Science.gov

Sample records for laser ionization mass

  1. Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets

    PubMed Central

    Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.

    2008-01-01

    We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311

  2. The laser desorption/laser ionization mass spectra of some indole derivatives and alkaloids

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Milnes, John; Gormally, John

    1992-06-01

    The laser desorption and laser ionization mass spectra of some indole derivatives and alkaloids are described with particular reference to their modes of fragmentation. Mass spectra of yohimbine, reserpine, quinine and quinidine are presented. Full experimental details are given.

  3. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    NASA Astrophysics Data System (ADS)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  4. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  5. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  6. Quantitative matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Roder, Heinrich; Hunsucker, Stephen W.

    2008-01-01

    This review summarizes the essential characteristics of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS), especially as they relate to its applications in quantitative analysis. Approaches to quantification by MALDI-TOF MS are presented and published applications are critically reviewed. PMID:19106161

  7. Application of a quadrupole mass filter to laser ionization mass spectrometry: synchronization between the laser pulse and the mass scan

    NASA Astrophysics Data System (ADS)

    Kuzuya, M.; Ohoka, Y.; Katoh, H.; Sakanashi, H.

    1998-01-01

    A quadrupole-based laser ionization mass spectrometry system was developed by combining a commercial quadrupole mass filter with a laser microprobe instrument, which employs a pulse generator that synchronizes the laser pulse with the quadrupole mass scan to detect the pulsed ion signals generated by laser induced ionization. Mass spectra were measured for several solid samples of pure metals (Al,Cu), metal alloys (Inconel 601, brass), and ceramics (BN). Reproducible spectra, with relative standard deviations of the ion signals less than 1%, were obtained with this system. Moreover, isotope abundance ratios were measured and compared with the natural abundance ratios.

  8. Resonant Laser Ionization Mass Spectrometry: An Alternative to AMS?

    SciTech Connect

    Wendt, Klaus; Trautmann, N.; Bushaw, Bruce A.

    2001-02-15

    Resonant laser ionization mass spectrometry (RIMS) has developed into a versatile experimental method particularly concerning applications for highly selective ultratrace analaysis. Apart from providing nearly complete isobaric suspression and high overall efficiency, the possibolility for combining optical isotpic selectivity with that of hte mass spectrometer leads to remarkable specifications. The widespread analytical potential and applicability of different techniques based on resonant laser ionization is demonstrated in investigations on stable and radioactive ultratrace isotopes with the focus on applications which require high selectivity, concerning, e.g., the noble gas isotopes, 81,85KR, PU isotopes, 89,90SR, 99Tc and 41Ca. Selective ultratrace determination of these radioisotopes proved access to a variety of fundamental research problems in environmental sciences, geo- and cosmochemistry, archaeology, and biomedicine, which previously were often an exclusive domain for accelerator mass spectrometry (AMS).

  9. The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John

    1994-03-01

    The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.

  10. Atmospheric-pressure laser ionization: a novel ionization method for liquid chromatography/mass spectrometry.

    PubMed

    Constapel, M; Schellenträger, M; Schmitz, O J; Gäb, S; Brockmann, K J; Giese, R; Benter, Th

    2005-01-01

    We report on the development of a new laser-ionization (LI) source operating at atmospheric pressure (AP) for liquid chromatography/mass spectrometry (LC/MS) applications. APLI is introduced as a powerful addition to existing AP ionization techniques, in particular atmospheric-pressure chemical ionization (APCI), electrospray ionization (ESI), and atmospheric pressure photoionization (APPI). Replacing the one-step VUV approach in APPI with step-wise two-photon ionization strongly enhances the selectivity of the ionization process. Furthermore, the photon flux during an ionization event is drastically increased over that of APPI, leading to very low detection limits. In addition, the APLI mechanism generally operates primarily directly on the analyte. This allows for very efficient ionization even of non-polar compounds such as polycyclic aromatic hydrocarbons (PAHs). The APLI source was characterized with a MicroMass Q-Tof Ultima II analyzer. Both the effluent of an HPLC column containing a number of PAHs (benzo[a]pyrene, fluoranthene, anthracene, fluorene) and samples from direct syringe injection were analyzed with respect to selectivity and sensitivity of the overall system. The liquid phase was vaporized by a conventional APCI inlet (AP probe) with the corona needle removed. Ionization was performed through selective resonance-enhanced multi-photon ionization schemes using a high-repetition-rate fixed-frequency excimer laser operating at 248 nm. Detection limits well within the low-fmol regime are readily obtained for various aromatic hydrocarbons that exhibit long-lived electronic states at the energy level of the first photon. Only molecular ions are generated at the low laser fluxes employed ( approximately 1 MW/cm(2)). The design and performance of the laser-ionization source are presented along with results of the analysis of aromatic hydrocarbons.

  11. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    SciTech Connect

    Siegfried, M.

    2015-10-14

    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For this study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.

  12. CHARACTERIZATION OF CRYPTOSPORIDIUM PARVUM BY MATRIX-ASSISTED LASER DESORPTION -- IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    Matrix assisted laser desorption/ionization (MALDI) mass spectrometry was used to investigate whole and freeze thawed Cryptosporidium parvum oocysts. Whole oocysts revealed some mass spectral features. Reproducible patterns of spectral markers and increased sensitivity were obtai...

  13. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  14. Comparative mass spectrometric analyses of Photofrin oligomers by fast atom bombardment mass spectrometry, UV and IR matrix-assisted laser desorption/ionization mass spectrometry, electrospray ionization mass spectrometry and laser desorption/jet-cooling photoionization mass spectrometry.

    PubMed

    Siegel, M M; Tabei, K; Tsao, R; Pastel, M J; Pandey, R K; Berkenkamp, S; Hillenkamp, F; de Vries, M S

    1999-06-01

    Photofrin (porfimer sodium) is a porphyrin derivative used in the treatment of a variety of cancers by photodynamic therapy. This oligomer complex and a variety of porphyrin monomers, dimers and trimers were analyzed with five different mass spectral ionization techniques: fast atom bombardment, UV and IR matrix-assisted laser desorption/ionization, electrospray ionization, and laser desorption/jet-cooling photoionization. All five approaches resulted in very similar oligomer distributions with an average oligomer length of 2.7 +/- 0.1 porphyrin units. In addition to the Photofrin analysis, this study provides a side-by-side comparison of the spectra for the five different mass spectrometric techniques.

  15. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  16. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  17. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  18. Analysis of polyaromatic hydrocarbon mixtures with laser ionization gas chromatography/mass spectrometry

    SciTech Connect

    Rhodes, G.; Opsal, R.B.; Meek, J.T.; Reilly, J.P.

    1983-02-01

    Excimer laser induced multiphoton ionization has been utilized for ion generation in capillary gas chromatography/mass spectrometry and the technique applied to the separation and detection of polyaromatic hydrocarbons. Detection limits as low as 200 fg and linearity over a range of 5 x 10/sup +4/ were obtained for the polyaromatic hydrocarbons examined. Multiphoton ionization mass spectra were dominated by parent ions. Selective ionization based upon small differences in ionization potentials has been demonstrated for coeluting chrysene and triphenylene. Instrumental parameters have been investigated to assess improvements in sensitivity.

  19. Aerosol matrix-assisted laser desorption ionization for liquid chromatography/time-of-flight mass spectrometry

    SciTech Connect

    Murray, K.K.; Lewis, T.M.; Beeson, M.D.; Russell, D.H. )

    1994-05-15

    We report the application of aerosol matrix-assisted laser desorption ionization (MALDI) to liquid chromatography/mass spectrometry (LC/MS). The aerosol MALDI experiment uses aerosol liquid introduction in conjunction with pulsed UV laser ionization to form ions from large biomolecules in solution. Mass analysis is achieved in a time-of-flight mass spectrometer. In the LC/MALDI-MS experiment, the matrix solution is combined with the column effluent in a mixing tee, LC/MALDI-MS is demonstrated for the separation of bradykinin, gramicidin S, and myoglobin. 32 refs., 8 figs., 1 tab.

  20. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect

    Isselhardt, Brett H.

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  1. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  2. Plume collimation for laser ablation electrospray ionization mass spectrometry

    SciTech Connect

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  3. Improving precision in resonance ionization mass spectrometry : influence of laser bandwidth in uranium isotope ratio measurements.

    SciTech Connect

    Isselhardt, B. H.; Savina, M. R.; Knight, K. B.; Pellin, M. J.; Hutcheon, I. D.; Prussin, S. G.

    2011-03-01

    The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios by resonance ionization mass spectrometry (RIMS) to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a three-color, three-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from 10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation.

  4. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.

  5. Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko

    2009-06-01

    We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.

  6. A Combined Laser Ablation-Resonance Ionization Mass Spectrometer for Planetary Surface Geochronology

    NASA Technical Reports Server (NTRS)

    Cardell, G.; Taylor, M. E.; Stewart, B. W.; Capo, R. C.; Crown, D. A.

    2002-01-01

    Progress in the development of an instrument for direct geochronologic measurements on rocks in situ will be described. The instrument integrates laser ablation sampling, resonance ionization, and mass spectrometry to directly measure concentrations of the Rb-Sr isotope system. Additional information is contained in the original extended abstract.

  7. Identification of Bacteria Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    ERIC Educational Resources Information Center

    Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.

    2007-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…

  8. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  9. The Need for Speed in Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry

    PubMed Central

    Prentice, Boone M.; Caprioli, Richard M.

    2016-01-01

    Imaging mass spectrometry (IMS) has emerged as a powerful analytical tool enabling the direct molecular mapping of many types of tissue. Specifically, matrix-assisted laser desorption/ ionization (MALDI) represents one of the most broadly applicable IMS technologies. In recent years, advances in solid state laser technology, mass spectrometry instrumentation, computer technology, and experimental methodology have produced IMS systems capable of unprecedented data acquisition speeds (>50 pixels/second). In applications of this technology, throughput is an important consideration when designing an IMS experiment. As IMS becomes more widely adopted, continual improvements in experimental setups will be important to address biologically and clinically relevant time scales. PMID:27570788

  10. Determination of Hexachlorocyclohexane by Gas Chromatography Combined with Femtosecond Laser Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Xixiang; Imasaka, Tomoko; Li, Adan; Imasaka, Totaro

    2016-09-01

    Structural isomers and enantiomers of hexachlorocyclohexane (HCH) were separated using a chiral column by gas chromatography and quantitatively determined by multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (200 and 267 nm) as the ionization source. The order of elution of the enantiomers (i.e., (+)-α-HCH and (-)-α-HCH) was predicted from stabilization energies calculated for the complexes using permethylated γ-cyclodextrin as the stationary phase of the column, and the results were compared with the experimental data. The molecular ions observed for HCH were weak, even though they can be ionized through a process of resonance enhanced two-photon ionization at 200 nm. This unfavorable result can be attributed to the dissociation of the molecular ion, as predicted from quantum chemical calculations.

  11. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  12. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  13. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  14. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  15. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  16. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using Matrix Sublimation versus Modification with Nanoparticles.

    PubMed

    Phan, Nhu T N; Mohammadi, Amir Saeid; Dowlatshahi Pour, Masoumeh; Ewing, Andrew G

    2016-02-01

    Laser desorption ionization mass spectrometry (LDI-MS) is used to image brain lipids in the fruit fly, Drosophila, a common invertebrate model organism in biological and neurological studies. Three different sample preparation methods, including sublimation with two common organic matrixes for matrix-assisted laser desorption ionization (MALDI) and surface-assisted laser desorption ionization (SALDI) using gold nanoparticles, are examined for sample profiling and imaging the fly brain. Recrystallization with trifluoroacetic acid following matrix deposition in MALDI is shown to increase the incorporation of biomolecules with one matrix, resulting in more efficient ionization, but not for the other matrix. The key finding here is that the mass fragments observed for the fly brain slices with different surface modifications are significantly different. Thus, these approaches can be combined to provide complementary analysis of chemical composition, particularly for the small metabolites, diacylglycerides, phosphatidylcholines, and triacylglycerides, in the fly brain. Furthermore, imaging appears to be beneficial using modification with gold nanoparticles in place of matrix in this application showing its potential for cellular and subcellular imaging. The imaging protocol developed here with both MALDI and SALDI provides the best and most diverse lipid chemical images of the fly brain to date with LDI. PMID:26705612

  17. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  18. Short pulse laser mass spectrometry of nitrotoluenes: ionization and fragmentation behavior.

    PubMed

    Weickhardt, Christian; Tönnies, Karen

    2002-01-01

    The mass spectra of all isomers of mononitrotoluene, four isomers of dinitrotoluene and of 2,4,6,-trinitrotoluene, obtained by multiphoton ionization utilizing ultrashort laser pulses with center wavelengths of either 206 nm or 412 nm, are presented and discussed. Under these ionization conditions all nitrotoluenes exhibit a high degree of fragmentation which increases with the degree of substitution. For the compounds having a nitro group in position 2 and/or 6 a pronounced ortho effect leading to the loss of OH is observed. The fragmentation patterns in the lower mass range are typical for alkylated aromatic substances. While no fundamental differences between the mass spectra obtained with the two wavelengths were observed, the visible light in all cases resulted in a broader variety of fragments and additional signals in the higher mass range. The latter can be used for isomer identification.

  19. Matrix-assisted laser desorption and electrospray ionization mass spectrometry of carminic acid isolated from cochineal

    NASA Astrophysics Data System (ADS)

    Maier, Marta S.; Parera, Sara D.; Seldes, Alicia M.

    2004-04-01

    Carminic acid, isolated from cochineal, was analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray mass spectrometry (ESI-MS). Application of both techniques to the analysis of carminic acid suspended in linseed oil and applied to a piece of canvas, demonstrated the ability of MALDI and ESI-MS to identify this organic dye in a mixture as those used in easel painting.

  20. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery. PMID:26561279

  1. Ambient Mass Spectrometry Imaging with Picosecond Infrared Laser Ablation Electrospray Ionization (PIR-LAESI).

    PubMed

    Zou, Jing; Talbot, Francis; Tata, Alessandra; Ermini, Leonardo; Franjic, Kresimir; Ventura, Manuela; Zheng, Jinzi; Ginsberg, Howard; Post, Martin; Ifa, Demian R; Jaffray, David; Miller, R J Dwayne; Zarrine-Afsar, Arash

    2015-12-15

    A picosecond infrared laser (PIRL) is capable of cutting through biological tissues in the absence of significant thermal damage. As such, PIRL is a standalone surgical scalpel with the added bonus of minimal postoperative scar tissue formation. In this work, a tandem of PIRL ablation with electrospray ionization (PIR-LAESI) mass spectrometry is demonstrated and characterized for tissue molecular imaging, with a limit of detection in the range of 100 nM for reserpine or better than 5 nM for verapamil in aqueous solution. We characterized PIRL crater size using agar films containing Rhodamine. PIR-LAESI offers a 20-30 μm vertical resolution (∼3 μm removal per pulse) and a lateral resolution of ∼100 μm. We were able to detect 25 fmol of Rhodamine in agar ablation experiments. PIR-LAESI was used to map the distribution of endogenous methoxykaempferol glucoronide in zebra plant (Aphelandra squarrosa) leaves producing a localization map that is corroborated by the literature. PIR-LAESI was further used to image the distribution inside mouse kidneys of gadoteridol, an exogenous magnetic resonance contrast agent intravenously injected. Parallel mass spectrometry imaging (MSI) using desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) were performed to corroborate PIR-LAESI images of the exogenous agent. We further show that PIR-LAESI is capable of desorption ionization of proteins as well as phospholipids. This comparative study illustrates that PIR-LAESI is an ion source for ambient mass spectrometry applications. As such, a future PIRL scalpel combined with secondary ionization such as ESI and mass spectrometry has the potential to provide molecular feedback to guide PIRL surgery.

  2. Non-traditional applications of laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    McAlpin, Casey R.

    Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then

  3. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    PubMed

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture. PMID:26931868

  4. Applications of electrospray laser desorption ionization mass spectrometry for document examination.

    PubMed

    Cheng, Sy-Chyi; Lin, Yu-Shan; Huang, Ming-Zong; Shiea, Jentaie

    2010-01-01

    We have employed electrospray laser desorption ionization mass spectrometry (ELDI-MS) to rapidly characterize certain classes of compounds--the inks within the characters made by inks and inkjet printer on regular paper and the chemical compounds within thermal papers. This ELDI-MS approach allowed the ink and paper samples to be distinguished in terms of their chemical compositions. Sample pretreatment was unnecessary and the documents were practically undamaged after examination. The ink chemicals on the documents were desorbed through laser irradiation (sampling spot area: <100 microm(2)); the desorbed molecules then entered an electrospray plume--prepared from an acidic methanol/water solution (50%)--where they became ionized through fusion or ion-molecule reactions with the charged solvent species and droplets in the plume.

  5. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices.

    PubMed

    Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching

    2016-04-01

    In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates. PMID:26842733

  6. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.

    PubMed

    Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus

    2016-07-15

    Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates.

  7. Plasma ionization source for atmospheric pressure mass spectrometry imaging using near-field optical laser ablation.

    PubMed

    Nudnova, Maryia M; Sigg, Jérôme; Wallimann, Pascal; Zenobi, Renato

    2015-01-20

    Mass spectrometry imaging (MSI) at ambient pressures with submicrometer resolution is challenging, due to the very low amount of material available for mass spectrometric analysis. In this work, we present the development and characterization of a method for MSI based on pulsed laser ablation via a scanning near-field optical microscopy (SNOM) aperture tip. SNOM allows laser ablation of material from surfaces with submicrometer spatial resolution, which can be ionized for further chemical analysis with MS. Efficient ionization is realized here with a custom-built capillary plasma ionization source. We show the applicability of this setup for mass spectrometric analysis of three common MALDI matrices, α-4-hydroxycyanocinnamic acid, 3-aminobenzoic acid, and 2,5-dihydroxybenzoic acid. Although the ultimate goal has been to optimize sensitivity for detecting material ablated from submicrometer diameter craters, the effective lateral resolution is currently limited by the sensitivity of the MS detection system. In our case, the sensitivity of the MS was about 1 fmol, which allowed us to achieve a spatial resolution of 2 μm. We also characterize the analytical figures of merit of our method. In particular, we demonstrate good reproducibility, a repetition rate in the range of only a few seconds, and we determined the amount of substance required to achieve optimal resolution and sensitivity. Moreover, the sample topography is available from SNOM scans, a parameter that is missing in common MSI methods.

  8. Collisional and electric-field ionization of laser-prepared Rydberg states in an ion trap mass spectrometer

    SciTech Connect

    Ramsey, J.M.; Whitten, W.B.; Goeringer, D.E.; Buckley, B.T.

    1990-01-01

    Rydberg states of rubidium are selectively generated by one and two photon laser excitation in a quadrupole ion trap mass spectrometer. Collisional and electric-field ionization is investigated in trapping device. CCl{sub 4} is studied as a target for ionization of Rydberg states through electron attachment.

  9. Statistical discrimination of black gel pen inks analysed by laser desorption/ionization mass spectrometry.

    PubMed

    Weyermann, Céline; Bucher, Lukas; Majcherczyk, Paul; Mazzella, Williams; Roux, Claude; Esseiva, Pierre

    2012-04-10

    Pearson correlation coefficients were applied for the objective comparison of 30 black gel pen inks analysed by laser desorption ionization mass spectrometry (LDI-MS). The mass spectra were obtained for ink lines directly on paper using positive and negative ion modes at several laser intensities. This methodology has the advantage of taking into account the reproducibility of the results as well as the variability between spectra of different pens. A differentiation threshold could thus be selected in order to avoid the risk of false differentiation. Combining results from positive and negative mode yielded a discriminating power up to 85%, which was better than the one obtained previously with other optical comparison methodologies. The technique also allowed discriminating between pens from the same brand. PMID:22115723

  10. Matrix-assisted laser-desorption-ionization mass spectrometry of proteins using a free-electron laser

    SciTech Connect

    Cramer, R.; Hillenkamp, F.; Haglund, R.

    1995-12-31

    Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) is one of the most promising techniques for spectral fingerprinting large molecules, such as proteins, oligonucleotides and carbohydrates. In the usual implementation of this technique, the analyte molecule is dissolved in an aromatic liquid matrix material which resonantly absorbs ultraviolet laser light. Resonant absorption by {pi}-{pi}* transitions volatilizes the matrix and initiates subsequent charge transfer to the analyte molecules, which are detected by time-of-flight mass spectrometry. Recent MALDI-MS studies with Er:YAG (2.94 {mu}m) and CO{sub 2}{sup 4} (9.4-10.6 {mu}m) lasers suggest that them is significant unexplored potential for mass spectrometry of macromolecules, including oligonucleotide, in the mid-infrared. Preliminary experiments show that it is possible to capitalize on the rich rovibronic absorption spectrum of virtually all organics to initiate resonant desorption in matrix material over the entire range of pH values. However, the mechanism of charge transfer is particularly problematic for infrared MALDI because of the low photon energy. In this paper, we report the results of MALI-MS studies on small proteins using the Vanderbilt FEL and several matrix materials. Proteins with masses up to roughly 6,000 amu were detected with high resolution in a linear time-of-flight mass spectrometer. By varying the pulse duration using a broadband Pockels cell, we have been able to compare the results of relatively long (5 {mu}s) and short (0.1 {mu}s) irradiation on the desorption and ionization processes. Compared to uv-MALDI spectra of identical analytes obtained with a nitrogen laser (337 nm) in the same time-of-flight spectrometer, the infrared results appear to show that the desorption and ionization process goes on over a somewhat longer time scale.

  11. Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures.

    PubMed

    Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2014-11-18

    We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable

  12. Transmission geometry laser desorption atmospheric pressure photochemical ionization mass spectrometry for analysis of complex organic mixtures.

    PubMed

    Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2014-11-18

    We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable

  13. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples.

  14. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  15. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2010-01-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. Four APCI reagent systems were tested: the traditionally used mixture of methanol and water, neat benzene, neat carbon disulfide, and nitrogen gas (no liquid reagent). The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar amount of fragmentation was observed for these reagents. When the experiment was performed without a liquid reagent(nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to form stable molecular ions. PMID:21472571

  16. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  17. Determination of iodine in oyster tissue by isotope dilution laser resonance ionization mass spectrometry

    SciTech Connect

    Fassett, J.D.; Murphy, T.J. )

    1990-02-15

    The technique of laser resonance ionization mass spectrometry has been combined with isotope dilution analysis to determine iodine in oyster tissue. The long-lived radioisotope, 129I, was used to spike the samples. Samples were equilibrated with the 129I, wet ashed under controlled conditions, and iodine separated by coprecipitation with silver chloride. The analyte was dried as silver ammonium iodide upon a tantalum filament from which iodine was thermally desorbed in the resonance ionization mass spectrometry instrument. A single-color, two-photon resonant plus one-photon ionization scheme was used to form positive iodine ions. Long-lived iodine signals were achieved from 100 ng of iodine. The precision of 127I/129I measurement has been evaluated by replicate determinations of the spike, the spike calibration samples, and the oyster tissue samples and was 1.0%. Measurement precision among samples was 1.9% for the spike calibration and 1.4% for the oyster tissue. The concentration of iodine determined in SRM 1566a, Oyster Tissue, was 4.44 micrograms/g with an estimate of the overall uncertainty for the analysis of +/- 0.12 microgram/g.

  18. Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Van Berkel, Gary J

    2014-01-01

    RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant

  19. Ammonium Ion Exchanged Zeolite for Laser Desorption/Ionization Mass Spectrometry of Phosphorylated Peptides

    PubMed Central

    Yang, Mengrui; Fujino, Tatsuya

    2015-01-01

    α-Cyano-4-hydroxycinnamic acid (CHCA), an organic matrix molecule for matrix-assisted laser desorption/ionization mass spectrometry, was adsorbed to NH4+-type zeolite surface, and this new matrix was used for the detection of low-molecular-weight compounds. It was found that this matrix could simplify the mass spectrum in the low-molecular-weight region and prevent interference from fragments and alkali metal ion adducted species. CHCA adsorbed to NH4+-type ZSM5 zeolite (CHCA/NH4ZSM5) was used to measure atropine and aconitine, two toxic alkaloids in plants. In addition, CHCA/NH4ZSM5 enabled us to detect phosphorylated peptides; peaks of the protonated peptides had higher intensities than the peaks observed using CHCA only. PMID:26448749

  20. Electroless plating of silver nanoparticles on porous silicon for laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Xu, Ning; Huang, Wen-Yi; Han, Huan-Mei; Xiao, Shou-Jun

    2009-03-01

    An improved DIOS (desorption ionization on porous silicon) method for laser desorption/ionization mass spectrometry (LDI MS) by electroless plating of silver nanoparticles (AgNPs) on porous silicon (PSi) was developed. By addition of 4-aminothiophenol (4-ATP) into the AgNO3 plating solution, the plating speed can be slowed down and simultaneously 4-ATP self-assembled monolayers (SAMs) on AgNPs (4-ATP/AgNPs) were formed. Both AgNPs and 4-ATP/AgNPs coated PSi substrates present much higher stability, sensitivity and reproducibility for LDI MS than the un-treated porous silicon ones. Their shelf life in air was tested for several weeks to a month and their mass spectra still displayed the same high quality and sensitivity as the freshly prepared ones. And more 4-ATP SAMs partly play a role of matrix to increase the ionization efficiency. A small organic molecule of tetrapyridinporphyrin (TPyP), oligomers of polyethylene glycol (PEG 400 and 2300), and a peptide of oxytocin were used as examples to demonstrate the feasibility of the silver-plated PSi as a matrix-free-like method for LDI MS. This approach can obtain limits of detection to femtomoles for TPyP, subpicomoles for oxytocin, and picomoles for PEG 400 and 2300, comparable to the traditional matrix method and much better than the DIOS method. It simplifies the sample preparation as a matrix-free-like method without addition of matrix molecules and homogenizes the sample spread over the spot for better and more even mass signals.

  1. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Muccilli, Vera; Cunsolo, Vincenzo; Saletti, Rosaria; Foti, Salvatore; Masci, Stefania; Lafiandra, Domenico

    2005-02-01

    Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.

  2. Laser desorption/ionization mass spectrometry of diesel particulate matter with charge-transfer complexes.

    PubMed

    Carré, Vincent; Vernex-Loset, Lionel; Krier, Gabriel; Manuelli, Pascal; Muller, Jean-François

    2004-07-15

    Polycyclic aromatic hydrocarbons (PAHs) are often associated with complex matrixes such as exhaust diesel particulate matter (DPM), which complicates their study. In that case, laser desorption/ionization mass spectrometry is one of the techniques which ensures their direct analysis in the solid state. We demonstrate in this paper that the use of charge-transfer pi-complexing agents allows us to selectively detect by Fourier transform ion cyclotron resonance mass spectrometry PAHs adsorbed on diesel particles with high sensitivity. 2,4,7-trinitro-9-fluorenone and 7,7',8,8'-tetracyanoquinodimethane pi-acceptor compounds form charge-transfer complexes with PAHs and prevent their evaporation in the mass spectrometer during analysis. Moreover, the production of PAH molecular ions is dramatically increased by laser irradiation of these complexes at short wavelength (221.7 nm) and low power density (5 x 10(6) W cm(-)(2)). This methodology is applied for the first time to the examination of DPM collected during the new European driving cycle for light-duty vehicles. Differentiation criteria may coherently be assigned to engine operating mode (engine temperature, driving conditions). DPM samples can also be easily distinguished in negative ions according to the high sensitivity of this detection mode to sulfate compounds.

  3. omniSpect: an open MATLAB-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images.

    PubMed

    Parry, R Mitchell; Galhena, Asiri S; Gamage, Chaminda M; Bennett, Rachel V; Wang, May D; Fernández, Facundo M

    2013-04-01

    We present omniSpect, an open source web- and MATLAB-based software tool for both desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) that performs computationally intensive functions on a remote server. These functions include converting data from a variety of file formats into a common format easily manipulated in MATLAB, transforming time-series mass spectra into mass spectrometry images based on a probe spatial raster path, and multivariate analysis. OmniSpect provides an extensible suite of tools to meet the computational requirements needed for visualizing open and proprietary format MSI data.

  4. Revisiting the quantitative features of surface-assisted laser desorption/ionization mass spectrometric analysis.

    PubMed

    Wu, Ching-Yi; Lee, Kai-Chieh; Kuo, Yen-Ling; Chen, Yu-Chie

    2016-10-28

    Surface-assisted laser desorption/ionization (SALDI) coupled with mass spectrometry (MS) is frequently used to analyse small organics owing to its clean background. Inorganic materials can be used as energy absorbers and the transfer medium to facilitate the desorption/ionization of analytes; thus, they are used as SALDI-assisting materials. Many studies have demonstrated the usefulness of SALDI-MS in quantitative analysis of small organics. However, some characteristics occurring in SALDI-MS require certain attention to ensure the reliability of the quantitative analysis results. The appearance of a coffee-ring effect in SALDI sample preparation is the primary factor that can affect quantitative SALDI-MS analysis results. However, to the best of our knowledge, there are no reports relating to quantitative SALDI-MS analysis that discuss or consider this effect. In this study, the coffee-ring effect is discussed using nanoparticles and nanostructured substrates as SALDI-assisting materials to show how this effect influences SALDI-MS analysis results. Potential solutions for overcoming the existing problems are also suggested.This article is part of the themed issue 'Quantitative mass spectrometry'.

  5. Revisiting the quantitative features of surface-assisted laser desorption/ionization mass spectrometric analysis.

    PubMed

    Wu, Ching-Yi; Lee, Kai-Chieh; Kuo, Yen-Ling; Chen, Yu-Chie

    2016-10-28

    Surface-assisted laser desorption/ionization (SALDI) coupled with mass spectrometry (MS) is frequently used to analyse small organics owing to its clean background. Inorganic materials can be used as energy absorbers and the transfer medium to facilitate the desorption/ionization of analytes; thus, they are used as SALDI-assisting materials. Many studies have demonstrated the usefulness of SALDI-MS in quantitative analysis of small organics. However, some characteristics occurring in SALDI-MS require certain attention to ensure the reliability of the quantitative analysis results. The appearance of a coffee-ring effect in SALDI sample preparation is the primary factor that can affect quantitative SALDI-MS analysis results. However, to the best of our knowledge, there are no reports relating to quantitative SALDI-MS analysis that discuss or consider this effect. In this study, the coffee-ring effect is discussed using nanoparticles and nanostructured substrates as SALDI-assisting materials to show how this effect influences SALDI-MS analysis results. Potential solutions for overcoming the existing problems are also suggested.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644973

  6. Review of Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry for Lipid Biochemical Histopathology

    PubMed Central

    Yalcin, Emine B.

    2015-01-01

    Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry (MALDI-IMS) is a rapidly evolving method used for the in situ visualization and localization of molecules such as drugs, lipids, peptides, and proteins in tissue sections. Therefore, molecules such as lipids, for which antibodies and other convenient detection reagents do not exist, can be detected, quantified, and correlated with histopathology and disease mechanisms. Furthermore, MALDI-IMS has the potential to enhance our understanding of disease pathogenesis through the use of “biochemical histopathology”. Herein, we review the underlying concepts, basic methods, and practical applications of MALDI-IMS, including post-processing steps such as data analysis and identification of molecules. The potential utility of MALDI-IMS as a companion diagnostic aid for lipid-related pathological states is discussed. PMID:26209083

  7. Large Scale Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass Spectrometry.

    PubMed

    Yagnik, Gargey B; Hansen, Rebecca L; Korte, Andrew R; Reichert, Malinda D; Vela, Javier; Lee, Young Jin

    2016-09-20

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. The screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules. PMID:27573492

  8. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B. ); Wahl, Jon H. ); Kingsley, Mark T. ); Wahl, Karen L. )

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  9. Miniaturizing sample spots for matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Tu, Tingting; Gross, Michael L.

    2009-01-01

    The trend of miniaturization in bioanalytical chemistry is shifting from technical development to practical application. In matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), progress in miniaturizing sample spots has been driven by the needs to increase sensitivity and speed, to interface with other analytical microtechnologies, and to develop miniaturized instrumentation. We review recent developments in miniaturizing sample spots for MALDI-MS. We cover both target modification and microdispensing technologies, and we emphasize the benefits with respect to sensitivity, throughput and automation. We hope that this review will encourage further method development and application of miniaturized sample spots for MALDI-MS, so as to expand applications in analytical chemistry, protein science and molecular biology. PMID:20161086

  10. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging analysis of biospecimens.

    PubMed

    Bokhart, M T; Muddiman, D C

    2016-09-21

    Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) is a technique well suited for analysis of biological specimens. This tutorial review focuses on recent advancements and applications of IR-MALDESI MSI to better understand key biological questions. Through optimization of user-defined source parameters, comprehensive and quantitative MSI data can be obtained for a variety of analytes. The effect of an ice matrix layer is well defined in the context of desorption dynamics and resulting ion abundance. Optimized parameters and careful control of conditions affords quantitative MSI data which provides valuable information for targeted, label-free drug distribution studies and untargeted metabolomic datasets. Challenges and limitations of MSI using IR-MALDESI are addressed in the context of the bioimaging field. PMID:27484166

  11. Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry.

    PubMed

    Dean, Scott N; Walsh, Callee; Goodman, Haddon; van Hoek, Monique L

    2015-01-01

    Pseudomonas aeruginosa and Staphylococcus aureus are ubiquitous pathogens often found together in polymicrobial, biofilm-associated infections. This study is the first to use laser ablation electrospray ionization mass spectrometry (LAESI-MS) to rapidly study bacteria within a mixed biofilm. Fast, direct, non-invasive LAESI-MS analysis of biofilm could significantly accelerate biofilm studies and provide previously unavailable information on both biofilm composition and the effects of antibiofilm treatment. LAESI-MS was applied directly to a polymicrobial biofilm and analyzed with respect to whether P. aeruginosa and S. aureus were co-localized or self-segregated within the mixed biofilm. LAESI-MS was also used to analyze ions following LL-37 antimicrobial peptide treatment of the biofilm. This ambient ionization method holds promise for future biofilm studies. The use of this innovative technique has profound implications for the study of biofilms, as LAESI-MS eliminates the need for lengthy and disruptive sample preparation while permitting rapid analysis of unfixed and wet biofilms. PMID:25672229

  12. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    SciTech Connect

    Korte, Andrew R

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  13. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ostrom, Peggy H.; Schall, Michael; Gandhi, Hasand; Shen, Tun-Li; Hauschka, Peter V.; Strahler, John R.; Gage, Douglas A.

    2000-03-01

    Structural characterization of ancient proteins is confounded by the small quantity of material remaining in fossils, difficulties in purification, and the inability to obtain sequence information by classical Edman degradation. We present a microbore reversed phase high performance liquid chromatography (rpHPLC) method for partial purification of small quantities (picomoles) of the bone protein osteocalcin (OC) and subsequent characterization of this material by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The presence of OC in the modern and ancient samples was suggested by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and radioimmunoassay (RIA). The SDS-PAGE of material isolated from 800 yr BP and 10,000 yr BP bones demonstrates a band consistent with the molecular weight of OC and the RIA indicated OC in concentrations of 0.2 to 450ng/mg of bone for samples between 800 and 53,000 yr BP. In modern samples, we demonstrate the use of MALDI-MS to confirm the molecular weight of intact OC and to sequence OC via peptide mass mapping and a novel derivatization approach with post-source decay analysis. MALDI-MS data for three ancient samples with RIA-confirmed osteocalcin (800 yr BP, 10,000 yr BP and 53,000 yr BP) indicate peaks with a molecular mass within the range of modern OC.

  14. Mass spectrometric imaging and laser desorption ionization (LDI) with ice as a matrix using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Berry, Jamal Ihsan

    at a fluence of 1.25 J/cm2 . An attractive feature of this technique is that images are acquired within minutes for large sample areas. Additionally, the images obtained with femtosecond laser desorption are high in lateral resolution with the laser capable of being focused to a spot size of 30 mum. Femtosecond laser desorption from ice is unique in that unlike matrix assisted laser desorption ionization mass spectrometry, it does not employ an organic UV absorbing matrix to desorb molecular ions. Instead, the laser energy is absorbed by the metal substrate causing explosive boiling and ejection of the frozen overlayer. This approach is significant in that femtosecond laser desorption possess the potential of analyzing and assaying biomolecules directly from their frozen native environments. This technique was developed to compliment existing ToF-SIMS imaging capability for analysis of tissue and cells, as well as other biological systems of interest.

  15. Efficient Methods to Generate Reproducible Mass Spectra in Matrix-Assisted Laser Desorption Ionization of Peptides

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Bae, Yong Jin; Kim, Myung Soo

    2013-06-01

    In our previous matrix-assisted laser desorption ionization (MALDI) studies of peptides, we found that their mass spectra were virtually determined by the effective temperature in the early matrix plume, Tearly, when samples were rather homogeneous. This empirical rule allowed acquisition of quantitatively reproducible spectra. A difficulty in utilizing this rule was the complicated spectral treatment needed to get Tearly. In this work, we found another empirical rule that the total number of particles hitting the detector, or TIC, was a good measure of the spectral temperature and, hence, selection of spectra with the same TIC resulted in reproducible spectra. We also succeeded in obtaining reproducible spectra throughout a measurement by controlling TIC near a preset value through feedback adjustment of laser pulse energy. Both TIC selection and TIC control substantially reduced the shot-to-shot spectral variation in a spot, spot-to-spot variation in a sample, and even sample-to-sample variation in MALDI using α-cyano-4-hydroxycinnamic acid or 2,5-dihydroxybenzoic acid as matrix. Based on the utilization of acquired data, TIC control was more efficient than TIC selection by an order of magnitude. Both techniques produced calibration curves with excellent linearity, suggesting their utility in quantification of peptides.

  16. Detection of Biosignatures by Geomatrix-Assisted Laser Desorption/Ionization (GALDI) Mass Spectrometry

    SciTech Connect

    Jill R. Scott; Beizhan Yan; Daphne L. Stoner; J. Michelle Kotler; Nancy W. Hinman

    2007-04-01

    Identification of mineral-associated biosignatures is of significance for retrieving biochemical information from geological records here on Earth and detecting signs of life on other planets, such as Mars. The importance of the geomatrix for identifying amino acids (e.g., histidine, threonine, and cysteine) and small proteins (e.g., gramicidin S) was investigated by laser desorption Fourier transform mass spectrometry. The investigated geomatrices include analogues of Fe-bearing minerals such as hematite and Na-bearing evaporites (e.g., halite). Samples were prepared by two methods: 1) application of analyte to the geomatrix surface and 2) production of homogenous analyte:geomatrix mixtures. Comparison of the two sample preparation methods revealed that the mixing method produces a better signal/noise ratio than surface application for the analyses of amino acids. The composition of the geomatrix has a profound influence on the detection of biomolecules. Peaks corresponding to the cation-attached biomolecular ions were observed for the Na-bearing evaporite analogue. No detectable peaks for the biomolecular ion species were observed when the biomolecules were associated with Fe-bearing minerals. Instead, only minor peaks were observed that may correspond to ions from fragments of the biomolecules. Depending on the underlying mineral composition, geomatrix-assisted laser desorption/ionization shows promise for directly identifying biosignatures associated with minerals.

  17. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    SciTech Connect

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; Willingham, D. G.; Knight, K. B.; Hutcheon, I. D.

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.

  18. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE PAGES

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; Willingham, D. G.; Knight, K. B.; Hutcheon, I. D.

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  19. Combined Chemical and Topographic Imaging at Atmospheric Pressure via Microprobe Laser Desorption/Ionization Mass Spectrometry-Atomic Force Microscopy

    SciTech Connect

    Bradshaw, James A; Ovchinnikova, Olga S; Meyer, Kent A; Goeringer, Doug

    2009-01-01

    The operational characteristics and imaging performance are described for a new instrument comprising an atomic force microscope (AFM) coupled with a pulsed laser and a linear ion trap mass spectrometer. The AFM operating mode is used to produce topographic surface images having nanometer-scale spatial and height resolution. Spatially resolved mass spectra of ions, produced from the same surface via microprobe-mode laser desorption/ionization at atmospheric pressure, are then used to create a 100 x 100 m chemical image. The effective spatial resolution of the image (~2 m) was constrained by the limit of detection (estimated to be 109 1010 ions) rather than by the diameter of the focused laser spot or the step size of the AFM sample stage. Thus, it is expected that improvements in imaging performance can be realized by implementation of post-ionization methods.

