Science.gov

Sample records for laser ionization mass

  1. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide.

  2. Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets

    PubMed Central

    Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.

    2008-01-01

    We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311

  3. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  5. Quantitative matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Roder, Heinrich; Hunsucker, Stephen W.

    2008-01-01

    This review summarizes the essential characteristics of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS), especially as they relate to its applications in quantitative analysis. Approaches to quantification by MALDI-TOF MS are presented and published applications are critically reviewed. PMID:19106161

  6. Infrared laser-assisted desorption electrospray ionization mass spectrometry.

    PubMed

    Rezenom, Yohannes H; Dong, Jianan; Murray, Kermit K

    2008-02-01

    We have used an infrared laser for desorption of material and ionization by interaction with electrosprayed solvent. Infrared laser-assisted desorption electrospray ionization (IR LADESI) mass spectrometry was used for the direct analysis of water-containing samples under ambient conditions. An ion trap mass spectrometer was modified to include a pulsed Er:YAG laser at 2.94 microm wavelength coupled into a germanium oxide optical fiber for desorption at atmospheric pressure and a nanoelectrospray source for ionization. Analytes in aqueous solution were placed on a stainless steel target and irradiated with the pulsed IR laser. Material desorbed and ablated from the target was ionized by a continuous stream of charged droplets from the electrosprayed solvent. Peptide and protein samples analyzed using this method yield mass spectra similar to those obtained by conventional electrospray. Blood and urine were analyzed without sample pretreatment to demonstrate the capability of IR LADESI for direct analysis of biological fluids. Pharmaceutical products were also directly analyzed. Finally, the role of water as a matrix in the IR LADESI process is discussed.

  7. Intracellular protein mass spectroscopy using mid-infrared laser ionization

    NASA Astrophysics Data System (ADS)

    Awazu, K.; Suzuki, S.

    2007-07-01

    Large-scale analysis of proteins, which can be regarded as functional biomolecule, assumes an important role in the life science. A MALDI using an ultraviolet laser (UV-MALDI) is one of ionization methods without fragmentation and has achieved conformation analysis of proteins. Recently, protein analysis has shifted from conformation analysis to functional and direct one that reserves posttranslational modifications such as the sugar chain addition and phosphorylation. We have proposed a MALDI using a mid-infrared tunable laser (IR-MALDI) as a new ionization method. IR-MALDI is promising because most biomolecules have a specific absorption in mid-infrared range, and IR-MALDI is expected to offer; (1) use of various matrices, (2) use of biomolecules such as water and lipid as the matrix, and (3) super-soft ionization. First, we evaluated the wavelength dependence of ionization of different matrices using a difference frequency generation (DFG) laser, which can tune the wavelength within a range from 5.5 to 10.0 μm. As results, ionization was specifically occurred at 5.8 μm which the C=O vibration stretching bond in matrix material and mass spectrum was observed. Next, protein mass spectrum was observed in the culture cells, MIN6, which secrete insulin, without the conventional cell-preparation processes. We demonstrate that the IR-MALDI has an advantage over the conventional method (UV-MALDI) in direct analysis of intracellular proteins.

  8. Resonant Laser Ionization Mass Spectrometry: An Alternative to AMS?

    SciTech Connect

    Wendt, Klaus; Trautmann, N.; Bushaw, Bruce A.

    2001-02-15

    Resonant laser ionization mass spectrometry (RIMS) has developed into a versatile experimental method particularly concerning applications for highly selective ultratrace analaysis. Apart from providing nearly complete isobaric suspression and high overall efficiency, the possibolility for combining optical isotpic selectivity with that of hte mass spectrometer leads to remarkable specifications. The widespread analytical potential and applicability of different techniques based on resonant laser ionization is demonstrated in investigations on stable and radioactive ultratrace isotopes with the focus on applications which require high selectivity, concerning, e.g., the noble gas isotopes, 81,85KR, PU isotopes, 89,90SR, 99Tc and 41Ca. Selective ultratrace determination of these radioisotopes proved access to a variety of fundamental research problems in environmental sciences, geo- and cosmochemistry, archaeology, and biomedicine, which previously were often an exclusive domain for accelerator mass spectrometry (AMS).

  9. LASER DESORPTION IONIZATION MASS SPECTROMETRY ON SILICON NANOWELL ARRAYS

    PubMed Central

    Gulbakan, Basri; Park, Dooho; Kang, Myungchan; Kececi, Kaan; Martin, Charles R.; Powell, David H.; Tan, Weihong

    2010-01-01

    This paper describes a new technique for fabrication of nanostructured porous silicon (pSi) for laser desorption ionization mass spectrometry. Porous silicon nanowell arrays were prepared by argon plasma etching through an alumina mask. Porous silicon prepared in this way proved to be an excellent substrate for desorption/ionization on silicon (DIOS) mass spectrometry (MS) using adenosine, Pro-Leu-Gly tripeptide and [Des-Arg9]-bradykinin as the model compounds. It also allows the analyses of complex biological samples such as a tryptic digest of bovine serum albumin, and a carnitine standard mixture. Nanowell array surfaces were also used for direct quantification of the illicit drug fentanyl in red blood cell extracts. This method also allows full control of the surface features. MS results suggested that the pore depth has significant effect on the ion signals. Significant improvement in the ionization was observed by increasing the pore depth from 10 nm to 50 nm. These substrates are useful for laser desorption ionization in both the atmospheric pressure and vacuum regimes. PMID:20731384

  10. Laser desorption ionization mass spectrometry on silicon nanowell arrays.

    PubMed

    Gulbakan, Basri; Park, Dooho; Kang, Myungchan; Kececi, Kaan; Martin, Charles R; Powell, David H; Tan, Weihong

    2010-09-15

    This paper describes a new technique for fabrication of nanostructured porous silicon (pSi) for laser desorption ionization mass spectrometry. Porous silicon nanowell arrays were prepared by argon plasma etching through an alumina mask. Porous silicon prepared in this way proved to be an excellent substrate for desorption/ionization on silicon (DIOS) mass spectrometry (MS) using adenosine, Pro-Leu-Gly tripeptide, and [Des-Arg(9)]-bradykinin as the model compounds. It also allows the analyses of complex biological samples such as a tryptic digest of bovine serum albumin and a carnitine standard mixture. Nanowell array surfaces were also used for direct quantification of the illicit drug fentanyl in red blood cell extracts. This method also allows full control of the surface features. MS results suggested that the pore depth has a significant effect on the ion signals. Significant improvement in the ionization was observed by increasing the pore depth from 10 to 50 nm. These substrates are useful for laser desorption ionization in both the atmospheric pressure and vacuum regimes.

  11. Analysis of lipids: metal oxide laser ionization mass spectrometry.

    PubMed

    McAlpin, Casey R; Voorhees, Kent J; Corpuz, April R; Richards, Ryan M

    2012-09-18

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used for lipid analysis; however, one of the drawbacks of this technique is matrix interference peaks at low masses. Metal oxide surfaces are described here for direct, matrix-free analysis of small (MW < 1000 Da) lipid compounds, without interferences in the resulting spectra from traditional matrix background peaks. Spectra from lipid standards produced protonated and sodiated molecular ions. More complex mixtures including vegetable oil shortening and lipid extracts from bacterial and algal sources provided similar results. Mechanistic insight into the mode of ionization from surface spectroscopy, negative ion mass spectrometry, and stable isotope studies is also presented. The metal oxide system is compared to other reported matrix-free systems.

  12. Characterization of a Continuous Wave Laser for Resonance Ionization Mass Spectroscopy Analysis in Nuclear Forensics

    DTIC Science & Technology

    2015-06-01

    Light Emitting Diodes (LED) and Diode Lasers ...............................8  B.  THE LASER POWER AND MODES...RIMS selective ionization and mass analysis process, from [2] ........................1  Figure 2.  Current RIMS pump and ionization laser setup, from...element” [5]. The laser system that produces the photons for ionization is comprised of three tunable lasers (Ti:Sapph, Al2O3 crystal doped with Ti) pumped

  13. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    SciTech Connect

    Siegfried, M.

    2015-10-14

    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For this study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.

  14. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry.

    PubMed

    Flanigan, Paul; Levis, Robert

    2014-01-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 10(13) W cm(-2) desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  15. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm-2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  16. Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju

    2011-12-15

    The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.

  17. CHARACTERIZATION OF CRYPTOSPORIDIUM PARVUM BY MATRIX-ASSISTED LASER DESORPTION -- IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to investigate whole and freeze thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtai...

  18. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  19. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  20. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  1. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  2. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  3. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect

    Isselhardt, Brett H.

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  4. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  5. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  6. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  7. Improving precision in resonance ionization mass spectrometry : influence of laser bandwidth in uranium isotope ratio measurements.

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Knight, K. B.; Pellin, M. J.; Hutcheon, I. D.; Prussin, S. G.

    2011-03-01

    The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios by resonance ionization mass spectrometry (RIMS) to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a three-color, three-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from 10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation.

  8. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry.

    PubMed

    Wang, Jing; Liu, Qian; Liang, Yong; Jiang, Guibin

    2016-04-01

    Carbon nanomaterials have attracted great interest over past decades owing to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this article, we review recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry (LDI MS). Various types of carbon nanomaterials, including fullerenes, carbon nanotubes, graphene, carbon nanodots, nanodiamond, nanofibers, nanohorns, and their derivative forms, are involved. The applications of these materials as new matrices or probes in matrix-assisted or surface-enhanced laser desorption/ionization mass spectrometry (MALDI or SELDI MS) are discussed. Finally, we summarize current challenges and give our perspectives on the future of applications of carbon nanomaterials in LDI MS.

  9. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.

  10. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  11. Tailored nanopost arrays (NAPA) for laser desorption ionization in mass spectrometry

    DOEpatents

    Vertes, Akos; Walker, Bennett N.; Stolee, Jessica A.; Retterer, Scott T.

    2016-11-08

    The production and use of semiconducting nanopost arrays made by nanofabrication is described herein. These nanopost arrays (NAPA) provide improved laser ionization yields and controllable fragmentation with switching or modulation capabilities for mass spectrometric detection and identification of samples deposited on them.

  12. Identification of Bacteria Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    ERIC Educational Resources Information Center

    Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.

    2007-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…

  13. Characterization of nanoparticles by matrix assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Ramalinga, Uma; Clogston, Jeffrey D; Patri, Anil K; Simpson, John T

    2011-01-01

    Determining the molecular weight of nanoparticles can be challenging. The molecular weight characterization of dendrimers, for example, with varying covalent and noncovalent modifications is critical to their use as therapeutics. As such, we describe in this chapter a protocol for the analysis of these molecules by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

  14. Resonance Ionization Laser Mass Spectrometry: New possibilities for on-line analysis of waste incinerator emissions

    SciTech Connect

    Zimmermann, Ralf; Rohwer, Egmont R.; Heger, Hans Joerg; Schlag, Edward W.; Kettrup, Antonius; Gilch, Gerhard; Lenoir, Dieter; Boesl, Ulrich

    1997-01-15

    A concept for the use of Resonance Ionization Laser Mass Spectrometry for on-line emission analysis of chlorinated aromatic compounds in waste incinerator flue gas is presented. New analytical results suggest that low chlorinated benzenes can be used as indicator parameter for dioxin emissions.

  15. Identification of Bacteria Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    ERIC Educational Resources Information Center

    Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.

    2007-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…

  16. Determination of Nerve Agent Metabolites by Ultraviolet Femtosecond Laser Ionization Mass Spectrometry.

    PubMed

    Hamachi, Akifumi; Imasaka, Tomoko; Nakamura, Hiroshi; Li, Adan; Imasaka, Totaro

    2017-04-04

    Nerve agent metabolites, i.e., isopropyl methylphosphonic acid (IMPA) and pinacolyl methylphosphonic acid (PMPA), were derivatized by reacting them with 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr) and were determined by mass spectrometry using an ultraviolet femtosecond laser emitting at 267 and 200 nm as the ionization source. The analytes of the derivatized compounds, i.e., IMPA-PFB and PMPA-PFB, contain a large side-chain, and molecular ions are very weak or absent in electron ionization mass spectrometry. The use of ultraviolet femtosecond laser ionization mass spectrometry, however, resulted in the formation of a molecular ion, even for compounds such as these that contain a highly-bulky functional group. The signal intensity was larger at 200 nm due to resonance-enhanced two-photon ionization. In contrast, fragmentation was suppressed at 267 nm (non-resonant two-photon ionization) especially for PMPA-PFB, thus resulting in a lower background signal. This favorable result can be explained by the small excess energy in ionization at 267 nm and by the low-frequency vibrational mode of a bulky trimethylpropyl group in PMPA.

  17. Derivatization of small biomolecules for optimized matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Tholey, Andreas; Wittmann, Christoph; Kang, Min-Jung; Bungert, Ditte; Hollemeyer, Klaus; Heinzle, Elmar

    2002-09-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a powerful tool for the measurement of low molecular mass compounds of biological interest. The limitations for this method are the volatility of many analytes, possible interference with matrix signals or bad ionization or desorption behavior of the compounds. We investigated the application of well-known and straightforward one-pot derivatization procedures to circumvent these problems. The derivatizations tested allow the measurement and the labeling of alcohols, aldehydes and ketones, carboxylic acids, alpha-ketocarboxylic acids and amines.

  18. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  19. The Need for Speed in Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry

    PubMed Central

    Prentice, Boone M.; Caprioli, Richard M.

    2016-01-01

    Imaging mass spectrometry (IMS) has emerged as a powerful analytical tool enabling the direct molecular mapping of many types of tissue. Specifically, matrix-assisted laser desorption/ ionization (MALDI) represents one of the most broadly applicable IMS technologies. In recent years, advances in solid state laser technology, mass spectrometry instrumentation, computer technology, and experimental methodology have produced IMS systems capable of unprecedented data acquisition speeds (>50 pixels/second). In applications of this technology, throughput is an important consideration when designing an IMS experiment. As IMS becomes more widely adopted, continual improvements in experimental setups will be important to address biologically and clinically relevant time scales. PMID:27570788

  20. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  1. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  2. Determination of Hexachlorocyclohexane by Gas Chromatography Combined with Femtosecond Laser Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Xixiang; Imasaka, Tomoko; Li, Adan; Imasaka, Totaro

    2016-12-01

    Structural isomers and enantiomers of hexachlorocyclohexane (HCH) were separated using a chiral column by gas chromatography and quantitatively determined by multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (200 and 267 nm) as the ionization source. The order of elution of the enantiomers (i.e., (+)-α-HCH and (-)-α-HCH) was predicted from stabilization energies calculated for the complexes using permethylated γ-cyclodextrin as the stationary phase of the column, and the results were compared with the experimental data. The molecular ions observed for HCH were weak, even though they can be ionized through a process of resonance enhanced two-photon ionization at 200 nm. This unfavorable result can be attributed to the dissociation of the molecular ion, as predicted from quantum chemical calculations.

  3. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  4. Mass-tag enhanced immuno-laser desorption/ionization mass spectrometry for sensitive detection of intact protein antigens.

    PubMed

    Lorey, Martina; Adler, Belinda; Yan, Hong; Soliymani, Rabah; Ekström, Simon; Yli-Kauhaluoma, Jari; Laurell, Thomas; Baumann, Marc

    2015-05-19

    A new read-out method for antibody arrays using laser desorption/ionization-mass spectrometry (LDI-MS) is presented. Small, photocleavable reporter molecules with a defined mass called "mass-tags" are used for detection of immunocaptured proteins from human plasma. Using prostate specific antigen (PSA), a biomarker for prostate cancer, as a model antigen, a high sensitivity generic detection methodology based immunocapture with a primary antibody and with a biotin labeled secondary antibody coupled to mass-tagged avidin is demonstrated. As each secondary antibody can bind several avidin molecules, each having a large number of mass-tags, signal amplification can be achieved. The developed PSA sandwich mass-tag analysis method provided a limit of detection below 200 pg/mL (6 pM) for a 10 μL plasma sample, well below the clinically relevant cutoff value of 3-4 ng/mL. This brings the limit of detection (LOD) for detection of intact antigens with matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) down to levels comparable to capture by anti-peptide antibodies selected reaction monitoring (SISCAPA SRM) and enzyme linked immunosorbent assay (ELISA), as 6 pM corresponds to a maximal amount of 60 amol PSA captured on-spot. We propose the potential use of LDI (laser desorption/ionization) with mass-tag read-out implemented in a sandwich assay format for low abundant and/or early disease biomarker detection.

  5. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  6. Graphene matrix for signal enhancement in ambient plasma assisted laser desorption ionization mass spectrometry.

    PubMed

    Chang, Cuilan; Li, Xianjiang; Bai, Yu; Xu, Gege; Feng, Baosheng; Liao, Yiping; Liu, Huwei

    2013-09-30

    In this work, the signal intensity of ambient plasma assisted laser desorption ionization mass spectrometry (PALDI-MS) was significantly increased with graphene as matrix. The graphene functions as a substrate to trap analytes, absorb energy from the visible laser irradiation and transfer energy to the analytes to facilitate the laser desorption process. The desorbed analytes are further ionized by helium plasma and analyzed by MS. Compared with a traditional organic matrix, α-cyano-4-hydroxycinnamic acid (CHCA), graphene exhibited much higher desorption efficiency for most of the compounds benefitting from the strong optical absorption at 532nm. The performance has been confirmed by the facile analysis of more than forty compounds with various structures. Additionally, this method was successfully applied to distinguish three kinds of Chinese tea leaves by detecting the endogenous caffeine and theanine, which proved the utility, facility and convenience of this method for rapid screening of main components in real samples.

  7. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides

    NASA Astrophysics Data System (ADS)

    Hua, Lin; Chen, Jianrong; Ge, Liya; Tan, Swee Ngin

    2007-12-01

    Silver nanoparticle synthesized from chemical reduction has been successfully utilized as a matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of peptides. Acting as a substrate to adsorb analytes, as well as a transmission medium for UV laser, silver nanoparticle was found to assist in the desorption/ionization of peptides with little or no induced fragmentation. The size of the nanoparticle was typically in the range of 160 ± 20 nm. One of the key advantages of silver nanoparticle for peptides analysis is its simple step for on-probe sample preparation. In addition, it also minimizes the interferences of sodium dodecyl sulfate (SDS) surfactant background signal, resulting in cleaner mass spectra and more sensitive signal, when compared to α-cyano-4-hydroxycinnamic acid (CCA) matrix.

  8. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  9. Matrix-assisted laser desorption and electrospray ionization mass spectrometry of carminic acid isolated from cochineal

    NASA Astrophysics Data System (ADS)

    Maier, Marta S.; Parera, Sara D.; Seldes, Alicia M.

    2004-04-01

    Carminic acid, isolated from cochineal, was analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray mass spectrometry (ESI-MS). Application of both techniques to the analysis of carminic acid suspended in linseed oil and applied to a piece of canvas, demonstrated the ability of MALDI and ESI-MS to identify this organic dye in a mixture as those used in easel painting.

  10. Chemical reactivity in matrix-assisted laser desorption/ionization mass spectrometry

    PubMed

    Enjalbal; Sauvagnat; Lamaty; Lazaro; Martinez; Mouchet; Roux; Aubagnac

    1999-01-01

    During the control of a multistep organic synthesis on a soluble polymer (PEG) by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, a chemical reactivity was encountered when the matrix was acidic, for the samples where the amino moiety of the anchored compounds was protected as a Schiff base. Such imine hydrolysis was proven to be solely mediated by the acidic matrix during analyses since the expected protected structures were detected when the experiments were duplicated with a non-acidic matrix. Even if MALDI mass spectrometry was found to be more convenient than electrospray ionization mass spectrometry for the monitoring of liquid phase organic syntheses, the chemical reactivity imparted by the use of a matrix must be taken into account to avoid erroneous spectra interpretations. Copyright 1999 John Wiley & Sons, Ltd.

  11. Analysis of ancient Greco-Roman cosmetic materials using laser desorption ionization and electrospray ionization mass spectrometry.

    PubMed

    Van Elslande, Elsa; Guérineau, Vincent; Thirioux, Vincent; Richard, Ghislaine; Richardin, Pascale; Laprévote, Olivier; Hussler, Georges; Walter, Philippe

    2008-04-01

    Microsamples of pink cosmetic powders from the Greco-Roman period were analyzed using two complementary analytical approaches for identification of the colouring agents (lake pigments originally manufactured from madder plants with an inert binder, usually a metallic salt) present in the samples. The first technique was a methanolic acidic extraction of the archaeological samples with an additional ethyl acetate extraction of the anthraquinone-type colouring agents which were identified using high performance liquid chromatography coupled to electrospray ionization with high resolution mass spectrometry (LC-ESI-HRMS), and the second was direct analysis of a microsample by laser desorption ionization-mass spectrometry (LDI-MS). The latter technique is well suited when the quantity of samples is very low. This soft ionization technique enables the detection of very small quantities of compounds using the combination of positive and negative-ion modes. It was also successfully applied for the direct analysis of some laboratory-made reference compounds. However, the presence of lead in one of these ancient samples induced a spectral suppression phenomenon. In this case and conditional on a sufficient quantity of available sample, the former method is better adapted for the characterization of these anthraquinone-type molecules. This study also confirmed that purpurin, munjistin, and pseudopurpurin are the principal colouring agents present in these ancient cosmetic powders constituted from madder plants.

  12. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery.

  13. Effect of sample compositions on chemical analysis using matrix-assisted laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schriemer, David; Dai, Yuqin; Li, Liang

    1996-11-01

    Matrix-assisted laser desorption ionization (MALDI) is an effective ionization technique for mass spectrometry. It take advantages of some unique properties of certain organic chemicals to provide entrapment, isolation, vaporization, and ionization of the analyte of interest. While the main application of the MALDI technique is currently in the area of biological molecule analysis, it is possible to use this technique for monitoring polymer chemistry such as degradation processes. This is potentially important for studying and developing environmentally degradable polymers. Direct analysis of the analyte in real-world samples is possible with MALDI. However, there is a significant effect of the overall composition of a sample on the detectability and performance of MALDI. Two examples are given to illustrate the positive and negative effects of buffers, salts, and additives on the MALDI sample preparation.

  14. Non-traditional applications of laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    McAlpin, Casey R.

    Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then

  15. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ˜15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  16. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    PubMed

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  17. Standardization of time-of-flight laser ionization mass spectrometry analysis of minerals

    NASA Astrophysics Data System (ADS)

    Dimov, S. S.; Chryssoulis, S. L.

    1998-03-01

    The standardization of the time-of-flight laser ionization mass spectrometry (TOF-LIMS) analysis of mineral surfaces is an important step towards providing reproducible quantitative data. This paper reports the search for experimental conditions and instrumental configurations that provide efficient ionization for all elements of the sample. For that purpose, an investigation of the neutral emission dynamics and the ion yields for the most important elements, as a function of laser power densities, the relative time delay between the ablation and postionization processes, and the sample matrix, was performed. In order to standardize the procedure, an empirical protocol was established, based on the use of optimized system parameters to monitor the ion yield from a library of standard reference samples.

  18. Characterization of Nonpolar Lipids and Selected Steroids by Using Laser-Induced Acoustic Desorption/Chemical Ionization, Atmospheric Pressure Chemical Ionization, and Electrospray Ionization Mass Spectrometry†

    PubMed Central

    Jin, Zhicheng; Daiya, Shivani; Kenttämaa, Hilkka I.

    2011-01-01

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H2O)+ chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H2O) with the ClMn(H2O)+ ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H2O ions, but less abundant adduct-2H2O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H2O)+ chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids. PMID:21528012

  19. Laser desorption and matrix-assisted laser desorption/ionization mass spectrometry of 29-kDa Au:SR cluster compounds.

    PubMed

    Schaaff, T Gregory

    2004-11-01

    Positive and negative ions generated by laser-based ionization methods from three gold:thiolate cluster compounds are mass analyzed by time-of-flight mass spectrometry. The three compounds have similar inorganic core masses ( approximately 29 kDa, approximately 145 Au atoms) but different n-alkanethiolate ligands associated with each cluster compound (Au:SR, R = butane, hexane, dodecane). Irradiation of neat films (laser desorption/ionization) and films generated by dilution of the cluster compounds in an organic acid matrix (matrix-assisted laser desorption/ionization) with a nitrogen laser (337 nm) produced distinct ion abundances that are relevant to different structural aspects of the cluster compound. Laser desorption/ionization of neat Au:SR compound films produces ions consistent with the inorganic core mass (i.e., devoid of original hydrocarbon content). Matrix-assisted laser desorption/ionization produces either ions with m/z values consistent with the core mass of the cluster compounds or ions with m/z values consistent with the approximate molecular weight of the cluster compounds, depending on ionization conditions. The ion abundances, and ionization conditions under which they are detected, provide insight into desorption/ionization processes for these unique cluster compounds as well as other analytes typically studied by matrix-assisted laser desorption/ionization.

  20. Precision in Strontium Isotope Measurements by Laser Ablation Assisted Resonance Ionization Mass Spectrometry

    SciTech Connect

    Sasada, S.; Tomita, H.; Watanabe, K.; Higuchi, Y.; Kawarabayashi, J.; Iguchi, T.

    2009-03-17

    We have investigated the precision of strontium isotope analysis by Laser Ablation-assisted Resonance Ionization Mass Spectrometry(LA-RIMS). We have confirmed that the mass discrimination effect on the {sup 87}Sr/{sup 86}Sr measurement was reduced by the internal correction method. For the present system, the precision of the isotope ratio of {sup 87}Sr/{sup 86}Sr has been estimated to be 0.6%(1{sigma}). The precision has been limited by the fluctuations with a time scale of less than 10 s.

  1. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices.

    PubMed

    Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching

    2016-04-01

    In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates.

  2. Laser desorption/ionization mass spectrometry on nanostructured semiconductor substrates: DIOS(TM) and QuickMass(TM)

    NASA Astrophysics Data System (ADS)

    Law, K. P.

    2010-02-01

    In the era of systems biology, new analytical platforms are under demand. Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a promising high throughput laser mass spectrometry approach that has attracted a lot of attention, and has been commercialized. Another substrate material manufactured by physical method has also been made commercially available under the trade name of QuickMass(TM). These two commercial substrates, DIOS(TM) and QuickMass(TM), were investigated independently from the manufacturers and were characterized by a number of advanced surface techniques. This work determined (1) the correlation between the substrate physicochemical properties and their LDI activity, (2) the feasibility of metabolic profiling from complex biological matrices and (3) the laser desorption/ionization mechanism. The DIOS(TM) substrate was characterized with a thick nano-sized porous layer, a high surface concentration of fluorocarbon and silicon oxides and super-hydrophobicity. In contrast, the QuickMass(TM) substrate consisted of a non-porous germanium thin-film. The relatively high ionization efficiency obtained from the DIOS(TM) substrate was contributed to the fluorosilane manufacturing processes and its porous morphology. Despite the QuickMass(TM) substrate being less effective, it was noted that the use of germanium affords a self-cleaning mechanism and suppresses background interference of mass spectra. The suitability of DIOS(TM) substrates for metabolic profiling of complex biological matrices was demonstrated. DIOS mass spectra of human blood plasma, human urine and animal liver tissue extracts were produced. Suitable extraction methods were found to be important, but relatively simplified approaches were sufficient. Further investigations of the DIOS desorption/ionization mechanism were carried out. The previously proposed sub-surface state reaction could be a molten-solid interfacial state reaction of the substrate and this had a significant

  3. Detection of trace ink compounds in erased handwritings using electrospray-assisted laser desorption ionization mass spectrometry.

    PubMed

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie; Ho, Hsiu-O

    2014-06-01

    Writings made with erasable pens on paper surfaces can either be rubbed off with an eraser or rendered invisible by changing the temperature of the ink. However, trace ink compounds still remain in the paper fibers even after rubbing or rendering. The detection of these ink compounds from erased handwritings will be helpful in knowing the written history of the paper. In this study, electrospray-assisted laser desorption ionization/mass spectrometry was used to characterize trace ink compounds remaining in visible and invisible ink lines. The ink compounds were desorbed from the paper surface by irradiating the handwritings with a pulsed laser beam; the desorbed analytes were subsequently ionized in an electrospray plume and detected by a quadrupole time-of-flight mass spectrometry mass analyzer. Because of the high spatial resolution of the laser beam, electrospray-assisted laser desorption ionization/mass spectrometry analysis resulted in minimal damage to the sample documents. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Organic chemical analysis on a microscopic scale using two-step laser desorption/laser ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Philippoz, J.-M.; Bucenell, J. R.; Zenobi, R.; Zare, R. N.

    1991-01-01

    The distribution of PAHs in the Allende meteorite has been measured using two-step laser desorption and laser multiphoton-ionization mass spectrometry. This method enables in situ analysis (with a spatial resolution of 1 mm or better) of selected organic molecules. Results show that PAH concentrations are locally high compared to the average concentration found by analysis of pulverized samples, and are found primarily in the fine-grained matrix; no PAHs were detected in the interiors of individual chondrules at the detection limit (about 0.05 ppm).

  5. Organic chemical analysis on a microscopic scale using two-step laser desorption/laser ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kovalenko, L. J.; Philippoz, J.-M.; Bucenell, J. R.; Zenobi, R.; Zare, R. N.

    1991-04-01

    The distribution of PAHs in the Allende meteorite has been measured using two-step laser desorption and laser multiphoton-ionization mass spectrometry. This method enables in situ analysis (with a spatial resolution of 1 mm or better) of selected organic molecules. Results show that PAH concentrations are locally high compared to the average concentration found by analysis of pulverized samples, and are found primarily in the fine-grained matrix; no PAHs were detected in the interiors of individual chondrules at the detection limit (about 0.05 ppm).

  6. Silver nanoparticles on zeolite surface for laser desorption/ionization mass spectrometry of low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yang, Mengrui; Fujino, Tatsuya

    2013-06-01

    Silver nanoparticles loaded on NH4+-type zeolite, AgNPs-NH4ZSM5, was developed as an inorganic matrix for laser desorption/ionization mass spectrometry of low molecular weight compounds. It was found that AgNPs-NH4ZSM5 could work as an efficient Ag+ donor to ionize analytes and that zeolite worked as a heat bath to prevent the destruction of AgNPs after the photoexcitation. The AgNPs-NH4ZSM5 was applied to laser desorption/ionization mass spectrometry of biologically active substances with low molecular weights including acetylsalicylic acid, L-histidine, glucose, urea, cholesterol, and those in human serum.

  7. Ambient Characterization of Synthetic Fibers by Laser Ablation Electrospray Ionization Mass Spectrometry

    PubMed Central

    2017-01-01

    Direct analysis of synthetic fibers under ambient conditions is highly desired to identify the polymer, the finishes applied and irregularities that may compromise its performance and value. In this paper, laser ablation electrospray ionization ion mobility time-of-flight mass spectrometry (LAESI-IMS-TOF-MS) was used for the analysis of synthetic polymers and fibers. The key to this analysis was the absorption of laser light by aliphatic and aromatic nitrogen functionalities in the polymers. Analysis of polyamide (PA) 6, 46, 66, and 12 pellets and PA 6, 66, polyaramid and M5 fibers yielded characteristic fragment ions without any sample pretreatment, enabling their unambiguous identification. Synthetic fibers are, in addition, commonly covered with a surface layer for improved adhesion and processing. The same setup, but operated in a transient infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mode, allowed the detailed characterization of the fiber finish layer and the underlying polymer. Differences in finish layer distribution may cause variations in local properties of synthetic fibers. Here we also show the feasibility of mass spectrometry imaging (MSI) of the distribution of a finish layer on the synthetic fiber and the successful detection of local surface defects. PMID:28252942

  8. Thin-layer chromatography/laser-induced acoustic desorption/electrospray ionization mass spectrometry.

    PubMed

    Cheng, Sy-Chyi; Huang, Min-Zong; Shiea, Jentaie

    2009-11-15

    The combination of laser-induced acoustic desorption and electrospray ionization mass spectrometry (LIAD/ESI/MS) can be used to rapidly characterize chemical compounds separated on a thin layer chromatography (TLC) plate. We performed LIAD analysis by irradiating the rear side of an aluminum-based TLC plate with a pulsed infrared (IR) laser. To efficiently generate and transfer acoustic and shock waves to ablate the analyte-containing TLC gels, a glass slide was attached to the rear of the TLC plate and the gap between the glass slide and the TLC plate was filled with a viscous solution (glycerol). Although the diameter of the laser spot created on the rear of the TLC plate was approximately 0.35 mm, the ablated areas on the front sides of the silica gel bed and the C(18) reverse-phase gel bed had diameters of approximately 1.3 and 3 mm, respectively. The ablated analyte molecules were ionized in an ESI plume and then detected by an ion trap mass analyzer. This TLC/LIAD/ESI/MS approach allowed the components in mixtures of dye standards, drug standards, and rosemary essential oil to be separated and rapidly characterized.

  9. Matrix-assisted laser-desorption-ionization mass spectrometry of proteins using a free-electron laser

    SciTech Connect

    Cramer, R.; Hillenkamp, F.; Haglund, R.

    1995-12-31

    Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) is one of the most promising techniques for spectral fingerprinting large molecules, such as proteins, oligonucleotides and carbohydrates. In the usual implementation of this technique, the analyte molecule is dissolved in an aromatic liquid matrix material which resonantly absorbs ultraviolet laser light. Resonant absorption by {pi}-{pi}* transitions volatilizes the matrix and initiates subsequent charge transfer to the analyte molecules, which are detected by time-of-flight mass spectrometry. Recent MALDI-MS studies with Er:YAG (2.94 {mu}m) and CO{sub 2}{sup 4} (9.4-10.6 {mu}m) lasers suggest that them is significant unexplored potential for mass spectrometry of macromolecules, including oligonucleotide, in the mid-infrared. Preliminary experiments show that it is possible to capitalize on the rich rovibronic absorption spectrum of virtually all organics to initiate resonant desorption in matrix material over the entire range of pH values. However, the mechanism of charge transfer is particularly problematic for infrared MALDI because of the low photon energy. In this paper, we report the results of MALI-MS studies on small proteins using the Vanderbilt FEL and several matrix materials. Proteins with masses up to roughly 6,000 amu were detected with high resolution in a linear time-of-flight mass spectrometer. By varying the pulse duration using a broadband Pockels cell, we have been able to compare the results of relatively long (5 {mu}s) and short (0.1 {mu}s) irradiation on the desorption and ionization processes. Compared to uv-MALDI spectra of identical analytes obtained with a nitrogen laser (337 nm) in the same time-of-flight spectrometer, the infrared results appear to show that the desorption and ionization process goes on over a somewhat longer time scale.

  10. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Mechanistic Studies and Methods for Improving the Structural Identification of Carbohydrates

    PubMed Central

    Lai, Yin-Hung; Wang, Yi-Sheng

    2017-01-01

    Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed. PMID:28959517

  11. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2010-01-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. Four APCI reagent systems were tested: the traditionally used mixture of methanol and water, neat benzene, neat carbon disulfide, and nitrogen gas (no liquid reagent). The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar amount of fragmentation was observed for these reagents. When the experiment was performed without a liquid reagent(nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to form stable molecular ions. PMID:21472571

  12. Laser-induced acoustic desorption/atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Gao, Jinshan; Borton, David J; Owen, Benjamin C; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M; Madden, Jeremy T; Qian, Kuangnan; Kenttämaa, Hilkka I

    2011-03-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a commercial linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. From the four APCI reagent systems tested, neat carbon disulfide provided the best results. The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar but minor amount of fragmentation was observed for these two reagents. When the experiment was performed without a liquid reagent (nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to predominantly form stable molecular ions.

  13. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  14. Development of a compact laser-based single photon ionization time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki

    2010-02-01

    We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.

  15. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  16. Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots.

    PubMed

    Abdelhamid, Hani Nasser; Chen, Zhen-Yu; Wu, Hui-Fen

    2017-08-01

    In most applications of quantum dots (QDs) for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), one side of QDs is supported by a solid substrate (stainless - steel plate), whereas the other side is in contact with the target analytes. Therefore, the surface capping agent of QDs is a key parameter for laser desorption/ionization mass spectrometry (LDI-MS). Cadmium telluride quantum dots (CdTe QDs) modified with different capping agents are synthesized, characterized, and applied for surface tuning laser desorption/ionization mass spectrometry (STLDI-MS). Data shows that CdTe quantum dot modified cysteine (cys@CdTe QDs) has an absorption that matches with the wavelength of the N2 laser (337 nm). The synergistic effect of large surface area and absorption of the laser irradiation of cys@CdTe QDs enhances the LDI-MS process for small - molecule analysis, including α-, β-, and γ-cyclodextrin, gramicidin D, perylene, pyrene, and triphenylphosphine. Cys@CdTe QDs are also applied using Al foils as substrates. Aluminum foil combined with cys@CdTe QDs enhances the ionization efficiency and is cheap compared to traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with a stainless - steel plate.

  17. Matrix-assisted laser desorption/ionization mass spectrometry of discrete mass poly(butylene glutarate) oligomers.

    PubMed

    Williams, John B; Chapman, Toby M; Hercules, David M

    2003-07-01

    The mass dependency of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) response has been studied using equimolar mixtures of synthetic discrete mass poly(butylene glutarate) (PBG) oligomers of known structure having degrees of polymerization of 8, 16, 32, and 64. Mass discrimination observed was attributed to choice of matrix and detector saturation caused by higher laser intensity and inclusion of matrix ions in the MALDI spectra. Optimization of sample preparation and instrumental parameters provided uniform response over the mass ranged spanned by these four oligomers. The oligomer mixture was shown to serve as a model of more complex polymer distributions in the mass range 780-6000 Da, and application of the discrete mass oligomers as internal and calibration standards was demonstrated. Inclusion of PBG discrete mass oligomers as an internal standard in a quasi-equimolar mixture with polydispersed poly(butylene adipate) (PBA) indicated that some diminution of response occurred during the analysis of this mixture of materials. Reasons for differences in the corrected molecular weight averages of the polydispersed PBA obtained from measurements using MALDI and GPC were studied using individual discrete mass oligomers as calibration standards for GPC. The data indicated that differences in hydrodynamic volumes of PBG oligomers and PEG standards at similar masses resulted in an overestimation by GPC of the molecular weight averages of the PBA distribution.

  18. Near-infrared laser desorption/ionization aerosol mass spectrometry for measuring organic aerosol at atmospherically relevant aerosol mass loadings

    NASA Astrophysics Data System (ADS)

    Geddes, S.; Nichols, B.; Todd, K.; Zahardis, J.; Petrucci, G. A.

    2010-08-01

    A new method, near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS), is described for the real time analysis of organic aerosols at atmospherically relevant total mass loadings. Particles are sampled with an aerodynamic lens onto an aluminum probe. A moderate energy NIR laser pulse at 1064 nm is directed onto the probe to vaporize and ionize particle components. Delayed pulse extraction is then used to sample the ions into a reflectron time of flight mass spectrometer for chemical analysis. The soft ionization afforded by the NIR photons results in minimal fragmentation (loss of a hydrogen atom) producing intact pseudo-molecular anions at [M-H]-. The limit of detection measured for pure oleic acid particles (geometric mean diameter and standard deviation of 180 nm and 1.3, respectively) was 140 fg (or 1.7 ng m-3 per minute sampling time). As an example of the utility of NIR-LDI-AMS to measurements of atmospheric importance, the method was applied to laboratory chamber measurements of the secondary organic aerosol formation from ozonolysis of α-pinene. High quality mass spectra were recorded with a 2-min time resolution for total aerosol mass loadings ranging from 1.5 to 8.7 μg m-3. These results demonstrate the potential of NIR-LDI-AMS to allow for more accurate measurements of the organic fraction of atmospheric particulate at realistic mass loadings. Measurements at ambient-levels of SOA mass loading are important to improve parameterizations of chamber-based SOA formation for modeling regional and global SOA fluxes and to aid in remediating the discrepancy between modeled and observed atmospheric total SOA production rates and concentrations.

  19. Near-infrared laser desorption/ionization aerosol mass spectrometry for measuring organic aerosol at atmospherically relevant aerosol mass loadings

    NASA Astrophysics Data System (ADS)

    Geddes, S.; Nichols, B.; Todd, K.; Zahardis, J.; Petrucci, G. A.

    2010-05-01

    A new method, near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS), is described for the real time analysis of organic aerosols at atmospherically relevant total mass loadings. Particles are sampled with an aerodynamic lens onto an aluminium probe and moderate energy NIR laser pulse at 1064 nm is directed onto the probe to vaporize and ionize particle components. Delayed pulse extraction is then used to sample the ions into a reflectron time of flight mass spectrometer for chemical analysis. The soft ionization afforded by the NIR photons results in minimal fragmentation (loss of a hydrogen atom) producing intact pseudo-molecular anions at [M-H]-. The limit of detection measured for pure oleic acid particles (geometric mean diameter and standard deviation of 180 nm and 1.3, respectively) was 140 fg (or 1.7 ng m-3 per minute sampling time). As an example of the utility of NIR-LDI-AMS to measurements of atmospheric importance, the method was applied to laboratory chamber measurements of the secondary organic aerosol formation from ozonolysis of α-pinene. High quality mass spectra were recorded with a 2-min time resolution for total aerosol mass loadings ranging from 1.5 to 8.7 μg m-3. These results demonstrate the potential of NIR-LDI-AMS to allow for more accurate measurements of the organic fraction of atmospheric particulate at realistic mass loadings. Measurements at ambient-levels of SOA mass loading are important to improve parameterizations of chamber-based SOA formation for modeling regional and SOA fluxes and to aid in remediating the discrepancy between modeled and observed atmospheric total SOA production rates and concentrations.

  20. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    SciTech Connect

    Fassett, J.D.; Murphy, T.J. )

    1990-02-15

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g.

  1. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry.

    PubMed

    Fassett, J D; Murphy, T J

    1990-02-15

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g.

  2. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Van Berkel, Gary J

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  3. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  4. Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds.

    PubMed

    Silina, Yuliya E; Volmer, Dietrich A

    2013-12-07

    Analytical applications often require rapid measurement of compounds from complex sample mixtures. High-speed mass spectrometry approaches frequently utilize techniques based on direct ionization of the sample by laser irradiation, mostly by means of matrix-assisted laser desorption/ionization (MALDI). Compounds of low molecular weight are difficult to analyze by MALDI, however, because of severe interferences in the low m/z range from the organic matrix used for desorption/ionization. In recent years, surface-assisted laser desorption/ionization (SALDI) techniques have shown promise for small molecule analysis, due to the unique properties of nanostructured surfaces, in particular, the lack of a chemical background in the low m/z range and enhanced production of analyte ions by SALDI. This short review article presents a summary of the most promising recent developments in SALDI materials for MS analysis of low molecular weight analytes, with emphasis on nanostructured materials based on metals and semiconductors.

  5. Electroless plating of silver nanoparticles on porous silicon for laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Xu, Ning; Huang, Wen-Yi; Han, Huan-Mei; Xiao, Shou-Jun

    2009-03-01

    An improved DIOS (desorption ionization on porous silicon) method for laser desorption/ionization mass spectrometry (LDI MS) by electroless plating of silver nanoparticles (AgNPs) on porous silicon (PSi) was developed. By addition of 4-aminothiophenol (4-ATP) into the AgNO3 plating solution, the plating speed can be slowed down and simultaneously 4-ATP self-assembled monolayers (SAMs) on AgNPs (4-ATP/AgNPs) were formed. Both AgNPs and 4-ATP/AgNPs coated PSi substrates present much higher stability, sensitivity and reproducibility for LDI MS than the un-treated porous silicon ones. Their shelf life in air was tested for several weeks to a month and their mass spectra still displayed the same high quality and sensitivity as the freshly prepared ones. And more 4-ATP SAMs partly play a role of matrix to increase the ionization efficiency. A small organic molecule of tetrapyridinporphyrin (TPyP), oligomers of polyethylene glycol (PEG 400 and 2300), and a peptide of oxytocin were used as examples to demonstrate the feasibility of the silver-plated PSi as a matrix-free-like method for LDI MS. This approach can obtain limits of detection to femtomoles for TPyP, subpicomoles for oxytocin, and picomoles for PEG 400 and 2300, comparable to the traditional matrix method and much better than the DIOS method. It simplifies the sample preparation as a matrix-free-like method without addition of matrix molecules and homogenizes the sample spread over the spot for better and more even mass signals.

  6. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Muccilli, Vera; Cunsolo, Vincenzo; Saletti, Rosaria; Foti, Salvatore; Masci, Stefania; Lafiandra, Domenico

    2005-02-01

    Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.

  7. Revisiting the quantitative features of surface-assisted laser desorption/ionization mass spectrometric analysis.

    PubMed

    Wu, Ching-Yi; Lee, Kai-Chieh; Kuo, Yen-Ling; Chen, Yu-Chie

    2016-10-28

    Surface-assisted laser desorption/ionization (SALDI) coupled with mass spectrometry (MS) is frequently used to analyse small organics owing to its clean background. Inorganic materials can be used as energy absorbers and the transfer medium to facilitate the desorption/ionization of analytes; thus, they are used as SALDI-assisting materials. Many studies have demonstrated the usefulness of SALDI-MS in quantitative analysis of small organics. However, some characteristics occurring in SALDI-MS require certain attention to ensure the reliability of the quantitative analysis results. The appearance of a coffee-ring effect in SALDI sample preparation is the primary factor that can affect quantitative SALDI-MS analysis results. However, to the best of our knowledge, there are no reports relating to quantitative SALDI-MS analysis that discuss or consider this effect. In this study, the coffee-ring effect is discussed using nanoparticles and nanostructured substrates as SALDI-assisting materials to show how this effect influences SALDI-MS analysis results. Potential solutions for overcoming the existing problems are also suggested.This article is part of the themed issue 'Quantitative mass spectrometry'.

  8. Review of Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry for Lipid Biochemical Histopathology

    PubMed Central

    Yalcin, Emine B.

    2015-01-01

    Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry (MALDI-IMS) is a rapidly evolving method used for the in situ visualization and localization of molecules such as drugs, lipids, peptides, and proteins in tissue sections. Therefore, molecules such as lipids, for which antibodies and other convenient detection reagents do not exist, can be detected, quantified, and correlated with histopathology and disease mechanisms. Furthermore, MALDI-IMS has the potential to enhance our understanding of disease pathogenesis through the use of “biochemical histopathology”. Herein, we review the underlying concepts, basic methods, and practical applications of MALDI-IMS, including post-processing steps such as data analysis and identification of molecules. The potential utility of MALDI-IMS as a companion diagnostic aid for lipid-related pathological states is discussed. PMID:26209083

  9. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    SciTech Connect

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; Reichert, Malinda D.; Vela, Javier; Lee, Young Jin

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.

  10. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B. ); Wahl, Jon H. ); Kingsley, Mark T. ); Wahl, Karen L. )

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  11. Detection of dimethylarginines in protein hydrolysates by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Hsieh, Cheng-Hsilin; Tam, Ming F

    2006-03-01

    We report a method to detect the presence of dimethylarginines on proteins. Peptides with dimethylarginines were hydrolyzed in acid. The hydrolysates were subjected to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric analysis using a mixture of alpha-cyano-4-hydroxycinnamic acid and nitrocellulose as matrix. Both asymmetric omega-N(G),N(G)-dimethylarginine and symmetric omega-N(G),N(G')-dimethylarginine give a clear signal at m/z 203. Recombinant Sbp1p modified by Hmt1p in vivo were isolated by affinity chromatography followed by electrophoresis on a polyacrylamide gel and subjected to acid hydrolysis. MALDI-TOF analysis of the acid hydrolysates confirmed the presence of dimethylarginines. The detection limit of the method is estimated at approximately 1pmol of protein.

  12. Large Scale Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass Spectrometry.

    PubMed

    Yagnik, Gargey B; Hansen, Rebecca L; Korte, Andrew R; Reichert, Malinda D; Vela, Javier; Lee, Young Jin

    2016-09-20

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. The screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.

  13. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    SciTech Connect

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; Reichert, Malinda D.; Vela, Javier; Lee, Young Jin

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.

  14. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE PAGES

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  15. Search for efficient laser resonance ionization schemes of tantalum using a newly developed time-of-flight mass-spectrometer in KISS

    NASA Astrophysics Data System (ADS)

    Mukai, M.; Hirayama, Y.; Ishiyama, H.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Watanabe, Y. X.; Kimura, S.; Ozawa, A.; Jeong, S. C.; Sonoda, T.

