb-208 signal-to-baseline noise is over 600:1. This corresponds to a minimum detection limit of 0.12 ppm total Pb. We anticipate improving the signal-to-noise with optimization of TOF voltages and ablation laser intensity. Future Work: We are in the process of measuring an isochron for a sample of Duluth Gabbro and anticipate having results available for the conference. We are also exploring the use of fiber lasers for LARIMS analyses of Pb. Fiber lasers are small, lightweight, and extremely robust, making them ideal for space missions. We are presently developing fiber lasers for our Rb-Sr LARIMS work and we have investigated ways to efficiently combine wavelengths from Er-, Yb-, and Tm-doped fibers to generate both the 283.3 nm wavelength and 600.2 nm wavelength needed for Pb LARIMS. Concepts utilizing wavelengths readily generated in these fibers have been developed. References: F.S. Anderson, J. Levine, and T.J. Whitaker, Rapid Comm. in Mass Spect., 2015, 29, 191-204. F.S. Anderson, J. Levine, T.J. Whitaker, Rapid Comm. in Mass Spect., 2015, 29, 1457-1464. R.W. Hinton and J V Long, Earth Planet. Sci. Lett 1979, 45, 309-325.
XUV ionization of aligned molecules
NASA Astrophysics Data System (ADS)
Kelkensberg, F.; Rouzée, A.; Siu, W.; Gademann, G.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.; Vrakking, M. J. J.
2011-11-01
New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO2 molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.
NASA Astrophysics Data System (ADS)
Key, Michael H.; Blyth, W. J.; Cairns, Gerald F.; Damerell, A. R.; Dangor, A. E.; Danson, Colin N.; Evans, J. M.; Hirst, Graeme J.; Holden, M.; Hooker, Chris J.; Houliston, J. R.; Krishnan, J.; Lewis, Ciaran L. S.; Lister, J. M. D.; MacPhee, Andrew G.; Najmudin, Z.; Neely, David; Norreys, Peter A.; Offenberger, Allen A.; Osvay, Karoly; Pert, Geoffrey J.; Preston, S. G.; Ramsden, Stuart A.; Ross, Ian N.; Sibbett, Wilson; Tallents, Gregory J.; Smith, C.; Wark, Justin S.; Zhang, Jie
1994-02-01
An injector-amplifier architecture for XUV lasers has been developed and demonstrated using the Ge XXIII collisional laser. Results are described for injection into single and double plasma amplifiers. Prismatic lens-like and higher order aberrations in the amplifier are considered. Limitations on ultimate brightness are discussed and also scaling to operation at shorter wavelengths. A preliminary study has been made of UV multiphoton ionization using 300 fs pulses at high intensity.
Research Laboratory of Electronics Annual Report Number 125.
1983-01-01
Picosecond Optics 35 7.4 Ultrashort Pulse Formation 37 7.5 Ferntosecond Laser System 37 7.6 Parametric Scattering with Femtosecond Pulses 38 7.7 Near-IR...ionization of atomic hydrogen as calculated by 10 Reinhardt for a single frequency laser . To facilitate comparison, the cross section has been divided by 13...As the intensity increases, the peaks shift to the blue and become broader. Figure 3-3: Ionization profiles produced by laser intensity 10 and at five
Subcellular analysis by laser ablation electrospray ionization mass spectrometry
Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh
2014-12-02
In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.
Lai, Yin-Hung; Chen, Bo-Gaun; Lee, Yuan Tseh; Wang, Yi-Sheng; Lin, Sheng Hsien
2014-08-15
Although several reaction models have been proposed in the literature to explain matrix-assisted laser desorption/ionization (MALDI), further study is still necessary to explore the important ionization pathways that occur under the high-temperature environment of MALDI. 2,4,6-Trihydroxyacetophenone (THAP) is an ideal compound for evaluating the contribution of thermal energy to an initial reaction with minimum side reactions. Desorbed neutral THAP and ions were measured using a crossed-molecular beam machine and commercial MALDI-TOF instrument, respectively. A quantitative model incorporating an Arrhenius-type desorption rate derived from transition state theory was proposed. Reaction enthalpy was calculated using GAUSSIAN 03 software with dielectric effect. Additional evidence of thermal-induced proton disproportionation was given by the indirect ionization of THAP embedded in excess fullerene molecules excited by a 450 nm laser. The quantitative model predicted that proton disproportionation of THAP would be achieved by thermal energy converted from a commonly used single UV laser photon. The dielectric effect reduced the reaction Gibbs free energy considerably even when the dielectric constant was reduced under high-temperature MALDI conditions. With minimum fitting parameters, observations of pure THAP and THAP mixed with fullerene both agreed with predictions. Proton disproportionation of solid THAP was energetically favorable with a single UV laser photon. The quantitative model revealed an important initial ionization pathway induced by the abrupt heating of matrix crystals. In the matrix crystals, the dielectric effect reduced reaction Gibbs free energy under typical MALDI conditions. The result suggested that thermal energy plays an important role in the initial ionization reaction of THAP. Copyright © 2014 John Wiley & Sons, Ltd.
Lif Spectroscopy of ThF and the Preparation of ThF^{+} for the Jila eEDM Experiment
NASA Astrophysics Data System (ADS)
Ng, Kia Boon; Zhou, Yan; Gresh, Dan; Cairncross, William; Roussy, Tanya; Shagam, Yuval; Cheng, Lan; Ye, Jun; Cornell, Eric
2017-06-01
ThF^{+} is a promising candidate for a second-generation molecular ion-based measurement of the permanent electric dipole moment of the electron (eEDM). Compared to the current HfF^{+} eEDM experiment, ThF^{+} has several advantages: (i) the eEDM-sensitive ^{3}Δ_1 electronic state is the ground state, which facilitates a long measurement coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces a greater flexibility for rotational state-selective photoionization via core-nonpenetrating Rydberg states. We use laser-induced fluorescence (LIF) spectroscopy to find suitable intermediate states required for the state selective ionization process. We present the results of our LIF spectroscopy of ThF, and our current progress on efficient ThF ionization and on ThF^{+} dissociation.
Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong
2017-11-01
Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi 3 + beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm 2 . The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.
NASA Astrophysics Data System (ADS)
Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong
2017-11-01
Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.
NASA Astrophysics Data System (ADS)
Apollonov, V. V.; Baĭtsur, G. G.; Ermachenko, A. V.; Raspopov, N. A.; Sviridenkov, É. A.; Semenov, S. K.; Firsov, K. N.
1989-02-01
Intracavity laser spectroscopy was used to study the dynamics of population of the ν = 2-8 vibrational levels of the A3∑u+ state in order to establish the possible influence of multistage ionization on the evolution of instability in a self-sustained volume discharge in CO2 laser active mixtures. The populations of the nitrogen vibrational levels Nν were calculated taking into account the real output pulse profile of a dye laser. It was found that multistage ionization can only influence the duration of stable operation of a self-sustained volume discharge by increasing the rate of growth of the spark channel in the discharge gap. This is why the addition of readily ionized substances to the gas that reduce the electron energy and therefore lower Nν can substantially improve the stability of the volume discharge and increase the active volume and output energy of a CO2 laser.
Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.
Kancharla, Vidhyullatha; Bashir, Sajid; Liu, Jingbo L; Ramirez, Oscar M; Derrick, Peter J; Beran, Kyle A
2017-10-01
Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.
Compact lasing system at 13.5-nm to ground state of LiIII at 2Hz
NASA Astrophysics Data System (ADS)
Goltsov, A. Y.; Korobkin, D.; Nam, C. H.; Suckewer, Szymon
1997-11-01
The recent results of the demonstration of the lasing action at 13.5 nm in transition to ground state of LiIII at 2 Hz repetition rate using two lasers is being presented in this paper. A gain length of GL approximately equals 5.5 was measured in the 5 mm long, 0.3 mm diameter, LiF microcapillary using a 50 mJ, 250 fsec UV laser beam. The initial plasma was created in the microcapillary by a low power, relatively long pulse Nd/YAG laser. In order to shed light on observed unusually high efficiency of the ionization of the atoms in microcapillaries, the subpicosecond UV laser beam transmissions through the plasma in microcapillaries were measured. Strong dependence of the beam transmission on the delay time between inial plasma formation with the Nd/YAG laser and the sub-picosecond UV laser was recorded. The final part of the paper discusses some necessary conditions for an extension of the present results towards the shorter wavelength lasers with an emphasis on the presently conducted experiments at Princeton University for the generation gain at 4.8 nm in BV.
Huang, Huang; Chang, Yih Chung; Luo, Zhihong; Shi, Xiaoyu; Lam, Chow-Shing; Lau, Kai-Chung; Ng, C Y
2013-03-07
We have conducted a two-color visible-ultraviolet (VIS-UV) resonance-enhanced laser photoionization efficiency and pulsed field ionization-photoelectron (PFI-PE) study of gaseous cobalt carbide (CoC) near its ionization onset in the total energy range of 61,200-64,510 cm(-1). The cold gaseous CoC sample was prepared by a laser ablation supersonically cooled beam source. By exciting CoC molecules thus generated to single N' rotational levels of the intermediate CoC∗((2)Σ(+); v') state using a VIS dye laser prior to UV laser photoionization, we have obtained N(+) rotationally resolved PFI-PE spectra for the CoC(+)(X(1)Σ(+); v(+) = 0 and 1) ion vibrational bands free from interference by impurity species except Co atoms produced in the ablation source. The rotationally selected and resolved PFI-PE spectra have made possible unambiguous rotational assignments, yielding accurate values for the adiabatic ionization energy of CoC(X(2)Σ(+)), IE(CoC) = 62,384.3 ± 0.6 cm(-1) (7.73467 ± 0.00007 eV), the vibrational frequency ωe (+) = 985.6 ± 0.6 cm(-1), the anharmonicity constant ωe (+)χe (+) = 6.3 ± 0.6 cm(-1), the rotational constants (Be (+) = 0.7196 ± 0.0005 cm(-1), αe (+) = 0.0056 ± 0.0008 cm(-1)), and the equilibrium bond length re (+) = 1.534 Å for CoC(+)(X(1)Σ(+)). The observation of the N(+) = 0 level in the PFI-PE measurement indicates that the CoC(+) ground state is of (1)Σ(+) symmetry. Large ΔN(+) = N(+) - N' changes up to 6 are observed for the photoionization transitions CoC(+)(X(1)Σ(+); v(+) = 0-2; N(+)) ← CoC∗((2)Σ(+); v'; N' = 6, 7, 8, and 9). The highly precise energetic and spectroscopic data obtained in the present study have served as a benchmark for testing theoretical predictions based on state-of-the-art ab initio quantum calculations at the CCSDTQ∕CBS level of theory as presented in the companion article.
NASA Astrophysics Data System (ADS)
Liu, Zhaoxiang; Yao, Jinping; Chen, Jinming; Xu, Bo; Chu, Wei; Cheng, Ya
2018-02-01
The generation of laserlike narrow bandwidth emissions from nitrogen molecular ions (N2+ ) generated in intense near- and mid infrared femtosecond laser fields has aroused much interest because of the mysterious physics underlying such a phenomenon. Here, we perform a pump-probe measurement on the nonlinear interaction of rotational quantum wave packets of N2+ generated in midinfrared (e.g., at a wavelength centered at 1580 nm) femtosecond laser fields with an ultrashort probe pulse whose broad spectrum overlaps both P - and R -branch rotational transition lines between the electronic states N2+(B2Σu+,v'=0 ) and N2+(X2Σg+,v =0 ) . The results indicate the occurrence of highly efficient near-resonant stimulated Raman scattering in the quantum wave packets of N2+ ions generated in strong laser fields in the midinfrared region, of which the underlying mechanism is different from that of the air lasers generated in atmospheric environment when pumping with 800 nm intense pulses.