  20. Combining Laser Ablation/Liquid Phase Collection Surface Sampling and High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    This paper describes the coupling of ambient pressure transmission geometry laser ablation with a liquid phase sample collection method for surface sampling and ionization with subsequent mass spectral analysis. A commercially available autosampler was adapted to produce a liquid droplet at the end of the syringe injection needle while in close proximity to the surface to collect the sample plume produced by laser ablation. The sample collection was followed by either flow injection or a high performance liquid chromatography (HPLC) separation of the extracted components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the analytical utility of this coupling, thin films of a commercial ink sample containing rhodamine 6G and of mixed isobaric rhodamine B and 6G dyes on glass microscope slides were analyzed. The flow injection and HPLC/ESI-MS analysis revealed successful laser ablation, capture and, with HPLC, the separation of the two compounds. The ablated circular area was about 70 m in diameter for these experiments. The spatial sampling resolution afforded by the laser ablation, as well as the ability to use sample processing methods like HPLC between the sample collection and ionization steps, makes this combined surface sampling/ionization technique a highly versatile analytical tool.

  1. Critical factors determining the quantification capability of matrix-assisted laser desorption/ionization- time-of-flight mass spectrometry.

    PubMed

    Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng

    2016-10-28

    Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed.This article is part of the themed issue 'Quantitative mass spectrometry'.

  2. Critical factors determining the quantification capability of matrix-assisted laser desorption/ionization- time-of-flight mass spectrometry.

    PubMed

    Wang, Chia-Chen; Lai, Yin-Hung; Ou, Yu-Meng; Chang, Huan-Tsung; Wang, Yi-Sheng

    2016-10-28

    Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644968

  3. Development of matrix-assisted ultraviolet laser desorption/ionization mass spectrometry for the structural analysis of glycoproteins

    SciTech Connect

    Chevrier, M.R.

    1993-01-01

    This thesis describes the design, construction and characterization of an ultraviolet laser desorption time-of-flight [TOF] mass spectrometer and its subsequent application to glycoprotein structural analysis utilizing matrix-assisted laser desorption/ionization [MALDI] mass spectrometry. At the inception of this work, commercial mass spectrometers utilizing MALDI were not available, and most reports of the phenomena utilized the 266 nm wavelength provided by frequency-quadrupled Nd:YAG lasers. This work involved the design and construction of a high-voltage-extraction linear TOF mass analyzer equipped with a multiple sample inlet system and a 337 manometer, 600 picosecond pulsed nitrogen laser. In MALDI the [open quotes]matrix[close quotes], a strong absorber of a laser wavelength, is co-crystallized with the analyte. The laser photons absorbed by the matrix lead to ionization of the analyte and subsequent desorption from the surface into the gas phase. While nicotinic acid and caffeic acid were reported as effective matrices at 266 and 355 nm, respectively, several other matrices were examined for their efficiency at 337 nm, including [alpha]-cyano-4-hydroxy cinnamic acid and gentisic acid, which proved to be advantageous for glycoconjugate analysis. Glycoproteins, phosphoproteins, nucleic acids, and proteolytic digests were all successfully analyzed using the pulsed nitrogen laser. Analysis of numerous peptides and proteins demonstrated femtomolar sensitivity, mass range in excess of 350 kiloDaltons, mass resolution circa 700, and mass accuracy better than 0.1%. The completed instrument was utilized to analyze glycopeptides for carbohydrate sites and microheterogeneity, by performing MALDI mass spectrometry [MALDI/MS] following enzymatic and chemical reactions. In many cases, unfractionated or partially fractionated mixtures were analyzed directly thereby reducing preparative chromatography.

  4. Laser ionization mass-spectrometric element analysis of soils, drinking, underground and industrial waters

    NASA Astrophysics Data System (ADS)

    Khodyreva, E.; Khodyrev, Y.

    2003-04-01

    For detection of heavy metal salts and determination of their concentrations the laser ionization mass-spectrometry was used as the most sensitive and informative analytical method, which allows to carry out the simultaneously analysis of all elements of the periodical system with limit sensitivity 10-7g/l. The samples of soils, drinking water of the Kreschensky springs, underground and industrial waters from the wells of oil field Romashkin (Tatarstan) were chosen as the object of the research. The method LIMS was tested in experimental area of ?Tatneft¦, where elements Br, Ge, Ga, Zn, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, K, Ca, Cl, S, P, Si, Al, Mg, Na, Be, B, Li were detected. In respect to possible metal extraction, scandium is of most interest in inspected area because its very high cost and availability of water-soluble pattern (most probable, chloride). Its concentration in one of wells was 1 mg/l in water and 0,01 mg/l in oil. On the basis of the experimental data the schemes of the concentration distribution of heavy metal salt were drawn for the region under investigation and possible ways of their migration were shown.

  5. Plume composition and evolution in multicomponent ices using resonant two-step laser ablation and ionization mass spectrometry.

    PubMed

    Henderson, Bryana L; Gudipati, Murthy S

    2014-07-24

    The composition and evolution of plumes generated in a resonant infrared (IR) laser desorption of low-temperature ices is investigated via a recently developed two-step laser desorption and ionization mass spectrometry (2S-LAIMS) technique where a neutral plume is ejected by an IR laser pulse and ionized by a UV laser pulse for analysis via time-of-flight mass spectrometry. By varying the delay between the lasers, we can construct a complete time-resolved model of the ejected plume components. We found that water ices containing mixtures of polar and nonpolar analytes displayed complex mass spectral profiles that varied as the plume evolved. In these samples, the low-volatility polar analytes and clusters were restricted to the early part of the plume, whereas volatile or nonpolar analytes were spread throughout the plume. The distributions of low-volatility polar species, clusters, and impurities from the copper substrate were well-represented by single Maxwell-like distributions centered at high velocities (600-800 m s(-1)), while nonpolar, volatile species contained two distinct components, indicating both ablation and thermal desorption processes. Characterization of plume distributions can therefore provide new insight into an analyte's chemical identity and can aid in assignment of otherwise ambiguous signals in the mass spectra.

  6. Analysis of Solar Wind Samples Returned by Genesis Using Laser Post Ionization Secondary Neutral Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.

    2005-12-01

    A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of

  7. The Effect of Culture Conditions on Microorganism Identification by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B.; Wunschel, Sharon C.; Wunschel, David S.; Petersen, Catherine E.; Wahl, Karen L.

    2005-01-01

    Abstract Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to identify bacteria based upon protein signatures. This research shows that while some different proteins are produced by vegetative bacteria when they are cultured in different growth media, positive identification with MALDI-TOF MS is still possible with the protocol established at Pacific Northwest National Laboratory (PNNL)(11). A core set of small proteins remain constant under at least four different culture media conditions including minimal medium -M9, rich media - tryptic soy broth (TSB) or Luria-Bertani (LB) broth and blood agar plates such that analysis of the intact cells by matrix-assisted laser desorption/ionization mass spectrometry allows for consistent identification.

  8. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Oviaño, Marina; Barba, Maria José; Fernández, Begoña; Ortega, Adriana; Aracil, Belén; Oteo, Jesús; Campos, José; Bou, Germán

    2016-03-01

    A rapid and sensitive (100%) matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect OXA-48-type producers, using 161 previously characterized clinical isolates. Ertapenem was monitored to detect carbapenem resistance, and temocillin was included in the assay as a marker for OXA-48-producers. Structural analysis of temocillin is described. Data are obtained within 60 min. PMID:26677247

  9. Fusobacterium nucleatum subspecies identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Nie, Shuping; Tian, Baoyu; Wang, Xiaowei; Pincus, David H; Welker, Martin; Gilhuley, Kathleen; Lu, Xuedong; Han, Yiping W; Tang, Yi-Wei

    2015-04-01

    We explored the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification of Fusobacterium nucleatum subspecies. MALDI-TOF MS spectra of five F. nucleatum subspecies (animalis, fusiforme, nucleatum, polymorphum, and vincentii) were analyzed and divided into four distinct clusters, including subsp. animalis, nucleatum, polymorphum, and fusiforme/vincentii. MALDI-TOF MS with the modified SARAMIS database further correctly identified 28 of 34 F. nucleatum clinical isolates to the subspecies level.

  10. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Oviaño, Marina; Barba, Maria José; Fernández, Begoña; Ortega, Adriana; Aracil, Belén; Oteo, Jesús; Campos, José; Bou, Germán

    2016-03-01

    A rapid and sensitive (100%) matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect OXA-48-type producers, using 161 previously characterized clinical isolates. Ertapenem was monitored to detect carbapenem resistance, and temocillin was included in the assay as a marker for OXA-48-producers. Structural analysis of temocillin is described. Data are obtained within 60 min.

  11. Detection of polychlorinated biphenyls in transformer oils in Vietnam by multiphoton ionization mass spectrometry using a far-ultraviolet femtosecond laser as an ionization source.

    PubMed

    Vu, Thi Thuy Duong; Vu, Duong; Nghiem, Thi Ha Lien; Imasaka, Tomoko; Tang, Yuanyuan; Shibuta, Shinpei; Hamachi, Akifumi; Do, Quang Hoa; Imasaka, Totaro

    2016-03-01

    Polychlorinated biphenyls (PCBs) in transformer and food oils were measured using gas chromatography combined with multiphoton ionization mass spectroscopy. An ultrashort laser pulse emitting in the far-ultraviolet region was utilized for efficient ionization of the analytes. Numerous signal peaks were clearly observed for a standard sample mixture of PCBs when the third and fourth harmonic emissions (267 and 200nm) of a femtosecond Ti:sapphire laser (800nm) were employed. The signal intensities were found to be greater when measured at 200nm compared with those measured at 267nm, providing lower detection limits especially for highly chlorinated PCBs at shorter wavelengths. After simple pretreatment using disposable columns, PCB congeners were measured and found to be present in the transformer oils used in Vietnam.

  12. Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils.

    PubMed

    Picca, Rosaria Anna; Calvano, Cosima Damiana; Lo Faro, Maria Josè; Fazio, Barbara; Trusso, Sebastiano; Ossi, Paolo Maria; Neri, Fortunato; D'Andrea, Cristiano; Irrera, Alessia; Cioffi, Nicola

    2016-09-01

    In this work, novel hybrid nanostructured surfaces, consisting of dense arrays of silicon nanowires (SiNWs) functionalized by Ag nanoparticles (AgNP/SiNWs), were used for the laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) analysis of some typical unsaturated food components (e.g. squalene, oleic acid) to assess their MS performance. The synthesis of the novel platforms is an easy, cost-effective process based on the maskless wet-etching preparation at room temperature of SiNWs followed by their decoration with AgNPs, produced by pulsed laser deposition. No particular surface pretreatment or addition of organic matrixes/ionizers was necessary. Moreover, oil extracts (e.g. extra virgin olive oil, peanut oil) could be investigated on AgNP/SiNWs surfaces, revealing their different MS profiles. It was shown that such substrates operate at reduced laser energy, typically generating intense silver cluster ions and analyte adducts. A comparison with bare SiNWs was also performed, indicating the importance of AgNP density on NW surface. In this case, desorption/ionization on silicon was invoked as probable LDI mechanism. Finally, the influence of SiNW length and surface composition on MS results was assessed. The combination of typical properties of SiNWs (hydrophobicity, antireflectivity) with ionization ability of metal NPs can be a valid methodology for the further development of nanostructured surfaces in LDI-TOF MS applications. Copyright © 2016 John Wiley & Sons, Ltd.

  13. High-throughput proteomics using matrix-assisted laser desorption/ ionization mass spectrometry.

    PubMed

    Cramer, Rainer; Gobom, Johan; Nordhoff, Eckhard

    2005-06-01

    It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses. PMID:16000086

  14. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes were used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.

  15. Characterization of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2015-10-22

    Herein, a commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes weremore » used. The smallest area the system was able to ablate was ~0.544 μm × ~0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (~1.9 μm). With use of a model photoresist surface, known features as small as ~1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. Lastly, with use of a lane scanning mode with ~6 μm × ~6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.« less

  16. Black phosphorus-assisted laser desorption ionization mass spectrometry for the determination of low-molecular-weight compounds in biofluids.

    PubMed

    He, Xiao-Mei; Ding, Jun; Yu, Lei; Hussain, Dilshad; Feng, Yu-Qi

    2016-09-01

    Quantitative analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been a challenging task due to matrix-derived interferences in low m/z region and poor reproducibility of MS signal response. In this study, we developed an approach by applying black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix for the quantitative analysis of small molecules for the first time. Black phosphorus-assisted laser desorption/ionization mass spectrometry (BP/ALDI-MS) showed clear background and exhibited superior detection sensitivity toward quaternary ammonium compounds compared to carbon-based materials. By combining stable isotope labeling (SIL) strategy with BP/ALDI-MS (SIL-BP/ALDI-MS), a variety of analytes labeled with quaternary ammonium group were sensitively detected. Moreover, the isotope-labeled forms of analytes also served as internal standards, which broadened the analyte coverage of BP/ALDI-MS and improved the reproducibility of MS signals. Based on these advantages, a reliable method for quantitative analysis of aldehydes from complex biological samples (saliva, urine, and serum) was successfully established. Good linearities were obtained for five aldehydes in the range of 0.1-20.0 μM with correlation coefficients (R (2)) larger than 0.9928. The LODs were found to be 20 to 100 nM. Reproducibility of the method was obtained with intra-day and inter-day relative standard deviations (RSDs) less than 10.4 %, and the recoveries in saliva samples ranged from 91.4 to 117.1 %. Taken together, the proposed SIL-BP/ALDI-MS strategy has proved to be a reliable tool for quantitative analysis of aldehydes from complex samples. Graphical Abstract An approach for the determination of small molecules was developed by using black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix. PMID:27382971

  17. Black phosphorus-assisted laser desorption ionization mass spectrometry for the determination of low-molecular-weight compounds in biofluids.

    PubMed

    He, Xiao-Mei; Ding, Jun; Yu, Lei; Hussain, Dilshad; Feng, Yu-Qi

    2016-09-01

    Quantitative analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been a challenging task due to matrix-derived interferences in low m/z region and poor reproducibility of MS signal response. In this study, we developed an approach by applying black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix for the quantitative analysis of small molecules for the first time. Black phosphorus-assisted laser desorption/ionization mass spectrometry (BP/ALDI-MS) showed clear background and exhibited superior detection sensitivity toward quaternary ammonium compounds compared to carbon-based materials. By combining stable isotope labeling (SIL) strategy with BP/ALDI-MS (SIL-BP/ALDI-MS), a variety of analytes labeled with quaternary ammonium group were sensitively detected. Moreover, the isotope-labeled forms of analytes also served as internal standards, which broadened the analyte coverage of BP/ALDI-MS and improved the reproducibility of MS signals. Based on these advantages, a reliable method for quantitative analysis of aldehydes from complex biological samples (saliva, urine, and serum) was successfully established. Good linearities were obtained for five aldehydes in the range of 0.1-20.0 μM with correlation coefficients (R (2)) larger than 0.9928. The LODs were found to be 20 to 100 nM. Reproducibility of the method was obtained with intra-day and inter-day relative standard deviations (RSDs) less than 10.4 %, and the recoveries in saliva samples ranged from 91.4 to 117.1 %. Taken together, the proposed SIL-BP/ALDI-MS strategy has proved to be a reliable tool for quantitative analysis of aldehydes from complex samples. Graphical Abstract An approach for the determination of small molecules was developed by using black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix.

  18. Direct Analysis of Textile Fabrics and Dyes Using IR Matrix-Assisted Laser Desorption Electrospray Ionization (MALDESI) Mass Spectrometry

    PubMed Central

    Cochran, Kristin H.; Barry, Jeremy A.; Muddiman, David C.; Hinks, David

    2012-01-01

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then post-ionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031

  19. High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer.

    PubMed

    Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2015-02-17

    High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

  20. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  1. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    SciTech Connect

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  2. Evaluation of combined matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis.

    PubMed

    da Silva, David; Wasselin, Thierry; Carré, Vincent; Chaimbault, Patrick; Bezdetnaya, Lina; Maunit, Benoît; Muller, Jean-François

    2011-07-15

    Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage.

  3. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation.

    PubMed

    Škrášková, Karolina; Claude, Emmanuelle; Jones, Emrys A; Towers, Mark; Ellis, Shane R; Heeren, Ron M A

    2016-07-15

    The increased interest in lipidomics calls for improved yet simplified methods of lipid analysis. Over the past two decades, mass spectrometry imaging (MSI) has been established as a powerful technique for the analysis of molecular distribution of a variety of compounds across tissue surfaces. Matrix-assisted laser desorption/ionization (MALDI) MSI is widely used to study the spatial distribution of common lipids. However, a thorough sample preparation and necessity of vacuum for efficient ionization might hamper its use for high-throughput lipid analysis. Desorption electrospray ionization (DESI) is a relatively young MS technique. In DESI, ionization of molecules occurs under ambient conditions, which alleviates sample preparation. Moreover, DESI does not require the application of an external matrix, making the detection of low mass species more feasible due to the lack of chemical matrix background. However, irrespective of the ionization method, the final information obtained during an MSI experiment is very complex and its analysis becomes challenging. It was shown that coupling MSI to ion mobility separation (IMS) simplifies imaging data interpretation. Here we employed DESI and MALDI MSI for a lipidomic analysis of the murine brain using the same IMS-enabled instrument. We report for the first time on the DESI IMS-MSI of multiply sialylated ganglioside species, as well as their acetylated versions, which we detected directly from the murine brain tissue. We show that poly-sialylated gangliosides can be imaged as multiply charged ions using DESI, while they are clearly separated from the rest of the lipid classes based on their charge state using ion mobility. This represents a major improvement in MSI of intact fragile lipid species. We additionally show that complementary lipid information is reached under particular conditions when DESI is compared to MALDI MSI.

  4. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Discrimination of Food-Borne Microorganisms

    PubMed Central

    Mazzeo, Maria Fiorella; Sorrentino, Alida; Gaita, Marcello; Cacace, Giuseppina; Di Stasio, Michele; Facchiano, Angelo; Comi, Giuseppe; Malorni, Antonio; Siciliano, Rosa Anna

    2006-01-01

    A methodology based on matrix-assisted laser desorption ionization-time of flight mass spectrometry of intact bacterial cells was used for rapid discrimination of 24 bacterial species, and detailed analyses to identify Escherichia coli O157:H7 were carried out. Highly specific mass spectrometric profiles of pathogenic and nonpathogenic bacteria that are well-known major food contaminants were obtained, uploaded in a specific database, and made available on the Web. In order to standardize the analytical protocol, several experimental, sample preparation, and mass spectrometry parameters that can affect the reproducibility and accuracy of data were evaluated. Our results confirm the conclusion that this strategy is a powerful tool for rapid and accurate identification of bacterial species and that mass spectrometric methodologies could play an essential role in polyphasic approaches to the identification of pathogenic bacteria. PMID:16461665

  5. Vacuum compatible sample positioning device for matrix assisted laser desorption∕ionization Fourier transform ion cyclotron resonance mass spectrometry imaging.

    PubMed

    Aizikov, Konstantin; Smith, Donald F; Chargin, David A; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M A; O'Connor, Peter B

    2011-05-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10(-8) mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption∕ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The "oversampling" MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.

  6. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    SciTech Connect

    Aizikov, Konstantin; Lin, Tzu-Yung; Smith, Donald F.; Heeren, Ron M. A.; Chargin, David A.; Ivanov, Sergei; O'Connor, Peter B.

    2011-05-15

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The range of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.

  7. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    PubMed Central

    Aizikov, Konstantin; Smith, Donald F.; Chargin, David A.; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M. A.; O’Connor, Peter B.

    2011-01-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10–8 mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The “oversampling” MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter. PMID:21639522

  8. Mycobacterium abscessus Complex Identification with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Panagea, Theofano; Pincus, David H; Grogono, Dorothy; Jones, Melissa; Bryant, Josephine; Parkhill, Julian; Floto, R Andres; Gilligan, Peter

    2015-07-01

    We determined that the Vitek MS Plus matrix-assisted laser desorption ionization-time of flight mass spectrometry using research-use-only (RUO) v.4.12 and in vitro-diagnostic (IVD) v.3.0 databases accurately identified 41 Mycobacterium abscessus subsp. abscessus and 13 M. abscessus subsp. massiliense isolates identified by whole-genome sequencing to the species but not the subspecies level, from Middlebrook 7H11 and Burkholderia cepacia selective agars. Peak analysis revealed three peaks potentially able to differentiate between subspecies. PMID:25948607

  9. Authenticity assessment of beef origin by principal component analysis of matrix-assisted laser desorption/ionization mass spectrometric data.

    PubMed

    Zaima, Nobuhiro; Goto-Inoue, Naoko; Hayasaka, Takahiro; Enomoto, Hirofumi; Setou, Mitsutoshi

    2011-06-01

    It has become necessary to assess the authenticity of beef origin because of concerns regarding human health hazards. In this study, we used a metabolomic approach involving matrix-assisted laser desorption/ionization imaging mass spectrometry to assess the authenticity of beef origin. Highly accurate data were obtained for samples of extracted lipids from beef of different origin; the samples were grouped according to their origin. The analysis of extracted lipids in this study ended within 10 min, suggesting this approach can be used as a simple authenticity assessment before a definitive identification by isotope analysis.

  10. Direct analysis of textile fabrics and dyes using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry.

    PubMed

    Cochran, Kristin H; Barry, Jeremy A; Muddiman, David C; Hinks, David

    2013-01-15

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then postionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard. PMID:23237031

  11. Direct analysis of textile fabrics and dyes using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry.

    PubMed

    Cochran, Kristin H; Barry, Jeremy A; Muddiman, David C; Hinks, David

    2013-01-15

    The forensic analysis of textile fibers uses a variety of techniques from microscopy to spectroscopy. One such technique that is often used to identify the dye(s) within the fiber is mass spectrometry (MS). In the traditional MS method, the dye must be extracted from the fabric and the dye components are separated by chromatography prior to mass spectrometric analysis. Direct analysis of the dye from the fabric allows the omission of the lengthy sample preparation involved in extraction, thereby significantly reducing the overall analysis time. Herein, a direct analysis of dyed textile fabric was performed using the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for MS. In MALDESI, an IR laser with wavelength tuned to 2.94 μm is used to desorb the dye from the fabric sample with the aid of water as the matrix. The desorbed dye molecules are then postionized by electrospray ionization (ESI). A variety of dye classes were analyzed from various fabrics with little to no sample preparation allowing for the identification of the dye mass and in some cases the fiber polymer. Those dyes that were not detected using MALDESI were also not observed by direct infusion ESI of the dye standard.

  12. Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils.

    PubMed

    Picca, Rosaria Anna; Calvano, Cosima Damiana; Lo Faro, Maria Josè; Fazio, Barbara; Trusso, Sebastiano; Ossi, Paolo Maria; Neri, Fortunato; D'Andrea, Cristiano; Irrera, Alessia; Cioffi, Nicola

    2016-09-01

    In this work, novel hybrid nanostructured surfaces, consisting of dense arrays of silicon nanowires (SiNWs) functionalized by Ag nanoparticles (AgNP/SiNWs), were used for the laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) analysis of some typical unsaturated food components (e.g. squalene, oleic acid) to assess their MS performance. The synthesis of the novel platforms is an easy, cost-effective process based on the maskless wet-etching preparation at room temperature of SiNWs followed by their decoration with AgNPs, produced by pulsed laser deposition. No particular surface pretreatment or addition of organic matrixes/ionizers was necessary. Moreover, oil extracts (e.g. extra virgin olive oil, peanut oil) could be investigated on AgNP/SiNWs surfaces, revealing their different MS profiles. It was shown that such substrates operate at reduced laser energy, typically generating intense silver cluster ions and analyte adducts. A comparison with bare SiNWs was also performed, indicating the importance of AgNP density on NW surface. In this case, desorption/ionization on silicon was invoked as probable LDI mechanism. Finally, the influence of SiNW length and surface composition on MS results was assessed. The combination of typical properties of SiNWs (hydrophobicity, antireflectivity) with ionization ability of metal NPs can be a valid methodology for the further development of nanostructured surfaces in LDI-TOF MS applications. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27476797

  13. Matrix-Free UV-Laser Desorption Ionization Mass Spectrometry as a Versatile Approach for Accelerating Dereplication Studies on Lichens.

    PubMed

    Le Pogam, Pierre; Schinkovitz, Andreas; Legouin, Béatrice; Le Lamer, Anne-Cécile; Boustie, Joël; Richomme, Pascal

    2015-10-20

    The present study examined the suitability of laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) for the rapid chemical fingerprinting of lichen extracts. Lichens are known to produce a wide array of secondary metabolites. Most of these compounds are unique to the symbiotic condition but some can be found in many species. Therefore, dereplication, that is, the rapid identification of known compounds within a complex mixture is crucial in the search for novel natural products. Over the past decade, significant advances were made in analytical techniques and profiling methods specifically adapted to crude lichen extracts, but LDI-MS has never been applied in this context. However, most classes of lichen metabolites have UV chromophores, which are quite similar to commercial matrix molecules used in matrix-assisted laser desorption ionization (MALDI). It is consequently postulated that these molecules could be directly detectable by matrix-free LDI-MS. The present study evaluated the versatility of this technique by investigating the LDI properties of a vast array of single lichen metabolites as well as lichen extracts of known chemical composition. Results from the LDI experiments were compared with those obtained by direct ESI-MS detection as well as LC-ESI-MS. It was shown that LDI ionization leads to strong molecular ion formation with little fragmentation, thus, facilitating straightforward spectra interpretation and representing a valuable alternative to time-consuming LC-MS analysis.

  14. Using electrospray laser desorption ionization mass spectrometry to rapidly examine the integrity of proteins stored in various solutions.

    PubMed

    Cho, Yi-Tzu; Huang, Min-Zong; Wu, Sih-You; Hou, Ming-Feng; Li, Jianjun; Shiea, Jentaie

    2014-01-01

    Electrospray laser desorption ionization mass spectrometry (ELDI/MS) allows the rapid desorption and ionization of proteins from solutions under ambient conditions. In this study, we have demonstrated the use of ELDI/MS to efficiently examine the integrity of the proteins stored in various solutions before they were further used for other biochemical tests. The protein standards were prepared in the solutions containing buffers, organic salts, inorganic salts, strong acid, strong base, and organic solvents, respectively, to simulate those collected from solvent extraction, filtration, dialysis, or chromatographic separation. Other than the deposit of a drop of the sample solution on the metallic sample plate in an ELDI source, no additional sample pretreatment is needed. The sample drop was then irradiated with a pulsed laser; this led to desorption of the analyte molecules, which subsequently entered the ESI plume to undergo post-ionization. Because adjustment of the composition of the sample solution is unnecessary, this technique appears to be useful for rapidly evaluating the integrity of proteins after storage or prior to further biochemical treatment. In addition, when using acid-free and low-organic-solvent ESI solutions for ELDI/MS analysis, the native conformations of the proteins in solution could be detected.

  15. Desorption/Ionization Fluence Thresholds and Improved Mass Spectral Consistency Measured Using a Flattop Laser Profile in the Bioaerosol Mass Spectrometry of Single Bacillus Endospores

    SciTech Connect

    Steele, P T; Srivastava, A; Pitesky, M E; Fergenson, D P; Tobias, H J; Gard, E E; Frank, M

    2004-11-30

    Bioaerosol mass spectrometry (BAMS) is being developed to analyze and identify biological aerosols in real-time. Mass spectra of individual Bacillus endospores were measured here with a bipolar aerosol time-of-flight mass spectrometer in which molecular desorption and ionization were produced using a single laser pulse from a Q-switched, frequency-quadrupled Nd:YAG laser that was modified to have an approximately flattop profile. The flattened laser profile allowed the minimum fluence required to desorb and ionize significant numbers of ions from single aerosol particles to be determined. For Bacillus spores this threshold had a mean value of approximately 1 nJ/{micro}m{sup 2} (0.1 J/cm{sup 2}). Thresholds for individual spores, however, could apparently deviate by 20% or more from the mean. Threshold distributions for clumps of MS2 bacteriophage and bovine serum albumin were subsequently determined. Finally, the flattened profile was observed to increase the reproducibility of single spore mass spectra. This is consistent with the general conclusions of our earlier paper on the fluence dependence of single spore mass spectra and is particularly significant because it is expected to enable more robust differentiation and identification of single bioaerosol particles.

  16. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  17. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  18. Simultaneous detection of nonpolar and polar compounds by heat-assisted laser ablation electrospray ionization mass spectrometry.

    PubMed

    Vaikkinen, Anu; Shrestha, Bindesh; Nazarian, Javad; Kostiainen, Risto; Vertes, Akos; Kauppila, Tiina J

    2013-01-01

    A heat-assisted laser ablation electrospray ionization (HA-LAESI) method for the simultaneous mass spectrometric analysis of nonpolar and polar analytes was developed. The sample was introduced using mid-infrared laser ablation of a water-rich target. The ablated analytes were ionized with an electrospray plume, which was intercepted by a heated nitrogen gas jet that enhanced the ionization of analytes of low polarity. The feasibility of HA-LAESI was tested by analyzing, e.g., naphtho[2,3-a]pyrene, cholesterol, tricaprylin, 1,1',2,2'-tetramyristoyl cardiolipin, bradykinin fragment 1-8, and 1-palmitoyl-2-oleoyl-sn-glycerol. HA-LAESI was found better suited for low polarity compounds than conventional LAESI, whereas polar compounds were observed with both techniques. The sensitivity of HA-LAESI for the polar bradykinin fragment 1-8 was slightly lower than observed for LAESI. HA-LAESI showed a linear response for 500 nM to 1.0 mM solutions (n = 11) of verapamil with R(2) = 0.988. HA-LAESI was applied for the direct analysis of tissue samples, e.g., avocado (Persea americana) mesocarp and mouse brain tissue sections. Spectra of the avocado showed abundant triglyceride ion peaks, and the results for the mouse brain sections showed cholesterol as the main species. Conventional LAESI shows significantly lower ionization efficiency for these neutral lipids. HA-LAESI can be applied to the analysis of nonpolar and polar analytes, and it extends the capabilities of conventional LAESI to nonpolar and neutral compounds. PMID:23199051

  19. Functional wave time-lag focusing matrix-assisted laser desorption/ionization in a linear time-of-flight mass spectrometer: improved mass accuracy.

    PubMed

    Whittal, R M; Russon, L M; Weinberger, S R; Li, L

    1997-06-01

    A strength of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is its ability to analyze mixtures without separation. MALDI mass spectrometers capable of providing a linear mass calibration over a broad mass range should find wide use in these applications. This work addresses issues pertinent to mass measurement accuracy of a time-lag focusing MALDI time-of-flight instrument and presents a new approach to improving mass accuracy by using a functional wave extraction pulse, instead of a square wave, for time-lag focusing. A model is described of an ideal extraction pulse shape that provides constant total kinetic energy for all ions. If total kinetic energy is constant, then there is an exact linear correlation between ion mass and flight time raised to the second power. Using a descending wave extraction pulse, it is demonstrated that mass accuracy of better than 30 ppm using two internal calibrants and better than 70 ppm using external calibrants can be obtained over a 25 ku mass range. The practical aspects of an instrument needed to obtain consistent mass accuracy is discussed. It is found that ion flight time shows a small dependence upon laser flux; flight times increase slightly as the flux increases. But this dependence is much smaller than is observed in continuous-extraction MALDI.

  20. Application of atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of Neisseria species.

    PubMed

    Gudlavalleti, Seshu K; Sundaram, Appavu K; Razumovski, Jane; Doroshenko, Vladimir

    2008-07-01

    Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI MS) was applied to develop a proteomics-based method to detect and identify Neisseria species. Heat-inactivated clinical isolate cell suspensions of Neisseria gonorrhoeae and strains belonging to five serogroups (A, B, C, W135, and Y) of Neisseria meningitidis were subjected to on-probe protein/peptide extraction and tryptic digestion followed by AP-MALDI tandem MS (MS/MS)-based proteomic analysis. Amino acid sequences derived from three protonated peptides with m/z values of 1743.8, 1894.8, and 1946.8 were identified by AP-MALDI MS/MS and MASCOT proteome database search analysis as belonging to neisserial acyl carrier protein, neisserial-conserved hypothetical protein, and neisserial putative DNA binding protein, respectively. These three peptide masses can thus be potential biomarkers for neisserial species identification by AP-MALDI MS.

  1. Cellular Level Mass Spectrometry Imaging using Infrared Matrix Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) by Oversampling

    PubMed Central

    Nazari, Milad; Muddiman, David C.

    2014-01-01

    Mass spectrometry imaging (MSI) allows for the direct and simultaneous analysis of the spatial distribution of molecular species from sample surfaces such as tissue sections. One of the goals of MSI is monitoring the distribution of compounds at the cellular resolution in order to gain insights about the biology that occurs at this spatial level. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging of cervical tissue sections was performed using a spot-to-spot distance of 10 μm by utilizing the method of oversampling; where the target plate is moved by a distance that is less than the desorption radius of the laser. In addition to high spatial resolution, high mass accuracy (± 1 ppm) and high mass resolving power (140,000 at m/z=200) was achieved by coupling the IR-MALDESI imaging source to a hybrid quadrupole Orbitrap mass spectrometer. Ion maps of cholesterol in tissues were generated from voxels containing <1 cell, on average. Additionally, the challenges of imaging at the cellular level in terms of loss of sensitivity and longer analysis time are discussed. PMID:25486925

  2. Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging.

    PubMed

    Kim, Young-Kwan; Na, Hee-Kyung; Kwack, Sul-Jin; Ryoo, Soo-Ryoon; Lee, Youngmi; Hong, Seunghee; Hong, Sungwoo; Jeong, Yong; Min, Dal-Hee

    2011-06-28

    Matrix-assisted laser desorption/ionization mass spectrometry has been considered an important tool for various biochemical analyses and proteomics research. Although addition of conventional matrix efficiently supports laser desorption/ionization of analytes with minimal fragmentation, it often results in high background interference and misinterpretation of the spatial distribution of biomolecules especially in low-mass regions. Here, we show design, systematic characterization, and application of graphene oxide/multiwalled carbon nanotube-based films fabricated on solid substrates as a new matrix-free laser desorption/ionization platform. We demonstrate that the graphene oxide/multiwalled carbon nanotube double layer provides many advantages as a laser desorption/ionization substrate, such as efficient desorption/ionization of analytes with minimum fragmentation, high salt tolerance, no sweet-spots for mass signal, excellent durability against mechanical and photoagitation and prolonged exposure to ambient conditions, and applicability to tissue imaging mass spectrometry. This platform will be widely used as an important tool for mass spectrometry-based biochemical analyses because of its outstanding performance, long-term stability, and cost effectiveness.

  3. Exploring Biosignatures Associated with Thenardite by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry (GALDI-FTMS)

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Timothy R. McJunkin; Jill R. Scott

    2008-07-01

    Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometer (FTMS) has been employed to determine how well bio/organic molecules associated with the mineral thenardite (Na2SO4) can be detected. GALDI is based on the ability of the mineral host to assist desorption and ionization of bio/organic molecules without additional sample preparation. When glycine was mixed with thenardite, glycine was deprotonated to produce C2H4NO2 at m/z 74.025. The combination of stearic acid with thenardite produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned a composition of C18H39O7Na . A natural sample of thenardite from Searles Lake in California also produced a peak at m/z 390.260. The bio/organic signatures in both the laboratory-based and natural samples were heterogeneously dispersed as revealed by chemical imaging. The detection limits for the stearic acid and thenardite combination was estimated to be 3 parts per trillion or ~7 zeptomoles per laser spot. Attempts to improve the signal-to-noise ratio by co-adding FTMS data predetermined to contain the biosignatures of interest revealed problems due to a lack of phase coherence between data sets.

  4. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    PubMed

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  5. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    PubMed

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars. PMID:25622133

  6. Characterization of aromaticity in analogues of titan's atmospheric aerosols with two-step laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mahjoub, Ahmed; Schwell, Martin; Carrasco, Nathalie; Benilan, Yves; Cernogora, Guy; Szopa, Cyril; Gazeau, Marie-Claire

    2016-10-01

    The role of polycyclic aromatic hydrocarbons (PAH) and Nitrogen containing PAH (PANH) as intermediates of aerosol production in the atmosphere of Titan has been a subject of controversy for a long time. An analysis of the atmospheric emission band observed by the Visible and Infrared Mapping Spectrometer (VIMS) at 3.28 μm suggests the presence of neutral polycyclic aromatic species in the upper atmosphere of Titan. These molecules are seen as the counter part of negative and positive aromatics ions suspected by the Plasma Spectrometer onboard the Cassini spacecraft, but the low resolution of the instrument hinders any molecular speciation. In this work we investigate the specific aromatic content of Titan's atmospheric aerosols through laboratory simulations. We report here the selective detection of aromatic compounds in tholins, Titan's aerosol analogs, produced with a capacitively coupled plasma in a N2:CH4 95:5 gas mixture. For this purpose, Two-Step Laser Desorption Ionization Time-of-Flight Mass Spectrometry (L2DI-TOF-MS) technique is used to analyze the so produced analogs. This analytical technique is based on the ionization of molecules by Resonance Enhanced Multi-Photon Ionization (REMPI) using a λ=248 nm wavelength laser which is selective for aromatic species. This allows for the selective identification of compounds having at least one aromatic ring. Our experiments show that tholins contain a trace amount of small PAHs with one to three aromatic rings. Nitrogen containing PAHs (PANHs) are also detected as constituents of tholins. Molecules relevant to astrobiology are detected as is the case of the substituted DNA base adenine.

  7. Evaluation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Second-Generation Lignin Analysis

    PubMed Central

    Richel, Aurore; Vanderghem, Caroline; Simon, Mathilde; Wathelet, Bernard; Paquot, Michel

    2012-01-01

    Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely α-cyano-4-hydroxycinnamic acid (CHCA), in combination with α-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100–600) in the positive ion mode offers a “fingerprint” of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study. PMID:23300342

  8. Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis.

    PubMed

    Richel, Aurore; Vanderghem, Caroline; Simon, Mathilde; Wathelet, Bernard; Paquot, Michel

    2012-01-01

    Matrix-Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) mass spectrometry is evaluated as an elucidation tool for structural features and molecular weights estimation of some extracted herbaceous lignins. Optimization of analysis conditions, using a typical organic matrix, namely α-cyano-4-hydroxycinnamic acid (CHCA), in combination with α-cyclodextrin, allows efficient ionization of poorly soluble lignin materials and suppression of matrix-related ions background. Analysis of low-mass fragments ions (m/z 100-600) in the positive ion mode offers a "fingerprint" of starting lignins that could be a fine strategy to qualitatively identify principal inter-unit linkages between phenylpropanoid units. The molecular weights of lignins are estimated using size exclusion chromatography and compared to MALDI-TOF-MS profiles. Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum Virgatum L.) lignins, recovered after a formic acid/acetic acid/water process or aqueous ammonia soaking, are selected as benchmarks for this study.

  9. Signal enhancement in electrospray laser desorption/ionization mass spectrometry by using a black oxide-coated metal target and a relatively low laser fluence.

    PubMed

    Kononikhin, Alexey; Huang, Min-Zong; Popov, Igor; Kostyukevich, Yury; Kukaev, Evgeny; Boldyrev, Alexey; Spasskiy, Alexander; Leypunskiy, Ilya; Shiea, Jentaie; Nikolaev, Eugene

    2013-01-01

    The electrospray Laser desorption/ionization (ELDI) method is actively used for direct sample analysis and ambient mass spectrometry imaging. The optimizing of Laser desorption conditions is essential for this technology. In this work, we propose using a metal target with a black oxide (Fe3O4) coating to increase the signal in ELDI-MS for peptides and small proteins. The experiments were performed on an LTQ-FT mass spectrometer equipped with a home-made ELDI ion source. A cutter blade with black oxide coating was used as a target. A nitrogen laser was used with the following parameters: 337 nm, pulse duration 4ns, repetition rate 10 Hz, fluence to approximately 700 Jm(-2). More than a five times signal increase was observed for a substance P peptide when a coated and a non-coated metal target were compared. No ion signal was observed for proteins if the same fluence and the standard stainless steel target were used. With the assistance of the Fe3O4 coated metal target and a relatively low laser fluence < or =700 Jm(-2)), proteins such as insulin, ubiquitin and myoglobin were successfully ionized. It was demonstrated that the Fe3O4-coated metal target can be used efficiently to assist laser desorption and thus significantly increase the analyte signal in ELDI-MS. A relatively low laser fluence (< or = 700 Jm(-2)) was enough to desorb peptides and proteins (up to 17 kDal with the assistance of the Fe3O4-coated metal target under ambient conditions. PMID:24575623

  10. Detection of Posaconazole by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Dispersive Liquid-Liquid Microextraction

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Yu; Chen, Pin-Shiuan; Chang, Sarah Y.