    2016-06-01

    The technique of laser resonance ionization is employed for an element-selective ionization of multi-nucleon transfer reaction products which are stopped and neutralized in a gas cell filled with argon gas at 50 kPa. We have been searching for efficient laser ionization schemes for refractory elements of Z = 73-78 using a time-of-flight mass-spectrometer (TOF-MS) chamber. To evaluate the isotope shift and ionization efficiency for each candidate of the ionization scheme, isotope separation using the TOF-MS was devised. The TOF-MS was designed to separate the isotopes using two-stage linear acceleration with a mass resolving power M / ΔM of >350. A mass resolving power of 250 was experimentally confirmed by measuring the TOF of laser-ionized tantalum (Z = 73) ions with mass number 181. We searched for a laser resonance ionization scheme of tantalum using the TOF-MS.

  16. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry.

    PubMed

    Shrestha, Bindesh; Vertes, Akos

    2009-10-15

    Depending on age, phase in the cell cycle, nutrition, and environmental factors, individual cells exhibit large metabolic diversity. To explore metabolic variations in cell populations, laser ablation electrospray ionization (LAESI) mass spectrometry (MS) was used for the in situ analysis of individual cells at atmospheric pressure. Single cell ablation was achieved by delivering mid-IR laser pulses through the etched tip of a GeO(2)-based glass fiber. Metabolic analysis was performed from single cells and small cell populations of Allium cepa and Narcissus pseudonarcissus bulb epidermis, as well as single eggs of Lytechinus pictus. Of the 332 peaks detected for A. cepa, 35 were assigned to metabolites with the help of accurate ion masses and tandem MS. The metabolic profiles from single cells of the two plant species included a large variety of oligosaccharides including possibly fructans in A. cepa, and alkaloids, e.g., lycorine in N. pseudonarcissus. Analysis of adjacent individual cells with a difference in pigmentation showed that, in addition to essential metabolites found in both variants, the pigmented cells contained anthocyanidins, other flavonoids, and their glucosides. Analysis of single epidermal cells from different scale leaves in an A. cepa bulb showed metabolic differences corresponding to their age. Our results indicate the feasibility of using LAESI-MS for the in situ analysis of metabolites in single cells with potential applications in studying cell differentiation, changes due to disease states, and response to xenobiotics.

  17. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry.

    PubMed

    Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas

    2014-01-01

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  18. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lou, Xianwen; van Dongen, Joost L J; Meijer, E W

    2010-07-01

    A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3) with 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix. The major cluster ion series observed in the positive ion mode is [(CsI)(n)Cs](+), and in the negative ion mode is [(CsI)(n)I](-). In both cluster series, ions spread evenly every 259.81 units. The easy method described here for the production of CsI cluster ions should be useful for MALDI MS calibrations. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  19. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    SciTech Connect

    Korte, Andrew R

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  1. Remote laser ablation electrospray ionization mass spectrometry for non-proximate analysis of biological tissues.

    PubMed

    Compton, Laine R; Reschke, Brent; Friend, Jordan; Powell, Matthew; Vertes, Akos

    2015-01-15

    We introduce remote laser ablation electrospray ionization (LAESI), a novel, non-proximate ambient sampling technique. Remote LAESI allows additional analytical instrumentation to be incorporated during sample analysis. This work demonstrates the utility of remote LAESI and, when combined with optical microscopy, allows for the microscopy-guided sampling of biological tissues. Rapid prototyping using a 3D printer was applied to produce various ablation chamber geometries. A focused 5 ns, 2.94 µm laser pulse kept at 10 Hz ablated the sample within the chamber, remote to the mass spectrometer inlet. Ablated particulates were carried through a transfer tube by N2 gas, delivered to the electrospray plume and ionized. A long-distance microscope was used to capture images of tissues before, during and after ablation. Optimized remote LAESI was found to have a 27% transport efficiency compared with conventional LAESI, sufficient for many applications. A comparable molecular coverage was obtained with remote LAESI for the analysis of plant tissue. Proof-of-principle experiments using a pansy flower and a maple leaf indicated the functionality of this approach for selecting domains of interest for analysis by optical microscopy and obtaining chemical information from those selected regions by remote LAESI-MS. Remote LAESI is an ambient non-proximate sampling technique, proven to detect metabolites in biological tissues. When combined with optical microscopy, remote LAESI allows for the simultaneous acquisition of morphological and chemical information. This technique has important implications for histology, where chemical information for specific locations within a tissue is critical. Copyright © 2014 John Wiley & Sons, Ltd.

  2. A laser desorption-electron impact ionization ion trap mass spectrometer for real-time analysis of single atmospheric particles

    NASA Astrophysics Data System (ADS)

    Simpson, E. A.; Campuzano-Jost, P.; Hanna, S. J.; Robb, D. B.; Hepburn, J. H.; Blades, M. W.; Bertram, A. K.

    2009-04-01

    A novel aerosol ion trap mass spectrometer combining pulsed IR laser desorption with electron impact (EI) ionization for single particle studies is described. The strengths of this instrument include a two-step desorption and ionization process to minimize matrix effects; electron impact ionization, a universal and well-characterized ionization technique; vaporization and ionization inside the ion trap to improve sensitivity; and an ion trap mass spectrometer for MSn experiments. The instrument has been used for mass spectral identification of laboratory generated pure aerosols in the 600 nm-1.1 [mu]m geometric diameter range of a variety of aromatic and aliphatic compounds, as well as for tandem mass spectrometry studies (up to MS3) of single caffeine particles. We investigate the effect of various operational parameters on the mass spectrum and fragmentation patterns. The single particle detection limit of the instrument was found to be a 325 nm geometric diameter particle (8.7 × 107 molecules or 22 fg) for 2,4-dihydroxybenzoic acid. Lower single particle detection limits are predicted to be attainable by modifying the EI pulse. The use of laser desorption-electron impact (LD-EI) in an ion trap is a promising technique for determining the size and chemical composition of single aerosol particles in real time.

  3. High-Resolution Live-Cell Imaging and Analysis by Laser Desorption/Ionization Droplet Delivery Mass Spectrometry.

    PubMed

    Lee, Jae Kyoo; Jansson, Erik T; Nam, Hong Gil; Zare, Richard N

    2016-05-17

    We have developed a new ambient-ionization mass spectrometric technique named laser desorption/ionization droplet delivery mass spectrometry (LDIDD-MS). LDIDD-MS permits high-resolution, high-sensitivity imaging of tissue samples as well as measurements of both single-cell apoptosis and live-cell exocytosis. A pulsed (15 Hz) UV laser beam (266 nm) is focused on a surface covered with target analytes to trigger their desorption and ionization. A spray of liquid droplets is simultaneously directed onto the laser-focused surface region to capture the ionized analytes and deliver them to a mass spectrometer. The approach of rapid and effective capturing of molecules after laser desorption/ionization allows the limit of detection for the amino acid lysine to be as low as 2 amol under ambient ionization conditions. Two-dimensional maps of the desorbed/ionized species are recorded by moving the sample on an XY translational stage. The spatial resolution for imaging with LDIDD-MS was determined to be 2.4 μm for an ink-printed pattern and 3 μm for mouse brain tissue. We applied LDIDD-MS to single-cell analysis of apoptotic HEK cells. Differences were observed in the profiles of fatty acids and lipids between healthy HEK cells and those undergoing apoptosis. We observed upregulation of phosphatidylcholine (PC) with a relatively shorter carbon chain length and downregulation of PC with a relatively longer carbon chain length. We also applied LDIDD-MS for a real-time direct measurements of live-cell exocytosis. The catecholamine dopamine and trace amines (phenethylamine and tyramine) were detected from live PC12 cells without damaging them.

  4. Efficient Methods to Generate Reproducible Mass Spectra in Matrix-Assisted Laser Desorption Ionization of Peptides

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Bae, Yong Jin; Kim, Myung Soo

    2013-06-01

    In our previous matrix-assisted laser desorption ionization (MALDI) studies of peptides, we found that their mass spectra were virtually determined by the effective temperature in the early matrix plume, Tearly, when samples were rather homogeneous. This empirical rule allowed acquisition of quantitatively reproducible spectra. A difficulty in utilizing this rule was the complicated spectral treatment needed to get Tearly. In this work, we found another empirical rule that the total number of particles hitting the detector, or TIC, was a good measure of the spectral temperature and, hence, selection of spectra with the same TIC resulted in reproducible spectra. We also succeeded in obtaining reproducible spectra throughout a measurement by controlling TIC near a preset value through feedback adjustment of laser pulse energy. Both TIC selection and TIC control substantially reduced the shot-to-shot spectral variation in a spot, spot-to-spot variation in a sample, and even sample-to-sample variation in MALDI using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid as matrix. Based on the utilization of acquired data, TIC control was more efficient than TIC selection by an order of magnitude. Both techniques produced calibration curves with excellent linearity, suggesting their utility in quantification of peptides.

  5. Detection of Biosignatures by Geomatrix-Assisted Laser Desorption/Ionization (GALDI) Mass Spectrometry

    SciTech Connect

    Jill R. Scott; Beizhan Yan; Daphne L. Stoner; J. Michelle Kotler; Nancy W. Hinman

    2007-04-01

    Identification of mineral-associated biosignatures is of significance for retrieving biochemical information from geological records here on Earth and detecting signs of life on other planets, such as Mars. The importance of the geomatrix for identifying amino acids (e.g., histidine, threonine, and cysteine) and small proteins (e.g., gramicidin S) was investigated by laser desorption Fourier transform mass spectrometry. The investigated geomatrices include analogues of Fe-bearing minerals such as hematite and Na-bearing evaporites (e.g., halite). Samples were prepared by two methods: 1) application of analyte to the geomatrix surface and 2) production of homogenous analyte:geomatrix mixtures. Comparison of the two sample preparation methods revealed that the mixing method produces a better signal/noise ratio than surface application for the analyses of amino acids. The composition of the geomatrix has a profound influence on the detection of biomolecules. Peaks corresponding to the cation-attached biomolecular ions were observed for the Na-bearing evaporite analogue. No detectable peaks for the biomolecular ion species were observed when the biomolecules were associated with Fe-bearing minerals. Instead, only minor peaks were observed that may correspond to ions from fragments of the biomolecules. Depending on the underlying mineral composition, geomatrix-assisted laser desorption/ionization shows promise for directly identifying biosignatures associated with minerals.

  6. Efficient methods to generate reproducible mass spectra in matrix-assisted laser desorption ionization of peptides.

    PubMed

    Ahn, Sung Hee; Park, Kyung Man; Bae, Yong Jin; Kim, Myung Soo

    2013-06-01

    In our previous matrix-assisted laser desorption ionization (MALDI) studies of peptides, we found that their mass spectra were virtually determined by the effective temperature in the early matrix plume, Tearly, when samples were rather homogeneous. This empirical rule allowed acquisition of quantitatively reproducible spectra. A difficulty in utilizing this rule was the complicated spectral treatment needed to get Tearly. In this work, we found another empirical rule that the total number of particles hitting the detector, or TIC, was a good measure of the spectral temperature and, hence, selection of spectra with the same TIC resulted in reproducible spectra. We also succeeded in obtaining reproducible spectra throughout a measurement by controlling TIC near a preset value through feedback adjustment of laser pulse energy. Both TIC selection and TIC control substantially reduced the shot-to-shot spectral variation in a spot, spot-to-spot variation in a sample, and even sample-to-sample variation in MALDI using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid as matrix. Based on the utilization of acquired data, TIC control was more efficient than TIC selection by an order of magnitude. Both techniques produced calibration curves with excellent linearity, suggesting their utility in quantification of peptides.

  7. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE PAGES

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; ...

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  8. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    SciTech Connect

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; Willingham, D. G.; Knight, K. B.; Hutcheon, I. D.

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.

  9. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    SciTech Connect

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; Willingham, D. G.; Knight, K. B.; Hutcheon, I. D.

    2016-01-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the U-235/U-238 ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the U-235/U-238 ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. Development of this model has highlighted several important considerations for properly interpreting experimental results.

  10. Gene analysis using mass spectrometric cleaved amplified polymorphic sequence (MS-CAPS) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF).

    PubMed

    Kajiwara, Hideyuki

    2015-01-01

    Mass spectrometric cleaved amplified polymorphic sequence (MS-CAPS) is a method for detecting genes using a combination of short PCR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). MS-CAPS can identify a single nucleotide polymorphism (SNP) in less than one hour and is suitable for plants, animals, bacteria, and food.

  11. Semiquantitative multielemental analysis of biological samples by a laser ionization orthogonal time-of-flight mass spectrometer.

    PubMed

    Chen, Lizhi; Lin, Lin; Yu, Quan; Yan, Xiaomei; Hang, Wei; He, Jian; Huang, Benli

    2009-07-01

    Semiquantitative multielemental analyses of biological samples (tea leaf standard, Laminaria japonica, and pig skin) were demonstrated with a newly developed laser ionization orthogonal time-of-flight mass spectrometer (LI-O-TOFMS). The sample was directly ablated and ionized with high irradiance after simple sample preparation. Relative sensitivity coefficients (RSC) were calculated and evaluated for sensitivity differences. Due to the employment of a collisional cooling device and the orthogonal geometry of the TOF system, high resolving power can be obtained, such that elemental peaks and interferential peaks with the same nominal mass can be distinguished. The detection limit of microg g(-1) levels can be commonly achieved for elemental determination.

  12. High-mass matrix-assisted laser desorption ionization-mass spectrometry of integral membrane proteins and their complexes.

    PubMed

    Chen, Fan; Gerber, Sabina; Heuser, Katrin; Korkhov, Vladimir M; Lizak, Christian; Mireku, Samantha; Locher, Kaspar P; Zenobi, Renato

    2013-04-02

    Analyzing purified membrane proteins and membrane protein complexes by mass spectrometry has been notoriously challenging and required highly specialized buffer conditions, sample preparation methods, and apparatus. Here we show that a standard matrix-assisted laser desorption/ionization (MALDI) protocol, if used in combination with a high-mass detector, allows straightforward mass spectrometric measurements of integral membrane proteins and their complexes, directly following purification in detergent solution. Molecular weights can be determined precisely (mass error ≤ 0.1%) such that high-mass MALDI-MS was able to identify the site for N-linked glycosylation of the eukaryotic multidrug ABC transporter Cdr1p without special purification steps, which is impossible by any other current approach. After chemical cross-linking with glutaraldehyde in the presence of detergent micelles, the subunit stoichiometries of a series of integral membrane protein complexes, including the homomeric PglK and the heteromeric BtuCD as well as BtuCDF, were unambiguously resolved. This thus adds a valuable tool for biophysical characterization of integral membrane proteins.

  13. Combining Laser Ablation/Liquid Phase Collection Surface Sampling and High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of this coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC/ESI-MS analysis revealed successful laser ablation, capture and, with HPLC, the separation of the two compounds. The ablated circular area was about 70 m in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.

  14. Laser ionization mass-spectrometric element analysis of soils, drinking, underground and industrial waters

    NASA Astrophysics Data System (ADS)

    Khodyreva, E.; Khodyrev, Y.

    2003-04-01

    For detection of heavy metal salts and determination of their concentrations the laser ionization mass-spectrometry was used as the most sensitive and informative analytical method, which allows to carry out the simultaneously analysis of all elements of the periodical system with limit sensitivity 10-7g/l. The samples of soils, drinking water of the Kreschensky springs, underground and industrial waters from the wells of oil field Romashkin (Tatarstan) were chosen as the object of the research. The method LIMS was tested in experimental area of ?Tatneft¦, where elements Br, Ge, Ga, Zn, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, K, Ca, Cl, S, P, Si, Al, Mg, Na, Be, B, Li were detected. In respect to possible metal extraction, scandium is of most interest in inspected area because its very high cost and availability of water-soluble pattern (most probable, chloride). Its concentration in one of wells was 1 mg/l in water and 0,01 mg/l in oil. On the basis of the experimental data the schemes of the concentration distribution of heavy metal salt were drawn for the region under investigation and possible ways of their migration were shown.

  15. Analysis of Solar Wind Samples Returned by Genesis Using Laser Post Ionization Secondary Neutral Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.

    2005-12-01

    A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of

  16. Gold nanoparticles loaded on zeolite as inorganic matrix for laser desorption/ionization mass spectrometry of small molecules

    NASA Astrophysics Data System (ADS)

    Yang, Mengrui; Fujino, Tatsuya

    2014-01-01

    Gold nanoparticles (AuNPs) were loaded on zeolite to produce an inorganic matrix for the laser desorption/ionization mass spectrometry of low molecular weight compounds. Owing to the strong acidity of zeolite, amino acids were detected as H+- or Na+-adducted species regardless of their isoelectric points. AuNPs on zeolite could also be used as an efficient Au+ supplier. By utilizing Au+ generated by photoexcitation, the ionization of the amino acids mixture, urea, and acetylsalicylic acid by Au+ adduction was demonstrated.

  17. Real-Time Analysis of Water by Membrane Introduction/Laser Ionization Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Oser, H.; Irwin, A.; Mullen, C.; Coggiola, M. J.

    2005-12-01

    Two photon resonance enhanced multiphoton ionization (REMPI) has been shown to be an unique ionization method for mass spectrometry with high sensitivity and selectivity. This method has been used for about thirty years for fundamental studies in molecular spectroscopy and dynamics, but recently has been examined and developed as a tool for fast, rapid on-line monitoring of complex gas mixtures. The list of reported successful applications includes on-line monitoring of combustion processes, monitoring of automotive exhaust and the formation chemistry of Polychlorinated Dioxins/Furans in waste incineration. At SRI International we are studying the REMPI method for analytical purposes for the determination of trace amounts of hazardous air pollutants, toxics in vehicle exhausts, breath analysis, cancer drugs, and explosives. Since REMPI is a gas phase method, REMPI applications have been limited and applied to gas phase systems or in conjunction with a combination of laser desorption and subsequent laser ionization. We describe here for the first time a combination of MIMS and REMPI with time-of flight mass spectrometry (ToF MS), which allows the direct analysis of water samples. The application of ToF MS offers some advantages like high transmission, robustness, and the ability to record a mass spectrum per each laser shot The objective of this research was the detection of trace amounts of aromatic contaminants particularly BETX in aqueous solutions without interference or clogging of the inlet due to the vastly greater amount of water. To our knowledge, this combination of membrane introduction, laser photoionization and ToF MS has not been examined previously. A significant feature of MIMS is the simultaneous introduction of all analytes into the mass spectrometer. This results in a rapid analytical method, suitable for on-line applications. However, the application of conventional ionization methods presumably electron impact, making the analysis of complex

  18. Matrix-assisted laser desorption/ionization mass spectrometry of covalently cationized polyethylene as a function of sample temperature

    NASA Astrophysics Data System (ADS)

    Wallace, W. E.; Blair, W. R.

    2007-05-01

    A pre-charged, low molecular mass, low polydispersity linear polyethylene was analyzed with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry as a function of sample temperature between 25 °C and 150 °C. This temperature range crosses the polyethylene melting temperature. Buckminsterfullerene (C60) was used as MALDI matrix due to the high volatility of typical MALDI matrices making them unsuitable for heating in vacuum. Starting at 90 °C there is an increase in polyethylene ion intensity at fixed laser energy. By 150 °C the integrated total ion intensity had grown by six-fold indicating that melting did indeed increase ion yield. At 150 °C the threshold laser intensity to produce intact polyethylene ions decreased by about 25%. Nevertheless, significant fragmentation accompanied the intact polyethylene ions even at the highest temperatures and the lowest laser energies.

  19. Engineering matrix-free laser desorption ionization mass spectrometry using glancing angle deposition films.

    PubMed

    Singh, Reshma; Bezuidenhout, Louis W; Jemere, Abebaw; Wang, Zhen; Brett, Michael; Harrison, D Jed

    2017-04-15

    Thin, nanoporous films fabricated using Glancing Angle Deposition (GLAD) technology are demonstrated for solid matrix laser desorption/ionization mass spectrometry (SMALDI-MS). GLAD allows facile engineering of nanoporosity, film thickness, post alignment, and material composition, as demonstrated here by the fabrication of Co-GLAD and Si-GLAD films for SMALDI, and by exploration of the SMALDI performance as a function of thickness, post density, and angle of the post relative to surface normal. GLAD films were prepared by electron beam evaporation onto silicon substrates, using steep angles of incidence for the vacuum deposition, with computer controlled substrate rotation. LDI from the GLAD films was evaluated using an MDS-Sciex time-of-flight (TOF) MALDI mass spectrometer. Co-GLAD films give a limit of quantitation of 6 fmol for complex carbohydrate derivatives, and slanted-post Si-GLAD films show up to three times higher sensitivity than vertical post structures. Reproducibility of both Si and Co films is much higher than conventional MALDI methods for m/z below at least 2100 Da. Both reproducibility and detection limits are comparable to or better than other nano-structured materials. Co-GLAD films are significantly better in performance than Co powders or Co thin films on silicon substrates previously evaluated. The flexibility of GLAD for thin film fabrication of LDI materials is demonstrated by the range of nanoporous materials that can be grown, and the fine control over structural conformation, thickness and porosity. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Detection of polychlorinated biphenyls in transformer oils in Vietnam by multiphoton ionization mass spectrometry using a far-ultraviolet femtosecond laser as an ionization source.

    PubMed

    Duong, Vu Thi Thuy; Duong, Vu; Lien, Nghiem Thi Ha; Imasaka, Tomoko; Tang, Yuanyuan; Shibuta, Shinpei; Hamachi, Akifumi; Hoa, Do Quang; Imasaka, Totaro

    2016-03-01

    Polychlorinated biphenyls (PCBs) in transformer and food oils were measured using gas chromatography combined with multiphoton ionization mass spectroscopy. An ultrashort laser pulse emitting in the far-ultraviolet region was utilized for efficient ionization of the analytes. Numerous signal peaks were clearly observed for a standard sample mixture of PCBs when the third and fourth harmonic emissions (267 and 200nm) of a femtosecond Ti:sapphire laser (800nm) were employed. The signal intensities were found to be greater when measured at 200nm compared with those measured at 267nm, providing lower detection limits especially for highly chlorinated PCBs at shorter wavelengths. After simple pretreatment using disposable columns, PCB congeners were measured and found to be present in the transformer oils used in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Combined chemical and topographic imaging at atmospheric pressure via microprobe laser desorption/ionization mass spectrometry-atomic force microscopy.

    PubMed

    Bradshaw, James A; Ovchinnikova, Olga S; Meyer, Kent A; Goeringer, Douglas E

    2009-12-01

    The operational characteristics and imaging performance are described for a new instrument comprising an atomic force microscope coupled with a pulsed laser and a linear ion trap mass spectrometer. The operating mode of the atomic force microscope is used to produce topographic surface images having sub-micrometer spatial and height resolution. Spatially resolved mass spectra of ions, produced from the same surface via microprobe-mode laser desorption/ionization at atmospheric pressure, are also used to create a 100 x 100 microm chemical image. The effective spatial resolution of the image (approximately 2 microm) was constrained by the limit of detection (estimated to be 10(9)-10(10) molecules) rather than by the diameter of the focused laser spot or the step size of the sample stage. The instrument has the potential to be particularly useful for surface analysis scenarios in which chemical analysis of targeted topographic features is desired; consequently, it should have extensive application in a number of scientific areas. Because the number density of desorbed neutral species in laser desorption/ionization is known to be orders-of-magnitude greater than that of ions, it is expected that improvements in imaging performance can be realized by implementation of post-ionization methods.

  2. Nanoparticle-assisted laser desorption/ionization mass spectrometry: Novel sample preparation methods and nanoparticle screening for plant metabolite imaging

    SciTech Connect

    Yagnik, Gargey B.

    2016-02-19

    The main goal of the presented research is development of nanoparticle based matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). This dissertation includes the application of previously developed data acquisition methods, development of novel sample preparation methods, application and comparison of novel nanoparticle matrices, and comparison of two nanoparticle matrix application methods for MALDI-MS and MALDI-MS imaging.

  3. Comparison of sample pre-treatments for laser desorption ionization and secondary ion mass spectrometry imaging of Miscanthus x giganteus.

    PubMed

    Li, Zhen; Bohn, Paul W; Sweedler, Jonathan V

    2010-07-01

    Efforts to further the potential of the large perennial grass Miscanthusxgiganteus as a biofuel feedstock would be aided by the ability to image the chemical species present during the fuel production process. Toward this end, two mass spectrometry imaging (MSI) approaches have been investigated here-laser desorption/ionization mass spectrometry (LDI-MS) and secondary ion mass spectrometry (SIMS). As a first step, cross sections of Miscanthus were subjected to a variety of sample preparation methods to optimize conditions for MSI. For LDI-MS, a thin metal coating (2 nm thick Au) provided high quality signals of saccharide-related ions. The traditional matrix-assisted laser desorption/ionization matrix, 2,5-dihydroxybenzoic acid, also showed high efficiency for the desorption of saccharide-related ions. In contrast, with alpha-cyano-4-hydroxycinnamic acid matrix, these ions were nearly absent in the mass spectra. Direct laser ablation of untreated Miscanthus sections was also performed. High resolution images, where the fine structure of the vascular bundle could be clearly visualized, were obtained using SIMS. Although coating the sections with a nanometer thick Au layer can greatly enhance the quality of SIMS images, the coating had limited effect on secondary ion signal enhancement. Using the optimized mass spectrometry approaches described here, information on the spatial distribution of several saccharides was obtained.

  4. High-throughput proteomics using matrix-assisted laser desorption/ ionization mass spectrometry.

    PubMed

    Cramer, Rainer; Gobom, Johan; Nordhoff, Eckhard

    2005-06-01

    It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.

  5. Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis.

    PubMed

    Stopka, Sylwia A; Mansour, Tarek R; Shrestha, Bindesh; Maréchal, Éric; Falconet, Denis; Vertes, Akos

    2016-01-01

    Biochemical processes rely on elaborate networks containing thousands of compounds participating in thousands of reaction. Rapid turnover of diverse metabolites and lipids in an organism is an essential part of homeostasis. It affects energy production and storage, two important processes utilized in bioengineering. Conventional approaches to simultaneously quantify a large number of turnover rates in biological systems are currently not feasible. Here we show that pulse-chase analysis followed by laser ablation electrospray ionization mass spectrometry (LAESI-MS) enable the simultaneous and rapid determination of metabolic turnover rates. The incorporation of ion mobility separation (IMS) allowed an additional dimension of analysis, i.e., the detection and identification of isotopologs based on their collision cross sections. We demonstrated these capabilities by determining metabolite, lipid, and peptide turnover in the photosynthetic green algae, Chlamydomonas reinhardtii, in the presence of (15)N-labeled ammonium chloride as the main nitrogen source. Following the reversal of isotope patterns in the chase phase by LAESI-IMS-MS revealed the turnover rates and half-lives for biochemical species with a wide range of natural concentrations, e.g., chlorophyll metabolites, lipids, and peptides. For example, the half-lives of lyso-DGTS(16:0) and DGTS(18:3/16:0), t1/2 = 43.6 ± 4.5 h and 47.6 ± 2.2 h, respectively, provided insight into lipid synthesis and degradation in this organism. Within the same experiment, half-lives for chlorophyll a, t1/2 = 24.1 ± 2.2 h, and a 2.8 kDa peptide, t1/2 = 10.4 ± 3.6 h, were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

    PubMed

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins.

  7. Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Niidome, Yasuro; Nakamura, Yuki; Honda, Kanako; Akiyama, Yasuyuki; Nishioka, Koji; Kawasaki, Hideya; Nakashima, Naotoshi

    2009-04-07

    Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-MS) indicated AgBr2-, which adsorbed on gold nanorod surfaces, was a key material to control the anisotropic growth of gold nanorods.

  8. An evaluation of the spectral properties of nerve agents for laser ionization mass spectrometry.

    PubMed

    Imasaka, Tomoko; Imasaka, Totaro

    2014-01-01

    Excitation energies, oscillator strengths, and vacuum-ultraviolet/deep-ultraviolet absorption spectra were calculated for nerve agents, such as sarin, soman, VX, tabun, mustard gas, and analogs. We used time-dependent density functional theory (TD-DFT) methods that included B3LYP combined with basis sets of cc-pVDZ and cc-pVTZ, and ωB97XD with cc-pVTZ. The vertical ionization energies were also calculated for these compounds, in order to collect additional information relative to the optimal pathways for multiphoton ionization in mass spectrometry.

  9. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes were used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.

  10. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  11. Quantitative analysis of synthetic polymers using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Chen, Hui; He, Meiyu; Pei, Jian; He, Haifeng

    2003-12-01

    Quantitative analyses of synthetic polymers were accomplished using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). Many factors have hindered the development of quantitative measurement of polymers via MALDI TOF MS, e.g., laser power, matrix, cation salt, and cocrystallization. By probing the optimal conditions, two sets of polymers were studied. Fair repeatability of the samples ensures acceptable results. In set 1, two poly(ethylene glycols) with different end groups showed equal desorption/ionization efficiencies. Two synthetic polymers in set 2 with different chemical properties resulted in different MALDI responses. Good linearity was achieved by plotting the relationship between the sample concentration ratio and the total signal intensity ratio in both sets.

  12. Ionic liquids as matrices in microfluidic sample deposition for high-mass matrix- assisted laser desorption/ionization mass spectrometry.

    PubMed

    Weidmann, Simon; Kemmerling, Simon; Mädler, Stefanie; Stahlberg, Henning; Braun, Thomas; Zenobi, Renato

    2012-01-01

    Sample preparation for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) via a microfluidic deposition device using ionic liquid matrices addresses several problems of standard protocols with crystalline matrices, such as the heterogeneity of sample spots due to the co-crystallization of sample and matrix and the limited capability for high-throughput analysis. Since ionic liquid matrices do not solidify during the measurement, the resulting sample spots are homogeneous. The use of these matrices is also beneficial for automated sample preparation, since crystallization of the matrix is avoided and, thus, no clogging of the spotting device can occur. The applicability of ionic liquids to the analysis of biomolecules with high molecular weights, up to ≈ 1 MDa is shown, as well as a good sensitivity (5 fmol) for recombinant human fibronectin, a protein with a molecular weight of 226 kDa. Microfluidic sample deposition of proteins with high molecular weights will, in the future, allow parallel sample preparation for MALDI-MS and for electron microscopy.

  13. Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization.

    PubMed

    Todd, P J; Schaaff, T G; Chaurand, P; Caprioli, R M

    2001-04-01

    Organic secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry can be used to produce molecular images of samples. This is achieved through ionization from a clearly identified point on a flat sample, and performing a raster of the sample by moving the point of ionization over the sample surface. The unique analytical capabilities of mass spectrometry for mapping a variety of biological samples at the tissue level are discussed. SIMS provides information on the spatial distribution of the elements and low molecular mass compounds as well as molecular structures on these compounds, while MALDI yields spatial information about higher molecular mass compounds, including their distributions in tissues at very low levels, as well as information on the molecular structures of these compounds. Application of these methods to analytical problems requires appropriate instrumentation, sample preparation methodology, and a data presentation usually in a three-coordinate plot where x and y are physical dimensions of the sample and z is the signal amplitude. The use of imaging mass spectrometry is illustrated with several biological systems.

  14. Black phosphorus-assisted laser desorption ionization mass spectrometry for the determination of low-molecular-weight compounds in biofluids.

    PubMed

    He, Xiao-Mei; Ding, Jun; Yu, Lei; Hussain, Dilshad; Feng, Yu-Qi

    2016-09-01

    Quantitative analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been a challenging task due to matrix-derived interferences in low m/z region and poor reproducibility of MS signal response. In this study, we developed an approach by applying black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix for the quantitative analysis of small molecules for the first time. Black phosphorus-assisted laser desorption/ionization mass spectrometry (BP/ALDI-MS) showed clear background and exhibited superior detection sensitivity toward quaternary ammonium compounds compared to carbon-based materials. By combining stable isotope labeling (SIL) strategy with BP/ALDI-MS (SIL-BP/ALDI-MS), a variety of analytes labeled with quaternary ammonium group were sensitively detected. Moreover, the isotope-labeled forms of analytes also served as internal standards, which broadened the analyte coverage of BP/ALDI-MS and improved the reproducibility of MS signals. Based on these advantages, a reliable method for quantitative analysis of aldehydes from complex biological samples (saliva, urine, and serum) was successfully established. Good linearities were obtained for five aldehydes in the range of 0.1-20.0 μM with correlation coefficients (R (2)) larger than 0.9928. The LODs were found to be 20 to 100 nM. Reproducibility of the method was obtained with intra-day and inter-day relative standard deviations (RSDs) less than 10.4 %, and the recoveries in saliva samples ranged from 91.4 to 117.1 %. Taken together, the proposed SIL-BP/ALDI-MS strategy has proved to be a reliable tool for quantitative analysis of aldehydes from complex samples. Graphical Abstract An approach for the determination of small molecules was developed by using black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix.

  15. Few layer graphene matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Cho, Donghyun; Hong, Sangsu; Shim, Sangdeok

    2013-08-01

    We present the employment of few layer graphene (FLG) as a matrix for the analysis of low molecular weight polymeric compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The practicality of FLG as a matrix for MALDI experiments is demonstrated by analyzing low molecular weight polymers, polar polyethylene glycol (PEG) of 1000 Da and nonpolar polymethylmethacrylate (PMMA) of 650 Da. The high quality MS spectra without low-mass interference signals without any further sampling procedure were acquired.

  16. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer.

    PubMed

    Zhong, Hongying; Fu, Jieying; Wang, Xiaoli; Zheng, Shi

    2012-06-04

    Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ=355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO(2) nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry.

  17. Direct Analysis of Textile Fabrics and Dyes Using IR Matrix-Assisted Laser Desorption Electrospray Ionization (MALDESI) Mass Spectrometry

    PubMed Central

    Cochran, Kristin H.; Barry, Jeremy A.; Muddiman, David C.; Hinks, David

    2012-01-01

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then post-ionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031

  18. Aptamer Conjugated Multifunctional Nanoflowers as a Platform for Targeting, Capture and Detection in Laser Desorption Ionization Mass Spectrometry

    PubMed Central

    Ocsoy, Ismail; Gulbakan, Basri; Shukoor, Mohammed Ibrahim; Xiong, Xiangling; Chen, Tao; Powell, David H.; Tan, Weihong

    2013-01-01

    Although many different nanomaterials have been tested as substrates for laser desorption and ionization mass spectrometry (LDI-MS), this emerging field still requires more efficient multifuncional nanomaterials for targeting, enrichment and detection. Here, we report the use of gold-manganese oxide (Au@MnO) hybrid nanoflowers as an efficient matrix for LDI–MS. The nanoflowers were also functionalized with two different aptamers to target cancer cells and capture adenosine triphosphate (ATP), respectively. These nanoflowers were successfully used for metabolite extraction from cancer cell lysates. Thus, in one system, our multifunctional nanoflowers can 1) act as an ionization substrate for mass spectrometry, 2) target cancer cells, and 3) detect and analyze metabolites from cancer cells. PMID:23211039

  19. Aptamer-conjugated multifunctional nanoflowers as a platform for targeting, capture, and detection in laser desorption ionization mass spectrometry.

    PubMed

    Ocsoy, Ismail; Gulbakan, Basri; Shukoor, Mohammed Ibrahim; Xiong, Xiangling; Chen, Tao; Powell, David H; Tan, Weihong

    2013-01-22

    Although many different nanomaterials have been tested as substrates for laser desorption and ionization mass spectrometry (LDI-MS), this emerging field still requires more efficient multifuncional nanomaterials for targeting, enrichment, and detection. Here, we report the use of gold manganese oxide (Au@MnO) hybrid nanoflowers as an efficient matrix for LDI-MS. The nanoflowers were also functionalized with two different aptamers to target cancer cells and capture adenosine triphosphate (ATP). These nanoflowers were successfully used for metabolite extraction from cancer cell lysates. Thus, in one system, our multifunctional nanoflowers can (1) act as an ionization substrate for mass spectrometry, (2) target cancer cells, and (3) detect and analyze metabolites from cancer cells.

  20. Characterization of surface ligands on functionalized magnetic nanoparticles using laser desorption/ionization mass spectrometry (LDI-MS)

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Jeong, Youngdo; Mercante, Luiza A.; Tonga, Gülen Yesilbag; Kim, Chaekyu; Zhu, Zheng-Jiang; Vachet, Richard W.; Rotello, Vincent M.

    2013-05-01

    Functionalized magnetic nanoparticles (MNPs) have been characterized by laser desorption/ionization mass spectrometry (LDI-MS). Quantitative information about surface ligand composition and structure for monolayer and mixed monolayer protected Fe3O4 and FePt NPs can be obtained rapidly with very little sample consumption.Functionalized magnetic nanoparticles (MNPs) have been characterized by laser desorption/ionization mass spectrometry (LDI-MS). Quantitative information about surface ligand composition and structure for monolayer and mixed monolayer protected Fe3O4 and FePt NPs can be obtained rapidly with very little sample consumption. Electronic supplementary information (ESI) available: synthesis of surface ligands and magnetic NPs, LDI-MS fragmentation pathway of dopamine-terminated ligand bound on FePt NPs, LDI-mass spectra of Fe3O4 NPs, LDI-mass spectra of 5 different mixed-monolayer FePt NPs, identities of additional ions in LDI-mass spectrum of FePt NP with ligand T, 3 day reproducibility result, and HPLC-MS result. See DOI: 10.1039/c3nr01384g

  1. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  2. Screening of gluten avenins in foods by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Camafeita, E; Méndez, E

    1998-10-01

    The first procedure capable of analysing gluten avenins in gluten-free food samples aimed at the diet control of coeliac patients is described. The method is based on the direct observation of the characteristic avenin mass pattern, around 20-30 kDa, as revealed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS). The mass range where avenin signals appear is free from mass peaks arising from wheat gliadin, barley hordein and rye secalin protein components, which are also toxic to coeliac patients. Therefore, avenins can easily be screened in complex formula food samples elaborated with mixtures of wheat, barley, rye and oats. In addition, a procedure to quantify avenins in food samples is described on the basis of avenin mass area measurement with a detection limit of 0.4 mg of avenins per 100 g of food.

  3. Evaluation of combined matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis.

    PubMed

    da Silva, David; Wasselin, Thierry; Carré, Vincent; Chaimbault, Patrick; Bezdetnaya, Lina; Maunit, Benoît; Muller, Jean-François

    2011-07-15

    Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage.

  4. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    SciTech Connect

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  5. Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(MALDI)-mass spectrometry.

    PubMed

    Abdelhamid, Hani Nasser; Wu, Hui-Fen

    2013-10-15

    The present study introduces two novel organic matrices for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the analysis of small molecules. The first matrix is "2-amino-4,5-diphenylfuran-3-carboxylic acid" (also called furoic acid, FA) which was synthesized and then characterized by ultraviolet (UV), infrared (FTIR), nuclear magnetic resonance NMR ((1)H and (13)C) and mass spectrometry. The compound has organic semiconductor properties and exhibits intense UV-absorption which is suitable for the UV-MALDI laser (N2 laser, 337 nm). The second matrix is mefenamic acid (MA). The two matrices can be successfully applied for various classes of compounds including adenosine-5'-triphosphate (ATP, 0.5 µL(10.0 nmol)), spectinomycin (spect, 0.5 µL(14.0 nmol)), glutathione (GSH, 0.5 µL(9.0 nmol)), sulfamethazole (SMT, 0.5 µL(2.0 nmol)) and mixture of peptides gramicidin D (GD, 0.5µL (9.0 nmol)). The two matrices can effectively absorb the laser energy, resulting in excellent desorption/ionization of small molecules. The new matrices offer a significant enhancement of ionization, less fragmentation, few interferences, nice reproducibility, and excellent stability under vacuum. Theoretical calculations of the physical parameters demonstrated increase in polarizability, molar volume and refractivity than the conventional organic matrices which can effectively enhance the proton transfer reactions between the matrices with the analyte molecules. While the reduction in density, surface tension and index of refraction can enhance homogeneity between the two new matrices with the analytes. Due to the sublimation energy of mefenamic acid is (1.2 times) higher than that of the DHB, it is more stable to be used in the vacuum.

  6. Matrix-assisted laser desorption/ionization mass spectrometric analysis of uncomplexed highly sulfated oligosaccharides using ionic liquid matrices.

    PubMed

    Laremore, Tatiana N; Murugesan, Saravanababu; Park, Tae-Joon; Avci, Fikri Y; Zagorevski, Dmitri V; Linhardt, Robert J

    2006-03-15

    Direct UV matrix-assisted laser desorption/ionization (MALDI) mass spectrometric analysis of uncomplexed, underivatized, highly sulfated oligosaccharides has been carried out using ionic liquids as matrices. Under conventionally used MALDI time-of-flight experimental conditions, uncomplexed polysulfated oligosaccharides do not produce any signal. We report that 1-methylimidazolium alpha-cyano-4-hydroxycinnamate and butylammonium 2,5-dihydroxybenzoate ionic liquid matrices allow the detection of picomole amounts of the sodium salts of a disaccharide, sucrose octasulfate, and an octasulfated pentasaccharide, Arixtra. The experimental results indicate that both analytes undergo some degree of thermal fragmentation with a mass loss corresponding to cleavage of O-SO3Na bonds in the matrix upon laser irradiation, reflecting lability of sulfo groups.

  7. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Uncomplexed Highly Sulfated Oligosaccharides Using Ionic Liquid Matrices

    PubMed Central

    Laremore, Tatiana N.; Murugesan, Saravanababu; Park, Tae-Joon; Avci, Fikri Y.; Zagorevski, Dmitri V.; Linhardt, Robert J.

    2014-01-01

    Direct UV matrix-assisted laser desorption/ionization (MALDI) mass spectrometric analysis of uncomplexed, underivatized, highly sulfated oligosaccharides has been carried out using ionic liquids as matrices. Under conventionally used MALDI time-of-flight experimental conditions, uncomplexed polysulfated oligosaccharides do not produce any signal. We report that 1-methylimidazolium α-cyano-4-hydroxycinnamate and butylammonium 2,5-dihydroxybenzoate ionic liquid matrices allow the detection of picomole amounts of the sodium salts of a disaccharide, sucrose octasulfate, and an octasulfated pentasaccharide, Arixtra. The experimental results indicate that both analytes undergo some degree of thermal fragmentation with a mass loss corresponding to cleavage of O–SO3Na bonds in the matrix upon laser irradiation, reflecting lability of sulfo groups. PMID:16536411

  8. Structural features of polyacylated anthocyanins using matrix-assisted laser desorption/ionization and electrospray ionization time-of-flight mass spectrometry.

    PubMed

    Kasai, Hiroko F; Saito, Norio; Honda, Toshio

    2011-04-30

    In our continuing studies to isolate water-soluble vacuolar pigments, we expect to elucidate more structural details using mass spectrometry (MS). Because of its sensitivity, only a small amount of pigment extracted from natural plants is required for MS measurement. Nuclear magnetic resonance is also a useful spectroscopic method for structural determination. In this study, two soft ionization techniques, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), on time-of-flight (TOF) mass spectrometers, were used to analyze five polyacylated anthocyanins with more than two aromatic acid molecules in the side chains. ESI is advantageous for the detection of individual molecular ions, while MALDI is essential for the detection of characteristic fragment ions originating from the anthocyanidin. Although 2,5-dihydroxybenzoic acid (DHBA) is an effective matrix in MALDI-TOFMS to obtain informative fragment ions of polyacylated anthocyanins, α-cyano-4-hydroxycinnamic acid (CHCA) is the preferred matrix for the identification of aglycones. In particular, in measurements of polyacylated anthocyanins with two acylated glycoside chains, fragment ions originating from anthocyanidin can only be observed in MALDI-TOFMS using CHCA as the matrix. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Discrimination of Penicillium isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting.

    PubMed

    Hettick, Justin M; Green, Brett J; Buskirk, Amanda D; Kashon, Michael L; Slaven, James E; Janotka, Erika; Blachere, Francoise M; Schmechel, Detlef; Beezhold, Donald H

    2008-08-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral 'fingerprints' for twelve Penicillium species. Prior to MALDI-TOF MS analysis, eight replicate cultures of each Penicillium species were subjected to three one-minute bead-beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contained abundant peaks in the range of m/z 5000-20 000, and allowed unambiguous discrimination between species. In addition, a biomarker common to all Penicillium mass spectra was observed at m/z 13 900. Discriminant analysis using the MALDI-TOF MS data yielded classification error rates of 0% (i.e. 100% correct identification), indicating that MALDI-TOF MS data may be a useful diagnostic tool for the objective identification of Penicillium species of environmental and clinical importance.

  10. [Special application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiological diagnostics].

    PubMed

    Nagy, Erzsébet; Abrók, Marianna; Bartha, Noémi; Bereczki, László; Juhász, Emese; Kardos, Gábor; Kristóf, Katalin; Miszti, Cecilia; Urbán, Edit

    2014-09-21

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a new possibility for rapid identification of bacteria and fungi revolutionized the clinical microbiological diagnostics. It has an extreme importance in the routine microbiological laboratories, as identification of the pathogenic species rapidly will influence antibiotic selection before the final determination of antibiotic resistance of the isolate. The classical methods for identification of bacteria or fungi, based on biochemical tests, are influenced by many environmental factors. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry is a rapid method which is able to identify a great variety of the isolated bacteria and fungi based on the composition of conserved ribosomal proteins. Recently several other applications of the method have also been investigated such as direct identification of pathogens from the positive blood cultures. There are possibilities to identify bacteria from the urine samples in urinary tract infection or from other sterile body fluids. Using selective enrichment broth Salmonella sp from the stool samples can be identified more rapidly, too. The extended spectrum beta-lactamase or carbapenemase production of the isolated bacteria can be also detected by this method helping the antibiotic selection in some cases. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry based methods are suitable to investigate changes in deoxyribonucleic acid or ribonucleic acid, to carry out rapid antibiotic resistance determination or other proteomic analysis. The aim of this paper is to give an overview about present possibilities of using this technique in the clinical microbiological routine procedures.

  11. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    PubMed Central

    Aizikov, Konstantin; Smith, Donald F.; Chargin, David A.; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M. A.; O’Connor, Peter B.

    2011-01-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10–8 mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The “oversampling” MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter. PMID:21639522

  12. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    SciTech Connect

    Aizikov, Konstantin; Lin, Tzu-Yung; Smith, Donald F.; Heeren, Ron M. A.; Chargin, David A.; Ivanov, Sergei; O'Connor, Peter B.

    2011-05-15

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The range of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.

  13. Identification of Aeromonas isolates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Lamy, Brigitte; Kodjo, Angeli; Laurent, Frédéric

    2011-09-01

    We evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for identifying aeromonads with an extraction procedure. Genus-level accuracy was 100%. Compared to rpoB gene sequencing, species-level accuracy was 90.6% (29/32) for type and reference strains and 91.4% for a collection of 139 clinical and environmental isolates, making this system one of the most accurate and rapid methods for phenotypic identification. The reliability of this technique was very promising, although some improvements in database composition, taxonomy, and discriminatory power are needed. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry.

    PubMed

    Nemes, Peter; Barton, Alexis A; Li, Yue; Vertes, Akos

    2008-06-15

    Mass spectrometry in conjunction with atmospheric pressure ionization methods enables the in vivo investigation of biochemical changes with high specificity and sensitivity. Laser ablation electrospray ionization (LAESI) is a recently introduced ambient ionization method suited for the analysis of biological samples with sufficient water content. With LAESI mass spectrometric analysis of chimeric Aphelandra squarrosa leaf tissue, we identify the metabolites characteristic for the green and yellow sectors of variegation. Significant parts of the related biosynthetic pathways (e.g., kaempferol biosynthesis) are ascertained from the detected metabolites and metabolomic databases. Scanning electron microscopy of the ablated areas indicates the feasibility of both two-dimensional imaging and depth profiling with a approximately 350 microm lateral and approximately 50 microm depth resolution. Molecular distributions of some endogenous metabolites show chemical contrast between the sectors of variegation and quantitative changes as the ablation reaches the epidermal and mesophyll layers. Our results demonstrate that LAESI mass spectrometry opens a new way for ambient molecular imaging and depth profiling of metabolites in biological tissues and live organisms.