A 490 W transversely excited atmospheric CO2 spark gap laser with added H2
NASA Astrophysics Data System (ADS)
Zand, M.; Koushki, A. M.; Neshati, R.; Kia, B.; Khorasani, K.
2018-02-01
In this paper we present a new design for a high pulse repetition rate transversely excited atmospheric CO2 laser with ultraviolet pre-ionization. A new method of fast thyristor capacitor charging and discharging by a spark gap is used. The effect of H2 gas addition on the output and stability of a transversely excited atmospheric laser operating with a basic mixture of CO2, N2 and He is investigated. The output power was increased by adding H2 to the gas mixture ratio of CO2:N2:He:H2 = 1:1:8:0.5 at total pressure of 850 mbar. An average power of 490 W at 110 Hz with 4.5 J per pulse was obtained. The laser efficiency was 11.2% and oxygen gas was used in the spark gap for electron capture to reduce the recovery time and increase the repetition rate.
Lu, Qiao; Hu, Yongjun; Chen, Jiaxin; Li, Yujian; Song, Wentao; Jin, Shan; Liu, Fuyi; Sheng, Liusi
2018-09-01
The nanomaterials function as the substrate to trap analytes, absorb energy from the laser irradiation and transfer energy to the analytes to facilitate the laser desorption process. In this work, the signal intensity and reproducibility of analytes with nanomaterials as matrices were explored by laser desorption postionization mass spectrometry (LDPI-MS). Herein, the desorbed neutral species were further ionized by vacuum ultraviolet (VUV, 118 nm) and analyzed by mass spectrometer. Compared with other nanomaterial matrices such as graphene and carbon nanotubes (CNTs), boron nitride nanotubes (BNNTs) exhibited much higher desorption efficiency under infrared (IR) light and produced no background signal in the whole mass range by LDPI-MS. Additionally, this method was successfully and firstly exploited to in situ detection and imaging for drugs of low concentration in intact tissues, which proved the utility, facility and convenience of this method applied in drug discovery and biomedical research. Copyright © 2018 Elsevier B.V. All rights reserved.
In situ optical measurements for characterization of flame species and remote sensing
NASA Astrophysics Data System (ADS)
Cullum, Brian Michael
1998-12-01
The following dissertation describes the use of spectroscopic techniques for both characterization of combustion intermediates and remote chemical sensing. The primary techniques that have been used for these measurements include, laser-induced fluorescence (LIF), time resolved LIF, resonance enhanced multiphoton ionization (REMPI) and Raman spectroscopy. A simple and quantitative means of measuring the efficiency of halogenated flame retardants is described, using laser-induced fluorescence (LIF). Intensity based LIF measurements of OH radical have been used to quantitatively measure the efficacy of halogenated flame retardant/polymer plaques. Temporally resolved LIF has been used to determine the extent to which the chemical kinetic theory of flame retardation applies to the effect of these compounds on combustion. We have shown that LIF of OH radicals is a very sensitive means of measuring the efficiency of these flame retardants as well as the giving information about the nature of flame retardation. In addition, we have developed a technique for the introduction of insoluble polymer plaques into a flame for fluorescence analysis. A high power pulsed Nd:YAG laser is used to ablate the sample into the flame while a second pulse from a dye laser is used to measure the LIF of OH radicals. Spectroscopic techniques are also very useful for trace remote analysis of environmental pollutants via optical fibers. A simple fiber-optic probe suitable for remote analysis using resonance enhanced multiphoton ionization (REMPI) has been developed for this purpose and is used to determine the toluene/gasoline concentration in water samples via a headspace measurement. The limit of detection for toluene in water using this probe is 0.54 ppb (wt/wt) with a sample standard deviation of 0.02 ppb (wt/wt). Another technique that has great potential for optical sensing is fluorescence lifetime imaging. A new method for measuring fluorescence lifetime images of quickly decaying species has been developed. This method employs a high powered pulsed laser that excites the fluorescent species in a dual pulse manner, and a non-gated charge coupled device (CCD) for detection of the fluorescence. Unlike other fluorescence lifetime imaging methods, this technique has the potential of monitoring fluorescent species with picosecond lifetimes.
High duty cycle hard soldered kilowatt laser diode arrays
NASA Astrophysics Data System (ADS)
Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom
2010-02-01
High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Zhili; Shneider, Mikhail N.
2010-03-15
This paper presents the experimental measurement and computational model of sodium plasma decay processes in mixture of sodium and argon by using radar resonance-enhanced multiphoton ionization (REMPI), coherent microwave Rayleigh scattering of REMPI. A single laser beam resonantly ionizes the sodium atoms by means of 2+1 REMPI process. The laser beam can only generate the ionization of the sodium atoms and have negligible ionization of argon. Coherent microwave scattering in situ measures the total electron number in the laser-induced plasma. Since the sodium ions decay by recombination with electrons, microwave scattering directly measures the plasma decay processes of the sodiummore » ions. A theoretical plasma dynamic model, including REMPI of the sodium and electron avalanche ionization (EAI) of sodium and argon in the gas mixture, has been developed. It confirms that the EAI of argon is several orders of magnitude lower than the REMPI of sodium. The theoretical prediction made for the plasma decay process of sodium plasma in the mixture matches the experimental measurement.« less
Unprecedented Ionization Processes in Mass Spectrometry Provide Missing Link between ESI and MALDI.
Trimpin, Sarah; Lee, Chuping; Weidner, Steffen M; El-Baba, Tarick J; Lutomski, Corinne A; Inutan, Ellen D; Foley, Casey D; Ni, Chi-Kung; McEwen, Charles N
2018-03-05
In the field of mass spectrometry, producing intact, highly-charged protein ions from surfaces is a conundrum with significant potential payoff in application areas ranging from biomedical to clinical research. Here, we report on the ability to form intact, highly-charged protein ions on high vacuum time-of-flight mass spectrometers in the linear and reflectron modes achievable using experimental conditions that allow effective matrix removal from both the sample surfaces and from the charged clusters formed by the laser ablation event. The charge states are the highest reported on high vacuum mass spectrometers, yet they remain at only around a third of the highest charge obtained using laser ablation with a suitable matrix at atmospheric pressure. Other than physical instrument modifications, the key to forming abundant and stable highly-charged ions appears to be the volatility of the matrix used. Cumulative results suggest mechanistic links between the ionization process reported here and traditional ionization methods of electrospray ionization and matrix-assisted laser desorption/ionization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement
NASA Astrophysics Data System (ADS)
Wang, Jun-Ping; He, Feng
2018-04-01
The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.
Arendowski, Adrian; Nizioł, Joanna; Ruman, Tomasz
2018-04-01
A new methodology applicable for both high-resolution laser desorption/ionization mass spectrometry and mass spectrometry imaging of amino acids is presented. The matrix-assisted laser desorption ionization-type target containing monoisotopic cationic 109 Ag nanoparticles ( 109 AgNPs) was used for rapid mass spectrometry measurements of 11 amino acids of different chemical properties. Amino acids were directly tested in 100,000-fold concentration change conditions ranging from 100 μg/mL to 1 ng/mL which equates to 50 ng to 500 fg of amino acid per measurement spot. Limit of detection values obtained suggest that presented method/target system is among the fastest and most sensitive ones in laser mass spectrometry. Mass spectrometry imaging of spots of human blood plasma spiked with amino acids showed their surface distribution allowing optimization of quantitative measurements. Copyright © 2018 John Wiley & Sons, Ltd.
An inexpensive technique for the time resolved laser induced plasma spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Rizwan, E-mail: rizwan.ahmed@ncp.edu.pk; Ahmed, Nasar; Iqbal, J.
We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450–550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved informationmore » about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.« less
NASA Astrophysics Data System (ADS)
Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko
2009-06-01
We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.
Ionization waves of arbitrary velocity driven by a flying focus
NASA Astrophysics Data System (ADS)
Palastro, J. P.; Turnbull, D.; Bahk, S.-W.; Follett, R. K.; Shaw, J. L.; Haberberger, D.; Bromage, J.; Froula, D. H.
2018-03-01
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.
Probing electron delays in above-threshold ionization
Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.
2014-11-21
Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delaysmore » depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, M. V., E-mail: fedorov@gmail.com
2016-03-15
Basic premises, approximations, and results of L.V. Keldysh’s 1964 work on multiphoton ionization of atoms are discussed, as well as its influence on the modern science of the interaction of atomic–molecular systems with a strong laser field.
Fenstermacher, Charles A.; Boyer, Keith
1986-01-01
A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.
Basic Characteristics of Laser Heating in Thermoluminescence and of Laser-Stimulated Luminescence
1990-07-15
as examples. These include LiF:Mg,Ti ( TLD -100, Harshaw Chemical Corporation) in form of chips, which are widely used in the dosimetry of ionizing...take dosimetry ( TLD ) of ionizing radiation because it holds pro- the form of discrete circular spots whose diameter is smaller mise as a solution to...function of typical phosphor, we choose the most widely used dosimetry time after onset of the laser exposure, the time-dependent material LiF:Mg,Ti ( TLD
XUV ionization of aligned molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelkensberg, F.; Siu, W.; Gademann, G.
2011-11-15
New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.
NASA Astrophysics Data System (ADS)
Bisling, Peter; Heger, Hans Jörg; Michaelis, Walfried; Weitkamp, Claus; Zobel, Harald
1995-04-01
A new laser analytical device has been developed that is based on resonance-enhanced multiphoton ionization in the very center of a radio-frequency quadrupole ion trap. Applications in speciation anlaysis of biological and enviromental samples and in materials science will all benefit from laser-optical selectivity in the resonance excitation process, combined with mass-spectropic sensivity which is further enhanced by the ion accumulation and storage capability.
The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers
NASA Astrophysics Data System (ADS)
Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.
2017-06-01
Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.
Communication: Strong laser alignment of solvent-solute aggregates in the gas-phase
NASA Astrophysics Data System (ADS)
Trippel, Sebastian; Wiese, Joss; Mullins, Terry; Küpper, Jochen
2018-03-01
Strong quasi-adiabatic laser alignment of the indole-water-dimer clusters, an amino-acid chromophore bound to a single water molecule through a hydrogen bond, was experimentally realized. The alignment was visualized through ion and electron imaging following strong-field ionization. Molecular-frame photoelectron angular distributions showed a clear suppression of the electron yield in the plane of the ionizing laser's polarization, which was analyzed as strong alignment of the molecular cluster with ⟨cos2 θ2D⟩ ≥ 0.9.
Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostedt, C.; Thomas, H.; Hoener, M.
The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less
Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping
Angel, Peggi M.; Caprioli, Richard M.
2013-01-01
Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809
Measurement of the first ionization potential of astatine by laser ionization spectroscopy
Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.