    2015-03-01

    A simple, rapid, and sensitive method for the detection of posaconazole using dispersive liquid-liquid microextraction (DLLME) coupled to surface-assisted laser desorption/ionization mass spectrometric detection (SALDI/MS) was developed. After the DLLME, posaconazole was detected using SALDI/MS with colloidal gold and α-cyano-4-hydroxycinnamic acid (CHCA) as the co-matrix. Under optimal extraction and detection conditions, the calibration curve, which ranged from 1.0 to 100.0 nM for posaconazole, was observed to be linear. The limit of detection (LOD) at a signal-to-noise ratio of 3 was 0.3 nM for posaconazole. This novel method was successfully applied to the determination of posaconazole in human urine samples.

  11. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    PubMed

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples.

  12. Efficient sample preparation in immuno-matrix-assisted laser desorption/ionization mass spectrometry using acoustic trapping

    PubMed Central

    Hammarström, Björn; Yan, Hong; Nilsson, Johan; Ekström, Simon

    2013-01-01

    Acoustic trapping of minute bead amounts against fluid flow allows for easy automation of multiple assay steps, using a convenient aspirate/dispense format. Here, a method based on acoustic trapping that allows sample preparation for immuno-matrix-assisted laser desorption/ionization mass spectrometry using only half a million 2.8 μm antibody covered beads is presented. The acoustic trapping is done in 200 × 2000 μm2 glass capillaries and provides highly efficient binding and washing conditions, as shown by complete removal of detergents and sample processing times of 5-10 min. The versatility of the method is demonstrated using an antibody against Angiotensin I (Ang I), a peptide hormone involved in hypotension. Using this model system, the acoustic trapping was efficient in enriching Angiotensin at 400 pM spiked in plasma samples. PMID:24404012

  13. Recent Advances in Bacteria Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Nanomaterials as Affinity Probes

    PubMed Central

    Chiu, Tai-Chia

    2014-01-01

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided. PMID:24786089

  14. Selective analysis of lipids by thin-layer chromatography blot matrix-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Zaima, Nobuhiro; Goto-Inoue, Naoko; Adachi, Kohsuke; Setou, Mitsutoshi

    2011-01-01

    Thin-layer chromatography (TLC) is an essential method for food composition analyses such as lipid nutrition analysis. TLC can be used to obtain information about the lipid composition of foods; however, it cannot be used for analyses at the molecular level. Recently we developed a new method that combines matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) with TLC-blotting (TLC-Blot-MALDI-IMS). The combination of MALDI-IMS and TLC blotting enabled detailed and sensitive analyses of lipids. In this study, we applied TLC-Blot-MALDI-IMS for analysis of major phospholipids extracted from bluefin tuna. We showed that TLC-Blot-MALDI-IMS analysis could visualize and identify major phospholipids such as phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylcholine, and sphingomyelin.

  15. 5-Methoxysalicylic Acid Matrix for Ganglioside Analysis with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Dongkun; Cha, Sangwon

    2015-03-01

    In this note, we report that high quality ganglioside profiles with minimal loss of sialic acid residues can be obtained in the positive ion mode by using a 5-methoxysalicylic acid (MSA) matrix for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Our results showed that MSA produced much less sialic acid losses from gangliosides than DHB, although MSA and DHB are differ only by their functional groups at their 5-positions (-OH for DHB and -OCH3 for MSA). Furthermore, our data also demonstrated that addition of an alkali metal additive was effective for simplifying ganglioside profiles, but not necessary for stabilizing glycosidic bonds of gangliosides if MSA was used as a matrix. This suggests that MALDI MS with MSA has a potential to gain additional benefits from the positive-ion mode analyses without losing performance in ganglioside profiling.

  16. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    DOE PAGES

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding tomore » metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.« less

  17. Matrix-assisted laser desorption/ionization mass spectrometry of neutral and acidic oligosaccharides with collision-induced dissociation.

    PubMed

    Mechref, Y; Baker, A G; Novotny, M V

    1998-12-15

    Using ribonuclease B and human alpha 1-acid glycoprotein (AGP) as model glycoproteins, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry with collision-induced dissociation (CID) is validated here as an effective tool for oligosaccharide sequencing. The spectra acquired for high-mannose and complex oligosaccharide structures show characteristic fragments resulting from cleavages of the glycosidic bonds and a few cross-ring cleavages. Esterification of the sialic acid residues is essential in stabilizing the acidic N-linked oligosaccharides. An important analytical feature observed in all acquired spectra is the occurrence of cleavages on the same antenna up to the branching point, as deduced from the absence of fragmentation due to the simultaneous cleavages on two or more antennas.

  18. Efficient sample preparation in immuno-matrix-assisted laser desorption/ionization mass spectrometry using acoustic trapping.

    PubMed

    Hammarström, Björn; Yan, Hong; Nilsson, Johan; Ekström, Simon

    2013-01-01

    Acoustic trapping of minute bead amounts against fluid flow allows for easy automation of multiple assay steps, using a convenient aspirate/dispense format. Here, a method based on acoustic trapping that allows sample preparation for immuno-matrix-assisted laser desorption/ionization mass spectrometry using only half a million 2.8 μm antibody covered beads is presented. The acoustic trapping is done in 200 × 2000 μm(2) glass capillaries and provides highly efficient binding and washing conditions, as shown by complete removal of detergents and sample processing times of 5-10 min. The versatility of the method is demonstrated using an antibody against Angiotensin I (Ang I), a peptide hormone involved in hypotension. Using this model system, the acoustic trapping was efficient in enriching Angiotensin at 400 pM spiked in plasma samples.

  19. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hattan, Stephen J.; Parker, Kenneth C.; Vestal, Marvin L.; Yang, Jane Y.; Herold, David A.; Duncan, Mark W.

    2016-03-01

    Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R2 > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.

  20. Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Cozzolino, R; Passalacqua, S; Salemi, S; Malvagna, P; Spina, E; Garozzo, D

    2001-09-01

    The development is described of a rapid, simply and accurate analytical method aimed at evaluating both the presence of cow milk in either raw ewe and water buffalo milk samples employed in industrial processes and the addition of powdered milk to samples of fresh raw milk, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The presence of adulteration is defined by evaluating the protein patterns coming from the most abundant whey proteins, alpha-lactalbumin and beta-lactoglobulin, used as molecular markers. As no pretreatment of the milk samples is required and owing to the speed and ease of use of MALDI-MS the proposed analytical protocol can be used as a routine strategy for the identification of possible adulteration of the raw fresh milk samples that the dairy industry receives from producers every day.

  1. Improved procedure for dendrimer-based mass calibration in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry.

    PubMed

    Gross, Jürgen H

    2016-08-01

    A procedure is described that results in a substantial increase in signal intensity and in improved accuracy of positive-ion mass calibration when using commercially available kits of monodisperse dendrimers (SpheriCal(®)) in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The peak intensities are amplified by an admixture of 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix to the kits comprising of 9-nitroanthracene matrix, sodium trifluoroacetate, and four dendrimers. Boosted ion formation then permits lower laser fluence to be used and thus yields enhanced mass resolution. Further, the number of reference peaks is doubled by doping the sample preparation with cesium ions. This results in four [M+Cs](+) ion signals in addition to four [M+Na](+) ion signals provided by the standard kit. Overall, the modified procedure notably reduces the consumption of the expensive calibration standard kits, while it increases mass resolution and enables the use of an advanced calibration algorithm requiring at least six reference peaks. Graphical abstract A dendrimer-based mass calibration for MALDI-TOF-MS can be improved by adding a DCTB matrix and doping the sample preparation with Cs(+) ions. Having eight rather than just four reference peaks reduces the average mass error of the calibration curve about fivefold. PMID:27317254

  2. Laser ablation with resonance-enhanced multiphoton ionization time-of-flight mass spectrometry for determining aromatic lignin volatilization products from biomass

    NASA Astrophysics Data System (ADS)

    Mukarakate, Calvin; Scheer, Adam M.; Robichaud, David J.; Jarvis, Mark W.; David, Donald E.; Ellison, G. Barney; Nimlos, Mark R.; Davis, Mark F.

    2011-03-01

    We have designed and developed a laser ablation/pulsed sample introduction/mass spectrometry platform that integrates pyrolysis (py) and/or laser ablation (LA) with resonance-enhanced multiphoton ionization (REMPI) reflectron time-of-flight mass spectrometry (TOFMS). Using this apparatus, we measured lignin volatilization products of untreated biomass materials. Biomass vapors are produced by either a custom-built hot stage pyrolysis reactor or laser ablation using the third harmonic of an Nd:YAG laser (355 nm). The resulting vapors are entrained in a free jet expansion of He, then skimmed and introduced into an ionization region. One color resonance-enhanced multiphoton ionization (1+1 REMPI) is used, resulting in highly selective detection of lignin subunits from complex vapors of biomass materials. The spectra obtained by py-REMPI-TOFMS and LA-REMPI-TOFMS display high selectivity and decreased fragmentation compared to spectra recorded by an electron impact ionization molecular beam mass spectrometer (EI-MBMS). The laser ablation method demonstrates the ability to selectively isolate and volatilize specific tissues within the same plant material and then detect lignin-based products from the vapors with enhanced sensitivity. The identification of select products observed in the LA-REMPI-TOFMS experiment is confirmed by comparing their REMPI wavelength scans with that of known standards.

  3. Laser ablation with resonance-enhanced multiphoton ionization time-of-flight mass spectrometry for determining aromatic lignin volatilization products from biomass.

    PubMed

    Mukarakate, Calvin; Scheer, Adam M; Robichaud, David J; Jarvis, Mark W; David, Donald E; Ellison, G Barney; Nimlos, Mark R; Davis, Mark F

    2011-03-01

    We have designed and developed a laser ablation∕pulsed sample introduction∕mass spectrometry platform that integrates pyrolysis (py) and∕or laser ablation (LA) with resonance-enhanced multiphoton ionization (REMPI) reflectron time-of-flight mass spectrometry (TOFMS). Using this apparatus, we measured lignin volatilization products of untreated biomass materials. Biomass vapors are produced by either a custom-built hot stage pyrolysis reactor or laser ablation using the third harmonic of an Nd:YAG laser (355 nm). The resulting vapors are entrained in a free jet expansion of He, then skimmed and introduced into an ionization region. One color resonance-enhanced multiphoton ionization (1+1 REMPI) is used, resulting in highly selective detection of lignin subunits from complex vapors of biomass materials. The spectra obtained by py-REMPI-TOFMS and LA-REMPI-TOFMS display high selectivity and decreased fragmentation compared to spectra recorded by an electron impact ionization molecular beam mass spectrometer (EI-MBMS). The laser ablation method demonstrates the ability to selectively isolate and volatilize specific tissues within the same plant material and then detect lignin-based products from the vapors with enhanced sensitivity. The identification of select products observed in the LA-REMPI-TOFMS experiment is confirmed by comparing their REMPI wavelength scans with that of known standards. PMID:21456715

  4. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    PubMed

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd.

  5. A simple algorithm improves mass accuracy to 50-100 ppm for delayed extraction linear matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Hack, Christopher A; Benner, W Henry

    2002-01-01

    A simple mathematical technique for improving mass calibration accuracy of linear delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (DE MALDI-TOFMS) spectra is presented. The method involves fitting a parabola to a plot of Delta(m) vs. mass data where Delta(m) is the difference between the theoretical mass of calibrants and the mass obtained from a linear relationship between the square root of m/z and ion time of flight. The quadratic equation that describes the parabola is then used to correct the mass of unknowns by subtracting the deviation predicted by the quadratic equation from measured data. By subtracting the value of the parabola at each mass from the calibrated data, the accuracy of mass data points can be improved by factors of 10 or more. This method produces highly similar results whether or not initial ion velocity is accounted for in the calibration equation; consequently, there is no need to depend on that uncertain parameter when using the quadratic correction. This method can be used to correct the internally calibrated masses of protein digest peaks. The effect of nitrocellulose as a matrix additive is also briefly discussed, and it is shown that using nitrocellulose as an additive to the alpha-cyano-4-hydroxycinnamic acid (alphaCHCA) matrix does not significantly change initial ion velocity but does change the average position of ions relative to the sample electrode at the instant the extraction voltage is applied.

  6. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS-NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    SciTech Connect

    Gudipati, Murthy S.; Yang Rui E-mail: ryang73@ustc.edu

    2012-09-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Ly{alpha} radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K-close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies-the first glimpses into interstellar ice chemistry through analog studies-show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  7. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    PubMed

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone.

  8. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can accurately differentiate Aeromonas dhakensis from A. hydrophila, A. caviae, and A. veronii.

    PubMed

    Chen, Po-Lin; Lee, Tai-Fen; Wu, Chi-Jung; Teng, Shih-Hua; Teng, Lee-Jene; Ko, Wen-Chien; Hsueh, Po-Ren

    2014-07-01

    Among 217 Aeromonas isolates identified by sequencing analysis of their rpoB genes, the accuracy rates of identification of A. dhakensis, A. hydrophila, A. veronii, and A. caviae were 96.7%, 90.0%, 96.7%, and 100.0%, respectively, by the cluster analysis of spectra generated by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

  9. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting Gram-negative bacilli.

    PubMed

    Almuzara, Marisa; Barberis, Claudia; Traglia, Germán; Famiglietti, Angela; Ramirez, Maria Soledad; Vay, Carlos

    2015-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 396 Nonfermenting Gram-Negative Bacilli clinical isolates was evaluated in comparison with conventional phenotypic tests and/or molecular methods. MALDI-TOF MS identified to species level 256 isolates and to genus or complex level 112 isolates. It identified 29 genera including uncommon species.

  10. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    EPA Science Inventory

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  11. THE USE OF MATRIX-ASSISTED LASER DESORPTION/IONIZATION-MASS SPECTROMETRY FOR THE IDENTIFICATION OF AEROMONAS ISOLATES OBTAINED FROM WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has long been established as a tool by which microorganisms can be characterized and identified. EPA is investigating the potential of using this technology as a way to rapidly identify Aeromonas species fo...

  12. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  13. The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese.

    PubMed

    Angeletti, R; Gioacchini, A M; Seraglia, R; Piro, R; Traldi, P

    1998-06-01

    Adulteration by addition of bovine milk to water buffalo milk employed for mozzarella cheese production is often observed. Water buffalo milk and mozzarella cheese were analysed by matrix-assisted laser desorption/ionization mass spectrometry in order to achieve their rapid and accurate characterization and to evaluate possible fraudulence in mozzarella cheese production.

  14. Large-Scale Metabolite Analysis of Standards and Human Serum by Laser Desorption Ionization Mass Spectrometry from Silicon Nanopost Arrays.

    PubMed

    Korte, Andrew R; Stopka, Sylwia A; Morris, Nicholas; Razunguzwa, Trust; Vertes, Akos

    2016-09-20

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysis of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. The broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications.

  15. High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver

    SciTech Connect

    Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu; Nikolau, Basil J.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-17

    High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. The LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.

  16. Molecular weight determination of hyaluronic acid by gel filtration chromatography coupled to matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Yeung, B; Marecak, D

    1999-08-13

    An analytical approach has been described for the molecular weight characterization of enzymatically degraded hyaluronic acid (HA). The approach involved the combined use of aqueous gel filtration chromatography (GFC) with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Microfractions were collected across an eluting peak from the chromatography system, followed by mass spectrometric analysis of these narrow fractions. The molecular mass determined by MALDI-MS and the signal obtained from the chromatography established a calibration curve for other hyaluronic acid samples analyzed by this GFC system. Results of one HA sample were obtained from both the calibration curve and direct fraction-by-fraction MALDI-MS analysis, and comparison of these results showed reasonable agreement. In contrast, molecular weights resulted from external calibration using dextran and pullullan standards showed drastically different numbers. Therefore, the GFC-MALDI-MS approach is a reliable method for the molecular weight characterization of polydisperse polysaccharides for which suitable calibration standards are unavailable for conventional GFC analysis. PMID:10481993

  17. Determination of sterols using liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Vrbková, Blanka; Roblová, Vendula; Yeung, Edward S; Preisler, Jan

    2014-09-01

    A new method, reversed phase liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry (RPLC-SALDI MS) for the determination of brassicasterol (BR), cholesterol (CH), stigmasterol (ST), campesterol (CA) and β-sitosterol (SI) in oil samples has been developed. The sample preparation consisted of alkaline saponification followed by extraction of the unsaponificable fraction with diethyl ether. The recovery of the sterols ranged from 91 to 95% with RSD less than 4%. Separation of the five major sterols on a C18 column using methanol-water gradient was achieved in about 10min. An on-line UV detector was employed for the initial sterol detection prior to effluent deposition using a laboratory-built spotter with 1:73 splitter. Off-line SALDI MS was then applied for mass determination/identification and quantification of the separated sterols. Ionization of the nonpolar analytes was achieved by silver ion cationization with silver nanoparticles used as the SALDI matrix providing limits of detection 12, 6 and 11fmol for CH, ST and SI, respectively. Because of the incorporated splitter, the effective limits of detection of the RPLC-SALDI MS analysis were 4, 3 and 4pmol (or 0.08, 0.06 and 0.08μg/mL) for CH, ST and SI, respectively. For quantification, 6-ketocholestanol (KE) was used as the internal standard. The method has been applied for the identification and quantification of sterols in olive, linseed and sunflower oil samples. The described off-line coupling of RPLC to SALDI MS represents an alternative to GC-MS for analysis of nonpolar compounds. PMID:25022478

  18. Identification and differentiation of the red ink entries of seals on document by laser desorption ionization mass spectrometry.

    PubMed

    Wang, Xiang-Feng; Zhang, Yun; Wu, Yao; Yu, Jing; Xie, Meng-Xia

    2014-03-01

    The establishment of approaches for the differentiation of the ink entries of seals on paper can provide evidence to authenticate the related documents and can play a key role in judicial expertise. The identification and discrimination method for 38 red ink entries of seals on paper has been investigated using laser desorption ionization mass spectrometry (LDI-MS). Six dye components for the ink pastes of seals, Scarlet powder (SP), Bronze Red C (BR), Fast Red R (FR), Basic Violet 3 (BV3), Pigment Red 22 (PR22) and Pigment Red 112 (PR112), have been identified by their LDI-MS spectra, and the results have been confirmed by electrospray ionization quadruple-time of flight mass spectrometry (QTOF-ESI-MS/MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The 38 ink entries were classified into six groups based on the presence or the absence of the pigments in their positive and negative LDI-MS spectra, and the discrimination power (DP) was calculated to be about 82%. The ink entries within each group were further differentiated from the relative peak areas (RPA) of the fragments for the pigments and the profile of their LDI-MS spectra, and thus the DP was increased to 98%. All the 38 ink entries could be discriminated (the DP was 100%), if including the contribution of unknown peaks. Compared with the results obtained by the FTIR and Raman methods, the established LDI-MS approach could provide more information of the dye components in the ink entries. The results showed that the developed LDI-MS method is powerful, sensitive and rapid and can directly differentiate the red ink entries of seals from paper substrates, thus offering a novel approach to judge the authenticity of documents.

  19. Detergent enhancement of on-tissue protein analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Mainini, Veronica; Angel, Peggi M; Magni, Fulvio; Caprioli, Richard M

    2011-01-15

    Matrix-Assisted Laser Desorption/Ionization (MALDI) Imaging Mass Spectrometry (IMS) is a molecular technology that allows simultaneous investigation of the content and spatial distribution of molecules within tissue. In this work, we examine different classes of detergents, the anionic sodium dodecyl sulfate (SDS), the nonionic detergents Triton X-100, Tween 20 and Tween 80, and the zwitterionic 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) for use in MALDI IMS of analytes above m/z 4000. These detergents were found to be compatible with MALDI MS and did not cause signal suppression relative to non-detergent applications and did not produce interfering background signals. In general, these detergents enhanced signal acquisition within the mass range m/z 4-40 000. Adding detergents into the matrix was comparable with the separate application of detergent and matrix. Evaluation of spectra collected from organ-specific regions of a whole mouse pup section showed that different detergents perform optimally with different organs, indicating that detergent selection should be optimized on the specific tissue for maximum gain. These data show the utility of detergents towards enhancement of protein signals for on-tissue MALDI IMS analysis.

  20. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization

    PubMed Central

    Bokhart, Mark T.; Rosen, Elias; Thompson, Corbin; Sykes, Craig; Kashuba, Angela D. M.; Muddiman, David C.

    2015-01-01

    A quantitative mass spectrometry imaging (QMSI) technique using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is demonstrated for the antiretroviral (ARV) drug emtricitabine in incubated human cervical tissue. Method development of the QMSI technique leads to a gain in sensitivity and removal of interferences for several ARV drugs. Analyte response was significantly improved by a detailed evaluation of several cationization agents. Increased sensitivity and removal of an isobaric interference was demonstrated with sodium chloride in the electrospray solvent. Voxel-to-voxel variability was improved for the MSI experiments by normalizing analyte abundance to a uniformly applied compound with similar characteristics to the drug of interest. Finally, emtricitabine was quantified in tissue with a calibration curve generated from the stable isotope-labeled analog of emtricitabine followed by cross-validation using liquid chromatography tandem mass spectrometry (LC-MS/MS). The quantitative IR-MALDESI analysis proved to be reproducible with an emtricitabine concentration of 17.2±1.8 μg/gtissue. This amount corresponds to the detection of 7 fmol/voxel in the IR-MALDESI QMSI experiment. Adjacent tissue slices were analyzed using LC-MS/MS which resulted in an emtricitabine concentration of 28.4±2.8 μg/gtissue. PMID:25318460

  1. Inflation-Fixation Method for Lipidomic Mapping of Lung Biopsies by Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging.

    PubMed

    Carter, Claire L; Jones, Jace W; Farese, Ann M; MacVittie, Thomas J; Kane, Maureen A

    2016-05-01

    Chronic respiratory diseases are among the leading causes of deaths worldwide and major contributors of morbidity and global disease burden. To appropriately investigate lung disease, the respiratory airways must be fixed in their physiological orientation and should be inflated prior to investigations. We present an inflation-fixation method that enables lipidomic investigations of whole lung samples and resected biopsy specimens by matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). Formalin-inflation enables sample preparation to parallel standard clinical and surgical procedures, in addition to greatly reducing the complexity of analysis, by decreasing the number of analytes in the MALDI plume and reducing adduct formation in the resulting mass spectra. The reduced complexity increased sensitivity and enabled high-resolution imaging acquisitions without any loss in analyte detection at 10 and 20 μm scans. We present a detailed study of over 100 lipid ions detected in positive and negative ion modes covering the conducting and respiratory airways and parts of the peripheral nervous tissue running through the lungs. By defining the resolution required for clear definition of the alveolar space and thus the respiratory airways we have provided a guideline for MSI investigations of respiratory diseases involving the airways, including the interstitium. This study has provided a detailed map of lipid species and their localization within larger mammalian lung samples, for the first time, thus categorizing the lipidome for future MALDI-MSI studies of pulmonary diseases. PMID:27028398

  2. Imaging of a tribolayer formed from ionic liquids by laser desorption/ionization-reflectron time-of-flight mass spectrometry.

    PubMed

    Gabler, Christoph; Pittenauer, Ernst; Dörr, Nicole; Allmaier, Günter

    2012-12-18

    For the first time, imaging using laser desorption/ionization (LDI) reflectron time-of-flight (RTOF) mass spectrometry (MS) was demonstrated to be a powerful tool for an offline monitoring of tribometrical experiments directly from disc specimen applying selected ammonium-, phosphonium-, and sulfonium-based ionic liquids (IL) with bis(trifluoromethylsulfonyl)imide as counterion for lubrication. The direct measurement of IL tribolayers by LDI-MS allowed the visualization of the lubricants in the form of the distribution of their intact cations and the anion in and outside the wear scar after the tribometrical experiment with a low degree of in-source generated fragmentation. Besides, also, an oxidation product formed during a tribometrical experiment was detected and located exclusively in the wear track. Comparative data of identical wear tracks were obtained by X-ray photoelectron spectroscopy (XPS) imaging not only enabling the determination of elemental distributions of the IL across the area imaged but also corroborating the mass spectrometry imaging (MSI) data, thus generating multimodal images. Merging data from MSI and XPS imaging exhibited that areas, where iron-fluorine bonds were detected in the wear track, are corresponding to data from LDI-MS imaging showing absence of IL cations and anions.

  3. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization.

    PubMed

    Bokhart, Mark T; Rosen, Elias; Thompson, Corbin; Sykes, Craig; Kashuba, Angela D M; Muddiman, David C

    2015-03-01

    A quantitative mass spectrometry imaging (QMSI) technique using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is demonstrated for the antiretroviral (ARV) drug emtricitabine in incubated human cervical tissue. Method development of the QMSI technique leads to a gain in sensitivity and removal of interferences for several ARV drugs. Analyte response was significantly improved by a detailed evaluation of several cationization agents. Increased sensitivity and removal of an isobaric interference was demonstrated with sodium chloride in the electrospray solvent. Voxel-to-voxel variability was improved for the MSI experiments by normalizing analyte abundance to a uniformly applied compound with similar characteristics to the drug of interest. Finally, emtricitabine was quantified in tissue with a calibration curve generated from the stable isotope-labeled analog of emtricitabine followed by cross-validation using liquid chromatography tandem mass spectrometry (LC-MS/MS). The quantitative IR-MALDESI analysis proved to be reproducible with an emtricitabine concentration of 17.2 ± 1.8 μg/gtissue. This amount corresponds to the detection of 7 fmol/voxel in the IR-MALDESI QMSI experiment. Adjacent tissue slices were analyzed using LC-MS/MS which resulted in an emtricitabine concentration of 28.4 ± 2.8 μg/gtissue.

  4. Spatially Resolved Plant Metabolomics: Some Potentials and Limitations of Laser-Ablation Electrospray Ionization Mass Spectrometry Metabolite Imaging1[OPEN

    PubMed Central

    Etalo, Desalegn W.; De Vos, Ric C.H.; Joosten, Matthieu H.A.J.; Hall, Robert D.

    2015-01-01

    Laser-ablation electrospray ionization (LAESI)-mass spectrometry imaging has been applied to contrasting plant organs to assess its potential as a procedure for performing in vivo metabolomics in plants. In a proof-of-concept experiment, purple/white segmented Phalaenopsis spp. petals were first analyzed using standard liquid chromatography-mass spectrometry analyses of separate extracts made specifically from the purple and white regions. Discriminatory compounds were defined and putatively annotated. LAESI analyses were then performed on living tissues, and these metabolites were then relocalized within the LAESI-generated data sets of similar tissues. Maps were made to illustrate their locations across the petals. Results revealed that, as expected, anthocyanins always mapped to the purple regions. Certain other (nonvisible) polyphenols were observed to colocalize with the anthocyanins, whereas others were found specifically within the white tissues. In a contrasting example, control and Cladosporium fulvum-infected tomato (Solanum lycopersicum) leaves were subjected to the same procedures, and it could be observed that the alkaloid tomatine has clear heterogeneous distribution across the tomato leaf lamina. Furthermore, LAESI analyses revealed perturbations in alkaloid content following pathogen infection. These results show the clear potential of LAESI-based imaging approaches as a convenient and rapid way to perform metabolomics analyses on living tissues. However, a range of limitations and factors have also been identified that must be taken into consideration when interpreting LAESI-derived data. Such aspects deserve further evaluation before this approach can be applied in a routine manner. PMID:26392264

  5. Analysis of Microbial Mixtures by Matrix-assisted Laser Desorption/Ionization time-of-flight Mass Spectrometry

    SciTech Connect

    Wahl, Karen L.; Wunschel, Sharon C.; Jarman, Kristin H.; Valentine, Nancy B.; Petersen, Catherine E.; Kingsley, Mark T.; Zartolas, Kimberly A.; Saenz, Adam J.

    2002-12-15

    Many different laboratories are currently developing mass-spectrometric techniques to analyze and identify microorganisms. However, minimal work has been done with mixtures of bacteria. To demonstrate that microbial mixtures could be analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), mixed bacterial cultures were analyzed in a double-blind fashion. Nine different bacterial species currently in our MALDI-MS fingerprint library were used to generate 50 different simulated mixed bacterial cultures similar to that done for an initial blind study previously reported.(1) The samples were analyzed by MALDI-MS with automated data extraction and analysis algorithms developed in our laboratory. The components present in the sample were identified correctly to the species level in all but one of the samples. However, correctly eliminating closely related organisms was challenging for the current algorithms, especially in differentiating Serratia marcescens, Escherichia coli, and Yersinia enterocolitica, which have some similarities in their MALDI-MS fingerprints. Efforts to improve the specificity of the algorithms are in progress.

  6. Detecting Biosignatures Associated with Minerals by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transorm Mass Spectromety (GALDI-FTMS)

    SciTech Connect

    C. Doc Richardson; J. Michelle Kotler; Nancy W. Hinman; Timothy R. McJunkin; Jill R. Scott

    2008-07-01

    The ability to detect carbon signatures that can be linked to complex, possibly biogenic, organic molecules is imperative in research into the origin and distribution of life in our solar system particularly when used in conjunction with inorganic, mineralogical, and isotopic signatures that provide strong evidence for geochemical influences of living organisms on their environment. Ideally, the method used to detect these signatures must (i) accurately and automatically translate the organic and other information into usable forms, (ii) precisely distinguish such information from alternative compositions, (iii) operate with high spatial resolution coupled with precise location abilities, and (iv) require little to no sample preparation because of the potential for contamination. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometer (FTMS) has been used to determine the presence of bio/organic molecules (BOM) associated with different minerals and mineraloids including oxide, sulfate, carbonate, chloride, and silicate minerals. BOM is defined as an organic structure that can be produced by living organisms or derived from another organic compound made by living organisms (i.e., degradation product). GALDI requires no sample preparation because the mineral matrix assists desorption. Ultimately, however, the detectability of BOM is controlled by the desorption efficiency, ionization efficiency, and the specific experimental conditions. Results from experiments with combinations of known BOM and mineral standards indicated that the detectability of BOM increased with decreasing concentration, contrary to most analytical procedures. Results suggest that BOM when combined with certain minerals is more easily detected than when combined with other minerals. Such conclusions can guide selection of appropriate samples for sample return missions.

  7. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures.

    PubMed

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  8. Enzyme-Coupled Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for Searching for Low-Mass Inhibitors of Enzymes in Complex Mixtures

    NASA Astrophysics Data System (ADS)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: `ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and `ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  9. Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    de Respinis, Sophie; Tonolla, Mauro; Pranghofer, Sigrid; Petrini, Liliane; Petrini, Orlando; Bosshard, Philipp P

    2013-07-01

    In this study we evaluated the suitability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of dermatophytes in diagnostic laboratories. First, a spectral database was built with 108 reference strains belonging to 18 species of the anamorphic genera Epidermophyton, Microsporum and Trichophyton. All strains were well characterized by morphological criteria and ITS sequencing (gold standard). The dendrogram resulting from MALDI-TOF mass spectra was almost identical with the phylogenetic tree based on ITS sequencing. Subsequently, MALDI-TOF MS SuperSpectra were created for the identification of Epidermophyton floccosum, Microsporium audouinii, M. canis, M. gypseum (teleomorph: Arthroderma gypseum), M. gypseum (teleomorph: A. incurvatum), M. persicolor, A. benhamiae (Tax. Entity 3 and Am-Eur. race), T. erinacei, T. interdigitale (anthropophilic and zoophilic populations), T. rubrum/T. violaceum, T. tonsurans and T. terrestre. Because T. rubrum and T. violaceum did not present enough mismatches, a SuperSpectrum covering both species was created, and differentiation between them was done by comparison of eight specific peptide masses. In the second part of this study, MALDI-TOF MS with the newly created SuperSpectra was tested using 141 clinical isolates representing nine species. Analyses were done with 3-day-old cultures. Results were compared to morphological identification and ITS sequencing; 135/141 (95.8%) strains were correctly identified by MALDI-TOF MS compared to 128/141 (90.8%) by morphology. Therefore, MALDI-TOF MS has proven to be a useful and rapid identification method for dermatophytes. PMID:23228046

  10. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Buttrini, Mirko; Gorrini, Chiara; Motta, Federica; Germini, Diego; Medici, Maria-Cristina; Chezzi, Carlo; De Conto, Flora

    2014-01-01

    Virus detection and/or identification traditionally rely on methods based on cell culture, electron microscopy and antigen or nucleic acid detection. These techniques are good, but often expensive and/or time-consuming; furthermore, they not always lead to virus identification at the species and/or type level. In this study, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was tested as an innovative tool to identify human polioviruses and to identify specific viral protein biomarkers in infected cells. The results revealed MALDI-TOF MS to be an effective and inexpensive tool for the identification of the three poliovirus serotypes. The method was firstly applied to Sabin reference strains, and then to isolates from different clinical samples, highlighting its value as a time-saving, sensitive and specific technique when compared to the gold standard neutralization assay and casting new light on its possible application to virus detection and/or identification. PMID:25354905

  11. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Dubois, Damien; Leyssene, David; Chacornac, Jean Paul; Kostrzewa, Markus; Schmit, Pierre Olivier; Talon, Régine; Bonnet, Richard; Delmas, Julien

    2010-03-01

    Whole-cell fingerprinting by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) in combination with a dedicated bioinformatic software tool (MALDI Biotyper 2.0) was used to identify 152 staphylococcal strains corresponding to 22 staphylococcal species. Spectra of the 152 isolates, previously identified at the species level using a sodA gene-based oligonucleotide array, were analyzed against the main spectra of 3,030 microorganisms. A total of 151 strains out of 152 (99.3%) were correctly identified at the species level; only one strain was identified at the genus level. The MALDI-TOF MS method revealed different clonal lineages of Staphylococcus epidermidis that were of either human or environmental origin, which suggests that the MALDI-TOF MS method could be useful in the profiling of staphylococcal strains. The topology of the dendrogram generated by the MALDI Biotyper 2.0 software from the spectra of 120 Staphylococcus reference strains (representing 36 species) was in general agreement with that inferred from the 16S rRNA gene-based analysis. Our findings indicate that the MALDI-TOF MS technology, associated with a broad-spectrum reference database, is an effective tool for the swift and reliable identification of Staphylococci.

  12. Differentiation of Aeromonas isolated from drinking water distribution systems using matrix-assisted laser desorption/ionization-mass spectrometry.

    PubMed

    Donohue, Maura J; Best, Jennifer M; Smallwood, Anthony W; Kostich, Mitchell; Rodgers, Mark; Shoemaker, Jody A

    2007-03-01

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the whole cells of both reference strains and unknown Aeromonas isolates obtained from water distribution systems. A library of over 45 unique m/z signatures was created from 40 strains that are representative of the 17 recognized species of Aeromonas, as well as 3 reference strains from genus Vibrio and 2 reference strains from Plesiomonas shigelloides. The library was used to help speciate 52 isolates of Aeromonas. The environmental isolates were broken up into 2 blind studies. Group 1 contained isolates that had a recognizable phenotypic profile and group 2 contained isolates that had an atypical phenotypic profile. MALDI-MS analysis of the water isolates in group 1 matched the phenotypic identification in all cases. In group 2, the MALDI-MS-based determination confirmed the identity of 18 of the 27 isolates. These results demonstrate that MALDI-MS analysis can rapidly and accurately classify species of the genus Aeromonas, making it a powerful tool especially suited for environmental monitoring and detection of microbial hazards in drinking water.

  13. Chemical Composition of Micrometer-Sized Filaments in an Aragonite Host by a Miniature Laser Ablation/Ionization Mass Spectrometer.

    PubMed

    Tulej, Marek; Neubeck, Anna; Ivarsson, Magnus; Riedo, Andreas; Neuland, Maike B; Meyer, Stefan; Wurz, Peter

    2015-08-01

    Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser ablation/ionization time-of-flight mass spectrometer (LMS). The studies were conducted with high lateral (∼15 μm) and vertical (∼20-200 nm) resolution. The primary aim of the study was to investigate the instrument performance on micrometer-sized samples both in terms of isotope abundance and element composition. The following objectives had to be achieved: (1) Consider the detection and calculation of single stable isotope ratios in natural rock samples with techniques compatible with their employment of space instrumentation for biomarker detection in future planetary missions. (2) Achieve a highly accurate chemical compositional map of rock samples with embedded structures at the micrometer scale in which the rock matrix is easily distinguished from the micrometer structures. Our results indicate that chemical mapping of strongly heterogeneous rock samples can be obtained with a high accuracy, whereas the requirements for isotope ratios need to be improved to reach sufficiently large signal-to-noise ratio (SNR).

  14. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    PubMed

    Vlek, Anne L M; Bonten, Marc J M; Boel, C H Edwin

    2012-01-01

    Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01)). Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  15. High throughput screening of genetic polymorphisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Corona, Giuseppe; Toffoli, Giuseppe

    2004-12-01

    In the post genomic era, the screening of many different genetic polymorphisms in large populations represents a major goal that will facilitate the understanding of individual genetic variability in the development of multi factor diseases and in drug response and toxicities. The increasing interest in these pathogenetic and pharmacogenomic studies by both academic and pharmaceutical industry researchers has increased the demand for broad genome association studies. This demand has produced a boom in the development of new and robust high throughput screening methods for genotype analysis. Matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) represents an emerging and powerful technique for DNA analysis because of its high speed, accuracy, no label requirement, and cost-effectiveness. So far, many MALDI-TOF MS approaches have been developed for rapid screening of single nucleotide polymorphisms (SNPs), variable sequences repeat, epigenotype analysis, quantitative allele studies, and for the discovery of new genetic polymorphisms. The more established methods are based on single base primer extension and minisequencing implemented with new chemical features to overcome the limitations associated with DNA analysis using MALDI-TOF MS. These new promising methods of genotyping include both photochemical and other different chemical and enzyme cleavage strategies that facilitate sample automation and MS analysis for both real-time genotyping and resequencing screening. In this review, we analyze and discuss in depth the advantages and the limitations of the more recent developments in MALDI-TOF MS analysis for large-scale genomic studies applications.

  16. Rapid differentiation of Panax ginseng and Panax quinquefolius by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lai, Ying-Han; So, Pui-Kin; Lo, Samual Chun-Lap; Ng, Eddy Wing Yin; Poon, Terence Chuen Wai; Yao, Zhong-Ping

    2012-11-13

    A matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based method has been developed for rapid differentiation between Panax ginseng and Panax quinquefolius, two herbal medicines with similar chemical and physical properties but different therapeutic effects. This method required only a small quantity of samples, and the herbal medicines were analyzed by MALDI-MS either after a brief extraction step, or directly on the powder form or small pieces of raw samples. The acquired MALDI-MS spectra showed different patterns of ginsenosides and small chemical molecules between P. ginseng and P. quinquefolius, thus allowing unambiguous differentiation between the two Panax species based on the specific ions, intensity ratios of characteristic ions or principal component analysis. The approach could also be used to differentiate red ginseng or P. quinquefolius adulterated with P. ginseng from pure P. ginseng and pure Panax quinquefolium. The intensity ratios of characteristic ions in the MALDI-MS spectra showed high reproducibility and enabled quantitative determination of ginsenosides in the herbal samples and percentage of P. quinquefolius in the adulterated binary mixture. The method is simple, rapid, robust, and can be extended for analysis of other herbal medicines.

  17. Chemical Composition of Micrometer-Sized Filaments in an Aragonite Host by a Miniature Laser Ablation/Ionization Mass Spectrometer.

    PubMed

    Tulej, Marek; Neubeck, Anna; Ivarsson, Magnus; Riedo, Andreas; Neuland, Maike B; Meyer, Stefan; Wurz, Peter

    2015-08-01

    Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser ablation/ionization time-of-flight mass spectrometer (LMS). The studies were conducted with high lateral (∼15 μm) and vertical (∼20-200 nm) resolution. The primary aim of the study was to investigate the instrument performance on micrometer-sized samples both in terms of isotope abundance and element composition. The following objectives had to be achieved: (1) Consider the detection and calculation of single stable isotope ratios in natural rock samples with techniques compatible with their employment of space instrumentation for biomarker detection in future planetary missions. (2) Achieve a highly accurate chemical compositional map of rock samples with embedded structures at the micrometer scale in which the rock matrix is easily distinguished from the micrometer structures. Our results indicate that chemical mapping of strongly heterogeneous rock samples can be obtained with a high accuracy, whereas the requirements for isotope ratios need to be improved to reach sufficiently large signal-to-noise ratio (SNR). PMID:26247475

  18. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping

    2015-07-16

    Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils. PMID:26073811

  19. Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Muller, Ludovic; Kailas, Ajay; Jackson, Shelley N.; Roux, Aurelie; Barbacci, Damon; Schultz, J. Albert; Balaban, Carey; Woods, Amina S.