  15. Molecular Imaging of Growth, Metabolism, and Antibiotic Inhibition in Bacterial Colonies by Laser Ablation Electrospray Ionization Mass Spectrometry.

    PubMed

    Li, Hang; Balan, Pranav; Vertes, Akos

    2016-11-21

    Metabolism in microbial colonies responds to competing species, rapidly evolving genetic makeup, and sometimes dramatic environmental changes. Conventional characterization of the existing and emerging microbial strains and their interactions with antimicrobial agents, e.g., the Kirby-Bauer susceptibility test, relies on time consuming methods with limited ability to discern the molecular mechanism and the minimum inhibitory concentration. Assessing the metabolic adaptation of microbial colonies requires their non-targeted molecular imaging in a native environment. Laser ablation electrospray ionization (LAESI) is an ambient ionization technique that in combination with mass spectrometry (MS) enables the analysis and imaging of numerous metabolites and lipids. In this contribution, we report on the application of LAESI-MS imaging to gain deeper molecular insight into microbe-antibiotic interactions, and enhance the quantitative nature of antibiotic susceptibility testing while significantly reducing the required incubation time.

  16. Quantitative matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis of synthetic polymers and peptides.

    PubMed

    Hyzak, Lukas; Moos, Rebecca; von Rath, Friederike; Wulf, Volker; Wirtz, Michaela; Melchior, David; Kling, Hans-Willi; Köhler, Michael; Gäb, Siegmar; Schmitz, Oliver J

    2011-12-15

    Matrix-assisted laser desorption ionization (MALDI) is a very powerful and widely used mass spectrometric technique to ionize high molecular weight compounds. The most commonly used dried droplet (DD) technique can lead to a concentration distribution of the analyte on the target and is therefore often not suitable for reproducible analyses. We developed a new solvent-free deposition technique, called compressed sample (CS), to prevent the distribution of the analytes caused by the crystallization of the compounds. The CS technique presented in this work allows the quantitative analysis of synthetic polymers such as derivatized maltosides with correlation coefficients of 0.999 and peptides up to 3500 Da with correlation coefficients of at least 0.982 without the use of stable-isotope-labeled standards.

  17. Characterization of organic aerosol in Beijing by laser desorption ionization coupled with Fourier Transform Ion Cyclotron Resonance Mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xue, Jinjuan; Li, Yafeng; Xie, Xiaobo; Xiong, Caiqiao; Liu, Huihui; Chen, Suming; Nie, Zongxiu; Chen, Chuncheng; Zhao, Jincai

    2017-06-01

    In order to resolve the organic compositions in the atmospheric aerosol which is significant for understanding the formation mechanism of particulate matter and their harm for human health, a direct laser desorption ionization (LDI) coupled with Fourier Transform Resonance Mass (FT-ICR MS) was utilized for characterizing the aerosol particles collected in Beijing during winter. A lot of organic compounds can be detected by direct laser desorption ionization of the aerosol particular with different size collected on aluminum foil without complicated sample pretreatment process. In addition, semi quantification of the organic compounds can be achieved with solvent extraction procedure. It was found that the ubiquitous polycyclic aromatic hydrocarbons (PAHs) contaminants in the aerosol could serve as matrix, which helps the detection of many kinds of compounds including highly saturated amphiphilic long alkyl chain compounds (carbon number>16), like aliphatic amines in positive ion mode and organosulfates in negative ion mode. Based on the accurate mass measurement results, elemental compositions of over 1500 peaks in the mass spectrum were derived, and we categorized them into five groups according to their elemental compositions in order to provide helpful information for tracing the pollution source. It is demonstrated that abundant information about the organic components in the atmospheric aerosol can be provided by direct LDI FT-ICR MS method, and these information will largely facilitate further studies on origin and formation process of the aerosol.

  18. Matrix-Free UV-Laser Desorption Ionization Mass Spectrometry as a Versatile Approach for Accelerating Dereplication Studies on Lichens.

    PubMed

    Le Pogam, Pierre; Schinkovitz, Andreas; Legouin, Béatrice; Le Lamer, Anne-Cécile; Boustie, Joël; Richomme, Pascal

    2015-10-20

    The present study examined the suitability of laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) for the rapid chemical fingerprinting of lichen extracts. Lichens are known to produce a wide array of secondary metabolites. Most of these compounds are unique to the symbiotic condition but some can be found in many species. Therefore, dereplication, that is, the rapid identification of known compounds within a complex mixture is crucial in the search for novel natural products. Over the past decade, significant advances were made in analytical techniques and profiling methods specifically adapted to crude lichen extracts, but LDI-MS has never been applied in this context. However, most classes of lichen metabolites have UV chromophores, which are quite similar to commercial matrix molecules used in matrix-assisted laser desorption ionization (MALDI). It is consequently postulated that these molecules could be directly detectable by matrix-free LDI-MS. The present study evaluated the versatility of this technique by investigating the LDI properties of a vast array of single lichen metabolites as well as lichen extracts of known chemical composition. Results from the LDI experiments were compared with those obtained by direct ESI-MS detection as well as LC-ESI-MS. It was shown that LDI ionization leads to strong molecular ion formation with little fragmentation, thus, facilitating straightforward spectra interpretation and representing a valuable alternative to time-consuming LC-MS analysis.

  19. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2016-02-01

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis of single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling

  20. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2016-02-01

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop

  1. Analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

    PubMed

    Suzuki, Toshiyuki; Midonoya, Hitoshi; Shioi, Yuzo

    2009-07-01

    The analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry is described. Four matrices-sinapinic acid, a-cyano-4-hydroxycinnnamic acid, terthiophene, and 3-aminoquinoline-were examined to determine optimal conditions for analysis of the molecular mass and structure of chlorophyll a as a representative chlorophyll. Among them, terthiophene was the most efficient without releasing metal ions, although it caused fragmentation of the phytol-ester linkage. Terthiophene was useful for the analyses of chlorophyll derivatives as well as porphyrin products such as 8-deethyl-8-vinyl-chlorophyll a, pheophorbide a, pyropheophorbide a, bacteriochlorophyll a esterified phytol, and protoporphyrin IX. The current method is suitable for rapid and accurate determination of the molecular mass and structure of chlorophylls and porphyrins.

  2. Tryptic peptide purification using polyvinylidene difluoride membrane for matrix-assisted laser desorption ionization time of flight mass spectrometry.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI TOF MS) is extremely sensitive to minor impurities in tryptic peptide digests, resulting in suppression of the signal obtained. Therefore, it becomes necessary to purify the sample, especially those samples that fail to yield good mass spectra. Here, we describe a simple protocol using polyvinylidene difluoride (PVDF) membrane for purifying tryptic peptides prior to mass spectrometric analysis. The tryptic digest is spotted on a PVDF membrane, air-dried, and washed. The membrane is then extracted with trifluoroacetic acid/acetonitrile and the extract is then subjected to MALDI TOF MS. Using this procedure, we were able to identify a cross-reactive D1 autoantigen on the surface of neutrophils that bound antibodies targeting Ro 60 autoantigen in systemic lupus erythematosus.

  3. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  4. Desorption/Ionization Fluence Thresholds and Improved Mass Spectral Consistency Measured Using a Flattop Laser Profile in the Bioaerosol Mass Spectrometry of Single Bacillus Endospores

    SciTech Connect

    Steele, P T; Srivastava, A; Pitesky, M E; Fergenson, D P; Tobias, H J; Gard, E E; Frank, M

    2004-11-30

    Bioaerosol mass spectrometry (BAMS) is being developed to analyze and identify biological aerosols in real-time. Mass spectra of individual Bacillus endospores were measured here with a bipolar aerosol time-of-flight mass spectrometer in which molecular desorption and ionization were produced using a single laser pulse from a Q-switched, frequency-quadrupled Nd:YAG laser that was modified to have an approximately flattop profile. The flattened laser profile allowed the minimum fluence required to desorb and ionize significant numbers of ions from single aerosol particles to be determined. For Bacillus spores this threshold had a mean value of approximately 1 nJ/{micro}m{sup 2} (0.1 J/cm{sup 2}). Thresholds for individual spores, however, could apparently deviate by 20% or more from the mean. Threshold distributions for clumps of MS2 bacteriophage and bovine serum albumin were subsequently determined. Finally, the flattened profile was observed to increase the reproducibility of single spore mass spectra. This is consistent with the general conclusions of our earlier paper on the fluence dependence of single spore mass spectra and is particularly significant because it is expected to enable more robust differentiation and identification of single bioaerosol particles.

  5. The Characterization of Laser Ablation Patterns and a New Definition of Resolution in Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS)

    NASA Astrophysics Data System (ADS)

    O'Rourke, Matthew B.; Raymond, Benjamin B. A.; Padula, Matthew P.

    2017-03-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution.

  6. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  7. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  8. Simultaneous detection of nonpolar and polar compounds by heat-assisted laser ablation electrospray ionization mass spectrometry.

    PubMed

    Vaikkinen, Anu; Shrestha, Bindesh; Nazarian, Javad; Kostiainen, Risto; Vertes, Akos; Kauppila, Tiina J

    2013-01-02

    A heat-assisted laser ablation electrospray ionization (HA-LAESI) method for the simultaneous mass spectrometric analysis of nonpolar and polar analytes was developed. The sample was introduced using mid-infrared laser ablation of a water-rich target. The ablated analytes were ionized with an electrospray plume, which was intercepted by a heated nitrogen gas jet that enhanced the ionization of analytes of low polarity. The feasibility of HA-LAESI was tested by analyzing, e.g., naphtho[2,3-a]pyrene, cholesterol, tricaprylin, 1,1',2,2'-tetramyristoyl cardiolipin, bradykinin fragment 1-8, and 1-palmitoyl-2-oleoyl-sn-glycerol. HA-LAESI was found better suited for low polarity compounds than conventional LAESI, whereas polar compounds were observed with both techniques. The sensitivity of HA-LAESI for the polar bradykinin fragment 1-8 was slightly lower than observed for LAESI. HA-LAESI showed a linear response for 500 nM to 1.0 mM solutions (n = 11) of verapamil with R(2) = 0.988. HA-LAESI was applied for the direct analysis of tissue samples, e.g., avocado (Persea americana) mesocarp and mouse brain tissue sections. Spectra of the avocado showed abundant triglyceride ion peaks, and the results for the mouse brain sections showed cholesterol as the main species. Conventional LAESI shows significantly lower ionization efficiency for these neutral lipids. HA-LAESI can be applied to the analysis of nonpolar and polar analytes, and it extends the capabilities of conventional LAESI to nonpolar and neutral compounds.

  9. Tandem mass spectrometry of poly(ethylene imine)s by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI).

    PubMed

    Altuntaş, Esra; Knop, Katrin; Tauhardt, Lutz; Kempe, Kristian; Crecelius, Anna C; Jäger, Michael; Hager, Martin D; Schubert, Ulrich S

    2012-01-01

    In this contribution, linear poly(ethylene imine) (PEI) polymers, which are of importance in gene delivery, are investigated in detail by using electrospray ionization-quadrupole-time of flight (ESI-Q-TOF) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). The analyzed PEIs with different end groups were synthesized using the polymerization of substituted 2-oxazoline via a living cationic ring-opening polymerization (CROP) and a subsequent hydrolysis under acidic conditions. The main goal of this study was to identify linear PEI polymers in a detailed way to gain information about their fragmentation pathways. For this purpose, a detailed characterization of three different linear PEIs was performed by using ESI-Q-TOF and MALDI-TOF MS in combination with collision-induced dissociation (CID) experiments. In ESI-MS as well as MALDI-MS analysis, the obtained spectra of PEIs resulted in fitting mass distributions for the investigated PEIs. In the tandem MS analysis, a 1,2-hydride shift with a charge-remote rearrangement via a four-membered cyclic transition state, as well as charge-induced fragmentation reactions, was proposed as the main fragmentation mechanisms according to the obtained fragmentation products from the protonated parent peaks. In addition, heterolytic and homolytic cleavages were proposed as alternative fragmentation pathways. Moreover, a 1,4-hydrogen elimination was proposed to explain different fragmentation products obtained from the sodiated parent peaks.

  10. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry for the Investigation of Proteins and Peptides

    NASA Astrophysics Data System (ADS)

    Burnum, Kristin E.; Frappier, Sara L.; Caprioli, Richard M.

    2008-07-01

    Mass spectrometry (MS) is an excellent technology for molecular imaging because of its high data dimensionality. MS can monitor thousands of individual molecular data channels measured as mass-to-charge (m/z). We describe the use of matrix-assisted laser desorption/ionization (MALDI) MS for the image analysis of proteins, peptides, lipids, drugs, and metabolites in tissues. We discuss the basic instrumentation and sample preparation methods needed to produce high-resolution images and high image reproducibility. Matrix-addition protocols are briefly discussed along with normal operating procedures, and selected biological and medical applications of MALDI imaging MS are described. We give examples of both two- and three-dimensional imaging, including normal mouse embryo implantation, sperm maturation in mouse epididymis, protein distributions in brain sections, protein alterations as a result of drug administration, and protein changes in brain due to neurodegeneration and tumor formation. Advantages of this technology and future challenges for its improvement are discussed.

  11. Application of Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Rapid Identification of Neisseria Species

    PubMed Central

    Gudlavalleti, Seshu K.; Sundaram, Appavu K; Razumovski, Jane; Doroshenko, Vladimir

    2008-01-01

    Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI MS) was applied to develop a proteomics-based method to detect and identify Neisseria species. Heat-inactivated clinical isolate cell suspensions of Neisseria gonorrhoeae and strains belonging to five serogroups (A, B, C, W135, and Y) of Neisseria meningitidis were subjected to on-probe protein/peptide extraction and tryptic digestion followed by AP-MALDI tandem MS (MS/MS)-based proteomic analysis. Amino acid sequences derived from three protonated peptides with m/z values of 1743.8, 1894.8, and 1946.8 were identified by AP-MALDI MS/MS and MASCOT proteome database search analysis as belonging to neisserial acyl carrier protein, neisserial-conserved hypothetical protein, and neisserial putative DNA binding protein, respectively. These three peptide masses can thus be potential biomarkers for neisserial species identification by AP-MALDI MS. PMID:19137107

  12. Cellular-level mass spectrometry imaging using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) by oversampling.

    PubMed

    Nazari, Milad; Muddiman, David C

    2015-03-01

    Mass spectrometry imaging (MSI) allows for the direct and simultaneous analysis of the spatial distribution of molecular species from sample surfaces such as tissue sections. One of the goals of MSI is monitoring the distribution of compounds at the cellular resolution in order to gain insights about the biology that occurs at this spatial level. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging of cervical tissue sections was performed using a spot-to-spot distance of 10 μm by utilizing the method of oversampling, where the target plate is moved by a distance that is less than the desorption radius of the laser. In addition to high spatial resolution, high mass accuracy (±1 ppm) and high mass resolving power (140,000 at m/z = 200) were achieved by coupling the IR-MALDESI imaging source to a hybrid quadrupole Orbitrap mass spectrometer. Ion maps of cholesterol in tissues were generated from voxels containing <1 cell, on average. Additionally, the challenges of imaging at the cellular level in terms of loss of sensitivity and longer analysis time are discussed.

  13. Direct matrix-assisted laser desorption/ionization mass spectrometric imaging of cellulose and hemicellulose in Populus tissue.

    PubMed

    Lunsford, Kyle Ann; Peter, Gary F; Yost, Richard A

    2011-09-01

    Imaging applied toward lignocellulosic materials requires high molecular specificity to map specific compounds within intact tissue. Although secondary ionization mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) with a single stage of MS have been used to image lignocellulosic biomass, the complexity of the plant tissue requires tandem MS, which limits the interpretation of simple MS. MALDI linear ion trap (LIT) tandem MS offers the high molecular specificity needed for lignocellulosic analyses. MALDI-LIT MS analyses of cellulose and xylan (hemicellulose) standards were performed to determine mass-to-charge ratios and fragmentation pathways for identification of these compounds in intact tissue. The MALDI-LIT-MS images of young Populus wood stem showed even distribution of both cellulose and hemicellulose ions; in contrast, the tandem MS images of cellulose and hemicellulose generated by plotting characteristic fragment ions resulted in drastically different images. This demonstrates that isobaric ions are present during MALDI-LIT-MS analyses of wood tissue and tandem MS is necessary to distinguish between isobaric species for selective imaging of carbohydrates in biomass.

  14. Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry.

    PubMed

    Melanson, Jeremy E; Chisholm, Kenneth A; Pinto, Devanand M

    2006-01-01

    Here we report the first application of a matrix-assisted laser desorption/ionization (MALDI) triple-quadrupole mass spectrometer for targeted proteomics. Employing an amine-specific isotopic labelling approach, the technique was validated using five randomly selected bovine serum albumin peptides differentially labelled at known ratios. An indirect benefit of the isotopic labelling technique is a significant enhancement of the a1 ion in tandem mass (MS/MS) spectra of all peptides studied. Therefore, the a1 ion was selected as the fragment ion for multiple reaction monitoring (MRM) in all cases, eliminating tedious method development and optimization. Accurate quantification was achieved with an average relative standard deviation (RSD) of 5% (n = 5) and a detection limit of 14 amol. The technique was then applied to validate an important virulence biomarker of the fungal pathogen Candida albicans, which was not accurately quantified using global proteomics experiment employing two-dimensional liquid chromatography/electrospray ionization tandem mass spectrometry (2D-LC/ESI)-MS/MS. Using LC/MALDI-MRM analysis of five tryptic peptides, the protein PHR1 was found to be upregulated in the hyphal (pathogenic) form of C. albicans by a factor of 7.7 +/- 0.8.

  15. Progress toward the Quantitative Analysis of PAHs Adsorbed on Soot by Laser Desorption/Laser Ionization/Time-of-Flight Mass Spectrometry.

    PubMed

    Faccinetto, Alessandro; Focsa, Cristian; Desgroux, Pascale; Ziskind, Michael

    2015-09-01

    Ex situ analyses of substances extracted from flames provide useful albeit mostly qualitative information on the formation process of soot and on the impact of exhausts on the environment. An experimental setup based on the coupling of laser desorption, laser ionization and time-of-flight mass spectrometry (LD/LI/ToF-MS) is presented in past works as an alternative means to more traditional techniques like gas chromatography (GC) to characterize the polycyclic aromatic hydrocarbons (PAHs) content of soot. In this paper, we go one step further in the understanding of the laser desorption/laser ionization dynamics and propose a combined experimental/simulation approach: we estimate the limit of detection of LD/LI/ToF-MS as low as [0.2, 2.8] fmol per laser pulse and we make quantitative predictions on the concentration of PAHs desorbed from soot. In particular, external calibration with model samples where PAHs are adsorbed on black carbon at known concentrations allows us to link the concentration of PAHs desorbed and detected by photoionization ToF-MS to the concentration of PAHs adsorbed on soot. The comparison of data obtained from the analysis of flame sampled soot with standard commercial GC-MS run in parallel validates the approach and defines limits and potentialities of both techniques.

  16. Generation and detection of gaseous W12O41-* and other tungstate anions by laser desorption ionization mass spectrometry.

    PubMed

    Pavlov, Julius; Braida, Washington; Ogundipe, Adebayo; O'Connor, Gregory; Attygalle, Athula B

    2009-10-01

    The presence of a peak centered near m/z 2862, observed for the first time for the caged dodecatungstate radical-anion, [W12O41]-*, enables distinguishing WO2 from WO3 by Laser Desorption Ionization mass spectrometry (LDI-MS). In addition to WO2, laser irradiation of dry deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate also produce the [W12O41]-. In contrast, spectra recorded from deposits made from aqueous Na2WO4, sodium metatungstate, and WO3, or non-aqueous calcium and lead orthotungstate, and ammonium paratungstate, failed to show the m/z 2862 peak cluster. These observations support the hypothesis that polycondensation reactions to form [W12O41]-* occur solely in the presence of water. Although dry spots are irradiated for ionization, the solvent used for sample preparation plays an important role on the chemical composition endowed to ions detected. For example, the m/z 2862 peak seen from deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate, is absent in the spectra recorded either from pristine deposits or those derived from solutions made with organic solvents such as acetonitrile or ethanol.

  17. Design and Performance of a Novel Interface for Combined Matrix-Assisted Laser Desorption Ionization at Elevated Pressure and Electrospray Ionization with Orbitrap Mass Spectrometry.

    PubMed

    Belov, Mikhail E; Ellis, Shane R; Dilillo, Marialaura; Paine, Martin R L; Danielson, William F; Anderson, Gordon A; de Graaf, Erik L; Eijkel, Gert B; Heeren, Ron M A; McDonnell, Liam A

    2017-07-18

    Matrix-Assisted Laser Desorption Ionization, MALDI, has been increasingly used in a variety of biomedical applications, including tissue imaging of clinical tissue samples, and in drug discovery and development. These studies strongly depend on the performance of the analytical instrumentation and would drastically benefit from improved sensitivity, reproducibility, and mass/spatial resolution. In this work, we report on a novel combined MALDI/ESI interface, which was coupled to different Orbitrap mass spectrometers (Elite and Q Exactive Plus) and extensively characterized with peptide and protein standards, and in tissue imaging experiments. In our approach, MALDI is performed in the elevated pressure regime (5-8 Torr) at a spatial resolution of 15-30 μm, while ESI-generated ions are injected orthogonally to the interface axis. We have found that introduction of the MALDI-generated ions into an electrodynamic dual-funnel interface results in increased sensitivity characterized by a limit of detection of ∼400 zmol, while providing a mass measurement accuracy of 1 ppm and a mass resolving power of 120 000 in analysis of protein digests. In tissue imaging experiments, the MALDI/ESI interface has been employed in experiments with rat brain sections and was shown to be capable of visualizing and spatially characterizing very low abundance analytes separated only by 20 mDa. Comparison of imaging data has revealed excellent agreement between the MALDI and histological images.

  18. Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules.

    PubMed

    Kawasaki, Hideya; Ozawa, Tomoyuki; Hisatomi, Hirotaka; Arakawa, Ryuichi

    2012-08-30

    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) allows for the simultaneous detection and imaging of several molecules in a sample. However, when using an organic matrix in the MALDI-IMS of small molecules, inhomogeneous matrix crystallization may yield poorly reproducible peaks in the mass spectra. We describe a solvent-free approach that employs a homogeneously deposited metal nanoparticle layer (or film) for small-molecule detection. Platinum vapor deposition surface-assisted laser desorption/ionization imaging mass spectrometry (Pt vapor deposition SALDI-IMS) of small molecules was performed as a solvent-free and organic-matrix-free method. A commercially available magnetron sputtering device was used for Pt deposition. Vapor deposition of Pt produced a homogenous layer of nanoparticles over the surface of the target imaging sample. The effectiveness of Pt vapor deposition SALDI-IMS was demonstrated for the direct detection of small analytes of inkjet ink on printed paper as well as for various other analytes (saccharides, pigments, and drugs) separated by thin-layer chromatography (TLC), without the need for extraction or concentration processes. The advantage of choosing Pt instead of Au in SALDI-IMS was also shown. A solvent-free approach involving the direct deposition of Pt on samples (SALDI-IMS) is effective for the analysis of inkjet-printed papers and various analytes separated by TLC. This method would be useful in imaging analyses of various insulating materials such as polymers and biological materials. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Continuous Flow Atmospheric Pressure Laser Desorption/Ionization Using a 6–7-µm-Band Mid-Infrared Tunable Laser for Biomolecular Mass Spectrometry

    PubMed Central

    Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio

    2014-01-01

    A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686

  20. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    PubMed

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  1. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mahjoub, Ahmed; Schwell, Martin; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-10-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 μm suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a λ=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine.

  2. Improved matrix-assisted laser desorption/ionization mass spectrometric detection of glycosaminoglycan disaccharides as cesium salts.

    PubMed

    Laremore, Tatiana N; Linhardt, Robert J

    2007-01-01

    Ultraviolet matrix-assisted laser desorption/ionization mass spectrometric (UV-MALDI-MS) analysis of highly acidic, thermally labile species such as glycosaminoglycan-derived oligosaccharides is complicated by their poor ionization efficiency and tendency to fragment through the loss of sulfo groups. We have utilized a systematic approach to evaluate the effect of alkali metal counterions on the degree of fragmentation through SO3 loss from a highly sulfated model compound, sucrose octasulfate (SOS). The lithium, sodium, potassium, rubidium, and cesium salts of SOS were analyzed by UV-MALDI-time-of-flight (TOF)MS using an ionic liquid matrix, bis-1,1,3,3-tetramethylguanidinium alpha-cyano-4-hydroxycinnamate. The positive-ion and negative-ion MALDI mass spectra of five alkali metal salts of SOS were compared in terms of the degree of analyte fragmentation through the SO3 loss and the absolute intensity of a molecular ion signal. Experimental results demonstrate that the lithium, sodium, and potassium salts of SOS undergo some degree of fragmentation through the loss of SO3, whereas the fragmentation through the loss of SO3 in the rubidium and cesium salts of SOS is suppressed. A high detection sensitivity associated with the stability of sulfate half-esters was achieved for the cesium salt of SOS using positive-ion detection. Finally, the cesium salt of chondroitin sulfate A disaccharide was successfully analyzed using UV-MALDI-TOFMS.

  3. Evaluation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Second-Generation Lignin Analysis

    PubMed Central

    Richel, Aurore; Vanderghem, Caroline; Simon, Mathilde; Wathelet, Bernard; Paquot, Michel

    2012-01-01

    Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely α-cyano-4-hydroxycinnamic acid (CHCA), in combination with α-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100–600) in the positive ion mode offers a “fingerprint” of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study. PMID:23300342

  4. High Spatial Resolution Laser Desorption/Ionization Mass Spectrometry Imaging of Organic Layers in an Organic Light-Emitting Diode

    PubMed Central

    Tachibana, Yuko; Nakajima, Yoji; Isemura, Tsuguhide; Yamamoto, Kiyoshi; Satoh, Takaya; Aoki, Jun; Toyoda, Michisato

    2016-01-01

    To improve the durability of organic materials in electronic devices, an analytical method that can obtain information about the molecular structure directly from specific areas on a device is desired. For this purpose, laser desorption/ionization mass spectrometry imaging (LDI-MSI) is one of the most promising methods. The high spatial resolution stigmatic LDI-MSI with MULTUM-IMG2 in the direct analysis of organic light-emitting diodes was shown to obtain a detailed mass image of organic material in the degraded area after air exposure. The mass image was observed to have a noticeably improved spatial resolution over typical X-ray photoelectron spectroscopy, generally used technique in analysis of electronic devices. A prospective m/z was successfully deduced from the high spatial resolution MSI data. Additionally, mass resolution and accuracy using a spiral-orbit TOF mass spectrometer, SpiralTOF, were also investigated. The monoisotopic mass for the main component, N,N′-di-1-naphthalenyl-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (m/z 588), was measured with a mass resolution of approximately 80,000 and a mass error of about 5 mDa using an external calibrant. This high mass resolution and accuracy data successfully deduced a possible elemental composition of partially remained material in the degraded area, C36H24, which was determined as anthracene, 9-[1,1′-biphenyl]-4-yl-10-(2-naphthalenyl) by combining structural information with high-energy CID data. The high spatial resolution of 1 μm in LDI-MSI along with high mass resolution and accuracy could be useful in obtaining molecular structure information directly from specific areas on a device, and is expected to contribute to the evolution of electrical device durability. PMID:28101440

  5. Signal enhancement in electrospray laser desorption/ionization mass spectrometry by using a black oxide-coated metal target and a relatively low laser fluence.

    PubMed

    Kononikhin, Alexey; Huang, Min-Zong; Popov, Igor; Kostyukevich, Yury; Kukaev, Evgeny; Boldyrev, Alexey; Spasskiy, Alexander; Leypunskiy, Ilya; Shiea, Jentaie; Nikolaev, Eugene

    2013-01-01

    The electrospray Laser desorption/ionization (ELDI) method is actively used for direct sample analysis and ambient mass spectrometry imaging. The optimizing of Laser desorption conditions is essential for this technology. In this work, we propose using a metal target with a black oxide (Fe3O4) coating to increase the signal in ELDI-MS for peptides and small proteins. The experiments were performed on an LTQ-FT mass spectrometer equipped with a home-made ELDI ion source. A cutter blade with black oxide coating was used as a target. A nitrogen laser was used with the following parameters: 337 nm, pulse duration 4ns, repetition rate 10 Hz, fluence to approximately 700 Jm(-2). More than a five times signal increase was observed for a substance P peptide when a coated and a non-coated metal target were compared. No ion signal was observed for proteins if the same fluence and the standard stainless steel target were used. With the assistance of the Fe3O4 coated metal target and a relatively low laser fluence < or =700 Jm(-2)), proteins such as insulin, ubiquitin and myoglobin were successfully ionized. It was demonstrated that the Fe3O4-coated metal target can be used efficiently to assist laser desorption and thus significantly increase the analyte signal in ELDI-MS. A relatively low laser fluence (< or = 700 Jm(-2)) was enough to desorb peptides and proteins (up to 17 kDal with the assistance of the Fe3O4-coated metal target under ambient conditions.

  6. Identification and Classification of Rhizobia by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry.

    PubMed

    Jia, Rui Zong; Zhang, Rong Juan; Wei, Qing; Chen, Wen Feng; Cho, Il Kyu; Chen, Wen Xin; Li, Qing X

    Mass spectrometry (MS) has been widely used for specific, sensitive and rapid analysis of proteins and has shown a high potential for bacterial identification and characterization. Type strains of four species of rhizobia and Escherichia coli DH5α were employed as reference bacteria to optimize various parameters for identification and classification of species of rhizobia by matrix-assisted laser desorption/ionization time-of-flight MS (MALDI TOF MS). The parameters optimized included culture medium states (liquid or solid), bacterial growth phases, colony storage temperature and duration, and protein data processing to enhance the bacterial identification resolution, accuracy and reliability. The medium state had little effects on the mass spectra of protein profiles. A suitable sampling time was between the exponential phase and the stationary phase. Consistent protein mass spectral profiles were observed for E. coli colonies pre-grown for 14 days and rhizobia for 21 days at 4°C or 21°C. A dendrogram of 75 rhizobial strains of 4 genera was constructed based on MALDI TOF mass spectra and the topological patterns agreed well with those in the 16S rDNA phylogenetic tree. The potential of developing a mass spectral database for all rhizobia species was assessed with blind samples. The entire process from sample preparation to accurate identification and classification of species required approximately one hour.

  7. Positive and negative-mode laser desorption/ionization-mass spectrometry (LDI-MS) for the detection of indigoids in archaeological purple.

    PubMed

    Ribechini, Erika; Pérez-Arantegui, Josefina; Colombini, Maria Perla

    2013-03-01

    Laser-based ionization techniques have demonstrated to be a valuable analytical tool to study organic pigments by mass spectrometric analyses. Though laser-based ionization techniques have identified several natural and synthetic organic dyes and pigments, they have never been used in the characterization of purple. In this work, positive and negative-mode laser desorption/ionization mass spectrometry (LDI-MS) was used for the first time to detect indigoids in shellfish purple. The method was used to study organic residues collected from archaeological ceramic fragments that were known to contain purple, as determined by a classical high-performance liquid chromatography-based procedure. LDI-MS provides a mass spectral fingerprint of shellfish purple, and it was found to be a rapid and successful tool for the identification of purple. In addition, a comparison between positive and negative mode ionization highlighted the complementarity of the two ionization modes. On the one hand, the negative-ion mode LDI-MS showed a better selectivity and sensitivity to brominated molecules, such as 6,6'-dibromoindigo, 6-monobromoindigo, 6,6'-dibromoindirubin, 6- and 6'-monobromoindirubin, thanks to their electronegativity, and produced simpler mass spectra. On the other hand, negative-ion mode LDI-MS was found to have a lower sensitivity to non-brominated compounds, such as indigo and indirubin, whose presence can be established in any case by collecting the complementary positive-ion LDI mass spectrum.

  8. Direct matrix assisted laser desorption ionization mass spectrometry-based analysis of wine as a powerful tool for classification purposes.

    PubMed

    Nunes-Miranda, J D; Santos, Hugo M; Reboiro-Jato, Miguel; Fdez-Riverola, Florentino; Igrejas, G; Lodeiro, Carlos; Capelo, J L

    2012-03-15

    The variables affecting the direct matrix assisted laser desorption ionization mass spectrometry-based analysis of wine for classification purposes have been studied. The type of matrix, the number of bottles of wine, the number of technical replicates and the number of spots used for the sample analysis have been carefully assessed to obtain the best classification possible. Ten different algorithms have been assessed as classification tools using the experimental data collected after the analysis of fourteen types of wine. The best matrix was found to be α-Cyano with a sample to matrix ratio of 1:0.75. To correctly classify the wines, profiling a minimum of five bottles per type of wine is suggested, with a minimum of three MALDI spot replicates for each bottle. The best algorithm to classify the wines was found to be Bayes Net. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE PAGES

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  10. Detection of Posaconazole by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Dispersive Liquid-Liquid Microextraction

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Yu; Chen, Pin-Shiuan; Chang, Sarah Y.

    2015-03-01

    A simple, rapid, and sensitive method for the detection of posaconazole using dispersive liquid-liquid microextraction (DLLME) coupled to surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. After the DLLME, posaconazole was detected using SALDI/MS with colloidal gold and α-cyano-4-hydroxycinnamic acid (CHCA) as the co-matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 1.0 to 100.0 nM for posaconazole, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 0.3 nM for posaconazole. This novel method was successfully applied to the determination of posaconazole in human urine samples.

  11. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ.

    PubMed

    Sturtevant, Drew; Lee, Young-Jin; Chapman, Kent D

    2016-02-01

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. It is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.

  12. Au@SiO2 core-shell nanoparticles for laser desorption/ionization time of flight mass spectrometry.

    PubMed

    Zhu, Xiaoqing; Wu, Lianglan; Mungra, Divyesh C; Xia, Sijing; Zhu, Jin

    2012-05-21

    In matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), the analysis capability, especially for small molecules, is often compromised by the addition of organic matrices due to the existence of background signals. Herein we report a new detection method on the utility of core-shell nanoparticles (CSNPs) as energy transfer structure in LDI-TOF-MS. The LDI-TOF-MS based on gold-silica core-shell nanoparticles with ultrathin silica shell of 2-4 nm (Au@utSiO(2) CSNPs) was effectively applied to the analysis of many compounds, especially for small functional molecules and polymers, which was more promising than MALDI-TOF-MS.

  13. Laser desorption ionization mass spectrometry in the study of natural and synthetic melanins. II--Serotonin melanins.

    PubMed

    Bertazzo, A; Biasiolo, M; Costa, C; Allegri, G; Elli, G; Seraglia, R; Traldi, P

    1994-07-01

    Various biosynthetic melanins obtained by enzymic oxidation of serotonin with polyphenol oxidase from Psalliota campestris mushroom or potato, and with tyrosinase from Sepia officinalis or from Sigma were studied by means of laser desorption ionization mass spectrometry. Various oligomeric clusters were evidenced, proving that the examined melanins are composed of sets of different oligomers, the production of which strongly depends on the enzyme reaction. While serotonin melanins obtained with polyphenol oxidase from potato showed wide species distribution with molecular weights ranging from 2008 to 13,000 Da, the same melanins obtained from mushroom showed oligomer distributions from 1505 to 9000 Da. Serotonin melanins prepared with tyrosinase from Sepia showed oligomers from 1636 to 18,000 Da. A dopa-melanin obtained with mushroom polyphenol oxidase showed oligomer species from 1709 to 17,874 Da. Comparison of molecular weight distributions of the various oligomer sets in serotonin melanins with those in tyrosine melanins revealed clear differences, which are investigated and discussed.

  14. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hattan, Stephen J.; Parker, Kenneth C.; Vestal, Marvin L.; Yang, Jane Y.; Herold, David A.; Duncan, Mark W.

    2016-03-01

    Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.

  15. Identification of Haemophilus influenzae and Haemophilus haemolyticus by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Bruin, J P; Kostrzewa, M; van der Ende, A; Badoux, P; Jansen, R; Boers, S A; Diederen, B M W

    2014-02-01

    Generally accepted laboratory methods that have been used for decades do not reliably distinguish between H. influenzae and H. haemolyticus isolates. H. haemolyticus strains are often incorrectly identified as nontypeable Haemophilus influenzae (NTHi). To distinguish H. influenzae from H. haemolyticus we have created a new database on the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) bio-typer 2 and compared the results with routine determination of Haemophilus (growth requirement for X and V factor), and multilocus sequence typing (MLST). In total we have tested 277 isolates, 244 H. influenzae and 33 H. haemolyticus. Using MLST as the gold standard, the agreement of MALDI-TOF MS was 99.6 %. MALDI-TOF MS allows reliable and rapid discrimination between H. influenzae and H. haemolyticus.

  16. Recent advances in bacteria identification by matrix-assisted laser desorption/ionization mass spectrometry using nanomaterials as affinity probes.

    PubMed

    Chiu, Tai-Chia

    2014-04-28

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided.

  17. Recent Advances in Bacteria Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Nanomaterials as Affinity Probes

    PubMed Central

    Chiu, Tai-Chia

    2014-01-01

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided. PMID:24786089

  18. Laser desorption/ionization mass spectrometry of dye-sensitized solar cells: identification of the dye-electrolyte interaction.

    PubMed

    Ellis, Hanna; Leandri, Valentina; Hagfeldt, Anders; Boschloo, Gerrit; Bergquist, Jonas; Shevchenko, Denys

    2015-05-01

    Dye-sensitized solar cells (DSCs) have great potential to provide sustainable electricity from sunlight. The photoanode in DSCs consists of a dye-sensitized metal oxide film deposited on a conductive substrate. This configuration makes the photoanode a perfect sample for laser desorption/ionization mass spectrometry (LDI-MS). We applied LDI-MS for the study of molecular interactions between a dye and electrolyte on the surface of a TiO2 photoanode. We found that a dye containing polyoxyethylene groups forms complexes with alkali metal cations from the electrolyte, while a dye substituted with alkoxy groups does not. Guanidinium ion forms adducts with neither of the two dyes. Copyright © 2015 John Wiley & Sons, Ltd.

  19. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    PubMed

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples.

  20. Intact and Top-Down Characterization of Biomolecules and Direct Analysis Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Coupled to FT-ICR Mass Spectrometry

    PubMed Central

    Sampson, Jason S.; Murray, Kermit K.; Muddiman, David C.

    2013-01-01

    We report the implementation of an infrared laser onto our previously reported matrix-assisted laser desorption electrospray ionization (MALDESI) source with ESI post-ionization yielding multiply charged peptides and proteins. Infrared (IR)-MALDESI is demonstrated for atmospheric pressure desorption and ionization of biological molecules ranging in molecular weight from 1.2 to 17 kDa. High resolving power, high mass accuracy single-acquisition Fourier transform ion cyclotron resonance (FT-ICR) mass spectra were generated from liquid-and solid-state peptide and protein samples by desorption with an infrared laser (2.94 µm) followed by ESI post-ionization. Intact and top-down analysis of equine myoglobin (17 kDa) desorbed from the solid state with ESI post-ionization demonstrates the sequencing capabilities using IR-MALDESI coupled to FT-ICR mass spectrometry. Carbohydrates and lipids were detected through direct analysis of milk and egg yolk using both UV- and IR-MALDESI with minimal sample preparation. Three of the four classes of biological macromolecules (proteins, carbohydrates, and lipids) have been ionized and detected using MALDESI with minimal sample preparation. Sequencing of O-linked glycans, cleaved from mucin using reductive β-elimination chemistry, is also demonstrated. PMID:19185512

  1. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides.

    PubMed Central

    Pieles, U; Zürcher, W; Schär, M; Moser, H E

    1993-01-01

    We report the analysis and characterization of natural and modified oligonucleotides by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The present technology was highly improved for this class of compounds by using a new matrix, 2,4,6-trihydroxy acetophenone, together with di- and triammonium salts of organic or inorganic acids to suppress peak broadening due to multiple ion adducts. This methodology can be used in combination with time dependent degradation of oligonucleotides by exonucleases as powerful tool to determine sequence compositions. PMID:8341593

  2. A binary matrix for improved detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Zhou, Li-Hua; Kang, Gum-Yong; Kim, Kwang Pyo

    2009-08-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3-hydroxypicolinic acid (3-HPA) and alpha-cyano-4-hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3-HPA and CCA were found to be hot matrices, and 3-HPA not as good as CCA and 2,5-dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3-HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive-ion and negative-ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (-80 Da) and phosphoric acid (-98 Da) from the phosphorylated-residue-containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for 'sweet' spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in-solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass-to-charge values and LIFT TOF-TOF spectra. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Principles of hydrogen radical mediated peptide/protein fragmentation during matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Asakawa, Daiki

    2016-07-01

    Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) is a very easy way to obtain large sequence tags and, thereby, reliable identification of peptides and proteins. Recently discovered new matrices have enhanced the MALDI-ISD yield and opened new research avenues. The use of reducing and oxidizing matrices for MALDI-ISD of peptides and proteins favors the production of fragmentation pathways involving "hydrogen-abundant" and "hydrogen-deficient" radical precursors, respectively. Since an oxidizing matrix provides information on peptide/protein sequences complementary to that obtained with a reducing matrix, MALDI-ISD employing both reducing and oxidizing matrices is a potentially useful strategy for de novo peptide sequencing. Moreover, a pseudo-MS(3) method provides sequence information about N- and C-terminus extremities in proteins and allows N- and C-terminal side fragments to be discriminated within the complex MALDI-ISD mass spectrum. The combination of high mass resolution of a Fourier transform-ion cyclotron resonance (FTICR) analyzer and the software suitable for MALDI-ISD facilitates the interpretation of MALDI-ISD mass spectra. A deeper understanding of the MALDI-ISD process is necessary to fully exploit this method. Thus, this review focuses first on the mechanisms underlying MALDI-ISD processes, followed by a discussion of MALDI-ISD applications in the field of proteomics. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:535-556, 2016. © 2014 Wiley Periodicals, Inc.

  4. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    PubMed

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    PubMed

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Development of Laser Ionization Techniques for Evaluation of the Effect of Cancer Drugs Using Imaging Mass Spectrometry

    PubMed Central

    Kannen, Hiroki; Hazama, Hisanao; Kaneda, Yasufumi; Fujino, Tatsuya; Awazu, Kunio

    2014-01-01

    Recently, combined therapy using chemotherapy and photodynamic therapy (PDT) has been proposed as a means of improving treatment outcomes. In order to evaluate the efficacy of combined therapy, it is necessary to determine the distribution of the anticancer drug and the photosensitizer. We investigated the use of imaging mass spectrometry (IMS) to simultaneously observe the distributions of an anticancer drug and photosensitizer administered to cancer cells. In particular, we sought to increase the sensitivity of detection of the anticancer drug docetaxel and the photosensitizer protoporphyrin IX (PpIX) by optimizing the ionization-assisting reagents. When we used a matrix consisting of equal weights of a zeolite (NaY5.6) and a conventional organic matrix (6-aza-2-thiothymine) in matrix-assisted laser desorption/ionization, the signal intensity of the sodium-adducted ion of docetaxel (administered at 100 μM) increased about 13-fold. Moreover, we detected docetaxel with the zeolite matrix using the droplet method, and detected PpIX by fluorescence and IMS with α-cyano-4-hydroxycinnamic acid (CHCA) using the spray method. PMID:24968266

  7. Functionalized graphene-coated cobalt nanoparticles for highly efficient surface-assisted laser desorption/ionization mass spectrometry analysis.

    PubMed

    Kawasaki, Hideya; Nakai, Keisuke; Arakawa, Ryuichi; Athanassiou, Evagelos K; Grass, Robert N; Stark, Wendelin J

    2012-11-06

    Graphene-coated cobalt nanoparticles surface-functionalized with benzylamine groups (CoC-NH(2) nanomagnets) were shown to effectively enrich analytes for surface-assisted laser desorption/ionization mass spectrometry (affinity SALDI-MS) analysis. These CoC-NH(2) nanomagnets are highly suited for use with affinity SALDI-MS because their mean diameter of 30 nm, high specific surface area of 15 m(2) g(-1), and high-strength saturation magnetization of 158 emu g(-1) led to efficient extraction of analytes by magnetic separation, which in turn enabled excellent SALDI-MS performance. Surface modification of CoC nanomagnets with benzylamine groups increased the yield of peptide ions and decreased fragmentation of benzylpyridinium ions, so-called "thermometer ions" formed through soft ionization. The CoC-NH(2) nanomagnets were used to extract perfluorooctanesulfonate from large volumes of aqueous solutions by magnetic separation, which was identified directly by SALDI-MS analysis with high sensitivity even at the sub-part-per-trillion level (∼0.1 ng/L). The applicability of CoC-NH(2) nanomagnets in conjunction with SALDI-MS for the enrichment and detection of pentachlorophenol, bisphenol A, and polyfluorinated compounds (PFCs) with varying chain length, which are environmentally significant compounds, as well as small drugs, was also evaluated.

  8. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS-NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    SciTech Connect

    Gudipati, Murthy S.; Yang Rui E-mail: ryang73@ustc.edu

    2012-09-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Ly{alpha} radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K-close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies-the first glimpses into interstellar ice chemistry through analog studies-show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  9. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  10. Matrix-assisted laser desorption ionization-time of flight mass spectrometry is a sensitive and specific method for identification of aerococci.

    PubMed

    Senneby, Erik; Nilson, Bo; Petersson, Ann-Cathrine; Rasmussen, Magnus

    2013-04-01

    Conventional methods for the identification of human-pathogenic aerococci to the species level are not reliable. We show that matrix-assisted laser desorption ionization-time of flight mass spectrometry correctly identifies aerococci to the species level and that it can be used to identify aerococci with high specificity in the diagnostic clinical microbiology laboratory.

  11. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    EPA Science Inventory

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  12. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  13. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting Gram-negative bacilli.

    PubMed

    Almuzara, Marisa; Barberis, Claudia; Traglia, Germán; Famiglietti, Angela; Ramirez, Maria Soledad; Vay, Carlos

    2015-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 396 Nonfermenting Gram-Negative Bacilli clinical isolates was evaluated in comparison with conventional phenotypic tests and/or molecular methods. MALDI-TOF MS identified to species level 256 isolates and to genus or complex level 112 isolates. It identified 29 genera including uncommon species.

  14. THE USE OF MATRIX-ASSISTED LASER DESORPTION/IONIZATION-MASS SPECTROMETRY FOR THE IDENTIFICATION OF AEROMONAS ISOLATES OBTAINED FROM WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...

  15. THE USE OF MATRIX-ASSISTED LASER DESORPTION/IONIZATION-MASS SPECTROMETRY FOR THE IDENTIFICATION OF AEROMONAS ISOLATES OBTAINED FROM WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...

  16. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    EPA Science Inventory

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  17. Large-Scale Metabolite Analysis of Standards and Human Serum by Laser Desorption Ionization Mass Spectrometry from Silicon Nanopost Arrays.

    PubMed

    Korte, Andrew R; Stopka, Sylwia A; Morris, Nicholas; Razunguzwa, Trust; Vertes, Akos

    2016-09-20

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysis of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. The broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications.

  18. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE PAGES

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas; ...

    2016-07-11

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  19. New perspectives in laser analytics: Resonance-enhanced multiphoton ionization in a Paul ion trap combined with a time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Bisling, Peter; Heger, Hans Jörg; Michaelis, Walfried; Weitkamp, Claus; Zobel, Harald

    1995-04-01

    A new laser analytical device has been developed that is based on resonance-enhanced multiphoton ionization in the very center of a radio-frequency quadrupole ion trap. Applications in speciation anlaysis of biological and enviromental samples and in materials science will all benefit from laser-optical selectivity in the resonance excitation process, combined with mass-spectropic sensivity which is further enhanced by the ion accumulation and storage capability.