2013-01-01
The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620
Carrier-envelope phase-dependent ionization of Xe in intense, ultrafast (two-cycle) laser fields
NASA Astrophysics Data System (ADS)
Vasa, Parinda; Dharmadhikari, Aditya K.; Mathur, Deepak
2018-01-01
We report an experimental study that shows the dependence of the tunnel ionization of Xe by two-cycle, intense, near infrared light on the carrier-envelope-phase (CEP) of incident laser pulses. At low values of the optical field (E), the ionization yield is found to be maximum for cos-like pulses; the CEP dependence of the ion yield becomes stronger for higher charge states. At higher E-values, the CEP dependence either washes out or flips. A simple phenomenological model is used to confirm that our results fall within the ambit of the current understanding of ionization dynamics in strong, ultrashort optical fields. In the observed tunnel ionization of Xe, CEP effects appear to persist for longer, eight-cycle, pulses. Electron rescattering is observed to play a relatively unimportant role in the observed CEP dependence. These results provide fresh perspectives in the ionization mechanisms of multielectron systems in the few-cycle regime.
Visualizing and Steering Dissociative Frustrated Double Ionization of Hydrogen Molecules
NASA Astrophysics Data System (ADS)
Zhang, Wenbin; Yu, Zuqing; Gong, Xiaochun; Wang, Junping; Lu, Peifen; Li, Hui; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Zeng, Heping; He, Feng; Wu, Jian
2017-12-01
We experimentally visualize the dissociative frustrated double ionization of hydrogen molecules by using few-cycle laser pulses in a pump-probe scheme, in which process the tunneling ionized electron is recaptured by one of the outgoing nuclei of the breaking molecule. Three internuclear distances are recognized to enhance the dissociative frustrated double ionization of molecules at different instants after the first ionization step. The recapture of the electron can be further steered to one of the outgoing nuclei as desired by using phase-controlled two-color laser pulses. Both the experimental measurements and numerical simulations suggest that the Rydberg atom is favored to emit to the direction of the maximum of the asymmetric optical field. Our results on the one hand intuitively visualize the dissociative frustrated double ionization of molecules, and on the other hand open the possibility to selectively excite the heavy fragment ejected from a molecule.
NASA Astrophysics Data System (ADS)
Ali, Nisar; Bashir, Shazia; Umm-i-Kalsoom; Begum, Narjis; Hussain, Tousif
2017-07-01
Variation in surface morphology, chemical composition, crystallinity and hardness of laser irradiated silver in dry and wet ambient environments has been investigated. For this purpose, the silver targets were exposed for various number of laser pulses in ambient environment of air, ethanol and de-ionized water for various number of laser pulses i.e. 500, 1000, 1500 and 2000. Scanning Electron Microscope (SEM) was employed to investigate the surface morphology of irradiated silver. SEM analysis reveals significant surface variations for both dry and wet ambient environments. For lower number of pulses, in air environment significant mass removal is observed but in case of ethanol no significant change in surface morphology is observed. In case of de-ionized water small sized cavities are observed with formation of protrusions with spherical top ends. For higher number of laser pulses, refilling of cavities by shock liquefied material, globules and protrusions are observed in case of dry ablation. For ablation in ethanol porous and coarse periodic ripples are observed whereas, for de-ionized water increasing density of protrusions is observed for higher number of pulses. EDS analysis exhibits the variation in chemical composition along with an enhanced diffusion of oxygen under both ambient conditions. The crystal structure of the exposed targets were explored by X-ray Diffraction (XRD) technique. XRD results support the EDS results. Formation of Ag2O in case of air and ethanol whereas, Ag2O and Ag3O in case of de-ionized water confirms the diffusion of oxygen into the silver surface after irradiation. Vickers Hardness tester was employed to measure the hardness of laser treated targets. Enhanced hardness is observed after irradiation in both dry and wet ambient environments. Initial decrease and then increase in hardness is observed with increase in number of laser pulses in air environment. In case of ethanol, increase in number of laser pulses results in continuous decrease in hardness. Whereas, in case of de-ionized water hardness increases with increase in number of laser pulses.
Doping He droplets by laser ablation with a pulsed supersonic jet source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzy, R.; Singer, M.; Izadnia, S.
Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions).more » In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.« less
Application of Plasma Waveguides to High Energy Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milchberg, Howard M
2013-03-30
The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysismore » of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.« less
Stackable air-cooled heatsinks for diode lasers
NASA Astrophysics Data System (ADS)
Crum, T. R.; Harrison, J.; Srinivasan, R.; Miller, R. L.
2007-02-01
Micro-channel heatsink assemblies made from bonding multi-layered etched metal sheets are commercially available and are often used for removing the high waste heat loads generated by the operation of diode-laser bars. Typically, a diode-laser bar is bonded onto a micro-channel (also known as mini-channel) heatsink then stacked in an array to create compact high power diode-laser sources for a multitude of applications. Under normal operation, the diode-laser waste heat is removed by passing coolant (typically de-ionized water) through the channels of the heatsink. Because of this, the heatsink internal structure, including path length and overall channel size, is dictated by the liquid coolant properties. Due to the material characteristics of these conductive heatsinks, and the necessary electrically serial stacking geometry, there are several restrictions imparted on the coolant liquid to maintain performance and lifetime. Such systems require carefully monitored and conductive limited de-ionized water, as well as require stable pH levels, and suitable particle filtration. These required coolant systems are either stand alone, or heat exchangers are typically costly and heavy restricting certain applications where minimal weight to power ratios are desired. In this paper, we will baseline the existing water cooled Spectra-Physics Monsoon TM heatsink technology utilizing compressed air, and demonstrate a novel modular stackable heatsink concept for use with gaseous fluids that, in some applications may replace the existing commercially available water-cooled heatsink technology. We will explain the various benefits of utilizing air while maintaining mechanical form factors and packing densities. We will also show thermal-fluid modeling results and predictions as well as operational performance curves for efficiency and power and compare these data to the existing commercially available technology.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, R.H.
1994-12-27
In an AVLIS process, [sup 91]Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength [lambda][sub 1], selectively raising [sup 91]Zr atoms to an odd-parity E[sub 1] energy level in the range of 16000--19000 cm[sup [minus]1], are irradiated by a laser beam having a wavelength [lambda][sub 2] to raise the atoms from an E[sub l] level to an even-parity E[sub 2] energy level in the range of 35000--37000 cm[sup [minus]1] and are irradiated by a laser beam having a wavelength [lambda][sub 3] to cause a resonant transition of atoms from an E[sub 2] level to an autoionizing level above 53506 cm[sup [minus]1][lambda][sub 3] wavelengths of 5607, 6511 or 5756 [angstrom] will excite a zirconium atom from an E[sub 2] energy state of 36344 cm[sup [minus]1] to an autoionizing level; a [lambda][sub 3] wavelength of 5666 [angstrom] will cause an autoionizing transition from an E[sub 2] level of 36068 cm[sup [minus]1]; and a [lambda][sub 3] wavelength of 5662 [angstrom] will cause an ionizing resonance of an atom at an E[sub 2] level of 35904 cm[sup [minus]1]. 4 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasimov, A.K.; Tursunov, A.T.; Tukhlibaev, O.
Frequencies of the 4s{sup 2}S{sub 1/2}-np{sup 2}P{sub 1/2, 3/2} transitions are measured and the energies of high-lying P states, as well as the ionization energy of aluminum atoms, are determined by the method of two-step laser excitation and ionization of excited atoms of AlI by an electric field. 4 refs., 3 figs., 1 tab.
Zhong, Hongying; Fu, Jieying; Wang, Xiaoli; Zheng, Shi
2012-06-04
Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ=355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO(2) nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry. Copyright © 2012 Elsevier B.V. All rights reserved.
High-current fast electron beam propagation in a dielectric target.
Klimo, Ondrej; Tikhonchuk, V T; Debayle, A
2007-01-01
Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.
NASA Astrophysics Data System (ADS)
Monz, L.; Hohmann, R.; Kluge, H.-J.; Kunze, S.; Lantzsch, J.; Otten, E. W.; Passler, G.; Senne, P.; Stenner, J.; Stratmann, K.; Swendt, K.; Zimmer, K.; Herrmann, G.; Trautmann, N.; Walter, K.
1993-12-01
Environmental assessment in the wake of a nuclear accident requires the rapid determination of the radiotoxic isotopes 89Sr and 90Sr. Useful measurements must be able to detect 10 8 atoms in the presence of about 10 18 atoms of the stable, naturally occurring isotopes. This paper describes a new approach to this problem using resonance ionization spectroscopy in collinear geometry, combined with classical mass separation. After collection and chemical separation, the strontium from a sample is surface-ionized and the ions are accelerated to an energy of about 30 keV. Initially, a magnetic mass separator provides an isotopic selectivity of about 10 6. The ions are then neutralized by charge exchange and the resulting fast strontium atoms are selectively excited into high-lying atomic Rydberg states by narrow-band cw laser light in collinear geometry. The Rydberg atoms are then field-ionized and detected. Thus far, a total isotopic selectivity of S > 10 10 and an overall efficiency of ξ = 5 × 10 -6 have been achieved. The desired detection limit of 10 8 atoms 90Sr has been demonstrated with synthetic samples.
Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Hou-Yu; Hsu, Hsu Chen; Lu, I-Chung
2014-10-28
Matrix-assisted laser desorption ionization (MALDI) has been widely used in the mass analysis of biomolecules; however, there are a lot of debates about the ionization mechanisms. Previous studies have indicated that S{sub 1}-S{sub 1} annihilation might be a key process in the generation of primary ions. This study investigates S{sub 1}-S{sub 1} annihilation by examining the time-resolved fluorescence spectra of 12 matrices. No S{sub 1}-S{sub 1} annihilation was observed in six of these matrices (3-hydroxy-picolinic acid, 6-aza-2-thiothymine, 2,4-dihydroxy-acetophenone, 2,6-dihydroxy-acetophenone, 2,4,6-trihydroxy-acetophenone, and ferulic acid). We observed two matrix molecules reacting in an electronically excited state (S{sub 1}) in five of thesemore » matrices (2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxy-acetophenone, 2,3-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid), and S{sub 1}-S{sub 1} annihilation was a possible reaction. Among these five matrices, no S{sub 1}-S{sub 1} annihilation was observed for 2,3-dihydroxybenzoic acid in typical peak power region of nanosecond laser pulses in MALDI, but a very small value of reaction rate constant was observed only in the high peak power region. The excited-state lifetime of sinapinic acid was too short to determine whether the molecules reacted in an electronically excited state. No correlation was observed between the ion generation efficiency of MALDI and S{sub 1}-S{sub 1} annihilation. The results indicate that the proposal of S{sub 1}-S{sub 1} annihilation is unnecessary in MALDI and energy pooling model for MALDI ionization mechanism has to be modified.« less
NASA Astrophysics Data System (ADS)
Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong
2015-08-01
A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.
NASA Astrophysics Data System (ADS)
Allwood, D. A.; Dyer, P. E.
2000-11-01
Fundamental photophysical parameters have been determined for several molecules that are commonly used as matrices, e.g. ferulic acid, within matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fluorescence quantum efficiencies ( φqe), singlet decay rates ( kl), vibrationless ground-singlet transition energies and average fluorescence wavelengths have been obtained from solid and solution samples by quantitative optical measurements. This new data will assist in modelling calculations of MALDI processes and in highlighting desirable characteristics of MALDI matrices. φqe may be as high as 0.59 whilst the radiative decay rate ( kf) appears to be within the (0.8-4)×10 8 s -1 range. Interestingly, α-cyano-4-hydroxycinnamic acid (α-CHC) has a very low φqe and fast non-radiative decay rate which would imply a rapid and efficient thermalisation of electronic excitation. This is in keeping with observations that α-CHC exhibits low threshold fluences for ion detection and the low fluences at which α-CHC tends to fragment.