    2015-01-01

    The well-characterized cellular and structural components of the kidney show distinct regional compositions and distribution of lipids. In order to more fully analyze the renal lipidome we developed a matrix-assisted laser desorption/ionization mass spectrometry approach for imaging that may be used to pinpoint sites of changes from normal in pathological conditions. This was accomplished by implanting sagittal cryostat rat kidney sections with a stable, quantifiable and reproducible uniform layer of silver using a magnetron sputtering source to form silver nanoparticles. Thirty-eight lipid species including 7 ceramides, 8 diacylglycerols, 22 triacylglycerols, and cholesterol were detected and imaged in positive ion mode. Thirty-six lipid species consisting of, 7 sphingomyelins, 10 phosphatidylethanolamines, 1 phosphatidylglycerol, 7 phosphatidylinositols and 11 sulfatides, were imaged in negative ion mode for a total of seventy-four high resolution lipidome maps of the normal kidney. Thus, our approach is a powerful tool not only for studying structural changes in animal models of disease, but also for diagnosing and tracking stages of disease in human kidney tissue biopsies. PMID:25671768

  20. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry

    PubMed Central

    2014-01-01

    Background Phlebotomine sand flies are incriminated in the transmission of several human and veterinary pathogens. To elucidate their role as vectors, proper species identification is crucial. Since traditional morphological determination is based on minute and often dubious characteristics on their head and genitalia, which require certain expertise and may be damaged in the field-collected material, there is a demand for rapid, simple and cost-effective molecular approaches. Methods Six laboratory-reared colonies of phlebotomine sand flies belonging to five species and four subgenera (Phlebotomus, Paraphlebotomus, Larroussius, Adlerius) were used to evaluate the discriminatory power of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Various storage conditions and treatments, including the homogenization in either distilled water or given concentrations of formic acid, were tested on samples of both sexes. Results Specimens of all five analysed sand fly species produced informative, reproducible and species-specific protein spectra that enabled their conclusive species identification. The method also distinguished between two P. sergenti colonies originating from different geographical localities. Protein profiles within a species were similar for specimens of both sexes. Tested conditions of specimen storage and sample preparation give ground to a standard protocol that is generally applicable on analyzed sand fly specimens. Conclusions Species identification of sand flies by MALDI-TOF MS is feasible and represents a novel promising tool to improve biological and epidemiological studies on these medically important insects. PMID:24423215

  1. Direct Analysis of Triacylglycerols from Crude Lipid Mixtures by Gold Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Son, Jeongjin; Lee, Gwangbin; Cha, Sangwon

    2014-05-01

    Triacylglycerols (TAGs), essential energy storage lipids, are easily detected by conventional MALDI MS when occurring on their own. However, their signals are easily overwhelmed by other lipids, mainly phosphatidylcholines (PCs) and, therefore, require purification. In order to profile TAGs from crude lipid mixtures without prefractionation, we investigated alternative matrixes that can suppress phospholipid ion signals and enhance cationization of TAGs. We found that an aqueous solution of citrate-capped gold nanoparticles (AuNPs) with a diameter of 12 nm is a superior matrix for the laser desorption/ionization mass spectrometry (LDI MS) of TAGs in crude lipid mixtures. The AuNP matrix effectively suppressed other lipid signals such as phospholipids and also provided 100 times lower detection limit for TAGs than 2,5-dihydroxybenzoic acid (DHB), the best conventional MALDI matrix for TAGs. The AuNP-assisted LDI MS enabled us to obtain detailed TAG profiles including minor species directly from crude beef lipid extracts without phospholipid interference. In addition, we could detect TAGs at a trace level from a total brain lipid extract.

  2. Improved Cell Typing by Charge-State Deconvolution of matrix-assisted laser desorption/ionization Mass Spectra

    SciTech Connect

    Wilkes, Jon G.; Buzantu, Dan A.; Dare, Diane J.; Dragan, Yvonne P.; Chiarelli, M. Paul; Holland, Ricky D.; Beaudoin, Michael; Heinze, Thomas M.; Nayak, Rajesh; Shvartsburg, Alexandre A.

    2006-05-30

    Robust, specific, and rapid identification of toxic strains of bacteria and viruses, to guide the mitigation of their adverse health effects and optimum implementation of other response actions, remains a major analytical challenge. This need has driven the development of methods for classification of microorganisms using mass spectrometry, particularly matrix-assisted laser desorption ionization MS (MALDI) that allows high throughput analyses with minimum sample preparation. We describe a novel approach to cell typing based on pattern recognition of MALDI spectra, which involves charge-state deconvolution in conjunction with a new correlation analysis procedure. The method is applicable to both prokaryotic and eukaryotic cells. Charge-state deconvolution improves the quantitative reproducibility of spectra because multiply-charged ions resulting from the same biomarker attaching a different number of protons are recognized and their abundances are combined. This allows a clearer distinction of bacterial strains or of cancerous and normal liver cells. Improved class distinction provided by charge-state deconvolution was demonstrated by cluster spacing on canonical variate score charts and by correlation analyses. Deconvolution may enhance detection of early disease state or therapy progress markers in various tissues analyzed by MALDI.

  3. 2-Hydrazinoquinoline: a reactive matrix for matrix-assisted laser desorption/ionization mass spectrometry to detect gaseous carbonyl compounds.

    PubMed

    Shigeri, Yasushi; Kamimura, Takuya; Ando, Masanori; Uegaki, Koichi; Sato, Hiroaki; Tani, Fumito; Arakawa, Ryuichi; Kinumi, Tomoya

    2016-01-01

    The sensitivity, range of applications, and reaction mechanism of 2-hydrazinoquinoline as a reactive matrix for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) were examined. Using a reaction chamber (125L) equipped with a stirring fan and a window for moving the MALDI-MS plate and volatile samples in and out, the sensitivities of 2-hydrazinoquinoline to gaseous aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and n-butyraldehyde) and ketones (acetone, methyl ethyl ketone, and methyl isobutyl ketone) were determined to be at least parts per million (ppm) levels. On the other hand, carboxylic acids (formic acid, acetic acid, propionic acid, and butyric acid) and esters (ethyl acetate, pentyl acetate, isoamyl acetate, and methyl salicylate) could not be detected by 2-hydrazinoquinoline in MALDI-MS. In addition to 2,4-dinitrophenylhydrazine, a common derivatization reagent for analyzing carbonyl compounds quantitatively in gas chromatography and liquid chromatography, the dissolution of 2-hydrazinoquinoline in an acidic solution, such as trifluoroacetic acid, was essential for its function as a reactive matrix for MALDI- MS. PMID:27419901

  4. Sequence analysis of phosphorothioate oligonucleotides via matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Schuette, J M; Pieles, U; Maleknia, S D; Srivatsa, G S; Cole, D L; Moser, H E; Afeyan, N B

    1995-09-01

    Modification of the natural phosphodiester backbone of deoxyribooligonucleotides can impart increased biostability via nuclease resistance. Further, uniform incorporation of phosphorothioate linkages renders oligonucleotides highly resistant to reagents traditionally used in sequencing reactions. As a consequence, analytical tests crucial for establishing the identity of such oligonucleotide drugs are less informative. To circumvent this problem, chemical oxidation has been employed for converting the phosphorothioate to the uniform phosphodiester, thereby facilitating enzymatic degradation. Following oxidation, exonucleases which sequentially cleave individual bases from the 3' or 5' terminus of the oligonucleotide or base-specific cleavage chemicals were used to facilitate sequence identification of the oligonucleotide. Matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS), previously used to sequence natural phosphodiester DNA, was then used to sequence the chemically oxidized phosphorothioate. Sequential enzymatic cleavage of desulphurized phosphorothioates in combination with MALDI analysis not only provides a viable alternative to radiolabeling as used in conventional sequencing approaches (e.g. Maxam-Gilbert), but also enables rapid sequencing of phosphorothioate oligonucleotides, for routine drug analysis. PMID:8562591

  5. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOEpatents

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  6. Airborne intercomparison of HOx measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS

    NASA Astrophysics Data System (ADS)

    Ren, X.; Mao, J.; Brune, W. H.; Cantrell, C. A.; Mauldin, R. L., III; Hornbrook, R. S.; Kosciuch, E.; Olson, J. R.; Crawford, J. H.; Chen, G.; Singh, H. B.

    2012-03-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by UV light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2σ) for the LIF instrument, ±65% (2σ) for the SI-CIMS instrument, and ±50% (2σ) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 105 cm-3 with a correlation coefficient, r2 = 0.72 for OH and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol-1) with a correlation coefficient, r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some similarities for both

  7. Airborne intercomparison of HOx measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS

    NASA Astrophysics Data System (ADS)

    Ren, X.; Mao, J.; Brune, W. H.; Cantrell, C. A.; Mauldin, R. L., III; Hornbrook, R. S.; Kosciuch, E.; Olson, J. R.; Crawford, J. H.; Chen, G.; Singh, H. B.

    2012-08-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by ultraviolet (UV) light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2σ) for the LIF instrument, ±65% (2σ) for the SI-CIMS instrument, and ±50% (2σ) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 104 cm-3 with a correlation coefficient r2 = 0.72 for OH, and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol-1) with a correlation coefficient r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some

  8. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.

  9. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wieme, Anneleen D; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita; Vandamme, Peter

    2014-08-18

    Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry. PMID:24929682

  10. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wieme, Anneleen D; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita; Vandamme, Peter

    2014-08-18

    Applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of beer-spoilage bacteria was examined. To achieve this, an extensive identification database was constructed comprising more than 4200 mass spectra, including biological and technical replicates derived from 273 acetic acid bacteria (AAB) and lactic acid bacteria (LAB), covering a total of 52 species, grown on at least three growth media. Sequence analysis of protein coding genes was used to verify aberrant MALDI-TOF MS identification results and confirmed the earlier misidentification of 34 AAB and LAB strains. In total, 348 isolates were collected from culture media inoculated with 14 spoiled beer and brewery samples. Peak-based numerical analysis of MALDI-TOF MS spectra allowed a straightforward species identification of 327 (94.0%) isolates. The remaining isolates clustered separately and were assigned through sequence analysis of protein coding genes either to species not known as beer-spoilage bacteria, and thus not present in the database, or to novel AAB species. An alternative, classifier-based approach for the identification of spoilage bacteria was evaluated by combining the identification results obtained through peak-based cluster analysis and sequence analysis of protein coding genes as a standard. In total, 263 out of 348 isolates (75.6%) were correctly identified at species level and 24 isolates (6.9%) were misidentified. In addition, the identification results of 50 isolates (14.4%) were considered unreliable, and 11 isolates (3.2%) could not be identified. The present study demonstrated that MALDI-TOF MS is well-suited for the rapid, high-throughput and accurate identification of bacteria isolated from spoiled beer and brewery samples, which makes the technique appropriate for routine microbial quality control in the brewing industry.

  11. Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Puchades, M; Westman, A; Blennow, K; Davidsson, P

    1999-01-01

    Sodium dodecyl sulfate (SDS) is widely used for protein solubilization and for separation of proteins by SDS polyacrylamide gel electrophoresis (SDS-PAGE). However, SDS interferes with other techniques used for characterization of proteins, such as mass spectrometry (MS) and amino acid sequencing. In this paper, we have compared three procedures to remove SDS from proteins, including chloroform/methanol/water extraction (C/M/W), cold acetone extraction and desalting columns, in order to find a rapid and reproducible procedure that provides sufficient reduction of SDS and high recovery rates for proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A 1000-fold reduction of SDS concentration and a protein recovery at approximately 50% were obtained with the C/M/W procedure. The cold acetone procedure gave a 100-fold reduction of SDS and a protein recovery of approximately 80%. By using desalting columns, the removal of SDS was 100-fold, with a protein recovery of nearly 50%. Both the C/M/W and the cold acetone methods provided sufficient reduction of SDS, high recovery rates of protein and allowed the acquisition of MALDI spectra. The use of n-octyl-beta-D-glucopyranoside in the protein sample preparation enhanced the MALDI signal for protein samples containing more than 2 10(-4)% SDS, after the C/M/W extraction. Following the cold acetone procedure, the use of n-octylglucoside was found to be necessary in order to obtain spectra, but they were of lower quality than those obtained with the C/M/W method, probably due to higher residual amounts of SDS. PMID:10209872

  12. Total microcystins analysis in water using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Roy-Lachapelle, Audrey; Fayad, Paul B; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

    2014-04-11

    A new approach for the analysis of the cyanobacterial microcystins (MCs) in environmental water matrices has been developed. It offers a cost efficient alternative method for the fast quantification of total MCs using mass spectrometry. This approach permits the quantification of total MCs concentrations without requiring any derivatization or the use of a suite of MCs standards. The oxidation product 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) was formed through a Lemieux oxidation and represented the total concentration of free and bound MCs in water samples. MMPB was analyzed using laser diode thermal desorption-atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). LDTD is a robust and reliable sample introduction method with ultra-fast analysis time (<15 s sample(-1)). Several oxidation and LDTD parameters were optimized to improve recoveries and signal intensity. MCs oxidation recovery yield was 103%, showing a complete reaction. Internal calibration with standard addition was achieved with the use of 4-phenylbutyric acid (4-PB) as internal standard and showed good linearity (R(2)>0.999). Limits of detection and quantification were 0.2 and 0.9 μg L(-1), respectively. These values are comparable with the WHO (World Health Organization) guideline of 1 μg L(-1) for total microcystin-LR congener in drinking water. Accuracy and interday/intraday variation coefficients were below 15%. Matrix effect was determined with a recovery of 91%, showing no significant signal suppression. This work demonstrates the use of the LDTD-APCI-MS/MS interface for the screening, detection and quantification of total MCs in complex environmental matrices.

  13. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology. PMID:26999436

  14. Determination of Macrolide Antibiotics Using Dispersive Liquid-Liquid Microextraction Followed by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Yu; Yang, Thomas C.; Chang, Sarah Y.

    2012-06-01

    A novel method for the determination of macrolide antibiotics using dispersive liquid-liquid microextraction coupled to surface-assisted laser desorption/ionization mass spectrometric detection was developed. Acetone and dichloromethane were used as the disperser solvent and extraction solvent, respectively. A mixture of extraction solvent and disperser solvent were rapidly injected into a 1.0 mL aqueous sample to form a cloudy solution. After the extraction, macrolide antibiotics were detected using surface-assisted laser desorption/ionization mass spectrometry (SALDI/MS) with colloidal silver as the matrix. Under optimum conditions, the limits of detection (LODs) at a signal-to-noise ratio of 3 were 2, 3, 3, and 2 nM for erythromycin (ERY), spiramycin (SPI), tilmicosin (TILM), and tylosin (TYL), respectively. This developed method was successfully applied to the determination of macrolide antibiotics in human urine samples.

  15. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  16. Histology-Guided High-Resolution Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging.

    PubMed

    Heijs, Bram; Abdelmoula, Walid M; Lou, Sha; Briaire-de Bruijn, Inge H; Dijkstra, Jouke; Bovée, Judith V M G; McDonnell, Liam A

    2015-12-15

    Mass spectrometry imaging (MSI) is widely used for clinical research because when combined with histopathological analysis the molecular signatures of specific cells/regions can be extracted from the often-complex histologies of pathological tissues. The ability of MSI to stratify patients according to disease, prognosis, and response is directly attributable to this cellular specificity. MSI developments are increasingly focused on further improving specificity, through higher spatial resolution to better localize the signals or higher mass resolution to better resolve molecular ions. Higher spatial/mass resolution leads to increased data size and longer data acquisition times. For clinical applications, which analyze large series of patient tissues, this poses a challenge to keep data load and acquisition time manageable. Here we report a new tool to perform histology guided MSI; instead of analyzing large parts of each tissue section the histology from adjacent tissue sections is used to focus the analysis on the areas of interest, e.g., comparable cell types in different patient tissues, thereby minimizing data acquisition time and data load. The histology tissue section is annotated and then automatically registered to the MSI-prepared tissue section; the registration transformation is then applied to the annotations, enabling them to be used to define the MSI measurement regions. Using a series of formalin-fixed, paraffin-embedded human myxoid liposarcoma tissues, we demonstrate an 80% reduction of data load and acquisition time, thereby enabling high resolution (mass or spatial) to be more readily applied to clinical research. The software is freely available for download. PMID:26595321

  17. Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments.

    PubMed

    Barry, Jeremy A; Muddiman, David C

    2011-12-15

    Design of experiments (DOE) is a systematic and cost-effective approach to system optimization by which the effects of multiple parameters and parameter interactions on a given response can be measured in few experiments. Herein, we describe the use of statistical DOE to improve a few of the analytical figures of merit of the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for mass spectrometry. In a typical experiment, bovine cytochrome c was ionized via electrospray, and equine cytochrome c was desorbed and ionized by IR-MALDESI such that the ratio of equine:bovine was used as a measure of the ionization efficiency of IR-MALDESI. This response was used to rank the importance of seven source parameters including flow rate, laser fluence, laser repetition rate, ESI emitter to mass spectrometer inlet distance, sample stage height, sample plate voltage, and the sample to mass spectrometer inlet distance. A screening fractional factorial DOE was conducted to designate which of the seven parameters induced the greatest amount of change in the response. These important parameters (flow rate, stage height, sample to mass spectrometer inlet distance, and laser fluence) were then studied at higher resolution using a full factorial DOE to obtain the globally optimized combination of parameter settings. The optimum combination of settings was then compared with our previously determined settings to quantify the degree of improvement in detection limit. The limit of detection for the optimized conditions was approximately 10 attomoles compared with 100 femtomoles for the previous settings, which corresponds to a four orders of magnitude improvement in the detection limit of equine cytochrome c.

  18. Differentiation of Raoultella ornithinolytica/planticola and Klebsiella oxytoca clinical isolates by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    PubMed

    de Jong, Eefje; de Jong, Arjan S; Smidts-van den Berg, Nathalie; Rentenaar, Rob J

    2013-04-01

    Ninety-nine clinical isolates previously identified as Klebsiella oxytoca were evaluated using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Eight isolates were identified as Raoultella spp., being 5 Raoultella spp. and 3 K. oxytoca, by 16S rRNA sequencing. These isolates were correctly identified by applying the 10% differential rule for the MALDI-TOF MS score values. This approach might be useful to discriminate Raoultella species from K. oxytoca.

  19. Analysis of Melamine, Cyanuric Acid, Ammelide, and Ammeline Using Matrix-Asssisted Laser Desorption Ionization/Time-of-Flight Mass Spectrometry (MALDI/TOFMS)

    SciTech Connect

    Campbell, James A.; Wunschel, David S.; Petersen, Catherine E.

    2007-12-01

    Melamine and cyanuric acid, two compounds connected to tainted pet food, have been analyzed using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. (M+H)+ ions were observed for melamine, ammelide, and ammeline under positive ion conditions with sinapinic acid as the matrix. With alpha-cyano-4-hydroxy-cinnamic acid as the matrix, a matrix-melamine complex was observed. (M-H)- was observed for cyanuric acid with sinapinic acid as the matrix.

  20. Influence of Culture Media on Detection of Carbapenem Hydrolysis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina

    2016-07-01

    In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase.

  1. Identification of Neisseria gonorrhoeae by the Bruker Biotyper Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System Is Improved by a Database Extension.

    PubMed

    Schweitzer, Valentijn A; van Dam, Alje P; Hananta, I Putu Yuda; Schuurman, Rob; Kusters, Johannes G; Rentenaar, Rob J

    2016-04-01

    Identification ofNeisseria gonorrhoeaeby the Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system may be affected by "B consistency categorization." A supplementary database of 17N. gonorrhoeaemain spectra was constructed. Twelve of 64N. gonorrhoeaeidentifications were categorized with B consistency, which disappeared using the supplementary database. Database extension did not result in misidentification ofNeisseria meningitidis. PMID:26763972

  2. Influence of Culture Media on Detection of Carbapenem Hydrolysis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina

    2016-07-01

    In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase. PMID:27076665

  3. Matrix-assisted and polymer-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of low molecular weight polystyrenes and polyethylene glycols.

    PubMed

    Woldegiorgis, Andreas; Löwenhielm, Peter; Björk, Anders; Roeraade, Johan

    2004-01-01

    Recently, matrices based on oligomers of dioxin and thiophene (polymer-assisted laser desorption/ionization (PALDI)) have been described for mass spectrometric (MS) analysis of low molecular weight compounds (Woldegiorgis A, von Kieseritzky F, Dahlstedt E, Hellberg J, Brinck T, Roeraade J. Rapid Commun. Mass Spectrom. 2004; 18: 841-852). In this paper, we report the use of PALDI matrices for low molecular weight polymers. An evaluation with polystyrene and polyethylene glycol showed that no charge transfer ionization occurs. Ionization is mediated through metal ion adduction. Comparison of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) data for two very low molecular weight polymers with data obtained from size-exclusion chromatography (SEC) revealed a systematic difference regarding mean molecular weight and dispersity. Further, the mass spectra obtained with PALDI matrices had a higher signal-to-noise ratio than the spectra obtained with conventional matrices. For polymers with higher molecular weights (>1500 Da), the conventional matrices gave better performance. For evaluation of the MALDI spectra, three non-linear mathematical models were evaluated to model the cumulative distributions of the different oligomers and their maximal values of Mw, Mn and PDI. Models based on sigmoidal or Boltzmann equations proved to be most suitable. Objective modeling tools are necessary to compare different sample and instrumental conditions during method optimization of MALDI analysis of polymers, since the bias between MALDI and SEC data can be misleading.

  4. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  5. Developments and Applications of Electrophoresis and Small Molecule Laser Desorption Ionization Mass Spectrometry

    SciTech Connect

    Zhang, Hui

    2007-01-01

    Ultra-sensitive native fluorescence detection of proteins with miniaturized one- and two-dimensional polyacrylamide gel electrophoresis was achieved with laser side-entry excitation, which provides both high excitation power and low background level. The detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE was as low as 15 fg, which corresponds to 40 thousand molecules only. The average detection limit of six standard native proteins was 5 pg per band and the dynamic range spanned more than 3 orders of magnitude. Approximately 150 protein spots from 30 ng of total Escherichia coli extraction were detected on a 0.8 cm x 1 cm gel in two-dimensional separation. Estrogen-DNA adducts as 4-OHE1(E2)-1-N3Ade and 4-OHEI(E2)-2-NacCys were hypothesized as early risk assessment of prostate and breast cancers. Capillary electrophoresis, luminescence/absorption spectroscopy and LC-MS were used to characterize and detect these adducts. Monoclonal antibodies against each individual adduct were developed and used to enrich such compounds from urine samples of prostate and breast cancer patients as well as healthy people. Adduct 4-OHE1-1-N3Ade was detected at much higher level in urine from subjects with prostate cancer patients compared to healthy males. The same adduct and 4-OHEI-2-NacCys were also detected at a much higher level in urine from a woman with breast carcinoma than samples from healthy controls. These two DNA adducts may serve as novel biomarkers for early diagnostic of cancers. The adsorption properties of R-phycoerythrin (RPE), on the fused-silica surface were studied using capillary electrophoresis (CE) and single molecule spectroscopy. The band shapes and migration times were measured in CE. Adsorption and desorption events were recorded at the single-molecule level by imaging of the evanescent-field layer using total internal reflection. The adsorbed RPE molecules on the fused-silica prism surface were

  6. Laser desorption/ionization time-of-flight mass spectrometry: A predictive tool for the lifetime of organic light emitting devices

    SciTech Connect

    Scholz, Sebastian; Meerheim, Rico; Luessem, Bjoern; Leo, Karl

    2009-01-26

    For improving the lifetime of organic light emitting devices (OLEDs), the analysis of the chemical degradation requires a deep understanding of the involved reaction pathways. We show that the dissociation reactions of phosphorescent emitters and the additional complexations with the used surrounding blocking layers are the dominant intrinsic degradation mechanisms in long living p-i-n type OLEDs. We use the laser desorption/ionization (LDI) time-of-flight mass spectrometry to correlate the laser-induced ion formation with the observed lifetime of the organic devices. The superlinear correlation between the LDI forced reactions and the lifetimes allows the prediction of the lifetime of an OLED with new materials.

  7. Evaluating the Translational Temperature of Molecules Laser-desorbed after Online Concentration Using Multiphoton Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Miura, Shuhei; Uchimura, Tomohiro

    2016-01-01

    We describe a new technique for evaluating the translational temperature of molecules by applying online concentration via analyte adsorption/laser desorption, which is a sample-introduction technique for resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS). In the present study, analyte molecules were adsorbed via a narrowed capillary tip once, and then the flow of the carrier gas containing the analyte was stopped. After laser desorption, the ion signals induced by REMPI were monitored. Finally, the translational temperature could be calculated from the velocity distribution of the desorbed molecules by applying a Maxwell distribution. PMID:27682410

  8. Internal Energy Deposition for Low Energy, Femtosecond Laser Vaporization and Nanospray Post-ionization Mass Spectrometry using Thermometer Ions

    NASA Astrophysics Data System (ADS)

    Flanigan, Paul M.; Shi, Fengjian; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    The internal energy of p-substituted benzylpyridinium ions after laser vaporization using low energy, femtosecond duration laser pulses of wavelengths 800 and 1042 nm was determined using the survival yield method. Laser vaporization of dried benzylpyridinium ions from metal slides into a buffered nanospray with 75 μJ, 800 nm laser pulses resulted in a higher extent of fragmentation than conventional nanospray due to the presence of a two-photon resonance fragmentation pathway. Using higher energy 800 nm laser pulses (280 and 505 μJ) led to decreased survival yields for the four different dried benzylpyridinium ions. Analyzing dried thermometer ions with 46.5 μJ, 1042 nm pulse-bursts resulted in little fragmentation and mean internal energy distributions equivalent to nanospray, which is attributable to the absence of a two-photon resonance that occurs with higher energy, 800 nm laser pulses. Vaporization of thermometer ions from solution with either 800 nm or 1042 nm laser pulses resulted in comparable internal energy distributions to nanospray ionization.

  9. Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints.

    PubMed

    Walton, Barbara L; Verbeck, Guido F

    2014-08-19

    Matrix-assisted laser desorption ionization (MALDI) imaging is gaining popularity, but matrix effects such as mass spectral interference and damage to the sample limit its applications. Replacing traditional matrices with silver particles capable of equivalent or increased photon energy absorption from the incoming laser has proven to be beneficial for low mass analysis. Not only can silver clusters be advantageous for low mass compound detection, but they can be used for imaging as well. Conventional matrix application methods can obstruct samples, such as fingerprints, rendering them useless after mass analysis. The ability to image latent fingerprints without causing damage to the ridge pattern is important as it allows for further characterization of the print. The application of silver clusters by soft-landing ion mobility allows for enhanced MALDI and preservation of fingerprint integrity.

  10. Identification of Weissella species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    PubMed Central

    Lee, Meng-Rui; Tsai, Chia-Jung; Teng, Shih-Hua; Hsueh, Po-Ren

    2015-01-01

    Although some Weissella species play beneficial roles in food fermentation and in probiotic products, others such as Weissella confusa are emerging Gram-positive pathogens in immunocompromised hosts. Weissella species are difficult to identify by conventional biochemical methods and commercial automated systems and are easily misidentified as Lactobacillus and Leuconostoc species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly being used for bacterial identification. Little, however, is known about the effectiveness of MALDI-TOF MS in identifying clinical isolates of Weissella to the species level. In this study, we evaluated whether the MALDI-TOF MS Bruker Biotyper system could accurately identify a total of 20 W. confusa and 2 W. cibaria blood isolates that had been confirmed by 16s rRNA sequencing analysis. The MALDI-TOF Biotyper system yielded no reliable identification results based on the current reference spectra for the two species (all score values <1.7). New W. confusa spectra were created by randomly selecting 3 W. confusa isolates and external validation was performed by testing the remaining 17 W. confusa isolates using the new spectra. The new main spectra projection (MSP) yielded reliable score values of >2 for all isolates with the exception of one (score value, 1.963). Our results showed that the MSPs in the current database are not sufficient for correctly identifying W. confusa or W. cibaria. Further studies including more Weissella isolates are warranted to further validate the performance of MALDI-TOF in identifying Weissella species. PMID:26594208

  11. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ferreira, L; Sánchez-Juanes, F; Porras-Guerra, I; García-García, M I; García-Sánchez, J E; González-Buitrago, J M; Muñoz-Bellido, J L

    2011-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows a fast and reliable bacterial identification from culture plates. Direct analysis of clinical samples may increase its usefulness in samples in which a fast identification of microorganisms can guide empirical treatment, such as blood cultures (BC). Three hundred and thirty BC, reported as positive by the automated BC incubation device, were processed by conventional methods for BC processing, and by a fast method based on direct MALDI-TOF MS. Three hundred and eighteen of them yield growth on culture plates, and 12 were false positive. The MALDI-TOF MS-based method reported that no peaks were found, or the absence of a reliable identification profile, in all these false positive BC. No mixed cultures were found. Among these 318 BC, we isolated 61 Gram-negatives (GN), 239 Gram-positives (GP) and 18 fungi. Microorganism identifications in GN were coincident with conventional identification, at the species level, in 83.3% of BC and, at the genus level, in 96.6%. In GP, identifications were coincident with conventional identification in 31.8% of BC at the species level, and in 64.8% at the genus level. Fungaemia was not reliably detected by MALDI-TOF. In 18 BC positive for Candida species (eight C. albicans, nine C. parapsilosis and one C. tropicalis), no microorganisms were identified at the species level, and only one (5.6%) was detected at the genus level. The results of the present study show that this fast, MALDI-TOF MS-based method allows bacterial identification directly from presumptively positive BC in a short time (<30 min), with a high accuracy, especially when GN bacteria are involved.

  12. Identification of Acinetobacter Species Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    PubMed Central

    Jeong, Seri; Hong, Jun Sung; Kim, Jung Ok; Kim, Keon-Han; Lee, Woonhyoung; Bae, Il Kwon; Lee, Kyungwon

    2016-01-01

    Background Acinetobacter baumannii has a greater clinical impact and exhibits higher antimicrobial resistance rates than the non-baumannii Acinetobacter species. Therefore, the correct identification of Acinetobacter species is clinically important. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has recently become the method of choice for identifying bacterial species. The purpose of this study was to evaluate the ability of MALDI-TOF MS (Bruker Daltonics GmbH, Germany) in combination with an improved database to identify various Acinetobacter species. Methods A total of 729 Acinetobacter clinical isolates were investigated, including 447 A. baumannii, 146 A. nosocomialis, 78 A. pittii, 18 A. ursingii, 9 A. bereziniae, 9 A. soli, 4 A. johnsonii, 4 A. radioresistens, 3 A. gyllenbergii, 3 A. haemolyticus, 2 A. lwoffii, 2 A. junii, 2 A. venetianus, and 2 A. genomospecies 14TU. After 212 isolates were tested with the default Bruker database, the profiles of 63 additional Acinetobacter strains were added to the default database, and 517 isolates from 32 hospitals were assayed for validation. All strains in this study were confirmed by rpoB sequencing. Results The addition of the 63 Acinetobacter strains' profiles to the default Bruker database increased the overall concordance rate between MALDI-TOF MS and rpoB sequencing from 69.8% (148/212) to 100.0% (517/517). Moreover, after library modification, all previously mismatched 64 Acinetobacter strains were correctly identified. Conclusions MALDI-TOF MS enables the prompt and accurate identification of clinically significant Acinetobacter species when used with the improved database. PMID:27139605

  13. Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect ss- and ds-Oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Tsen; Huang, Ming-Feng; Chang, Huan-Tsung

    2013-06-01

    We applied surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with HgTe nanostructures as the matrix for the detection of single- and double-stranded oligodeoxynucleotides (ss-ODNs and ds-ODNs). The concentrations of surfactant and additives (metal ions, an amine) and the pH and ionic strength of the sample matrix played significantly different roles in the detection of ss- and ds-ODNs with various sequences. In the presence of Brij 76 (1.5 %), Hg2+ (7.5 μM), and cadaverine (10 μM) at pH 5.0, this SALDI-MS approach allowed the simultaneous detection of T15, T20, T33, and T40, with limits of detection at the femtomole-to-picomole level and sample-to-sample intensity variation <23 %. In the presence of Ag+ (1 μM) and cadaverine (10 μM) at pH 7.0, this technique allowed the detection of randomly sequenced ss- and ds-ODNs at concentrations down to the femtomole level. To the best of our knowledge, this paper is the first to report the detection of ss-ODNs (up to 50-mer) and ds-ODNs (up to 30 base pairs) through the combination of SALDI-MS with HgTe nanostructures as matrices. We demonstrated the practicality of this approach through analysis of a single nucleotide polymorphism that determines the fate of the valine residue in the β-globin of sickle cell megaloblasts.

  14. Correlation of skin blanching and percutaneous absorption for glucocorticoid receptor agonists by matrix-assisted laser desorption ionization mass spectrometry imaging and liquid extraction surface analysis with nanoelectrospray ionization mass spectrometry.

    PubMed

    Marshall, Peter; Toteu-Djomte, Valerie; Bareille, Philippe; Perry, Hayley; Brown, Gillian; Baumert, Mark; Biggadike, Keith

    2010-09-15

    Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA) with nanoelectrospray ionization mass spectrometry (nESI-MS) have both been successfully employed to determine the degree of percutaneous absorption of three novel nonsteroid glucocorticoid receptor (GR) agonists in porcine ear sections. Historically, the ability of a glucocorticoid to elicit a skin blanching response when applied at low dose in ethanol solution to the forearms of healthy human volunteers has been a reliable predictor of their topical anti-inflammatory activity. While all three nonsteroidal GR agonists under investigation caused a skin blanching effect, the responses did not correlate with in vitro GR agonist potencies and different time courses were also observed for the skin blanching responses. MALDI MSI and LESA with nESI-MS were used to investigate and understand these different responses. The findings of the investigation was that the depth of porcine skin penetration correlates to the degree of skin blanching obtained for the same three compounds in human volunteers.

  15. Laser Ablation Sampling of Materials Directly into the Formed Liquid Microjunction of a Continuous Flow Surface Sampling Probe/Electrospray Ionization Emitter for Mass Spectral Analysis and Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Lorenz, Matthias; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    Transmission geometry laser ablation directly into a formed liquid microjunction of a continuous flow liquid microjunction surface sampling probe/electrospray ionization emitter was utilized for molecular and elemental detection and mass spectrometry imaging. The ability to efficiently capture and ionize ablated material was demonstrated by the detection of various small soluble n-mers of polyaniline and silver ion solvent clusters formed from laser ablation of electropolymerized polyaniline and silver thin films, respectively. In addition, analysis of surfaces that contain soluble components was accomplished by coating or laminating the sample with an insoluble film to enable liquid junction formation without directly extracting material from the surface. The ability to perform mass spectrometry imaging at a spatial resolution of about 50 m was illustrated by using laminated inked patterns on a microscope slide. In general, these data demonstrate at least an order of magnitude signal enhancement compared to the non-contact, laser ablation droplet capture-based surface sampling/ionization approaches that have been previously presented.

  16. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  17. In Situ Probing of Cholesterol in Astrocytes at the Single Cell Level using Laser Desorption Ionization Mass Spectrometric Imaging with Colloidal Silver

    SciTech Connect

    Perdian, D.C.; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S.; Yeung, Edward S.; and Lee, Young Jin

    2010-03-18

    Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level.

  18. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks.

    PubMed

    Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2015-08-12

    A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. PMID:26320964

  19. A technique for obtaining matrix-assisted laser desorption/ionization time-of-flight mass spectra of poorly soluble and insoluble aromatic polyamides.

    PubMed

    Gies, Anthony P; Nonidez, William K

    2004-04-01

    Wet grinding methods for obtaining matrix-assisted laser desorption/ionization time-of-flight mass spectra of poorly soluble and insoluble low molecular mass oligomers (<4600 Da) of Nomex and Kevlar are described. Optimum conditions for sample preparation are given along with a detailed analysis of the spectra obtained. Two matrix materials were employed in this analysis, 1,8-dihydroxyanthrone (dithranol) and 3-aminoquinoline with potassium trifluoroacetate used as the cationizing agent. The spectra obtained in this study are sensitive to the matrix, molar mixing ratios of matrix/polymer/cationizing agent, and the sample preparation method. PMID:15053662

  20. Mass-Selective Laser Photoionization.

    ERIC Educational Resources Information Center

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  1. INFRARED MATRIX-ASSISTED LASER DESORPTION ELECTROSPRAY IONIZATION (IR-MALDESI) IMAGING SOURCE COUPLED TO A FT-ICR MASS SPECTROMETER

    PubMed Central

    Robichaud, Guillaume; Barry, Jeremy A.; Garrard, Kenneth P.; Muddiman, David C.

    2013-01-01

    Mass spectrometry imaging (MSI) allows for the direct monitoring of the abundance and spatial distribution of chemical compounds over the surface of a tissue sample. This technology has opened the field of mass spectrometry to numerous innovative applications over the past 15 years. First used with SIMS and MALDI MS that operate under vacuum, interest has grown for mass spectrometry ionization sources that allow for effective imaging but where the analysis can be performed at ambient pressure with minimal or no sample preparation. We introduce here a versatile source for MALDESI imaging analysis coupled to a hybrid LTQ-FT-ICR mass spectrometer. The imaging source offers single shot or multi-shot capability per pixel with full control over the laser repetition rate and mass spectrometer scanning cycle. Scanning rates can be as fast as 1 pixel/second and a spatial resolution of 45 μm was achieved with oversampling. PMID:23208743

  2. Ultra-Fast Laser Desorption/Laser Ionization Mass Spectrometry for the Organic Analysis of Stardust Sample Return

    NASA Technical Reports Server (NTRS)

    Clemett, Simon J.; McKay, David S.

    2005-01-01

    The STARDUST sample return capsule is anticipated to provide 500-1000 cometary particles 15 m in size. These were collected during the 340 km flyby of Comet P/Wild-2 and impacted the aerogel collection medium at a relative velocity of approx. 6.1 /kms. Hypervelocity impact studies suggest that some fraction of the original organic inventory of collected particles ought to remain intact, although there is likely to be a significant amount of devolatilization and disassociation of the lower mass organic fraction.

  3. Mass resolved resonance ionization spectroscopy of combustion radicals

    SciTech Connect

    Not Available

    1992-06-23

    This report discusses the following topics: REMPI spectroscopy of HCO and DCO; Rempi spectroscopy of the ethynyl radical; REMPI spectroscopy of new electronic states of C{sub 2}; and a flame sampling laser ionization mass spectrometer.

  4. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    PubMed

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51).

  5. Detailed investigation on the possibility of nanoparticles of various metal elements for surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Yonezawa, Tetsu; Kawasaki, Hideya; Tarui, Akira; Watanabe, Takehiro; Arakawa, Ryuichi; Shimada, Toshihiro; Mafuné, Fumitaka

    2009-03-01

    In this paper, we describe systematic detailed considerations of the feasibility of using various metal nanoparticles for organic-matrix-free surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). In order to avoid the influence of organic molecules on the nanoparticles, stabilizer-free bare nanoparticles of Ag, Au, Cu and Pt were prepared by laser ablation. Although all metal nanoparticles absorbed N(2) laser light (337 nm) energy, the performance of desorption/ionization of a representative peptide, angiotensin I, strongly depended on the metal element. Citrate buffer was used as a proton source; it reduced the amount of alkali cation adducts present. Then, protonated molecules of analytes predominated in the mass spectra when Au and Pt nanoparticles were used. Pt nanoparticles showed the highest performance in SALDI-MS, owing to their smaller heat conductivity and higher melting temperature. The selective desorption of a cationic surfactant with longer alkyl chains and a peptide with methionine was also observed. PMID:19276588

  6. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of lysozyme contained in hen egg white.

    PubMed

    Smolira, Anna; Hałas, Stanisław

    2016-01-01

    As a natural antibacterial peptide, lysozyme (LZ) is widely used in medicine and the food industry. Despite many years of research on this compound, its new antibacterial properties are still to be determined. The primary aim of this work is to demonstrate the application of the matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometric analysis of LZ directly in hen egg white samples without extraction thereof. The egg white samples were kept over 10 weeks at room temperature and measured every week. The resulting positive and negative ion mass spectra were then compared to determine the intensity of the LZ mass peak. Storage of the egg white for over 10 weeks did not influence the LZ mass peak intensity (both positive and negative). It can be concluded that the LZ concentration in the egg white samples did not vary with time. The effect of the matrix/sample ratio on LZ detection was also examined, and it was found to be different in the case of positive and negative ionization. The mass peaks of LZ oligomeric forms were observed in all mass spectra, so the MALDI method could be used in subsequent studies. PMID:26863071

  7. Rapid identification of positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry using prewarmed agar plates.

    PubMed

    Bhatti, M M; Boonlayangoor, S; Beavis, K G; Tesic, V

    2014-12-01

    This study describes an inexpensive and straightforward method for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) directly from positive blood cultures using prewarmed agar plates. Different inoculation methods and incubation times were evaluated to determine the optimal conditions. The two methods using pelleted material from positive culture bottles performed best. In particular, the pellet streak method correctly identified 94% of the Gram negatives following 4 h of incubation and 98% of the Gram positives following 6 h of incubation.