  20. Laser Desorption/Ionization Mass Spectrometry (LDI-MS) of Lipids with Iron Oxide Nanoparticle-Coated Targets

    PubMed Central

    Kusano, Maiko; Kawabata, Shin-ichirou; Tamura, Yusuke; Mizoguchi, Daigou; Murouchi, Masato; Kawasaki, Hideya; Arakawa, Ryuichi; Tanaka, Koichi

    2014-01-01

    Iron oxide nanoparticle (NP)-coated target plates were employed for the direct detection and analysis of low molecular weight lipids by laser desorption/ionization (LDI) mass spectrometry (MS). We have demonstrated that the use of the iron oxide NP-coated target provides a simple, direct, and rapid detection method for lipid standards and epidermal surface lipids without any cumbersome sample pretreatment as well as mass spectra that are free of background matrix peaks. Lipid standards (1-stearoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycerol, 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol, 1,2-distearoyl-sn-glycero-3-phosphocholine) were detected as either protonated or cationated species. Clean MS/MS spectra for each lipid were also successfully obtained. Pre-MS surface cleaning of the target plates with UV-ozone treatment successfully removed organic contaminants that would interfere with the mass spectra especially in the low molecular weight region. Preliminary application of the presented target plate to the detection of endogenous lipids in latent fingerprints showed promising results and for potential use in the visualization and chemical composition determination of latent fingerprints by nanoparticle assistance. PMID:24860715

  1. Characterization of gallotannins from Astronium species by flow injection analysis- electrospray ionization-ion trap-tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of- flight mass spectrometry.

    PubMed

    da Silva, Viviane Cândida; Napolitano, Assunta; Eletto, Daniela; Rodrigues, Clenilson Martins; Pizza, Cosimo; Vilegas, Wagner

    2011-01-01

    The species Astronium urundeuva (Allemao) Engl. and Astronium graveolens Jacq., which are used in Brazilian folk medicine to treat allergies, inflammation, diarrhea and ulcers, were investigated for their composition. The aim of this study was to define a rapid and reliable analytical approach, based on the flow-injection analysis-electrospray ionization-ion trap-tandem mass spectrometry (FIA-ESI-IT-MS-MS) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF-MS), to investigate the full range of hydrolyzable tannins present in the extracts of these Astronium species. The MALDI-ToF-MS analysis allowed us to ascertain the presence of hydrolysable tannins in both Astronium species as a series of gallotannins with degrees of polymerization of 7 to 13 galloyl units. Moreover, the analysis by FIA-ESI-IT-MS-MS, as well as confirming this result and chemically defining gallotannins as galloylglucose compounds, highlighted the presence of further classes of hydrolysable tannins, such as hexahydrodiphenoyl esters of glucose and some gallic acid derivatives, providing information about their structure by a careful study of their fragmentation patterns. Finally, the evaluation of the number of positional isomers of gallotannins occurring in both Astronium species was obtained by high-performance liquid chromatography-electrospray ionization-ion trap mass spectrometry (HPLC/ESI-IT-MS). This is the first mass spectrometric evidence relating to the existence of gallotannins in Astronium genus.

  2. High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver

    SciTech Connect

    Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu; Nikolau, Basil J.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-17

    High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. The LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.

  3. Towards a reliable molecular mass determination of intact glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Giménez, Estela; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria

    2007-01-01

    Different matrices and sample-matrix preparation procedures have been tested in order to study their influence on the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra of intact glycoproteins, which present different degrees of glycosylation (human transferrin; bovine fetuin; bovine alpha(1)-acid-glycoprotein; recombinant human erythropoietin; and the novel erythropoiesis stimulating protein). Using sinapinic acid (SA) and the fast evaporation method, the studied glycoproteins became susceptible to fragmentation at any laser intensity, suggesting that this 'hot' matrix is unsuitable for a reliable molecular mass determination of glycosylated compounds. In contrast, 2,5-dihydroxybenzoic acid (DHB) and 6-aza-2-thiothymine (ATT), with an adequate sample-matrix preparation, provided improved results. Samples containing DHB after crystallization by vacuum drying demonstrated the best performance because the labile functional groups from the glycoforms were apparently fragmented to a lower extent. The average molecular masses obtained using this methodology were in all cases a better estimation than those values reported in the literature. The results were reproducible, and sensitivity was similar to that obtained with SA and the fast evaporation method. These excellent results suggest that this MALDI-TOF-MS methodology could be useful for an improved determination of the average molecular mass values of microheterogeneous compounds such as glycoproteins, glycosylated compounds or, in general, molecular mass values of molecules with similar labile functional groups.

  4. Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Patteson, K. G.; Rodicio, Lenore Polo; Limbach, Patrick A.

    2001-01-01

    A new method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the direct analysis of the mass-silent post-transcriptionally modified nucleoside pseudouridine in nucleic acids has been developed. This method utilizes 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide to derivatize pseudouridine residues. After chemical derivatization all pseudouridine residues will contain a 252 Da ‘mass tag’ that allows the presence of pseudouridine to be identified using mass spectrometry. Pseudouridine residues can be identified in intact nucleic acids by obtaining a mass spectrum of the nucleic acid before and after derivatization. The mass difference (in units of 252 Da) will denote the number of pseudouridine residues present. To determine the sequence location of pseudouridine, a combination of enzymatic hydrolysis and mass spectrometric steps are used. Here, MALDI analysis of RNase T1 digestion products before and after modification are used to narrow the sequence location of pseudouridine to specific T1 fragments in the gene sequence. Further mass spectrometric monitoring of exonuclease digestion products from isolated T1 fragments is then used for exact sequence placement. This approach to pseudouridine identification is demonstrated using Escherichia coli tRNAs. This new method allows for the direct determination of pseudouridine in nucleic acids, can be used to identify modified pseudouridine residues and can be used with general modification mapping approaches to completely characterize the post-transcriptional modifications present in RNAs. PMID:11353094

  5. Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry.

    PubMed

    Srivastava, Abneesh; Pitesky, Maurice E; Steele, Paul T; Tobias, Herbert J; Fergenson, David P; Horn, Joanne M; Russell, Scott C; Czerwieniec, Gregg A; Lebrilla, Carlito B; Gard, Eric E; Frank, Matthias

    2005-05-15

    We have fully characterized the mass spectral signatures of individual Bacillus atrophaeus spores obtained using matrix-free laser desorption/ionization bioaerosol mass spectrometry (BAMS). Mass spectra of spores grown in unlabeled, 13C-labeled, and 15N-labeled growth media were used to determine the number of carbon and nitrogen atoms associated with each mass peak observed in mass spectra from positive and negative ions. To determine the parent ion structure associated with fragment ion peaks, the fragmentation patterns of several chemical standards were independently determined. Our results confirm prior assignments of dipicolinic acid, amino acids, and calcium complex ions made in the spore mass spectra. The identities of several previously unidentified mass peaks, key to the recognition of Bacillus spores by BAMS, have also been revealed. Specifically, a set of fragment peaks in the negative polarity is shown to be consistent with the fragmentation pattern of purine nucleobase-containing compounds. The identity of m/z = +74, a marker peak that helps discriminate B. atrophaeus from Bacillus thuringiensis spores grown in rich media is [N1C4H12]+. A probable precursor molecule for the [N1C4H12]+ ion observed in spore spectra is trimethylglycine (+N(CH3)3CH2COOH), which produces a m/z = +74 peak when ionized in the presence of dipicolinic acid. A clear assignment of all the mass peaks in the spectra from bacterial spores, as presented in this work, establishes their relationship to the spore chemical composition and facilitates the evaluation of the robustness of "marker" peaks. This is especially relevant for peaks that have been used to discriminate Bacillus spore species, B. thuringiensis and B. atrophaeus, in our previous studies.

  6. Time-dependent oxidation during nano-assisted laser desorption ionization mass spectrometry: a useful tool for structure determination or a source of possible confusion?

    PubMed

    Pavlásková, Katerina; Strnadová, Marcela; Strohalm, Martin; Havlícek, Vladimír; Sulc, Miroslav; Volný, Michael

    2011-07-15

    This work reports on a new and extremely simple approach for determination of a double bond position by a laser desorption ionization mass spectrometry. It is solely based on the catalytic properties of nanostructured surfaces used in nanoassisted laser desorption ionization experiments. These surfaces can induce oxidation of analytes, which results in a mass shift that can be detected by mass spectrometry. If a site of unsaturation is oxidized and cleaved, the m/z difference is diagnostic of the position of a double bond. By demonstrating that the oxidation depends on the analyte surface dwell time, it was proven that it is caused by the surface activity and not by the laser desorption ionization process itself. Control matrix-assisted laser desorption/ionization (MALDI) experiment showed only a limited partial oxidation and no time dependency of the process. The ability to determine a position of a double bond was demonstrated on polyunsaturated phospholipids and cyclosporine A. In some other cases, however, the unexpected oxidation could cause confusion, as demonstrated for a glycosphingolipid from a porcine brain extract.

  7. Identification and differentiation of the red ink entries of seals on document by laser desorption ionization mass spectrometry.

    PubMed

    Wang, Xiang-Feng; Zhang, Yun; Wu, Yao; Yu, Jing; Xie, Meng-Xia

    2014-03-01

    The establishment of approaches for the differentiation of the ink entries of seals on paper can provide evidence to authenticate the related documents and can play a key role in judicial expertise. The identification and discrimination method for 38 red ink entries of seals on paper has been investigated using laser desorption ionization mass spectrometry (LDI-MS). Six dye components for the ink pastes of seals, Scarlet powder (SP), Bronze Red C (BR), Fast Red R (FR), Basic Violet 3 (BV3), Pigment Red 22 (PR22) and Pigment Red 112 (PR112), have been identified by their LDI-MS spectra, and the results have been confirmed by electrospray ionization quadruple-time of flight mass spectrometry (QTOF-ESI-MS/MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The 38 ink entries were classified into six groups based on the presence or the absence of the pigments in their positive and negative LDI-MS spectra, and the discrimination power (DP) was calculated to be about 82%. The ink entries within each group were further differentiated from the relative peak areas (RPA) of the fragments for the pigments and the profile of their LDI-MS spectra, and thus the DP was increased to 98%. All the 38 ink entries could be discriminated (the DP was 100%), if including the contribution of unknown peaks. Compared with the results obtained by the FTIR and Raman methods, the established LDI-MS approach could provide more information of the dye components in the ink entries. The results showed that the developed LDI-MS method is powerful, sensitive and rapid and can directly differentiate the red ink entries of seals from paper substrates, thus offering a novel approach to judge the authenticity of documents.

  8. Biosynthesis of Gold Nanoparticles and Identification of Capping Agent Using Gas Chromatography-Mass Spectrometry and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry.

    PubMed

    Karthick, V; Kumar, V Ganesh; Dhas, T Stalin; Govindaraju, K; Sinha, Sweta; Singaravelu, G

    2015-06-01

    In the present study, gold nanoparticles (AuNPs) were synthesized using leaf extract of Syzygium jambolanum and capping agent has been explored. The synthesized AuNPs have been characterized using UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HRTEM) and atomic force microscopic (AFM) analysis. The AuNPs show intense surface plasmon resonance (SPR) band at 528 nm and were found to be spherical and hexagonal in shape with particle size ranging from 20-30 nm. Transmission electron microscopy and atomic force microscopy were used to analyze the surface morphology of synthesized AuNPs. The capping ligand has been evaluated using matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) and gas chromatography-mass spectrometry (GC-MS) analysis.

  9. Ionic (liquid) matrices for matrix-assisted laser desorption/ionization mass spectrometry-applications and perspectives.

    PubMed

    Tholey, Andreas; Heinzle, Elmar

    2006-09-01

    A large number of matrix substances have been used for various applications in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The majority of matrices applied in ultraviolet-MALDI MS are crystalline, low molecular weight compounds. A problem encountered with many of these matrices is the formation of hot spots, which lead to inhomogeneous samples, thus leading to increased measurement times and hampering the application of MALDI MS for quantitative purposes. Recently, ionic (liquid) matrices (ILM or IM) have been introduced as a potential alternative to the classical crystalline matrices. ILM are equimolar mixtures of conventional MALDI matrix compounds such as 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxycinnamic acid (CCA) or sinapinic acid (SA) together with organic bases [e.g., pyridine (Py), tributylamine (TBA) or N,N-dimethylethylenediamine (DMED)]. The present article presents a first overview of this new class of matrices. Characteristic properties of ILM, their influence on mass spectrometric parameters such as sensitivity, resolution and adduct formation and their application in the fields of proteome analysis, the measurement of low molecular weight compounds, the use of MALDI MS for quantitative purposes and in MALDI imaging will be presented. Scopes and limitations for the application of ILM are discussed.

  10. Imaging of a tribolayer formed from ionic liquids by laser desorption/ionization-reflectron time-of-flight mass spectrometry.

    PubMed

    Gabler, Christoph; Pittenauer, Ernst; Dörr, Nicole; Allmaier, Günter

    2012-12-18

    For the first time, imaging using laser desorption/ionization (LDI) reflectron time-of-flight (RTOF) mass spectrometry (MS) was demonstrated to be a powerful tool for an offline monitoring of tribometrical experiments directly from disc specimen applying selected ammonium-, phosphonium-, and sulfonium-based ionic liquids (IL) with bis(trifluoromethylsulfonyl)imide as counterion for lubrication. The direct measurement of IL tribolayers by LDI-MS allowed the visualization of the lubricants in the form of the distribution of their intact cations and the anion in and outside the wear scar after the tribometrical experiment with a low degree of in-source generated fragmentation. Besides, also, an oxidation product formed during a tribometrical experiment was detected and located exclusively in the wear track. Comparative data of identical wear tracks were obtained by X-ray photoelectron spectroscopy (XPS) imaging not only enabling the determination of elemental distributions of the IL across the area imaged but also corroborating the mass spectrometry imaging (MSI) data, thus generating multimodal images. Merging data from MSI and XPS imaging exhibited that areas, where iron-fluorine bonds were detected in the wear track, are corresponding to data from LDI-MS imaging showing absence of IL cations and anions.

  11. Spatially Resolved Plant Metabolomics: Some Potentials and Limitations of Laser-Ablation Electrospray Ionization Mass Spectrometry Metabolite Imaging1[OPEN

    PubMed Central

    Etalo, Desalegn W.; De Vos, Ric C.H.; Joosten, Matthieu H.A.J.; Hall, Robert D.

    2015-01-01

    Laser-ablation electrospray ionization (LAESI)-mass spectrometry imaging has been applied to contrasting plant organs to assess its potential as a procedure for performing in vivo metabolomics in plants. In a proof-of-concept experiment, purple/white segmented Phalaenopsis spp. petals were first analyzed using standard liquid chromatography-mass spectrometry analyses of separate extracts made specifically from the purple and white regions. Discriminatory compounds were defined and putatively annotated. LAESI analyses were then performed on living tissues, and these metabolites were then relocalized within the LAESI-generated data sets of similar tissues. Maps were made to illustrate their locations across the petals. Results revealed that, as expected, anthocyanins always mapped to the purple regions. Certain other (nonvisible) polyphenols were observed to colocalize with the anthocyanins, whereas others were found specifically within the white tissues. In a contrasting example, control and Cladosporium fulvum-infected tomato (Solanum lycopersicum) leaves were subjected to the same procedures, and it could be observed that the alkaloid tomatine has clear heterogeneous distribution across the tomato leaf lamina. Furthermore, LAESI analyses revealed perturbations in alkaloid content following pathogen infection. These results show the clear potential of LAESI-based imaging approaches as a convenient and rapid way to perform metabolomics analyses on living tissues. However, a range of limitations and factors have also been identified that must be taken into consideration when interpreting LAESI-derived data. Such aspects deserve further evaluation before this approach can be applied in a routine manner. PMID:26392264

  12. Matrix Assisted Laser Desorption Ionization Mass Fingerprinting for Identification of Acacia Gum in Microsamples from Works of Art.

    PubMed

    Granzotto, Clara; Sutherland, Ken

    2017-03-07

    This paper reports an improved method for the identification of Acacia gum in cultural heritage samples using matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) after enzymatic digestion of the polysaccharide component. The analytical strategy was optimized using a reference Acacia gum (gum arabic, sp. A. senegal) and provided an unambiguous MS profile of the gum, characterized by specific and recognized oligosaccharides, from as little as 0.1 μg of material. The enhanced experimental approach with reduced detection limit was successfully applied to the analysis of naturally aged (∼80 year) gum arabic samples, pure and mixed with lead white pigment, and allowed the detection of gum arabic in samples from a late painting (1949/1954) by Georges Braque in the collection of the Art Institute of Chicago. This first application of the technique to characterize microsamples from a painting, in conjunction with analyses by gas chromatography/mass spectrometry (GC/MS), provided important insights into Braque's unusual mixed paint media that are also helpful to inform appropriate conservation treatments for his works. The robustness of the analytical strategy due to the reproducibility of the gum MS profile, even in the presence of other organic and inorganic components, together with the minimal sample size required, demonstrate the value of this new MALDI-TOF MS method as an analytical tool for the identification of gum arabic in microsamples from museum artifacts.

  13. The influence of electrospray deposition in matrix-assisted laser desorption/ionization mass spectrometry sample preparation for synthetic polymers.

    PubMed

    Wetzel, Stephanie J; Guttman, Charles M; Flynn, Kathleen M

    2004-01-01

    Although electrospray sample deposition in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) sample preparation increases the repeatability of both the MALDI signal intensity and the measured molecular mass distribution (MMD), the electrospray sample deposition method may influence the apparent MMD of a synthetic polymer. The MMDs of three polymers of differing thermal stability, polystyrene (PS), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG), were studied by MALDI time-of-flight (TOF) MS as the electrospray deposition voltage was varied. The MMDs obtained using the electrospray deposition method were compared with those obtained for hand-spotted samples. No change was observed in the measured polymer MMD when the electrospray deposition voltage was varied in the analysis of PS, but those of PEG and PPG changed at higher electrospray voltages due to increased ion fragmentation. It was also shown that the fragmentation in the hand-spotted samples is dependent on the matrix used in sample preparation.

  14. Identification and localization of trauma-related biomarkers using matrix assisted laser desorption/ionization imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jones, Kirstin; Reilly, Matthew A.; Glickman, Randolph D.

    2017-02-01

    Current treatments for ocular and optic nerve trauma are largely ineffective and may have adverse side effects; therefore, new approaches are needed to understand trauma mechanisms. Identification of trauma-related biomarkers may yield insights into the molecular aspects of tissue trauma that can contribute to the development of better diagnostics and treatments. The conventional approach for protein biomarker measurement largely relies on immunoaffinity methods that typically can only be applied to analytes for which antibodies or other targeting means are available. Matrix assisted laser-assisted desorption/ionization imaging mass spectrometry (MALDI-IMS) is a specialized application of mass spectrometry that not only is well suited to the discovery of novel or unanticipated biomarkers, but also provides information about the spatial localization of biomarkers in tissue. We have been using MALDI-IMS to find traumarelated protein biomarkers in retina and optic nerve tissue from animal models subjected to ocular injury produced by either blast overpressure or mechanical torsion. Work to date by our group, using MALDI-IMS, found that the pattern of protein expression is modified in the injured ocular tissue as soon as 24 hr post-injury, compared to controls. Specific proteins may be up- or down-regulated by trauma, suggesting different tissue responses to a given injury. Ongoing work is directed at identifying the proteins affected and mapping their expression in the ocular tissue, anticipating that systematic analysis can be used to identify targets for prospective therapies for ocular trauma.

  15. A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry

    PubMed Central

    Keough, T.; Youngquist, R. S.; Lacey, M. P.

    1999-01-01

    A method has been developed for de novo peptide sequencing using matrix-assisted laser desorption ionization mass spectrometry. This method will facilitate biological studies that require rapid determination of peptide or protein sequences, e.g., determination of posttranslational modifications, identification of active compounds isolated from combinatorial peptide libraries, and the selective identification of proteins as part of proteome studies. The method involves fast, one-step addition of a sulfonic acid group to the N terminus of tryptic peptides followed by acquisition of postsource decay (PSD) fragment ion spectra. The derivatives are designed to promote efficient charge site-initiated fragmentation of the backbone amide bonds and to selectively enhance the detection of a single fragment ion series that contains the C terminus of the molecule (y-ions). The overall method has been applied to pmol quantities of peptides. The resulting PSD fragment ion spectra often exhibit uninterrupted sequences of 20 or more amino acid residues. However, fragmentation efficiency decreases considerably at amide bonds on the C-terminal side of Pro. The spectra are simple enough that de novo sequence tagging is routine. The technique has been successfully applied to peptide mixtures, to high-mass peptides (up to 3,600 Da) and to the unambiguous identification of proteins isolated from two-dimensional gel electrophoresis. The PSD spectra of these derivatized peptides often allow far more selective protein sequence database searches than those obtained from the spectra of native peptides. PMID:10377380

  16. Spatially Resolved Plant Metabolomics: Some Potentials and Limitations of Laser-Ablation Electrospray Ionization Mass Spectrometry Metabolite Imaging.

    PubMed

    Etalo, Desalegn W; De Vos, Ric C H; Joosten, Matthieu H A J; Hall, Robert D

    2015-11-01

    Laser-ablation electrospray ionization (LAESI)-mass spectrometry imaging has been applied to contrasting plant organs to assess its potential as a procedure for performing in vivo metabolomics in plants. In a proof-of-concept experiment, purple/white segmented Phalaenopsis spp. petals were first analyzed using standard liquid chromatography-mass spectrometry analyses of separate extracts made specifically from the purple and white regions. Discriminatory compounds were defined and putatively annotated. LAESI analyses were then performed on living tissues, and these metabolites were then relocalized within the LAESI-generated data sets of similar tissues. Maps were made to illustrate their locations across the petals. Results revealed that, as expected, anthocyanins always mapped to the purple regions. Certain other (nonvisible) polyphenols were observed to colocalize with the anthocyanins, whereas others were found specifically within the white tissues. In a contrasting example, control and Cladosporium fulvum-infected tomato (Solanum lycopersicum) leaves were subjected to the same procedures, and it could be observed that the alkaloid tomatine has clear heterogeneous distribution across the tomato leaf lamina. Furthermore, LAESI analyses revealed perturbations in alkaloid content following pathogen infection. These results show the clear potential of LAESI-based imaging approaches as a convenient and rapid way to perform metabolomics analyses on living tissues. However, a range of limitations and factors have also been identified that must be taken into consideration when interpreting LAESI-derived data. Such aspects deserve further evaluation before this approach can be applied in a routine manner.

  17. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Schwartz, Sarah A; Weil, Robert J; Thompson, Reid C; Shyr, Yu; Moore, Jason H; Toms, Steven A; Johnson, Mahlon D; Caprioli, Richard M

    2005-09-01

    Clinical diagnosis and treatment decisions for a subset of primary human brain tumors, gliomas, are based almost exclusively on tissue histology. Approaches for glioma diagnosis can be highly subjective due to the heterogeneity and infiltrative nature of these tumors and depend on the skill of the neuropathologist. There is therefore a critical need to develop more precise, non-subjective, and systematic methods to classify human gliomas. To this end, mass spectrometric analysis has been applied to these tumors to determine glioma-specific protein patterns. Protein profiles have been obtained from human gliomas of various grades through direct analysis of tissue samples using matrix-assisted laser desorption ionization mass spectrometry (MS). Statistical algorithms applied to the MS profiles from tissue sections identified protein patterns that correlated with tumor histology and patient survival. Using a data set of 108 glioma patients, two patient populations, a short-term and a long-term survival group, were identified based on the tissue protein profiles. In addition, a subset of 57 patients diagnosed with high-grade, grade IV, malignant gliomas were analyzed and a novel classification scheme that segregated short-term and long-term survival patients based on the proteomic profiles was developed. The protein patterns described served as an independent indicator of patient survival. These results show that this new molecular approach to monitoring gliomas can provide clinically relevant information on tumor malignancy and is suitable for high-throughput clinical screening.

  18. In Situ Analysis of Bacterial Lipopeptide Antibiotics by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    PubMed

    Debois, Delphine; Ongena, Marc; Cawoy, Hélène; De Pauw, Edwin

    2016-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique developed in the late 1990s enabling the two-dimensional mapping of a broad variety of biomolecules present at the surface of a sample. In many applications including pharmaceutical studies or biomarker discovery, the distribution of proteins, lipids or drugs, and metabolites may be visualized within tissue sections. More recently, MALDI MSI has become increasingly applied in microbiology where the versatility of the technique is perfectly suited to monitor the metabolic dynamics of bacterial colonies. The work described here is focused on the application of MALDI MSI to map secondary metabolites produced by Bacilli, especially lipopeptides, produced by bacterial cells during their interaction with their environment (bacteria, fungi, plant roots, etc.). This chapter addresses the advantages and challenges that the implementation of MALDI MSI to microbiological samples entails, including detailed protocols on sample preparation (from both microbiologist and mass spectrometrist points of view), matrix deposition, and data acquisition and interpretation. Lipopeptide images recorded from confrontation plates are also presented.

  19. Detergent enhancement of on-tissue protein analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Mainini, Veronica; Angel, Peggi M; Magni, Fulvio; Caprioli, Richard M

    2011-01-15

    Matrix-Assisted Laser Desorption/Ionization (MALDI) Imaging Mass Spectrometry (IMS) is a molecular technology that allows simultaneous investigation of the content and spatial distribution of molecules within tissue. In this work, we examine different classes of detergents, the anionic sodium dodecyl sulfate (SDS), the nonionic detergents Triton X-100, Tween 20 and Tween 80, and the zwitterionic 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) for use in MALDI IMS of analytes above m/z 4000. These detergents were found to be compatible with MALDI MS and did not cause signal suppression relative to non-detergent applications and did not produce interfering background signals. In general, these detergents enhanced signal acquisition within the mass range m/z 4-40 000. Adding detergents into the matrix was comparable with the separate application of detergent and matrix. Evaluation of spectra collected from organ-specific regions of a whole mouse pup section showed that different detergents perform optimally with different organs, indicating that detergent selection should be optimized on the specific tissue for maximum gain. These data show the utility of detergents towards enhancement of protein signals for on-tissue MALDI IMS analysis.

  20. Phosphopeptide screening using nanocrystalline titanium dioxide films as affinity matrix-assisted laser desorption ionization targets in mass spectrometry.

    PubMed

    Niklew, Marie-Luise; Hochkirch, Ulrike; Melikyan, Anna; Moritz, Thomas; Kurzawski, Sandra; Schlüter, Hartmut; Ebner, Ingo; Linscheid, Michael W

    2010-02-01

    The use of nanocrystalline titanium dioxide films as affinity targets for the selective isolation and enrichment of phosphopeptides with subsequent analysis by matrix-assisted laser desorption ionization (MALDI) mass spectrometry is described. A strong affinity of phosphopeptides to anatase titanium dioxide surfaces is observed, and a standard protocol for the selective isolation and enrichment of phosphopeptides on titanium dioxide films using a proteolytic digest of alpha- and beta-casein was developed. All washing and elution procedures using these films can be processed directly on the MALDI target, thereby avoiding sample contamination and losses. In addition, the enrichment of the phosphopeptides was improved due to a considerable enlargement of the surface. Several film substrates compatible with routine inlet systems of mass spectrometers, as conductive glass, aluminum, and silicon, have been manufactured and tested. A biological application was examined by the human fibrinogen-thrombin system. For a quantification and comparison of different expression levels of phosphoproteins in biological systems, the peptides were labeled with S-methyl thioimidate reagents. The capability of this method for high-throughput applications make the use of mesoporous titanium dioxide films as an affinity MALDI target a promising tool in phosphoproteomics. A combination of an amidation protocol showed that a quantification of phosphorylated peptides can easily be performed using TiO(2) films.

  1. Lipid characterization of embryo zones by silica plate laser desorption ionization mass spectrometry imaging (SP-LDI-MSI).

    PubMed

    Ferreira, Mônica S; de Oliveira, Diogo N; Gonçalves, Roseli F; Catharino, Rodrigo R

    2014-01-07

    Lipid pathways play important biological roles in mammalian embryology, directing early developmental pathways to differentiation. Phospholipids and triglycerides, among others, are the main composing lipids of zona pellucida in several embryo species. Lipid analysis in embryos by mass spectrometry usually requires sample preparation and/or matrix application. This novel approach using silica plate laser desorption/ionization mass spectrometry imaging (SP-LDI-MSI) allows direct single-cell imaging and embryo region discrimination with no matrix coating. Its application is herein described for two- and eight-cell embryos. Lipid biomarkers for blastomere and intact zona pellucida are reported and corroborated by both fragmentation reactions (MS/MS) and images. Results obtained in this work are understood to be of great use for further developments on in vitro bovine fertilization. Since much of the processes can be monitored by characteristic biomarkers, it is now possible to precisely identify cell division errors during early embryo stages, as well as evaluate pre-implantation conditions.

  2. Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue.

    PubMed

    Hsieh, Yunsheng; Casale, Roger; Fukuda, Elaine; Chen, Jiwen; Knemeyer, Ian; Wingate, Julia; Morrison, Richard; Korfmacher, Walter

    2006-01-01

    Matrix-assisted laser desorption/ionization hyphenated with quadrupole time-of-flight (QTOF) mass spectrometry (MS) has been used to directly determine the distribution of pharmaceuticals in rat brain tissue slices which might unravel their disposition for new drug development. Clozapine, an antipsychotic drug, and norclozapine were used as model compounds to investigate fundamental parameters such as matrix and solvent effects and irradiance dependence on MALDI intensity but also to address the issues with direct tissue imaging MS technique such as (1) uniform coating by the matrix, (2) linearity of MALDI signals, and (3) redistribution of surface analytes. The tissue sections were coated with various matrices on MALDI plates by airspray deposition prior to MS detection. MALDI signals of analytes were detected by monitoring the dissociation of the individual protonated molecules to their predominant MS/MS product ions. The matrices were chosen for tissue applications based on their ability to form a homogeneous coating of dense crystals and to yield greater sensitivity. Images revealing the spatial localization in tissue sections using MALDI-QTOF following a direct infusion of (3)H-clozapine into rat brain were found to be in good correlation with those using a radioautographic approach. The density of clozapine and its major metabolites from whole brain homogenates was further confirmed using fast high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) procedures.

  3. Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices.

    PubMed

    Lee, Kun-Hong; Chiang, Cheng-Kang; Lin, Zong-Hong; Chang, Huan-Tsung

    2007-01-01

    We describe the use of titanium dioxide nanoparticles (TiO2 NPs) as selective probes and matrices for the determination of catechins using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The interactions between the enediol compounds and TiO2 NPs were evident by the change in color of the TiO2 NP solution from milky white to orange. Through these interactions, the TiO2 NPs could be used to concentrate enediol compounds, including catechins and ascorbic acid. The limits of detection (LODs) for three catechins--catechin, (-)-epigallocatechin, and (-)-epigallocatechin gallate--at a signal-to-noise ratio of 3 were 0.45, 1.85 and 0.65 microM, respectively. The TiO2 NP matrices provide a number of advantages over conventional organic matrices (e.g. 2',4',6'-trihydroxyacetophenone), including ease of sample preparation, less background noise in the low-mass region, and high repeatability. The applicability of this method was confirmed through the high reproducibility of the determination of the two catechins in tea samples that had not been subjected to any sample preparation procedures (shot-to-shot variation: <10%).

  4. Differentiation of Streptococcus pneumoniae Conjunctivitis Outbreak Isolates by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿

    PubMed Central

    Williamson, Yulanda M.; Moura, Hercules; Woolfitt, Adrian R.; Pirkle, James L.; Barr, John R.; Carvalho, Maria Da Gloria; Ades, Edwin P.; Carlone, George M.; Sampson, Jacquelyn S.

    2008-01-01

    Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis. PMID:18708515

  5. Combining laser ablation/liquid phase collection surface sampling and high-performance liquid chromatography-electrospray ionization-mass spectrometry.

    PubMed

    Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2011-03-15

    This letter describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high-performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of this coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC-ESI-MS analysis revealed successful laser ablation, capture, and with HPLC, the separation of the two compounds. The ablated circular area was about 70 μm in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.

  6. Detecting Biosignatures Associated with Minerals by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transorm Mass Spectromety (GALDI-FTMS)

    SciTech Connect

    C. Doc Richardson; J. Michelle Kotler; Nancy W. Hinman; Timothy R. McJunkin; Jill R. Scott

    2008-07-01

    The ability to detect carbon signatures that can be linked to complex, possibly biogenic, organic molecules is imperative in research into the origin and distribution of life in our solar system particularly when used in conjunction with inorganic, mineralogical, and isotopic signatures that provide strong evidence for geochemical influences of living organisms on their environment. Ideally, the method used to detect these signatures must (i) accurately and automatically translate the organic and other information into usable forms, (ii) precisely distinguish such information from alternative compositions, (iii) operate with high spatial resolution coupled with precise location abilities, and (iv) require little to no sample preparation because of the potential for contamination. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometer (FTMS) has been used to determine the presence of bio/organic molecules (BOM) associated with different minerals and mineraloids including oxide, sulfate, carbonate, chloride, and silicate minerals. BOM is defined as an organic structure that can be produced by living organisms or derived from another organic compound made by living organisms (i.e., degradation product). GALDI requires no sample preparation because the mineral matrix assists desorption. Ultimately, however, the detectability of BOM is controlled by the desorption efficiency, ionization efficiency, and the specific experimental conditions. Results from experiments with combinations of known BOM and mineral standards indicated that the detectability of BOM increased with decreasing concentration, contrary to most analytical procedures. Results suggest that BOM when combined with certain minerals is more easily detected than when combined with other minerals. Such conclusions can guide selection of appropriate samples for sample return missions.

  7. Enzyme-Coupled Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for Searching for Low-Mass Inhibitors of Enzymes in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: `ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and `ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  8. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures.

    PubMed

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  9. Structural studies of the allelic wheat glutenin subunits 1Bx7 and 1Bx20 by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Cunsolo, Vincenzo; Foti, Salvatore; Saletti, Rosaria; Gilbert, Simon; Tatham, Arthur S; Shewry, Peter R

    2004-01-01

    Structural studies of the high molecular mass (HMM) glutenin subunits 1Bx7 (from cvs Hereward and Galatea) and 1Bx20 (from cv. Bidi17) of bread wheat were conducted using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high-performance liquid chromatography/electrospray ionization mass spectrometry (RP-HPLC/ESI-MS). For all three proteins, MALDI-TOFMS analysis showed that the isolated fractions contained a second component with a mass about 650 Da lower than the major component. The testing and correction of the gene-derived amino acid sequences of the three proteins were performed by direct MALDI-TOFMS analysis of their tryptic peptide mixture. Analysis of the digest was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, optimizing the matrix and the acquisition parameters for each mass range. Complementary data were obtained by RP-HPLC/ESI-MS analysis of the tryptic digest. This resulted in coverage of about 98% of the sequences. In contrast to the gene-derived data, the results obtained demonstrate the insertion of the sequence QPGQGQ between Trp716 and Gln717 of subunit 1Bx7 (cv. Galatea) and a possible single amino acid substitution within the T20 peptide of subunit 1Bx20. Moreover, the mass spectrometric data demonstrated that the lower mass components present in all the fractions correspond to the major components but lack about six amino acid residues, which are probably lost from the protein C-terminus. Finally, the results obtained provide evidence for the lack of glycosylation or other post-translational modifications of these subunits. Copyright 2004 John Wiley & Sons, Ltd.

  10. MIL-101(Cr) as matrix for sensitive detection of quercetin by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Han, Guobin; Zeng, Qiaoling; Jiang, Zhongwei; Xing, Tiantian; Huang, Chengzhi; Li, Yuanfang

    2017-03-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been proven as a useful and advanced technique in the identification of polymers and proteins. However, MALDI-TOF-MS still has the unavoidable drawback of self-signal interference with traditional organic matrices, which could suppress and overlap with the analyte signals in the low-mass region. In this work, MIL-101(Cr), a kind of metal-organic frameworks which possess high molecular weight, π-conjugated 3-D structure, coordinately unsaturated chromium sites (CUS) and strong absorption in the UV range, was employed to replace traditional organic matrices, and it was found that MIL-101(Cr) can dramatically eliminate the background peaks, showing high signal-to-noise level in the analysis of small molecules. As proof-of-concept, quercetin, daidzein, genistein and naringenin, members of flavonol family which widely exists in food and natural products, were successfully determined by utilizing MIL-101(Cr) as the surface-assisted matrix, and the detection of quercetin was sensitive with good salt tolerance and reproducibility. Under optimal conditions, the mass peak intensity exhibited good linear relationships in the range from 0.25µg/mL-7.00µg/mL for quercetin (R(2)=0.996) with detection limit 2.11ng/mL (3σ/k), making the identification of quercetin in sophora japonica successfully. With this strategy we have demonstrated the potentiality of MIL-101(Cr) nanomaterials as MALDI-MS matrix for the detection of small molecules.

  11. Exploring the frontiers of synthetic eumelanin polymers by high-resolution matrix-assisted laser/desorption ionization mass spectrometry.

    PubMed

    Reale, Samantha; Crucianelli, Marcello; Pezzella, Alessandro; d'Ischia, Marco; De Angelis, Francesco

    2012-01-01

    New trends in material science and nanotechnologies have spurred growing interest in eumelanins black insoluble biopolymers derived by tyrosinase-catalysed oxidation of tyrosine via 5,6-dihydroxyindole (DHI) and its 2-carboxylic acid (DHICA). Efficient antioxidant and photoprotective actions, associated with peculiar optoelectronic properties, are recognised as prominent functions of eumelanin macromolecules within the human and mammalian pigmentary system, making them unique candidates for the realisation of innovative bio-inspired functional soft materials, with structure-based physical-chemical properties. An unprecedented breakthrough into the mechanism of synthetic eumelanin buildup has derived from a detailed investigation of the oxidative polymerization of DHI and its N-methyl derivative (NMDHI) by linear and reflectron matrix-assisted laser/desorption ionization mass spectrometry. Regular collections of oligomers of increasing masses, spanning the entire m/z ranges up to 5000 Da (>30-mer) and 8000 Da (> 50-mer) for the two building blocks, respectively, were disclosed. It is the first time that the in vitro polymerisation of dihydroxyindoles to form synthetic eumelanins is explored up to its high mass limits, giving at the same time information on the polymerisation mode, whether it follows a stepwise pattern (being this the conclusion in our case) or a staking sequencing of small-sized entities. It also highlighted the influence of the N-methyl substituent on the polymerization process; this opens the way to the production of N-functionalized, synthetic eumelanin-inspired soft materials, for possible future technological applications. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Applications of a matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometer. l. Metastable decay and collision-induced dissociation for sequencing peptides.

    PubMed

    Ackloo, Suzanne; Loboda, Alexandre

    2005-01-01

    The use of a high-performance orthogonal time-of-flight (o-TOF) mass spectrometer for sequence analysis is described. The mass spectrometer is equipped with a matrix-assisted laser desorption/ionization (MALDI) source that operates at elevated pressure, 0.01-1 Torr. Ion fragmentation is controlled by varying the pressure of the buffer gas, the laser energy, the voltage difference between the MALDI target and the adjacent sampling cone, and between the cone and the quadrupole ion guide. The peptides were analyzed under optimal ionization conditions to obtain their molecular mass, and under conditions that promote ion dissociation via metastable decomposition or collision-induced dissociation (CID). The fragmentation spectra were used to obtain sequence information. Ion dissociation was promoted via three configurations of the ionization parameters. All methods yielded sequencing-grade b- and y-type ions. Two binary mixtures of peptides were used to demonstrate that: (1) external calibration provides a standard deviation (sigma) of 4 ppm with a mode of 9 ppm; and (2) that peptides with molecular masses that differ by a factor of two may be independently fragmented by appropriately choosing the CID energy and the low-mass cut-off. Analyses of tryptic digests employed liquid chromatography (LC), deposition of the eluant on a target, and finally MALDI-TOF mass spectrometry. The mass fingerprint and the (partial) sequence of the tryptic peptides were matched to their precursor protein via database searches.

  13. High-throughput quantitative analysis of domoic acid directly from mussel tissue using Laser Ablation Electrospray Ionization - tandem mass spectrometry.

    PubMed

    Beach, Daniel G; Walsh, Callee M; McCarron, Pearse

    2014-12-15

    Eliminating sample extraction or liquid chromatography steps from methods for analysis of the neurotoxin Domoic Acid (DA) in shellfish could greatly increase throughput in food safety testing laboratories worldwide. To this end, we have investigated the use of Laser Ablation Electrospray Ionization (LAESI) with tandem mass spectrometry (MS/MS) detection for DA analysis directly from mussel tissue homogenates without sample extraction, cleanup or separation. DA could be selectively detected directly from mussel tissue homogenates using MS/MS in selected reaction monitoring scan mode. The quantitative capabilities of LAESI-MS/MS for DA analysis from mussel tissue were evaluated by analysis of four mussel tissue reference materials using matrix-matched calibration. Linear response was observed from 1 mg/kg to 40 mg/kg and the method limit of detection was 1 mg/kg. Results for DA analysis in tissue within the linear range were in good agreement with two established methods, LC-UV and LC-MS/MS (recoveries from 103 to 125%). Beyond the linear range, extraction and clean-up were required to achieve good quantitation. Most notable is the extremely rapid analysis time of about 10 s per sample by LAESI-MS/MS, which corresponds to a significant increase in sample throughput compared with existing methodology for routine DA analysis. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Identification of clinical isolates of anaerobic bacteria using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fedorko, D P; Drake, S K; Stock, F; Murray, P R

    2012-09-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) for the rapid identification of anaerobic bacteria that had been isolated from clinical specimens and previously identified by 16s rRNA sequencing. The Bruker Microflex MALDI-TOF instrument with the Biotyper Software was used. We tested 152 isolates of anaerobic bacteria from 24 different genera and 75 different species. A total of 125 isolates (82%) had Biotyper software scores greater than 2.0 and the correct identification to genus and species was made by MALDI-TOF for 120 (79%) of isolates. Of the 12 isolates with a score between 1.8 and 2.0, 2 (17%) organisms were incorrectly identified by MALDI-TOF. Only 15 (10%) isolates had a score less than 1.8 and MALDI-TOF gave the wrong genus and species for four isolates, the correct genus for two isolates, and the correct genus and species for nine isolates. Therefore, we found the Bruker MALDI-TOF MicroFlex LT with an expanded database and the use of bacteria extracts rather than whole organisms correctly identified 130 of 152 (86%) isolates to genus and species when the cut-off for an acceptable identification was a spectrum score ≥1.8.

  15. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry

    PubMed Central

    2014-01-01

    Background Phlebotomine sand flies are incriminated in the transmission of several human and veterinary pathogens. To elucidate their role as vectors, proper species identification is crucial. Since traditional morphological determination is based on minute and often dubious characteristics on their head and genitalia, which require certain expertise and may be damaged in the field-collected material, there is a demand for rapid, simple and cost-effective molecular approaches. Methods Six laboratory-reared colonies of phlebotomine sand flies belonging to five species and four subgenera (Phlebotomus, Paraphlebotomus, Larroussius, Adlerius) were used to evaluate the discriminatory power of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Various storage conditions and treatments, including the homogenization in either distilled water or given concentrations of formic acid, were tested on samples of both sexes. Results Specimens of all five analysed sand fly species produced informative, reproducible and species-specific protein spectra that enabled their conclusive species identification. The method also distinguished between two P. sergenti colonies originating from different geographical localities. Protein profiles within a species were similar for specimens of both sexes. Tested conditions of specimen storage and sample preparation give ground to a standard protocol that is generally applicable on analyzed sand fly specimens. Conclusions Species identification of sand flies by MALDI-TOF MS is feasible and represents a novel promising tool to improve biological and epidemiological studies on these medically important insects. PMID:24423215

  16. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Buttrini, Mirko; Gorrini, Chiara; Motta, Federica; Germini, Diego; Medici, Maria-Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification. PMID:25354905

  17. Rapid differentiation of Panax ginseng and Panax quinquefolius by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lai, Ying-Han; So, Pui-Kin; Lo, Samual Chun-Lap; Ng, Eddy Wing Yin; Poon, Terence Chuen Wai; Yao, Zhong-Ping

    2012-11-13

    A matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based method has been developed for rapid differentiation between Panax ginseng and Panax quinquefolius, two herbal medicines with similar chemical and physical properties but different therapeutic effects. This method required only a small quantity of samples, and the herbal medicines were analyzed by MALDI-MS either after a brief extraction step, or directly on the powder form or small pieces of raw samples. The acquired MALDI-MS spectra showed different patterns of ginsenosides and small chemical molecules between P. ginseng and P. quinquefolius, thus allowing unambiguous differentiation between the two Panax species based on the specific ions, intensity ratios of characteristic ions or principal component analysis. The approach could also be used to differentiate red ginseng or P. quinquefolius adulterated with P. ginseng from pure P. ginseng and pure Panax quinquefolium. The intensity ratios of characteristic ions in the MALDI-MS spectra showed high reproducibility and enabled quantitative determination of ginsenosides in the herbal samples and percentage of P. quinquefolius in the adulterated binary mixture. The method is simple, rapid, robust, and can be extended for analysis of other herbal medicines.

  18. Detection of melamine in infant formula and grain powder by surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Hsieh, Yi-Ting; Chen, Wen-Tsen; Tomalová, Iva; Preisler, Jan; Chang, Huan-Tsung

    2012-06-30

    We have developed a method for the determination of melamine (MEL), ammeline (AMN), and ammelide (AMD) by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using gold nanoparticles (Au NPs). The major peaks for MEL, AMN, and AMD at m/z 127.07, 128.05, and 129.04 are assigned to the [MEL + H](+), [AMN + H](+), and [AMD + H](+) ions. Because the three tested compounds adsorb weakly onto the surfaces of the Au NPs through Au-N bonding, they can be easily concentrated from complex samples by applying a simple trapping/centrifugation process. The SALDI-MS method provides limits of detection of 5, 10, and 300 nM for MEL, AMN, and AMD, respectively, at a signal-to-noise ratio of 3. The signal variation for 150-shot average spectra of the three analytes within the same spot was 15%, and the batch-to-batch variation was 20%. We have validated the practicality of this approach by the analysis of these three analytes in infant formula and grain powder. This simple and rapid SALDI-MS approach holds great potential for screening of MEL in foods. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping

    2015-07-16

    Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils.

  20. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    PubMed

    Vlek, Anne L M; Bonten, Marc J M; Boel, C H Edwin

    2012-01-01

    Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01)). Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  1. Differentiation of blue ballpoint pen inks by laser desorption ionization mass spectrometry and high-performance thin-layer chromatography.

    PubMed

    Weyermann, Céline; Marquis, Raymond; Mazzella, Williams; Spengler, Bernhard

    2007-01-01

    The differentiation of inks on a questioned document can highlight a fraudulent insertion and is usually carried out by optical comparison and thin-layer chromatography (TLC). Laser desorption ionization mass spectrometry (LDI-MS) may also be used for the analysis of dyes from ink. This analytical technique was compared with a standard method of high-performance TLC (HPTLC) according to their capacity to differentiate blue ballpoint inks. Ink entries on paper from 31 blue ballpoint pens have been analyzed and their dye ink formulations compared. The pens were classified into 26 classes by LDI-MS against 18 for HPTLC. LDI-MS proved to be a more powerful method for differentiating ink formulations because it provides information about dye structures (molecular weights) and relative quantification of dye classes (peak areas). Sample preparation was minimal and analysis time was short in contrast to the more complex extraction, application, and development steps of the HPTLC method. However, only basic dyes and pigments were identified using positive mode LDI-MS, while HPTLC did yield additional information about acid dyes.

  2. Differentiation of Aeromonas isolated from drinking water distribution systems using matrix-assisted laser desorption/ionization-mass spectrometry.

    PubMed

    Donohue, Maura J; Best, Jennifer M; Smallwood, Anthony W; Kostich, Mitchell; Rodgers, Mark; Shoemaker, Jody A

    2007-03-01

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the whole cells of both reference strains and unknown Aeromonas isolates obtained from water distribution systems. A library of over 45 unique m/z signatures was created from 40 strains that are representative of the 17 recognized species of Aeromonas, as well as 3 reference strains from genus Vibrio and 2 reference strains from Plesiomonas shigelloides. The library was used to help speciate 52 isolates of Aeromonas. The environmental isolates were broken up into 2 blind studies. Group 1 contained isolates that had a recognizable phenotypic profile and group 2 contained isolates that had an atypical phenotypic profile. MALDI-MS analysis of the water isolates in group 1 matched the phenotypic identification in all cases. In group 2, the MALDI-MS-based determination confirmed the identity of 18 of the 27 isolates. These results demonstrate that MALDI-MS analysis can rapidly and accurately classify species of the genus Aeromonas, making it a powerful tool especially suited for environmental monitoring and detection of microbial hazards in drinking water.