NASA Astrophysics Data System (ADS)
Wu, Si-Qing; Liu, Jin-Song; Wang, Sheng-Lie; Hu, Bing
2013-10-01
The generation of terahertz (THz) emission from air plasma induced by two-color femtosecond laser pulses is studied on the basis of a transient photocurrent model. While the gas is ionized by the two-color femtosecond laser-pulses composed of the fundamental and its second harmonic, a non-vanishing directional photoelectron current emerges, radiating a THz electromagnetic pulse. The gas ionization processes at three different laser-pulse energies are simulated, and the corresponding THz waveforms and spectra are plotted. The results demonstrate that, by keeping the laser-pulse width and the relative phase between two pulses invariant when the laser energy is at a moderate value, the emitted THz fields are significantly enhanced with a near-linear dependence on the optical energy.
Horká, Marie; Karásek, Pavel; Salplachta, Jiří; Růžička, Filip; Vykydalová, Marie; Kubesová, Anna; Dráb, Vladimír; Roth, Michal; Slais, Karel
2013-07-25
In this study, combination of capillary isoelectric focusing (CIEF) in tapered fused silica (FS) capillary with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is presented as an efficient approach for unambiguous identification of probiotic bacteria in real sample. For this purpose, bacteria within genus Lactobacillus were selected as model bioanalytes and cow's milk was selected as a biological sample. CIEF analysis of both the cultivated bacteria and the bacteria in the milk was optimized and isoelectric points characterizing the examined bacteria were subsequently determined independently of the bacterial sample origin. The use of tapered FS capillary significantly enhanced the separation capacity and efficiency of the CIEF analyses performed. In addition, the cell number injected into the tapered FS capillary was quantified and an excellent linearity of the calibration curves was achieved which enabled quantitative analysis of the bacteria by CIEF with UV detection. The minimum detectable number of bacterial cells was 2×10(6) mL(-1). Finally, cow's milk spiked with the selected bacterium was analyzed by CIEF in tapered FS capillary, the focused and detected bacterial cells were collected from the capillary, deposited onto the cultivation medium, and identified using MALDI-TOF MS afterward. Our results have revealed that the proposed procedure can be advantageously used for unambiguous identification of probiotic bacteria in a real sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Thongnoppakhun, Wanna; Jiemsup, Surasak; Yongkiettrakul, Suganya; Kanjanakorn, Chompunut; Limwongse, Chanin; Wilairat, Prapon; Vanasant, Anusorn; Rungroj, Nanyawan; Yenchitsomanus, Pa-Thai
2009-07-01
A number of common mutations in the hemoglobin beta (HBB) gene cause beta-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous beta-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers.
Isotopically selective two-photon ionization of aniline in supersonic beams
NASA Astrophysics Data System (ADS)
Leutwyler, S.; Even, U.
1981-08-01
Tunable laser two-photon ionization of aniline cooled in supersonic expansions combined with TOF mass spectrometry reveal an isotopic shift of the vibronic origin at 2938 Å (ππ ∗; 1B 2← 1A 1 transition). The shift (+4.6 cm -1) is smaller than the rotational bandwidth and would be unobservable by laser-induced fluorescence.
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.
Abdelhamid, Hani Nasser
2018-03-01
Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.
NASA Astrophysics Data System (ADS)
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald
2008-10-01
Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.
Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas
2014-01-01
This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.
NASA Astrophysics Data System (ADS)
Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan
2016-09-01
Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.
Real-time detection of hazardous materials in air
NASA Astrophysics Data System (ADS)
Schechter, Israel; Schroeder, Hartmut; Kompa, Karl L.
1994-03-01
A new detection system has been developed for real-time analysis of organic compounds in ambient air. It is based on multiphoton ionization by an unfocused laser beam in a single parallel-plate device. Thus, the ionization volume can be relatively large. The amount of laser created ions is determined quantitatively from the induced total voltage drop between the biased plates (Q equals (Delta) V(DOT)C). Mass information is obtained from computer analysis of the time-dependent signal. When a KrF laser (5 ev) is used, most of the organic compounds can be ionized in a two-photon process, but none of the standard components of atmospheric air are ionized by this process. Therefore, this instrument may be developed as a `sniffer' for organic materials. The method has been applied for benzene analysis in air. The detection limit is about 10 ppb. With a simple preconcentration technique the detection limit can be decreased to the sub-ppb range. Simple binary mixtures are also resolved.
Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Cheng, E-mail: huangcheng@swu.edu.cn; Zhong, Mingmin; Wu, Zhengmao
2016-07-28
We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2–1.5 × 10{sup 14} W/cm{sup 2} using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10{sup 14} W/cm{sup 2}) is also observed in the correlated electron momentum spectra for 1.2–1.4 × 10{sup 14} W/cm{sup 2}. However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI ismore » not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI.« less
Kinetics of plasma formation in sodium vapor excited by nanosecond resonant laser pulses
NASA Astrophysics Data System (ADS)
Mahmoud, M. A.; Gamal, Y. E. E.
2012-07-01
We have studied theoretically formation of molecular ion Na2 + and the atomic ion Na+ which are created in laser excited sodium vapor at the first resonance transition, 3S1/2-3P1/2. A set of rate equations, which describe the temporal variation of the electron energy distribution function (EEDF), the electron density, the population density of the excited states as well as the atomic Na+ and molecular ion Na2 +, are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities. The numerical calculations of the EEDF show that a deviation from the Maxwellian distribution due to the superelastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Hornbeck ionization processes for producing Na2 +, the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.
Delayed Ionization in Transition Metal Carbon Clusters
NASA Astrophysics Data System (ADS)
Kooi, S. E.; Castleman, A. W., Jr.
1997-03-01
Mass spectrometric studies of several single and binary transition metal carbon cluster systems, produced in a laser vaporization source, reveal several species that undergo delayed ionization. Pulsed extraction and blocking electric fields, in a time-of-flight mass spectrometer, allow the study of delayed ionization over a time window after excitation with a pulsed laser. In systems where metallocarbohedrenes (Met-Cars) are produced, the Met-Cars are the dominate delayed species. Delayed ionization of binary metal Met-Cars Ti_xM_yC_12 (M=Zr,Nb,Y; x+y=8) is dependent on the ratio of the two metals. Delayed behavior is investigated over a range of photoionization wavelengths and fluences. In order to determine the degree to which the delayed ionization is thermionic in character, the experimental data have been compared to Klots's model for thermionic emission from small particles.
O'Rourke, Matthew B; Raymond, Benjamin B A; Padula, Matthew P
2017-05-01
Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution. Graphical Abstract ᅟ.
An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum
NASA Astrophysics Data System (ADS)
Xu, Shi-zhen; Yao, Cai-zhen; Dou, Hong-qiang; Liao, Wei; Li, Xiao-yang; Ding, Ren-jie; Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong; Zu, Xiao-tao
2017-06-01
Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm2 and 2.1 J/cm2 were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Nora G.; Herrwerth, O.; Wirth, A.
2011-01-15
Single-shot carrier-envelope-phase (CEP) tagging is combined with a reaction mircoscope (REMI) to investigate CEP-dependent processes in atoms. Excellent experimental stability and data acquisition longevity are achieved. Using this approach, we study the CEP effects for nonsequential double ionization of argon in 4-fs laser fields at 750 nm and an intensity of 1.6x10{sup 14} W/cm{sup 2}. The Ar{sup 2+} ionization yield shows a pronounced CEP dependence which compares well with recent theoretical predictions employing quantitative rescattering theory [S. Micheau et al., Phys. Rev. A 79, 013417 (2009)]. Furthermore, we find strong CEP influences on the Ar{sup 2+} momentum spectra along themore » laser polarization axis.« less
Doern, Christopher D; Butler-Wu, Susan M
2016-11-01
The performance of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) for routine bacterial and yeast identification as well as direct-from-blood culture bottle identification has been thoroughly evaluated in the peer-reviewed literature. Microbiologists are now moving beyond these methods to apply MS to other areas of the diagnostic process. This review discusses the emergence of advanced matrix-assisted laser desorption ionization time-of-flight MS applications, including the identification of filamentous fungi and mycobacteria and the current and future state of antimicrobial resistance testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Shen, Qing; Yang, Mei; Li, Linqiu; Cheung, Hon-Yeung
2014-12-10
Phospholipids possess important physiological, structural and nutritional functions in biological systems. This study described a solid-phase extraction (SPE) method, employing graphene and titanium dioxide (G/TiO2) nanocomposite as sorbent, for the selective isolation and enrichment of phospholipids from avocado (Persea americana Mill.). Based on the principal that the phosphoryl group in the phospholipid can interact with TiO2 via a bridging bidentate mode, an optimum condition was established for SPE, and was successfully applied to prepare avocado samples. The extracts were monitored by matrix-assisted laser desorption ionization time-of-flight/tandem mass spectrometry (MALDI-TOF/MS) in both positive-ion and negative-ion modes. Results showed that phospholipids could be efficiently extracted in a clean manner by G/TiO2 based SPE. In addition, the signals of phospholipids were enhanced while the noise was reduced. Some minor peaks became more obvious. In conclusion, the nanocomposite material of G/TiO2 was proved to be a promising sorbent for selective separation of phospholipids from crude lipid extract. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Lamer, S; Jungblut, P R
2001-03-10
In theory, peptide mass fingerprinting by matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower microl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration.
NASA Astrophysics Data System (ADS)
Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko
2011-09-01
We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.
Gross, Jürgen H
2017-12-01
Basic poly(propylene glycols), commercially available under the trade name Jeffamine, are evaluated for their potential use as internal mass calibrants in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. Due to their basic amino endgroups Jeffamines are expected to deliver [M+H] + ions in higher yields than neutral poly(propylene glycols) or poly(ethylene glycols). Aiming at accurate mass measurements and molecular formula determinations by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry, four Jeffamines (M-600, M-2005, D-400, D-230) were thus compared. As a result, Jeffamine M-2005 is introduced as a new mass calibrant for positive-ion matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry in the range of m/z 200-1200 and the reference mass list is provided. While Jeffamine M-2005 is compatible with α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid, and 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile matrix, its use in combination with 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile provides best results due to low laser fluence requirements. Applications to PEG 300, PEG 600, the ionic liquid trihexyl(tetradecyl)-phosphonium tris(pentafluoroethyl)-trifluorophosphate, and [60]fullerene demonstrate mass accuracies of 2-5 ppm.
Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A
2011-05-15
In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone. Copyright © 2011 John Wiley & Sons, Ltd.
Poullain, Sonia Marggi; Chicharro, David V.; Rubio-Lago, Luis; García-Vela, Alberto
2017-01-01
Chemical reaction dynamics and, particularly, photodissociation in the gas phase are generally studied using pump–probe schemes where a first laser pulse induces the process under study and a second one detects the produced fragments. Providing an efficient detection of ro-vibrationally state-selected photofragments, the resonance enhanced multiphoton ionization (REMPI) technique is, without question, the most popular approach used for the probe step, while non-resonant multiphoton ionization (NRMPI) detection of the products is scarce. The main goal of this work is to test the sensitivity of the NRMPI technique to fragment vibrational distributions arising from molecular photodissociation processes. We revisit the well-known process of methyl iodide photodissociation in the A-band at around 280 nm, using the velocity-map imaging technique in conjunction with NRMPI of the methyl fragment. The detection wavelength, carefully selected to avoid any REMPI transition, was scanned between 325 and 335 nm seeking correlations between the different observables—the product vibrational, translational and angular distributions—and the excitation wavelength of the probe laser pulse. The experimental results have been discussed on the base of quantum dynamics calculations of photofragment vibrational populations carried out on available ab initio potential-energy surfaces using a four-dimensional model. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320907
NASA Technical Reports Server (NTRS)
Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.