  8. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  9. Intact lipid imaging of mouse brain samples: MALDI, nanoparticle-laser desorption ionization, and 40 keV argon cluster secondary ion mass spectrometry.

    PubMed

    Mohammadi, Amir Saeid; Phan, Nhu T N; Fletcher, John S; Ewing, Andrew G

    2016-09-01

    We have investigated the capability of nanoparticle-assisted laser desorption ionization mass spectrometry (NP-LDI MS), matrix-assisted laser desorption ionization (MALDI) MS, and gas cluster ion beam secondary ion mass spectrometry (GCIB SIMS) to provide maximum information available in lipid analysis and imaging of mouse brain tissue. The use of Au nanoparticles deposited as a matrix for NP-LDI MS is compared to MALDI and SIMS analysis of mouse brain tissue and allows selective detection and imaging of groups of lipid molecular ion species localizing in the white matter differently from those observed using conventional MALDI with improved imaging potential. We demonstrate that high-energy (40 keV) GCIB SIMS can act as a semi-soft ionization method to extend the useful mass range of SIMS imaging to analyze and image intact lipids in biological samples, closing the gap between conventional SIMS and MALDI techniques. The GCIB SIMS allowed the detection of more intact lipid compounds in the mouse brain compared to MALDI with regular organic matrices. The 40 keV GCIB SIMS also produced peaks observed in the NP-LDI analysis, and these peaks were strongly enhanced in intensity by exposure of the sample to trifluororacetic acid (TFA) vapor prior to analysis. These MS techniques for imaging of different types of lipids create a potential overlap and cross point that can enhance the information for imaging lipids in biological tissue sections. Graphical abstract Schematic of mass spectral imaging of a mouse brain tissue using GCIB-SIMS and MALDI techniques. PMID:27549796

  10. Intact lipid imaging of mouse brain samples: MALDI, nanoparticle-laser desorption ionization, and 40 keV argon cluster secondary ion mass spectrometry.

    PubMed

    Mohammadi, Amir Saeid; Phan, Nhu T N; Fletcher, John S; Ewing, Andrew G

    2016-09-01

    We have investigated the capability of nanoparticle-assisted laser desorption ionization mass spectrometry (NP-LDI MS), matrix-assisted laser desorption ionization (MALDI) MS, and gas cluster ion beam secondary ion mass spectrometry (GCIB SIMS) to provide maximum information available in lipid analysis and imaging of mouse brain tissue. The use of Au nanoparticles deposited as a matrix for NP-LDI MS is compared to MALDI and SIMS analysis of mouse brain tissue and allows selective detection and imaging of groups of lipid molecular ion species localizing in the white matter differently from those observed using conventional MALDI with improved imaging potential. We demonstrate that high-energy (40 keV) GCIB SIMS can act as a semi-soft ionization method to extend the useful mass range of SIMS imaging to analyze and image intact lipids in biological samples, closing the gap between conventional SIMS and MALDI techniques. The GCIB SIMS allowed the detection of more intact lipid compounds in the mouse brain compared to MALDI with regular organic matrices. The 40 keV GCIB SIMS also produced peaks observed in the NP-LDI analysis, and these peaks were strongly enhanced in intensity by exposure of the sample to trifluororacetic acid (TFA) vapor prior to analysis. These MS techniques for imaging of different types of lipids create a potential overlap and cross point that can enhance the information for imaging lipids in biological tissue sections. Graphical abstract Schematic of mass spectral imaging of a mouse brain tissue using GCIB-SIMS and MALDI techniques.

  11. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry.

    PubMed

    Ehlert, S; Hölzer, J; Rittgen, J; Pütz, M; Schulte-Ladbeck, R; Zimmermann, R

    2013-09-01

    Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully.

  12. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  13. Advanced stored waveform inverse Fourier transform technique for a matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometer.

    PubMed

    Doroshenko, V M; Cotter, R J

    1996-01-01

    The stored waveform inverse Fourier transform (SWIFT) technique is used for broadband excitation of ions in an ion-trap mass spectrometer to perform mass-selective accumulation, isolation, and fragmentation of peptide ions formed by matrix-assisted laser desorption/ionization. Unit mass resolution is achieved for isolation of ions in the range of m/z up to 1300 using a two-step isolation technique with stretched-in-time narrow band SWIFT pulses at the second stage. The effect of 'stretched-in-time' waveforms is similar to that observed previously for mass-scan-rate reduction. The asymmetry phenomenon resulting from the stretched ion-trap electrode geometry is observed during application of normal and time-reversed waveforms and is similar to the asymmetry effects observed for forward and reverse mass scans in the resonance ejection mode. Mass-selective accumulation of ions from multiple laser shots was accomplished using a method described earlier that involves increasing the trapping voltage during ion introduction for more efficient trapping of ions.

  14. Capillary column gas chromatography, resonance enhanced multiphoton ionization, time-of-flight mass spectrometry, laser-induced fluorescence, flame ionization detection system for the determination of polynuclear aromatic compounds in complex mixtures

    SciTech Connect

    Dobson, R.L.M.

    1986-01-01

    A method is reached to fully characterize the polynuclear aromatic hydrocarbons (PAC) that have been deemed to be highly mutagenic or carcinogenic. A multidimensional, laser-based analytical instrument has been developed that, when utilized to the full extent of its capabilities could be the solution to this complex analytical problem. The overall technique is termed Capillary Column Gas Chromatography, Resonance Enhanced Multiphoton Ionization, Time-of-Flight Mass Spectrometry, Laser-induced Fluorescence, with parallel Flame Ionization Detection (CC/GC-REMPI-TOF/MS-LIF-FID). This system combines the selectivity of two complementary laser-based methods, REMPI and LIF, with an extremely powerful and proven analytical tool, GC/MS. The GC effluent passes through the ion source of a TOF/MS, where it is interrogated by a tunable ultraviolet laser beam. Thus, PAC and other absorbing species may be selectively excited and/or ionized in the presence of nonabsorbing components. All laser-analyte interaction products (actions, electrons, and photons) are simultaneously monitored utilizing the TOF/MS, a total electron current detector (TECD), and a LIF detector. The main advantage of this technique is that all analytically useful data for each absorbing chromatographic eluent may be collected on-the-fly. The simultaneous availability of this information simplifies the characterization task. The present absolute detection limits for several PAC have been determined to be low picogram range. Also, a linear dynamic range of approximately four orders of magnitude has been established for the TECD, indicating that this technique is both sensitive and quantitative. Further, the use of deuterated analogs, of selected PAC, as internal reference standards greatly assists in quantitation.

  15. In situ identification of organic components of ink used in books from the 1900s by atmospheric pressure matrix assisted laser desorption ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Giurato, Laura; Candura, Andrea; Grasso, Giuseppe; Spoto, Giuseppe

    2009-11-01

    This paper describes the use of atmospheric pressure/matrix assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of organic components of inks used to print coloured parts of ancient books. The possibility to operate at atmospheric pressure makes MALDI-MS a new in situ micro-destructive diagnostic tool suitable for analysing samples in air, simplifying the investigation of the organic components of artistic and archaeological objects. In this work, several organic dyes and pigments were identified in situ by analysing different coloured areas of books printed in the years 1911 and 1920. The detected colouring materials, which were available since the 1890s, were often identified as a mixture, confirming the typical procedures used in the lithographic printing processes. The matrix deposition and the laser desorption process did not cause visible alteration of the sample surface.

  16. Fatal Nocardia farcinica Bacteremia Diagnosed by Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry in a Patient with Myelodysplastic Syndrome Treated with Corticosteroids

    PubMed Central

    Moretti, Amedeo; Guercini, Francesco; Cardaccia, Angela; Furbetta, Leone; Agnelli, Giancarlo; Bistoni, Francesco; Mencacci, Antonella

    2013-01-01

    Nocardia farcinica is a Gram-positive weakly acid-fast filamentous saprophytic bacterium, an uncommon cause of human infections, acquired usually through the respiratory tract, often life-threatening, and associated with different clinical presentations. Predisposing conditions for N. farcinica infections include hematologic malignancies, treatment with corticosteroids, and any other condition of immunosuppression. Clinical and microbiological diagnoses of N. farcinica infections are troublesome, and the isolation and identification of the etiologic agent are difficult and time-consuming processes. We describe a case of fatal disseminated infection in a patient with myelodysplastic syndrome, treated with corticosteroids, in which N. farcinica has been isolated from blood culture and identified by Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry. The patient died after 18 days of hospitalization in spite of triple antimicrobial therapy. Nocardia farcinica infection should be suspected in patients with history of malignancy, under corticosteroid therapy, suffering from subacute pulmonary infection,and who do not respond to conventional antimicrobial therapy. Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry can be a valuable tool for rapid diagnosis of nocardiosis. PMID:23690786

  17. Matrix-assisted laser desorption ionization/mass spectrometry mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited polyclonal antibody.

    PubMed

    Jeyarajah, S; Parker, C E; Summer, M T; Tomer, K B

    1998-02-01

    In this study we have applied epitope excision and epitope extraction strategies, combined with matrix assisted laser desorption/ionization mass spectrometry, to determine the fine structure of epitopes recognized by a polyclonal antibody to human immunodeficiency virus envelope glycoprotein gp120. This is the first application of this approach to epitope mapping on a large, heavily glycosylated protein. In the epitope excision method, gp120 in the native form is first bound to the antibody immobilized on sepharose beads and cleaved with endoproteinase enzymes. In the epitope extraction method, the gp120 was first proteolytically cleaved and then allowed to react with the immobilized antibody. The fragments that remain bound to the antibody, after repeated washing to remove the unbound peptides, contain the antigenic region that is recognized by the antibody, and the bound peptides in both methods can be characterized by direct analysis of the immobilized antibody by matrix assisted laser desorption ionization/mass spectrometry. In this study we have carried out epitope excision and extraction experiments with three different enzymes and have identified residues 472-478 as a major epitope. In addition, antigenic regions containing minor epitopes have also been identified.

  18. Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds.

    PubMed

    Rainer, Matthias; Qureshi, Muhammad Nasimullah; Bonn, Günther Karl

    2011-06-01

    The application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for the analysis of low molecular weight (LMW) compounds, such as pharmacologically active constituents or metabolites, is usually hampered by employing conventional MALDI matrices owing to interferences caused by matrix molecules below 700 Da. As a consequence, interpretation of mass spectra remains challenging, although matrix suppression can be achieved under certain conditions. Unlike the conventional MALDI methods which usually suffer from background signals, matrix-free techniques have become more and more popular for the analysis of LMW compounds. In this review we describe recently introduced materials for laser desorption/ionization (LDI) as alternatives to conventionally applied MALDI matrices. In particular, we want to highlight a new method for LDI which is referred to as matrix-free material-enhanced LDI (MELDI). In matrix-free MELDI it could be clearly shown, that besides chemical functionalities, the material's morphology plays a crucial role regarding energy-transfer capabilities. Therefore, it is of great interest to also investigate parameters such as particle size and porosity to study their impact on the LDI process. Especially nanomaterials such as diamond-like carbon, C(60) fullerenes and nanoparticulate silica beads were found to be excellent energy-absorbing materials in matrix-free MELDI.

  19. Direct identification of various copper phthalocyanine pigments in automotive paints and paint smears by laser desorption ionization mass spectrometry.

    PubMed

    Mukai, Tadashi; Nakazumi, Hiroyuki; Kawabata, Shin-ichirou; Kusatani, Masaru; Nakai, Seita; Honda, Sadao

    2008-01-01

    Direct identification of copper phthalocyanine (CuPc) and chlorinated CuPcs in paints for discrimination between blue automobile paints by means of laser desorption mass spectrometry (LDMS) in the absence of a matrix is reported. The models consisted of eight commercially available CuPc pigments applied to a piece of plain white coating paper. The relationship between the peak intensity at m/z 575 of the CuPc, the number of pulsed laser shots, and laser power was compared to optimize laser abrasion. LDMS analysis of the model paints demonstrated that all characteristic components of the CuPc pigments in the paint films were in good agreement with those in the powder pigments. Further, the chlorinated CuPcs in the paint films could be distinguished. A quantity of 42 blue paint films, representing the paints used for painting Japanese domestic trucks, was examined by LDMS analysis. Results indicate that the paints can be classified into four categories based on the chlorinated CuPc components of the paints. Therefore, LDMS spectra of CuPc pigments would be useful for the identification of paints in forensic investigations. Herein, we report the successful identification of the CuPcs in a paint smear on the frame of a bicycle damaged in a hit-and-run accident, using the LDMS spectra.

  20. Attomole biomolecule mass analysis by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance.

    PubMed

    Solouki, T; Marto, J A; White, F M; Guan, S; Marshall, A G

    1995-11-15

    Significantly improved sensitivity for analysis of biomolecules by MALDI FT-ICR mass spectrometry is achieved by (i) microscope-monitored sample deposition onto a small indentation on the probe tip and (ii) multiple remeasurement of ions from a single laser shot. A simple modification to the solids probe tip allows for microdeposition of a few amols of analyte onto small indentation spots previously aligned with the laser beam. Ion multiple remeasurement of the same ion packet enhances the signal-to-noise ratio and thus extends the achievable FT-ICR MS detection limit. We demonstrate that FT-ICR can be used to detect parent and structurally significant fragment ions of peptides and phospholipids at low amol amounts. Positive ion mass spectra for approximately 90 amol of a mixture of angiotensin II and bradykinin, approximately 40 amol of dipalmitoylglycerophosphatidylcholine, and approximately 8 amol of substance P constitute the lowest reported detection limits to date for FT-ICR mass analysis of MALDI-generated ions.

  1. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of environmental organisms: the Planctomycetes paradigm.

    PubMed

    Cayrou, Caroline; Raoult, Didier; Drancourt, Michel

    2010-12-01

    We have developed a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based identification technique for Planctomycetes organisms, which are used here as bacteria of suitable diversity at genus and species level for testing resolution of the method. Planctomyces maris ATCC 29201, Planctomyces brasiliensis ATCC 49424(T) , P. brasiliensis ATCC 49425, Planctomyces limnophilus ATCC 43296(T) , Blastopirellula marina ATCC 49069(T) , Rhodopirellula baltica DSM 10527(T) and Gemmata obscuriglobus DSM 5831(T) were cultured on half-strength marine broth and agar, or alternatively on caulobacter broth and agar. The resulting pellets of organisms (liquid) or colonies (solid agar) were directly applied to a MALDI-TOF plate. This yielded a reproducible, unique protein profiles comprising 23-39 peaks ranging in size from 2403 to 12 091 Da. These peaks were unambiguously distinguished from any of the 3038 bacterial spectra in the Brüker database. Matrix-assisted laser desorption/ionization time-of-flight patterns were similar for isolates grown in solid and in liquid medium, albeit the patterns from solid growth were more easily interpretable. After the incorporation of the herein determined profiles into the Brüker database, Planctomycetes isolates were blindly identified within 10 min, with an identification score in the range of 1.8 to 2.3. Matrix-assisted laser desorption/ionization time-of-flight-based clustering of these Planctomycetes organisms was consistent with 16S rDNA-based phylogeny. However, the incorporation of additional non-Planctomycetes MALDI-TOF profiles in the analysis resulted in inconsequential clustering. In conclusion, MALDI-TOF protein profiling is a new approach for the rapid and accurate identification of cultured environmental organisms, as illustrated in this study through the analysis of Planctomycetes. PMID:23766281

  2. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  3. Nanotip Ambient Ionization Mass Spectrometry.

    PubMed

    Zhou, Zhenpeng; Lee, Jae Kyoo; Kim, Samuel C; Zare, Richard N

    2016-05-17

    A method called nanotip ambient ionization mass spectrometry (NAIMS) is described, which applies high voltage between a tungsten nanotip and a metal plate to generate a plasma in which ionized analytes on the surface of the metal plate are directed to the inlet and analyzed by a mass spectrometer. The dependence of signal intensity is investigated as a function of the tip-to-plate distance, the tip size, the voltage applied at the tip, and the current. These parameters are separately optimized to achieve sensitivity or high spatial resolution. A partially observable Markov decision process is used to achieve a stabilized plasma as well as high ionization efficiency. As a proof of concept, the NAIMS technique has been applied to phenanthrene and caffeine samples for which the limits of detection were determined to be 0.14 fmol for phenanthrene and 4 amol for caffeine and to a printed caffeine pattern for which a spatial resolution of 8 ± 2 μm, and the best resolution of 5 μm, was demonstrated. The limitations of NAIMS are also discussed. PMID:27087600

  4. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Kawasaki, Hideya; Sugitani, Tsuyoshi; Watanabe, Takehiro; Yonezawa, Tetsu; Moriwaki, Hiroshi; Arakawa, Ryuichi

    2008-10-01

    Layer-by-layer (LBL) self-assembled multilayer films of gold nanoparticles (AuNPs) on a silicon wafer were demonstrated to be promising substrates for surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) of peptides and environmental pollutants for the first time. LBL multilayer films, (AuNPs/PAHC)n, consisting of alternating layers of ammonium citrate capped AuNPs and poly(allylamine hydrochloride) (PAHC) were prepared on a silicon surface. Silicon plates with aggregated AuNPs were more suitable than those with dispersed AuNPs for the SALDI-MS of peptides. The number of particle layers had a significant effect on the laser desorption/ionization of angiotensin I; the peak intensity of the peptide (molecular ion amount) increased with an increase in the number of layers of AuNPs. As a result, the (AuNPs/PAHC)5 multilayer films increased the sensitivity of the angiotensin I to subfemtomoles and raised the useful analyte mass range, thus making it possible to detect small proteins (a 12 kDa cytochrome c). The signal enhancement when using (AuNPs/PAHC)5 may be due to (i) the high absorption of the UV laser light at 337 nm by the AuNP layers, (ii) the low thermal conductivity due to the AuNPs being covered with a thin monolayer of PAHC, and (iii) the increase in the surface roughness (approximately 100 nm) with the number of AuNP layers. Thus, laser-induced rapid high heating of AuNPs for effective desorption/ionization of peptides is possible. In addition, it was found that (AuNPs/PAHC)5 could be used to extract environmental pollutants (pyrene and dimethyldistearylammonium chloride) from very dilute aqueous solutions with concentrations less than 10(-10) mg/mL, and the analytes trapped in the LBL film could be identified by introducing the film directly into the SALDI mass spectrometer without needing to elute the analytes out of the film.

  5. Effect of delay time and grid voltage changes on the average molecular mass of polydisperse polymers and polymeric blends determined by delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Mineo, Placido; Vitalini, Daniele; Scamporrino, Emilio; Bazzano, Sebastiano; Alicata, Rossana

    2005-01-01

    The dependence of the calculated average molecular mass of a polyethylene glycol with a large polydispersity on the instrumental parameters adopted in the acquisition of mass spectra using delayed extraction matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (DE MALDI-TOFMS) was investigated. It has been shown that a combined effect of delay times and potential gradients can act on the ion cloud in the source chamber affecting both mass resolution and average molecular mass value of the analyzed polymeric sample. Also examined was a blend of two different polymers (a PEG and a PMMA commercial sample having a similar average molecular mass), which presents an additional problem concerning the discrimination among the different polymer species as a function of the experimental conditions. In this work, the best instrumental conditions to obtain both good resolution and a correct average molecular mass for the examined polydisperse sample are reported. PMID:16134231

  6. Tailor-Made Stable Zr(IV)-Based Metal-Organic Frameworks for Laser Desorption/Ionization Mass Spectrometry Analysis of Small Molecules and Simultaneous Enrichment of Phosphopeptides.

    PubMed

    Chen, Lianfang; Ou, Junjie; Wang, Hongwei; Liu, Zhongshan; Ye, Mingliang; Zou, Hanfa

    2016-08-10

    Although thousands of metal-organic frameworks (MOFs) have been fabricated and widely applied in gas storage/separations, adsorption, catalysis, and so on, few kinds of MOFs have been used as adsorption materials while simultaneously serving as matrixes to analyze small molecules for laser desorption/ionization mass spectrometry (LDI-MS). Herein, a new concept is introduced to design and synthesize MOFs as both adsorption materials and matrixes according to the structure of ligands and common matrixes. The proof of concept design was demonstrated by selection of 2,5-pyridinedicarboxylic acid (PDC) and 2,5-dihydroxyterephthalic acid (DHT) as ligands for synthesis of MOFs. Two Zr(IV)-based MOFs of UiO-66-PDC and UiO-66-(OH)2 were synthesized and applied for the first time as new matrixes for analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Both of them showed low matrix interferences, high ionization efficiency, and good reproducibility when used as matrixes. A variety of small molecules, including saccharides, amino acids, nucleosides, peptides, alkaline drugs, and natural products, were analyzed. In addition, UiO-66-(OH)2 exhibited potential for application in the quantitative determination of glucose and pyridoxal 5'-phosphate. Furthermore, thanks to its intrinsically large surface area and highly ordered pores, UiO-66-(OH)2 also showed sensitive and specific enrichment of phosphopeptides prior to MS analysis. These results demonstrated that this strategy can be used to efficiently screen tailor-made MOFs as matrixes to analyze small molecules by MALDI-TOF-MS. PMID:27427857

  7. Development of Spectral Pattern Matching Approaches to Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry for Bacterial Identification

    SciTech Connect

    Jarman, Kristin H.; Wahl, Karen L.

    2005-12-01

    The concept of rapid microorganism identification using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) dates back to the mid-1990’s. Prior to 1998, researchers relied on visual inspection in an effort to demonstrate feasibility of MALDI-MS for bacterial identification (Holland, Wilkes et al. 1996), (Krishnamurthy and Ross 1996), (Claydon, Davey et al. 1996). In general, researchers in these early studies visually compared the biomarker intensity profiles between different organisms and between replicates of the same organism to show that MALDI signatures are unique and reproducible. Manual tabulation and comparison of potential biomarker mass values observed for different organisms was used by numerous researchers to qualitatively characterize microorganisms using MALDI-MS spectra (e.g. (Lynn, Chung et al. 1999), (Winkler, Uher et al. 1999), (Ryzhov, Hathout et al. 2000), (Nilsson 1999)).

  8. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    PubMed

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  9. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues

    PubMed Central

    2016-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is used for the multiplex detection and characterization of diverse analytes over a wide mass range directly from tissues. However, analyte coverage with MALDI MSI is typically limited to the more abundant compounds, which have m/z values that are distinct from MALDI matrix-related ions. On-tissue analyte derivatization addresses these issues by selectively tagging functional groups specific to a class of analytes, while simultaneously changing their molecular masses and improving their desorption and ionization efficiency. We evaluated electrospray deposition of liquid-phase derivatization agents as a means of on-tissue analyte derivatization using 2-picolylamine; we were able to detect a range of endogenous fatty acids with MALDI MSI. When compared with airbrush application, electrospray led to a 3-fold improvement in detection limits and decreased analyte delocalization. Six fatty acids were detected and visualized from rat cerebrum tissue using a MALDI MSI instrument operating in positive mode. MALDI MSI of the hippocampal area allowed targeted fatty acid analysis of the dentate gyrus granule cell layer and the CA1 pyramidal layer with a 20-μm pixel width, without degrading the localization of other lipids during liquid-phase analyte derivatization. PMID:27181709

  10. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues.

    PubMed

    Wu, Qian; Comi, Troy J; Li, Bin; Rubakhin, Stanislav S; Sweedler, Jonathan V

    2016-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is used for the multiplex detection and characterization of diverse analytes over a wide mass range directly from tissues. However, analyte coverage with MALDI MSI is typically limited to the more abundant compounds, which have m/z values that are distinct from MALDI matrix-related ions. On-tissue analyte derivatization addresses these issues by selectively tagging functional groups specific to a class of analytes, while simultaneously changing their molecular masses and improving their desorption and ionization efficiency. We evaluated electrospray deposition of liquid-phase derivatization agents as a means of on-tissue analyte derivatization using 2-picolylamine; we were able to detect a range of endogenous fatty acids with MALDI MSI. When compared with airbrush application, electrospray led to a 3-fold improvement in detection limits and decreased analyte delocalization. Six fatty acids were detected and visualized from rat cerebrum tissue using a MALDI MSI instrument operating in positive mode. MALDI MSI of the hippocampal area allowed targeted fatty acid analysis of the dentate gyrus granule cell layer and the CA1 pyramidal layer with a 20-μm pixel width, without degrading the localization of other lipids during liquid-phase analyte derivatization.

  11. Sample-first preparation: a method for surface-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of cyclic oligosaccharides.

    PubMed

    Wu, Hsin-Pin; Su, Chih-Lin; Chang, Hui-Chiu; Tseng, Wei-Lung

    2007-08-15

    A new sample preparation method for the analysis of cyclic oligosaccharides in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is presented. We call this new technique "sample first method", in which a sample is deposited first and then bare gold nanoparticles (AuNPs), which serve as the SALDI matrixes, are added to the top of the sample layer. The use of the sample first method offers significant advantages for improving shot-to-shot reproducibility, enhancing the ionization efficiency of the analyte, and reducing sample preparation time as compared to the dried-droplet method, wherein samples and bare AuNPs are mixed and dried together. The relative standard deviation (RSD) values of the signal intensity as calculated from 65 sample spots was 25% when the sample first methods were applied to the analysis of beta-cyclodextrin. The results were more homogeneous as compared to the outcome using dried-droplet preparation of AuNPs (RSD=66%) and 2,5-dihydroxybenzoic acid (RSD=209%). We also found out that the optimal concentration of AuNP for ionization efficiency is 7.4 nM (4.52x10(12) particles/mL) while the lowest detectable concentration of cyclic oligosaccharides through this approach is 0.25 microM. Except for the cyclic oligosaccharide, the proposed method was also applied to the analyses of other biological samples, including neutral carbohydrate and steroid, aminothiols, and peptides as well as proteins.

  12. Capillary column gas chromatography, resonance enhanced multiphoton ionization, time-of-flight mass spectrometry laser-induced fluorescence, flame ionization detection system for the determination of polynuclear aromatic compounds in complex mixtures

    SciTech Connect

    Dobson, R.L.M.

    1986-06-01

    Of the thousands of chemical compounds that have been deemed mutagenic or carcinogenic, it is generally agreed that the polynuclear aromatic hydrocarbons (PAC) are among the most potent. Because of the wide range of potency of PAC, even among geometric isomers and substitutional derivatives, it is important to fully characterize these samples. This task is a formidable one, usually requiring elaborate sample clean-up and fractionation prior to analysis. A multidimensional, laser-based analytical instrument has been developed that, when utilized to the full extent of its capabilities, could be the solution to this complex analytical problem. The overall technique is termed Capillary Column Gas Chromatography, Resonance Enhanced Multiphoton Ionization, Time-Of-Flight Mass Spectrometry, Laser-induced Fluorescence, with parallel Flame Ionization Detection (CC/GC-REMPI-TOF/MS-LIF-FID). This system combines the selectivity and sensitivity of two complementary laser-based methods, REMPI and LIF, with an extremely powerful and proven analytical tool, GC/MS. The GC effluent passes through the ion source of a TOF/MS, where it is interrogated by a tunable ultraviolet laser beam. All laser-analyte interaction products (cations, electrons, and photons) are simultaneously monitored utilizing the TOF/MS, a total electron current detector (TECD), and a LIF detector. The simultaneous availability of this information simplifies the characterization task. The present absolute detection limits for several PAC have been determined to be in the low picogram range. Also, a linear dynamic range of approximately four orders of magnitude has been established for the TECD, indicating that this technique is both sensitive and quantitative. Further, the use of deuterated analogs, of selected PAC, as internal reference standards greatly assists in quantitation. 219 refs., 37 figs., 13 tabs.

  13. Exploring Biosignatures Associated with Thenardite by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (GALDI-FTICR-MS)

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Timothy R. McJunkin; J. Michelle Kotler; Jill R. Scott

    2008-10-01

    Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) has been employed to determine how effectively bio/organic molecules associated with the mineral thenardite (Na2SO4) can be detected. GALDI is based on the ability of the mineral host to assist desorption and ionization of bio/organic molecules without additional sample preparation. When glycine was mixed with thenardite, glycine was deprotonated to produce C2H4NO-2 at m/z 74.025. The combination of stearic acid with thenardite produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned a composition ofC18H39O7Na-. Anatural sample of thenardite from Searles Lake in California also produced a peak at m/z 390.260. The bio/organic signatures in both the laboratory-based and natural samples were heterogeneously dispersed as revealed by chemical imaging. The detection limits for the stearic acid and thenardite combination were estimated to be 3 parts per trillion or~7 zeptomoles (10-21) per laser spot. Attempts to improve the signal-to-noise ratio by co-adding FTICR-MS data predetermined to contain the biosignatures of interest revealed problems due to a lack of phase coherence between data sets.

  14. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated. PMID:27169661

  15. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  16. Fundamental studies of matrix-assisted laser desorption/ionization, using time-of-flight mass spectrometry to identify biological molecules

    SciTech Connect

    Eades, D.; Wruck, D.; Gregg, H.

    1996-11-11

    MALDI MS was developed as a way of getting molecular weight information on small quantities (picomole to femtomole levels) of high-mass, thermally labile macromolecules. While most other analytical MS ionization techniques cause fragmentation, decomposition, or multiple charging, MALDI efficiently places intact macromolecules into the gas phase with little fragmentation or rearrangement. This project had 3 objectives: establish the MALDI capability at LLNL, perform fundamental studies of analyte-matrix interactions, and apply the technique for biochemical research. A retired time-of-flight instrument was adapted for MALDI analyses, relevant parameters influencing the MALDI process were identified for further study (matrix molar absorptivity, sample crystal preparation), and collaborations were established with research groups in the Biology and Biotechnology Research Program at LLNL. In MALDI, the macromolecule of interest is mixed with a high-molar excess (1:100 to 1:10,000) of an organic matrix which readily absorbs energy at the wavelength corresponding to a UV laser. Upon laser irradiation, the matrix absorbs the majority of the energy, causing it to desorb from the surface and gently release the macromolecule into the gas phase with little or no fragmentation. Once in the gas phase, ion-molecule reactions between excited matrix and neutral macromolecules generated ionized analyte species which then can be focused into a MS for detection.

  17. The value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in identifying clinically relevant bacteria: a comparison with automated microbiology system

    PubMed Central

    Zhou, Chunmei; Huang, Shenglei; Shan, Yuzhang; Ye, Xiangru

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been developed as a new-type soft ionization mass spectrometry in the recent year. Increasing number of clinical microbiological laboratories consider it as an innovate approach for bacterial identification. Methods A total of 876 clinical strains, comprising 52 species in 27 genus, were obtained from Fudan University Affiliated Zhongshan Hospital. We compared the identification accuracy of the Vitek MS system (bioMerieux, Marcy l’Etoile) to other conventional methods for bacterial identification. 16S rRNA gene sequencing was performed as a reference identification method in cases of discrepant results. Results The Vitek MS system consistently produced accurate results within minutes of loading, while conventional methods required several hours to produce identification results. Among the 876 isolates, the overall performance of Vitek MS was significantly better than the conventional method both for correct species identification (830, 94.7% vs. 746, 85.2%, respectively, P=0.000). Conclusions Compared to traditional identification methods, MALDI-TOF MS is a rapid, accurate and economical technique to enhance the clinical value of microorganism identification. PMID:24822117

  18. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R(2) > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis. Graphical Abstract ᅟ.

  19. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.

  20. Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhang, Boyu; Zhang, Hong; Myers, Brittany K; Elupula, Ravinder; Jayawickramarajah, Janarthanan; Grayson, Scott M

    2014-03-13

    End groups play a critical role in macromolecular coupling reactions for building complex polymer architectures, yet their identity and purity can be difficult to ascertain using traditional analytical technique. Recent advances in mass spectrometry techniques have made matrix-assisted laser desorption/ionization time-of-fight (MALDI-TOF) mass spectrometry a rapid and powerful tool for providing detailed information about the identity and purity of homopolymer end groups. In this work, MALDI-TOF mass spectrometry was used to study end groups of linear polyethylene glycols. In particular, the identifications of alcohol, amine and thiol end groups are investigated because these nucleophilic moieties are among the most common within biological and synthetic macromolecules. Through comparative characterization of alcohol, amine, and thiol end groups, the exact identification of these end groups could be confirmed by selective and quantitative modification. The precision of this technique enables the unambiguous differentiation of primary amino groups relative to hydroxyl groups, which differ by only 1 mass unit. In addition, the quantitative conversion of various polyethylene glycol end groups using highly efficient coupling reactions such as the thiol-ene and azide-alkyne click reactions can be confirmed using MALDI-TOF mass spectrometry.

  1. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  2. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging.

    PubMed

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian; Römpp, Andreas; Spengler, Bernhard

    2014-10-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to obtain high-resolution imaging in mass and space. Sections of the rhizome were imaged with a spatial resolution of 10 μm in the positive ion mode, and a large number of secondary metabolites were localized and identified based on their accurate mass and MS/MS fragmentation patterns. Major tissue-specific metabolites, including free flavonoids, flavonoid glycosides and saponins, were successfully detected and visualized in images, showing their distributions at the cellular level. The analytical power of the technique was tested in the imaging of two isobaric licorice saponins with a mass difference of only 0.02 Da. With a mass resolving power of 140 000 and a bin width of 5 ppm in the image processing, the two compounds were well resolved in full-scan mode, and appeared with different distributions in the tissue sections. The identities of the compounds and their distributions were validated in a subsequent MS/MS imaging experiment, thereby confirming their identities and excluding possible analyte interference. The use of high spatial resolution, high mass resolution and tandem mass spectrometry in imaging experiments provides significant information about the biosynthetic pathway of flavonoids and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high-throughput profiling of metabolites in plant tissues.

  3. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  4. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging (MALDI MSI)

    PubMed Central

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-01-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers. PMID:25893271

  5. Nanostructured indium tin oxide slides for small-molecule profiling and imaging mass spectrometry of metabolites by surface-assisted laser desorption ionization MS.

    PubMed

    López de Laorden, Carlos; Beloqui, Ana; Yate, Luis; Calvo, Javier; Puigivila, Maria; Llop, Jordi; Reichardt, Niels-Christian

    2015-01-01

    Due to their electrical conductivity and optical transparency, slides coated with a thin layer of indium tin oxide (ITO) are the standard substrate for protein imaging mass spectrometry on tissue samples by MALDI-TOF MS. We have now studied the rf magnetron sputtering deposition parameters to prepare ITO thin films on glass substrates with the required nanometric surface structure for their use in the matrix-free imaging of metabolites and small-molecule drugs, without affecting the transparency required for classical histology. The custom-made surfaces were characterized by atomic force microscopy, scanning electron microscopy, ellipsometry, UV, and laser desorption ionization MS (LDI-MS) and employed for the LDI-MS-based analysis of glycans and druglike molecules, the quantification of lactose in milk by isotopic dilution, and metabolite imaging on mouse brain tissue samples. PMID:25411795

  6. Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ

    SciTech Connect

    Sturtevant, Drew; Lee, Young -Jin; Chapman, Kent D.

    2015-11-22

    Direct visualization of plant tissues by matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has revealed key insights into the localization of metabolites in situ. Recent efforts have determined the spatial distribution of primary and secondary metabolites in plant tissues and cells. Strategies have been applied in many areas of metabolism including isotope flux analyses, plant interactions, and transcriptional regulation of metabolite accumulation. Technological advances have pushed achievable spatial resolution to subcellular levels and increased instrument sensitivity by several orders of magnitude. Furthermore, it is anticipated that MALDI-MSI and other MSI approaches will bring a new level of understanding to metabolomics as scientists will be encouraged to consider spatial heterogeneity of metabolites in descriptions of metabolic pathway regulation.

  7. Speciation studies on DTPA using the complementary nature of electrospray ionization mass spectrometry and time-resolved laser-induced fluorescence.

    PubMed

    Moulin, Christophe; Amekraz, Badia; Steiner, Valerie; Plancque, Gabriel; Ansoborlo, Eric

    2003-09-01

    Decorporation of radionuclides is of continuous interest in order to reduce doses in case of occupational or accidental human exposure. In the present study, insights into the non-covalent interactions that hold the well-known chelating agent DTPA (diethylenetriaminepentaacetic acid) with inorganic elements of interest, such as europium and strontium, and their ability to form stable complexes, are investigated with two spectroscopic techniques, i.e., electrospray ionization mass spectrometry (ESI-MS) and time-resolved laser-induced fluorescence (TRLIF). First investigations are on DTPA and europium alone and end with a complete study of the Eu-DTPA system. The pH variation allows one to readily investigate whether different species (protonated, hydrolyzed, etc.) exist in the pH range 2-9 and evaluate the stoichiometry and conditional stability constant for the Eu-DTPA complex. Additional experiments by ESI-MS are reported for Sr(II) in interaction with DTPA and EDTA.

  8. Preparation of porous styrenics-based monolithic layers for thin layer chromatography coupled with matrix-assisted laser-desorption/ionization time-of-flight mass spectrometric detection.

    PubMed

    Lv, Yongqin; Lin, Zhixing; Tan, Tianwei; Svec, Frantisek

    2013-11-01

    Monolithic 50 μm thin poly(4-methylstyrene-co-chloromethylstyrene-co-divinylbenzene) layers attached to 6.0 cm × 3.3 cm glass plates have been prepared, using a thermally initiated polymerization process. These layers had a well-defined porous structure with a globular morphology demonstrated with SEM images and exhibited superhydrophobic properties characterized with a water contact angle of 157°. They were then used for thin-layer chromatography of peptides and proteins fluorescently labeled with fluorescamine. The spots of individual separated compounds were visualized using UV light, and their identities were confirmed with a matrix-assisted laser desorption/ionization time of flight mass spectrometry. The presence of chloromethylstyrene units in the polymer enabled hypercrosslinking via a Friedel-Crafts alkylation reaction, and led to monoliths with much larger surface areas, which were suitable for separations of small dye molecules.

  9. Rapid inactivation of Mycobacterium and nocardia species before identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Dunne, W Michael; Doing, Kirk; Miller, Elizabeth; Miller, Eric; Moreno, Erik; Baghli, Mehdi; Mailler, Sandrine; Girard, Victoria; van Belkum, Alex; Deol, Parampal

    2014-10-01

    The identification of mycobacteria outside biocontainment facilities requires that the organisms first be rendered inactive. Exposure to 70% ethanol (EtOH) either before or after mechanical disruption was evaluated in order to establish a safe, effective, and rapid inactivation protocol that is compatible with identification of Mycobacterium and Nocardia species using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A combination of 5 min of bead beating in 70% EtOH followed by a 10-min room temperature incubation period was found to be rapidly bactericidal and provided high-quality spectra compared to spectra obtained directly from growth on solid media. The age of the culture, the stability of the refrigerated or frozen lysates, and freeze-thaw cycles did not adversely impact the quality of the spectra or the identification obtained.

  10. Determination of bacterial protein profiles by matrix-assisted laser desorption/ionization mass spectrometry with high-performance liquid chromatography.

    PubMed

    Liang, X; Zheng, K; Qian, M G; Lubman, D M

    1996-01-01

    A rapid method for profiling bacterial and cellular proteins has been developed using a combination of capillary high-performance liquid chromatography separation followed by (MALDI-MS) matrix-assisted laser desorption/ionization mass spectrometric analysis. In this method, bacteria are sonicated, the cell walls broken, and the water-soluble proteins precipitated for analysis. The proteins are separated by capillary liquid chromatography and detected on-line by a UV absorption detector. The eluents are then collected for off-line analysis by MALDI-MS. Using this method, it is demonstrated that bacteria can be discriminated based upon their protein profiles to the species level with only pmol level detection of proteins. It has also proved to be a fast and accurate means for monitoring the expression of Hsp27 in an insect cell system.