  3. Identification of Leishmania at the species level with matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Cassagne, C; Pratlong, F; Jeddi, F; Benikhlef, R; Aoun, K; Normand, A-C; Faraut, F; Bastien, P; Piarroux, R

    2014-06-01

    Matrix-assisted laser desorption ionization time-of-flightMALDI-TOF mass spectrometry (MS) is now widely recognized as a powerful tool with which to identify bacteria and fungi at the species level, and sometimes in a rapid and accurate manner. We report herein an approach to identify, at the species level, Leishmania promastigotes from in vitro culture. We first constructed a reference database of spectra including the main Leishmania species known to cause human leishmaniasis. Then, the performance of the reference database in identifying Leishmania promastigotes was tested on a panel of 69 isolates obtained from patients. Our approach correctly identified 66 of the 69 isolates tested at the species level with log (score) values superior to 2. Two Leishmania isolates yielded non-interpretable MALDI-TOF MS patterns, owing to low log (score) values. Only one Leishmania isolate of Leishmania peruviana was misidentified as the closely related species Leishmania braziliensis, with a log (score) of 2.399. MALDI-TOF MS is a promising approach, providing rapid and accurate identification of Leishmania from in vitro culture at the species level. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  4. Three-Dimensional Elemental Imaging of Nantan Meteorite via Femtosecond Laser Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    He, Miaohong; Meng, Yifan; Yan, Shanshan; Hang, Wei; Zhou, Wenge; Huang, Benli

    2017-01-03

    Femtosecond laser ionization time-of-flight mass spectrometry (fs-LI-TOFMS) is introduced for the three-dimensional elemental analysis of a Nantan meteorite. Spatially resolved multielemental imaging of major and minor compositions in a meteorite are presented with a lateral resolution of 50 μm and a depth resolution of 7 μm. Distinct 3D distributions of siderophile, lithophile, and chalcophile elements are revealed. Co and Ni are highly siderophile (Iron-loving), mainly enriched in the metal phase. Cr, Cu, V, and Mn are enriched in the sulfide for their chalcophile (S-loving) tendency. S, P, and C aggregate together in the analytical volume. Silicate inclusion, containing lithophile elements of Al, Ca, Mg, K, and so on, is embedded within the metal phase for the immiscibility between silicate inclusion and the melted metal phase. These 3D distributions of elements aid the exploration of the formation and evolution of the meteorite. They also reveal the feasibility of fs-LI-TOFMS as a versatile tool for 3D imaging.

  5. Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry.

    PubMed

    Nemes, Peter; Barton, Alexis A; Vertes, Akos

    2009-08-15

    Three-dimensional (3D) imaging of molecular distributions offers insight into the correlation between biochemical processes and the spatial organization of a biological tissue. Simultaneous identification of diverse molecules is a virtue of mass spectrometry (MS) that in combination with ambient ion sources enables the atmospheric pressure investigation of biomolecular distributions and processes. Here, we report on the development of an MS-based technique that allows 3D chemical imaging of tissues under ambient conditions without sample preparation. The method utilizes laser ablation electrospray ionization (LAESI) for direct molecular imaging with lateral and depth resolutions of approximately 300 microm and 30-40 microm, respectively. We demonstrate the feasibility of LAESI 3D imaging MS of metabolites in the leaf tissues of Peace lily (Spathiphyllum lynise) and the variegated Zebra plant (Aphelandra squarrosa). Extensive tandem MS studies help with the structure identification of the metabolites. The 3D distributions are found to exhibit tissue-specific metabolite accumulation patterns that correlate with the biochemical roles of these chemical species in plant defense and photosynthesis. Spatial correlation coefficients between the intensity distributions of different ions help to identify colocalization of metabolites and potentially uncover connections between metabolic pathways.

  6. Novel ionic liquid matrices for qualitative and quantitative detection of carbohydrates by matrix assisted laser desorption/ionization mass spectrometry.

    PubMed

    Zhao, Xiaoyong; Shen, Shanshan; Wu, Datong; Cai, Pengfei; Pan, Yuanjiang

    2017-09-08

    Analysis of carbohydrates based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is still challenging and researchers have been devoting themselves to efficient matrices discovery. In the present study, the design, synthesis, qualitative and quantitative performance of non-derivative ionic liquid matrices (ILMs) were reported. DHB/N-methylaniline (N-MA) and DHB/N-ethylaniline (N-EA), performing best for carbohydrate detection, have been screened out. The limit of detection for oligosaccharide provided by DHB/N-MA and DHB/N-EA were as low as 10 fmol. DHB/N-MA and DHB/N-EA showed significantly higher ion generation efficiency than DHB. The comparison of capacity to probe polysaccharide between these two ILMs and DHB also revealed their powerful potential. Their outstanding performance were probably due to lower proton affinities and stronger UV absorption at λ = 355 nm. What is more, taking DHB/N-MA as an example, quantitative analysis of fructo-oligosaccharide mixtures extracted and identified from rice noodles has been accomplished sensitively using an internal standard method. Overall, DHB/N-MA and DHB/N-EA exhibited excellent performance and might be significant sources as the carbohydrate matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification.

    PubMed

    Bizzini, A; Greub, G

    2010-11-01

    Until recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for the identification of microorganisms remained confined to research laboratories. In the last 2 years, the availability of relatively simple to use MALDI-TOF MS devices, which can be utilized in clinical microbiology laboratories, has changed the laboratory workflows for the identification of pathogens. Recently, the first prospective studies regarding the performance in routine bacterial identification showed that MALDI-TOF MS is a fast, reliable and cost-effective technique that has the potential to replace and/or complement conventional phenotypic identification for most bacterial strains isolated in clinical microbiology laboratories. For routine bacterial isolates, correct identification by MALDI-TOF MS at the species level was obtained in 84.1-93.6% of instances. In one of these studies, a protein extraction step clearly improved the overall valid identification yield, from 70.3% to 93.2%. This review focuses on the current state of use of MALDI-TOF MS for the identification of routine bacterial isolates and on the main difficulties that may lead to erroneous or doubtful identifications. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  8. Gadolinium trace determination in biomedical samples by diode-laser-based multi-step resonance ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Geppert, Ch.; Blaum, K.; Diel, S.; Müller, P.; Schreiber, W. G.; Wendt, K.

    2001-08-01

    Diode laser based multi-step resonance ionization mass spectrometry (RIMS), which has been developed primarily for ultra trace analysis of long lived radioactive isotopes has been adapted for the application to elements within the sequence of the rare earths. First investigations concern Gd isotopes. Here high suppression of isobars, as provided by RIMS, is mandatory. Using a three step resonant excitation scheme into an autoionizing state, which has been the subject of preparatory spectroscopic investigations, high efficiency of >1×10-6 and good isobaric selectivity >107 was realized. Additionally the linearity of the method has been demonstrated over six orders of magnitude. Avoiding contaminations from the Titanium-carrier foil resulted in a suppression of background of more than one order of magnitude and a correspondingly low detection limit of 4×109 atoms, equivalent to lpg of Gd. The technique has been applied for trace determination of the Gd-content in animal tissue. Bio-medical micro samples were analyzed shortly after Gd-chelat, which is used as the primary contrast medium for magnetic resonance imaging (MRI) in biomedical investigations, has been injected. Correlated in-vivo magnetic resonance images have been taken. The RIMS measurements show high reproducibility as a well as good precision, and contribute to new insight into the distribution and kinetics of Gd within different healthy and cancerous tissues.

  9. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?

    PubMed

    van Belkum, Alex; Welker, Martin; Pincus, David; Charrier, Jean Philippe; Girard, Victoria

    2017-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. © The Korean Society for Laboratory Medicine.

  10. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for the identification of Neisseria gonorrhoeae.

    PubMed

    Buchanan, R; Ball, D; Dolphin, H; Dave, J

    2016-09-01

    Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) was compared with the API NH biochemical method for the identification of Neisseria gonorrhoeae in routine clinical samples. A retrospective review of laboratory records for 1090 isolates for which both biochemical and MALDI-TOF MS identifications were available was performed. Cases of discrepant results were examined in detail for evidence supportive of a particular organism identification. Of 1090 isolates, 1082 were identified as N. gonorrhoeae by API NH. MALDI-TOF MS successfully identified 984 (91%) of these after one analysis, rising to 1081 (99.9%) after two analyses, with a positive predictive value of 99.3%. For those isolates requiring a repeat analysis, failure to generate an identifiable proteomic signature was the reason in 76% of cases, with alternative initial identifications accounting for the remaining 24%. MALDI-TOF MS identified eight isolates as N. gonorrhoeae that were not identified as such by API NH-examination of these discrepant results suggested that the MALDI-TOF MS identification may be the more reliable. MALDI-TOF MS is at least as accurate and reliable a method of identifying N. gonorrhoeae as API NH. We propose that MALDI-TOF MS could potentially be used as a single method for N. gonorrhoeae identification in routine cases by laboratories with access to this technology.

  11. Fast surface acoustic wave-matrix-assisted laser desorption ionization mass spectrometry of cell response from islets of Langerhans.

    PubMed

    Bllaci, Loreta; Kjellström, Sven; Eliasson, Lena; Friend, James R; Yeo, Leslie Y; Nilsson, Staffan

    2013-03-05

    A desire for higher speed and performance in molecular profiling analysis at a reduced cost is driving a trend in miniaturization and simplification of procedures. Here we report the use of a surface acoustic wave (SAW) atomizer for fast sample handling in matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) peptide and protein profiling of Islets of Langerhans, for future type 2 diabetes (T2D) studies. Here the SAW atomizer was used for ultrasound (acoustic) extraction of insulin and other peptide hormones released from freshly prepared islets, stimulated directly on a membrane. A high energy propagating SAW atomizes the membrane-bound liquid into approximately 2 μm diameter droplets, rich in cell-released molecules. Besides acting as a sample carrier, the membrane provides a purification step by entrapping cell clusters and other impurities within its fibers. A new SAW-based sample-matrix deposition method for MALDI MS was developed and characterized by a strong insulin signal, and a limit of detection (LOD) lower than 100 amol was achieved. Our results support previous work reporting the SAW atomizer as a fast and inexpensive tool for ultrasound, membrane-based sample extraction. When interfaced with MALDI MS, the SAW atomizer constitutes a valuable tool for rapid cell studies. Other biomedical applications of SAW-MALDI MS are currently being developed, aiming at fast profiling of biofluids. The membrane sampling is a simplistic and noninvasive collection method of limited volume biofluids such as the gingival fluid and the tearfilm.

  12. Direct Analysis of Triacylglycerols from Crude Lipid Mixtures by Gold Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Son, Jeongjin; Lee, Gwangbin; Cha, Sangwon

    2014-05-01

    Triacylglycerols (TAGs), essential energy storage lipids, are easily detected by conventional MALDI MS when occurring on their own. However, their signals are easily overwhelmed by other lipids, mainly phosphatidylcholines (PCs) and, therefore, require purification. In order to profile TAGs from crude lipid mixtures without prefractionation, we investigated alternative matrixes that can suppress phospholipid ion signals and enhance cationization of TAGs. We found that an aqueous solution of citrate-capped gold nanoparticles (AuNPs) with a diameter of 12 nm is a superior matrix for the laser desorption/ionization mass spectrometry (LDI MS) of TAGs in crude lipid mixtures. The AuNP matrix effectively suppressed other lipid signals such as phospholipids and also provided 100 times lower detection limit for TAGs than 2,5-dihydroxybenzoic acid (DHB), the best conventional MALDI matrix for TAGs. The AuNP-assisted LDI MS enabled us to obtain detailed TAG profiles including minor species directly from crude beef lipid extracts without phospholipid interference. In addition, we could detect TAGs at a trace level from a total brain lipid extract.

  13. Direct analysis of triacylglycerols from crude lipid mixtures by gold nanoparticle-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Son, Jeongjin; Lee, Gwangbin; Cha, Sangwon

    2014-05-01

    Triacylglycerols (TAGs), essential energy storage lipids, are easily detected by conventional MALDI MS when occurring on their own. However, their signals are easily overwhelmed by other lipids, mainly phosphatidylcholines (PCs) and, therefore, require purification. In order to profile TAGs from crude lipid mixtures without prefractionation, we investigated alternative matrixes that can suppress phospholipid ion signals and enhance cationization of TAGs. We found that an aqueous solution of citrate-capped gold nanoparticles (AuNPs) with a diameter of 12 nm is a superior matrix for the laser desorption/ionization mass spectrometry (LDI MS) of TAGs in crude lipid mixtures. The AuNP matrix effectively suppressed other lipid signals such as phospholipids and also provided 100 times lower detection limit for TAGs than 2,5-dihydroxybenzoic acid (DHB), the best conventional MALDI matrix for TAGs. The AuNP-assisted LDI MS enabled us to obtain detailed TAG profiles including minor species directly from crude beef lipid extracts without phospholipid interference. In addition, we could detect TAGs at a trace level from a total brain lipid extract.

  14. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols and other components in fingermark samples.

    PubMed

    Emerson, Beth; Gidden, Jennifer; Lay, Jackson O; Durham, Bill

    2011-03-01

    The chemical composition of fingermarks could potentially be important for determining investigative leads, placing individuals at the time of a crime, and has applications as biomarkers of disease. Fingermark samples containing triacylglycerols (TAGs) and other components were analyzed using laser desorption/ionization (LDI) time-of-flight mass spectrometry (TOF MS). Only LDI appeared to be useful for this application while conventional matrix-assisted LDI-TOF MS was not. Tandem MS was used to identify/confirm selected TAGs. A limited gender comparison, based on a simple t-distribution and peaks intensities, indicated that two TAGs showed gender specificity at the 95% confidence level and two others at 97.5% confidence. Because gender-related TAGs differences were most often close to the standard deviation of the measurements, the majority of the TAGs showed no gender specificity. Thus, LDI-TOF MS is not a reliable indicator of gender based on fingermark analysis. Cosmetic ingredients present in some samples were identified. © 2011 American Academy of Forensic Sciences.

  15. A simple algorithm improves mass accuracy to 50-100 ppm for delayed extraction linear matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Hack, Christopher A; Benner, W Henry

    2002-01-01

    A simple mathematical technique for improving mass calibration accuracy of linear delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (DE MALDI-TOFMS) spectra is presented. The method involves fitting a parabola to a plot of Delta(m) vs. mass data where Delta(m) is the difference between the theoretical mass of calibrants and the mass obtained from a linear relationship between the square root of m/z and ion time of flight. The quadratic equation that describes the parabola is then used to correct the mass of unknowns by subtracting the deviation predicted by the quadratic equation from measured data. By subtracting the value of the parabola at each mass from the calibrated data, the accuracy of mass data points can be improved by factors of 10 or more. This method produces highly similar results whether or not initial ion velocity is accounted for in the calibration equation; consequently, there is no need to depend on that uncertain parameter when using the quadratic correction. This method can be used to correct the internally calibrated masses of protein digest peaks. The effect of nitrocellulose as a matrix additive is also briefly discussed, and it is shown that using nitrocellulose as an additive to the alpha-cyano-4-hydroxycinnamic acid (alphaCHCA) matrix does not significantly change initial ion velocity but does change the average position of ions relative to the sample electrode at the instant the extraction voltage is applied. Published in 2002 by John Wiley & Sons, Ltd.

  16. Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules

    PubMed Central

    Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei

    2017-01-01

    Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds. PMID:28430138

  17. Analysis of nonderivatized steroids by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using C70 fullerene as matrix.

    PubMed

    Montsko, Gergely; Vaczy, Alexandra; Maasz, Gabor; Mernyak, Erzsebet; Frank, Eva; Bay, Csaba; Kadar, Zalan; Ohmacht, Robert; Wolfling, Janos; Mark, Laszlo

    2009-10-01

    Neutral steroid hormones are currently analyzed by gas or liquid chromatography/mass spectrometry based methods. Most of the steroid compounds, however, lack volatility and do not contain polar groups, which results in inadequate chromatographic behavior and low ionization efficiency. Derivatization of the steroids to form more volatile, thermostable, and charged products solves this difficulty, but the derivatization of compounds with unknown chemical moieties is not an easy task. In this study, a rapid, high-throughput, sensitive matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method is described using C(70) fullerene as a matrix compound. The application of the method is demonstrated for five general sex steroids and for synthetic steroid compounds in both negative and positive ionization modes.

  18. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOEpatents

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  19. Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis.

    PubMed

    Spengler, Bernhard; Hubert, Martin

    2002-06-01

    A new instrument and method is described for laterally resolved mass spectrometric surface analysis. Fields of application are in both the life sciences and the material sciences. The instrument provides for imaging of the distribution of selected sample components from natural and artificial surfaces. Samples are either analyzed by laser desorption ionization (LDI) time-of-flight mass spectrometry or, after preparation with a suitable matrix, by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. Areas of 100 x 100 microm are scanned with minimal increments of 0.25 microm, and between 10,000 and 160,000 mass spectra are acquired per image within 3 to 50 min (scan rate up to 50 pixels per s). The effective lateral resolution is in the range of 0.6 to 1.5 microm depending on sample properties, preparation methods and laser wavelength. Optical investigation of the same sample area by UV confocal scanning laser microscopy was found to be very attractive in combination with scanning MALDI mass analysis because pixel-identical images can be created with both techniques providing for a strong increase in analytical information. This article describes the method and instrumentation, including first applicational examples in elemental analysis, imaging of pine tree roots, and investigation of MALDI sample morphology in biomolecular analysis.

  20. Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: A novel approach for environmental and biomolecule analysis.

    PubMed

    Nasser Abdelhamid, Hani; Wu, Bo-Sgum; Wu, Hui-Fen

    2014-08-01

    The integration of nanotechnology with mass spectrometry for sensitive and selective detection of molecules is a hot/important field of research. Synthesis of graphene (G) coated with mesoporous silica (SiO2, G@SiO2) for mass spectrometric application has been demonstrated. For the first time, we proposed the significant role of surfactant that used during the synthesis of mesorporous silicate (SiO2) in mass spectrometry. It was noticed that G could initiate SiO2 via surfactants which work as initiators for further ionization. The porosity of SiO2 trapped the analytes that was released and ionized with the surfactant fragments. Undoubtedly, strong background interferences were present in the case of organic matrix, which greatly obscured the detection of low molecular weight compounds. G@SiO2 nanocomposite affords several advantages, such as the ability to detect small molecules (<500Da), high sample localization through silica mesoporosity, and high ionization efficiency over than G or conventional matrices. The high performance of G@SiO2 is not only due to the large surface area but also due to high desorption/ionization efficiency of inevitably surfactant (cetyltrimethylammonium chloride, CATB). Unlike the conventional MALDI-MS, the G@SiO2-MS is capable of generating multiply charged polysaccharides. The present method was validated to detect surfactants with low limits of detection.

  1. Determination of Macrolide Antibiotics Using Dispersive Liquid-Liquid Microextraction Followed by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Yu; Yang, Thomas C.; Chang, Sarah Y.

    2012-06-01

    A novel method for the determination of macrolide antibiotics using dispersive liquid-liquid microextraction coupled to surface-assisted laser desorption/ionization mass spectrometric detection was developed. Acetone and dichloromethane were used as the disperser solvent and extraction solvent, respectively. A mixture of extraction solvent and disperser solvent were rapidly injected into a 1.0 mL aqueous sample to form a cloudy solution. After the extraction, macrolide antibiotics were detected using surface-assisted laser desorption/ionization mass spectrometry (SALDI/MS) with colloidal silver as the matrix. Under optimum conditions, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 2, 3, 3, and 2 nM for erythromycin (ERY), spiramycin (SPI), tilmicosin (TILM), and tylosin (TYL), respectively. This developed method was successfully applied to the determination of macrolide antibiotics in human urine samples.

  2. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wieme, Anneleen D; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita; Vandamme, Peter

    2014-08-18

    Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.

  4. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology. PMID:26999436

  5. A high-performance matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometer with collisional cooling.

    PubMed

    Loboda, A V; Ackloo, S; Chernushevich, I V

    2003-01-01

    A high-performance orthogonal time-of-flight (TOF) mass spectrometer was developed specifically for use in combination with a matrix-assisted laser desorption/ionization (MALDI) source. The MALDI source features an ionization region containing a buffer gas with variable pressure. The source is interfaced to the TOF section via a collisional focusing ion guide. The pressure in the source influences the rate of cooling and allows control of ion fragmentation. The instrument provides uniform resolution up to 18,000 FWHM (full width at half maximum). Mass accuracy routinely achieved with a single-point internal recalibration is below 2 ppm for protein digest samples. The instrument is also capable of recording spectra of samples containing compounds with a broad range of masses while using one set of experimental conditions and without compromising resolution or mass accuracy.

  6. Matrix-assisted and polymer-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of low molecular weight polystyrenes and polyethylene glycols.

    PubMed

    Woldegiorgis, Andreas; Löwenhielm, Peter; Björk, Anders; Roeraade, Johan

    2004-01-01

    Recently, matrices based on oligomers of dioxin and thiophene (polymer-assisted laser desorption/ionization (PALDI)) have been described for mass spectrometric (MS) analysis of low molecular weight compounds (Woldegiorgis A, von Kieseritzky F, Dahlstedt E, Hellberg J, Brinck T, Roeraade J. Rapid Commun. Mass Spectrom. 2004; 18: 841-852). In this paper, we report the use of PALDI matrices for low molecular weight polymers. An evaluation with polystyrene and polyethylene glycol showed that no charge transfer ionization occurs. Ionization is mediated through metal ion adduction. Comparison of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) data for two very low molecular weight polymers with data obtained from size-exclusion chromatography (SEC) revealed a systematic difference regarding mean molecular weight and dispersity. Further, the mass spectra obtained with PALDI matrices had a higher signal-to-noise ratio than the spectra obtained with conventional matrices. For polymers with higher molecular weights (>1500 Da), the conventional matrices gave better performance. For evaluation of the MALDI spectra, three non-linear mathematical models were evaluated to model the cumulative distributions of the different oligomers and their maximal values of Mw, Mn and PDI. Models based on sigmoidal or Boltzmann equations proved to be most suitable. Objective modeling tools are necessary to compare different sample and instrumental conditions during method optimization of MALDI analysis of polymers, since the bias between MALDI and SEC data can be misleading.

  7. Rapid subtyping of Yersinia enterocolitica by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for diagnostics and surveillance.

    PubMed

    Rizzardi, Kristina; Wahab, Tara; Jernberg, Cecilia

    2013-12-01

    In this study, an alternative to the current traditional bioserotyping techniques was developed for subtyping Y. enterocolitica using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The most common pathogenic bioserotypes could easily be distinguished using only a few bioserotype-specific biomarkers. However, biochemical methods should still be used to distinguish biotype 1A from 1B.

  8. Does the Capsule Interfere with Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Cryptococcus neoformans and Cryptococcus gattii?

    PubMed

    Thomaz, Danilo Y; Grenfell, Rafaella C; Vidal, Monica S M; Giudice, Mauro C; Del Negro, Gilda M B; Juliano, Luiz; Benard, Gil; de Almeida Júnior, João N

    2016-02-01

    We described the impact of the capsule size for Cryptococcus neoformans and Cryptococcus gattii identification at the species level by Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). After experimental capsule size modulation, we observed that reducing the capsule size resulted in improved identification by Bruker MALDI-TOF MS across all of the reference strains analyzed.

  9. Global Optimization of the IR Matrix-Assisted Laser Desorption Ionization (IR MALDESI) Source for Mass Spectrometry Using Statistical Design of Experiments

    PubMed Central

    Barry, Jeremy A.; Muddiman, David C.

    2013-01-01

    Design of experiments (DOE) is a systematic and cost-effective approach to system optimization by which the effects of multiple parameters and parameter interactions on a given response can be measured in few experiments. Herein, we describe the use of statistical DOE to improve a few of the analytical figures of merit of the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for mass spectrometry. In a typical experiment, bovine cytochrome c (~12 kDa) was ionized via electrospray, and equine cytochrome c (~12 kDa) was desorbed and ionized by IR-MALDESI such that the ratio of equine:bovine was used as a measure of the ionization efficiency of IR-MALDESI. This response was used to rank the importance of seven source parameters including flow rate, laser fluence, laser repetition rate, ESI emitter to mass spectrometer inlet distance, sample stage height, sample plate voltage, and the sample to mass spectrometer inlet distance. A screening fractional factorial DOE was conducted to designate which of the seven parameters induced the greatest amount of change in the response. These important parameters (flow rate, stage height, sample to mass spectrometer inlet distance, and laser fluence) were then studied at higher resolution using a full factorial DOE to obtain the globally optimized combination of parameter settings. The optimum combination of settings was then compared with our previously determined settings to quantify the degree of improvement in detection limit. The limit of detection for the optimized conditions was approximately 10 attomoles compared with 100 femtomoles for the previous settings, which corresponds to a four order of magnitude improvement in the detection limit of equine cytochrome c. PMID:22095501

  10. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to differentiate between Candida albicans and Candida dubliniensis.

    PubMed

    Roberts, Amity L; Alelew, Aqilah; Iwen, Peter C

    2016-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) analysis in conjunction with the direct formic acid (FA) sample processing method was evaluated for the ability to differentiate the closely related species of Candida albicans and Candida dubliniensis. The results showed that MALDI-TOF-MS, using the direct FA method, was reliable to differentiate between these species.

  11. Identification of non-diphtheriae corynebacterium by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Alatoom, Adnan A; Cazanave, Charles J; Cunningham, Scott A; Ihde, Sherry M; Patel, Robin

    2012-01-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for identification of 92 clinical isolates of Corynebacterium species in comparison to identification using rpoB or 16S rRNA gene sequencing. Eighty isolates (87%) yielded a score of ≥1.700, and all of these were correctly identified to the species level with the exception of Corynebacterium aurimucosum being misidentified as the closely related Corynebacterium minutissimum.

  12. Influence of Culture Media on Detection of Carbapenem Hydrolysis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina

    2016-07-01

    In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase.

  13. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  14. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  15. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast.

    PubMed

    Dhiman, Neelam; Hall, Leslie; Wohlfiel, Sherri L; Buckwalter, Seanne P; Wengenack, Nancy L

    2011-04-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry was compared to phenotypic testing for yeast identification. MALDI-TOF mass spectrometry yielded 96.3% and 84.5% accurate species level identifications (spectral scores, ≥ 1.8) for 138 common and 103 archived strains of yeast. MALDI-TOF mass spectrometry is accurate, rapid (5.1 min of hands-on time/identification), and cost-effective ($0.50/sample) for yeast identification in the clinical laboratory.

  16. Design, construction and development of a laser desorption ionization/laser ablation time-of-flight mass spectrometer for chemical analysis with and without surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Owega, Sandy

    Theoretical modeling of the Wiley-McLaren double-focusing field system (two acceleration fields) provided the critical dimensions for the design and construction of a time-of-flight mass spectrometer (TOFMS) for this research. For optimum resolution, the distances within the acceleration fields, s (0.26 cm) and d (2.60 cm) were determined for a drift tube length D of 42.2 cm. Arcing occurred frequently using our laser desorption ionization (LDI)/laser ablation (LA) technique; five different configurations were designed and evaluated. The third configuration was determined to be the most useful for LDI/LA-TOFMS experiments. The LDI/LA technique was tested for molecular mass and structural reactivity analysis. This LDI/LA technique was successfully applied to dithizone, 1,4,8,11- tetraazocyclotetradecane, dicyclohexyl-18-crown-6 ether, [5]-helicene dendrimer, gramicidin S, substance P, mellitin, PAHs, fullerenes/derivatives, thia fatty esters/acids, and a variety of related compounds. One advantage of the present LDI/LA technique, over conventional ones is that the sample does not need to have appreciable spectral absorption at the laser wavelength. The physical process that occurred during our LDI/LA technique was elucidated with internal standardization and ion association using gramicidin S. The LDI/LA mechanism generating the [M + Ag]+ cation was thought to be electronic-excitation (at low laser fluences) that evolved into a thermal one (at high laser fluences), depending on the silver film thickness. The five configurations were also evaluated for incorporating surface plasmon resonance (SPR) into our LDI/LA technique to ultimately construct a novel SPR- LDI/LA-TOFMS instrument. They indicated that silver surface plasmons have a SPR angle θr of 44° and an energy of 3.7 eV for a thin silver film thickness of 40 nm. The SPR-LDI/LA technique demonstrated that a lower minimum laser fluence for the production of the silver cluster cations [Agn]+ was required at

  17. A chemical precursor to optical damage. Studies by laser ionization mass spectrometry

    SciTech Connect

    Nogar, N.S.; Estler, R.C.

    1987-01-01

    Mass spectrometry has been used in conjunction with Nomarski microscopy to characterize the initiation of optical damage in selected commercial optics. For a sample with an Al/sub 2/O/sub 3//SiO/sub 2/ multilayer coating (351 nm) on a Si substrate, our results suggest layer by layer removal of the coating material with low-fluence irradiation at 1.06 mu. In addition, carbon impurities were observed in the low-damage threshold sample. For the Sc/sub 2/O/sub 3//SiO/sub 2/ multilayer coated (351 nm) 7940 substrates, transient iron signals were observed at each increasing fluence level, with concomitant appearance of small circular (10 mu) pits in the surface. These pits were also associated with macroscopic damage features due to threshold testing.

  18. Development of a stigmatic mass microscope using laser desorption/ionization and a multi-turn time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hazama, Hisanao; Yoshimura, Hidetoshi; Aoki, Jun; Nagao, Hirofumi; Toyoda, Michisato; Masuda, Katsuyoshi; Fujii, Kenichi; Tashima, Toshio; Naito, Yasuhide; Awazu, Kunio

    2011-04-01

    A novel stigmatic mass microscope using laser desorption/ionization and a multi-turn time-of-flight mass spectrometer, MULTUM-IMG, has been developed. Stigmatic ion images of crystal violet masked by a fine square mesh grid with a 12.7 μm pitch as well as microdot patterns with a 5 μm dot diameter and a 10 μm pitch made with rhodamine B were clearly observed. The estimated spatial resolution was about 3 μm in the linear mode with a 20-fold ion optical magnification. Separating stigmatic ion images according to the time-of-flight, i.e., the mass-to-charge ratio of the ions was successfully demonstrated by a microdot pattern made with two different dyes, crystal violet and methylene blue. Stigmatic ion images of a microdot pattern made with crystal violet were observed after circulation in MULTUM-IMG, and the pattern of the ion image was maintained after ten cycles in MULTUM-IMG. A section of a mouse brain stained with crystal violet and methylene blue was observed in the linear mode, and the stigmatic total ion image of crystal violet and methylene blue agreed well with the optical microphotograph of the hippocampus for the same section.

  19. Developments and Applications of Electrophoresis and Small Molecule Laser Desorption Ionization Mass Spectrometry

    SciTech Connect

    Zhang, Hui

    2007-01-01

    Ultra-sensitive native fluorescence detection of proteins with miniaturized one- and two-dimensional polyacrylamide gel electrophoresis was achieved with laser side-entry excitation, which provides both high excitation power and low background level. The detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE was as low as 15 fg, which corresponds to 40 thousand molecules only. The average detection limit of six standard native proteins was 5 pg per band and the dynamic range spanned more than 3 orders of magnitude. Approximately 150 protein spots from 30 ng of total Escherichia coli extraction were detected on a 0.8 cm x 1 cm gel in two-dimensional separation. Estrogen-DNA adducts as 4-OHE1(E2)-1-N3Ade and 4-OHEI(E2)-2-NacCys were hypothesized as early risk assessment of prostate and breast cancers. Capillary electrophoresis, luminescence/absorption spectroscopy and LC-MS were used to characterize and detect these adducts. Monoclonal antibodies against each individual adduct were developed and used to enrich such compounds from urine samples of prostate and breast cancer patients as well as healthy people. Adduct 4-OHE1-1-N3Ade was detected at much higher level in urine from subjects with prostate cancer patients compared to healthy males. The same adduct and 4-OHEI-2-NacCys were also detected at a much higher level in urine from a woman with breast carcinoma than samples from healthy controls. These two DNA adducts may serve as novel biomarkers for early diagnostic of cancers. The adsorption properties of R-phycoerythrin (RPE), on the fused-silica surface were studied using capillary electrophoresis (CE) and single molecule spectroscopy. The band shapes and migration times were measured in CE. Adsorption and desorption events were recorded at the single-molecule level by imaging of the evanescent-field layer using total internal reflection. The adsorbed RPE molecules on the fused-silica prism surface were

  20. Laser desorption/ionization time-of-flight mass spectrometry: A predictive tool for the lifetime of organic light emitting devices

    SciTech Connect

    Scholz, Sebastian; Meerheim, Rico; Luessem, Bjoern; Leo, Karl

    2009-01-26

    For improving the lifetime of organic light emitting devices (OLEDs), the analysis of the chemical degradation requires a deep understanding of the involved reaction pathways. We show that the dissociation reactions of phosphorescent emitters and the additional complexations with the used surrounding blocking layers are the dominant intrinsic degradation mechanisms in long living p-i-n type OLEDs. We use the laser desorption/ionization (LDI) time-of-flight mass spectrometry to correlate the laser-induced ion formation with the observed lifetime of the organic devices. The superlinear correlation between the LDI forced reactions and the lifetimes allows the prediction of the lifetime of an OLED with new materials.

  1. Subunit analysis of bovine heart complex I by reversed-phase high-performance liquid chromatography, electrospray ionization-tandem mass spectrometry, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

    PubMed

    Lemma-Gray, Patrizia; Valusová, Eva; Carroll, Christopher A; Weintraub, Susan T; Musatov, Andrej; Robinson, Neal C

    2008-11-15

    An effective method was developed for isolation and analysis of bovine heart complex I subunits. The method uses C18 reversed-phase high-performance liquid chromatography (HPLC) and a water/acetonitrile gradient containing 0.1% trifluoroacetic acid. Employing this system, 36 of the 45 complex I subunits elute in 28 distinct chromatographic peaks. The 9 subunits that do not elute are B14.7, MLRQ, and the 7 mitochondrial-encoded subunits. The method, with ultraviolet (UV) detection, is suitable for either analytical (<50 microg protein) or preparative (>250 microg protein) applications. Subunits eluting in each chromatographic peak were initially determined by matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) with subsequent positive identification by reversed-phase HPLC-electrospray ionization (ESI)/tandem mass spectrometry (MS/MS) analysis of tryptic digests. In the latter case, subunits were identified with a 99% probability using Mascot for database searching and Scaffold for assessment of protein identification probabilities. The reversed-phase HPLC subunit analysis method represents a major improvement over previous separation methods with respect to resolution, simplicity, and ease of application.

  2. Detection of Non-aromatic Organic Compounds in Meteorites using Imaging Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Scott, J. R.; Hinman, N. W.; Richardson, C. D.; Mahon, R. C.; McJunkin, T. R.

    2009-12-01

    Our most extensive understanding of extraterrestrial organic matter is based on what has been learned from meteorites that have been delivered naturally to Earth. Meteorites have been analyzed by a variety of techniques ranging from extensive sample preparation with extraction and subsequent chromatography to direct laser desorption mass spectrometry (LDMS). While extraction studies have reported a variety of organics (e.g., aliphatic and aromatic hydrocarbons, ketones, aldehydes, and amino acids), LDMS studies have only reported polycyclic aromatic hydrocarbons (PAHs). This is rather surprising considering that Yan et al. (Talanta 2007, 72, 634-641) reported that even a small amount of PAH enables the detection of organics that are not otherwise ionized during the desorption event from minerals. Therefore, we have begun re-investigating meteorites because, regardless of the source of the organic compounds, the presences of PAHs should allow other organic molecules to be observed using imaging laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (LD-FTICR-MS). Indeed, we have mapped meteorites (e.g., EETA 79001) and found many mass-to-charge peaks that are non-aromatic as determined by analysis of their mass defects. Mapping also revealed that the distribution of organics is heterogeneous, which necessitates the collection of a mass spectrum from a single laser shot so that minor peaks of interest are not lost in signal averaging. These studies have implications for analyzing future returned samples from Mars or elsewhere with minimal preparation or damage.

  3. Imaging of meningioma progression by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Agar, Nathalie Y R; Malcolm, James G; Mohan, Vandana; Yang, Hong W; Johnson, Mark D; Tannenbaum, Allen; Agar, Jeffrey N; Black, Peter M

    2010-04-01

    Often considered benign, meningiomas represent 32% of intracranial tumors with three grades of malignancy defined by the World Health Organization (WHO) histology based classification. Malignant meningiomas are associated with less than 2 years median survival. The inability to predict recurrence and progression of meningiomas induces significant anxiety for patients and limits physicians in implementing prophylactic treatment approaches. This report presents an analytical approach to tissue characterization based on matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry imaging (MSI) which is introduced in an attempt to develop a reference database for predictive classification of brain tumors. This pilot study was designed to evaluate the potential of such an approach and to begin to address limitations of the current methodology. Five recurrent and progressive meningiomas for which surgical specimens were available from the original and progressed grades were selected and tested against nonprogressive high-grade meningiomas, high-grade gliomas, and nontumor brain specimens. The common profiling approach of data acquisition was compared to imaging and revealed significant benefits in spatially resolved acquisition for improved spectral definition. A preliminary classifier based on the support vector machine showed the ability to distinguish meningioma image spectra from the nontumor brain and from gliomas, a different type of brain tumor, and to enable class imaging of surgical tissue. Although the development of classifiers was shown to be sensitive to data preparation parameters such as recalibration and peak picking criteria, it also suggested the potential for maturing into a predictive algorithm if provided with a larger series of well-defined cases.

  4. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nocardia Species▿

    PubMed Central

    Verroken, A.; Janssens, M.; Berhin, C.; Bogaerts, P.; Huang, T.-D.; Wauters, G.; Glupczynski, Y.

    2010-01-01

    The identification of Nocardia species, usually based on biochemical tests together with phenotypic in vitro susceptibility and resistance patterns, is a difficult and lengthy process owing to the slow growth and limited reactivity of these bacteria. In this study, a panel of 153 clinical and reference strains of Nocardia spp., altogether representing 19 different species, were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). As reference methods for species identification, full-length 16S rRNA gene sequencing and phenotypical biochemical and enzymatic tests were used. In a first step, a complementary homemade reference database was established by the analysis of 110 Nocardia isolates (pretreated with 30 min of boiling and extraction) in the MALDI BioTyper software according to the manufacturer's recommendations for microflex measurement (Bruker Daltonik GmbH, Leipzig, Germany), generating a dendrogram with species-specific cluster patterns. In a second step, the MALDI BioTyper database and the generated database were challenged with 43 blind-coded clinical isolates of Nocardia spp. Following addition of the homemade database in the BioTyper software, MALDI-TOF MS provided reliable identification to the species level for five species of which more than a single isolate was analyzed. Correct identification was achieved for 38 of the 43 isolates (88%), including 34 strains identified to the species level and 4 strains identified to the genus level according to the manufacturer's log score specifications. These data suggest that MALDI-TOF MS has potential for use as a rapid (<1 h) and reliable method for the identification of Nocardia species without any substantial costs for consumables. PMID:20861335

  5. Identification of the 'Streptococcus anginosus group' by matrix-assisted laser desorption ionization--time-of-flight mass spectrometry.

    PubMed

    Woods, Katherine; Beighton, David; Klein, John L

    2014-09-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides rapid, accurate and cost-effective identification of a range of bacteria and is rapidly changing the face of routine diagnostic microbiology. However, certain groups of bacteria, for example streptococci (in particular viridans or non-haemolytic streptococci), are less reliably identified by this method. We studied the performance of MALDI-TOF MS for identification of the 'Streptococcus anginosus group' (SAG) to species level. In total, 116 stored bacteraemia isolates identified by conventional methods as belonging to the SAG were analysed by MALDI-TOF MS. Partial 16S rRNA gene sequencing, supplemented with sialidase activity testing, was performed on all isolates to provide 'gold standard' identification against which to compare MALDI-TOF MS performance. Overall, 100 % of isolates were correctly identified to the genus level and 93.1 % to the species level by MALDI-TOF MS. However, only 77.6 % were correctly identified to the genus level and 59.5 % to the species level by a MALDI-TOF MS direct transfer method alone. Use of a rapid in situ extraction method significantly improved identification rates when compared with the direct transfer method (P<0.001). We recommend routine use of this method to reduce the number of time-consuming full extractions required for identification of this group of bacteria by MALDI-TOF MS in the routine diagnostic laboratory. Only 22 % (1/9) of Streptococcus intermedius isolates were reliably identified by MALDI-TOF MS to the species level, even after full extraction. MALDI-TOF MS reliably identifies S. anginosus and Streptococcus constellatus to the species level but does not reliably identify S. intermedius.

  6. Microfluidic Isoelectric Focusing of Amyloid Beta Peptides Followed by Micropillar-Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry.

    PubMed

    Mikkonen, Saara; Jacksén, Johan; Roeraade, Johan; Thormann, Wolfgang; Emmer, Åsa

    2016-10-18

    A novel method for preconcentration and purification of the Alzheimer's disease related amyloid beta (Aβ) peptides by isoelectric focusing (IEF) in 75 nL microchannels combined with their analysis by micropillar-matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) is presented. A semiopen chip-based setup, consisting of open microchannels covered by a lid of a liquid fluorocarbon, was used. IEF was performed in a mixture of four small and chemically well-defined amphoteric carriers, glutamic acid, aspartyl-histidine (Asp-His), cycloserine (cSer), and arginine, which provided a stepwise pH gradient tailored for focusing of the C-terminal Aβ peptides with a pI of 5.3 in the boundary between cSer and Asp-His. Information about the focusing dynamics and location of the foci of Aβ peptides and other compounds was obtained using computer simulation and by performing MALDI-MS analysis directly from the open microchannel. With the established configuration, detection was performed by direct sampling of a nanoliter volume containing the focused Aβ peptides from the microchannel, followed by deposition of this volume onto a chip with micropillar MALDI targets. In addition to purification, IEF preconcentration provides at least a 10-fold increase of the MALDI-MS-signal. After immunoprecipitation and concentration of the eluate in the microchannel, IEF-micropillar-MALDI-MS is demonstrated to be a suitable platform for detection of Aβ peptides in human cerebrospinal fluid as well as in blood plasma.

  7. Localization of ergot alkaloids in sclerotia of Claviceps purpurea by matrix-assisted laser desorption/ionization mass spectrometry imaging.

    PubMed

    Dopstadt, Julian; Vens-Cappell, Simeon; Neubauer, Lisa; Tudzynski, Paul; Cramer, Benedikt; Dreisewerd, Klaus; Humpf, Hans-Ulrich

    2017-02-01

    The fungus Claviceps purpurea produces highly toxic ergot alkaloids and accumulates these in the hardened bodies of fungal mycelium. These so-called sclerotia, or ergot bodies, replace the crop seed of infected plants, which can include numerous important food- and feedstuff such as rye and wheat. While several studies have explored details of the infection process and development of ergot bodies, little information is available on the spatial distribution of the mycotoxins in the sclerotia. Here we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) at a lateral resolution of 35 μm to visualize the distribution of two representative alkaloids, ergocristine and ergometrine, produced by Ecc93 and Gal 310 variants of C. purpurea, respectively, after infection of rye. To improve cryosectioning of this fragile biological material tissue with complex texture, we developed a practical embedding protocol based on cellulose polymers. The MALDI-MS images recorded from the so produced intact tissues sections revealed that ergometrine exhibited a relatively homogeneous distribution throughout the ergot body, whereas ergocristine was found to be enriched in the proximal region. This finding can be correlated to the morphological development of sclerotia as ergot alkaloids are only produced in the sphacelial stage. The ability to localize toxins and other secondary metabolites in intact sections of crop-infecting fungi with high lateral resolution renders MALDI-MSI a powerful tool for investigating biosynthetic pathways and for obtaining a deeper understanding of the parasite-host interaction. Graphical abstract Workflow for identification and spatial localization of ergot alkaloids in infected rye grains.

  8. Improving tissue preparation for matrix-assisted laser desorption ionization mass spectrometry imaging. Part 1: using microspotting.

    PubMed

    Franck, Julien; Arafah, Karim; Barnes, Alan; Wisztorski, Maxence; Salzet, Michel; Fournier, Isabelle

    2009-10-01

    Nowadays, matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is a powerful technique to obtain the distribution of endogenous and exogenous molecules within tissue sections. It can, thus, be used to study the evolution of molecules across different physiological stages in order to find out markers or get knowledge on signaling pathways. In order to provide valuable information, we must carefully control the sample preparation to avoid any delocalization of molecules of interest inside the tissue during this step. Currently, two strategies can be used to deposit chemicals, such as the MALDI matrix, onto the tissue both involving generation of microdroplets that will be dropped off onto the surface. First strategy involves microspraying of solutions. Here, we have been interested in the development of a microspotting strategy, where nanodroplets of solvent are ejected by a piezoelectric device to generate microspots at the tissue level. Such systems allow one to precisely control sample preparation by creating an array of spots. In terms of matrix crystallization, a microspotting MALDI matrix is hardly compatible with the results by classical (pipetting) methods. We have thus synthesized and studied new solid ionic matrixes in order to obtain high analytical performance using such a deposition system. These developments have enabled optimization of the preparation time because of the high stability of the printing that is generated in these conditions. We have also studied microspotting for performing on-tissue digestion in order to go for identification of proteins or to work from formalin fixed and paraffin embedded (FFPE) tissue samples. We have shown that microspotting is an interesting approach for on tissue digestion. Peptides, proteins, and lipids were studied under this specific preparation strategy to improve imaging performances for this class of molecules.

  9. Strain-level Staphylococcus differentiation by CeO2-metal oxide laser ionization mass spectrometry fatty acid profiling.

    PubMed

    Saichek, Nicholas R; Cox, Christopher R; Kim, Seungki; Harrington, Peter B; Stambach, Nicholas R; Voorhees, Kent J

    2016-04-23

    The Staphylococcus genus is composed of 44 species, with S. aureus being the most pathogenic. Isolates of S. aureus are generally susceptible to β-lactam antibiotics, but extensive use of this class of drugs has led to increasing emergence of resistant strains. Increased occurrence of coagulase-negative staphylococci as well as S. aureus infections, some with resistance to multiple classes of antibiotics, has driven the necessity for innovative options for treatment and infection control. Despite these increasing needs, current methods still only possess species-level capabilities and require secondary testing to determine antibiotic resistance. This study describes the use of metal oxide laser ionization mass spectrometry fatty acid (FA) profiling as a rapid, simultaneous Staphylococcus identification and antibiotic resistance determination method. Principal component analysis was used to classify 50 Staphyloccocus isolates. Leave-one-spectrum-out cross-validation indicated 100 % correct assignment at the species and strain level. Fuzzy rule building expert system classification and self-optimizing partial least squares discriminant analysis, with more rigorous evaluations, also consistently achieved greater than 94 and 84 % accuracy, respectively. Preliminary analysis differentiating MRSA from MSSA demonstrated the feasibility of simultaneous determination of strain identification and antibiotic resistance. The utility of CeO2-MOLI MS FA profiling coupled with multivariate statistical analysis for performing strain-level differentiation of various Staphylococcus species proved to be a fast and reliable tool for identification. The simultaneous strain-level detection and antibiotic resistance determination achieved with this method should greatly improve outcomes and reduce clinical costs for therapeutic management and infection control.

  10. Laser desorption ionization-time-of-flight mass analysis of perfluoropolyether monolayer directly from hard disk medium surface.

    PubMed

    Kudo, Toshiji; Macht, Marcus; Kuroda, Masami

    2011-07-15

    Modern life is dependent on computer technology, and because the volume of digital data in the world is increasing rapidly, the importance of data storage devices is also increasing rapidly. Among them, demands for magnetic disk drive well-known as hard disk drives is quite huge and information recording density on the disk media is continuing to grow dramatically. For the research and development of the magnetic disk media, it is critical to investigate and characterize the lubricant layer formed on the disk media surface. However, it is difficult because the layer is only a monolayer which has only approximately 1 nm thickness in many cases. Although matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) measurements of monolayers have already been reported (Su, J.; Mrksich, M. Langmuir, 2003, 19, 4867-4870), lubricants used here are (co)polymers which have molecular weight distributions and are mixtures of various degrees of polymerization. This can reduce the sensitivity of MS measurement because the number (or density) of distinct single molecular species is lower than for homogeneous samples. In this report, direct measurement and characterization of lubricant monolayers using the LDI-TOF-MS instrument is performed to gain insight into detailed information like average molecular weight, polymer distribution, and two-dimensional mapping directly from magnetic disk monolayers. To our knowledge, this is the first time such information was acquired directly from hard disk media. The technique reported here might open up new possibilities also for investigations of various electronic devices other than magnetic hard disks.