2013-01-01
Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.
NASA Astrophysics Data System (ADS)
Orimo, Yuki; Sato, Takeshi; Scrinzi, Armin; Ishikawa, Kenichi L.
2018-02-01
We present a numerical implementation of the infinite-range exterior complex scaling [Scrinzi, Phys. Rev. A 81, 053845 (2010), 10.1103/PhysRevA.81.053845] as an efficient absorbing boundary to the time-dependent complete-active-space self-consistent field method [Sato, Ishikawa, Březinová, Lackner, Nagele, and Burgdörfer, Phys. Rev. A 94, 023405 (2016), 10.1103/PhysRevA.94.023405] for multielectron atoms subject to an intense laser pulse. We introduce Gauss-Laguerre-Radau quadrature points to construct discrete variable representation basis functions in the last radial finite element extending to infinity. This implementation is applied to strong-field ionization and high-harmonic generation in He, Be, and Ne atoms. It efficiently prevents unphysical reflection of photoelectron wave packets at the simulation boundary, enabling accurate simulations with substantially reduced computational cost, even under significant (≈50 % ) double ionization. For the case of a simulation of high-harmonic generation from Ne, for example, 80% cost reduction is achieved, compared to a mask-function absorption boundary.
Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim; ...
2018-02-20
Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jennifer L.; Day, Douglas A.; Elseberg, Tim
Mass spectrometry imaging is becoming an increasingly common analytical technique due to its ability to provide spatially resolved chemical information. In this paper, we report a novel imaging approach combining laser ablation with two mass spectrometric techniques, aerosol mass spectrometry and chemical ionization mass spectrometry, separately and in parallel. Both mass spectrometric methods provide the fast response, rapid data acquisition, low detection limits, and high-resolution peak separation desirable for imaging complex samples. Additionally, the two techniques provide complementary information with aerosol mass spectrometry providing near universal detection of all aerosol molecules and chemical ionization mass spectrometry with a heated inletmore » providing molecular-level detail of both gases and aerosols. The two techniques operate with atmospheric pressure interfaces and require no matrix addition for ionization, allowing for samples to be investigated in their native state under ambient pressure conditions. We demonstrate the ability of laser ablation-aerosol mass spectrometry-chemical ionization mass spectrometry (LA-AMS-CIMS) to create 2D images of both standard compounds and complex mixtures. Finally, the results suggest that LA-AMS-CIMS, particularly when combined with advanced data analysis methods, could have broad applications in mass spectrometry imaging applications.« less
Inversion of the resonance line of Sr/+/ produced by optically pumping Sr atoms
NASA Technical Reports Server (NTRS)
Green, W. R.; Falcone, R. W.
1978-01-01
A description is presented of an experiment which demonstrates the selective production of excited-state ions by an optical absorption from neutrals. An inversion on the resonance line of Sr(+) was produced by laser excitation of a two-electron transition, followed by ionization of one of the excited electrons by the same laser. A pulsed, mode-locked laser operating at 2680 A was used to excite atoms from the Sr ground level. The same laser then ionized the excited atoms. The 2680-A pump beam was generated by frequency doubling the output of a synchronously pumped mode-locked dye laser in a KDP crystal. It is pointed out that the reported results are significant for the construction of vacuum-ultraviolet and X-ray lasers. Many of the proposed methods for making such lasers depend on the selective production of excited-state ions.
USDA-ARS?s Scientific Manuscript database
We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis. STEC strains were induced to ...
USDA-ARS?s Scientific Manuscript database
RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...
Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt
NASA Astrophysics Data System (ADS)
Stöckl, C.; Boine-Frankenheim, O.; Geißel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Süß, W.; Hoffmann, D. H. H.
One of the main objectives of the experimental plasma physics activities at the Gesellschaft für Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stöckl et al. Energy Loss of Heavy Ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Süß et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geißel et al.
Ultrasound ionization of biomolecules.
Wu, Chen-I; Wang, Yi-Sheng; Chen, Nelson G; Wu, Chung-Yi; Chen, Chung-Hsuan
2010-09-15
To date, mass spectrometric analysis of biomolecules has been primarily performed with either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI). In this work, ultrasound produced by a simple piezoelectric device is shown as an alternative method for soft ionization of biomolecules. Precursor ions of proteins, saccharides and fatty acids showed little fragmentation. Cavitation is considered as a primary mechanism for the ionization of biomolecules. Copyright 2010 John Wiley & Sons, Ltd.
Generation of attosecond electron beams in relativistic ionization by short laser pulses
NASA Astrophysics Data System (ADS)
Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.
2018-03-01
Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.
Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.
2013-01-01
Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138
Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.
2016-01-01
Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170
Laser-driven relativistic electron beam interaction with solid dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.
2012-07-30
The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phasemore » shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.« less
NASA Astrophysics Data System (ADS)
Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.
2013-04-01
Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.
NASA Astrophysics Data System (ADS)
Daněk, J.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Willenberg, B.; Maurer, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Keller, U.
2018-06-01
We study strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation with elliptically polarized mid-IR laser pulses. Full three-dimensional photoelectron momentum distributions (PMDs) measured with velocity map imaging and tomographic reconstruction revealed an unexpected sharp ridge structure in the polarization plane (2018 Phys. Rev. A 97 013404). This thin line-shaped ridge structure for low-energy photoelectrons is correlated with the ellipticity-dependent asymmetry of the PMD along the beam propagation direction. The peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values when the sharp ridge fades away with increasing ellipticity. With classical trajectory Monte Carlo simulations and analytical analysis, we study the underlying physics of this feature. The underlying physics is based on the interplay between the lateral drift of the ionized electron, the laser magnetic field induced drift in the laser propagation direction, and Coulomb focusing. To apply our observations to emerging techniques relying on strong-field ionization processes, including time-resolved holography and molecular imaging, we present a detailed classical trajectory-based analysis of our observations. The analysis leads to the explanation of the fine structure of the ridge and its non-dipole behavior upon rescattering while introducing restrictions on the ellipticity. These restrictions as well as the ionization and recollision phases provide additional observables to gain information on the timing of the ionization and recollision process and non-dipole properties of the ionization process.
Ionization Efficiency in the Dayside Martian Upper Atmosphere
NASA Astrophysics Data System (ADS)
Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.
2018-04-01
Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.
Last, Isidore; Jortner, Joshua
2004-08-15
In this paper we present a theoretical and computational study of the energetics and temporal dynamics of Coulomb explosion of molecular clusters of deuterium (D2)n/2 (n = 480 - 7.6 x 10(4), cluster radius R0 = 13.1 - 70 A) in ultraintense laser fields (laser peak intensity I = 10(15) - 10(20)W cm(-2)). The energetics of Coulomb explosion was inferred from the dependence of the maximal energy EM and the average energy Eav of the product D+ ions on the laser intensity, the laser pulse shape, the cluster radius, and the laser frequency. Electron dynamics of outer cluster ionization and nuclear dynamics of Coulomb explosion were investigated by molecular dynamics simulations. Several distinct laser pulse shape envelopes, involving a rectangular field, a Gaussian field, and a truncated Gaussian field, were employed to determine the validity range of the cluster vertical ionization (CVI) approximation. The CVI predicts that Eav, EM proportional to R0(2) and that the energy distribution is P(E) proportional to E1/2. For a rectangular laser pulse the CVI conditions are satisfied when complete outer ionization is obtained, with the outer ionization time toi being shorter than both the pulse width and the cluster radius doubling time tau2. By increasing toi, due to the increase of R0 or the decrease of I, we have shown that the deviation of Eav from the corresponding CVI value (Eav(CVI)) is (Eav(CVI) - Eav)/Eav(CVI) approximately (toi/2.91tau2)2. The Gaussian pulses trigger outer ionization induced by adiabatic following of the laser field and of the cluster size, providing a pseudo-CVI behavior at sufficiently large laser fields. The energetics manifest the existence of a finite range of CVI size dependence, with the validity range for the applicability of the CVI being R0 < or = (R0)I, with (R0)I representing an intensity dependent boundary radius. Relating electron dynamics of outer ionization to nuclear dynamics for Coulomb explosion induced by a Gaussian pulse, the boundary radius (R0)I and the corresponding ion average energy (Eav)I were inferred from simulations and described in terms of an electrostatic model. Two independent estimates of (R0)I, which involve the cluster size where the CVI relation breaks down and the cluster size for the attainment of complete outer ionization, are in good agreement with each other, as well as with the electrostatic model for cluster barrier suppression. The relation (Eav)I proportional to (R0)I(2) provides the validity range of the pseudo-CVI domain for the cluster sizes and laser intensities, where the energetics of D+ ions produced by Coulomb explosion of (D)n clusters is optimized. The currently available experimental data [Madison et al., Phys. Plasmas 11, 1 (2004)] for the energetics of Coulomb explosion of (D)n clusters (Eav = 5 - 7 keV at I = 2 x 10(18) W cm(-2)), together with our simulation data, lead to the estimates of R0 = 51 - 60 A, which exceed the experimental estimate of R0 = 45 A. The predicted anisotropy of the D+ ion energies in the Coulomb explosion at I = 10(18) W cm(-2) is in accord with experiment. We also explored the laser frequency dependence of the energetics of Coulomb explosion in the range nu = 0.1 - 2.1 fs(-1) (lambda = 3000 - 140 nm), which can be rationalized in terms of the electrostatic model. (c) 2004 American Institute of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polevoi, A.V.; Matyuk, V.M.; Grigor'eva, G.A.
1987-07-01
The processes resulting in the intramolecular redistribution of energy in electronically excited S/sub ..pi pi..*/ states of dibenzyl ketone and benzil molecules have been investigated by laser mass spectrometry. The decisive role of dissociation under the conditions of the resonance stepwise photoionization of these molecules upon excitation by radiation with lambda = 266 nm has been demonstrated. The ionization potentials of the molecules and the appearance potentials of fragment ions from dibenzyl ketone and benzil have been determined on the basis of an analysis of photoionization efficiency curves.
Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee
2017-05-01
The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.
Kim, Shin Hye; Kim, Jeongkwon; Moon, Dae Won; Han, Sang Yun
2013-01-01
We report here that a commercial silicon-on-insulator (SOI) wafer offers an opportunity for laser desorption/ionization (LDI) of peptide molecules, which occurs directly from its flat surface without requiring special surface preparation. The LDI-on-SOI exhibits intact ionization of peptides with a good detection limit of lower than 20 fmol, of which the mass range is demonstrated up to insulin with citric acid additives. The LDI process most likely arises from laser-induced surface heating promoted by two-dimensional thermal confinement in the thin Si surface layer of the SOI wafer. As a consequence of the thermal process, the LDI-on-SOI method is also capable of creating post-source decay (PSD) of the resulting peptide LDI ions, which is suitable for peptide sequencing using conventional TOF/TOF mass spectrometry.