  11. Characterization of on-target generated tryptic peptides from Giberella zeae conidia spore proteins by means of matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Dong, Hongjuan; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Traditionally characterization of microbial proteins is performed by a complex sequence of steps with the final step to be either Edman sequencing or mass spectrometry, which generally takes several weeks or months to be complete. In this work, we proposed a strategy for the characterization of tryptic peptides derived from Giberella zeae (anamorph: Fusarium graminearum) proteins in parallel to intact cell mass spectrometry (ICMS) in which no complicated and time-consuming steps were needed. Experimentally, after a simple washing treatment of the spores, the aliquots of the intact G. zeae macro conidia spores solution, were deposited two times onto one MALDI (matrix-assisted laser desorption ionization) mass spectrometry (MS) target (two spots). One spot was used for ICMS and the second spot was subject to a brief on-target digestion with bead-immobilized or non-immobilized trypsin. Subsequently, one spot was analyzed immediately by MALDI MS in the linear mode (ICMS) whereas the second spot containing the digested material was investigated by MALDI MS in the reflectron mode ("peptide mass fingerprint") followed by protonated peptide selection for MS/MS (post source decay (PSD) fragment ion) analysis. Based on the formed fragment ions of selected tryptic peptides a complete or partial amino acid sequence was generated by manual de novo sequencing. These sequence data were used for homology search for protein identification. Finally four different peptides of varying abundances have been identified successfully allowing the verification that our desorbed/ionized surface compounds were indeed derived from proteins. The presence of three different proteins could be found unambiguously. Interestingly, one of these proteins is belonging to the ribosomal superfamily which indicates that not only surface-associated proteins were digested. This strategy minimized the amount of time and labor required for obtaining deeper information on spore preparations within the

  12. A simple and accurate SNP scoring strategy based on typeIIS restriction endonuclease cleavage and matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Hong, Sun Pyo; Ji, Seung Il; Rhee, Hwanseok; Shin, Soo Kyeong; Hwang, Sun Young; Lee, Seung Hwan; Lee, Soong Deok; Oh, Heung-Bum; Yoo, Wangdon; Kim, Soo-Ok

    2008-01-01

    Background We describe the development of a novel matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-based single nucleotide polymorphism (SNP) scoring strategy, termed Restriction Fragment Mass Polymorphism (RFMP) that is suitable for genotyping variations in a simple, accurate, and high-throughput manner. The assay is based on polymerase chain reaction (PCR) amplification and mass measurement of oligonucleotides containing a polymorphic base, to which a typeIIS restriction endonuclease recognition was introduced by PCR amplification. Enzymatic cleavage of the products leads to excision of oligonucleotide fragments representing base variation of the polymorphic site whose masses were determined by MALDI-TOF MS. Results The assay represents an improvement over previous methods because it relies on the direct mass determination of PCR products rather than on an indirect analysis, where a base-extended or fluorescent report tag is interpreted. The RFMP strategy is simple and straightforward, requiring one restriction digestion reaction following target amplification in a single vessel. With this technology, genotypes are generated with a high call rate (99.6%) and high accuracy (99.8%) as determined by independent sequencing. Conclusion The simplicity, accuracy and amenability to high-throughput screening analysis should make the RFMP assay suitable for large-scale genotype association study as well as clinical genotyping in laboratories. PMID:18538037

  13. Paraffin-wax-coated plates as matrix-assisted laser desorption/ionization sample support for high-throughput identification of proteins by peptide mass fingerprinting.

    PubMed

    Tannu, Nilesh S; Wu, Jian; Rao, Vamshi K; Gadgil, Himanshu S; Pabst, Michael J; Gerling, Ivan C; Raghow, Rajendra

    2004-04-15

    We compared trysin-digested protein samples desalted by ZipTip(C18) reverse-phase microcolumns with on-plate washing of peptides deposited either on paraffin-coated plates (PCP), Teflon-based AnchorChip plates, or stainless steel plates, before analysis by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Trypsinized bovine serum albumin and ovalbumin and 16 protein spots extracted from silver-stained two-dimensional gels of murine C(2)C(12) myoblasts or human leukocytes, prepared by the above two methods, were subjected to MALDI on PCP, AnchorChip plates, or uncoated stainless steel plates. Although most peptide mass peaks were identical regardless of the method of desalting and concentrating of protein samples, samples washed and concentrated by the PCP-based method had peptide peaks that were not seen in the samples prepared using the ZipTip(C18) columns. The mass spectra of peptides desalted and washed on uncoated stainless steel MALDI plates were consistently inferior due to loss of peptides. Some peptides of large molecular masses were apparently lost from samples desalted by ZipTip(C18) microcolumns, thus diminishing the quality of the fingerprint needed for protein identification. We demonstrate that the method of washing of protein samples on paraffin-coated plates provides an easy, reproducible, inexpensive, and high-throughput alternative to ZipTip(C18)-based purification of protein prior to MALDI-TOF-MS analysis.

  14. Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization.

    PubMed

    Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V

    2013-01-01

    Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.

  15. Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry.

    PubMed

    Trimpin, Sarah; Inutan, Ellen D

    2013-05-01

    An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.

  16. Characterization and de novo sequencing of snow crab tropomyosin enzymatic peptides by both electrospray ionization and matrix-assisted laser desorption ionization QqToF tandem mass spectrometry.

    PubMed

    Abdel Rahman, Anas M; Lopata, Andreas L; O'Hehir, Robyn E; Robinson, John J; Banoub, Joseph H; Helleur, Robert J

    2010-04-01

    The protein tropomyosin (TM) is a known major allergen present in shellfish causing frequent food allergies. TM is also an occupational allergen generated in the working environment of snow crab (Chionoecetes opilio) processing plants. The TM protein was purified from both claw and leg meats of snow crab and analyzed by electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) using hybrid quadruple time-of-flight tandem mass spectrometry (QqToF-MS). The native polypeptide molecular weight of TM was determined to be 32,733 Da. The protein was further characterized using the 'bottom-up' MS approach. A peptide mass fingerprinting was obtained by two different enzymatic digestions and de novo sequencing of the most abundant peptides performed. Any post-translational modifications were identified by searching their calculated and predicted molecular weights in precursor ion spectra. The immunological reactivity of snow crab extract was evaluated using specific antibodies and allergenic reactivity assessed with serum of allergic patients. Subsequently, a signature peptide for TM was identified and evaluated in terms of identity and homology using the basic local alignment search tool (BLAST). The identification of a signature peptide for the allergen TM using MALDI-QqToF-MS will be critical for the sensitive and specific quantification of this highly allergenic protein in the work place.

  17. Ionization sources and mass analyzers in MS imaging.

    PubMed

    Tsai, Yu-Hsuan; Menger, Robert F; Drexler, Dieter M; Yost, Richard A; Garrett, Timothy J

    2015-01-01

    Drug absorption, distribution, metabolism, excretion and toxicology study is one important step in drug discovery and development. MS imaging has become one of the popular methods in this field. Here, selected ionization methods such as matrix-assisted laser desorption/ionization, secondary ion MS and desorption electrospray ionization have been briefly discussed. To differentiate drug and drug metabolites from endogenous compounds present in the biological system, exact mass and/or tandem MS is necessary. As a result, mass analyzers such as time-of-flight, Fourier transform ion cyclotron resonance or Orbitrap are often the method of choice and are briefly introduced. PMID:26511148

  18. The development of a matrix-assisted laser desorption/ionization mass spectrometry-based method for the protein fingerprinting and identification of Aeromonas species using whole cells.

    PubMed

    Donohue, Maura J; Smallwood, Anthony W; Pfaller, Stacy; Rodgers, Mark; Shoemaker, Jody A

    2006-06-01

    This report describes the development of a method to detect the waterborne pathogen Aeromonas using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, MALDI-MS was applied to the characterization of seventeen species of Aeromonas. These seventeen species were represented by thirty-two strains, which included type, reference and clinical isolates. Intact cells from each strain were used to generate a reproducible library of protein mass spectral fingerprints or m/z signatures. Under the test conditions used, peak lists of the mass ions observed in each species revealed that three mass ions were conserved among all the seventeen species tested. These common mass ions having an average m/z of 6301, 12,160 or 12,254, and 13,450, can be potentially used as genus-specific biomarkers to identify Aeromonas in unknown samples. A dendrogram generated using the m/z signatures of all the strains tested indicated that the mass spectral data contained sufficient information to distinguish between genera, species, and strains. There are several advantages of using MALDI-MS based protein mass spectral fingerprinting of whole cells for the identification of microorganisms as well as for their differentiation at the sub-species level: (1) the capability to detect proteins, (2) high throughput, and (3) relatively simple sample preparation techniques. The accuracy and speed with which data can be obtained makes MALDI-MS a powerful tool especially suited for environmental monitoring and detection of biological hazards.

  19. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization-Tandem Time of Flight mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis. STEC strains were induced to ...

  20. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxin 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-light mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...

  1. LASER DESORPTION IONIZATION OF SIZE RESOLVED LIQUID MICRODROPLETS. (R823980)

    EPA Science Inventory

    Mass spectra of single micrometer-size glycerol droplets containing organic and inorganic analytes were obtained by on-line laser desorption ionization. Aerosol droplets entered the mass spectrometer through an inlet where they were detected by light scattering of a continuous la...

  2. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Method for the Identification of Anthraquinones: the Case of Historical Lakes

    NASA Astrophysics Data System (ADS)

    Sabatini, Francesca; Lluveras-Tenorio, Anna; Degano, Ilaria; Kuckova, Stepanka; Krizova, Iva; Colombini, Maria Perla

    2016-08-01

    This study deals with the identification of anthraquinoid molecular markers in standard dyes, reference lakes, and paint model systems using a micro-invasive and nondestructive technique such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-ToF-MS). Red anthraquinoid lakes, such as madder lake, carmine lake, and Indian lac, have been the most widely used for painting purposes since ancient times. From an analytical point of view, identifying lakes in paint samples is challenging and developing methods that maximize the information achievable minimizing the amount of sample needed is of paramount importance. The employed method was tested on less than 0.5 mg of reference samples and required a minimal sample preparation, entailing a hydrofluoric acid extraction. The method is fast and versatile because of the possibility to re-analyze the same sample (once it has been spotted on the steel plate), testing both positive and negative modes in a few minutes. The MALDI mass spectra collected in the two analysis modes were studied and compared with LDI and simulated mass spectra in order to highlight the peculiar behavior of the anthraquinones in the MALDI process. Both ionization modes were assessed for each species. The effect of the different paint binders on dye identification was also evaluated through the analyses of paint model systems. In the end, the method was successful in detecting madder lake in archeological samples from Greek wall paintings and on an Italian funerary clay vessel, demonstrating its capabilities to identify dyes in small amount of highly degraded samples.

  3. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Method for the Identification of Anthraquinones: the Case of Historical Lakes

    NASA Astrophysics Data System (ADS)

    Sabatini, Francesca; Lluveras-Tenorio, Anna; Degano, Ilaria; Kuckova, Stepanka; Krizova, Iva; Colombini, Maria Perla

    2016-11-01

    This study deals with the identification of anthraquinoid molecular markers in standard dyes, reference lakes, and paint model systems using a micro-invasive and nondestructive technique such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-ToF-MS). Red anthraquinoid lakes, such as madder lake, carmine lake, and Indian lac, have been the most widely used for painting purposes since ancient times. From an analytical point of view, identifying lakes in paint samples is challenging and developing methods that maximize the information achievable minimizing the amount of sample needed is of paramount importance. The employed method was tested on less than 0.5 mg of reference samples and required a minimal sample preparation, entailing a hydrofluoric acid extraction. The method is fast and versatile because of the possibility to re-analyze the same sample (once it has been spotted on the steel plate), testing both positive and negative modes in a few minutes. The MALDI mass spectra collected in the two analysis modes were studied and compared with LDI and simulated mass spectra in order to highlight the peculiar behavior of the anthraquinones in the MALDI process. Both ionization modes were assessed for each species. The effect of the different paint binders on dye identification was also evaluated through the analyses of paint model systems. In the end, the method was successful in detecting madder lake in archeological samples from Greek wall paintings and on an Italian funerary clay vessel, demonstrating its capabilities to identify dyes in small amount of highly degraded samples.

  4. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures.

  5. Determination of the disulfide bond arrangement of human respiratory syncytial virus attachment (G) protein by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed Central

    Gorman, J. J.; Ferguson, B. L.; Speelman, D.; Mills, J.

    1997-01-01

    The attachment protein or G protein of the A2 strain of human respiratory syncytial virus (RSV) was digested with trypsin and the resultant peptides separated by reverse-phase high-performance liquid chromatography (HPLC). One tryptic peptide produced a mass by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) corresponding to residues 152-187 with the four Cys residues of the ectodomain (residues 173, 176, 182, and 186) in disulfide linkage and absence of glycosylation. Sub-digestion of this tryptic peptide with pepsin and thermolysin produced peptides consistent with disulfide bonds between Cys173 and Cys186 and between Cys176 and Cys182. Analysis of ions produced by post-source decay of a peptic peptide during MALDI-TOF-MS revealed fragmentation of peptide bonds with minimal fission of an inter-chain disulfide bond. Ions produced by this unprecedented MALDI-induced post-source fragmentation corroborated the existence of the disulfide arrangement deduced from mass analysis of proteolysis products. These findings indicate that the ectodomain of the G protein has a non-glycosylated subdomain containing a "cystine noose." PMID:9194191

  6. Petroleomic Analysis of Bio- Oils from the Fast Pyrolysis or Biomass: Laser Desorption Ionization-Linear Ion Trap-Orbitrap mass Spectrometry Approach

    SciTech Connect

    Smith, Erica A.; Lee, Young Jin

    2010-08-23

    Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Among those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.

  7. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    PubMed Central

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  8. Dithranol as a matrix for matrix assisted laser desorption/ionization imaging on a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Le, Cuong H; Han, Jun; Borchers, Christoph H

    2013-11-26

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.

  9. Direct identification of trypanosomatids by matrix-assisted laser desorption ionization-time of flight mass spectrometry (DIT MALDI-TOF MS).

    PubMed

    Avila, C C; Almeida, F G; Palmisano, G

    2016-08-01

    Accurate and rapid determination of trypanosomatids is essential in epidemiological surveillance and therapeutic studies. Matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) has been shown to be a useful and powerful technique to identify bacteria, fungi, metazoa and human intact cells with applications in clinical settings. Here, we developed and optimized a MALDI-TOF MS method to profile trypanosomatids. trypanosomatid cells were deposited on a MALDI target plate followed by addition of matrix solution. The plate was then subjected to MALDI-TOF MS measurement to create reference mass spectra library and unknown samples were identified by pattern matching using the BioTyper software tool. Several m/z peaks reproducibly and uniquely identified trypanosomatids species showing the potentials of direct identification of trypanosomatids by MALDI-TOF MS. Moreover, this method discriminated different life stages of Trypanosoma cruzi, epimastigote and bloodstream trypomastigote and Trypanosoma brucei, procyclic and bloodstream. T. cruzi Discrete Typing Units (DTUs) were also discriminated in three clades. However, it was not possible to achieve enough resolution and software-assisted identification at the strain level. Overall, this study shows the importance of MALDI-TOF MS for the direct identification of trypanosomatids and opens new avenues for mass spectrometry-based detection of parasites in biofluids. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27659938

  10. Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Le, Cuong H.; Han, Jun; Borchers, Christoph H.

    2013-01-01

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided. PMID:24300588

  11. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria.

    PubMed

    Ilina, Elena N; Borovskaya, Alexandra D; Malakhova, Maja M; Vereshchagin, Vladimir A; Kubanova, Anna A; Kruglov, Alexander N; Svistunova, Tatyana S; Gazarian, Anaida O; Maier, Thomas; Kostrzewa, Markus; Govorun, Vadim M

    2009-01-01

    The present study investigates the suitability of direct bacterial profiling as a tool for the identification and subtyping of pathogenic Neisseria. The genus Neisseria includes two human pathogens, Neisseria meningitidis and Neisseria gonorrhoeae, as well as several nonpathogenic Neisseria species. Here, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling protocol was optimized using a laboratory strain of E. coli DH5alpha to guarantee high quality and reproducible results. Subsequently, mass spectra for both laboratory and clinical strains of N. gonorrhoeae, N. meningitidis, and several nonpathogenic Neisseria species were collected. Significant interspecies differences but little intraspecies diversity were revealed by means of a visual inspection and bioinformatics examination using the MALDI BioTyper software. Cluster analysis successfully separated mass spectra collected from three groups that corresponded to N. gonorrhoeae, N. meningitidis, and nonpathogenic Neisseria isolates. Requiring only one bacterial colony for testing and using a fast and easy measuring protocol, this approach represents a powerful tool for the rapid identification of pathogenic Neisseria and can be adopted for other microorganisms.

  12. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.

    2016-03-01

    A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.

  13. Correlated matrix-assisted laser desorption/ionization mass spectrometry and fluorescent imaging of photocleavable peptide-coded random bead-arrays

    PubMed Central

    Lim, Mark J; Liu, Ziying; Braunschweiger, Karen I; Awad, Amany; Rothschild, Kenneth J

    2013-01-01

    RATIONALE Rapidly performing global proteomic screens is an important goal in the post-genomic era. Correlated matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and fluorescent imaging of photocleavable peptide-coded random bead-arrays was evaluated as a critical step in a new method for proteomic screening that combines many of the advantages of MS with fluorescence-based microarrays. METHODS Small peptide-coded model bead libraries containing up to 20 different bead species were constructed by attaching peptides to 30–34 µm diameter glass, agarose or TentaGel® beads using photocleavable biotin or a custom-designed photocleavable linker. The peptide-coded bead libraries were randomly arrayed into custom gold-coated micro-well plates with 45 µm diameter wells and subjected to fluorescence and MALDI mass spectrometric imaging (MALDI-MSI). RESULTS Photocleavable mass-tags from individual beads in these libraries were spatially localized as ∼65 µm spots using MALDI-MSI with high sensitivity and mass resolution. Fluorescently tagged beads were identified and correlated with their matching photocleavable mass-tags by comparing the fluorescence and MALDI-MS images of the same bead-array. Post-translational modification of the peptide Kemptide was also detected on individual beads in a photocleavable peptide-coded bead-array by MALDI-MSI alone, after exposure of the beads to protein kinase A (PKA). CONCLUSIONS Correlated MALDI-MS and fluorescent imaging of photocleavable peptide-coded random bead-arrays can provide a basis for performing global proteomic screening. © 2013 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24285390

  14. Laser Microprobe Mass Spectrometry 1: Basic Principles and Performance Characteristics.

    ERIC Educational Resources Information Center

    Denoyer, Eric; And Others

    1982-01-01

    Describes the historical development, performance characteristics (sample requirements, analysis time, ionization characteristics, speciation capabilities, and figures of merit), and applications of laser microprobe mass spectrometry. (JN)

  15. Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Brinkworth, Craig S; Pigott, Eloise J; Bourne, David J

    2009-02-15

    Ricin is a highly toxic protein from the seeds of the castor bean plant. Crude extracts from castor beans are toxic by several routes, and there is international concern about the use of these extracts by terrorist organizations. Lethality in aerosolized form has spurred the development of methods for the rapid detection of this protein from air samples that is critical in determining the illicit use of this material. Matrix-assisted laser desorption ionization (MALDI) mass measurement with an automated laser firing sequence was used to detect intact ricin from solutions containing less than 4 microg/mL of ricin in the presence of other endogenous seed proteins. This sensitivity was attained with the addition of 0.01% Tween 80 to the extracts that greatly enhanced the ricin signal. Importantly, this treatment substantially reduces the interference from the castor bean seed storage proteins. Commonly the ricin signal can be completely obscured by the oligomers of seed storage proteins, and this treatment reveals the ricin molecular ion, allowing the analyst to make a judgment as to the ricin content of the extract. This method provides for sensitive and rapid identification of intact ricin from aqueous samples with little sample preparation and is amenable to automatic acquisition. PMID:19159212

  16. Detection of intact ricin in crude and purified extracts from castor beans using matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Brinkworth, Craig S; Pigott, Eloise J; Bourne, David J

    2009-02-15

    Ricin is a highly toxic protein from the seeds of the castor bean plant. Crude extracts from castor beans are toxic by several routes, and there is international concern about the use of these extracts by terrorist organizations. Lethality in aerosolized form has spurred the development of methods for the rapid detection of this protein from air samples that is critical in determining the illicit use of this material. Matrix-assisted laser desorption ionization (MALDI) mass measurement with an automated laser firing sequence was used to detect intact ricin from solutions containing less than 4 microg/mL of ricin in the presence of other endogenous seed proteins. This sensitivity was attained with the addition of 0.01% Tween 80 to the extracts that greatly enhanced the ricin signal. Importantly, this treatment substantially reduces the interference from the castor bean seed storage proteins. Commonly the ricin signal can be completely obscured by the oligomers of seed storage proteins, and this treatment reveals the ricin molecular ion, allowing the analyst to make a judgment as to the ricin content of the extract. This method provides for sensitive and rapid identification of intact ricin from aqueous samples with little sample preparation and is amenable to automatic acquisition.

  17. Detection of Biosignatures using Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Implications for the Search for Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Richardson, C. D.; Kotler, J. M.; Hinman, N. W.; Scott, J. R.

    2008-12-01

    Detection of bio/organic signatures, defined as an organic structure produced by living organisms or derived from other biogenic organic compounds, is essential to investigating the origin and distribution of extant or extinct life in the solar system. In conjunction with mineralogical, inorganic, and isotopic data, the detection and identification of bio/organic signatures can assist in linking biochemical and geochemical processes. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a proven method of obtaining bio/organic signatures from a range of geological materials. Sulfate salts were studied because they are found on Mars and Jovian satellites. The goal here was to determine (1) which combinations of bio/organic compounds and sulfate salts produced distinctive spectral signatures, and (2) the detection limit of the method. In these experiments, thenardite (Na2SO4) was mixed with stearic acid to determine the detection limit of GALDI-FTICR-MS, previously estimated to be 3 ppt, which corresponds to approximately 7 zeptomoles (10-21) per laser shot. All spectra were collected with little to no sample preparation and were acquired using a single laser shot. Unlike conventional analytical practices, the signal-to-noise ratio increased as the concentration of bio/organic compounds decreased relative to the mineral host. In combination with thenardite, aromatic amino acids were observed to undergo simple cation attachment ([M+Na]+) due to the π-bonded aromatic ring. Subsequent cation substitution of the carboxyl group led to formation of peaks representing double cation attachment ([M-H+Na]Na+). Spectra from naturally occurring thenardite and jarosite (XFe3(OH)6(SO4)2) revealed the presence of high mass cluster ions; analysis of their isotopic distribution suggested the presence of bio/organic compounds. High mass cluster ions, both organic and inorganic, readily

  18. Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry

    PubMed Central

    2010-01-01

    Background The use of molecular biology-based methods for species identification and establishing phylogenetic relationships has supplanted traditional methods relying on morphological characteristics. While PCR-based methods are now the commonly accepted gold standards for these types of analysis, relatively high costs, time-consuming assay development or the need for a priori information about species-specific sequences constitute major limitations. In the present study, we explored the possibility to differentiate between 13 different species from the genus Drosophila via a molecular proteomic approach. Results After establishing a simple protein extraction procedure and performing matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) with intact proteins and peptides, we could show that most of the species investigated reproducibly yielded mass spectra that were adequate for species classification. Furthermore, a dendrogram generated by cluster analysis of total protein patterns agrees reasonably well with established phylogenetic relationships. Conclusion Considering the intra- and interspecies similarities and differences between spectra obtained for specimens of closely related Drosophila species, we estimate that species typing of insects and possibly other multicellular organisms by intact protein profiling (IPP) can be established successfully for species that diverged from a common ancestor about 3 million years ago. PMID:20374617

  19. Disposable polymeric high-density nanovial arrays for matrix assisted laser desorption/ionization-time of flight-mass spectrometry: I. Microstructure development and manufacturing.

    PubMed

    Marko-Varga, G; Ekstrom, S; Heildin, G; Nilsson, J; Laureli, T

    2001-10-01

    In order to meet the expected enormous demand for mass spectrometry (MS) throughput as a result of the current efforts to completely map the human proteome, this paper presents a new concept for low-cost high-throughput protein identification by matrix assisted laser desorption/ionization-time of flight-(MALDI-TOF)-MS peptide mapping using disposable polymeric high-density nanovial MALDI target plates. By means of microfabrication technology precision engineered nanovial arrays are fabricated in polymer substrates such as polymethylmethacrylate (PMMA) and polycarbonate (PC). The target plate fabrication processes investigated were precision micromilling, cold embossing and injection moulding (work in progress). Nanovial dimensions were 300, 400 or 500 microm. Typical array densities were 165 nanovials/cm2, which corresponds to 3,300 vials on a full Applied Biosystems MALDI target plate. Obtained MALDI data displayed equal mass resolution, accuracy, signal intensity for peptide standards as compared to high-density silicon nanovial arrays previously reported by our group [7], as well as conventional stainless steel or gold targets. PMID:11700729

  20. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: A novel statistical approach for quality scoring.

    PubMed

    Kooijman, Pieter C; Kok, Sander J; Weusten, Jos J A M; Honing, Maarten

    2016-05-01

    Preparation of samples according to an optimized method is crucial for accurate determination of polymer sample characteristics by Matrix-Assisted Laser Desorption Ionization (MALDI) analysis. Sample preparation conditions such as matrix choice, cationization agent, deposition technique or even the deposition volume should be chosen to suit the sample of interest. Many sample preparation protocols have been developed and employed, yet finding the optimal sample preparation protocol remains a challenge. Because an objective comparison between the results of diverse protocols is not possible, "gut-feeling" or "good enough" is often decisive in the search for an optimum. This implies that sub-optimal protocols are used, leading to a loss of mass spectral information quality. To address this problem a novel analytical strategy based on MALDI imaging and statistical data processing was developed in which eight parameters were formulated to objectively quantify the quality of sample deposition and optimal MALDI matrix composition and finally sum up to an overall quality score of the sample deposition. These parameters can be established in a fully automated way using commercially available mass spectrometry imaging instruments without any hardware adjustments. With the newly developed analytical strategy the highest quality MALDI spots were selected, resulting in more reproducible and more valuable spectra for PEG in a variety of matrices. Moreover, our method enables an objective comparison of sample preparation protocols for any analyte and opens up new fields of investigation by presenting MALDI performance data in a clear and concise way.

  1. Biomarkers probed in saliva by surface plasmon resonance imaging coupled to matrix-assisted laser desorption/ionization mass spectrometry in array format.

    PubMed

    Musso, Johana; Buchmann, William; Gonnet, Florence; Jarroux, Nathalie; Bellon, Sophie; Frydman, Chiraz; Brunet, Didier-Luc; Daniel, Regis

    2015-02-01

    Detection of protein biomarkers is of major interest in proteomics. This work reports the analysis of protein biomarkers directly from a biological fluid, human saliva, by surface plasmon resonance imaging coupled to mass spectrometry (SPRi-MS), using a functionalized biochip in an array format enabling multiplex SPR-MS analysis. The SPR biochip presented a gold surface functionalized by a self-assembled monolayer of short poly(ethylene oxide) chains carrying an N-hydroxysuccinimide end-group for the immobilization of antibodies. The experiments were accomplished without any sample pre-purification or spiking with the targeted biomarkers. SPRi monitoring of the interactions, immune capture from the biochip surface, and finally on-chip matrix-assisted laser desorption/ionization-MS structural identification of two protein biomarkers, salivary α-amylase and lysozyme, were successively achieved directly from saliva at the femtomole level. For lysozyme, the on-chip MS identification was completed by a proteomic analysis based on an on-chip proteolysis procedure and a peptide mass fingerprint. PMID:25524230

  2. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    PubMed

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources.

  3. Method for Detection and Quantitation of Fathead Minnow Vitellogenin (Vtg) by Liquid Chromatography and Matrix Assisted Laser Desorption/ Ionization Mass Spectrometry

    SciTech Connect

    Wunschel, David S.; Schultz, Irv R.; Skillman, Ann D.; Wahl, Karen L.

    2005-03-11

    Vitellogenin (Vtg) is a well recognized biomarker of estrogen exposure in many species, particularly fish. This large protein shares a high degree of sequence homology across a large number of species. Quantitative measurement is currently done using antibody-based assays. These assays frequently require purification of Vtg and antibody production from each species because there is poor cross reactivity between antibodies for different fish. Therefore, complementary methods of measuring Vtg are desirable. Mass spectrometric (MS) analysis coupled to database searching offers the promise of a general method for protein identification. In this study we used the well characterized Vtg from rainbow trout (O. mykiss) to evaluate the analytical parameters for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of the intact and tryptic digested protein. An analytical scale HPLC separation combined with MALDI-MS was used to measure and confirm the identity of Vtg from the plasma of an important species for regulatory agencies, fathead minnow (Pimephales promelas). The small volume requirement of this method (< 10 uL) was found to be compatible with the plasma volume obtained from a few minnows. A semi quantitative measurement of Vtg from minnows exposed to estradiol was achieved, which was similar to previously obtained ELISA data.

  4. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria

    PubMed Central

    Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources. PMID:27442502

  5. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    PubMed

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources. PMID:27442502

  6. Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Kolecka, Anna; Khayhan, Kantarawee; Groenewald, Marizeth; Theelen, Bart; Arabatzis, Michael; Velegraki, Aristea; Kostrzewa, Markus; Mares, Mihai; Taj-Aldeen, Saad J; Boekhout, Teun

    2013-08-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used for an extensive identification study of arthroconidial yeasts, using 85 reference strains from the CBS-KNAW yeast collection and 134 clinical isolates collected from medical centers in Qatar, Greece, and Romania. The test set included 72 strains of ascomycetous yeasts (Galactomyces, Geotrichum, Saprochaete, and Magnusiomyces spp.) and 147 strains of basidiomycetous yeasts (Trichosporon and Guehomyces spp.). With minimal preparation time, MALDI-TOF MS proved to be an excellent diagnostic tool that provided reliable identification of most (98%) of the tested strains to the species level, with good discriminatory power. The majority of strains were correctly identified at the species level with good scores (>2.0) and seven of the tested strains with log score values between 1.7 and 2.0. The MALDI-TOF MS results obtained were consistent with validated internal transcribed spacer (ITS) and/or large subunit (LSU) ribosomal DNA sequencing results. Expanding the mass spectrum database by increasing the number of reference strains for closely related species, including those of nonclinical origin, should enhance the usefulness of MALDI-TOF MS-based diagnostic analysis of these arthroconidial fungi in medical and other laboratories.

  7. Quantitation of lysergic acid diethylamide in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.

    PubMed

    Cui, Meng; McCooeye, Margaret A; Fraser, Catharine; Mester, Zoltán

    2004-12-01

    A quantitative method was developed for analysis of lysergic acid diethylamide (LSD) in urine using atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry (AP MALDI-ITMS). Following solid-phase extraction of LSD from urine samples, extracts were analyzed by AP MALDI-ITMS. The identity of LSD was confirmed by fragmentation of the [M + H](+) ion using tandem mass spectrometry. The quantification of LSD was achieved using stable-isotope-labeled LSD (LSD-d(3)) as the internal standard. The [M + H](+) ion fragmented to produce a dominant fragment ion, which was used for a selected reaction monitoring (SRM) method for quantitative analysis of LSD. SRM was compared with selected ion monitoring and produced a wider linear range and lower limit of quantification. For SRM analysis of samples of LSD spiked in urine, the calibration curve was linear in the range of 1-100 ng/mL with a coefficient of determination, r(2), of 0.9917. This assay was used to determine LSD in urine samples and the AP MALDI-MS results were comparable to the HPLC/ ESI-MS results.

  8. Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    USGS Publications Warehouse

    Madonna, A.J.; Basile, F.; Furlong, E.; Voorhees, K.J.

    2001-01-01

    A rapid method for identifying specific bacteria from complex biological mixtures using immunomagnetic separation coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been developed. The technique employs commercially available magnetic beads coated with polycolonal antibodies raised against specific bacteria and whole cell analysis by MALDI-MS. A suspension of a bacterial mixture is mixed with the immunomagnetic beads specific for the target microorganism. After a short incubation period (20 mins) the bacteria captured by the beads are washed, resuspended in deionized H2O and directly applied onto a MALDI probe. Liquid suspensions containing bacterial mixtures can be screened within 1 h total analysis time. Positive tests result in the production of a fingerprint mass spectrum primarily consisting of protein biomarkers characteristic of the targeted microorganism. Using this procedure, Salmonella choleraesuis was isolated and detected from standard bacterial mixtures and spiked samples of river water, human urine, and chicken blood. Copyright ?? 2001 John Wiley & Sons, Ltd.

  9. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging.

    PubMed

    Bai, Hangrui; Wang, Shujuan; Liu, Jianjun; Gao, Dan; Jiang, Yuyang; Liu, Hongxia; Cai, Zongwei

    2016-07-15

    The root of Panax ginseng C.A. Mey. (P. ginseng) is one of the most popular traditional Chinese medicines, with ginsenosides as its main bioactive components. Because different ginsenosides have varied pharmacological effects, extraction and separation of ginsenosides are usually required for the investigation of pharmacological effects of different ginsenosides. However, the contents of ginsenosides vary with the ages and tissues of P. ginseng root. In this research, an efficient method to explore the distribution of ginsenosides and differentiate P. ginseng roots with different ages was developed based on matrix assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI). After a simple sample preparation, there were 18 peaks corresponding to 31 ginsenosides with distinct localization in the mass range of m/z 700-1400 identified by MALDI-TOF-MSI and MALDI-TOF-MS/MS. All the three types of ginsenosides were successfully detected and visualized in images, which could be correlated with anatomical features. The P. ginseng at the ages of 2, 4 and 6 could be differentiated finely through the principal component analysis of data collected from the cork based on the ion images but not data from the whole tissue. The experimental result implies that the established method for the direct analysis of metabolites in plant tissues has high potential for the rapid identification of metabolites and analysis of their localizations in medicinal herbs. Furthermore, this technique also provides valuable information for the component-specific extraction and pharmacological research of herbs.

  10. Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Cozzolino, R; Passalacqua, S; Salemi, S; Garozzo, D

    2002-09-01

    A rapid and accurate method to identify bovine and ewe milk adulteration of fresh water buffalo mozzarella cheese by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described. The differentiation among mozzarella made from water buffalo milk and from mixtures of less expensive bovine and, more recently, ewe milk with water buffalo milk is achieved using whey proteins, alpha-lactalbumin and beta-lactoglobulins as molecular markers. It is worth noting that the method proposed here is, to our knowledge, the first strategy able to characterize possible fraudulent additions of ewe milk in samples of water buffalo milk devoted to the production of water buffalo mozzarella cheese. In addition, a linear relationship was found between the relative response of the molecular ion and the abundance of the analysed whey proteins. This demonstrates that this approach can be used to determine the amount of bovine or ovine milk added to water buffalo milk employed for mozzarella cheese production. Furthermore, this method also appears suitable for the analysis of ewe cheese. Hence these findings open the way to a new field for mass spectrometry in the evaluation of possible fraudulence in dairy industry production.

  11. Qualitative and quantitative DNA and RNA analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ding, Chunming

    2006-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) gives extremely precise reading of mass-to-charge ratios (two analytes differ by 1 Da can be distinguished) and provides high sensitivity (less than 1 fmole of a DNA oligonucleotide can be detected), allowing DNA quantifications with single base specificity and single DNA molecule sensitivity (coupled with polymerase chain reaction [PCR]). To quantify a DNA sequence of interest, a competitive synthetic (60-80 bases) oligonucleotide standard with an artificial single base mutation in the middle is introduced, and these two virtually identical sequences are co-amplified by PCR. A third primer (extension primer) is designed to anneal to the region immediately upstream of the mutation site. Depending on the specific mutation introduced and the ddNTP/dNTP mixtures used, either one or two bases are added to the extension primer to produce two extension products from the two templates. Last, the two extension products are detected and quantified by high-throughput MALDI-TOF MS. In addition, with an improved primer extension method called single allele base extension reaction (SABER), rare mutant DNA can be robustly detected even when normal DNA is present at 50-fold or more than the DNA mutants.

  12. Matrix assisted laser desorption ionization time-of-flight mass spectrometry: Velocity measurements using orthogonal and axial injection and applications to characterization of wheat proteins

    NASA Astrophysics Data System (ADS)

    Dworschak, Ragnar G.

    velocities of matrix and analyte ions for more normal laser incidence, and for single crystals parallel to the sample surface compared to polycrystalline surfaces, suggesting the orientation of the crystal face with respect to the incident laser direction plays a role in the desorption process. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) was used to analyse the protein composition in several common and durum wheat varieties. Mass spectra were obtained directly from crude and partially purified wheat gliadin and reduced glutenin subunit fractions. Mass spectra of the gliadins and the low molecular weight glutenin subunits show a complex pattern of proteins in the 30--40 kDa range. The observed gliadin patterns showed some promise for variety identification. The mass spectra of the high molecular weight glutenin subunits are much simpler and the complete high molecular weight subunit profile can be determined directly from a single mass spectrum. This may prove particularly useful in wheat breeding programs for rapid identification of lines containing subunits associated with superior quality.

  13. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system.

    PubMed

    Richter, S S; Sercia, L; Branda, J A; Burnham, C-A D; Bythrow, M; Ferraro, M J; Garner, O B; Ginocchio, C C; Jennemann, R; Lewinski, M A; Manji, R; Mochon, A B; Rychert, J A; Westblade, L F; Procop, G W

    2013-12-01

    This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l'Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n = 965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer's instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7% of the 965 isolates tested, with 83.8% correct to the species level and 12.8% limited to a genus-level identification. There was no identification for 1.7% of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae. PMID:23818163

  14. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: probing chemical composition of D2O ice beneath a H2O ice layer.

    PubMed

    Yang, Rui; Gudipati, Murthy S

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D2O ices by novel infrared (IR) laser ablation of a layered non-absorbing D2O ice (spectator) containing the analytes and an ablation-active IR-absorbing H2O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H2O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D2O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D2O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H2O molecules in the shockwave. We call this "shockwave mediated surface resonance enhanced subsurface ablation" technique as "two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers." This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes--ablation and ionization. This new technique can thus be potentially

  15. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    SciTech Connect

    Yang, Rui Gudipati, Murthy S.

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and

  16. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: probing chemical composition of D2O ice beneath a H2O ice layer.

    PubMed

    Yang, Rui; Gudipati, Murthy S

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D2O ices by novel infrared (IR) laser ablation of a layered non-absorbing D2O ice (spectator) containing the analytes and an ablation-active IR-absorbing H2O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H2O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D2O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D2O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H2O molecules in the shockwave. We call this "shockwave mediated surface resonance enhanced subsurface ablation" technique as "two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers." This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes--ablation and ionization. This new technique can thus be potentially

  17. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    EPA Science Inventory

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  18. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    PubMed

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive

  19. Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach.

    PubMed

    Parisi, Daniela; Magliulo, Maria; Nanni, Paolo; Casale, Monica; Forina, Michele; Roda, Aldo

    2008-07-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a useful technique for the identification of bacteria on the basis of their characteristic protein mass spectrum fingerprint. Highly standardized instrumental analytical performance and bacterial culture conditions are required to achieve useful information. A chemometric approach based on multivariate analysis techniques was developed for the analysis of MALDI data of different bacteria to allow their identification from their fingerprint. Principal component analysis, linear discriminant analysis (LDA) and soft independent modelling of class analogy (SIMCA) were applied to the analysis of the MALDI MS mass spectra of two pathogenic bacteria, Escherichia coli O157:H7 and Yersinia enterocolitica, and the non-pathogenic E. coli MC1061. Spectra variability was assessed by growing bacteria in different media and analysing them at different culture growth times. After selection of the relevant variables, which allows the evaluation of an m/z value pattern with high discriminant power, the identification of bacteria by LDA and SIMCA was performed independently of the experimental conditions used. In order to better evaluate the analytical performance of the approach used, the ability to correctly classify different bacteria, six wild-type strains of E. coli O157:H7, was also studied and a combination of different chemometric techniques with a severe validation was developed. The analysis of spiked bovine meat samples and the agreement with an independent chemiluminescent enzyme immunoassay demonstrated the applicability of the method developed for the detection of bacteria in real samples. The easy automation of the MALDI method and the ability of multivariate techniques to reduce interlaboratory variability associated with bacterial growth time and conditions suggest the usefulness of the proposed MALDI MS approach for rapid routine food safety checks.

  20. Macroscopic and microscopic spatially-resolved analysis of food contaminants and constituents using laser-ablation electrospray ionization mass spectrometry imaging.