  11. Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect ss- and ds-Oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Tsen; Huang, Ming-Feng; Chang, Huan-Tsung

    2013-06-01

    We applied surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with HgTe nanostructures as the matrix for the detection of single- and double-stranded oligodeoxynucleotides (ss-ODNs and ds-ODNs). The concentrations of surfactant and additives (metal ions, an amine) and the pH and ionic strength of the sample matrix played significantly different roles in the detection of ss- and ds-ODNs with various sequences. In the presence of Brij 76 (1.5 %), Hg2+ (7.5 μM), and cadaverine (10 μM) at pH 5.0, this SALDI-MS approach allowed the simultaneous detection of T15, T20, T33, and T40, with limits of detection at the femtomole-to-picomole level and sample-to-sample intensity variation <23 %. In the presence of Ag+ (1 μM) and cadaverine (10 μM) at pH 7.0, this technique allowed the detection of randomly sequenced ss- and ds-ODNs at concentrations down to the femtomole level. To the best of our knowledge, this paper is the first to report the detection of ss-ODNs (up to 50-mer) and ds-ODNs (up to 30 base pairs) through the combination of SALDI-MS with HgTe nanostructures as matrices. We demonstrated the practicality of this approach through analysis of a single nucleotide polymorphism that determines the fate of the valine residue in the β-globin of sickle cell megaloblasts.

  12. Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints.

    PubMed

    Walton, Barbara L; Verbeck, Guido F

    2014-08-19

    Matrix-assisted laser desorption ionization (MALDI) imaging is gaining popularity, but matrix effects such as mass spectral interference and damage to the sample limit its applications. Replacing traditional matrices with silver particles capable of equivalent or increased photon energy absorption from the incoming laser has proven to be beneficial for low mass analysis. Not only can silver clusters be advantageous for low mass compound detection, but they can be used for imaging as well. Conventional matrix application methods can obstruct samples, such as fingerprints, rendering them useless after mass analysis. The ability to image latent fingerprints without causing damage to the ridge pattern is important as it allows for further characterization of the print. The application of silver clusters by soft-landing ion mobility allows for enhanced MALDI and preservation of fingerprint integrity.

  13. Coupling thin-layer chromatography with vibrational cooling matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for the analysis of ganglioside mixtures.

    PubMed

    Ivleva, Vera B; Elkin, Yuri N; Budnik, Bogdan A; Moyer, Susanne C; O'Connor, Peter B; Costello, Catherine E

    2004-11-01

    Thin-layer chromatography (TLC), which is widely used for separation of glycolipids, oligosaccharides, lipids, and compounds of environmental and pharmaceutical interest, can be readily coupled to matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometers, but this arrangement usually compromises mass spectral resolution due to the irregularity of the TLC surface. However, TLC can be coupled to an external ion source MALDI-Fourier transform (FT) MS instrument without compromising mass accuracy and resolution of the spectra. Furthermore, when the FTMS has a vibrationally cooled MALDI ion source, fragile glycolipids can be desorbed from TLC plates without fragmentation, even to the point that desorption of intact molecules from "hot"matrixes such as alpha-cyano-4-hydroxycinnamic acid is possible. In this work, whole brain gangliosides are separated using TLC; the TLC plates are attached directly to the MALDI target, where the gangliosides are desorbed, ionized, and detected in the FTMS with >70 000 resolving power.

  14. Composite glycerol/graphite/aromatic acid matrices for thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry of heterocyclic compounds.

    PubMed

    Esparza, Cesar; Borisov, R S; Varlamov, A V; Zaikin, V G

    2016-10-28

    New composite matrices have been suggested for the analysis of mixtures of different synthetic organic compounds (N-containing heterocycles and erectile dysfunction drugs) by thin layer chromatography/matrix-assisted laser desorption ionization time-of-flight mass spectrometry (TLC/MALDI-TOF). Different mixtures of classical MALDI matrices and graphite particles dispersed in glycerol were used for the registration of MALDI mass spectra directly from TLC plates after analytes separation. In most of cases, the mass spectra possessed [M+H](+) ions; however, for some analytes only [M+Na](+) and [M+K](+) ions were observed. These ions have been used to generate visualized TLC chromatograms. The described approach increases the desorption/ionization efficiencies of analytes separated by TLC, prevent spot blurring, simplifies and decrease time for sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization and Application of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging with Sub-micrometer Spatial Resolution.

    PubMed

    Cahill, John F; Kertesz, Vilmos; Van Berkel, Gary J

    2015-11-03

    A commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes were used. The smallest area the system was able to ablate was ∼0.544 μm × ∼0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (∼1.9 μm). With use of a model photoresist surface, known features as small as ∼1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. With use of a lane scanning mode with ∼6 μm × ∼6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.

  16. Laser Ablation Sampling of Materials Directly into the Formed Liquid Microjunction of a Continuous Flow Surface Sampling Probe/Electrospray Ionization Emitter for Mass Spectral Analysis and Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Lorenz, Matthias; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    Transmission geometry laser ablation directly into a formed liquid microjunction of a continuous flow liquid microjunction surface sampling probe/electrospray ionization emitter was utilized for molecular and elemental detection and mass spectrometry imaging. The ability to efficiently capture and ionize ablated material was demonstrated by the detection of various small soluble n-mers of polyaniline and silver ion solvent clusters formed from laser ablation of electropolymerized polyaniline and silver thin films, respectively. In addition, analysis of surfaces that contain soluble components was accomplished by coating or laminating the sample with an insoluble film to enable liquid junction formation without directly extracting material from the surface. The ability to perform mass spectrometry imaging at a spatial resolution of about 50 m was illustrated by using laminated inked patterns on a microscope slide. In general, these data demonstrate at least an order of magnitude signal enhancement compared to the non-contact, laser ablation droplet capture-based surface sampling/ionization approaches that have been previously presented.

  17. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  18. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  19. Nanoporous Carbons Derived from Metal-Organic Frameworks as Novel Matrices for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Shih, Yung-Han; Fu, Chien-Ping; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya; Ma, Shengqian

    2016-04-01

    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) represents a powerful tool for the analysis of biomolecules, synthetic polymers, and even small organic compounds; its performances largely depend on the type of matrix materials utilized. Here, for the first time the employment of nanoporous carbons derived from metal-organic frameworks (MOFs) as novel matrices for SALDI-MS is demonstrated. The nanoporous carbons derived from MOFs not only circumvent the shortcomings of existing matrix materials but also demonstrate much higher efficiency of laser desorption/ionization for various compounds than any other nanoporous carbons reported so far. A new perspective for the development of matrix materials for SALDI-MS application is therefore provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Monitoring cleavage of fusion proteins by matrix-assisted laser desorption ionization/mass spectrometry: recombinant HIV-1IIIB p26.

    PubMed

    Parker, C E; Papac, D I; Tomer, K B

    1996-07-15

    Matrix-associated laser desorption ionization/mass spectrometry (MALDI/MS) has been used to examine whole bacteria for the presence of a recombinant HIV p26 fusion protein. MALDI/MS, combined with affinity-purification techniques, is also shown to be very useful in monitoring the enzymatic cleavage of both affinity-bound fusion protein and fusion protein in solution. The combination of mass resolution, sensitivity, and speed of analysis makes MALDI/MS an attractive alternative to SDS-PAGE.

  1. In Situ Probing of Cholesterol in Astrocytes at the Single Cell Level using Laser Desorption Ionization Mass Spectrometric Imaging with Colloidal Silver

    SciTech Connect

    Perdian, D.C.; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-18

    Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level.

  2. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks.

    PubMed

    Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2015-08-12

    A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules.

  3. In situ probing of cholesterol in astrocytes at the single-cell level using laser desorption ionization mass spectrometric imaging with colloidal silver.

    PubMed

    Perdian, D C; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S; Yeung, Edward S; Lee, Young Jin

    2010-04-30

    Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level.

  4. Detection of Brucella canis infection in dogs by blood culture and bacterial identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Purvis, Tanya J; Krouse, Donna; Miller, Dawn; Livengood, Julia; Thirumalapura, Nagaraja R; Tewari, Deepanker

    2017-07-01

    Brucella canis was recovered from dogs that were canine brucellosis suspect by blood culture using a modified lysis method. Organism identity was established by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The instrument-provided security library identified the isolates as Brucella species. The isolates were further identified as B. canis with the help of phenotypic and genotypic characteristics. The mass spectral profiles from characterized B. canis isolates, when added to the MALDI-TOF MS standard reference library, allowed successful presumptive identification of B. canis.

  5. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles.

    PubMed

    Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi

    2008-08-01

    We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.

  6. Characterizing changes in snow crab (Chionoecetes opilio) cryptocyanin protein during molting using matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry.

    PubMed

    Demian, Wael L L; Jahouh, Farid M; Stansbury, Don; Randell, Edward; Brown, Robert J; Banoub, Joseph H

    2014-02-28

    We report the matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) characterization of the cryptocyanin proteins of the juvenile Chionoecetes opilio crabs during their molting and non-molting phases. In order to assess the structural cryptocyanin protein differences between the molting and non-molting phases, the obtained peptides were sequenced by MALDI low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS). The cryptocyanin protein was isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by MALDI-TOF/TOF-MS. The purified cryptocyanin protein was sequenced, using the 'bottom-up' approach. After tryptic digestion, the peptide mixture was analyzed by MALDI-QqTOF-MS/MS and the data obtained were used for the peptide mass fingerprinting (PMF) identification by means of the Mascot database. It was demonstrated using MALDI-TOF/TOF-MS that the actual molecular weights of the non-molting and molting cryptocyanin proteins were different; these were, respectively, 67.6 kDa and 68.1 kDa. Using low-energy CID-MS/MS we have sequenced the trytic peptides to monitor the differences and similarities between the cryptocyanin molecular structures during the molting and non-molting stages. We have demonstrated for the first time that the actual molecular masses of the cryptocyanin protein during the molting and non-molting phases were different. The MALDI-CID-MS/MS analyses allowed the sequencing of the cryptocyanins after tryptic digestion, during the molting and non-molting stages, and showed some similarities and staggering differences between the identified cryptocyanin peptides. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry*

    PubMed Central

    Inutan, Ellen D.; Trimpin, Sarah

    2013-01-01

    The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551

  8. Effects of matrix structure/acidity on ion formation in matrix-assisted laser desorption ionization mass spectrometry

    SciTech Connect

    Gimon-Kinsel, M.; Preston-Schaffter, L.M.; Kinsel, G.R.; Russell, D.H.

    1997-03-12

    The involvement of ground and excited state proton transfer reactions in matrix-assisted laser desorption ionization (MALDI) of bradykinin and bovine insulin is examined using a series of p-substituted aniline compounds as matrices. Semiempirical calculations of ground and excited state acidity of the p-substituted aniline and anilinium ions are presented. A linear correlation between log (analyte [A + H]{sup +} ion yield) and matrix acidity is obtained. The behavior of the seven p-substituted anilines is discussed in terms of the relationship between matrix compound structure, reactivity, and ability to act as a MALDI matrix. 44 refs., 4 figs., 5 tabs.

  9. Matrix-assisted ultraviolet laser desorption/ionization time-of-flight (UV-MALDI-TOF) mass spectra of N-acylated and N,O-acylated glycosylamines.

    PubMed

    Sato, Yasuto; Fukuyama, Yuko; Nonami, Hiroshi; Erra-Balsells, Rosa; Stortz, Carlos A; Cerezo, Alberto S; Matulewicz, María C

    2007-12-10

    Matrix-assisted ultraviolet laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOF-MS) has shown to be a very useful technique for the study of the non-volatile and thermally non-stable N-acylated glycopyranosyl- and glycofuranosyl-amines. Of the several matrices tested, 2,5-dihydroxybenzoic acid (DHB) was the most effective giving good spectra in the positive-ion mode. In the linear and reflectron modes, the [M+Na](+) ions appeared with high intensity. Their fragmentation patterns were investigated by post-source decay (PSD) UV-MALDI-TOF-MS showing mainly cross-ring cleavages. In addition, N,O-acylated glycopyranosyl- and glycofuranosyl-amines were also analyzed by this technique. PSD UV-MALDI-TOF-MS gave significant signals for several primary fragment ions, which were proposed but not detected, or observed with very low abundance, in electron ionization mass spectrometry (EI-MS) experiments.

  10. Comparison of inert supports in laser desorption/ionization mass spectrometry of peptides: pencil lead, porous silica gel, DIOS-chip and NALDI target.

    PubMed

    Shenar, Nawar; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2009-08-01

    In the search for alternative inert surfaces replacing silicon chips in Desorption/Ionization On porous Silicon (DIOS)-like mass spectrometry analyses, nanostructured silicon-based NALDI chips were evaluated in Laser Desorption/Ionization (LDI) of peptides. Comparisons were made using commercially available DIOS chips (MassPREP-DIOS-target), amorphous carbon powder from lead pencil and porous silica gel used for chromatographic purposes as reference supports. A set of synthetic model peptides presenting variable amino acid sequences of various lengths was analyzed under all conditions. The LDI responses of the four 'matrix-free' techniques were compared, especially in terms of peptide detection sensitivity and overall experiment robustness. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Ionization energy of acetone by vacuum ultraviolet mass-analyzed threshold ionization spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Jae Han; Kang, Do Won; Hong, Yong Jun; Hwang, Hyonseok; Kim, Hong Lae; Kwon, Chan Ho

    2013-04-01

    Mass-analyzed threshold ionization (MATI) time-of-flight mass spectrometer using coherent vacuum ultraviolet (VUV) laser generated by four-wave difference frequency mixing (FWDFM) in Kr has been constructed and utilized to obtain the accurate ionization energy of acetone. From the MATI onsets measured from various applied pulsed fields, the ionization energy to the ionic ground state of acetone has been determined to be 9.7074 ± 0.0019 eV.

  12. Laser Desorption Ionization of As2Ch3 (Ch = S, Se, and Te) Chalcogenides Using Quadrupole Ion Trap Time-of-Flight Mass Spectrometry: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Mawale, Ravi Madhukar; Ausekar, Mayuri Vilas; Prokeš, Lubomír; Nazabal, Virginie; Baudet, Emeline; Halenkovič, Tomáš; Bouška, Marek; Alberti, Milan; Němec, Petr; Havel, Josef

    2017-08-01

    Laser desorption ionization using time-of-flight mass spectrometer afforded with quadrupole ion trap was used to study As2Ch3 (Ch = S, Se, and Te) bulk chalcogenide materials. The main goal of the study is the identification of species present in the plasma originating from the interaction of laser pulses with solid state material. The generated clusters in both positive and negative ion mode are identified as 10 unary (S p +/- and As m +/- ) and 34 binary (As m S p +/- ) species for As2S3 glass, 2 unary (Se q +/- ) and 26 binary (As m Se q +/- ) species for As2Se3 glass, 7 unary (Te r +/- ) and 23 binary (As m Te r +/- ) species for As2Te3 material. The fragmentation of chalcogenide materials was diminished using some polymers and in this way 45 new, higher mass clusters have been detected. This novel approach opens a new possibility for laser desorption ionization mass spectrometry analysis of chalcogenides as well as other materials. [Figure not available: see fulltext.

  13. INFRARED MATRIX-ASSISTED LASER DESORPTION ELECTROSPRAY IONIZATION (IR-MALDESI) IMAGING SOURCE COUPLED TO A FT-ICR MASS SPECTROMETER

    PubMed Central

    Robichaud, Guillaume; Barry, Jeremy A.; Garrard, Kenneth P.; Muddiman, David C.

    2013-01-01

    Mass spectrometry imaging (MSI) allows for the direct monitoring of the abundance and spatial distribution of chemical compounds over the surface of a tissue sample. This technology has opened the field of mass spectrometry to numerous innovative applications over the past 15 years. First used with SIMS and MALDI MS that operate under vacuum, interest has grown for mass spectrometry ionization sources that allow for effective imaging but where the analysis can be performed at ambient pressure with minimal or no sample preparation. We introduce here a versatile source for MALDESI imaging analysis coupled to a hybrid LTQ-FT-ICR mass spectrometer. The imaging source offers single shot or multi-shot capability per pixel with full control over the laser repetition rate and mass spectrometer scanning cycle. Scanning rates can be as fast as 1 pixel/second and a spatial resolution of 45 μm was achieved with oversampling. PMID:23208743

  14. Identification and phenotypic characterization of Sphingomonas wittichii strain RW1 by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Halden, Rolf U; Colquhoun, David R; Wisniewski, Eric S

    2005-05-01

    Mass spectrometry is a potentially attractive means of monitoring the survival and efficacy of bioaugmentation agents, such as the dioxin-mineralizing bacterium Sphingomonas wittichii strain RW1. The biotransformation activity of RW1 phenotypes is determined primarily by the presence and concentration of the dioxin dioxygenase, an enzyme initiating the degradation of both dibenzo-p-dioxin and dibenzofuran (DF). We explored the possibility of identifying and characterizing putative cultures of RW1 by peptide mass fingerprinting (PMF) targeting this characteristic phenotypic biomarker. The proteome from cells of RW1--grown on various media in the presence and absence of DF--was partially purified, tryptically digested, and analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mascot online database queries allowed statistically significant identification of RW1 in disrupted, digested cells (P < 0.01 to 0.05) and in digested whole-cell extracts (P < 0.00001 to 0.05) containing hundreds of proteins, as determined by two-dimensional gel electrophoresis. Up to 14 peptide ions of the alpha subunit of the dioxin dioxygenase (43% protein coverage) were detected in individual samples. A minimum of 10(7) DF-grown cells was required to identify dioxin degradation-enabled phenotypes. The technique hinges on the detection of multiple characteristic peptides of a biomarker that can reveal at once the identity and phenotypic properties of the microbial host expressing the protein. The results demonstrate the power of PMF of minimally processed microbial cultures as a sensitive and specific technique for the positive identification and phenotypic characterization of certain microorganisms used in biotechnology and bioremediation.

  15. Mass resolved resonance ionization spectroscopy of combustion radicals

    SciTech Connect

    Not Available

    1992-06-23

    This report discusses the following topics: REMPI spectroscopy of HCO and DCO; Rempi spectroscopy of the ethynyl radical; REMPI spectroscopy of new electronic states of C{sub 2}; and a flame sampling laser ionization mass spectrometer.

  16. Mass resolved resonance ionization spectroscopy of combustion radicals

    SciTech Connect

    Not Available

    1992-06-23

    This report discusses the following topics: REMPI spectroscopy of HCO and DCO; Rempi spectroscopy of the ethynyl radical; REMPI spectroscopy of new electronic states of C{sub 2}; and a flame sampling laser ionization mass spectrometer.

  17. Ultra-Fast Laser Desorption/Laser Ionization Mass Spectrometry for the Organic Analysis of Stardust Sample Return

    NASA Technical Reports Server (NTRS)

    Clemett, Simon J.; McKay, David S.

    2005-01-01

    The STARDUST sample return capsule is anticipated to provide 500-1000 cometary particles 15 m in size. These were collected during the 340 km flyby of Comet P/Wild-2 and impacted the aerogel collection medium at a relative velocity of approx. 6.1 /kms. Hypervelocity impact studies suggest that some fraction of the original organic inventory of collected particles ought to remain intact, although there is likely to be a significant amount of devolatilization and disassociation of the lower mass organic fraction.

  18. Multiphoton Ionization Mass and Photoelectron Spectroscopy.

    DTIC Science & Technology

    1984-07-01

    narro , band. tunable. frequency doubled dye laser Their relative importance depend% on the sample being studied ha- led to an cnormou, improcment in...block number) Mult iphoton Ionization Photoelectron Spectroscopy Laser Induced Ionization Ultraviolet Laser Radiation ft ArITAcr (camthIe i rvee ehl N...molecular ions generated by laser ionization have been monitored. Using a time of flight photoelectron spectrometer, the kinetic energy distribution of the

  19. Mass-Selective Laser Photoionization.

    ERIC Educational Resources Information Center

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  20. Mass-Selective Laser Photoionization.

    ERIC Educational Resources Information Center

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  1. Near-infrared laser desorption/ionization aerosol mass spectrometry for investigating primary and secondary organic aerosols under low loading conditions.

    PubMed

    Geddes, Scott; Nichols, Brian; Flemer, Stevenson; Eisenhauer, Jessica; Zahardis, James; Petrucci, Giuseppe A

    2010-10-01

    A new method, near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS), is described for the real time analysis of organic aerosols at atmospherically relevant mass loadings. Use of a single NIR laser pulse to vaporize and ionize particle components deposited on an aluminum probe results in minimal fragmentation to produce exclusively intact pseudomolecular anions at [M-H](-). Limits of detection (total particulate mass sampled) for oxidized compounds of relevance to atmospheric primary and secondary organic aerosol range from 89 fg for pinic acid to 8.8 pg for cholesterol. NIR-LDI-AMS was used in conjunction with the University of Vermont Environmental Chamber to study secondary organic aerosol (SOA) formation from ozonolysis of limonene at total aerosol mass loadings ranging from 3.2 to 25.0 μg m(-3) and with a time resolution of several minutes. NIR-LDI-AMS permitted direct delineation between gas-phase, homogeneous SOA formation and subsequent heterogeneous aerosol processing by ozone.

  2. Tunable single-photon ionization TOF mass spectrometry using laser-produced plasma as the table-top VUV light source.

    PubMed

    Di Palma, Tonia M; Prati, Maria V; Borghese, Antonio

    2009-12-01

    Here we report on a laser plasma-based tunable VUV photoionization time-of-flight (TOF) mass spectrometer conceived mainly to study complex gaseous mixtures. Ionizing photons at tunable vacuum UV (VUV) wavelengths are generated by a gas-target laser-produced plasma, spectrally dispersed in the range 100-160 nm and efficiently focused onto a sample molecular beam. As a test case, we studied the exhaust gas of a four-stroke moped, a typical example of a complex gaseous mixture. Due to the VUV "soft" ionization, the mass spectra are less congested and more easily interpretable. Substituted benzene derivatives are found to give the most intense signals. Several aliphatic hydrocarbons are also detected. The use of tunable VUV radiation allowed the investigation of the contribution of isomers in the mass spectrum from the onset and shape of the photoionization efficiency spectra. Semiquantitative analysis was performed using known literature data detailing the photoionization cross sections. Our findings suggest that using combined data on the mass/photoionization efficiency spectra may be very helpful for a comprehensive analysis of complex gaseous mixtures.

  3. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    PubMed

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51).

  4. Mass spectrometry in the characterization of ambers. I. Studies of amber samples of different origin and ages by laser desorption ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization mass spectrometry.

    PubMed

    Tonidandel, Loris; Ragazzi, Eugenio; Roghi, Guido; Traldi, Pietro

    2008-01-01

    Amber is a fossil resin constituted of organic polymers derived through complex maturation processes of the original plant resin. A classification of eight samples of amber of different geological age (Miocene to Triassic) and geographical origin is here proposed using direct mass spectrometric techniques, i.e. laser desorption ionization (LDI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI), in order to obtain a fingerprint related to the amber origin. Differences and similarities were detected among the spectra with the four methods, showing quite complex spectra, full of ionic species in the mass range investigated (up to m/z 2000). The evaluation required statistical analysis involving multivariate techniques. Cluster analysis or principal component analysis (PCA) generally did not show a clear clustering with respect to the age of samples, except for the APPI method, which allowed a satisfying clustering. Using the total ion current (TIC) obtained by the different analytical approaches on equal quantities of the different amber samples and plotted against the age, the only significant correlation appeared to be that involving APPI. To validate the method, four amber samples from Cretaceous of Spain were analyzed. Also in this case a significant correlation with age was found only with APPI data. PCA obtained with TIC values from all the MS methods showed a fair grouping of samples, according to their age. Three main clusters could be detected, belonging to younger, intermediate and older fossil resins, respectively. This MS analysis on crude amber, either solid or extract, followed by appropriate multivariate statistical evaluation, can provide useful information on amber age. The best results are those obtained by APPI, indicating that the quantity of amber soluble components that can be photoionized decreases with increasing age, in agreement with the formation of highly stable, insoluble polymers.

  5. Thin layer chromatography/plasma assisted multiwavelength laser desorption ionization mass spectrometry for facile separation and selective identification of low molecular weight compounds.

    PubMed

    Zhang, Jialing; Zhou, Zhigui; Yang, Jianwang; Zhang, Wei; Bai, Yu; Liu, Huwei

    2012-02-07

    A novel plasma assisted multiwavelength (1064, 532, and 355 nm) laser desorption ionization mass spectrometry (PAMLDI-MS) system was fabricated and applied in the analysis of low molecular weight compounds through combination with thin layer chromatography (TLC). The TLC/PAMLDI-MS system successfully integrated TLC, the multiwavelength laser ablation, and the excitated state plasma from direct analysis in real time (DART) and was proved to be effective in the facile separation and selective identification of low molecular weight compounds. An automated three-dimensional platform was utilized to facilitate the analysis procedures with all the parameters of the TLC/PAMLDI-MS systematically optimized, and the desorption/ionization mechanisms were discussed. The successful combination of three-wavelength laser with DART based system extended the range of the analytes and provided broad possibilities for the compound desorption from the TLC. The experimental results clearly showed that the laser desorption was wavelength dependent. The PAMLDI-MS system was successfully applied in the detection of low molecular weight compounds from different kinds of samples separated on a normal-phase silica gel, such as dye mixtures, drug standards, and tea extract, with the detection level of 5 ng/mm(2).

  6. Enhanced sensitivity and metabolite coverage with remote laser ablation electrospray ionization-mass spectrometry aided by coaxial plume and gas dynamics.

    PubMed

    Fincher, Jarod A; Korte, Andrew R; Reschke, Brent; Morris, Nicholas J; Powell, Matthew J; Vertes, Akos

    2017-08-21

    Laser ablation electrospray ionization-mass spectrometry (LAESI-MS) allows for direct analysis of biological tissues at atmospheric pressure with minimal to no sample preparation. In LAESI, a mid-IR laser beam (λ = 2.94 μm) is focused onto the sample to produce an ablation plume that is intercepted and ionized by an electrospray at the inlet of the mass spectrometer. In the remote LAESI platform, the ablation process is removed from the mass spectrometer inlet and takes place in an ablation chamber, allowing for incorporation of additional optics for microscopic imaging and targeting of specific features of the sample for laser ablation sampling. The ablated material is transported by a carrier gas through a length of tubing, delivering it to the MS inlet where it is intercepted and ionized by an electrospray. Previous proof-of-principle studies used a prolate spheroid ablation chamber with the carrier gas flow perpendicular to the ablation plume. This design resulted in significant losses of MS signal in comparison to conventional LAESI. Here we present a newly designed conical inner volume ablation chamber that radially confines the ablation plume produced in transmission geometry. The carrier gas flow and the expanding ablation plume are aligned in a coaxial configuration to improve the transfer of ablated particles. This new design not only recovered the losses observed with the prolate spheroid chamber design, but was found to provide an ∼12-15% increase in the number of metabolite peaks detected from plant leaves and tissue sections relative to conventional LAESI.

  7. Synthesis of highly water-dispersible polydopamine-modified multiwalled carbon nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis.

    PubMed

    Shi, Chenyi; Deng, Chunhui; Zhang, Xiangmin; Yang, Pengyuan

    2013-08-28

    In this work, we synthesized highly water-dispersible multiwalled carbon nanotubes@polydopamine (MWCNTs@PDA) core-shell composites by a facile in situ oxidative polymerization. The composites were successfully applied as a novel matrix for the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of various water-soluble small molecule compounds. It was found that MWCNTs@PDA composites have a higher sensitivity and peak intensities for small molecules detection.

  8. Classification of green coffee beans by differences in protein composition obtained by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Procida, Giuseppe; Campisi, Barbara; Seraglia, Roberta; Traldi, Pietro

    2003-01-01

    It is well known that proteins and peptides play an important role in the flavour of roasted coffee, but little is reported in the literature about their characterization. In view of the potential of matrix-assisted laser desorption/ionization mass spectrometry in the analysis of proteins in complex mixtures, two varieties of coffee green beans, Arabicas and Robustas, were analyzed by this technique, in order to obtain fingerprints of their native proteins. Differences were observed between Arabicas and Robustas green beans, and cluster analysis allows differentiation of samples of the same variety from different plantations. Copyright 2002 John Wiley & Sons, Ltd.

  9. Analysis of low molecular weight acids by negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Shroff, Rohit; Muck, Alexander; Svatos, Ales

    2007-01-01

    Free 9-aminoacridine base is demonstrated to be a suitable matrix for negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of a wide range of low molecular weight organic acids including aliphatic (from acetic to palmitic acid), aromatic acids, phytohormones (e.g. jasmonic and salicylic acids), and amino acids. Low limits of quantitation in the femtomolar range (jasmonic - 250 fmol; caffeic - 160 fmol and salicylic - 12.5 fmol) and linear detector response over two concentration orders in the pico- and femtomolar range are extremely encouraging for the direct study of such acids in complex biological matrices.

  10. Assessment of Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Bacterial and Yeast Identification.

    PubMed

    Westblade, Lars F; Garner, Omai B; MacDonald, Karen; Bradford, Constance; Pincus, David H; Mochon, A Brian; Jennemann, Rebecca; Manji, Ryhana; Bythrow, Maureen; Lewinski, Michael A; Burnham, Carey-Ann D; Ginocchio, Christine C

    2015-07-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification.

  11. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis

    PubMed Central

    Kailasa, Suresh Kumar; Cheng, Kuang-Hung; Wu, Hui-Fen

    2013-01-01

    Semiconductor quantum dots (QDs) or nanoparticles (NPs) exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs) in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis. PMID:28788422

  12. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of KPC-Producing Klebsiella pneumoniae.

    PubMed

    Gaibani, Paolo; Galea, Anna; Fagioni, Marco; Ambretti, Simone; Sambri, Vittorio; Landini, Maria Paola

    2016-10-01

    We evaluated a real-time single-peak (11.109-Da) detection assay based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae Our results demonstrated that the 11.109-Da peak was detected in 88.2% of the KPC producers. Analysis of blaKPC-producing K. pneumoniae showed that the gene encoding the 11.109-Da protein was commonly (97.8%) associated with the Tn4401a isoform.

  13. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems.

    PubMed

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa; Andersen, Line Bisgaard; Jensen, Thøger Gorm; Kemp, Michael; Skov, Marianne Nielsine; Gahrn-Hansen, Bente; Møller, Jens Kjølseth

    2011-12-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important anaerobic bacteria.

  14. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles.

    PubMed

    Phelps, Mandy S; Sturtevant, Drew; Chapman, Kent D; Verbeck, Guido F

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern. Graphical Abstract ᅟ.

  15. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  16. Characterization of low molecular weight hydrocarbon oligomers by laser desorption/ionization time-of-flight mass spectrometry using a solvent-free sample preparation method.

    PubMed

    Pruns, Julia K; Vietzke, Jens-Peter; Strassner, Manfred; Rapp, Claudius; Hintze, Ulrich; König, Wilfried A

    2002-01-01

    A new solvent-free sample preparation method using silver trifluoroacetate (AgTFA) was developed for the analysis of low molecular weight paraffins and microcrystalline waxes by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOFMS). Experiments show that spectral quality can be enhanced by dispersing AgTFA directly in liquid paraffins without the use of additional solvents. This preparation mixture is applied directly to the MALDI probe. Solid waxes could be examined by melting prior to analysis. The method also provides sufficiently reproducible spectra that peak area ratios between mono- and bicyclic alkane peaks indicated variations in the cycloalkane content of paraffin samples. Dehydrogenation of hydrocarbons observed during the desorption/ionization process was studied by analysis of alkane standards.

  17. Aniline/alpha-cyano-4-hydroxycinnamic acid is a highly versatile ionic liquid for matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Calvano, Cosima D; Carulli, Saverio; Palmisano, Francesco

    2009-06-01

    The performance of a matrix-assisted laser desorption/ionization (MALDI) ionic liquid matrix (ILM) consisting of alpha-cyano-4-hydroxycinnamic acid (CHCA) and aniline (ANI) was evaluated to assess whether it could offer possible advantages over conventional matrices. Ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and laser desorption/ionization mass spectrometry (LDI-MS) experiments were carried out with the aim of confirming the structure of the ANI-CHCA ILM. Different model analytes such as amino acids, peptides, proteins, lipids, phospholipids, synthetic polymers, and sugars were tested. Mass spectra with similar or improved signal-to-noise (S/N) ratio (compared to CHCA) were invariably obtained demonstrating the potential of this ILM as a general purpose matrix. Furthermore, protein identification by peptide mass fingerprinting (PMF) and database search was facilitated compared to CHCA since higher scores and increased sequence coverage were observed. Finally, a complex lipid mixture (i.e. a raw extract of a milk sample) analysed by MALDI-MS showed improved S/N ratio, a reduced chemical noise and a limited formation of matrix-clusters. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Generation of highly charged peptide and protein ions by atmospheric pressure matrix-assisted infrared laser desorption/ionization ion trap mass spectrometry.

    PubMed

    König, Simone; Kollas, Oliver; Dreisewerd, Klaus

    2007-07-15

    We show that highly charged ions can be generated if a pulsed infrared laser and a glycerol matrix are employed for atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry with a quadrupole ion trap. Already for small peptides like bradykinin, doubly protonated ions form the most abundant analyte signal in the mass spectra. The center of the charge-state distribution increases with the size of the analyte. For example, insulin is detected with a most abundant ion signal corresponding to a charge state of four, whereas for cytochrome c, the 10 times protonated ion species produces the most intense signal. Myoglobin is observed with up to 13 charges. The high m/z ratios allow us to use the Paul trap for the detection of MALDI-generated protein ions that are, owing to their high molecular weight, not amenable in their singly protonated charge state. Formation of multiple charges critically depends on the addition of diluted acid to the analyte-matrix solution. Tandem mass spectra generated by collision-induced dissociation of doubly charged peptides are also presented. The findings allow speculations about the involvement of electrospray ionization processes in these MALDI experiments.

  19. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry.

    PubMed

    Ehlert, S; Hölzer, J; Rittgen, J; Pütz, M; Schulte-Ladbeck, R; Zimmermann, R

    2013-09-01

    Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully.

  20. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  1. Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Becker, J Susanne; Mounicou, Sandra; Zoriy, Miroslav V; Becker, J Sabine; Lobinski, Ryszard

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have become established as very efficient and sensitive biopolymer and elemental mass spectrometric techniques for studying metal-binding proteins (metalloproteins) in life sciences. Protein complexes present in rat tissues (liver and kidney) were separated in their native state in the first dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, nickel, chromium, cadmium and lead, were detected by scanning the gel bands using quadrupole LA-ICP-MS with and without collision cell as a microanalytical technique. Several proteins were identified by using MALDI-TOF-MS together with a database search. For example, on one protein band cut from the BN-PAGE gel and digested with the enzyme trypsin, two different proteins - protein FAM44B and cathepsin B precursor - were identified. By combining biomolecular and elemental mass spectrometry, it was possible to characterize and identify selected metal-binding rat liver and kidney tissue proteins.

  2. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new tool in diagnostic investigation of nail disorders?

    PubMed

    Pföhler, Claudia; Hollemeyer, Klaus; Heinzle, Elmar; Altmeyer, Wolfgang; Graeber, Stefan; Müller, Cornelia S L; Stark, Alexandra; Jager, Sven Uwe; Tilgen, Wolfgang

    2009-10-01

    The incidence and prevalence of onychomycosis are rising worldwide. Common diagnostic techniques often lack sensitivity or specificity. Differentiation between non-infectious nail disorders is frequently not possible. The aim of this study was to establish a better diagnostic routine procedure based on modern mass spectrometric peptide analysis techniques. One hundred and fifty-five nail samples from 145 patients with clinically suspected onychomycosis (n = 96, 62%) and without onychomycosis [e.g. nail psoriasis or nail dystrophy resulting from eczema (n = 59, 38%)] were investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting in comparison with standard techniques. We demonstrated that MALDI-TOF MS represents a precise, robust and fast tool in diagnostic investigation of nail disorders, which is superior to common standard methods.

  3. Stationary phase thickness determines the quality of thin-layer chromatography/matrix-assisted laser desorption and ionization mass spectra of lipids.

    PubMed

    Griesinger, Hans; Fuchs, Beate; Süß, Rosmarie; Matheis, Katerina; Schulz, Michael; Schiller, Jürgen

    2014-04-15

    Normal phase thin-layer chromatography (NP TLC) is an established method of (phospho)lipid analysis. The determination of the fatty acyl composition is, however, a more challenging task by NP TLC. The direct coupling of TLC separation with mass spectrometric detection (e.g., matrix-assisted laser desorption/ionization mass spectrometry, MALDI MS), however, enables a detailed characterization of complex lipid mixtures. Here we show that the thickness of the silica gel layer has a considerable effect on the quality of the mass spectra recorded directly from the TLC plate. In particular, the intensity of the matrix background signals can be reduced if "thinner" TLC layers are used. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry of friction modifier additives analyzed directly from base oil solutions.

    PubMed

    Widder, Lukas; Brennerb, Josef; Huttera, Herbert

    2014-01-01

    To develop new products and to apply measures of quality control quick and simple accessibility of additive composition in automo- tive lubrication is important. The aim of this study was to investigate the possibility of analyzing organic friction modifier additives by means of atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry [AP-MALDI-MS] from lubricant solu- tions without the use of additional separation techniques. Analyses of selected friction modifier ethoxylated tallow amines and oleic acid amide were compared using two ionization methods, positive-ion electrospray ionization (ESI) and AP-MALDI, using a LTQ Orbitrap mass spectrometer. Pure additives were characterized from solvent solutions, as well as from synthetic and mineral base oil mixtures. Detected ions of pure additive samples consisted mainly of [M + H]+, but also alkaLi metal adducts [M + Na]+ and [M + K]+ could be seen. Characterizations of blends of both friction modifiers from the base oil mixtures were carried out as well and showed significant inten- sities for several additive peaks. Thus, this work shows a method to directly analyze friction modifier additives used in the automotive industry from an oil blend via the use of AP-MALDI without any further separation steps. The method presented will further simplify the acquisition of data on lubricant composition and additives. Furthermore, it allows the perspective of analyzing additive reaction products directly from formulated oil blends.

  5. Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis

    PubMed Central

    2010-01-01

    Background Successful defence of tobacco plants against attack from the oomycete Phytophthora nicotianae includes a type of local programmed cell death called the hypersensitive response. Complex and not completely understood signaling processes are required to mediate the development of this defence in the infected tissue. Here, we demonstrate that different families of metabolites can be monitored in small pieces of infected, mechanically-stressed, and healthy tobacco leaves using direct infrared laser desorption ionization orthogonal time-of-flight mass spectrometry. The defence response was monitored for 1 - 9 hours post infection. Results Infrared laser desorption ionization orthogonal time-of-flight mass spectrometry allows rapid and simultaneous detection in both negative and positive ion mode of a wide range of naturally occurring primary and secondary metabolites. An unsupervised principal component analysis was employed to identify correlations between changes in metabolite expression (obtained at different times and sample treatment conditions) and the overall defence response. A one-dimensional projection of the principal components 1 and 2 obtained from positive ion mode spectra was used to generate a Biological Response Index (BRI). The BRI obtained for each sample treatment was compared with the number of dead cells found in the respective tissue. The high correlation between these two values suggested that the BRI provides a rapid assessment of the plant response against the pathogen infection. Evaluation of the loading plots of the principal components (1 and 2) reveals a correlation among three metabolic cascades and the defence response generated in infected leaves. Analysis of selected phytohormones by liquid chromatography electrospray ionization mass spectrometry verified our findings. Conclusion The described methodology allows for rapid assessment of infection-specific changes in the plant metabolism, in particular of phenolics, alkaloids

  6. In situ identification of organic components of ink used in books from the 1900s by atmospheric pressure matrix assisted laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Giurato, Laura; Candura, Andrea; Grasso, Giuseppe; Spoto, Giuseppe

    2009-11-01

    This paper describes the use of atmospheric pressure/matrix assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of organic components of inks used to print coloured parts of ancient books. The possibility to operate at atmospheric pressure makes MALDI-MS a new in situ micro-destructive diagnostic tool suitable for analysing samples in air, simplifying the investigation of the organic components of artistic and archaeological objects. In this work, several organic dyes and pigments were identified in situ by analysing different coloured areas of books printed in the years 1911 and 1920. The detected colouring materials, which were available since the 1890s, were often identified as a mixture, confirming the typical procedures used in the lithographic printing processes. The matrix deposition and the laser desorption process did not cause visible alteration of the sample surface.

  7. Determination of metformin in mouse, rat, dog and human plasma samples by laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry.

    PubMed

    Swales, John G; Gallagher, Richard; Peter, Raimund M

    2010-11-02

    A simple, rapid and robust high-throughput assay for the quantitative analysis of metformin in plasma from different species using laser diode thermal desorption interfaced with atmospheric chemical pressure ionization tandem mass spectrometry (LDTD-APCI-MSMS) was developed for use in a pharmaceutical discovery environment. In order to minimize sample preparation a generic protein precipitation method was used to extract metformin from the plasma. Laser diode thermal desorption is a relatively new sample introduction method, the optimization of the instrumental parameters are presented. The method was successfully applied to spiked mouse, rat, dog and human plasma samples and was subsequently used to determine the oral pharmacokinetics of metformin after dosing to male rats in order to support drug discovery projects. The deviations for intra-assay accuracy and precision across the four species were less than 30% at all calibration and quality control levels.

  8. Matrix-assisted laser desorption/ionization mass spectrometry for the characterization of ionic liquids and the analysis of amino acids, peptides and proteins in ionic liquids.

    PubMed

    Zabet-Moghaddam, Masoud; Krüger, Ralf; Heinzle, Elmar; Tholey, Andreas

    2004-12-01

    Ionic liquids are interesting solvents for a number of applications in chemistry and biotechnology. We characterized five different ionic liquids by laser desorption/ionization (LDI) and by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and studied the analysis of amino acids, peptides and proteins dissolved in these solvents. Signals of both anions and cations of the ionic liquids could be observed both in LDI- and in MALDI-MS. In the latter case, adduct formation between anions and cations of the analytes was observed. Amino acids, peptides and proteins could be analyzed in ionic liquids after addition of matrix substances. Sodium and potassium adducts were not observed in any analysis involving ionic liquids. Low molecular mass compounds and peptides could be analyzed best in the presence of water-immiscible ionic liquids, whereas proteins gave the best results in water-miscible ionic liquids. Optimal analysis conditions such as molar matrix-to-analyte and ionic liquid-to-matrix ratios were determined. Homogeneity of samples in the presence of ionic liquids was reduced compared with classical MALDI preparations. Relative quantitation of amino acids was possible using isotope-labeled internal standards. MALDI-MS thus can be used for the analysis of chemical reactions and the screening of enzyme-catalyzed reactions in ionic liquids and for the analysis of the biocatalysts dissolved in these solvents. Theoretical aspects of ion formation in the presence of ionic liquids both in LDI and MALDI analysis are discussed.

  9. Quantification of plant surface metabolites by matrix-assisted laser desorption-ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves.

    PubMed

    Shroff, Rohit; Schramm, Katharina; Jeschke, Verena; Nemes, Peter; Vertes, Akos; Gershenzon, Jonathan; Svatoš, Aleš

    2015-03-01

    The localization of metabolites on plant surfaces has been problematic because of the limitations of current methodologies. Attempts to localize glucosinolates, the sulfur-rich defense compounds of the order Brassicales, on leaf surfaces have given many contradictory results depending on the method employed. Here we developed a matrix-assisted laser desorption-ionization (MALDI) mass spectrometry protocol to detect surface glucosinolates on Arabidopsis thaliana leaves by applying the MALDI matrix through sublimation. Quantification was accomplished by spotting glucosinolate standards directly on the leaf surface. The A. thaliana leaf surface was found to contain approximately 15 nmol of total glucosinolate per leaf with about 50 pmol mm(-2) on abaxial (bottom) surfaces and 15-30 times less on adaxial (top) surfaces. Of the major compounds detected, 4-methylsulfinylbutylglucosinolate, indol-3-ylmethylglucosinolate, and 8-methylsulfinyloctylglucosinolate were also major components of the leaf interior, but the second most abundant glucosinolate on the surface, 4-methylthiobutylglucosinolate, was only a trace component of the interior. Distribution on the surface was relatively uniform in contrast to the interior, where glucosinolates were distributed more abundantly in the midrib and periphery than the rest of the leaf. These results were confirmed by two other mass spectrometry-based techniques, laser ablation electrospray ionization and liquid extraction surface analysis. The concentrations of glucosinolates on A. thaliana leaf surfaces were found to be sufficient to attract the specialist feeding lepidopterans Plutella xylostella and Pieris rapae for oviposition. The methods employed here should be easily applied to other plant species and metabolites.

  10. Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds.

    PubMed

    Rainer, Matthias; Qureshi, Muhammad Nasimullah; Bonn, Günther Karl

    2011-06-01

    The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material's morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C(60) fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.

  11. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization.

    PubMed

    Nicolau, Rudy; Leloup, Maud; Lachassagne, Delphine; Pinault, Emilie; Feuillade-Cathalifaud, Geneviève

    2015-05-01

    This work is focused on the development of an analytical procedure for the improvement of the Organic Matter structure characterization, particularly the algal matter. Two fractions of algal organic matter from laboratory cultures of algae (Euglena gracilis) and cyanobacteria (Microcystis aeruginosa) were extracted with XAD resins. The fractions were studied using laser desorption ionization (LDI) and Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). A comparison with the natural organic matter characteristics from commercial humic acids and fulvic acids extracted from Suwannee River was performed. Results show that algal and natural organic matters have unique quasi-polymeric structures. Significant repeating patterns were identified. Different fractions extracted from organic matter with common origin had common structures. Thus, 44, 114 and 169Da peaks separation for fractions from E. gracilis organic matter and 28, 58 and 100Da for M. aeruginosa ones were clearly observed. Using the developed protocol, a structural scheme and organic matter composition were obtained. The range 600-2000Da contained more architectural composition differences than the range 100-600Da, suggesting that organic matter is composed of an assembly of common small molecules. Associated to specific monomers, particular patterns were common to all samples but assembly and resulting structure were unique for each organic matter. Thus, XAD fractionation coupled to mass spectroscopy allowed determining a specific fingerprint for each organic matter.

  12. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi.

    PubMed

    Buskirk, Amanda D; Hettick, Justin M; Chipinda, Itai; Law, Brandon F; Siegel, Paul D; Slaven, James E; Green, Brett J; Beezhold, Donald H

    2011-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to discriminate moniliaceous fungal species; however, darkly pigmented fungi yield poor fingerprint mass spectra that contain few peaks of low relative abundance. In this study, the effect of dark fungal pigments on the observed MALDI mass spectra was investigated. Peptide and protein samples containing varying concentrations of synthetic melanin or fungal pigments extracted from Aspergillus niger were analyzed by MALDI-TOF and MALDI-qTOF (quadrupole TOF) MS. Signal suppression was observed in samples containing greater than 250ng/μl pigment. Microscopic examination of the MALDI sample deposit was usually heterogeneous, with regions of high pigment concentration appearing as black. Acquisition of MALDI mass spectra from these darkly pigmented regions of the sample deposit yielded poor or no [M+H](+) ion signal. In contrast, nonpigmented regions within the sample deposit and hyphal negative control extracts of A. niger were not inhibited. This study demonstrated that dark fungal pigments inhibited the desorption/ionization process during MALDI-MS; however, these fungi may be successfully analyzed by MALDI-TOF MS when culture methods that suppress pigment expression are used. The addition of tricyclazole to the fungal growth media blocks fungal melanin synthesis and results in less melanized fungi that may be analyzed by MALDI-TOF MS. Published by Elsevier Inc.