Cold Multiphoton Matrix Assisted Laser Desorption/Ionization (MALDI)
NASA Astrophysics Data System (ADS)
Harris, Peter; Cooke, William; Tracy, Eugene
2008-05-01
We present evidence of a cold multiphoton MALDI process occurring at a Room Temperature Ionic Liquid (RTIL)/metal interface. Our RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate, remains a stable liquid at room temperatures, even at pressures lower than 10-9 torr. We focus the 2^nd harmonic of a pulsed (2ns pulse length) Nd:YAG laser onto a gold grid coated with RTIL to generate a cold (narrow velocity spread) ion source with temporal resolution comparable to current MALDI ion sources. Unlike conventional MALDI, we believe multiphoton MALDI does not rely on collisional ionization within the ejection plume, and thus produces large signals at laser intensities just above threshold. Removing the collisional ionization process allow us to eject material from smaller regions of a sample, enhancing the suitability of multiphoton MALDI as an ion imaging technique.
NASA Astrophysics Data System (ADS)
Pan, Changji; Jiang, Lan; Wang, Qingsong; Sun, Jingya; Wang, Guoyan; Lu, Yongfeng
2018-05-01
The femtosecond (fs) laser is a powerful tool to study ultrafast plasma dynamics, especially electron relaxation in strong ionization of dielectrics. Herein, temporal-spatial evolution of femtosecond laser induced plasma in fused silica was investigated using a two-color pump-probe technique (i.e., 400 nm and 800 nm, respectively). We demonstrated that when ionized electron density is lower than the critical density, free electron relaxation time is inversely proportional to electron density, which can be explained by the electron-ion scattering regime. In addition, electron density evolution within plasma was analyzed in an early stage (first 800 fs) of the laser-material interaction.
Li, H; Mignolet, B; Wachter, G; Skruszewicz, S; Zherebtsov, S; Süssmann, F; Kessel, A; Trushin, S A; Kling, Nora G; Kübel, M; Ahn, B; Kim, D; Ben-Itzhak, I; Cocke, C L; Fennel, T; Tiggesbäumker, J; Meiwes-Broer, K-H; Lemell, C; Burgdörfer, J; Levine, R D; Remacle, F; Kling, M F
2015-03-27
Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.
ERIC Educational Resources Information Center
Rosado, Dale A., Jr.; Masterson, Tina S.; Masterson, Douglas S.
2011-01-01
Mass spectrometry (MS) has been gaining in popularity in recent years owing in large part to the development of soft-ionization techniques such as matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI). These soft-ionization techniques have opened up the field of MS analysis to biomolecules, polymers, and other high…
Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namba, S.; Hasegawa, N.; Kishimoto, M.
A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a stronglymore » coupled cluster nanoplasma with several eV was generated.« less
Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix
Hou, Junjie; Xie, Zhensheng; Xue, Peng; Cui, Ziyou; Chen, Xiulan; Li, Jing; Cai, Tanxi; Wu, Peng; Yang, Fuquan
2010-01-01
Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS. PMID:20339515
Schrader, Wolfgang; Panda, Saroj K; Brockmann, Klaus J; Benter, Thorsten
2008-07-01
We report on the successful application of the recently introduced atmospheric pressure laser ionization (APLI) method as a novel tool for the analysis of crude oil and its components. Using Fourier transform ion cyclotron resonance mass spectrometry, unambiguous determination of key compounds in this complex matrix with unprecedented sensitivity is presented.
ERIC Educational Resources Information Center
Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin
2011-01-01
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagnik, Gargey B.
The main goal of the presented research is development of nanoparticle based matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). This dissertation includes the application of previously developed data acquisition methods, development of novel sample preparation methods, application and comparison of novel nanoparticle matrices, and comparison of two nanoparticle matrix application methods for MALDI-MS and MALDI-MS imaging.
Coffee-ring effects in laser desorption/ionization mass spectrometry.
Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L
2013-03-05
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.
Quantum interference in laser-induced nonsequential double ionization
NASA Astrophysics Data System (ADS)
Quan, Wei; Hao, XiaoLei; Wang, YanLan; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Xiao, ZhiLei; Sun, RenPing; Lai, XuanYang; Hu, ShiLin; Liu, MingQing; Shu, Zheng; Wang, XiaoDong; Li, WeiDong; Becker, Wilhelm; Liu, XiaoJun; Chen, Jing
2017-09-01
Quantum interference plays an important role in various intense-laser-driven atomic phenomena, e.g., above-threshold ionization and high-order-harmonic generation, and provides a useful tool in ultrafast imaging of atomic and molecular structure and dynamics. However, it has eluded observation in nonsequential double ionization (NSDI), which serves as an ideal prototype to study electron-electron correlation. Thus far, NSDI usually could be well understood from a semiclassical perspective, where all quantum aspects have been ignored after the first electron has tunneled. Here we perform coincidence measurements for NSDI of xenon subject to laser pulses at 2400 nm. It is found that the intensity dependence of the asymmetry parameter between the yields in the second and fourth quadrants and those in the first and third quadrants of the electron-momentum-correlation distributions exhibits a peculiar fast oscillatory structure, which is beyond the scope of the semiclassical picture. Our theoretical analysis indicates that this oscillation can be attributed to interference between the contributions of different excited states in the recollision-excitation-with-subsequent-ionization channel. Our work demonstrates the significant role of quantum interference in NSDI and may create an additional pathway towards manipulation and imaging of the ultrafast atomic and molecular dynamics in intense laser fields.
Laser-induced fluorescence from N2(+) ions generated by a corona discharge in ambient air.
Konthasinghe, Kumarasiri; Fitzmorris, Kristin; Peiris, Manoj; Hopkins, Adam J; Petrak, Benjamin; Killinger, Dennis K; Muller, Andreas
2015-09-01
In this work, we present the measurement of laser-induced fluorescence from N2(+) ions via the B(2)Σu(+)-X(2)Σg(+) band system in the near-ultraviolet. The ions were generated continuously by a plasma glow discharge in low pressure N2 and by a corona discharge in ambient air. The fluorescence decay time was found to rapidly decrease with increasing pressure leading to an extrapolated decay rate of ≍10(10) s(-1) at atmospheric pressure. In spite of this quenching, we were able to observe laser induced fluorescence in ambient air by means of a time-gated spectral measurement. In the process of comparing the emission signal with that of N2 spontaneous Raman scattering, ion concentrations in ambient air of order 10(8-)10(10) cm(-3) were determined. With moderate increases in laser power and collection efficiency, ion concentrations of less than 10(6) cm(-3) may be measurable, potentially enabling applications in atmospheric standoff detection of ionizing radiation from hazardous radioactive sources.
Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, N.; Tomita, K.; Sugita, K.
2012-07-15
This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe lasermore » energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.« less
Double ionization of neon in elliptically polarized femtosecond laser fields
NASA Astrophysics Data System (ADS)
Kang, HuiPeng; Henrichs, Kevin; Wang, YanLan; Hao, XiaoLei; Eckart, Sebastian; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Liu, XiaoJun; Dörner, Reinhard
2018-06-01
We present a joint experimental and theoretical investigation of the correlated electron momentum spectra from strong-field double ionization of neon induced by elliptically polarized laser pulses. A significant asymmetry of the electron momentum distributions along the major polarization axis is reported. This asymmetry depends sensitively on the laser ellipticity. Using a three-dimensional semiclassical model, we attribute this asymmetry pattern to the ellipticity-dependent probability distributions of recollision time. Our work demonstrates that, by simply varying the ellipticity, the correlated electron emission can be two-dimensionally controlled and the recolliding electron trajectories can be steered on a subcycle time scale.
USDA-ARS?s Scientific Manuscript database
Ambient desorption ionization techniques, such as laser desorption with electrospray ionization assistance (ELDI), direct analysis in real time (DART) and desorption electrospray ionization (DESI) have been developed as alternatives to traditional mass spectrometric-based methods. Such techniques al...
Kubáček, Pavel; Prokeš, Lubomír; Pamreddy, Annapurna; Peña-Méndez, Eladia María; Conde, José Elias; Alberti, Milan; Havel, Josef
2018-05-30
Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. Many new As m P n ± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. LAS is an advantageous approach for the generation of new As m P n clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials. Copyright © 2018 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C. S.; Tripathi, V. K.
An intense machining laser beam, impinged on a gas jet target, causes space periodic ionization of the gas and heats the electrons. The nonuniform plasma pressure leads to atomic density redistribution. When, after a suitable time delay, a second more intense laser pulse is launched along the periodicity wave vector q-vector, a plasma density ripple n{sub q} is instantly created, leading to resonant third harmonic generation when q=4{omega}{sub p}{sup 2}/(3{omega}c{gamma}{sub 0}), where {omega}{sub p} is the plasma frequency, {omega} is the laser frequency, and {gamma}{sub 0} is the electron Lorentz factor. The third harmonic is produced through the beating ofmore » ponderomotive force induced second harmonic density oscillations and the quiver velocity of electrons at the fundamental. The relativistic mass nonlinearity plays no role in resonant coupling. The energy conversion efficiency scales as the square of plasma density and square of depth of density ripple, and is {approx}0.2% for normalized laser amplitude a{sub o}{approx}1 in a plasma of 1% critical density with 20% density ripple. The theory explains several features of a recent experiment.« less
He, Jia-xi; Zhou, Wei; Qiu, Hai-li; Yang, Guang-tao
2013-12-01
To investigate the non-ionizing radiation hazards from physiotherapy equipment in medical institutions and to explore feasible control measures for occupational diseases. On-site measurement and assessment of ultra-high-frequency radiation, high-frequency electromagnetic field, microwave radiation, and laser radiation were carried out in 16 medical institutions using the methods in the Measurement of Physical Agents in Workplace (GBZ/T189-2007). All the investigated medical institutions failed to take effective protective measures against non-ionizing radiation. Of the 17 ultra-short wave therapy apparatus, 70.6%, 47.1%, and 17.64% had a safe intensity of ultra-high-frequency radiation on the head, chest, and abdomen, respectively. Of the 4 external high-frequency thermotherapy apparatus, 100%, 75%, and 75%had a safe intensity of high-frequency electromagnetic field on the head, chest, and abdomen, respectively. In addition, the intensities of microwave radiation and laser radiation produced by the 18 microwave therapy apparatus and 12 laser therapeutic apparatus met national health standards. There are non-ionizing radiation hazards from physiotherapy equipment in medical institutions, and effective prevention and control measures are necessary.
Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi
2008-08-01
We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.
Busuladzić, M; Gazibegović-Busuladzić, A; Milosević, D B; Becker, W
2008-05-23
The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N2, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O2, rescattering is absent in the same situation.
Optimal control of the strong-field ionization of silver clusters in helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truong, N. X.; Goede, S.; Przystawik, A.
Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to themore » cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.« less
NASA Astrophysics Data System (ADS)
López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.
2017-07-01
There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.
Characteristics of soft x-ray spectra from ultra-fast micro-capillary discharge plasmas
NASA Astrophysics Data System (ADS)
Li, Jing; Avaria, Gonzalo; Shlyaptsev, Vyacheslav; Tomasel, Fernando; Grisham, Michael; Dawson, Quincy; Rocca, Jorge; NSF CenterExtreme Ultraviolet Science; Technology Collaboration
2013-10-01
The efficient generation of high aspect ratio (e.g. 300:1) plasma columns ionized to very high degrees of ionization (e.g. Ni-like Xenon) by an ultrafast current pulses of moderate amplitude in micro-capillary channels is of interest for fundamental plasma studies and for applications such as the generation of discharge-pumped soft x-ray lasers. Spectra and simulations for plasmas generated in 500 um alumina capillary discharges driven by 35-40 kA current pulses with 4 ns rise time were obtained in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls and Si (from injected SiH4) are ionized to the H-like and He-like stages. He-like spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed and modeled. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d(3/2, 3/2)J=0 to the 3d94p(5/2, 3/2)J=1 and to 3d94p(3/2, 1/2)J=1 are observed at gas pressures up to 2.0 Torr. Work supported by NSF Award PHY-1004295.