    PubMed

    Nielen, Michel W F; van Beek, Teris A

    2014-11-01

    Laser-ablation electrospray ionization (LAESI) mass spectrometry imaging (MSI) does not require very flat surfaces, high-precision sample preparation, or the addition of matrix. Because of these features, LAESI-MSI may be the method of choice for spatially-resolved food analysis. In this work, LAESI time-of-flight MSI was investigated for macroscopic and microscopic imaging of pesticides, mycotoxins, and plant metabolites on rose leaves, orange and lemon fruit, ergot bodies, cherry tomatoes, and maize kernels. Accurate mass ion-map data were acquired at sampling locations with an x-y center-to-center distance of 0.2-1.0 mm and were superimposed onto co-registered optical images. The spatially-resolved ion maps of pesticides on rose leaves suggest co-application of registered and banned pesticides. Ion maps of the fungicide imazalil reveal that this compound is only localized on the peel of citrus fruit. However, according to three-dimensional LAESI-MSI the penetration depth of imazalil into the peel has significant local variation. Ion maps of different plant alkaloids on ergot bodies from rye reveal co-localization in accordance with expectations. The feasibility of using untargeted MSI for food analysis was revealed by ion maps of plant metabolites in cherry tomatoes and maize-kernel slices. For tomatoes, traveling-wave ion mobility (TWIM) was used to discriminate between different lycoperoside glycoalkaloid isomers; for maize quadrupole time-of-flight tandem mass spectrometry (MS-MS) was successfully used to elucidate the structure of a localized unknown. It is envisaged that LAESI-MSI will contribute to future research in food science, agriforensics, and plant metabolomics. PMID:24961635

  1. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    PubMed

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive

  2. Atmospheric pressure femtosecond laser imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  3. Mass Analyzed Threshold Ionization of Lutetium Dimer

    NASA Astrophysics Data System (ADS)

    Wu, Lu; Roudjane, Mourad; Liu, Yang; Yang, Dong-Sheng

    2013-06-01

    Lu_2 is produced in a pulsed laser-vaporization metal-cluster source and studied by mass-analyzed threshold ionization (MATI) spectroscopy. The MATI spectrum displays several long progressions from the transitions between various vibrational levels of the neutral and ion electronic states. From the spectrum, the upper limit of the ionization energy of the dimer is determined to be 43996 cm^{-1}, and the vibrational frequencies are measured to be 121 cm^{-1} in the neutral state and 90 cm^{-1} in the ion state. By combining with ab initio calculations at CASPT2 level, the ground state of Lu_2 is identified as ^3Σ_g^-. The ^3Σ_g^- state has an electron configuration of 6sσ_g^25dπ_u^15dπ_u^16sσ_u^2, which is formed by the interactions of two Lu atoms in the ^2D(5d6s^2) ground state. Ionization of the neutral state removes a 5dπ_u bonding electron and yields a ion state with a considerably longer bond distance. Lu_2 has a very different bonding feature from La_2, for which a ^1Σ_g^+ ground state was previously identified with an electron configuration of 5dπ_u^46sσ_g^2 formed by the interactions of two La atoms in the ^4F(5d^26s) excited state. Yang Liu, Lu Wu, Chang-Hua Zhang, Serge A. Krasnokutski, and Dong-Sheng Yang, J. Chem. Phys. 135, 034309 (2011).

  4. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  5. Limits to Sensitivity in Laser Enhanced Ionization.

    ERIC Educational Resources Information Center

    Travis, J. C.

    1982-01-01

    Laser enhanced ionization (LEI) occurs when a tunable dye laser is used to excite a specific atomic population in a flame. Explores the origin of LEI's high sensitivity and identifies possible avenues to higher sensitivity by describing instrument used and experimental procedures and discussing ion formation/detection. (Author/JN)

  6. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  7. Ultra-fast analysis of anatoxin-A using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry: validation and resolution from phenylalanine.

    PubMed

    Lemoine, Pascal; Roy-Lachapelle, Audrey; Prévost, Michèle; Tremblay, Patrice; Solliec, Morgan; Sauvé, Sébastien

    2013-01-01

    A novel approach for the analysis of the cyanobacterial toxin, anatoxin-a (ANA-a), in an environmentally relevant matrix, using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry (LDTD-APCI-MS/MS) is presented. The ultra-fast analysis time (15 s/sample) provided by the LDTD-APCI interface is strengthened by its ability to remove interference from phenylalanine (PHE), an isobaric interference in ANA-a analysis by MS/MS. Thus the LDTD-APCI interface avoids the time consuming steps of derivatization, chromatographic separation or solid-phase extraction prior to analysis. Method development and instrumental parameter optimizations were focused toward signal enhancement of ANA-a, and signal removal of a PHE interference as high as 500 μg/L. External calibration in a complex matrix gave detection and quantification limit values of 1 and 3 μg/L respectively, as well as good linearity (R(2) > 0.999) over nearly two orders of magnitude. Internal calibration with clomiphene (CLO) is possible and method performance was similar to that obtained by external calibration. This work demonstrated the utility of the LDTD-APCI source for ultra-fast detection and quantification of ANA-a in environmental aqueous matrices, and confirmed its ability to suppress the interference of PHE without sample preparation or chromatographic separation.

  8. Combining Capillary Electrophoresis Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Stable Isotopic Labeling Techniques for Comparative Crustacean Peptidomics

    PubMed Central

    Wang, Junhua; Zhang, Yuzhuo; Xiang, Feng; Zhang, Zichuan; Li, Lingjun

    2010-01-01

    Herein we describe a sensitive and straightforward off-line capillary electrophoresis (CE) matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) interface in conjunction with stable isotopic labeling (SIL) technique for comparative neuropeptidomic analysis in crustacean model organisms. Two SIL schemes, including a binary H/D formaldehyde labeling technique and novel, laboratory-developed multiplexed dimethylated leucine-based isobaric tagging reagents, have been evaluated in these proof-of-concept experiments. We employ these isotopic labeling techniques in conjunction with CE-MALDI MS for quantitative peptidomic analyses of the pericardial organs isolated from two crustacean species, the European green crab Carcinus maenas and the blue crab Callinectes sapidus. Isotopically labeled peptide pairs are found to co-migrate in CE fractions and quantitative changes in relative abundances of peptide pairs are obtained by comparing peak intensities of respective peptide pairs. Several neuropeptide families exhibit changes in response to salinity stress, suggesting potential physiological functions of these signaling peptides. PMID:20334868

  9. Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fangous, Marie-Sarah; Mougari, Faiza; Gouriou, Stéphanie; Calvez, Elodie; Raskine, Laurent; Cambau, Emmanuelle; Payan, Christopher; Héry-Arnaud, Geneviève

    2014-09-01

    Mycobacterium abscessus, as a species, has been increasingly implicated in respiratory infections, notably in cystic fibrosis patients. The species comprises 3 subspecies, which can be difficult to identify. Since they differ in antibiotic susceptibility and clinical relevance, developing a routine diagnostic tool discriminating Mycobacterium abscessus at the subspecies level is a real challenge. Forty-three Mycobacterium abscessus species isolates, previously identified by multilocus sequence typing, were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). A subspecies identification algorithm, based on five discriminating peaks, was drawn up and validated by blind identification of a further 49 strains, 94% of which (n = 46) were correctly identified. Two M. abscessus subsp. massiliense strains were misidentified as M. abscessus subsp. abscessus, and for 1 other strain identification failed. Inter- and intralaboratory reproducibility tests were conclusive. This study presents, for the first time, a classification algorithm for MALDI-TOF MS identification of the 3 M. abscessus subspecies. MALDI-TOF MS proved effective in discriminating within the M. abscessus species and might be easily integrated into the workflow of microbiology labs. PMID:25009048

  10. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak.

    PubMed

    Griffin, Paul M; Price, Gareth R; Schooneveldt, Jacqueline M; Schlebusch, Sanmarié; Tilse, Martyn H; Urbanski, Tess; Hamilton, Brett; Venter, Deon

    2012-09-01

    The control of vancomycin-resistant enterococci (VRE) has become an increasing burden on health care resources since their discovery over 20 years ago. Current techniques employed for their detection include time-consuming and laborious phenotypic methods or molecular methods requiring costly equipment and consumables and highly trained staff. An accurate, rapid diagnostic test has the ability to greatly reduce the spread of this organism, which has the ability to colonize patients for long periods, potentially even lifelong. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a technology with the ability to identify organisms in seconds and has shown promise in the identification of other forms of antimicrobial resistance in other organisms. Here we show that MALDI-TOF MS is capable of rapidly and accurately identifying vanB-positive Enterococcus faecium VRE from susceptible isolates. Internal validation of the optimal model generated produced a sensitivity of 92.4% and a specificity of 85.2%. Prospective validation results, following incorporation into the routine laboratory work flow, demonstrated a greater sensitivity and specificity at 96.7% and 98.1%, respectively. In addition, the utilization of MALDI-TOF MS to determine the relatedness of isolates contributing to an outbreak is also demonstrated.

  11. Quantification of Saccharides in Honey Samples Through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Using HgTe Nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Chia-Wei; Chen, Wen-Tsen; Chang, Huan-Tsung

    2014-07-01

    Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.

  12. Identification of different respiratory viruses, after a cell culture step, by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS)

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria Cristina; Rodighiero, Isabella; Buttrini, Mirko; Montecchini, Sara; Vasile Simone, Rosita; Medici, Maria Cristina; Chezzi, Carlo; De Conto, Flora

    2016-01-01

    In this study matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), a reliable identification method for the diagnosis of bacterial and fungal infections, is presented as an innovative tool to investigate the protein profile of cell cultures infected by the most common viruses causing respiratory tract infections in humans. MALDI-TOF MS was applied to the identification of influenza A and B viruses, adenovirus C species, parainfluenza virus types 1, 2 and 3, respiratory syncytial virus, echovirus, cytomegalovirus and metapneumovirus. In this study MALDI-TOF MS was proposed as a model to be applied to the identification of cultivable respiratory viruses using cell culture as a viral proteins enrichment method to the proteome profiling of virus infected and uninfected cell cultures. The reference virus strains and 58 viruses identified from respiratory samples of subjects with respiratory diseases positive for one of the above mentioned viral agents by cell culture were used for the in vitro infection of suitable cell cultures. The isolated viral particles, concentrated by ultracentrifugation, were used for subsequent protein extraction and their spectra profiles were generated by MALDI-TOF MS analysis. The newly created library allowed us to discriminate between uninfected and respiratory virus infected cell cultures. PMID:27786297

  13. Study of human neutrophil peptides in saliva by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Yang, Ming-Hui; Lo, Li-Hua; Chen, Yi-Hsuan; Shiea, Jentaie; Wu, Pei-Chang; Tyan, Yu-Chang; Jong, Yuh-Jyh

    2009-10-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is used to rapidly characterize the human neutrophil peptides - HNP 1, 2, and 3 - in saliva. The saliva excreted from the parotid and sublingual/submandibular glands of 70 individuals were collected and examined using MALDI-TOF. The MALDI approach requires no sample pretreatment other than mixing the saliva-absorbing material with the matrix and drying under ambient conditions. Tissue paper was the best material for collecting the saliva samples because of its strong texture and high absorbance, and sinapinic acid was the best MALDI matrix for the analysis of the HNPs. HNPs were detected in almost all the samples collected from the parotid glands, with no obvious differences among age or gender. In contrast, the distribution of the HNPs in the samples collected from the sublingual/submandibular glands was age-dependent: no HNPs were detected for those collected from individuals younger than 30, but the HNPs were present in all of the samples collected from those older than 60 years. The increased probability of detecting saliva HNPs with age suggests that HNPs may function as a biomarker for aging.

  14. Turnaround time of positive blood cultures after the introduction of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Angeletti, Silvia; Dicuonzo, Giordano; D'Agostino, Alfio; Avola, Alessandra; Crea, Francesca; Palazzo, Carlo; Dedej, Etleva; De Florio, Lucia

    2015-07-01

    A comparative evaluation of the turnaround time (TAT) of positive blood culture before and after matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) introduction in the laboratory routine was performed. A total of 643 positive blood cultures, of which 310 before and 333 after MALDI-TOF technique introduction, were collected. In the post MALDI-TOF period, blood culture median TAT decreased from 73.53 hours to 71.73 for Gram-positive, from 64.09 hours to 63.59 for Gram-negative and from 115.7 hours to 47.62 for anaerobes. MALDI-TOF significantly decreased the TAT of anaerobes, for which antimicrobial susceptibility test is not routinely performed. Furthermore, the major advantage of MALDI-TOF introduction was the decrease of the time for pathogen identification (TID) independently from the species with an improvement of 93% for Gram-positive, 86% for Gram-negative and 95% for anaerobes. In addition, high species-level identification rates and cost savings than conventional methods were achieved after MALDI-TOF introduction.

  15. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    PubMed

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties.

  16. Measuring Drug Metabolism Kinetics and Drug-Drug Interactions Using Self-Assembled Monolayers for Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry.

    PubMed

    Anderson, Lyndsey L; Berns, Eric J; Bugga, Pradeep; George, Alfred L; Mrksich, Milan

    2016-09-01

    The competition of two drugs for the same metabolizing enzyme is a common mechanism for drug-drug interactions that can lead to altered kinetics in drug metabolism and altered elimination rates in vivo. With the prevalence of multidrug therapy, there is great potential for serious drug-drug interactions and adverse drug reactions. In an effort to prevent adverse drug reactions, the FDA mandates the evaluation of the potential for metabolic inhibition by every new chemical entity. Conventional methods for assaying drug metabolism (e.g., those based on HPLC) have been established for measuring drug-drug interactions; however, they are low-throughput. Here we describe an approach to measure the catalytic activity of CYP2C9 using the high-throughput technique self-assembled monolayers for matrix-assisted laser desorption-ionization (SAMDI) mass spectrometry. We measured the kinetics of CYP450 metabolism of the substrate, screened a set of drugs for inhibition of CYP2C9 and determined the Ki values for inhibitors. The throughput of this platform may enable drug metabolism and drug-drug interactions to be interrogated at a scale that cannot be achieved with current methods. PMID:27467208

  17. Utilization of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for structural studies related to biology and disease

    NASA Astrophysics Data System (ADS)

    Costello, Catherine E.; Helin, Jari; Ngoka, Lambert C. M.

    1996-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), because of its high sensitivity and relatively straightforward requirements for sample preparation, is contributing to the solution of structural problems in biology and to the development of therapeutic approaches through increased understanding of pharmacology and enhanced capabilities for quality control of pharmaceuticals. We are using a reflectron TOF- MS for the determination of molecular weights of individual compounds and the components of mixtures that are naturally occurring or are generated through enzymic digests, and employing the post-source decay mode to elucidate structural details. To maximize the sensitivity and information content of the spectra, varied matrices, derivative, and stepwise degradation procedures are being explored. Present studies include investigations of oligosaccharides, neutral glycolipids, gangliosides, glycoproteins, neuropeptides and proteins. Rules for fragmentation are being developed with model compounds and used for the structural elucidation of unknowns. When adequate sample amounts are available, the results are compared with low- and high-energy collision-induced decomposition spectra obtained with tandem MS in order to provide a data base for the correlation of spectral features and guidance in selection of approaches for scarce biological samples. Current projects include biophysical studies of glycoplipids, glycoproteins and oligosaccharides and investigations of the substance P receptor, transthyretin genetic variants and cisplatin-DNA interactions.

  18. Effect of the reducing-terminal substituents on the high energy collision-induced dissociation matrix-assisted laser desorption/ionization mass spectra of oligosaccharides.

    PubMed

    Küster, B; Naven, T J; Harvey, D J

    1996-01-01

    High-energy collision-induced dissociation (CID) matrix-assisted laser desorption/ionization mass spectra of N-linked oligosaccharides bearing different, commonly encountered, reducing terminal modifications (hydroxyl, 2-aminobenzamide, asparagine and a tetrapeptide) were recorded on a magnetic sector instrument equipped with an orthogonal-acceleration time-of-flight (OA-TOF) analyser. All the compounds formed abundant molecular (MNa+) and fragment ions, the latter corresponding to glycosidic and cross-ring cleavages as well as to internal fragment ions, all of which provided much insight into the oligosaccharide structure. The nature of the modification considerably influenced the CID behaviour. The strongest and most complete series of glycosidic cleavage ions (mainly Y and B--Domon and Costello nomenclature) was formed by the underivatized oligosaccharide whereas most cross-ring fragment ions, diagnostic of linkage, were found in the spectra of the glycopeptides. A-type cross-ring cleavage ions were particularly abundant in the spectrum of the asparagine derivative. Reductive amination using 2-aminobenzamide resulted in an opened reducing-terminal sugar ring and suppression of the cross-ring fragment ions carrying information associated with that ring. This information was present in the spectra of the free carbohydrate and the peptide derivatives. PMID:8914337

  19. Matrix-assisted laser desorption ionization-time of flight mass spectrometry based identification of Edwardsiella ictaluri isolated from Vietnamese striped catfish (Pangasius hypothalamus)

    PubMed Central

    Nhu, Truong Quynh; Park, Seong Bin; Kim, Si Won; Lee, Jung Seok; Im, Se Pyeong; Lazarte, Jassy Mary S.; Seo, Jong Pyo; Lee, Woo-Jai; Kim, Jae Sung

    2016-01-01

    Edwardsiella (E.) ictaluri is a major bacterial pathogen that affects commercially farmed striped catfish (Pangasius hypothalamus) in Vietnam. In a previous study, 19 strains of E. ictaluri collected from striped catfish were biochemically identified with an API-20E system. Here, the same 19 strains were used to assess the ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS; applied using a MALDI Biotyper) to conduct rapid, easy and accurate identification of E. ictaluri. MALDI-TOF MS could directly detect the specific peptide patterns of cultured E. ictaluri colonies with high (> 2.0, indicating species-level identification) scores. MALDI Biotyper 3.0 software revealed that all of the strains examined in this study possessed highly similar peptide peak patterns. In addition, electrophoresis (SDS-PAGE) and subsequent immuno-blotting using a specific chicken antibody (IgY) against E. ictaluri revealed that the isolates had highly similar protein profiles and antigenic banding profiles. The results of this study suggest that E. ictaluri isolated from striped catfish in Vietnam have homologous protein compositions. This is important, because it indicates that MALDI-TOF MS analysis could potentially outperform the conventional methods of identifying E. ictaluri. PMID:26726022

  20. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.

  1. Identification of Lactobacillus from the saliva of adult patients with caries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhang, Yifei; Liu, Yingyi; Ma, Qingwei; Song, Yeqing; Zhang, Qian; Wang, Xiaoyan; Chen, Feng

    2014-01-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc.) However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70) and 95.5% of non-lactobacilli (21/22). Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification.

  2. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Ferroni, Agnès; Suarez, Stéphanie; Beretti, Jean-Luc; Dauphin, Brunhilde; Bille, Emmanuelle; Meyer, Julie; Bougnoux, Marie-Elisabeth; Alanio, Alexandre; Berche, Patrick; Nassif, Xavier

    2010-05-01

    Delays in the identification of microorganisms are a barrier to the establishment of adequate empirical antibiotic therapy of bacteremia. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) allows the identification of microorganisms directly from colonies within minutes. In this study, we have adapted and tested this technology for use with blood culture broths, thus allowing identification in less than 30 min once the blood culture is detected as positive. Our method is based on the selective recovery of bacteria by adding a detergent that solubilizes blood cells but not microbial membranes. Microorganisms are then extracted by centrifugation and analyzed by MALDI-TOF-MS. This strategy was first tested by inoculating various bacterial and fungal species into negative blood culture bottles. We then tested positive patient blood or fluid samples grown in blood culture bottles, and the results obtained by MALDI-TOF-MS were compared with those obtained using conventional strategies. Three hundred twelve spiked bottles and 434 positive cultures from patients were analyzed. Among monomicrobial fluids, MALDI-TOF-MS allowed a reliable identification at the species, group, and genus/family level in 91%, 5%, and 2% of cases, respectively, in 20 min. In only 2% of these samples, MALDI-TOF MS did not yield any result. When blood cultures were multibacterial, identification was improved by using specific databases based on the Gram staining results. MALDI-TOF-MS is currently the fastest technique to accurately identify microorganisms grown in positive blood culture broths.

  3. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Rodríguez-Sánchez, B; Sánchez-Carrillo, C; Ruiz, A; Marín, M; Cercenado, E; Rodríguez-Créixems, M; Bouza, E

    2014-07-01

    In recent years, matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has proved a rapid and reliable method for the identification of bacteria and yeasts that have already been isolated. The objective of this study was to evaluate this technology as a routine method for the identification of microorganisms directly from blood culture bottles (BCBs), before isolation, in a large collection of samples. For this purpose, 1000 positive BCBs containing 1085 microorganisms have been analysed by conventional phenotypic methods and by MALDI-TOF MS. Discrepancies have been resolved using molecular methods: the amplification and sequencing of the 16S rRNA gene or the Superoxide Dismutase gene (sodA) for streptococcal isolates. MALDI-TOF predicted a species- or genus-level identification of 81.4% of the analysed microorganisms. The analysis by episode yielded a complete identification of 814 out of 1000 analysed episodes (81.4%). MALDI-TOF identification is available for clinicians within hours of a working shift, as oppose to 18 h later when conventional identification methods are performed. Moreover, although further improvement of sample preparation for polymicrobial BCBs is required, the identification of more than one pathogen in the same BCB provides a valuable indication of unexpected pathogens when their presence may remain undetected in Gram staining. Implementation of MALDI-TOF identification directly from the BCB provides a rapid and reliable identification of the causal pathogen within hours.

  4. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  5. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of titanium oxide-enriched peptides for detection of aged organophosphorus adducts on human butyrylcholinesterase.

    PubMed

    Jiang, Wei; Murashko, Ekaterina A; Dubrovskii, Yaroslav A; Podolskaya, Ekaterina P; Babakov, Vladimir N; Mikler, John; Nachon, Florian; Masson, Patrick; Schopfer, Lawrence M; Lockridge, Oksana

    2013-08-15

    Exposure to nerve agents or organophosphorus (OP) pesticides can have life-threatening effects. Human plasma butyrylcholinesterase (BChE) inactivates these poisons by binding them to Ser198. After hours or days, these OP adducts acquire a negative charge by dealkylation in a process called aging. Our goal was to develop a method for enriching the aged adduct to facilitate detection of exposure. Human BChE inhibited by OP toxicants was incubated for 4 days to 6 years. Peptides produced by digestion with pepsin were enriched by binding to titanium oxide (TiO2) and analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. It was found that with two exceptions, all aged OP adducts in peptide FGES198AGAAS were enriched by binding to Titansphere tips. Cresyl saligenin phosphate yielded two types of aged adduct, cresylphosphate and phosphate, but only the phosphate adduct bound to Titansphere. The nerve agent VR yielded no aged adduct, supporting crystal structure findings that the VR adduct on BChE does not age. The irreversible nature of aged OP adducts was demonstrated by the finding that after 6 years at room temperature in sterile pH 7.0 buffer, the adducts were still detectable. It was concluded that TiO2 microcolumns can be used to enrich aged OP-modified BChE peptide.

  6. Probing chain-end functionalization reactions in living anionic polymerization via matrix-assisted laser desorption ionization time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Arnould, Mark A.; Polce, Michael J.; Quirk, Roderic P.; Wesdemiotis, Chrys

    2004-11-01

    Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is applied to examine the products arising upon the preparation of chain-end functional polymers via living anionic polymerization techniques. Both post-polymerization functionalizations as well as the use of functionalized initiators are investigated. MALDI-TOF MS is shown to be a sensitive probe for the qualitative analysis of the major and minor oligomers from novel functionalization reactions whose mechanisms are not yet well established. The method is particularly valuable for the identification of the end groups of the minor, and often unexpected, distributions that may be undetectable by other analytical means. Complete characterization of all oligomers generated during functionalization reactions provides an essential tool to the synthetic chemist for understanding the corresponding mechanisms. This insight is necessary for selecting alternative routes or making modifications to the reaction conditions. It is demonstrated that MALDI-TOF MS can convey quantitative information about the yields of the chain-end groups introduced during functionalization. From the cases presented it is evident that post-polymerization reactions allow for better control of chain-end functionality and molecular weight than functionalization with the limited number of currently available protected functionalized initiators.

  7. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections.

    PubMed

    Ghosh, A K; Paul, S; Sood, P; Rudramurthy, S M; Rajbanshi, A; Jillwin, T J; Chakrabarti, A

    2015-04-01

    Few studies have systematically standardised and evaluated matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of yeasts from bloodstream infections. This is rapidly becoming pertinent for early identification of yeasts and appropriate antifungal therapy. We used 354 yeast strains identified by polymerase chain reaction (PCR) sequencing for standardisation and 367 blind clinical strains for validation of our MALDI-TOF MS protocols. We also evaluated different sample preparation methods and found the on-plate formic acid extraction method as most cost- and time-efficient. The MALDI-TOF assay correctly identified 98.9% of PCR-sequenced yeasts. Novel main spectrum projections (MSP) were developed for Candida auris, C. viswanathii and Kodamaea ohmeri, which were missing from the Bruker MALDI-TOF MS database. Spectral cut-offs computed by receiver operating characteristics (ROC) analysis showed 99.4% to 100% accuracy at a log score of ≥ 1.70 for C. tropicalis, C. parapsilosis, C. pelliculosa, C. orthopsilosis, C. albicans, C. rugosa, C. guilliermondii, C. lipolytica, C. metapsilosis, C. nivariensis. The differences in the species-specific scores of our standardisation and blind validation strains were not statistically significant, implying the optimal performance of our test protocol. The MSPs of the three new species also were validated. We conclude that MALDI-TOF MS is a rapid, accurate and reliable tool for identification of bloodstream yeasts. With proper standardisation, validation and regular database expansion, its efficiency can be further enhanced.

  8. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectra of poly(butylene adipate).

    PubMed

    Rizzarelli, Paola; Puglisi, Concetto; Montaudo, Giorgio

    2006-01-01

    Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS/MS) was employed to analyze four poly(butylene adipate) (PBAd) oligomers and to investigate their fragmentation pathways as a continuation of our work on the MALDI-TOF/TOF-MS/MS study of synthetic polymers. MALDI-TOF/TOF-MS/MS analysis was performed on oligomers terminated by carboxyl and hydroxyl groups, methyl adipate and hydroxyl groups, dihydroxyl groups, and dicarboxyl groups. The sodium adducts of these oligomers were selected as precursor ions. Different end groups do not influence the fragmentation of sodiated polyester oligomers and similar series of product ions were observed in all the MALDI-TOF/TOF-MS/MS spectra. According to the structures of the most abundant product ions identified in the present work, three fragmentation pathways have been proposed to occur most frequently in PBAd: beta-hydrogen-transfer rearrangement, leading to the selective cleavage of the --O--CH(2)-- bonds; --CH(2)--CH(2)-- (beta--beta) bond cleavage in the adipate moiety; and ester bond scission.

  9. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    PubMed

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  10. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    PubMed Central

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies.

  11. Flexible xxx-asp/asn and gly-xxx residues of equine cytochrome C in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    PubMed

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.

  12. Age estimation of museum wool textiles from Ovis aries using deamidation rates utilizing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Araki, Naoko; Moini, Mehdi

    2011-11-30

    Cultural heritage contains a large number of precious proteinaceous specimens, such as wool and silk textiles, leather objects, paper, paint, coatings, binders (and associated adhesives), etc. To minimize the degradation of and to preserve these artifacts, it is desirable to understand the fundamental factors that cause their degradation, to identify the deterioration markers that determine their degradation stage and their age, and to use technologies that can provide this information rapidly while consuming a minimal amount of sample. There are several forces that cause protein degradation, including amino acid racemization, protein deamidation, and protein truncation. The purpose of this paper is to study protein deamidation using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for high-throughput dating of museums wool specimens. For proof of concept, several well-dated sheep's wool textiles from museum collections were analyzed. For wool samples aged from the present to ~400 years ago, the deamidation of two asparagine-containing peptides obtained from the tryptic digest of sheep wool were found to behave linearly in time, indicating that they could act as a potential biomarker of aging for wool samples.

  13. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists.

    PubMed

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644

  14. Optimization of the score cutoff value for routine identification of Staphylococcus species by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    PubMed

    Han, Huan Wen; Chang, Hsien Chang; Hunag, Ay Huei; Chang, Tsung Chain

    2015-12-01

    Staphylococcus species are important pathogens. We evaluated 2 score cutoffs (2.0 and 1.7) and the replicate number (a single or a duplicate test) on the identification of staphylococci using the Bruker matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A collection of 440 clinical isolates (11 species) and 144 reference strains (36 species) was evaluated. For clinical isolates using a cutoff of 2.0 and duplicate tests, the rates of species, genus, and unreliable identifications were 93.4%, 5.7%, and 0.9% respectively, while the respective values were 99.3%, 0.2%, and 0.5% when the cutoff was 1.7. The species identification rates were significantly higher (P<0.01) when a cutoff of 1.7 or a duplicate test was used. Similar results were obtained for reference strains. In conclusion, a cutoff of 1.7 and duplicate tests are recommended for identification of staphylococci using MALDI-TOF MS.

  15. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  16. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    PubMed Central

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644

  17. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    PubMed

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties. PMID:24549193

  18. High-sensitivity detection of polycyclic aromatic hydrocarbons adsorbed onto soot particles using laser desorption/laser ionization/time-of-flight mass spectrometry: An approach to studying the soot inception process in low-pressure flames

    SciTech Connect

    Faccinetto, Alessandro; Desgroux, Pascale; Therssen, Eric; Ziskind, Michael; Focsa, Cristian

    2011-02-15

    Species adsorbed at the surfaces of soot particles sampled at different locations in a low-pressure methane flame have been analyzed. The analysis method is laser desorption/laser ionization/time-of-flight mass spectrometry (LD/LI/TOF-MS) applied to soot particles deposited on a filter after probe extraction in the flame. In order to fully characterize the experimental apparatus, a strategy of systematic investigations has been adopted, beginning with the study of less complex systems constituted by model soot (standard polycyclic aromatic hydrocarbons, PAHs, adsorbed on black carbon), and then natural soot sampled from a literature reference ethylene flame. This characterization allowed a good understanding of the analytical response of PAHs to the desorption and ionization processes and the definition of the optimal experimental conditions. The soot PAH content was then investigated on a low-pressure methane/oxygen/nitrogen premixed flat flame ({phi} = 2.32) as a function of the sampling height above the burner (HAB). The obtained mass spectra are reproducible, fragment-free, well resolved in the analyzed m/z range and they are characterized by an excellent signal-to-noise ratio. They all feature regular peak sequences, where each signal peak has been assigned to the most stable high-temperature-formed PAHs. The structure of the mass spectra depends on the sampling HAB into the flame, i.e., on the reaction time. An original contribution to the data interpretation comes from the development of a new sampling method that makes it possible to infer hypotheses about the PAH partition between the gas phase and the soot particles. This method highlights the presence of high-mass PAHs in the soot nucleation zone, and it suggests the importance of heterogeneous reactions occurring between flame PAHs and soot particles. (author)

  19. Humic acids as both matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and adsorbent for magnetic solid phase extraction.

    PubMed

    Zhao, Qin; Xu, Jing; Yin, Jia; Feng, Yu-Qi

    2015-08-19

    In the present study, humic acids (HAs) were applied as both a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and an adsorbent of magnetic solid phase extraction (MSPE) for the first time. As natural macromolecule compounds, HAs are inherently highly functionalized and contain laser energy absorbing-transferring aromatic structures. This special molecular structure made HAs a good candidate for use as a MALDI matrix in small molecule analysis. At the same time, due to its good adsorption ability, HAs was prepared as MSPE adsorbent via a simple co-mixing method, in which the commercially available HAs were directly mixed with Fe3O4 magnetic nanoparticles (MNPs) in a mortar and grinded evenly and completely. In this process, MNPs were physically wrapped and adhered to tiny HAs leading to the formation of magnetic HAs (MHAs). To verify the bi-function of the MHAs, Rhodamine B (RdB) was chosen as model compound. Our results show that the combination of MHAs-based MSPE and MALDI-TOF-MS can provide a rapid and sensitive method for the determination of RdB in chili oil. The whole analytical procedure could be completed within 30 min for simultaneous determination of more than 20 samples, and the limit of quantitation for RdB was found to be 0.02 μg/g. The recoveries in chili oil were in the range 73.8-81.5% with the RSDs less than 21.3% (intraday) and 20.3% (interday). The proposed strategy has potential applications for high-throughput analysis of small molecules in complex samples. PMID:26343436

  20. Analysis of Antiretrovirals in Single Hair Strands for Evaluation of Drug Adherence with Infrared-Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging.

    PubMed

    Rosen, Elias P; Thompson, Corbin G; Bokhart, Mark T; Prince, Heather M A; Sykes, Craig; Muddiman, David C; Kashuba, Angela D M

    2016-01-19

    Adherence to a drug regimen can be a strong predictor of health outcomes, and validated measures of adherence are necessary at all stages of therapy from drug development to prescription. Many of the existing metrics of drug adherence (e.g., self-report, pill counts, blood monitoring) have limitations, and analysis of hair strands has recently emerged as an objective alternative. Traditional methods of hair analysis based on LC-MS/MS (segmenting strands at ≥1 cm length) are not capable of preserving a temporal record of drug intake at higher resolution than approximately 1 month. Here, we evaluated the detectability of HIV antiretrovirals (ARVs) in hair from a range of drug classes using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) with 100 μm resolution. Infrared laser desorption of hair strands was shown to penetrate into the strand cortex, allowing direct measurement by MSI without analyte extraction. Using optimized desorption conditions, a linear correlation between IR-MALDESI ion abundance and LC-MS/MS response was observed for six common ARVs with estimated limits of detection less than or equal to 1.6 ng/mg hair. The distribution of efavirenz (EFV) was then monitored in a series of hair strands collected from HIV infected, virologically suppressed patients. Because of the role hair melanin plays in accumulation of basic drugs (like most ARVs), an MSI method to quantify the melanin biomarker pyrrole-2,3,5-tricarboxylic acid (PTCA) was evaluated as a means of normalizing drug response between patients to develop broadly applicable adherence criteria. PMID:26688545

  1. Humic acids as both matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and adsorbent for magnetic solid phase extraction.

    PubMed

    Zhao, Qin; Xu, Jing; Yin, Jia; Feng, Yu-Qi

    2015-08-19

    In the present study, humic acids (HAs) were applied as both a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and an adsorbent of magnetic solid phase extraction (MSPE) for the first time. As natural macromolecule compounds, HAs are inherently highly functionalized and contain laser energy absorbing-transferring aromatic structures. This special molecular structure made HAs a good candidate for use as a MALDI matrix in small molecule analysis. At the same time, due to its good adsorption ability, HAs was prepared as MSPE adsorbent via a simple co-mixing method, in which the commercially available HAs were directly mixed with Fe3O4 magnetic nanoparticles (MNPs) in a mortar and grinded evenly and completely. In this process, MNPs were physically wrapped and adhered to tiny HAs leading to the formation of magnetic HAs (MHAs). To verify the bi-function of the MHAs, Rhodamine B (RdB) was chosen as model compound. Our results show that the combination of MHAs-based MSPE and MALDI-TOF-MS can provide a rapid and sensitive method for the determination of RdB in chili oil. The whole analytical procedure could be completed within 30 min for simultaneous determination of more than 20 samples, and the limit of quantitation for RdB was found to be 0.02 μg/g. The recoveries in chili oil were in the range 73.8-81.5% with the RSDs less than 21.3% (intraday) and 20.3% (interday). The proposed strategy has potential applications for high-throughput analysis of small molecules in complex samples.

  2. Analysis of Antiretrovirals in Single Hair Strands for Evaluation of Drug Adherence with Infrared-Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry Imaging.

    PubMed

    Rosen, Elias P; Thompson, Corbin G; Bokhart, Mark T; Prince, Heather M A; Sykes, Craig; Muddiman, David C; Kashuba, Angela D M

    2016-01-19

    Adherence to a drug regimen can be a strong predictor of health outcomes, and validated measures of adherence are necessary at all stages of therapy from drug development to prescription. Many of the existing metrics of drug adherence (e.g., self-report, pill counts, blood monitoring) have limitations, and analysis of hair strands has recently emerged as an objective alternative. Traditional methods of hair analysis based on LC-MS/MS (segmenting strands at ≥1 cm length) are not capable of preserving a temporal record of drug intake at higher resolution than approximately 1 month. Here, we evaluated the detectability of HIV antiretrovirals (ARVs) in hair from a range of drug classes using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) with 100 μm resolution. Infrared laser desorption of hair strands was shown to penetrate into the strand cortex, allowing direct measurement by MSI without analyte extraction. Using optimized desorption conditions, a linear correlation between IR-MALDESI ion abundance and LC-MS/MS response was observed for six common ARVs with estimated limits of detection less than or equal to 1.6 ng/mg hair. The distribution of efavirenz (EFV) was then monitored in a series of hair strands collected from HIV infected, virologically suppressed patients. Because of the role hair melanin plays in accumulation of basic drugs (like most ARVs), an MSI method to quantify the melanin biomarker pyrrole-2,3,5-tricarboxylic acid (PTCA) was evaluated as a means of normalizing drug response between patients to develop broadly applicable adherence criteria.

  3. Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry.

    PubMed

    Kuo, Tsung-Rong; Wang, Di-Yan; Chiu, Yu-Chen; Yeh, Yun-Chieh; Chen, Wei-Ting; Chen, Ching-Hui; Chen, Chun-Wei; Chang, Huan-Cheng; Hu, Cho-Chun; Chen, Chia-Chun

    2014-01-27

    This work demonstrated a simple platform for rapid and effective surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) measurements based on the layer structure of reduced graphene oxide (rGO) and gold nanoparticles. A multi-layer thin film was fabricated by alternate layer-by-layer depositions of rGO and gold nanoparticles (LBL rGO/AuNP). The flat and clean two-dimensional film was served as the sample plate and also functioned as the matrix in SALDI-TOF MS. By simply one-step deposition of analytes onto the LBL rGO/AuNP sample plate, the MS measurements of various homogeneous samples were ready to execute. The optimization of MS signal was reached by the variation of the layer numbers of rGO and gold nanoparticles. Also, the small molecules including amino acids, carbohydrates and peptides were successfully analyzed in SALDI-TOF MS using the LBL rGO/AuNP sample plate. The results showed that the signal intensity, S N(-1) ratio and reproducibility of SALDI-TOF spectra have been significantly improved in comparison to the uses of gold nanoparticles or α-cyano-4-hydroxy-cinnamic acid (CHCA) as the assisted matrixes. Taking the advantages of the unique properties of rGO and gold nanoparticles, the ready-to-use MS sample plate, which could absorb and dissipate laser energy to analytes quite efficiently and homogeneously, has shown great commercial potentials for MS applications.

  4. [The approbation of technique of mass spectrometry with matrix-activated laser desorption/ionization for identification of plague agent].

    PubMed

    Afanas'ev, M V; Ostiak, A S; Balakhonov, S V

    2014-08-01

    The study of sampling of strains of Y. pestis of main and altaic subspecies was implemented. The modern technique of identification of microorganisms was applied using MALDI-TOF mass spectrometry analysis. The evaluation of biological safety of method of sampling preparation was implemented. To supplement the identification base "BioTyper" the spectrum of typical strains of Y. pestis were obtained. The enhanced identification base was used to evaluate possibilities of application of MALDI-TOF technology for identification and taxonomic differentiation of Y. pestis from other representatives of genus of Yersinia. In the process of study a complete concordance of results of mass spectrometry identification and classic cultural method was observed. On the basis of mass spectrometry characteristic of analyzed sampling the differentiation between strains of Y. pestis of subspecies pestis and strains of subspecies altaica was implemented. The study results testify the effectiveness of application of mass spectrometry analysis for reliable interspecies and intraspecific differentiation of plague agent. The simplicity and velocity of sampling preparation and implementation of analysis and low cost of active storage allow considering the MALDI-TOF technology of mass spectrometry identification as highly perspective method for laboratory diagnostic of plague agent.

  5. A statistical methodology for the comparison of blue gel pen inks analyzed by laser desorption/ionization mass spectrometry.

    PubMed

    Weyermann, Céline; Bucher, Lukas; Majcherczyk, Paul

    2011-09-01

    A statistical methodology for the objective comparison of LDI-MS mass spectra of blue gel pen inks was evaluated. Thirty-three blue gel pen inks previously studied by RAMAN were analyzed directly on the paper using both positive and negative mode. The obtained mass spectra were first compared using relative areas of selected peaks using the Pearson correlation coefficient and the Euclidean distance. Intra-variability among results from one ink and inter-variability between results from different inks were compared in order to choose a differentiation threshold minimizing the rate of false negative (i.e. avoiding false differentiation of the inks). This yielded a discriminating power of up to 77% for analysis made in the negative mode. The whole mass spectra were then compared using the same methodology, allowing for a better DP in the negative mode of 92% using the Pearson correlation on standardized data. The positive mode results generally yielded a lower differential power (DP) than the negative mode due to a higher intra-variability compared to the inter-variability in the mass spectra of the ink samples. PMID:21889108

  6. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents. PMID:19241065

  7. 4-Chloro-α-cyanocinnamic acid is an efficient soft matrix for cyanocobalamin detection in foodstuffs by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS).