  13. Automated cell-by-cell tissue imaging and single-cell analysis for targeted morphologies by laser ablation electrospray ionization mass spectrometry.

    PubMed

    Li, Hang; Smith, Brian K; Shrestha, Bindesh; Márk, László; Vertes, Akos

    2015-01-01

    Mass spectrometry imaging (MSI) is an emerging technology for the mapping of molecular distributions in tissues. In most of the existing studies, imaging is performed by sampling on a predefined rectangular grid that does not reflect the natural cellular pattern of the tissue. Delivering laser pulses by a sharpened optical fiber in laser ablation electrospray ionization (LAESI) mass spectrometry (MS) has enabled the direct analysis of single cells and subcellular compartments. Cell-by-cell imaging had been demonstrated using LAESI-MS, where individual cells were manually selected to serve as natural pixels for tissue imaging. Here we describe a protocol for a novel cell-by-cell LAESI imaging approach that automates cell recognition and addressing for systematic ablation of individual cells. Cell types with particular morphologies can also be selected for analysis. First, the cells are recognized as objects in a microscope image. The coordinates of their centroids are used by a stage-control program to sequentially position the cells under the optical fiber tip for laser ablation. This approach increases the image acquisition efficiency and stability, and enables the investigation of extended or selected tissue areas. In the LAESI process, the ablation events result in mass spectra that represent the metabolite levels in the ablated cells. Peak intensities of selected ions are used to represent the metabolite distributions in the tissue with single-cell resolution.

  14. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  15. Direct identification of various copper phthalocyanine pigments in automotive paints and paint smears by laser desorption ionization mass spectrometry.

    PubMed

    Mukai, Tadashi; Nakazumi, Hiroyuki; Kawabata, Shin-ichirou; Kusatani, Masaru; Nakai, Seita; Honda, Sadao

    2008-01-01

    Direct identification of copper phthalocyanine (CuPc) and chlorinated CuPcs in paints for discrimination between blue automobile paints by means of laser desorption mass spectrometry (LDMS) in the absence of a matrix is reported. The models consisted of eight commercially available CuPc pigments applied to a piece of plain white coating paper. The relationship between the peak intensity at m/z 575 of the CuPc, the number of pulsed laser shots, and laser power was compared to optimize laser abrasion. LDMS analysis of the model paints demonstrated that all characteristic components of the CuPc pigments in the paint films were in good agreement with those in the powder pigments. Further, the chlorinated CuPcs in the paint films could be distinguished. A quantity of 42 blue paint films, representing the paints used for painting Japanese domestic trucks, was examined by LDMS analysis. Results indicate that the paints can be classified into four categories based on the chlorinated CuPc components of the paints. Therefore, LDMS spectra of CuPc pigments would be useful for the identification of paints in forensic investigations. Herein, we report the successful identification of the CuPcs in a paint smear on the frame of a bicycle damaged in a hit-and-run accident, using the LDMS spectra.

  16. Clinical Application of Ambient Ionization Mass Spectrometry

    PubMed Central

    Li, Li-Hua; Hsieh, Hua-Yi; Hsu, Cheng-Chih

    2017-01-01

    Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study. PMID:28337399

  17. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    PubMed

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  18. Ionic matrices pre-spotted matrix-assisted laser desorption/ionization plates for patient maker following in course of treatment, drug titration, and MALDI mass spectrometry imaging.

    PubMed

    Bonnel, David; Franck, Julien; Mériaux, Céline; Salzet, Michel; Fournier, Isabelle

    2013-03-01

    In the current study, we compared plastic matrix-assisted laser desorption/ionization (MALDI) plates pre-spotted with different solid ionic matrices. Data reflect that after 3 months of storage, the standards were oxidized in α-cyano-4-hydroxycinnamic acid (HCCA) whether or not in HCCA/3-acetylpyridine (3APY) and HCCA/aniline, and certain peptides, such as ubiquitin, were not detected using the HCCA matrix, whereas they were detected in pre-spotted ionic matrices. Application in peptidomics of these MALDI matrices pre-spotted plates (after 3 months of storage) with ovarian cyst fluid showed less intense signals with HCCA than with solid ionic matrices. We show that these pre-spotted ionic matrices plates can be used for relative drug quantification, high mass protein detection, and MALDI mass spectrometry imaging.

  19. Coupling of nanoflow liquid chromatography to matrix-assisted laser desorption/ionization mass spectrometry: real-time liquid chromatography run mapping on a MALDI plate.

    PubMed

    Nägele, Edgar; Vollmer, Martin

    2004-01-01

    The major obstacle in the use of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) instruments in the analysis of complex proteome samples is the lack of a direct coupling of a highly resolving separation technique with the mass spectrometer itself. To overcome this drawback, a spotting device for capillary and nanoflow liquid chromatography (LC) with a special liquid deposition principle for lowest volumes was developed. The instrument is able to perform MALDI spotting in real time in order to deposit the LC run on the MALDI plate, and therefore couples the high resolution power of nano-RP-HPLC separation directly with MALDI-MS. This work describes the development and optimization of a method for spotting with online matrix addition, and illustrates its use in the analysis of a complex proteome sample.

  20. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric imaging of synthetic polymer sample spots prepared using ionic liquid matrices.

    PubMed

    Gabriel, Stefan J; Pfeifer, Dietmar; Schwarzinger, Clemens; Panne, Ulrich; Weidner, Steffen M

    2014-03-15

    Polymer sample spots for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) prepared by the dried-droplet method often reveal ring formation accompanied by possible segregation of matrix and sample molecules as well as of the polymer homologs itself. Since the majority of sample spots are prepared by this simple and fast method, a matrix or sample preparation method that excludes such segregation has to be found. Three different ionic liquid matrices based on conventionally used aromatic compounds for MALDI-TOF MS were prepared. The formation of ionic liquids was proven by (1) H NMR spectroscopy. MALDI-Imaging mass spectrometry was applied to monitor the homogeneity. Our results show a superior sample spot homogeneity using ionic liquid matrices. Spots could be sampled several times without visible differences in the mass spectra. A frequently observed loss of matrix in the mass spectrometer vacuum was not observed. The necessary laser irradiance was reduced, which resulted in less polymer fragmentation. Ionic liquid matrices can be used to overcome segregation, a typical drawback of conventional MALDI dried-droplet preparations. Homogeneous sample spots are easy to prepare, stable in the MS vacuum and, thereby, improve the reproducibility of MALDI. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Conformational effects on cationization of poly(ethylene glycol) by alkali metal ions in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Matsuyama, Shigetomo; Saito, Takeshi; Kinugasa, Shinichi; Nagahata, Ritsuko; Kawabata, Shin-Ichirou

    2005-12-01

    Conformational effects of polymer chains on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) were studied by using an equimolar mixture of uniform poly(ethylene glycol)s (PEGs) and by molecular dynamics simulations. Uniform PEGs with degrees of polymerization n = 8-39 were separated from commercial PEG samples by preparative supercritical fluid chromatography. MALDI-TOFMS spectra of an equimolar mixture of the uniform PEGs in aqueous ethanol were measured by adding a mixture of 2,5-dihydroxybenzoic acid (as a matrix reagent) and five alkali metal chlorides (LiCl, NaCl, KCl, RbCl, and CsCl). After optimization of the matrix concentration and laser power, five types of adduct cationized by Li+, Na+, K+, Rb+, and Cs+ could be identified simultaneously in the same spectrum. In the lower molecular-mass region around 103, the spectral intensity increase rapidly with increasing molecular mass of PEG; this rapid increase in the spectral intensity started at a lower molecular mass for smaller adduct cations. Molecular dynamics simulations were used to calculated the affinity of PEG for the adduct cations. These experimental and simulated results showed that the observed spectral intensities in MALDI-TOFMS were markedly affected by the species of adduct cations and the degree of polymerization of the PEG, and that they were dependent on the stability of the PEG-cation complex.

  2. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues

    PubMed Central

    2016-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is used for the multiplex detection and characterization of diverse analytes over a wide mass range directly from tissues. However, analyte coverage with MALDI MSI is typically limited to the more abundant compounds, which have m/z values that are distinct from MALDI matrix-related ions. On-tissue analyte derivatization addresses these issues by selectively tagging functional groups specific to a class of analytes, while simultaneously changing their molecular masses and improving their desorption and ionization efficiency. We evaluated electrospray deposition of liquid-phase derivatization agents as a means of on-tissue analyte derivatization using 2-picolylamine; we were able to detect a range of endogenous fatty acids with MALDI MSI. When compared with airbrush application, electrospray led to a 3-fold improvement in detection limits and decreased analyte delocalization. Six fatty acids were detected and visualized from rat cerebrum tissue using a MALDI MSI instrument operating in positive mode. MALDI MSI of the hippocampal area allowed targeted fatty acid analysis of the dentate gyrus granule cell layer and the CA1 pyramidal layer with a 20-μm pixel width, without degrading the localization of other lipids during liquid-phase analyte derivatization. PMID:27181709

  3. Small protein biomarkers of culture in Bacillus spores detected using capillary liquid chromatography coupled with matrix assisted laser desorption/ionization mass spectrometry

    SciTech Connect

    Wunschel, David S.; Wahl, Jon H.; Willse, Alan R.; Valentine, Nancy B.; Wahl, Karen L.

    2006-10-20

    Capillary liquid chromatography (cLC) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) was used to compare small proteins and peptides extracted from Bacillus subtilis spores grown on four different media. A single, efficient protein separation, compatible with MALDI-MS analysis, was employed to reduce competitive ionization between proteins, and thus interrogate more proteins than possible using direct MALDI-MS. The MALDI-MS data files for each fraction are assembled as two dimensional data sets of retention time and mass information. This method of visualizing small protein data required careful attention to background correction as well as mass and retention time variability. The resulting data sets were used to create comparative displays of differences in protein profiles between different spore preparations. Protein differences were found between two different solid media in both phase bright and phase dark conditions. The protein differences between two different liquid media were also examined. As an extension of this method, we have demonstrated that candidate protein biomarkers can be trypsin digested to provide identifying peptide fragment information following the cLC-MALDI experiment. We have demonstrated this method on two markers and utilized acid breakdown information to identify one additional marker for this organism. The resulting method can be used to identify discriminating proteins as potential biomarkers of growth media, which might ultimately be used for source attribution.

  4. Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Liang, Sheng-Ping; Lu, I.-Chung; Tsai, Shang-Ting; Chen, Jien-Lian; Lee, Yuan Tseh; Ni, Chi-Kung

    2017-10-01

    Ultraviolet laser pulses at 355 nm with variable pulse widths in the region from 170 ps to 1.5 ns were used to investigate the ionization mechanism of matrix-assisted laser desorption/ionization (MALDI) for matrices 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The mass spectra of desorbed ions and the intensity and velocity distribution of desorbed neutrals were measured simultaneously for each laser shot. These quantities were found to be independent of the laser pulse width. A comparison of the experimental measurements and numerical simulations according to the multiphoton ionization, coupled photophysical and chemical dynamics (CPCD), and thermally induced proton transfer models showed that the predictions of thermally induced proton transfer model were in agreement with the experimental data, but those of the multiphoton ionization model were not. Moreover, the predictions of the CPCD model based on singlet-singlet energy pooling were inconsistent with the experimental data of CHCA and SA, but were consistent with the experimental data of DHB only when some parameters used in the model were adjusted to extreme values. [Figure not available: see fulltext.

  5. Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Liang, Sheng-Ping; Lu, I.-Chung; Tsai, Shang-Ting; Chen, Jien-Lian; Lee, Yuan Tseh; Ni, Chi-Kung

    2017-07-01

    Ultraviolet laser pulses at 355 nm with variable pulse widths in the region from 170 ps to 1.5 ns were used to investigate the ionization mechanism of matrix-assisted laser desorption/ionization (MALDI) for matrices 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The mass spectra of desorbed ions and the intensity and velocity distribution of desorbed neutrals were measured simultaneously for each laser shot. These quantities were found to be independent of the laser pulse width. A comparison of the experimental measurements and numerical simulations according to the multiphoton ionization, coupled photophysical and chemical dynamics (CPCD), and thermally induced proton transfer models showed that the predictions of thermally induced proton transfer model were in agreement with the experimental data, but those of the multiphoton ionization model were not. Moreover, the predictions of the CPCD model based on singlet-singlet energy pooling were inconsistent with the experimental data of CHCA and SA, but were consistent with the experimental data of DHB only when some parameters used in the model were adjusted to extreme values.

  6. Acquisition of the depth profiles and reproducible mass spectra in matrix-assisted laser desorption/ionization of inhomogeneous samples.

    PubMed

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2015-04-30

    In our previous analysis of the matrix-assisted laser desorption/ionization (MALDI) spectra of peptides, we treated their depth profiles in solid samples as homogeneous. Here, we wanted to determine if the reproducible MALDI spectra and linear calibration curves reported previously would be obtained even when the depth profiles were inhomogeneous. We derived a formula relating shot-number-dependent ion abundance data in temperature-controlled MALDI with the analyte depth profile in a solid sample. We prepared samples containing peptides, amino acids, and serotonin in α-cyano-4-hydroxycinnamic acid matrix by vacuum-drying and micro-spotting methods, recorded their MALDI spectra, and analyzed them with the aforementioned formula. For the samples prepared by vacuum-drying, the analyte depth profiles were inhomogeneous and maximized at the sample surface. Although the MALDI spectra changed as the shot continued, their sum over the entire set of spectra acquired from a spot was reproducible. Similarly, a high-quality calibration curve could be obtained with the spectral data summed over the entire set. Depth profiles were homogeneous for samples prepared by micro-spotting. A method has been developed to obtain a reproducible MALDI spectrum and a linear calibration curve for an analyte with an inhomogeneous depth profile in a solid sample. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect.

    PubMed

    Marsico, Alyssa L M; Duncan, Bradley; Landis, Ryan F; Tonga, Gulen Yesilbag; Rotello, Vincent M; Vachet, Richard W

    2017-03-07

    Nanomaterials have been extensively used as alternate matrices to minimize the low molecular weight interferences observed in typical MALDI but such nanomaterials typically do not improve the spot-to-spot variability that is commonly seen. In this work, we demonstrate that nanoparticles and low matrix concentrations (<2.5 mg/mL) can be used to homogeneously concentrate analytes into a narrow ring by taking advantage of the "coffee ring" effect. Concentration of the samples in this way leads to enhanced signals when compared to conventional MALDI, with higher m/z analytes being enhanced to the greatest extent. Moreover, the ionization suppression often observed in samples with high salt concentrations can be overcome by preparing samples in this way. The ring that is formed is readily visible, allowing the laser to be focused only on spots that contain analyte. The coffee-ring effect represents a new mode by which nanomaterials can be used to enhance the MALDI-based detection of biomolecules.

  8. Derivatization Strategies for the Detection of Triamcinolone Acetonide in Cartilage by Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    PubMed

    Barré, Florian P Y; Flinders, Bryn; Garcia, João P; Jansen, Imke; Huizing, Lennart R S; Porta, Tiffany; Creemers, Laura B; Heeren, Ron M A; Cillero-Pastor, Berta

    2016-12-20

    Osteoarthritis (OA), characterized by degeneration of the cartilaginous tissue in articular joints, severely impairs mobility in many people worldwide. The degeneration is thought to be mediated by inflammatory processes occurring in the tissue of the joint, including the cartilage. Intra-articular administered triamcinolone acetonide (TAA) is one of the drug treatments employed to ameliorate the inflammation and pain that characterizes OA. However, the penetration and distribution of TAA into the avascular cartilage is not well understood. We employed matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which has been previously used to directly monitor the distribution of drugs in biological tissues, to evaluate the distribution of TAA in human cartilage after in vitro incubation. Unfortunately, TAA is not easily ionized by regular electrospray ionization (ESI) or MALDI. To overcome this problem, we developed an on-tissue derivatization method with Girard's reagent T (GirT) in human incubated cartilage being able to study its distribution and quantify the drug abundance (up to 3.3 ng/μL). Our results demonstrate the depth of penetration of a corticosteroid drug in human OA cartilage using MALDI-MSI.

  9. Detection and Mapping of Cannabinoids in Single Hair Samples through Rapid Derivatization and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

    PubMed

    Beasley, Emma; Francese, Simona; Bassindale, Tom

    2016-10-18

    The sample preparation method reported in this work has permitted for the first time the application of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) profiling and imaging for the detection and mapping of cannabinoids in a single hair sample. MALDI-MS imaging analysis of hair samples has recently been suggested as an alternative technique to traditional methods of GC/MS and LC/MS due to simpler sample preparation, the ability to detect a narrower time frame of drug use, and a reduction in sample amount required. However, despite cannabis being the most commonly used illicit drug worldwide, a MALDI-MS method for the detection and mapping of cannabinoids in a single hair has not been reported. This is probably due to the poor ionization efficiency of the drug and its metabolites and low concentration incorporated into hair. This research showed that in situ derivatization of cannabinoids through addition of an N-methylpyridium group resulted in improved ionization efficiency, permitting both detection and mapping of Δ(9)-tetrahydrocannabinol (THC), cannabinol (CBN), cannabidiol (CBD), and the metabolites 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH), 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol glucuronide (THC-COO-glu). Additionally, for the first time an in-source rearrangement of THC was observed and characterized in this paper, thus contributing to new and accurate knowledge in the analysis of this drug by MALDI-MS.

  10. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  11. Fundamental studies of matrix-assisted laser desorption/ionization, using time-of-flight mass spectrometry to identify biological molecules

    SciTech Connect

    Eades, D.; Wruck, D.; Gregg, H.

    1996-11-11

    MALDI MS was developed as a way of getting molecular weight information on small quantities (picomole to femtomole levels) of high-mass, thermally labile macromolecules. While most other analytical MS ionization techniques cause fragmentation, decomposition, or multiple charging, MALDI efficiently places intact macromolecules into the gas phase with little fragmentation or rearrangement. This project had 3 objectives: establish the MALDI capability at LLNL, perform fundamental studies of analyte-matrix interactions, and apply the technique for biochemical research. A retired time-of-flight instrument was adapted for MALDI analyses, relevant parameters influencing the MALDI process were identified for further study (matrix molar absorptivity, sample crystal preparation), and collaborations were established with research groups in the Biology and Biotechnology Research Program at LLNL. In MALDI, the macromolecule of interest is mixed with a high-molar excess (1:100 to 1:10,000) of an organic matrix which readily absorbs energy at the wavelength corresponding to a UV laser. Upon laser irradiation, the matrix absorbs the majority of the energy, causing it to desorb from the surface and gently release the macromolecule into the gas phase with little or no fragmentation. Once in the gas phase, ion-molecule reactions between excited matrix and neutral macromolecules generated ionized analyte species which then can be focused into a MS for detection.

  12. Analysis of cancer cell lipids using matrix-assisted laser desorption/ionization 15-T Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Yang, Hyo-Jik; Park, Kyu Hwan; Lim, Dong Wan; Kim, Hyun Sik; Kim, Jeongkwon

    2012-03-30

    A combination of methodologies using the extremely high mass accuracy and resolution of 15-T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) was introduced for the identification of intact cancer cell phospholipids. Lipids from a malignant glioma cell line were initially analyzed at a resolution of >200,000 and identified by setting the mass tolerance to ±1 mDa using matrix-assisted laser desorption/ionization (MALDI) 15-T FT-ICR MS in positive ion mode. In most cases, a database search of potential lipid candidates using the exact masses of the lipids yielded only one possible chemical composition. Extremely high mass accuracy (<0.1 ppm) was then attained by using previously identified lipids as internal standards. This, combined with an extremely high resolution (>800,000), yielded well-resolved isotopic fine structures allowing for the identification of lipids by MALDI 15-T FT-ICR MS without using tandem mass spectrometric (MS/MS) analysis. Using this method, a total of 38 unique lipids were successfully identified.

  13. Hippocampal lipid differences in Alzheimer's disease: a human brain study using matrix-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Mendis, Lakshini H S; Grey, Angus C; Faull, Richard L M; Curtis, Maurice A

    2016-10-01

    Alzheimer's disease (AD), the leading cause of dementia, is pathologically characterized by β-amyloid plaques and tau tangles. However, there is also evidence of lipid dyshomeostasis-mediated AD pathology. Given the structural diversity of lipids, mass spectrometry is a useful tool for studying lipid changes in AD. Although there have been a few studies investigating lipid changes in the human hippocampus in particular, there are few reports on how lipids change in each hippocampal subfield (e.g., Cornu Ammonis [CA] 1-4, dentate gyrus [DG] etc.). Since each subfield has its own function, we postulated that there could be lipid changes that are unique to each. We used matrix-assisted laser desorption/ionization-imaging mass spectrometry to investigate specific lipid changes in each subfield in AD. Data from the hippocampus region of six age- and gender-matched normal and AD pairs were analyzed with SCiLS lab 2015b software (SCiLS GmbH, Germany; RRID:SCR_014426), using an analysis workflow developed in-house. Hematoxylin, eosin, and luxol fast blue staining were used to precisely delineate each anatomical hippocampal subfield. Putative lipid identities, which were consistent with published data, were assigned using MS/MS. Both positively and negatively charged lipid ion species were abundantly detected in normal and AD tissue. While the distribution pattern of lipids did not change in AD, the abundance of some lipids changed, consistent with trends that have been previously reported. However, our results indicated that the majority of these lipid changes specifically occur in the CA1 region. Additionally, there were many lipid changes that were specific to the DG. Matrix-assisted laser desorption/ionization-imaging mass spectrometry and our analysis workflow provide a novel method to investigate specific lipid changes in hippocampal subfields. Future work will focus on elucidating the role that specific lipid differences in each subfield play in AD pathogenesis.

  14. Nanoporous GaN-Ag composite materials prepared by metal-assisted electroless etching for direct laser desorption-ionization mass spectrometry.

    PubMed

    Nie, Bei; Duan, Barrett K; Bohn, Paul W

    2013-07-10

    Three-dimensional nanoporous gallium nitride(PGaN) produced by metal-assisted electroless etching is chemically embedded with silver nanoparticles via electroless deposition, forming a metallized semiconductor membrane with large surface area and nanoscale metal features. A new application utilizing the unique chemical and morphological features of these composite nanostructures is described here, laser induced desorption-ionization(LDI) of biomolecules(e.g., cholesterol and nucleotides) for direct mass analysis, without use of additional organic matrix. Although PGaN itself is a poor matrix for direct LDI mass spectrometry, the combination of Ag and PGaN greatly improves ion signals relative to PGaN or Ag nanostructure surfaces alone. This behavior is attributed to the combination of strong UV absorption, enhanced surface area, and favorable thermal properties of PGaN. Importantly, Ag-PGaN is shown to facilitate the formation of Ag adduct ions in some cases, for example adenine, where adducts are not observed from either porous anodic aluminum membranes or surfaces presenting Ag nanoparticles in isolation. Nanopore-embedded Ag nanostructures serve a dual role: as cationization agents and to assist thermal desorption under UV laser irradiation. The results reported here suggest that the combination of Ag nanostructures embedded in PGaN has the capacity for high quality matrix-free LDI mass analysis.

  15. Ultraviolet/matrix-assisted laser desorption/ionization mass spectrometric characterization of 2,5-dihydroxybenzoic acid-induced reductive hydrogenation of oligonucleotides on cytosine residues.

    PubMed

    Koomen, J M; Russell, D H

    2000-08-01

    The changes in the ion signals in the isotope cluster, mass resolution, signal-to-noise ratio and mass accuracy for matrix-assisted laser desorption/ionization (MALDI) of DNA oligonucleotides (dGGATC, dCAGCt, and dAACCGTT) and their fragment ions were evaluated, and these data were compared with those obtained using 3-hydroxypicolinic acid. Mass spectra obtained by using 2,5-dihydroxybenzoic acid (2,5-DHB) appear to have differences from the theoretical isotopic clusters, which arise by reductive hydrogenation producing a second peak at the M + 2 isotope of the native oligonucleotide. Based on the patterns of the isotopic envelope observed in the in-source decay fragments, we propose that cytosine is the site of reduction. We do not find evidence of reduction of oligonucleotides, viz. dTGGGGTT, that do not contain cytosine; however, 2'-deoxycytidine and 2'-deoxycytidine-5'-monophosphate undergo reductive hydrogenation. Several experiments were carried out in an effort to determine whether the reductive hydrogenation occurs during sample preparation or as a result of laser irradiation. The results of these experiments suggest that it occurs during sample preparation. The relative intensities of ion signals corresponding to the reduced base can be altered by using different matrix additives (aminonaphthalenes) or a different substrate (copper). Also, the oxidized form of 2,5-DHB is trapped by reaction with the side chain of cysteine in glutathione, providing evidence that the reaction occurs in solution as the matrix crystallizes.

  16. Determination of molecular mass distribution of silicone oils by supercritical fluid chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and their off-line combination.

    PubMed

    Chmelík, J; Planeta, J; Rehulka, P; Chmelík, J

    2001-07-01

    Silicone oil samples were characterized by supercritical fluid chromatography (SFC), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI--TOF MS), and their off-line combination. SFC was used to separate samples of silicone oils on micropacked capillary columns. The fractions for the identification studies were obtained from SFC runs at defined time intervals, when the restrictor was pulled out from the chromatographic flame ionization detector (FID) and inserted into a glass vial with acetone. MALDI--TOF MS was used for the identification of individual oligomers in the fractions separated. The molecular mass distributions determined based on SFC and MALDI--TOF MS measurements were compared. From this comparison, it follows that the results are in good agreement. However, certain differences were observed: MALDI--TOF MS was capable of detecting somewhat larger oligomers than the SFC-FID, but the lower molecular mass oligomers were not present in the MALDI spectra. Differences in the region of lower molecular masses can be explained by evaporation of the more volatile low molecular mass oligomers resulting from heating of the sample during the MALDI--TOF MS measurements as a result of the absorption of the laser shot energy. The fact that no high mass discrimination effects of the MALDI--TOF MS measurements, compared with SFC, were observed is very promising for further applications of MALDI--TOF MS in characterizing synthetic polymers of moderate polydispersity.

  17. Rapid screening of anthocyanins in berry samples by surfactant-mediated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Grant, David C; Helleur, Robert J

    2008-01-01

    Surfactant-mediated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been used for the identification of flavonoids from three berry extracts: lowbush blueberry (Vaccinium angustifolium), lingonberry (Vaccinium vitis-idaea), and blackberry (Rubus armeniacus). The addition of the surfactant led to suppression of matrix ions from both alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2',4',6'-trihydroxyacetophenone (THAP). This is the first case of this method being successfully employed with a matrix other than CHCA. It was observed that CHCA led to a great deal of fragmentation of the sugar moiety from glycosides, whereas THAP produced more intact glycoside molecules, and thus leads to better characterization of the flavonoids in a berry sample. The flavonoids were characterized and quantified by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) with UV detection. Although MALDI-TOF-MS did not lead to the identification of as many flavonoids, it did enable us to identify many anthocyanin glycosides. Quantification was achieved and demonstrated that use of the THAP matrix can enable quantification of the intact glycosides with relative standard deviation (RSD) values of less than 10% with surfactant addition. These results are comparable with LC results. MALDI-TOF-MS with THAP matrix thus provided a rapid method for the qualitative screening of these compounds. It took only a few minutes, greatly reducing the analysis time from that in traditional LC/MS methods. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. The value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in identifying clinically relevant bacteria: a comparison with automated microbiology system

    PubMed Central

    Zhou, Chunmei; Huang, Shenglei; Shan, Yuzhang; Ye, Xiangru

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been developed as a new-type soft ionization mass spectrometry in the recent year. Increasing number of clinical microbiological laboratories consider it as an innovate approach for bacterial identification. Methods A total of 876 clinical strains, comprising 52 species in 27 genus, were obtained from Fudan University Affiliated Zhongshan Hospital. We compared the identification accuracy of the Vitek MS system (bioMerieux, Marcy l’Etoile) to other conventional methods for bacterial identification. 16S rRNA gene sequencing was performed as a reference identification method in cases of discrepant results. Results The Vitek MS system consistently produced accurate results within minutes of loading, while conventional methods required several hours to produce identification results. Among the 876 isolates, the overall performance of Vitek MS was significantly better than the conventional method both for correct species identification (830, 94.7% vs. 746, 85.2%, respectively, P=0.000). Conclusions Compared to traditional identification methods, MALDI-TOF MS is a rapid, accurate and economical technique to enhance the clinical value of microorganism identification. PMID:24822117

  19. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R(2) > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis. Graphical Abstract ᅟ.

  20. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.

  1. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  2. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid identification of fungal rhinosinusitis pathogens.

    PubMed

    Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin

    2017-03-01

    Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.

  3. Trace Determination of Gadolinium in Biomedical Samples by Diode Laser-Based Multi-Step Resonance Ionization Mass Spectrometry

    SciTech Connect

    Blaum, K; Geppert, C H.; Schreiber, W G.; Hengstler, J; Muller, P; Nortershauser, W; Wendt, Klaus; Bushaw, Bruce A. )

    2002-01-01

    We report on the application of high-resolution multi-step resonance ionization mass spectrometry (RIMS) to the trace determination of the rare earth element gadolinium. Utilizing three-step resonant excitation into an autoionizing level, we attain both isobaric and isotopic selectivity of > 107. An overall detection efficiency of -10-7 and an isotope specific detection limit of 1.5x109 atoms have been demonstrated. When targeting the major isotope 158Gd, this corresponds to a total Gd detection limit of 1.6 pg. Additionally, linear response has been demonstrated over a dynamic range of six orders of magnitude. The method has been used to determine the GD-content in various normal and tumor tissue samples, taken from a laboratory mouse shortly after injection of Gd-DTPA, which is used as a contrast agent for magnetic resonance imaging (MRI). The RIMS results show Gd concentrations that vary by more than two orders of magnitude depending on the tissue type. This variability is similar to that observed in MRI scans that depict Gd-DTPA content in the mouse prior to dissection, and illustrates the potential for quantitative trace analysis in microsamples of biomedical materials.

  4. Peptide mapping using capillary electrophoresis offline coupled to matrix-assisted laser desorption ionization time of flight mass spectrometry.

    PubMed

    Bachmann, Stefan; Bakry, Rania; Huck, Christian W; Polato, Fabio; Corradini, Danilo; Bonn, Günther K

    2011-10-01

    This article reports the results of a study carried out to evaluate the offline hyphenation of capillary zone electrophoresis with matrix-assisted lased desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for the analysis of low-abundant complex samples, represented by the tryptic phosphorylated peptides of phosphoproteins, such as α-casein, β-casein, and fetuin. The proposed method employs a latex-coated capillary and consists in the online preconcentration of the tryptic peptides by a pH-mediated stacking method, their separation by capillary zone electrophoresis, and subsequent deposition of the separated analytes onto a MALDI target for their MS analysis. The online preconcentration method allows loading a large sample volume (∼150 nL), which is introduced into the capillary after the hydrodynamic injection of a short plug of 1.0 M ammonium hydroxide solution and is sandwiched between two plugs of the acidic background electrolyte solution (BGE) filling the capillary. The sample spotting of the separated analytes onto the MALDI target is performed either during or postseparation using an automatic spotting device connected to the exit of the separation capillary. The proposed method allows the separation and identification of multiphosphorylated peptides from other peptides and enables their identification at femtomole level with improved efficiency compared with LC approaches hyphenated to MS.

  5. Selective identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of different types of gluten in foods made with cereal mixtures.

    PubMed

    Camafeita, E; Solís, J; Alfonso, P; López, J A; Sorell, L; Méndez, E

    1998-10-09

    The gluten toxic fractions responsible for the mucosal damage in coeliac disease (CD), so-called gliadins, hordeins, secalins and avenins from a large number (30-40) of wheat, barley, rye and oats cultivars respectively, have been mass analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Gliadin, secalin and avenin characteristic mass profiles are nearly identical amongst distinct cultivars from the corresponding cereal, while hordeins profiles show more variability depending on the particular barley cultivar. On the basis of these four distinguishable characteristic mass patterns spreading within the 20,000-40,000 Da range, MALDI-TOF-MS has permitted the direct and simultaneous visualization of gliadins, hordeins, secalins and avenins in foods elaborated with cereal mixtures of wheat, barley, rye and oats. This capacity has been demonstrated by mass analyzing foods made with these four cereals in varying ratios. Thus MALDI-TOF-MS can be preliminarily established as a unique system with the ability to discriminate the specific type of gluten toxic fractions present in food samples.

  6. Calibration laws based on multiple linear regression applied to matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Williams, D Keith; Chadwick, M Ashley; Williams, Taufika Islam; Muddiman, David C

    2008-12-01

    Operation of any mass spectrometer requires implementation of mass calibration laws to translate experimentally measured physical quantities into a m/z range. While internal calibration in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) offers several attractive features, including exposure of calibrant and analyte ions to identical experimental conditions (e.g. space charge), external calibration affords simpler pulse sequences and higher throughput. The automatic gain control method used in hybrid linear trap quadrupole (LTQ) FT-ICR-MS to consistently obtain the same ion population is not readily amenable to matrix-assisted laser desorption/ionization (MALDI) FT-ICR-MS, due to the heterogeneous nature and poor spot-to-spot reproducibility of MALDI. This can be compensated for by taking external calibration laws into account that consider magnetic and electric fields, as well as relative and total ion abundances. Herein, an evaluation of external mass calibration laws applied to MALDI-FT-ICR-MS is performed to achieve higher mass measurement accuracy (MMA).

  7. Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhang, Boyu; Zhang, Hong; Myers, Brittany K; Elupula, Ravinder; Jayawickramarajah, Janarthanan; Grayson, Scott M

    2014-03-13

    End groups play a critical role in macromolecular coupling reactions for building complex polymer architectures, yet their identity and purity can be difficult to ascertain using traditional analytical technique. Recent advances in mass spectrometry techniques have made matrix-assisted laser desorption/ionization time-of-fight (MALDI-TOF) mass spectrometry a rapid and powerful tool for providing detailed information about the identity and purity of homopolymer end groups. In this work, MALDI-TOF mass spectrometry was used to study end groups of linear polyethylene glycols. In particular, the identifications of alcohol, amine and thiol end groups are investigated because these nucleophilic moieties are among the most common within biological and synthetic macromolecules. Through comparative characterization of alcohol, amine, and thiol end groups, the exact identification of these end groups could be confirmed by selective and quantitative modification. The precision of this technique enables the unambiguous differentiation of primary amino groups relative to hydroxyl groups, which differ by only 1 mass unit. In addition, the quantitative conversion of various polyethylene glycol end groups using highly efficient coupling reactions such as the thiol-ene and azide-alkyne click reactions can be confirmed using MALDI-TOF mass spectrometry.

  8. N-Glycan matrix-assisted laser desorption/ionization mass spectrometry imaging protocol for formalin-fixed paraffin-embedded tissues.

    PubMed

    Briggs, Matthew T; Ho, Yin Ying; Kaur, Gurjeet; Oehler, Martin K; Everest-Dass, Arun V; Packer, Nicolle H; Hoffmann, Peter

    2017-05-30

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of the proteome of a tissue has been an established technique for the past decade. In the last few years, MALDI-MSI of the N-glycome has emerged as a novel MALDI-MSI technique. To assess the accuracy and clinical significance of the N-linked glycan spatial distribution, we have developed a method that utilises MALDI-MSI followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) in order to assign glycan structures to the differentiating MALDI-MSI glycan masses released from the tissue glycoproteins. Our workflow presents a comprehensive list of instructions on how to (i) apply MALDI-MSI to spatially map the N-glycome across formalin-fixed paraffin-embedded (FFPE) clinical samples, (ii) structurally characterise N-glycans extracted from consecutive FFPE tissue sections by LC/MS/MS, and (iii) match relevant N-glycan masses from MALDI-MSI with confirmed N-glycan structures determined by LC/MS/MS. Our protocol provides groups that are new to this technique with instructions how to establish N-glycan MALDI-MSI in their laboratory. Furthermore, the method assigns N-glycan structural detail to the masses obtained in the MALDI-MS image. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Nanostructured indium tin oxide slides for small-molecule profiling and imaging mass spectrometry of metabolites by surface-assisted laser desorption ionization MS.

    PubMed

    López de Laorden, Carlos; Beloqui, Ana; Yate, Luis; Calvo, Javier; Puigivila, Maria; Llop, Jordi; Reichardt, Niels-Christian

    2015-01-06

    Due to their electrical conductivity and optical transparency, slides coated with a thin layer of indium tin oxide (ITO) are the standard substrate for protein imaging mass spectrometry on tissue samples by MALDI-TOF MS. We have now studied the rf magnetron sputtering deposition parameters to prepare ITO thin films on glass substrates with the required nanometric surface structure for their use in the matrix-free imaging of metabolites and small-molecule drugs, without affecting the transparency required for classical histology. The custom-made surfaces were characterized by atomic force microscopy, scanning electron microscopy, ellipsometry, UV, and laser desorption ionization MS (LDI-MS) and employed for the LDI-MS-based analysis of glycans and druglike molecules, the quantification of lactose in milk by isotopic dilution, and metabolite imaging on mouse brain tissue samples.

  10. Qualitative and quantitative analysis of low molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrices.

    PubMed

    Zabet-Moghaddam, Masoud; Heinzle, Elmar; Tholey, Andreas

    2004-01-01

    A major problem hampering the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for quantitative measurements is the inhomogeneous distribution of analytes and matrices in solid sample preparations. The use of ionic liquids as matrices for the qualitative and quantitative analysis of low molecular weight compounds like amino acids, sugars and vitamins was investigated. The ionic liquid matrices are composed of equimolar combinations of classical MALDI matrices (sinapinic acid, alpha-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid) with organic bases. These matrix systems allow a homogenous sample preparation with a thin ionic liquid layer having negligible vapour pressure. This leads to a facilitated qualitative and quantitative measurement of the analytes compared with classical solid matrices. Copyright 2003 John Wiley & Sons, Ltd.

  11. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  12. Detection of digoxin in urine samples by surface-assisted laser desorption/ionization mass spectrometry with dispersive liquid-liquid microextraction.

    PubMed

    Cheng, Mei-Ching; Chi, Kai-Ming; Chang, Sarah Y

    2013-10-15

    A novel method for the detection of digoxin using dispersive liquid-liquid microextraction (DLLME) coupled to the surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. Acetone and chloroform were used as the disperser solvent and extraction solvents, respectively. After the extraction, digoxin was detected using SALDI/MS with colloidal palladium as the matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 0.01 to 0.50 μM, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 2 nM for digoxin. With a sample-to-extract volume ratio of 400, the enrichment factor for digoxin was calculated to be 252. This novel method was successfully applied for the determination of digoxin in human urine samples.

  13. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004.

    PubMed

    Harvey, David J

    2009-01-01

    This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.

  14. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    SciTech Connect

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.

  15. Comparison of Ti-Based Coatings on Silicon Nanowires for Phosphopeptide Enrichment and Their Laser Assisted Desorption/Ionization Mass Spectrometry Detection.

    PubMed

    Kurylo, Ievgen; Hamdi, Abderrahmane; Addad, Ahmed; Boukherroub, Rabah; Coffinier, Yannick

    2017-09-15

    We created different TiO₂-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO₂ based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum.

  16. Direct determination of the peptide content in microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Na, Dong Hee; DeLuca, Patrick P; Lee, Kang Choon

    2004-05-01

    A quantitative determination of peptides incorporated into poly(d,l-lactide-co-glycolide) microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was accomplished in a single step without pretreatment for extracting the peptide from the microsphere. The conventional extraction methods often underestimate the actual amount of peptide because of incomplete extraction from the microspheres or loss during the procedures. In this study, the microspheres dissolved in acetonitrile containing 0.1% trifluoroacetic acid were mixed with matrix solution containing the internal standard, and the peptide content was directly determined by MALDI-TOF MS. The drug content values determined by MALDI-TOF MS in both the leuprolide- and salmon calcitonin-incorporated microspheres were closer to the theoretical contents than those determined by the conventional extraction method. This method using MALDI-TOF MS could be a good alternative to time-consuming and less-accurate conventional methods.

  17. Rapid identification of gallotannins from Chinese galls by matrix-assisted laser desorption/ionization time-of-flight quadrupole ion trap mass spectrometry.

    PubMed

    Zhu, Fan; Cai, Yi-Zhong; Xing, Jie; Ke, Jinxia; Zhan, Zhaoqi; Corke, Harold

    2009-06-01

    Chinese gall, a conventional traditional Chinese medicine, contains high levels of gallotannins. A rapid method for direct analysis of the gallotannins without using any troublesome sample pretreatments was developed using matrix-assisted laser desorption/ionization time-of-flight quadrupole ion trap mass spectrometry (MALDI-QIT-TOF MS) to successfully identify the gallotannin components in the crude extract of Chinese galls within several minutes. The high quality of the MS and MS(2) spectra acquired clearly showed that hydrolysable tannins in Chinese galls were identified as a series of the gallotannins with degrees of polymerization (DP) of 4-11 galloyl units. The MS(2) data indicated that the identified gallotannins with DP of 4-7 galloyl units had clear fragmentation with loss of 1-5 galloyl units which were further deprived of 1-3 water moieties. This technique may be used for rapid evaluation and screening of hydrolysable tannins in medicinal plants.

  18. An extraction method of positive blood cultures for direct identification of Candida species by Vitek MS matrix-assisted laser desorption ionization time of flight mass spectrometry.

    PubMed

    Lavergne, Rose-Anne; Chauvin, Pamela; Valentin, Alexis; Fillaux, Judith; Roques-Malecaze, Christine; Arnaud, Sylvie; Menard, Sandie; Magnaval, Jean-François; Berry, Antoine; Cassaing, Sophie; Iriart, Xavier

    2013-08-01

    Candida spp. are an important cause of nosocomial bloodstream infections. Currently, complete identification of yeasts with conventional methods takes several days. We report here the first evaluation of an extraction method associated with the Vitek MS matrix-assisted laser desorption ionization time of flight mass spectrometry for direct identification of Candida species from positive blood cultures. We evaluated this protocol with blood cultures that were inoculated with reference and routine isolates (eight reference strains, 30 patients isolates and six mixed cultures containing two strains of different Candida species), or from patients with candidemia (28 isolates). This method performed extremely well (97% correct identification) with blood cultures of single Candida spp. and significantly reduced the time of diagnosis. Nevertheless, subculture remains indispensable to test fungal resistance and to detect mixed infections.

  19. Preparation of porous styrenics-based monolithic layers for thin layer chromatography coupled with matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection.

    PubMed

    Lv, Yongqin; Lin, Zhixing; Tan, Tianwei; Svec, Frantisek

    2013-11-05

    Monolithic 50 μm thin poly(4-methylstyrene-co-chloromethylstyrene-co-divinylbenzene) layers attached to 6.0 cm × 3.3 cm glass plates have been prepared, using a thermally initiated polymerization process. These layers had a well-defined porous structure with a globular morphology demonstrated with SEM images and exhibited superhydrophobic properties characterized with a water contact angle of 157°. They were then used for thin-layer chromatography of peptides and proteins fluorescently labeled with fluorescamine. The spots of individual separated compounds were visualized using UV light, and their identities were confirmed with a matrix-assisted laser desorption/ionization time of flight mass spectrometry. The presence of chloromethylstyrene units in the polymer enabled hypercrosslinking via a Friedel-Crafts alkylation reaction, and led to monoliths with much larger surface areas, which were suitable for separations of small dye molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Structural determination of the conjugate of human serum albumin with a mitomycin C derivative, KW-2149, by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Yasuzawa, T; Tomer, K B

    1997-01-01

    A new mitomycin C derivative, KW-2149, is known to form a covalent conjugate with human serum albumin (HSA). This conjugate exhibits 1/20 of the anticellular activity of unconjugated KW-2149. Structural studies of this conjugate were carried out using a combination of enzymatic digestion, high-performance liquid chromatography (HPLC), and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The tryptic peptide T5 (residues 21-41) was the only peptide found to be modified by KW-2149 moieties, the [(gamma-L-glutamylamino)ethyl]thio group or the (2-aminoethyl)thio group, through a disulfide bond. Although the latter peptide lost its mitomycin C moiety in the course of tryptic digestion, these data strongly suggest that KW-2149 was bound to Cys-34, the only free cysteine on HSA.

  1. Identification of anaerobic bacteria by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry with on-plate formic acid preparation.

    PubMed

    Schmitt, Bryan H; Cunningham, Scott A; Dailey, Aaron L; Gustafson, Daniel R; Patel, Robin

    2013-03-01

    Identification of anaerobic bacteria using phenotypic methods is often time-consuming; methods such as 16S rRNA gene sequencing are costly and may not be readily available. We evaluated 253 clinical isolates of anaerobic bacteria using the Bruker MALDI Biotyper (Bruker Daltonics, Billerica, MA) matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system with a user-supplemented database and an on-plate formic acid-based preparation method and compared results to those of conventional identification using biochemical testing or 16S rRNA gene sequencing. A total of 179 (70.8%) and 232 (91.7%) isolates were correctly identified to the species and genus levels, respectively, using manufacturer-recommended score cutoffs. MALDI-TOF MS offers a rapid, inexpensive method for identification of anaerobic bacteria.

  2. Theoretical optimization by genetic algorithm of delayed extraction parameters for a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer.

    PubMed

    Tauro, S; Razvi, M A N

    2005-01-01

    This paper presents the application of a genetic algorithm (GA) to optimize the operating parameters, namely pulse voltage and extraction delay time, when using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS). Simulations predict the presence of several combinations of these parameters that give a local maximum. The aim is to locate the optimal combination (a global maximum) of pulse voltage and extraction time delay in order to focus the ions of a particular m/z value to achieve the best resolution in a given instrumental geometry. The GA locates the global maximum quickly. The results indicate that it may be possible to achieve very high resolving power by using delayed extraction (DE)-MALDI-TOFMS with parameters obtained from the GA.

  3. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI).

    PubMed

    Tsai, Yu-Hsuan; Garrett, Timothy J; Carter, Christy S; Yost, Richard A

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  4. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging.

    PubMed

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian; Römpp, Andreas; Spengler, Bernhard

    2014-10-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to obtain high-resolution imaging in mass and space. Sections of the rhizome were imaged with a spatial resolution of 10 μm in the positive ion mode, and a large number of secondary metabolites were localized and identified based on their accurate mass and MS/MS fragmentation patterns. Major tissue-specific metabolites, including free flavonoids, flavonoid glycosides and saponins, were successfully detected and visualized in images, showing their distributions at the cellular level. The analytical power of the technique was tested in the imaging of two isobaric licorice saponins with a mass difference of only 0.02 Da. With a mass resolving power of 140 000 and a bin width of 5 ppm in the image processing, the two compounds were well resolved in full-scan mode, and appeared with different distributions in the tissue sections. The identities of the compounds and their distributions were validated in a subsequent MS/MS imaging experiment, thereby confirming their identities and excluding possible analyte interference. The use of high spatial resolution, high mass resolution and tandem mass spectrometry in imaging experiments provides significant information about the biosynthetic pathway of flavonoids and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high-throughput profiling of metabolites in plant tissues. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry.

    PubMed

    Trimpin, Sarah; Inutan, Ellen D

    2013-05-01

    An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.

  6. Multiphoton Ionization of Laser-Desorbed Neutral Molecules in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DTIC Science & Technology

    1990-05-19

    dissociates when irradiated with a gated pulse of light from a continuous wave carbon dioxide laser , forming two fragment ions at m/z = 200 and 171...this manner to laser photodissociation in a unique 3- laser experiment in which a third (gated, continuous- wave (cw) CO) laser has been used to...pathway shown in Figure 1), thus allowing the beam to travel through the center of the cell. Typical UV laser pulse energies were on the order of 50-100

  7. Superbasic alkyl-substituted bisphosphazene proton sponges: a new class of deprotonating matrices for negative ion matrix-assisted ionization/laser desorption mass spectrometry of low molecular weight hardly ionizable analytes.