Li, F; Hua, J F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q
2013-07-05
The production of ultrabright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional particle-in-cell simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is reduced, and the injection is localized along the propagation axis of the wake. This minimizes both the initial thermal emittance and the emittance growth due to transverse phase mixing. Simulations show that ultrashort (~8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes, respectively, and a brightness of 1.7×10(19) A rad(-2) m(-2) can be obtained for realistic parameters.
NASA Astrophysics Data System (ADS)
Chen, Kuan-Yu; Yang, Thomas C.; Chang, Sarah Y.
2012-06-01
A novel method for the determination of macrolide antibiotics using dispersive liquid-liquid microextraction coupled to surface-assisted laser desorption/ionization mass spectrometric detection was developed. Acetone and dichloromethane were used as the disperser solvent and extraction solvent, respectively. A mixture of extraction solvent and disperser solvent were rapidly injected into a 1.0 mL aqueous sample to form a cloudy solution. After the extraction, macrolide antibiotics were detected using surface-assisted laser desorption/ionization mass spectrometry (SALDI/MS) with colloidal silver as the matrix. Under optimum conditions, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 2, 3, 3, and 2 nM for erythromycin (ERY), spiramycin (SPI), tilmicosin (TILM), and tylosin (TYL), respectively. This developed method was successfully applied to the determination of macrolide antibiotics in human urine samples.
Inertial Confinement Fusion quarterly report, January-March 1998, volume 8, number 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruer, W
1998-03-31
The coupling of laser light with plasmas is one of the key physics issues for the use of high-power lasers for inertial fusion, high-energy-density physics, and scientific stockpile stewardship. The coupling physics is extremely rich and challenging, particularly in the large plasmas to be accessed on the National Ignition Facility (NIF). The coupling mechanisms span the gamut from classical inverse bremsstrahlung absorption to a variety of nonlinear optical processes. These include stimulated Raman scattering (SRS) from electron plasma waves, stimulated Brillouin scattering (SBS) from ion sound waves, resonant decay into electron plasma and ion sound waves, and laser beam filamentation.more » These processes depend on laser intensity and produce effects such as changes in the efficiency and location of the energy deposition or generation of a component of very energetic electrons, which can preheat capsules. Coupling physics issues have an extremely high leverage. The coupling models are clearly very important ingredients for detailed calculations of laser-irradiated target behavior. Improved understanding and models enable a more efficient use of laser facilities, which becomes even more important as these facilities become larger and more expensive. Advances in the understanding also allow a more timely and cost-effective identification of new applications of high-power lasers, such as for generation of high-temperature hohlraums and compact x-ray sources, or for discovery of advanced fusion schemes. Finally, the interaction of intense electromagnetic waves with ionized media is a fundamental topic of interest to numerous areas of applied science and is an excellent test bed for advancing plasma science and computational modeling of complex phenomena. This issue of the ICF Quarterly Report is dedicated to laser--plasma interactions. The eight articles present a cross section of the broad progress in understanding the key interaction issues, such as laser beam bending, spraying, and scattering, as well as scaling the Nova results to NIF.« less
Jiang, Ping; Lucy, Charles A
2015-10-15
Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. Copyright © 2015 Elsevier B.V. All rights reserved.
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
Fein, J. R.; Holloway, J. P.; Trantham, M. R.; ...
2017-03-20
Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fein, J. R.; Holloway, J. P.; Trantham, M. R.
Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less
NASA Astrophysics Data System (ADS)
Adamovich, Igor
2006-10-01
The paper presents results of three experiments using high voltage, short pulse duration, high repetition rate discharge plasmas. High electric field during the pulse (E/N˜500-1000 Td) allows efficient ionization and molecular dissociation. Between the pulses, additional energy can be coupled to the decaying plasma using a DC field set below the breakdown threshold. While the DC sustainer discharge adds 90-95% of all the power to the flow, it does not produce any additional ionization. The pulser and the sustainer discharges are fully overlapped in space. Low duty cycle of the pulsed ionizer, ˜1/1000, allows sustaining diffuse and uniform pulser-sustainer plasmas at high pressures and power loadings. The first experiment using the pulsed discharge is ignition of premixed hydrocarbon-air flows, which occurs at low pulsed discharge powers, ˜100 W, and very low plasma temperatures, 100-200^0 C. The second experiment is Lorentz force acceleration of low-temperature supersonic flows. The pulsed discharge was used to generate electrical conductivity in M=3 nitrogen and air flows, while the sustainer discharge produced transverse current in the presence of magnetic field of B=1.5 T. Retarding Lorentz force applied to the flow produced a static pressure increase of up to 15-20%, while accelerating force of the same magnitude resulted in static pressure rise of up to 7-8%, i.e. a factor of two smaller. The third experiment is singlet delta oxygen (SDO) generation in a high-pressure pulser-sustainer discharge. SDO yield was inferred from the integrated intensity of SDO infrared emission spectra calibrated using a blackbody source. The measured yield exceeds the laser threshold yield by about a factor of three, which makes possible achieving positive gain in the laser cavity. The highest gain measured so far is 0.03%/cm.
NASA Astrophysics Data System (ADS)
Hanna, S. J.; Campuzano-Jost, P.; Simpson, E. A.; Robb, D. B.; Burak, I.; Blades, M. W.; Hepburn, J. W.; Bertram, A. K.
2009-01-01
A laser based vacuum ultraviolet (VUV) light source using resonance enhanced four wave difference mixing in xenon gas was developed for near threshold ionization of organics in atmospheric aerosol particles. The source delivers high intensity pulses of VUV light (in the range of 1010 to 1013 photons/pulse depending on wavelength, 5 ns FWHM) with a continuously tunable wavelength from 122 nm (10.2 eV) to 168 nm (7.4 eV)E The setup allows for tight (<1 mm2) and precise focusing ([mu]rad pointing angle adjustability), attributes required for single particle detection. The generated VUV is separated from the pump wavelengths by a custom monochromator which ensures high spectral purity and minimizes absorptive losses. The performance of the source was characterized using organic molecules in the gas phase and optimal working conditions are reported. In the gas phase measurements, photoionization efficiency (PIE) curves were collected for seven different organic species with ionization energies spanning the full wavelength range of the VUV source. The measured appearance energies are very close to the literature values of the ionization energies for all seven species. The effectiveness of the source for single particle studies was demonstrated by analysis of individual caffeine aerosols vaporized by a pulsed CO2 laser in an ion trap mass spectrometer. Mass spectra from single particles down to 300 nm in diameter were collected. Excellent signal to noise characteristics for these small particles give a caffeine detection limit of 8 × 105 molecules which is equivalent to a single 75 nm aerosol, or approximately 1.5% of a 300 nm particleE The appearance energy of caffeine originating from the aerosol was also measured and found to be 7.91 ± 0.05 eV, in good agreement with literature values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Qianguang; Department of Physics, Xiaogan University, Xiaogan 432000; Hong Weiyi
2010-05-15
The high harmonic generation from asymmetric molecules with an {omega}+2{omega}/3 multicycle bichromatic laser pulse has been investigated. It is shown that the ionization asymmetry in consecutive half optical cycles for asymmetric molecules is further enhanced since the 2{omega}/3 control laser pulse further enhances the amplitude of the ionization peak at the center of the laser pulse. The 2{omega}/3 control laser pulse also significantly enlarges the difference of the photon energies emitted from the ejected electron in the half optical cycle at the central laser pulse and its next half optical cycle. In addition, a broadband supercontinuum is produced in themore » plateau of the spectrum, from which an isolated 90-as pulse can be directly obtained.« less
Sequential Double lonization: The Timing of Release
NASA Astrophysics Data System (ADS)
Pfeiffer, A.
2011-05-01
The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. In collaboration with C. Cirelli and M. Smolarski, Physics Department, ETH Zurich, 8093 Zurich, Switzerland; R. Doerner, Institut fiir Kernphysik, Johann Wolfgang Goethe Universitat, 60438 Frankfurt am Main, Germany; and U. Keller, ETH Zurich.
NASA Astrophysics Data System (ADS)
Tench, R. J.; Balooch, M.; Bernardez, L.; Allen, Mike J.; Siekhaus, W. J.; Olander, D. R.; Wang, W.
1990-04-01
Laser ionization time-of-flight mass analysis (LIMA) used pulses (5ns) of a frequency-quadrupled Nd-YAG laser (266 nm) focused onto spots of 4 to 100 microns diameter to ablate material, and a reflectron time of flight tube to mass-analyze the plume. The observed mass spectra for Si, Pt, SiC, and UO 2 varied in the distribution of ablation products among atoms, molecules and clusters, depending on laser power density and target material. Cleaved surfaces of highly oriented pyrolytic graphite (HOPG) positioned at room temperature either 10 cm away from materials ablated at 10(exp -5) Torr by 1 to 3 excimer laser (308 nm) pulses of 20 ns duration or 1 m away from materials vaporized at 10(exp -8) Torr by 10 Nd-Glass laser pulses of 1 ms duration were analyzed by Scanning Tunneling Microscopy (STM) in air with angstrom resolution. Clusters up to 30 A in diameter were observed.
Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields
NASA Astrophysics Data System (ADS)
Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian
2018-04-01
Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
NASA Astrophysics Data System (ADS)
Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.
2018-01-01
We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.
Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan
2005-02-01
A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.