    PubMed

    Calvano, C D; Cataldi, T R I; Kögel, J F; Monopoli, A; Palmisano, F; Sundermeyer, J

    2016-07-30

    Here hardly ionizable and low molecular weight compounds are detected in negative ion mode by using novel superbasic proton sponges based on 1,8-bisphosphazenylnaphthalene (PN) as MALDI matrices. Among the selected proton sponges, 1,8-bis(trispyrrolidinophosphazenyl)naphthalene (TPPN) has shown the best behaviour as matrix since it allows the direct detection of intact cholesterol without derivatization also in real challenging samples. Very weakly acidic compounds such as sterols, steroids, fatty alcohols and saccharides were detected in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm) with typical mass accuracy of 10 ppm. MS/MS experiments were performed by using ambient air as the collision gas. Contrary to traditional MALDI matrices, superbasic proton sponges allowed the easy deprotonation of an alcohol functional group without a previous chemical derivatization step. Experimental evidence indicates that analyte deprotonation is achieved in the condensed phase, i.e. PN superbasic proton sponges operate according to a recently proposed model named matrix assisted ionization/laser desorption (MAILD). A detection limit of 3 pmol/spot of cholesterol (model compound) with a signal-to-noise ratio ≥ 10 was typically obtained. For the first time, the usefulness of novel superbasic proton sponges is demonstrated for MALDI detection of hardly ionizable compounds such as sterols, steroids, fatty alcohols and saccharides. The leading candidate TPPN has been successfully applied for negative ion MAILD-MS analysis of cholesterol, fatty acids and phospholipids in egg yolk and brain tissue extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Identification of Mycobacteria in Routine Clinical Practice

    PubMed Central

    El Khéchine, Amel; Couderc, Carine; Flaudrops, Christophe; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background Non-tuberculous mycobacteria recovered from respiratory tract specimens are emerging confounder organisms for the laboratory diagnosis of tuberculosis worldwide. There is an urgent need for new techniques to rapidly identify mycobacteria isolated in clinical practice. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has previously been proven to effectively identify mycobacteria grown in high-concentration inocula from collections. However, a thorough evaluation of its use in routine laboratory practice has not been performed. Methodology We set up an original protocol for the MALDI-TOF MS identification of heat-inactivated mycobacteria after dissociation in Tween-20, mechanical breaking of the cell wall and protein extraction with formic acid and acetonitrile. By applying this protocol to as few as 105 colony-forming units of reference isolates of Mycobacterium tuberculosis, Mycobacterium avium, and 20 other Mycobacterium species, we obtained species-specific mass spectra for the creation of a local database. Using this database, our protocol enabled the identification by MALDI-TOF MS of 87 M. tuberculosis, 25 M. avium and 12 non-tuberculosis clinical isolates with identification scores ≥2 within 2.5 hours. Conclusions Our data indicate that MALDI-TOF MS can be used as a first-line method for the routine identification of heat-inactivated mycobacteria. MALDI-TOF MS is an attractive method for implementation in clinical microbiology laboratories in both developed and developing countries. PMID:21935444

  9. Matrix-assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) Mass Spectrometric Analysis of Intact Proteins Larger than 100 kDa

    PubMed Central

    Signor, Luca; Boeri Erba, Elisabetta

    2013-01-01

    Effectively determining masses of proteins is critical to many biological studies (e.g. for structural biology investigations). Accurate mass determination allows one to evaluate the correctness of protein primary sequences, the presence of mutations and/or post-translational modifications, the possible protein degradation, the sample homogeneity, and the degree of isotope incorporation in case of labelling (e.g. 13C labelling). Electrospray ionisation (ESI) mass spectrometry (MS) is widely used for mass determination of denatured proteins, but its efficiency is affected by the composition of the sample buffer. In particular, the presence of salts, detergents, and contaminants severely undermines the effectiveness of protein analysis by ESI-MS. Matrix-assisted laser desorption/ionization (MALDI) MS is an attractive alternative, due to its salt tolerance and the simplicity of data acquisition and interpretation. Moreover, the mass determination of large heterogeneous proteins (bigger than 100 kDa) is easier by MALDI-MS due to the absence of overlapping high charge state distributions which are present in ESI spectra. Here we present an accessible approach for analysing proteins larger than 100 kDa by MALDI-time of flight (TOF). We illustrate the advantages of using a mixture of two matrices (i.e. 2,5-dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid) and the utility of the thin layer method as approach for sample deposition. We also discuss the critical role of the matrix and solvent purity, of the standards used for calibration, of the laser energy, and of the acquisition time. Overall, we provide information necessary to a novice for analysing intact proteins larger than 100 kDa by MALDI-MS. PMID:24056304

  10. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric analysis of intact proteins larger than 100 kDa.

    PubMed

    Signor, Luca; Boeri Erba, Elisabetta

    2013-09-09

    Effectively determining masses of proteins is critical to many biological studies (e.g. for structural biology investigations). Accurate mass determination allows one to evaluate the correctness of protein primary sequences, the presence of mutations and/or post-translational modifications, the possible protein degradation, the sample homogeneity, and the degree of isotope incorporation in case of labelling (e.g. (13)C labelling). Electrospray ionisation (ESI) mass spectrometry (MS) is widely used for mass determination of denatured proteins, but its efficiency is affected by the composition of the sample buffer. In particular, the presence of salts, detergents, and contaminants severely undermines the effectiveness of protein analysis by ESI-MS. Matrix-assisted laser desorption/ionization (MALDI) MS is an attractive alternative, due to its salt tolerance and the simplicity of data acquisition and interpretation. Moreover, the mass determination of large heterogeneous proteins (bigger than 100 kDa) is easier by MALDI-MS due to the absence of overlapping high charge state distributions which are present in ESI spectra. Here we present an accessible approach for analysing proteins larger than 100 kDa by MALDI-time of flight (TOF). We illustrate the advantages of using a mixture of two matrices (i.e. 2,5-dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid) and the utility of the thin layer method as approach for sample deposition. We also discuss the critical role of the matrix and solvent purity, of the standards used for calibration, of the laser energy, and of the acquisition time. Overall, we provide information necessary to a novice for analysing intact proteins larger than 100 kDa by MALDI-MS.

  11. Quantitative analysis of polysorbates 20 and 40 by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhang, Qi; Meng, Yang; Yang, Huaxin; Xiao, Xinyue; Li, Xiaodong

    2013-12-30

    Polysorbates are nonionic surfactants that consist primarily of fatty acid esters of polyethoxy sorbitan. This study proved that polysorbates can be quantitatively analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Using MALDI-TOF MS, relative intensity and concentration ratios were correlated, and extensive research was conducted to understand the influencing factors. Polysorbate 20 and 40 were mixed in the desired ratios and irradiated with a N2 laser. MALDI-TOF mass spectra were recorded in positive ion mode to test the linearity. All commercial polysorbates were analyzed to determine the relative concentration of the components using the same method. The relative peak intensity ratio as a function of the relative concentration ratio was analyzed, and a reasonably good linearity (R(2) = 0.987 for polysorbate 20) was obtained. This study illustrates the process of converting the analyte signal response into the concentration, supporting the notion that quantitative MALDI-TOF MS can be used to analyze polymers. MALDI-TOF MS analysis of commercial polysorbate formulations revealed a complex mixture of oligomers that was related to the fatty acid composition. Polysorbates 20 and 40 were characterized, and the simultaneous quantitative analysis of polysorbate 20 was reported. This method requires no tedious sample pretreatment. Therefore, it is a promising method for the rapid simultaneous quantitation of polysorbates 20 and 40. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Elemental and molecular analysis of metal containing biomolecules using laser induced breakdown spectroscopy and sonic spray ionization mass spectrometry: A step towards full integration and simultaneous analysis

    NASA Astrophysics Data System (ADS)

    Marmatakis, Konstantinos; Pergantis, Spiros A.; Anglos, Demetrios

    2016-12-01

    A novel methodology is proposed that combines sonic spray ionization (SSI) mass spectrometry (MS) with laser induced breakdown spectroscopy (LIBS) for analyzing metal-containing biomolecules and complexes. Focusing pulses from a nanosecond laser (Nd:YAG, λ = 1064 nm) in the microdroplet ensemble produced by a pneumatic nebulizer yielded LIBS spectra that enabled highly sensitive detection of several metal ions in aqueous and aqueous methanolic solutions. Based on the calibration curve method, LOD values at the ng/mL level were achieved for Ca (15 ng/mL), Ba (27 ng/mL), Cu (67 ng/mL) and Fe (650 ng/mL) with accuracy > 90%. LIBS measurements were performed for the first time on aerosols of solutions of known biomolecules such as superoxide dismutase and alpha-lactalbumin, which led to the reliable determination of the concentration of Cu and Ca, respectively, both in the range of a few μg/mL. In parallel, the relative molecular mass of the metalloproteins was determined by separate SSI-MS measurements performed using an identical pneumatic nebulizer based sample introduction system. This is a first step towards the ultimate aim of integrating the two analytical techniques by use of a single pneumatic nebulization system for simultaneous sample introduction for both LIBS and SSI-MS. Such a system is expected to greatly enhance our capabilities to simultaneously acquire molecular and atomic data.

  13. LASER DESORPTION IONIZATION OF SIZE RESOLVED LIQUID MICRODROPLETS. (R823980)

    EPA Science Inventory

    Mass spectra of single micrometer-size glycerol droplets containing organic and inorganic analytes were obtained by on-line laser desorption ionization. Aerosol droplets entered the mass spectrometer through an inlet where they were detected by light scattering of a continuous la...

  14. LASER DESORPTION IONIZATION OF SIZE RESOLVED LIQUID MICRODROPLETS. (R823980)

    EPA Science Inventory

    Mass spectra of single micrometer-size glycerol droplets containing organic and inorganic analytes were obtained by on-line laser desorption ionization. Aerosol droplets entered the mass spectrometer through an inlet where they were detected by light scattering of a continuous la...

  15. Analysis of calcitonin and its analogues by capillary zone electrophoresis and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry.

    PubMed

    Amini, Ahmad; Olofsson, Ing-Marie

    2004-06-01

    Capillary zone electrophoretic (CZE) separations and mass spectrometric analysis of salmon calcitonin and related analogues were performed to generate electrophoresis and mass fingerprints for quality control of the recombinant polypeptide pharmaceutical salmon calcitonin. The calcitonins and their corresponding tryptic digests were successfully separated by CZE at low pH in fused silica capillaries dynamically modified with poly-cationic polymers. The poly-cationic modified inner surface of the fused silica capillaries generated a strong anionic electroosmotic flow (EOF). Analytes of negative, neutral, and positive charge were all swept through the capillary toward the positive electrode. Compared to Polybrene-coated capillaries, capillaries coated with PEI showed a markedly slower but much more stable electroosmotic flow. The migration order of the analytes was predicted by comparing approximate values of the charge to (molecular mass)2/3 ratios. The predicted migration order was confirmed by off-line analysis of CZE fractions with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

  16. Separation and identification of an oligomeric light stabilizer Chimassorb 944 by gradient elution chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Kong, Xiu; Diao, Xingli; Wan, Qian-Hong

    2014-10-17

    A non-aqueous reversed-phase high-performance liquid chromatographic (HPLC) method has been developed to separate a light stabilizer Chimassorb 944 into individual oligomers, which are further identified using pre-column fluorescent derivatization and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Consistent with previous studies, we find that the Chimassorb 944 product is a complex mixture consisting of a homologous series with the amine end groups and the number of repeat units (n) span from 1 to 26. In addition to the dominant linear species, cyclic oligomers are present at relatively high levels in the low-mass range. Their concentration decreases rapidly with the length of the oligomer backbone and becomes undetectable when n>7. Moreover, comparison of the HPLC and MALDI-MS molar mass distributions of Chimassorb 944 shows that the HPLC analysis produces greater molar mass averages and thus offers an effective means for accurate measure of the relative abundances of the oligomers.

  17. Use of the arginine-specific butanedione/phenylboronic acid tag for analysis of peptides and protein digests using matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Leitner, Alexander; Amon, Sabine; Rizzi, Andreas; Lindner, Wolfgang

    2007-01-01

    We have applied an arginine-specific labeling technique to the study of peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The reaction converts the guanidine group of the arginine side chain by reacting it with 2,3-butanedione and an arylboronic acid. Despite the general chemical lability of the tag under acidic conditions, it was possible to employ acidic matrices like alpha-cyano-4-hydroxycinnamic acid without adverse effects, using the thin-layer technique for preparation. After optimizing the method using arginine-containing model peptides--for which sensitivity down to the low fmol range was demonstrated--the procedure was applied to enzymatic digests of several model proteins in solution and to protein spots in gels obtained by two-dimensional electrophoretic separation of cell lysate samples. Information on the presence of arginine in peptides can be easily obtained from the mass spectra by the characteristic mass shift and the isotope pattern resulting from the incorporation of boron. This information might serve as a valuable additional search constraint for achieving a higher degree of confidence for protein identification by peptide mass fingerprinting. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Paraffin-wax-coated plates as matrix-assisted laser desorption/ionization sample support for high-throughput identification of proteins by peptide mass fingerprinting.

    PubMed

    Tannu, Nilesh S; Wu, Jian; Rao, Vamshi K; Gadgil, Himanshu S; Pabst, Michael J; Gerling, Ivan C; Raghow, Rajendra

    2004-04-15

    We compared trysin-digested protein samples desalted by ZipTip(C18) reverse-phase microcolumns with on-plate washing of peptides deposited either on paraffin-coated plates (PCP), Teflon-based AnchorChip plates, or stainless steel plates, before analysis by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Trypsinized bovine serum albumin and ovalbumin and 16 protein spots extracted from silver-stained two-dimensional gels of murine C(2)C(12) myoblasts or human leukocytes, prepared by the above two methods, were subjected to MALDI on PCP, AnchorChip plates, or uncoated stainless steel plates. Although most peptide mass peaks were identical regardless of the method of desalting and concentrating of protein samples, samples washed and concentrated by the PCP-based method had peptide peaks that were not seen in the samples prepared using the ZipTip(C18) columns. The mass spectra of peptides desalted and washed on uncoated stainless steel MALDI plates were consistently inferior due to loss of peptides. Some peptides of large molecular masses were apparently lost from samples desalted by ZipTip(C18) microcolumns, thus diminishing the quality of the fingerprint needed for protein identification. We demonstrate that the method of washing of protein samples on paraffin-coated plates provides an easy, reproducible, inexpensive, and high-throughput alternative to ZipTip(C18)-based purification of protein prior to MALDI-TOF-MS analysis.

  19. Grouping myxococci (Corallococcus) strains by Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI TOF) mass spectrometry: comparison with gene sequence phylogenies.

    PubMed

    Stackebrandt, Erko; Päuker, Orsola; Erhard, Marcel

    2005-02-01

    Nine Corallococcus isolates and three type strains of Corallococcus species were characterized by Intact Cell Mass Spectrometry using Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry. The resulting phenetic clustering was compared to the phylogenetic grouping based upon sequences of two housekeeping genes. The three dendrograms of relatedness resembled each other in that the isolates were highly similar to the type strains of Corallococcus exiguus and Corallococcus coralloides, while Corallococcus macrosporus and Myxococcus xanthus were more distantly related. While certain pairs of organisms were recovered by spectrometry and genes sequence analysis, others were detected by two of the three approaches. The degree of similarity determined by sequence analysis of the two genes was not higher than that revealed by MALDI-TOF analysis. The results show that the spectral profile, consisting of about 25 to 45 masses ranging between 2 and 20 kDa, have indeed taxonomic significance, confirming literature data that ribosomal proteins and certain housekeeping proteins are responsible for the masses obtained. Provided the availability of a database of type strains, MALDI-TOF analysis of unknown strains appears to be a rapid and inexpensive method to taxonomically cluster environmental isolates, expanding the spectrum to strains other than those of medical importance predominantly investigated so far.

  20. Resonance ionization of rubidium in an ion trap mass spectrometer

    SciTech Connect

    Whitten, W.B.; Ramsey, J.M.; Goeringer, D.E.; Buckley, B.T.

    1990-01-01

    We have recently initiated a study of resonance ionization processes in a quadrupole ion storage trap. The trap is a commercially available Ion Trap Detector that uses the voltage dependence of ion mass instability to obtain a mass spectrum of the trapped ions. We have modified the trap to permit laser excitation of atomic and molecular species within the quadrupole electrodes. Mass resolved resonance ionization spectra have been obtained for NO and Rb, described below. Rb was selected for this study for a number of reasons. We want to explore the potential of the ion trap for high resolution (Doppler free) resonance ionization spectroscopy with CW laser excitation. Rb can be excited to upper Rydberg levels with a series of transitions that can be induced with commercially available semiconductor diode lasers. In addition, levels in the same energy range can be reached through two-photon processes with visible wavelength tunable dye lasers or with single-photon processes after the laser is frequency doubled. The upper Rydberg levels can be ionized by photons, electric field, or collisions. Collisional ionization of a reservoir of Rydberg atoms may be a sensitive scheme for detecting electronegative species. RB has two stable isotopes with nonzero nuclear spin so that isotopic and hyperfine splittings can be used to assess the spectral resolution that is attained.

  1. Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization.

    PubMed

    Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V

    2013-01-01

    Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.

  2. Enhanced visualization of small peptides absorbed in rat small intestine by phytic-acid-aided matrix-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Hong, Seong-Min; Tanaka, Mitsuru; Yoshii, Saori; Mine, Yoshinori; Matsui, Toshiro

    2013-11-05

    Enhanced visualization of small peptides absorbed through a rat intestinal membrane was achieved by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-IMS) with the aid of phytic acid as a matrix additive. Penetrants through intestinal peptide transporter 1, i.e., glycyl-sarcosine (Gly-Sar, 147.1 m/z) and antihypertensive dipeptide, Val-Tyr (281.2 m/z), were chosen for MALDI-IMS. The signal-to-noise (S/N) ratios of dipeptides Gly-Sar and Val-Tyr were seen to increase by 2.4- and 8.0-fold, respectively, when using a 2',4',6'-trihydroxyacetophenone (THAP) matrix containing 5.0 mM phytic acid, instead of the THAP matrix alone. Owing to the phytic-acid-aided MALDI-IMS method, Gly-Sar and Val-Tyr absorbed in the rat intestinal membrane were successfully visualized. The proposed imaging method also provided useful information on intestinal peptide absorption; to some extent, Val-Tyr was rapidly hydrolyzed to Tyr by peptidases located at the intestinal microvillus during the absorption process. In conclusion, the strongly acidic additive, phytic acid, is beneficial for enhancing the visualization of small peptides using MALDI-IMS, owing to the suppression of ionization-interfering salts in the tissue.

  3. Organic–inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides

    SciTech Connect

    Feenstra, Adam D.; O'Neill, Kelly C.; Yagnik, Gargey B.; Lee, Young Jin

    2016-10-13

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe3O4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionic phosphatidylethanolamine (PE) and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.

  4. Multiplexed hybridizations of positively charge-tagged peptide nucleic acids detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Bauer, Oliver; Guerasimova, Anna; Sauer, Sascha; Thamm, Sabine; Steinfath, Matthias; Herwig, Ralf; Janitz, Michal; Lehrach, Hans; Radelof, Uwe

    2004-01-01

    Peptide nucleic acid (PNA) is a novel class of DNA analogues in which the entire sugar-phosphate backbone is replaced by a pseudopeptide counterpart. Owing to its neutral character and the consequent lack of electrostatic repulsion, PNA exhibits very stable heteroduplex formation with complementary nucleic acid that is essentially ionic strength independent and enables hybridization under minimum salt conditions. This feature as well as its superior ion stability and easy ionization compared to DNA renders PNA very attractive for hybridization-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) applications. We have developed an approach to DNA characterization that takes advantage of multiplexed PNA hybridizations analyzed by MALDI-TOFMS. Our motivation was the further development of oligonucleotide fingerprinting, an efficient technique for cDNA and genomic DNA library characterization. Through positive 'charge-tagging' of PNA the efficiency of detection in MALDI-TOFMS was considerably enhanced permitting an unparalleled degree of multiplexing. Results from the simultaneous hybridization of 21 charge-tagged PNA hexamer oligonucleotides showed that genomic DNA and cDNA clones are successfully characterized on the basis of their hybridization profiles. The degree of multiplexing achieved may render a significant increase in throughput and hence efficiency of oligonucleotide fingerprinting possible.

  5. Qualitative and quantitative end-group analysis of a small molecular weight polyester by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Laine, O; Osterholm, H; Järvinen, H; Wickström, K; Vainiotalo, P

    2000-01-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for qualitative and quantitative end-group analysis of a small molecular weight polyester, poly(2-butyl-2-ethyl-1,3-propylene phthalate). The presence of carboxyl-terminated linear and cyclic polyester oligomers was confirmed with the help of simple sample preparation methods. The presence of carboxyl end-groups in the polyester chains was verified through their formation of carboxylate salts with alkali metal cations. Cyclic oligomers were identified through deuterium exchange of the exchangeable protons of the polyester. Various inorganic salts were tested for salt formation of the carboxyl end-groups, but only the alkali metal salts proved effective. The influence of the alkali metal salts on the results of the quantitative end-group analysis was also studied. The relative amounts of differently terminated and cyclic oligomers were calculated when the alkali metal salts were used with different matrices. The results showed that both the salts and the matrices used in sample preparation can have a marked effect on the quantitative results of the end-group analysis. The measurements were carried out using 2,5-dihydroxybenzoic acid (DHB), 1,8, 9-trihydroxyanthracene (dithranol), and 2-(4-hydroxyphenylazo)benzoic acid (HABA) as matrix compounds. Dithranol and HABA repeatably exhibited similar results, and these results differed from those obtained with DHB probably because of the different ionization mechanisms in the MALDI process. Copyright 2000 John Wiley & Sons, Ltd.

  6. Negative ion production from peptides and proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gao, Junjie; Cassady, Carolyn J

    2008-12-01

    Negative ion production from peptides and proteins was investigated by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Although most research on peptide and protein identification with ionization by MALDI has involved the detection of positive ions, for some acidic peptides protonated molecules are not easily formed because the side chains of acidic residues are more likely to lose a proton and form a deprotonated species. After investigating more than 30 peptides and proteins in both positive and negative ion modes, [M-H](-) ions were detected in the negative ion mode for all peptides and proteins although the matrix used was 2,5-dihydroxybenzoic acid (DHB), which is a good proton donor and favors the positive ion mode production of [M+H](+) ions. Even for highly basic peptides without an acidic site, such as myosin kinase inhibiting peptide and substance P, good negative ion signals were observed. Conversely, gastrin I (1-14), a peptide without a highly basic site, will form positive ions. In addition, spectra obtained in the negative ion mode are usually cleaner due to absence of alkali metal adducts. This can be useful during precursor ion isolation for MS/MS studies. Copyright 2008 John Wiley & Sons, Ltd.

  7. Organic–inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides

    DOE PAGES

    Feenstra, Adam D.; Ames Lab., Ames, IA; O'Neill, Kelly C.; ...

    2016-10-13

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe3O4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionic phosphatidylethanolamine (PE)more » and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.« less

  8. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization-Tandem Time of Flight mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis. STEC strains were induced to ...

  9. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxin 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-light mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...

  10. The importance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for correct identification of Clostridium difficile isolated from chromID C. difficile chromogenic agar.

    PubMed

    Chen, Jonathan H K; Cheng, Vincent C C; Wong, Oi-Ying; Wong, Sally C Y; So, Simon Y C; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2016-01-11

    The clinical workflow of using chromogenic agar and matrix-assisted laser desorption ionization time-of-fight mass spectrometry (MALDI-TOF MS) for Clostridium difficile identification was evaluated. The addition of MALDI-TOF MS identification after the chromID C. difficile chromogenic agar culture could significantly improve the diagnostic accuracy of C. difficile.

  11. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Seng, Piseth; Drancourt, Michel; Gouriet, Frédérique; La Scola, Bernard; Fournier, Pierre-Edouard; Rolain, Jean Marc; Raoult, Didier

    2009-08-15

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in <1 h using a database comprising > or =10 reference spectra per bacterial species and a 1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.

  12. The development of a matrix-assisted laser desorption/ionization mass spectrometry-based method for the protein fingerprinting and identification of Aeromonas species using whole cells.

    PubMed

    Donohue, Maura J; Smallwood, Anthony W; Pfaller, Stacy; Rodgers, Mark; Shoemaker, Jody A

    2006-06-01

    This report describes the development of a method to detect the waterborne pathogen Aeromonas using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, MALDI-MS was applied to the characterization of seventeen species of Aeromonas. These seventeen species were represented by thirty-two strains, which included type, reference and clinical isolates. Intact cells from each strain were used to generate a reproducible library of protein mass spectral fingerprints or m/z signatures. Under the test conditions used, peak lists of the mass ions observed in each species revealed that three mass ions were conserved among all the seventeen species tested. These common mass ions having an average m/z of 6301, 12,160 or 12,254, and 13,450, can be potentially used as genus-specific biomarkers to identify Aeromonas in unknown samples. A dendrogram generated using the m/z signatures of all the strains tested indicated that the mass spectral data contained sufficient information to distinguish between genera, species, and strains. There are several advantages of using MALDI-MS based protein mass spectral fingerprinting of whole cells for the identification of microorganisms as well as for their differentiation at the sub-species level: (1) the capability to detect proteins, (2) high throughput, and (3) relatively simple sample preparation techniques. The accuracy and speed with which data can be obtained makes MALDI-MS a powerful tool especially suited for environmental monitoring and detection of biological hazards.

  13. Determination of polycyclic aromatic hydrocarbons and their nitro-, amino-derivatives absorbed on particulate matter 2.5 by multiphoton ionization mass spectrometry using far-, deep-, and near-ultraviolet femtosecond lasers.

    PubMed

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2016-06-01

    Multiphoton ionization processes of parent-polycyclic aromatic hydrocarbons (PPAHs), nitro-PAHs (NPAHs), and amino-PAHs (APAHs) were examined by gas chromatography combined with time-of-flight mass spectrometry using a femtosecond Ti:sapphire laser as the ionization source. The efficiency of multiphoton ionization was examined using lasers emitting in the far-ultraviolet (200 nm), deep-ultraviolet (267 nm), and near-ultraviolet (345 nm) regions. The largest signal intensities were obtained when the far-ultraviolet laser was employed. This favorable result can be attributed to the fact that these compounds have the largest molar absorptivities in the far-ultraviolet region. On the other hand, APAHs were ionized more efficiently than NPAHs in the near-ultraviolet region because of their low ionization energies. A sample extracted from a real particulate matter 2.5 (PM2.5) sample was measured, and numerous signal peaks arising from PAH and its analogs were observed at 200 nm. On the other hand, only a limited number of signed peaks were observed at 345 nm, some of which were signed to PPAHs, NPAHs, and APAHs. Thus, multiphoton ionization mass spectrometry has potential for the use in comprehensive analysis of toxic environmental pollutants.

  14. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Method for the Identification of Anthraquinones: the Case of Historical Lakes.

    PubMed

    Sabatini, Francesca; Lluveras-Tenorio, Anna; Degano, Ilaria; Kuckova, Stepanka; Krizova, Iva; Colombini, Maria Perla

    2016-11-01

    This study deals with the identification of anthraquinoid molecular markers in standard dyes, reference lakes, and paint model systems using a micro-invasive and nondestructive technique such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-ToF-MS). Red anthraquinoid lakes, such as madder lake, carmine lake, and Indian lac, have been the most widely used for painting purposes since ancient times. From an analytical point of view, identifying lakes in paint samples is challenging and developing methods that maximize the information achievable minimizing the amount of sample needed is of paramount importance. The employed method was tested on less than 0.5 mg of reference samples and required a minimal sample preparation, entailing a hydrofluoric acid extraction. The method is fast and versatile because of the possibility to re-analyze the same sample (once it has been spotted on the steel plate), testing both positive and negative modes in a few minutes. The MALDI mass spectra collected in the two analysis modes were studied and compared with LDI and simulated mass spectra in order to highlight the peculiar behavior of the anthraquinones in the MALDI process. Both ionization modes were assessed for each species. The effect of the different paint binders on dye identification was also evaluated through the analyses of paint model systems. In the end, the method was successful in detecting madder lake in archeological samples from Greek wall paintings and on an Italian funerary clay vessel, demonstrating its capabilities to identify dyes in small amount of highly degraded samples. Graphical Abstract ᅟ.

  15. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Method for the Identification of Anthraquinones: the Case of Historical Lakes

    NASA Astrophysics Data System (ADS)

    Sabatini, Francesca; Lluveras-Tenorio, Anna; Degano, Ilaria; Kuckova, Stepanka; Krizova, Iva; Colombini, Maria Perla

    2016-11-01

    This study deals with the identification of anthraquinoid molecular markers in standard dyes, reference lakes, and paint model systems using a micro-invasive and nondestructive technique such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-ToF-MS). Red anthraquinoid lakes, such as madder lake, carmine lake, and Indian lac, have been the most widely used for painting purposes since ancient times. From an analytical point of view, identifying lakes in paint samples is challenging and developing methods that maximize the information achievable minimizing the amount of sample needed is of paramount importance. The employed method was tested on less than 0.5 mg of reference samples and required a minimal sample preparation, entailing a hydrofluoric acid extraction. The method is fast and versatile because of the possibility to re-analyze the same sample (once it has been spotted on the steel plate), testing both positive and negative modes in a few minutes. The MALDI mass spectra collected in the two analysis modes were studied and compared with LDI and simulated mass spectra in order to highlight the peculiar behavior of the anthraquinones in the MALDI process. Both ionization modes were assessed for each species. The effect of the different paint binders on dye identification was also evaluated through the analyses of paint model systems. In the end, the method was successful in detecting madder lake in archeological samples from Greek wall paintings and on an Italian funerary clay vessel, demonstrating its capabilities to identify dyes in small amount of highly degraded samples.

  16. Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Muller, Ludovic; Baldwin, Kathrine; Barbacci, Damon C.; Jackson, Shelley N.; Roux, Aurélie; Balaban, Carey D.; Brinson, Bruce E.; McCully, Michael I.; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.

    2017-08-01

    Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins). Image reproducibility in serial sections of brain tissue is achieved within <10% tolerance by selecting argentated instead of alkali cationized ions. The imaging of brain tissues spotted with pure standards was used to demonstrate that Ag cationized ceramide and diacylglycerol ions are from intact, endogenous species. In contrast, almost all Ag cationized fatty acid ions are a result of fragmentations of numerous lipid types having the fatty acid as a subunit. Almost no argentated intact fatty acid ions come from the pure fatty acid standard on tissue.

  17. Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles.

    PubMed

    Muller, Ludovic; Baldwin, Kathrine; Barbacci, Damon C; Jackson, Shelley N; Roux, Aurélie; Balaban, Carey D; Brinson, Bruce E; McCully, Michael I; Lewis, Ernest K; Schultz, J Albert; Woods, Amina S

    2017-08-01

    Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins). Image reproducibility in serial sections of brain tissue is achieved within <10% tolerance by selecting argentated instead of alkali cationized ions. The imaging of brain tissues spotted with pure standards was used to demonstrate that Ag cationized ceramide and diacylglycerol ions are from intact, endogenous species. In contrast, almost all Ag cationized fatty acid ions are a result of fragmentations of numerous lipid types having the fatty acid as a subunit. Almost no argentated intact fatty acid ions come from the pure fatty acid standard on tissue. Graphical Abstract ᅟ.

  18. A second-generation ionic liquid matrix-assisted laser desorption/ionization matrix for effective mass spectrometric analysis of biodegradable polymers.

    PubMed

    Berthod, Alain; Crank, Jeffrey A; Rundlett, Kimber L; Armstrong, Daniel W

    2009-11-01

    A second generation ionic liquid matrix (ILM), N,N-diisopropylethylammonium alpha-cyano-4-hydroxycinnamate (DEA-CHCA), was developed for the characterization of polar biodegradable polymers. It is compared with five solid matrices typically used for the characterization of these polymers and one other new ILM. It is shown that use of the ILM, DEA-CHCA, allows maximum signal with minimum laser intensity which minimizes polymer degradation. In these conditions, the DEA-CHCA ILM is able to assist in the ionization of analytes in an efficient but soft manner. These qualities produce spectra that allow an accurate and sensitive determination of the number average molecular weights, weight average m.w., and polydispersity index of labile polar polymers. With such polymers, many solid matrices produce spectra showing extensive polymer degradation leading to the underestimation of molecular weights. The distribution of intact analyte peaks obtained with the ILM DEA-CHCA allows for identification of the fine structure of complex copolymers. ILMs were much less susceptible to effects of extraction delay times on molecular weight determination than were solid matrices. The liquid nature of the matrix is an important reason for the outstanding results obtained for labile analyte polymers. No comparable results could be obtained with any known solid matrices or other ILMs. In many cases, the manufacturers' listed molecular weights and polydispersity measurements for biodegradable polymers are determined by size-exclusion chromatography and the data obtained by that method may differ considerably from the high-precision matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results presented here. Copyright 2009 John Wiley & Sons, Ltd.

  19. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.

    2016-03-01

    A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.

  20. Petroleomic Analysis of Bio- Oils from the Fast Pyrolysis or Biomass: Laser Desorption Ionization-Linear Ion Trap-Orbitrap mass Spectrometry Approach

    SciTech Connect

    Smith, Erica A.; Lee, Young Jin

    2010-08-23

    Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Among those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.

  1. The suitability of matrix assisted laser desorption/ionization time of flight mass spectrometry in a laboratory developed test using cystic fibrosis carrier screening as a model.

    PubMed

    Farkas, Daniel H; Miltgen, Nicholas E; Stoerker, Jay; van den Boom, Dirk; Highsmith, W Edward; Cagasan, Lesley; McCullough, Ron; Mueller, Reinhold; Tang, Lin; Tynan, John; Tate, Courtney; Bombard, Allan

    2010-09-01

    We designed a laboratory developed test (LDT) by using an open platform for mutation/polymorphism detection. Using a 108-member (mutation plus variant) cystic fibrosis carrier screening panel as a model, we completed the last phase of LDT validation by using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Panel customization was accomplished via specific amplification primer and extension probe design. Amplified genomic DNA was subjected to allele specific, single base extension endpoint analysis by mass spectrometry for inspection of the cystic fibrosis transmembrane regulator gene (NM_000492.3). The panel of mutations and variants was tested against 386 blinded samples supplied by "authority" laboratories highly experienced in cystic fibrosis transmembrane regulator genotyping; >98% concordance was observed. All discrepant and discordant results were resolved satisfactorily. Taken together, these results describe the concluding portion of the LDT validation process and the use of mass spectrometry to detect a large number of complex reactions within a single run as well as its suitability as a platform appropriate for interrogation of scores to hundreds of targets.

  2. Nitrocellulose film substrate minimizes fragmentation in matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of triacylglycerols.

    PubMed

    Picariello, Gianluca; Romano, Raffaele; Addeo, Francesco

    2010-07-01

    The potential of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) for the analysis of intact triacylglycerols (TAGs) is generally limited by the extensive in-source prompt fragmentation. The sequential deposition of matrix and TAGs over the stainless steel target precoated with a thin layer of nitrocellulose (NC) drastically reduced fragmentation in the MALDI-TOF MS profiling of oils and fats. The NC MALDI-TOF MS profiles of native and thermally stressed virgin olive oil and butter are reported as case studies, along with test analyses of a standard mixture of mono-, di-, and triacylglycerols. Mass spectra were almost completely devoid of both fragment and matrix ion signals, thus disclosing relevant information, especially in the low molecular mass range. The detection of several partial acylglycerols of low abundance and minor TAGs that are barely observed with other techniques also provided evidence for an increased dynamic range of NC MALDI-TOF MS that was due to the minimization of suppressive effects. The NC film substrate also improved the shot-to-shot and sample-to-sample reproducibility of the ion production through the exhibition of a more homogeneous matrix/analyte cocrystallization, thus enabling MALDI-based measurements to a consistent quantification of TAGs.

  3. Evaluation of a Semiquantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures.

    PubMed

    Jung, Jette S; Hamacher, Christina; Gross, Birgit; Sparbier, Katrin; Lange, Christoph; Kostrzewa, Markus; Schubert, Sören

    2016-11-01

    With the increasing prevalence of multidrug-resistant Gram-negative bacteria, rapid identification of the pathogen and its individual antibiotic resistance is crucial to ensure adequate antiinfective treatment at the earliest time point. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for the identification of bacteria directly from the blood culture bottle has been widely established; however, there is still an urgent need for new methods that permit rapid resistance testing. Recently, a semiquantitative MALDI-TOF mass spectrometry-based method for the prediction of antibiotic resistance was described. We evaluated this method for detecting nonsusceptibility against two β-lactam and two non-β-lactam antibiotics. A collection of 30 spiked blood cultures was tested for nonsusceptibility against gentamicin and ciprofloxacin. Furthermore, 99 patient-derived blood cultures were tested for nonsusceptibility against cefotaxime, piperacillin-tazobactam, and ciprofloxacin in parallel with MALDI-TOF mass spectrometry identification from the blood culture fluid. The assay correctly classified all isolates tested for nonsusceptibility against gentamicin and cefotaxime. One misclassification for ciprofloxacin nonsusceptibility and five misclassifications for piperacillin-tazobactam nonsusceptibility occurred. Identification of the bacterium and prediction of nonsusceptibility was possible within approximately 4 h.

  4. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  5. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures.

  6. Direct identification of trypanosomatids by matrix-assisted laser desorption ionization-time of flight mass spectrometry (DIT MALDI-TOF MS).

    PubMed

    Avila, C C; Almeida, F G; Palmisano, G

    2016-08-01

    Accurate and rapid determination of trypanosomatids is essential in epidemiological surveillance and therapeutic studies. Matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) has been shown to be a useful and powerful technique to identify bacteria, fungi, metazoa and human intact cells with applications in clinical settings. Here, we developed and optimized a MALDI-TOF MS method to profile trypanosomatids. trypanosomatid cells were deposited on a MALDI target plate followed by addition of matrix solution. The plate was then subjected to MALDI-TOF MS measurement to create reference mass spectra library and unknown samples were identified by pattern matching using the BioTyper software tool. Several m/z peaks reproducibly and uniquely identified trypanosomatids species showing the potentials of direct identification of trypanosomatids by MALDI-TOF MS. Moreover, this method discriminated different life stages of Trypanosoma cruzi, epimastigote and bloodstream trypomastigote and Trypanosoma brucei, procyclic and bloodstream. T. cruzi Discrete Typing Units (DTUs) were also discriminated in three clades. However, it was not possible to achieve enough resolution and software-assisted identification at the strain level. Overall, this study shows the importance of MALDI-TOF MS for the direct identification of trypanosomatids and opens new avenues for mass spectrometry-based detection of parasites in biofluids. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Hydrophilic interaction chromatography coupled matrix assisted laser desorption/ionization mass spectrometry for molecular analysis of organic compounds in medicines, tea, and coffee.

    PubMed

    Wang, Ren-Qi; Bao, Kai; Croué, Jean-Philippe; Ng, Siu Choon

    2013-11-21

    Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram.

  8. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry interlaboratory comparison of mixtures of polystyrene with different end groups: statistical analysis of mass fractions and mass moments.

    PubMed

    Guttman, Charles M; Wetzel, Stephanie J; Flynn, Kathleen M; Fanconi, Bruno M; VanderHart, David L; Wallace, William E

    2005-07-15

    A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) interlaboratory comparison was conducted on mixtures of synthetic polymers having the same repeat unit and closely matching molecular mass distributions but with different end groups. The interlaboratory comparison was designed to see how well the results from a group of experienced laboratories would agree on the mass fraction, and molecular mass distribution, of each polymer in a series of binary mixtures. Polystyrenes of a molecular mass near 9000 u were used. Both polystyrenes were initiated with the same butyl initiator; however, one was terminated with -H (termed PSH) and the other was terminated with -CH2CH2OH (termed PSOH). End group composition of the individual polymers was checked by MALDI-TOF MS and by nuclear magnetic resonance (NMR). Five mixtures were created gravimetrically with mass ratios between 95:5 and 10:90 PSOH/PSH. Mixture compositions where measured by NMR and by Fourier transform infrared spectrometry (FT-IR). NMR and FT-IR were used to benchmark the performance of these methods in comparison to MALDI-TOF MS. Samples of these mixtures were sent to any institution requesting it. A total of 14 institutions participated. Analysis of variance was used to examine the influences of the independent parameters (participating laboratory, MALDI matrix, instrument manufacturer, TOF mass separation mode) on the measured mass fractions and molecular mass distributions for each polymer in each mixture. Two parameters, participating laboratory and instrument manufacturer, were determined to have a statistically significant influence. MALDI matrix and TOF mass separation mode (linear or reflectron) were found not to have a significant influence. Improper mass calibration, inadequate instrument optimization with respect to high signal-to-noise ratio across the entire mass range, and poor data analysis methods (e.g., baseline subtraction and peak integration

  9. Initial results of positron ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Donohue, D. L.; Hulett, L. D., Jr.; Mcluckey, S. A.; Glish, G. L.; Eckenrode, B. A.

    1990-01-01

    The use of monoenergetic positrons for the ionization of organic molecules in the gas phase is described. The ionic products are analyzed with a time-of-flight mass spectrometer and detected to produce a mass spectrum. The ionization mechanisms which can be studied in this way include positron impact at energies above the ionization limit of the target molecules, positronium formation in the Ore gap energy range, and positron attachment at energies less than 1eV. The technique of positron ionization mass spectrometry (PIMS) may have analytical utility in that chemical selectivity is observed for one or more of these processes.

  10. Correlated matrix-assisted laser desorption/ionization mass spectrometry and fluorescent imaging of photocleavable peptide-coded random bead-arrays

    PubMed Central

    Lim, Mark J; Liu, Ziying; Braunschweiger, Karen I; Awad, Amany; Rothschild, Kenneth J

    2013-01-01

    RATIONALE Rapidly performing global proteomic screens is an important goal in the post-genomic era. Correlated matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and fluorescent imaging of photocleavable peptide-coded random bead-arrays was evaluated as a critical step in a new method for proteomic screening that combines many of the advantages of MS with fluorescence-based microarrays. METHODS Small peptide-coded model bead libraries containing up to 20 different bead species were constructed by attaching peptides to 30–34 µm diameter glass, agarose or TentaGel® beads using photocleavable biotin or a custom-designed photocleavable linker. The peptide-coded bead libraries were randomly arrayed into custom gold-coated micro-well plates with 45 µm diameter wells and subjected to fluorescence and MALDI mass spectrometric imaging (MALDI-MSI). RESULTS Photocleavable mass-tags from individual beads in these libraries were spatially localized as ∼65 µm spots using MALDI-MSI with high sensitivity and mass resolution. Fluorescently tagged beads were identified and correlated with their matching photocleavable mass-tags by comparing the fluorescence and MALDI-MS images of the same bead-array. Post-translational modification of the peptide Kemptide was also detected on individual beads in a photocleavable peptide-coded bead-array by MALDI-MSI alone, after exposure of the beads to protein kinase A (PKA). CONCLUSIONS Correlated MALDI-MS and fluorescent imaging of photocleavable peptide-coded random bead-arrays can provide a basis for performing global proteomic screening. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24285390

  11. Application of single-particle laser desorption/ionization time-of-flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process.

    PubMed

    Zimmermann, R; Ferge, T; Gälli, M; Karlsson, R

    2003-01-01

    Combustion-related soot particles were sampled in situ from the stoker system of a 0.5 MW incineration pilot plant (feeding material was wood) at two different heights over the feed bed in the third air supply zone. The collected particles were re-aerosolized by a powder-dispersing unit and analyzed by a single-particle laser desorption/ionization (LDI) time-of-flight mass spectrometer (aerosol-time-of-flight mass spectrometry, ATOFMS). The ATOFMS instrument characterizes particles according to their aerodynamic size (laser velocimetry) and chemical composition (LDI mass spectrometry). Chemical species from the particles are laser desorbed/ionized by 266 nm Nd:YAG laser pulses. ATOFMS results on individual 'real world' particles in general give information on the bulk inorganic composition. Organic compounds, which are of much lower concentrations, commonly are not detectable. However, recent off-line laser microprobe mass spectrometric (LMMS) experiments on bulk soot aerosol samples have emphasized that organic compounds can be desorbed and ionized without fragmentation in LDI experiments from black carbonaceous matrices. This paper reports the successful transfer of the off-line results to on-line analysis of airborne soot particles by ATOFMS. The detection of polycyclic aromatic hydrocarbons from soot particles is addressed in detail. The results are interpreted in the context of the recent LMMS results. Furthermore, their relevance with respect to possible applications in on-line monitoring of combustion processes is discussed. Copyright 2003 John Wiley & Sons, Ltd.

  12. Molecular imaging of banknote and questioned document using solvent-free gold nanoparticle-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Tang, Ho-Wai; Wong, Melody Yee-Man; Chan, Sharon Lai-Fung; Che, Chi-Ming; Ng, Kwan-Ming

    2011-01-01

    Direct chemical analysis and molecular imaging of questioned documents in a non/minimal-destructive manner is important in forensic science. Here, we demonstrate that solvent-free gold-nanoparticle-assisted laser desorption/ionization mass spectrometry is a sensitive and minimal destructive method for direct detection and imaging of ink and visible and/or fluorescent dyes printed on banknotes or written on questioned documents. Argon ion sputtering of a gold foil allows homogeneous coating of a thin layer of gold nanoparticles on banknotes and checks in a dry state without delocalizing spatial distributions of the analytes. Upon N(2) laser irradiation of the gold nanoparticle-coated banknotes or checks, abundant ions are desorbed and detected. Recording the spatial distributions of the ions can reveal the molecular images of visible and fluorescent ink printed on banknotes and determine the printing order of different ink which may be useful in differentiating real banknotes from fakes. The method can also be applied to identify forged parts in questioned documents, such as number/writing alteration on a check, by tracing different writing patterns that come from different pens.

  13. Highly oriented Langmuir-Blodgett film of silver cuboctahedra as an effective matrix-free sample plate for surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Kuo, Tsung-Rong; Chen, Yin-Chien; Wang, Chiung-I; Shen, Tzu-Hau; Wang, Hong-Yi; Pan, Xi-Yu; Wang, Di-Yan; Liou, Chien-Chung; Chang, Yi-Hsuan; Chen, Yi-Chia; Wu, Yueh-Hsiu; Liu, Yun-Ru; Lin, Yun-Ho; Hu, Cho-Chun; Chen, Chia-Chun

    2017-08-10

    The design of a homogeneous sample plate to solve the sweet heating spot issues is the key step to expand the applicability of surface-assisted laser desorption/ionization mass spectrometry (SALDI MS). Herein, large-scale and highly oriented Langmuir-Blodgett (LB) films of uniform silver nanocrystals have been fabricated as a highly efficient and matrix-free sample plate for SALDI MS. Three individual silver nanocrystals (cubes, cuboctahedra and octahedra) assembled LB films have been applied as the sample plates for glucose detection by SALDI MS without an additional matrix. The results show that the signal intensity, background noise, signal-to-noise ratio and reproducibility have been significantly improved using LB films as the sample plate in comparison with commercial matrixes of CHCA and DHB. In particular, a relative signal of 5.7% was obtained for LB films of silver cuboctahedra. The significant improvement in the SALDI MS measurement could be attributed to the homogenous dissipation of laser irradiation energy to create a large area of the sweet heating spot on well-oriented silver cuboctahedra-based LB film. This ready-to-use sample plate has the potential for widespread commercial applications in SALDI MS.

  14. In vivo analysis and spatial profiling of phytochemicals in herbal tissue by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Ng, Kwan-Ming; Liang, Zhitao; Lu, Wei; Tang, Ho-Wai; Zhao, Zhongzhen; Che, Chi-Ming; Cheng, Yung-Chi

    2007-04-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was developed for spatial profiling of phytochemicals and secondary metabolites in integrated herbal tissue without solvent extraction. Abundant alkaloid ions, including (+)-menisperine (m/z 356), magnoflorine (m/z 342), stepharanine (m/z 324), protonated sinomenine (m/z 330), protonated sinomendine (m/z 338), and a metabolite at m/z 314, could be directly desorbed from alpha-cyano-4-hydroxycinnamic acid- (CHCA-) coated stem tissue of Sinomenium acutum upon N2 laser (337 nm) ablation, while the ion signals desorbed from sinapinic acid- (SA-) coated and 2,5-dihydroxybenzoic acid- (DHB-) coated stem tissue were at least 10 times weaker. Solvent composition in the matrix solution could have significant effects on the ion intensity of the metabolites. Under optimized conditions that maximize the ion intensi