Hou, Jian; Chen, Suming; Cao, Changyan; Liu, Huihui; Xiong, Caiqiao; Zhang, Ning; He, Qing; Song, Weiguo; Nie, Zongxiu
2016-08-01
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is a high-throughput method to achieve fast and accurate identification of lead (Pb) exposure, but is seldom used because of low ionization efficiency and insufficient sensitivity. Nanomaterials applied in MS are a promising technique to overcome the obstacles of MALDI. Flowerlike MgO nanostructures are applied for highly sensitive lead profiling in real samples. They can be used in two ways: (a) MgO is mixed with N-naphthylethylenediamine dihydrochloride (NEDC) as a novel matrix MgO/NEDC; (b) MgO is applied as an absorbent to enrich Pb ions in very dilute solution. The signal intensities of lead by MgO/NEDC were ten times higher than the NEDC matrix. It also shows superior anti-interference ability when analyzing 10 μmol/L Pb ions in the presence of organic substances or interfering metal ions. By applying MgO as adsorbent, the LOD of lead before enrichment is 1 nmol/L. Blood lead test can be achieved using this enrichment process. Besides, MgO can play the role of internal standard to achieve quantitative analysis. Flowerlike MgO nanostructures were applied for highly sensitive lead profiling in real samples. The method is helpful to prevent Pb contamination in a wide range. Further, the combination of MgO with MALDI MS could inspire more nanomaterials being applied in highly sensitive profiling of pollutants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88
NASA Astrophysics Data System (ADS)
Wang, Zhijiang; Zhang, Zhiming
1989-03-01
The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4 * Mixing Frequency Generation of 271.0 - 291.5 nm in β - BaB2O4 * Low Temperature Absorption Steps Near Ultraviolet Intrinsic Edge in Beta Barium Metaborate * The Growth and Properties of BaTiO3 Crystals * High-order Phenomena Accompanied with Self-pumped Phase Conjugation in BaTiO * Growth and Laser Damage Estimation of Potassium Dihydrogen Phosphate Crystals for Laser Fusion * Noncritically Phase-matched KTP for Diode-pumped Lasers (400-700 nm) * Potassium Titanyl Phosphate (KTP): Properties and New Applications * A Kind of New Defect in KTP Crystal and its SHG Enhanced Effect * Nucleation and Growth of the Non-linear Optical Crystal Potassium Pentaborate Tetrahydrate * Quasi-periodic Oscillations in Photoinduced Conical Light Scattering from LiNbO3 : Fe Crystals * Laser Excited Photoreflectance of GaxIn1-xAs/InP Multiple Quantum Wells * Growth, Spectroscopic Properties and Applications of Doped LiNbO3 Crystals * Photorefractive and Photovoltaic Effect in Doped LiNbO3 * Recent Advances in Photorefractive Nonlinear Optics * Study on the Doubling-frequency and Anti-photorefractive Property of Heavily Magnesium-doped Lithium-rich Lithium Niobate Crystals * A New Technique for Increasing Two-wave Mixing Gain in Photorefractive Bi12SiO20 Crystals * Experimental Proof: There Existing Another Mechanism of Photorefractive Index in Crystal Ce-SBN * Effect of Crystal Annealing on Holographic Recording in Bismuth Silicon Oxide * Two Wave Coupling in KNbO3 Photorefractive Crystal * Photorefractive Effects in Nd-Doped Ferroelectric (KxNa1-x)0.4-(SryBa1-y)0.8 Nb2O6 Single Crystal * High Pressure Raman Spectra and the Effect of Pressure to the Ferroelastic Phase Transition in LnP5O15 * Time-delay Four-wave Mixing with Incoherent Light in Absorption Bands Treated as a Multi-level System * Pulsed Laser Induced Dislocation Structure in Lithium Fluoride Single Crystals * Laser Spectroscopy * Nonclassical Radiation from Single-atom Oscillators * Laser Spectroscopic Studies of Molecules in Highly Excited Vibrational State * Investigation of the Stark Effect in Xenon Autoionizing Rydberg Series with the Use of Coherent Tunable XUV Radiation * Laser Spectroscopy of Autoionising 5 dnf J = 4.5 Rydberg Series of Ba I * Resonance Photoionization Spectroscopy of Atoms: Autoionization and Highly Excited States of Kr and U * Stark Spectra of Strontium and Calcium Atoms * Observation of Bidirectional Stimulated Radiation at 330 nm, 364 nm and 718 nm with 660 nm Laser Pumping in Sodium Vapour * Study of Molecular Rydberg States and their Discriminations in Na2 * The Measurement of the High Excited Spectra of Samarium by using Stepwise Laser Excitation Method * Product Analysis in the Reaction of the Two-photon Excited Xe(5p56p) States with Freons * Photoionization Spectra of Ca and Sr Atoms above the Classical Field-ionization Threshold * Effect of Medium Background on the Hydrogen Spectrum * Photoemission and Photoelectron Spectra from Autoionizing Atoms in Strong Laser Field * Natural Radiative Lifetime Measurements of High-lying States of Samarium * Two-step Laser Excitation of nf Rydberg States in Neutral Al and Observation of Stark Effect * Measurements of Excited Spectra of the Refractory Metal Elements using Discharge Synchronized with the Laser Pulse * Multiphoton Ionization of Atomic Lead at 1.06μ * Kinetic Processes in the Electron-beam pumped KrF Laser * Laser-induced Fluorescence of Zn2 Excimer * Calculation of Transition Intensity in Heteronuclear Dimer NaK: Comparison with Experiment * Laser-induced Fluorescence of CCl2 Carbene * Study of Multiphoton Ionization Spectrum of Benzene and Two-photon Absorption Cross Section * Dicke Narrowing of N2O Linewidth Perturbed by N2 at 10 μm Band * Polyatomic Molecular Ions Studied by Laser Photodissociation Spectroscopy * Transverse-optically Pumped Ultraviolet S2 Laser * Multiphoton Ionization of Propanal by High Power Laser * UV MPI Mass Spectroscopy and Dynamics of Photodissociation of SO2 * Multiphoton Ionization-fragmentation Patterns of Ethylamine and Dimethylamine Isomers * Cars Measurements of SF6 Pumped by a CO2 Laser Pulse * Angular Dependence of Phase Conjugation of CO2 Laser on SF6 Gas * Resolution of Stretching-vibrational and Translational Raman Bands of Liquid Water by Means of Polarization Four-photon Spectroscopy * Laser-produced Plasma as an Effective Source for X-Ray Spectroscopy * Rotational Structure of the Low Lying Electronic States of Samarium Monoxide * Effects of Poling and Stretching on Second-harmonic Generation in Amorphous Vinylidene Cyanide/Vinyl Acetate Copolymer * Laser-induced Spectroscopy of Cardiovascular Tissues * Laser-excited Malignancy Autofluorescence for Tumour Malignancy Investigation and its Origin * A Study on Several Hematoporphyrin Derivatives by Time-resolved Spectroscopy * Research on Strong Field Processes with a Subpicosecond 400 GW Ultraviolet Source * Growth, Decay and Quenching of Stimulated Raman Scattering in Transparent Liquid Droplets * Layer Condensed Ammonia Studied by Photoacoustic Spectroscopy * High Efficiency Raman Conversion of XeCl Laser Radiation in Lead Vapor * Combined Effect of Stimulated Scattering and Phase Modulation on Generation of Supercontinum * Resonant Multiwave Mixing in Sodium Vapor * High Pressure Brillouin Scattering in Liquid Toluene * Optical Nonlinearities and Bistability in Gold Colloid * Sum-frequency Generation for Surface Vibrational Spectroscopy * Optical Studies of Molecule/Surface Interactions * Optical Second Harmonic Generation with Coupled Surface Plasmons from a Multi-layer Silver/Quartz Grating * Evidence of Silver Cluster and its Role in Surface Enhanced Raman Scattering (SERS) * Study on Cold-evaporated Silver Surfaces with Second-harmonic-generation * Study of Optical Second-harmonic-generation at Metal Surface with Polarization States * Spectroscopic Studies of J-Aggregates of Pseudoisocyanine in Molecular Monolayers in the Range 300 to 20 K * Study of Polymerization of Langmuir-Blodgett Monolayer by Surface Enhanced Raman Scattering * Dynamics of Laser-induced Etching of Si(III) Surface of Chlorine * Fourier Transform Heterodyne Spectroscopy of Liquid Interfaces * Generation of High Power UV Femtosecond Pulses * Femtosecond Photon Echoes * Transition Radiation of Femtosecond Optical Pulses * Observation of DFWN in a Saturable Absorber inside the CPM Ring Dye Laser Cavity * Study on the Induced Spectral Superbroadening of Ultrafast Laser Pulse in a Nonlinear Medium * Laser Cooling and Trapping of Atoms * Femtosecond Absorption Spectroscopy of Primary Processes in Bacterial Photosynthesis Reaction Centers * Observation of the Motion of Slow Atoms in a Standing Wave Field * The Interrelation between the Optical Properties and the MBE Growth Control of Quantum Well Structures * Ionic Excimers * Optical SHG Study on Polymerization of Langmuir-Blodgett Molecular Layers * Weak Localization of Light * Statistical Fragmentation Patterns of Metastable Ion: Comparison with Experiment * Oxygeneration Reaction of Cerium with XeCl Laser * Measurement of Verdet Coefficient and Magneto-optic Spectroscopy in terms of Beats * Study on Rhodamine 6G/Xylene and Red B Laser Dye Mixture System * Ultranarrow Absorption Resonances of Cold Particles and their Application in Spectroscopy and Optical Frequency Standards * The Dynamics of Ion Clouds in Paul Traps: Implications for Frequency Standard Applications * Frequency Stability Measurement of Zeeman Stabilized He-Ne Laser * Multi-wavelength CW He-Ne Laser and its Frequency Stabilization * Efficient Isotope Separation using Semiconductor Lasers * Multi-beam Circularly Polarized Holography * Ring Laser Opticity Meter * Improved Rademacher Functions and Rademacher Transform * Note
Ionization waves of arbitrary velocity driven by a flying focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palastro, J. P.; Turnbull, D.; Bahk, S. -W.
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. For this study, we present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionizationmore » wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.« less
Ionization waves of arbitrary velocity driven by a flying focus
Palastro, J. P.; Turnbull, D.; Bahk, S. -W.; ...
2018-03-01
A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. For this study, we present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionizationmore » wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation, and THz generation.« less
Effects of target heating on experiments using Kα and Kβ diagnostics.
Palmeri, P; Boutoux, G; Batani, D; Quinet, P
2015-09-01
We describe the impact of heating and ionization on emission from the target of Kα and Kβ radiation induced by the propagation of hot electrons generated by laser-matter interaction. We consider copper as a test case and, starting from basic principles, we calculate the changes in emission wavelength, ionization cross section, and fluorescence yield as Cu is progressively ionized. We have finally considered the more realistic case when hot electrons have a distribution of energies with average energies of 50 and 500 keV (representative respectively of "shock ignition" and of "fast ignition" experiments) and in which the ions are distributed according to ionization equilibrium. In addition, by confronting our theoretical calculations with existing data, we demonstrate that this study offers a generic theoretical background for temperature diagnostics in laser-plasma interactions.
Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi
2016-05-23
Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Vikrant, E-mail: vikrant.saxena@desy.de; Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg; Ziaja, Beata, E-mail: ziaja@mail.desy.de
The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundred femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons, and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasmas. The model equations are derived by taking the moments ofmore » the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case, expanding spherical Ar nanoplasma, are obtained. With this model, we complete the two-step approach to simulate x-ray created nanoplasmas, enabling computationally efficient simulations of their picosecond dynamics. Moreover, the hydrodynamic framework including collisional processes can be easily extended for other source terms and then applied to follow relaxation of any finite non-isothermal multi-component nanoplasma with its components relaxed into local thermodynamic equilibrium.« less
Leipert, Jan; Treitz, Christian; Leippe, Matthias; Tholey, Andreas
2017-12-01
N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. Graphical abstract ᅟ.
NASA Astrophysics Data System (ADS)
Leipert, Jan; Treitz, Christian; Leippe, Matthias; Tholey, Andreas
2017-12-01
N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. [Figure not available: see fulltext.
Single and double multiphoton ionization of Li and Be atoms by strong laser fields
NASA Astrophysics Data System (ADS)
Telnov, Dmitry; Heslar, John; Chu, Shih-I.
2011-05-01
The time-dependent density functional theory with self-interaction correction and proper asymptotic long-range potential is extended for nonperturbative treatment of multiphoton single and double ionization of Li and Be atoms by strong 800 nm laser fields. We make use of the time-dependent Krieger-Li-Iafrate (TDKLI) exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. However, we have found that the discontinuity of the TDKLI potential is not sufficient to reproduce the characteristic feature of double ionization. This may happen because the discontinuity of the TDKLI potential is related to the spin particle numbers only and not to the total particle number. Introducing a discontinuity with respect to the total particle number to the exchange-correlation potential, we were able to obtain the knee structure in the intensity dependence of the double ionization probability of Be. This work was partially supported by DOE and NSF and by NSC-Taiwan.