    PubMed

    Calvano, Cosima Damiana; Ventura, Giovanni; Palmisano, Francesco; Cataldi, Tommaso R I

    2016-09-01

    4-Chloro-α-cyanocinnamic acid (ClCCA) is a very useful matrix able to give the protonated adduct [M+H](+) of intact cyanocobalamin (CNCbl) as the base peak (m/z 1355.58) in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The only fragment observed is [M-CN + H](+•) formed through the facile (•) CN neutral loss reflecting the fairly low Co-C bond energy. All other investigated proton transfer matrices, including α-cyano-4-hydroxycinnamic acid, para-nitroaniline and 2,5-dihydroxybenzoic acid, give rise to a complete decyanation of CNCbl with concomitant formation of [M-CN + H](+•) , [M-CN + Na](+•) and [M-CN + K](+•) adducts at m/z 1329.57, 1351.55 and 1367.51, respectively. Depending on the matrix used, a variable degree of fragmentation involving the α-side axial ligand was observed. A plausible explanation of the specific behaviour of 4-chloro-α-cyanocinnamic acid as a soft matrix is discussed. Tandem mass spectra of both [M + H](+) and [M-CN + H](+•) ions were obtained and product ions successfully assigned. The possibility of detecting the protonated adduct of intact CNCbl was exploited in foodstuff samples such as cow milk and hen egg yolk by MALDI tandem MS upon sample extraction. We believe that our data provide strong basis for the application of MALDI tandem MS in the qualitative analysis of natural CNCbl, including fish, liver and meat samples. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27468135

  8. 4-Chloro-α-cyanocinnamic acid is an efficient soft matrix for cyanocobalamin detection in foodstuffs by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS).

    PubMed

    Calvano, Cosima Damiana; Ventura, Giovanni; Palmisano, Francesco; Cataldi, Tommaso R I

    2016-09-01

    4-Chloro-α-cyanocinnamic acid (ClCCA) is a very useful matrix able to give the protonated adduct [M+H](+) of intact cyanocobalamin (CNCbl) as the base peak (m/z 1355.58) in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The only fragment observed is [M-CN + H](+•) formed through the facile (•) CN neutral loss reflecting the fairly low Co-C bond energy. All other investigated proton transfer matrices, including α-cyano-4-hydroxycinnamic acid, para-nitroaniline and 2,5-dihydroxybenzoic acid, give rise to a complete decyanation of CNCbl with concomitant formation of [M-CN + H](+•) , [M-CN + Na](+•) and [M-CN + K](+•) adducts at m/z 1329.57, 1351.55 and 1367.51, respectively. Depending on the matrix used, a variable degree of fragmentation involving the α-side axial ligand was observed. A plausible explanation of the specific behaviour of 4-chloro-α-cyanocinnamic acid as a soft matrix is discussed. Tandem mass spectra of both [M + H](+) and [M-CN + H](+•) ions were obtained and product ions successfully assigned. The possibility of detecting the protonated adduct of intact CNCbl was exploited in foodstuff samples such as cow milk and hen egg yolk by MALDI tandem MS upon sample extraction. We believe that our data provide strong basis for the application of MALDI tandem MS in the qualitative analysis of natural CNCbl, including fish, liver and meat samples. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with size-exclusion chromatographic fractionation for structural characterization of synthetic aliphatic copolyesters.

    PubMed

    Adamus, Grazyna; Rizzarelli, Paola; Montaudo, Maurizio S; Kowalczuk, Marek; Montaudo, Giorgio

    2006-01-01

    We report matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and off-line coupling of size-exclusion chromatography with MALDI-TOFMS analysis (SEC/MALDI-TOFMS) methods for the detailed characterization of poly[(R,S)-3-hydroxybutyrate-co-L-lactic acid], P[(R,S)-3HB-co-LA], and poly[(R,S)-3-hydroxybutyrate-co-epsilon-caprolactone], P[(R,S)-3HB-co-CL], copolymer samples which are expected to be used in special medical application as scaffolds for cartilage and soft tissue engineering. The novel copolyesters contained randomly distributed (R,S)-3-hydroxybutyrate structural units, were synthesized by transesterification of the corresponding homopolymers, i.e. atactic poly[(R,S)-3-hydroxybutyrate], a-PHB, and poly(L-Lactide) (PLLA) or poly(epsilon-caprolactone) (PCL), respectively. The MS methods used for the characterization of the resulting polydisperse copolyester samples were supported by classical methods (NMR, SEC). The structures of individual copolyester macromolecules, including end-group chemical structures, were established using initially MALDI-TOFMS and then SEC/MALDI-TOFMS. The compositions of the copolyesters were determined by two methods, namely based on 1H NMR and MALDI-TOF spectra. The two sets of values showed good agreement. The sequence distribution was determined using the signal intensities of individual copolyester macromolecules, which appeared in MALDI-TOF mass spectra. Furthermore, sequence analysis gave information about the degree of transesterification. The copolyesters synthesized, with only one exception, were demonstrated to be almost random, which implies that the ester-ester exchange was close to completion. PMID:16470727

  10. Species identification of Oetzi's clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair digests.

    PubMed

    Hollemeyer, Klaus; Altmeyer, Wolfgang; Heinzle, Elmar; Pitra, Christian

    2008-09-01

    Identification of ancient biological samples from the 1991-discovered and more than 5300-year-old Tyrolean mummy, also called iceman or Oetzi, is very difficult. The species of origins of four animal-hair-bearing samples of the accoutrement of the mummy not yet diagnosed were identified by a special proteomics method. Ha 43/91/130 and Ha 6/91, two samples from his coat, and Ha 5/91, a sample from his leggings, were assigned to sheep. The upper leather of his moccasins, Ha 2/91, was made from cattle. Despite the enormous age of these samples with partial (bio)chemical alterations, reliable identification was possible using a recently developed matrix-assisted laser desorption/ionization time-of-flight mass spectrometric ((MALDI-TOF MS)-based analytical method. The method is exclusively based on the analysis of proteins and uses minute amounts of peptides directly derived from tryptic hair digests without any separation or enrichment steps. Unknown species are identified by comparison of their peptide ion patterns with known spectra stored in existing databases. Hereby, the correlation distance, a form of Euclidean distance, and deduced parameters are used to measure similarities. If more than one potential hit remains, specific diagnostic peptide ions are used to stepwise exclude incorrect matches. These ions are specific for orders, families, subfamilies/genera and/or even species. Peptide mass fingerprinting data combined with those from collision-induced dissociation spectra (combined MS & MS/MS) were used for interpretation with the MASCOT search engine and the NCBI database to find the potential parentage of hair proteins. For this technique, selected precursor ions were identified as specific diagnostic peptide ions.

  11. Rapid genotyping of single nucleotide polymorphisms influencing warfarin drug response by surface-enhanced laser desorption and ionization time-of-flight (SELDI-TOF) mass spectrometry.

    PubMed

    Yang, Shangbin; Xu, LiHui; Wu, Haifeng M

    2010-03-01

    Warfarin exhibits significant interindividual variability in dosing requirements. Different drug responses are partly attributed to the single nucleotide polymorphisms (SNPs) that influence either drug action or drug metabolism. Rapid genotyping of these SNPs helps clinicians to choose appropriate initial doses to quickly achieve anticoagulation effects and to prevent complications. We report a novel application of surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the rapid genotyping of SNPs that impact warfarin efficacy. The SNPs were first amplified by PCR and then underwent single base extension to generate the specific SNP product. Next, genetic variants displaying different masses were bound to Q10 anionic proteinChips and then genotyped by using SELDI-TOF MS in a multiplex fashion. SELDI-TOF MS offered unique properties of on-chip sample enrichment and clean-ups, which streamlined the testing procedures and eliminated many tedious experimental steps required by the conventional MS-based method. The turn-around time for genotyping three known warfarin-related SNPs, CYP2C9*2, CYP2C9*3, and VKORC1 3673G>A by SELDI-TOF MS was less than 5 hours. The analytical accuracy of this method was confirmed both by bidirectional DNA sequencing and by comparing the genotype results (n = 189) obtained by SELDI-TOF MS to reports from a clinical reference laboratory. This new multiplex genotyping method provides an excellent clinical laboratory platform to promote personalized medicine in warfarin therapy. PMID:20075209

  12. Lipidomics for clinical diagnosis: Dye-Assisted Laser Desorption/Ionization (DALDI) method for lipids detection in MALDI mass spectrometry imaging.

    PubMed

    Arafah, Karim; Longuespée, Rémi; Desmons, Annie; Kerdraon, Olivier; Fournier, Isabelle; Salzet, Michel

    2014-08-01

    Lipid-based biomarkers for research and diagnosis are rapidly emerging to unpack the basis of person-to-person and population variations in disease susceptibility, drug and nutritional responses, to name but a few. Hence, with the advent of MALDI Mass Spectrometry Imaging, lipids have begun to be investigated intensively. However, lipids are highly mobile during tissue preparation, and are soluble in the solvent used for matrix preparation or in the fixing fluid such as formalin, resulting in substantial delocalization. In the present article, we investigated as another alternative, the possibility of using specific dyes that can absorb UV wavelengths, in order to desorb the lipids specifically from tissue sections, and are known to immobilize them in tissues. Indeed, after lipid insolubilization with chromate solution or chemical fixation with osmium tetroxide, heterocyclic-based dyes can be directly used without matrix. Taking into account the fact that some dyes have this matrix-free capability, we identified particular dyes dedicated to histological staining of lipids that could be used with MALDI mass spectrometry imaging. We stained tissue sections with either Sudan Black B, Nile Blue A, or Oil Red O. An important advantage of this assay relies on its compatibility with usual practices of histopathological investigation of lipids. As a new method, DALDI stands for Dye-Assisted Laser Desorption Ionization and allows for future clinical and histopathological applications using routine histological protocols. Additionally, this novel methodology was validated in human ovarian cancer biopsies to demonstrate its use as a suitable procedure, for histological diagnosis in lipidomics field. PMID:24905741

  13. Reactions of metal ions and their clusters in the gas phase using laser ionization--Fourier transform mass spectrometry

    SciTech Connect

    Freiser, B.S.

    1990-09-01

    Carbon clusters of the form C{sub N}{sup {minus}} are observed at least out to N = 30 confirming that cluster formation is occurring in the high pressure waiting room'' of the supersonic cluster source. This can be stated unequivocally, since only up to N = 13 is observed by direct laser desorption of a carbon target in the absence of supersonic expansion. Currently underway is a systematic investigation of a wide variety of M{sup +}-C{sub n}H{sub 2n} species with n = 2--10 and M = first and second row transition metal ions. In addition we will shortly apply this methodology to doubly charged ions and metal cluster ions. All indications are that this area will be highly productive.

  14. Analysis of charged cyclomalto-oligosaccharides (cyclodextrin) derivatives by ion-spray, matrix-assisted laser-desorption/ionization time-of-flight and fast-atom bombardment mass spectrometry, and by capillary electrophoresis.

    PubMed

    Chankvetadze, B; Endresz, G; Blaschke, G; Juza, M; Jakubetz, H; Schurig, V

    1996-06-21

    The use of electrospray-ionization mass spectrometry (ESIMS), matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDITOFMS), and fast-atom bombardment mass spectrometry (FABMS) for the rapid determination of molecular weight, degree of substitution (ds), and purity is demonstrated for charged derivatives of cyclomalto-heptaose (beta CD) and -octaose (gamma CD). The access to anionic sulfoalkyl ethers (alkyl: ethyl, n-propyl, and n-butyl) and to beta CD-2-hydroxy-3-trimethylammoniumpropyl ether chlorides (HTAP-beta CD) leads only to mixtures of products, the compositions of which can be determined directly from ESI and MALDITOF mass spectra. All charged derivatives consist of a mixture of unreacted and higher substituted compounds. The substitution patterns obtained by MS are in good agreement with the results of experiments on the separation of beta CD-sulfoalkyl ethers by capillary electrophoresis (CE).

  15. Clinical and microbiological features of a cystic fibrosis patient chronically colonized with Pandoraea sputorum identified by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fernández-Olmos, A; Morosini, M I; Lamas, A; García-Castillo, M; García-García, L; Cantón, R; Máiz, L

    2012-03-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment. PMID:22170922

  16. Comparison of the accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry with that of other commercial identification systems for identifying Staphylococcus saprophyticus in urine.

    PubMed

    Lee, Tai-Fen; Lee, Hao; Chen, Chung-Ming; Du, Shin-Hei; Cheng, Ya-Chih; Hsu, Chen-Ching; Chung, Meng-Yu; Teng, Shih-Hua; Teng, Lee-Jene; Hsueh, Po-Ren

    2013-05-01

    Among 30 urinary isolates of Staphylococcus saprophyticus identified by sequencing methods, the rate of accurate identification was 100% for Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), 86.7% for the Phoenix PID and Vitek 2 GP systems, 93.3% for the MicroScan GP33 system, and 46.7% for the BBL CHROMagar Orientation system.

  17. Clinical and microbiological features of a cystic fibrosis patient chronically colonized with Pandoraea sputorum identified by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Fernández-Olmos, A; Morosini, M I; Lamas, A; García-Castillo, M; García-García, L; Cantón, R; Máiz, L

    2012-03-01

    Clonal isolates identified as various nonfermentative Gram-negative bacilli over a 5-year period from sputum cultures of a 30-year-old cystic fibrosis patient were successfully reidentified as Pandoraea sputorum by combining 16S rRNA sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Decreased lung function improved after 1 year of azithromycin and inhaled 7%-hypertonic saline treatment.

  18. Secondary Neutral Mass Spectrometry: The application of laser post ionization to trace surface analysis in semiconductor materials. [Fe on O-implanted Si

    SciTech Connect

    Pellin, M.J.; Young, C.E.; Calaway, W.F.; Burnett, J.W.; Gruen, D.M.

    1988-01-01

    SNMS uses the secondary neutral sputtered fraction, and can increase both yield and quantitative analysis. In this paper, lasers are used to ionize and then detect the sputtered neutral particles. This method is used with oxygen ion implantation to study Fe on Si substrates. In this way, Fe could be detected at the 500 ppT level in a single monolayer. 34 refs., 6 figs. (DLC)

  19. Rapid detection of porins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    PubMed

    Hu, Yan-Yan; Cai, Jia-Chang; Zhou, Hong-Wei; Zhang, Rong; Chen, Gong-Xiang

    2015-01-01

    The rapid and cost-efficient determination of carbapenem resistance is an important prerequisite for the choice of an adequate antibiotic therapy. A MALDI-TOF MS-based assay was set up to detect porins in the current study. A loss of the components of porin alone such as OmpK35/OmpK36 or together with the production of carbapenemases will augment the carbapenem resistance. Ten strains of Escherichia coli and eight strains of Klebsiella pneumoniae were conducted for both sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and MALDI-TOF MS analysis. MALDI-TOF/TOF MS analysis was then performed to verify the correspondence of proteins between SDS-PAGE and MALDI-TOF MS. The results indicated that the mass spectrum of ca. 35,000, 37,000, and 38,000-m/z peaks of E. coli ATCC 25922 corresponded to OmpA, OmpC, and OmpF with molecular weight of approximately ca. 38, 40, and 41 kDa in SDS-PAGE gel, respectively. The band of OmpC and OmpF porins were unable to be distinguished by SDS-PAGE, whereas it was easy to be differentiated by MALDI-TOF MS. As for K. pneumoniae isolates, the mass spectrum of ca. 36,000 and 38,600-m/z peaks was observed corresponding to OmpA and OmpK36 with molecular weight of approximately ca. 40 and 42 kDa in SDS-PAGE gel, respectively. Porin OmpK35 was not observed in the current SDS-PAGE, while a 37,000-m/z peak was found in K. pneumoniae ATCC 13883 and carbapenem-susceptible strains by MALDI-TOF MS which was presumed to be the characteristic peak of the OmpK35 porin. Compared with SDS-PAGE, MALDI-TOF MS is able to rapidly identify the porin-deficient strains within half an hour with better sensitivity, less cost, and is easier to operate and has less interference.

  20. Rapid Assessment of Human Amylin Aggregation and Its Inhibition by Copper(II) Ions by Laser Ablation Electrospray Ionization Mass Spectrometry with Ion Mobility Separation

    PubMed Central

    Donaldson, Robert P.; Jeremic, Aleksandar M.; Vertes, Akos

    2015-01-01

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. Here, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the –HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of

  1. Two tools for applying chromatographic retention data to the mass-based identification of peptides during hydrogen/deuterium exchange experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Gershon, P D

    2010-12-15

    Two tools are described for integrating LC elution position with mass-based data in hydrogen-deuterium exchange (HDX) experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (nanoLC/MALDI-MS, a novel approach to HDX-MS). The first of these, 'TOF2H-Z Comparator', highlights peptides in HDX experiments that are potentially misidentified on the basis of mass alone. The program first calculates normalized values for the organic solvent concentration responsible for the elution of ions in nanoLC/MALDI HDX experiments. It then allows the solvent gradients for the multiple experiments contributing to an MS/MS-confirmed peptic peptide library to be brought into mutual alignment by iteratively re-modeling variables among LC parameters such as gradient shape, solvent species, fraction duration and LC dead time. Finally, using the program, high-probability chromatographic outliers can be flagged within HDX experimental data. The role of the second tool, 'TOF2H-XIC Comparator', is to normalize the LC chromatograms corresponding to all deuteration timepoints of all HDX experiments of a project, to a common reference. Accurate normalization facilitates the verification of chromatographic consistency between all ions whose spectral segments contribute to particular deuterium uptake plots. Gradient normalization in this manner revealed chromatographic inconsistencies between ions whose masses were either indistinguishable or separated by precise isotopic increments.

  2. Characterization of heat-labile toxin-subunit B from Escherichia coli by liquid chromatography-electrospray ionization-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Sospedra, I; De Simone, C; Soriano, J M; Mañes, J; Ferranti, P; Ritieni, A

    2012-11-01

    The possibilities of characterizing the heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli (ETEC) by liquid chromatography electrospray mass spectrometry (LC/ESI-MS) and matrix-assisted laser desorption with time-of-flight mass spectrometry (MALDI-TOF-MS) were investigated. The B subunit from recombinant E. coli (expression in Pichia pastoris) can be detected by LC/ESI-MS expressed in P. pastoris and the charge envelope signals can be observed; LC/ESI-MS and MALDI-TOF-MS analysis allowed the acquisition of labile toxin subunit B (LTB) molecular weight and preliminary structural characterization of LTB toxin. MALDI-TOF analysis after reduction and alkylation of the protein evidenced the presence of one disulfide bond in the structure of the protein. Confirmatory analysis was carried out by detection of most of the tryptic fragments of the B subunit by MALDI-TOF-MS, obtaining total coverage of the protein sequence. Possible biovariations in the toxin can mostly be determined by sequencing, where an increase of molecular mass in the N-terminal side of the protein was identified. This modification may be due to an O-GlcNAc-1-phosphorylation. PMID:22921353

  3. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization.

    PubMed

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-01-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 (o)C) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user-friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source. PMID:26582511

  4. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-11-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user-friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source.

  5. Direct and Convenient Mass Spectrometry Sampling with Ambient Flame Ionization

    PubMed Central

    Liu, Xiao-Pan; Wang, Hao-Yang; Zhang, Jun-Ting; Wu, Meng-Xi; Qi, Wan-Shu; Zhu, Hui; Guo, Yin-Long

    2015-01-01

    Recent innovations in ambient ionization technology for the direct analysis of various samples in their native environment facilitate the development and applications of mass spectrometry in natural science. Presented here is a novel, convenient and flame-based ambient ionization method for mass spectrometric analysis of organic compounds, termed as the ambient flame ionization (AFI) ion source. The key features of AFI ion source were no requirement of (high) voltages, laser beams and spray gases, but just using small size of n-butane flame (height approximately 1 cm, about 500 oC) to accomplish the rapid desorption and ionization for direct analysis of gaseous-, liquid- and solid-phase organic compounds, as well as real-world samples. This method has high sensitivity with a limit of detection of 1 picogram for propyphenazone, which allows consuming trace amount of samples. Compared to previous ionization methods, this ion source device is extremely simple, maintain-free, low-cost, user–friendly so that even an ordinary lighter (with n-butane as fuel) can achieve efficient ionization. A new orientation to mass spectrometry ion source exploitation might emerge from such a convenient, easy and inexpensive AFI ion source. PMID:26582511

  6. Detection of ricin in complex samples by immunocapture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Duriez, Elodie; Fenaille, François; Tabet, Jean-Claude; Lamourette, Patricia; Hilaire, Didier; Becher, François; Ezan, Eric

    2008-09-01

    Ricin, the toxin component of Ricinus communis is considered as a potential chemical weapon. Several complementary techniques are required to confirm its presence in environmental samples. Here, we report a method combining immunocapture and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the accurate detection of different species of R. communis. Liquid environmental samples were applied to magnetic particles coated with a monoclonal antibody directed against the B-chain of the toxin. After acidic elution, tryptic peptides of the A- and B-chains were obtained by accelerated digestion with trypsin in the presence of acetonitrile. Of the 20 peptides observed by MALDI-TOF MS, three were chosen for detection ( m/ z 1013.6, m/ z 1310.6 and m/ z 1728.9, which correspond to peptides 161-LEQLAGNLR-169, 150-YTFAFGGNYDR-160, and 233-SAPDPSVITLENSWGR-248, respectively). Their selection was based on several parameters such as detection sensitivity, specificity toward ricin forms and absence of isotopic overlap with unrelated peptides. To increase assay reproducibility, stable isotope-labeled peptides were incorporated during the sample preparation phase. The final assay has a limit of detection estimated at approximately 50 ng/mL ( approximately 0.8 nM) of ricin in buffer. No interference was observed when the assay was applied to ricin-spiked milk samples. In addition, several varieties of R. communis or from different geographical origins were also shown to be detectable. The present assay provides a new tool with a total analytical time of approximately 5 h, which is particularly relevant in the context of a bioterrorist incident. PMID:18651759

  7. Analysis of methicillin-resistant Staphylococcus aureus major clonal lineages by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Zhang, Tingting; Ding, Jinya; Rao, Xiancai; Yu, Jingbo; Chu, Meiling; Ren, Wei; Wang, Lu; Xue, Wencheng

    2015-10-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen associated with nosocomial infections in many countries. Multilocus sequence typing (MLST) is one of the genetic typing methods used to type MRSA with a high discriminatory power, however, it is labor-intensive, timely, and costly. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled with ClinProTools is a potential tool to discover biomarker peaks and to generate a classification model based on highly sophisticated mathematical algorithms to discriminate clonal lineages. We investigated the performance of MALDI-TOF MS for discriminating 154 MRSA-ST239, 72 MRSA-ST5, 30 MRSA-ST59, 14 MRSA-ST45, and 20 MRSA-OST (other clonal lineages). Our results indicate that the model construction and validation have good potency to discriminate ST45 from other lineages with a sensitivity and a specificity of both 100%, and a sensitivity of 95.80% and a specificity of 94.62% to identify ST239. For Biotyper classification, the sensitivity and specificity were more than of 90% for ST239, ST59 and ST45, whereas only 81.94% sensitivity for ST5. By single-peak analysis, the peaks m/z 4808 and 9614 can correctly discriminate ST45 a sensitivity and a specificity of both 100%; the peak m/z 6554 can also discriminate ST239 with a sensitivity of 91.9% and a specificity of 85.4%. In conclusion, MALDI-TOF MS coupled with ClinProTools has a high detection performance for MRSA typing with obvious advantages of being rapid, highly accurate, and being a low cost in comparison with MLST.

  8. High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories ▿

    PubMed Central

    van Veen, S. Q.; Claas, E. C. J.; Kuijper, Ed J.

    2010-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory. PMID:20053859

  9. Real-Time Identification of Bacteria and Candida Species in Positive Blood Culture Broths by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry▿

    PubMed Central

    Ferroni, Agnès; Suarez, Stéphanie; Beretti, Jean-Luc; Dauphin, Brunhilde; Bille, Emmanuelle; Meyer, Julie; Bougnoux, Marie-Elisabeth; Alanio, Alexandre; Berche, Patrick; Nassif, Xavier

    2010-01-01

    Delays in the identification of microorganisms are a barrier to the establishment of adequate empirical antibiotic therapy of bacteremia. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) allows the identification of microorganisms directly from colonies within minutes. In this study, we have adapted and tested this technology for use with blood culture broths, thus allowing identification in less than 30 min once the blood culture is detected as positive. Our method is based on the selective recovery of bacteria by adding a detergent that solubilizes blood cells but not microbial membranes. Microorganisms are then extracted by centrifugation and analyzed by MALDI-TOF-MS. This strategy was first tested by inoculating various bacterial and fungal species into negative blood culture bottles. We then tested positive patient blood or fluid samples grown in blood culture bottles, and the results obtained by MALDI-TOF-MS were compared with those obtained using conventional strategies. Three hundred twelve spiked bottles and 434 positive cultures from patients were analyzed. Among monomicrobial fluids, MALDI-TOF-MS allowed a reliable identification at the species, group, and genus/family level in 91%, 5%, and 2% of cases, respectively, in 20 min. In only 2% of these samples, MALDI-TOF MS did not yield any result. When blood cultures were multibacterial, identification was improved by using specific databases based on the Gram staining results. MALDI-TOF-MS is currently the fastest technique to accurately identify microorganisms grown in positive blood culture broths. PMID:20237092

  10. Rapid detection of enterobacteriaceae producing extended spectrum beta-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Oviaño, M; Fernández, B; Fernández, A; Barba, M J; Mouriño, C; Bou, G

    2014-11-01

    Bacteria that produce extended-spectrum β-lactamases (ESBLs) are an increasing healthcare problem and their rapid detection is a challenge that must be overcome in order to optimize antimicrobial treatment and patient care. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has been used to determine resistance to β-lactams, including carbapenems in Enterobacteriaceae, but the methodology has not been fully validated as it remains time-consuming. We aimed to assess whether MALDI-TOF can be used to detect ESBL-producing Enterobacteriaceae from positive blood culture bottles in clinical practice. In the assay, 141 blood cultures were tested, 13 of them were real bacteraemias and 128 corresponded to blood culture bottles seeded with bacterial clinical isolates. Bacteraemias were analysed by MALDI-TOF after a positive growth result and the 128 remaining blood cultures 24 h after the bacterial seeding. β-lactamase activity was determined through the profile of peaks associated with the antibiotics cefotaxime and ceftazidime and its hydrolyzed forms. Clavulanic acid was added to rule out the presence of non-ESBL mechanisms. Overall data show a 99% (103 out of 104) sensitivity in detecting ESBL in positive blood cultures. Data were obtained in 90 min (maximum 150 min). The proposed methodology has a great impact on the early detection of ESBL-producing Enterobacteriaceae from positive blood cultures, being a rapid and efficient method and allowing early administration of an appropriate antibiotic therapy.

  11. Identification of pathogenic microorganisms directly from positive blood vials by matrix-assisted laser desorption/ionization time of flight mass spectrometry.

    PubMed

    Nonnemann, Bettina; Tvede, Michael; Bjarnsholt, Thomas

    2013-09-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is a promising and fast method for identifying fungi and bacteria directly from positive blood cultures. Various pre-treatment methods for MALDI-TOF MS identification have been reported for this purpose. In-house results for identification of bacterial colonies by MALDI-TOF MS using a cut-off score of 1.5 did not reduce the diagnostic accuracy compared with the recommended cut-off score of 1.8. A 3-month consecutive study of positive blood cultures was carried out in our laboratory to evaluate whether the Sepsityper™ Kit (Bruker Daltonics) with Biotyper 2.0 software could be used as a fast diagnostic tool for bacteria and fungi and whether a 1.5 cut-off score could improve species identification compared with the recommended score of 1.8. Two hundred and fifty-six positive blood vials from 210 patients and 19 blood vials spiked with fungi were examined. Using the cut-off score of 1.8, 81% Gram-negative bacteria were identified to the species level compared to 84% using a cut-off score of 1.5. For Gram-positive bacteria 44% were identified to the species level with a cut-off of 1.8 compared to 55% with the value of 1.5. The overall identification rate was 63% (cut-off 1.5) and 54% (cut-off 1.8). Seventy-seven per cent of fungal species were identified with both log scores. MALDI-TOF MS was in this study found to be a powerful tool in fast diagnosis of Gram-negative bacteria and fungi and to a lesser degree of Gram positives. Using 1.5 as cut-off score increased the diagnosis for both Gram-positives and -negatives bacteria.

  12. Identification of microorganisms by FilmArray and matrix-assisted laser desorption ionization-time of flight mass spectrometry prior to positivity in the blood culture system.

    PubMed

    Almuhayawi, Mohammed; Altun, Osman; Strålin, Kristoffer; Ozenci, Volkan

    2014-09-01

    In this study, we investigated the performance of the FilmArray and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in identifying microorganisms from blood culture (BC) bottles prior to positivity. First, we used simulated BacT/Alert FA Plus BC bottles with five each for Escherichia coli and Staphylococcus aureus isolates. The FilmArray identified all 10 isolates before BC positivity with 9/10 at 5 h and 1 at 7.5 h after incubation in the BC system. MALDI-TOF MS failed to identify the isolates prior to positivity. When the bottles were incubated for 2.5 h at room temperature (RT) before we put them into the BC system, the FilmArray identified 6/10 at 2.5 h and the remaining 4 at 5 h. Finally, we tested simulated BC bottles after incubation at RT. Interestingly, 9/10 isolates were identified with the FilmArray after 8 h of incubation at RT. Second, we studied clinical BC bottles in quadruplicate. When three-fourths of the parallel bottles signaled positive, the FilmArray was run on the fourth nonsignaled bottle and was found to be positive in 14/15 such cases. Third, we analyzed the performance of the FilmArray in the identification of microorganisms from clinical BC bottles before incubation in the system. Two milliliters of broth from 400 BC bottles was collected after arrival at the laboratory and stored at -70°C. Sixteen bottles later signaled positive in the system. When the frozen broth from these bottles was analyzed, the FilmArray identified all the microorganisms in 8/16 bottles prior to incubation in the BC system. This study shows that the FilmArray can identify microorganisms from BC bottles prior to positivity and in some cases even prior to incubation in the BC system.

  13. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus.

    PubMed

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2015-02-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity.

  14. Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system.

    PubMed

    McElvania Tekippe, Erin; Shuey, Sunni; Winkler, David W; Butler, Meghan A; Burnham, Carey-Ann D

    2013-05-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can be used as a method for the rapid identification of microorganisms. This study evaluated the Bruker Biotyper (MALDI-TOF MS) system for the identification of clinically relevant Gram-positive organisms. We tested 239 aerobic Gram-positive organisms isolated from clinical specimens. We evaluated 4 direct-smear methods, including "heavy" (H) and "light" (L) smears, with and without a 1-μl direct formic acid (FA) overlay. The quality measure assigned to a MALDI-TOF MS identification is a numerical value or "score." We found that a heavy smear with a formic acid overlay (H+FA) produced optimal MALDI-TOF MS identification scores and the highest percentage of correctly identified organisms. Using a score of ≥2.0, we identified 183 of the 239 isolates (76.6%) to the genus level, and of the 181 isolates resolved to the species level, 141 isolates (77.9%) were correctly identified. To maximize the number of correct identifications while minimizing misidentifications, the data were analyzed using a score of ≥1.7 for genus- and species-level identification. Using this score, 220 of the 239 isolates (92.1%) were identified to the genus level, and of the 181 isolates resolved to the species level, 167 isolates (92.2%) could be assigned an accurate species identification. We also evaluated a subset of isolates for preanalytic factors that might influence MALDI-TOF MS identification. Frequent subcultures increased the number of unidentified isolates. Incubation temperatures and subcultures of the media did not alter the rate of identification. These data define the ideal bacterial preparation, identification score, and medium conditions for optimal identification of Gram-positive bacteria by use of MALDI-TOF MS.

  15. Accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinical pathogenic fungi: a meta-analysis.

    PubMed

    Ling, Huazhi; Yuan, Zhijie; Shen, Jilu; Wang, Zhongxin; Xu, Yuanhong

    2014-07-01

    Fungal infections in the clinic have become increasingly serious. In many cases, the identification of clinically relevant fungi remains time-consuming and may also be unreliable. Matrix-assisted laser desorption ionization-time of flight mass spectroscopy (MALDI-TOF MS) is a newly developed diagnostic tool that is increasingly being employed to rapidly and accurately identify clinical pathogenic microorganisms. The present meta-analysis aimed to systematically evaluate the accuracy of MALDI-TOF MS for the identification of clinical pathogenic fungi. After a rigorous selection process, 33 articles, involving 38 trials and a total of 9,977 fungal isolates, were included in the meta-analysis. The random-effects pooled identification accuracy of MALDI-TOF MS increased from 0.955 (95% confidence interval [CI], 0.939 to 0.969) at the species level to 0.977 (95% CI, 0.955 to 0.993) at the genus level (P < 0.001; χ(2) = 15.452). Subgroup analyses were performed at the species level for several categories, including strain, source of strain, system, system database, and modified outcomes, to calculate the accuracy and to investigate heterogeneity. These analyses revealed significant differences between the overall meta-analysis and some of the subanalyses. In parallel, significant differences in heterogeneity among different systems and among different methods for calculating the identification ratios were found by multivariate metaregression, but none of the factors, except for the moderator of outcome, was significantly associated with heterogeneity by univariate metaregression. In summary, the MALDI-TOF MS method is highly accurate for the identification of clinically pathogenic fungi; future studies should analyze the comprehensive capability of this technology for clinical diagnostic microbiology.

  16. Molecular characterisation of soil organic matter by laser-desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry (LDI-FT-ICR-MS)

    NASA Astrophysics Data System (ADS)

    Abiven, S.; Fuchser, J.; Schmidt, M. W. I.; Dittmar, T.

    2012-04-01

    Soil organic matter (SOM) characterisation has been an analytical challenge for decades. On one hand, methods like humic substances extraction describe large pools of molecules, but these extractions target operationnally- rather than chemically-defined pools. On the other hand, specific compound analysis provides a more precise overview on the molecules present in the soil, but the sum of these molecules represents only a minor portion of the soil organic matter. Despite these shortcomings, soil organic matter characterisation is used in many concepts of soil science. For example, the soil aggregation hierarchical model describes the physical organisation of soils into fractions bound together by organic matter of different quality for each size fraction. Due to the method inadequation, most of these concepts still need to be validated. We took advantage of a unique analytical set-up coupling laser-desorption ionization (LDI) to ultrahigh-resolution mass spectrometry via the Fourier-transform ion cyclotron resonance technique (FT-ICR-MS) to further characterise soil organic matter and to validate the soil aggregation hierarchical model. Soil aggregates (3-5 mm) were collected from two soils, a cambisol (32 % clay, 4.2 %C), and a loess-derived soil (15% clay, 1.6 %C). Aggregates were fractionated by fast wetting into <63, 63-125, 125-250 and > 250 μm fractions. These fractions were air-dried and ground to powder prior to analysis. LDI-FT-ICR-MS analyses were performed on otherwise untreated samples. Thousands of molecular formulae were identified in each samples, many of them could be associated with polyphenolic structures. The combination of LDI with ultrahigh-resolution FT-ICR-MS offers fundmentally new insights into soil organic matter, one of the largest organic matter pools on Earth.

  17. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Kempf, Marie; Bakour, Sofiane; Flaudrops, Christophe; Berrazeg, Meryem; Brunel, Jean-Michel; Drissi, Mourad; Mesli, Esma; Touati, Abdelaziz; Rolain, Jean-Marc

    2012-01-01

    Rapid detection of carbapenem-resistant Acinetobacter baumannii strains is critical and will benefit patient care by optimizing antibiotic therapies and preventing outbreaks. Herein we describe the development and successful application of a mass spectrometry profile generated by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) that utilized the imipenem antibiotic for the detection of carbapenem resistance in a large series of A. baumannii clinical isolates from France and Algeria. A total of 106 A. baumannii strains including 63 well-characterized carbapenemase-producing and 43 non-carbapenemase-producing strains, as well as 43 control strains (7 carbapenem-resistant and 36 carbapenem-sensitive strains) were studied. After an incubation of bacteria with imipenem for up to 4 h, the mixture was centrifuged and the supernatant analyzed by MALDI-TOF MS. The presence and absence of peaks representing imipenem and its natural metabolite was analyzed. The result was interpreted as positive for carbapenemase production if the specific peak for imipenem at 300.0 m/z disappeared during the incubation time and if the peak of the natural metabolite at 254.0 m/z increased as measured by the area under the curves leading to a ratio between the peak for imipenem and its metabolite being <0.5. This assay, which was applied to the large series of A. baumannii clinical isolates, showed a sensitivity of 100.0% and a specificity of 100.0%. Our study is the first to demonstrate that this quick and simple assay can be used as a routine tool as a point-of-care method for the identification of A. baumannii carbapenemase-producers in an effort to prevent outbreaks and the spread of uncontrollable superbugs.

  18. Trypsin functionalization and zirconia coating of mesoporous silica nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis of phosphoprotein.

    PubMed

    Zhang, Xiaoli; Wang, Fei; Xia, Yan

    2013-09-01

    Trypsin functionalized mesoporous silica nanotubes bioreactor (TEMSN) and zirconia layer coated mesoporous silica nanotubes (ZrO2-MSN) were developed to deal with the long in-solution digestion time of phosphoprotein and detection difficulty of phosphorylated peptides, respectively. Trypsin was immobilized on the mesoporous silica nanotubes via epoxy group and TEMSN were used as a bioreactor for digestion of α-casein within 3min. ZrO2-MSN were performed to enrich phosphopeptides selectively from in-solution digested peptide mixture of β-casein to demonstrate that ZrO2-MSN possessed remarkable selectivity for phosphorylated peptides even at 100/1 molar ratio of BSA/β-casein. The selective ability of ZrO2-MSN was also investigated in comparison to ZrO2 nanoparticles (ZrO2 NP). Moreover, phosphorylated peptides at the femtomole (2.5fmol) level can also be detected with high S/N (signal-to-noise) ratio. Phosphopeptides enriched from TEMSN-bioreactor digested peptide mixture of α-casein was also performed to evaluate the cooperative performance of TEMSN and ZrO2-MSN platform. The experimental results indicated that TEMSN-bioreactor digestion changed the distribution of relative abundance of phosphopeptides and improved the relative intensity of partial phosphopeptides. This analytical strategy has also been applied to the identification of phosphopeptides isolated from non-fat bovine milk and got a comparable results compared with other materials cited from the literature. By matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), TEMSN and ZrO2-MSN were combined together for the rapid and comprehensive analysis of phosphoprotein.

  19. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard; Raoult, Didier

    2013-07-01

    During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.

  20. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories.

    PubMed

    van Veen, S Q; Claas, E C J; Kuijper, Ed J

    2010-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.

  1. Performances of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology.

    PubMed

    Dubois, Damien; Grare, Marion; Prere, Marie-Françoise; Segonds, Christine; Marty, Nicole; Oswald, Eric

    2012-08-01

    Rapid and cost-effective matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based systems will replace conventional phenotypic methods for routine identification of bacteria. We report here the first evaluation of the new MALDI-TOF MS-based Vitek MS system in a large clinical microbiology laboratory. This system uses an original spectrum classifier algorithm and a specific database designed for the identification of clinically relevant species. We have tested 767 routine clinical isolates representative of 50 genera and 124 species. Vitek MS-based identifications were performed by means of a single deposit on a MALDI disposable target without any prior extraction step and compared with reference identifications obtained mainly with the VITEK2 phenotypic system; if the identifications were discordant, molecular techniques provided reference identifications. The Vitek MS system provided 96.2% correct identifications to the species level (86.7%), to the genus level (8.2%), or within a range of species belonging to different genera (1.3%). Conversely, 1.3% of isolates were misidentified and 2.5% were unidentified, partly because the species was not included in the database; a second deposit provided a successful identification for 0.8% of isolates unidentified with the first deposit. The Vitek MS system is a simple, convenient, and accurate method for routine bacterial identification with a single deposit, considering the high bacterial diversity studied and as evidenced by the low prevalence of species without correct identification. In addition to a second deposit in uncommon cases, expanding the spectral database is expected to further enhance performances.

  2. Direct Identification of Urinary Tract Pathogens from Urine Samples, Combining Urine Screening Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Íñigo, Melania; Coello, Andreu; Fernández-Rivas, Gema; Rivaya, Belén; Hidalgo, Jessica; Quesada, María Dolores; Ausina, Vicente

    2016-04-01

    Early diagnosis of urinary tract infections (UTIs) is essential to avoid inadequate or unnecessary empirical antibiotic therapy. Microbiological confirmation takes 24 to 48 h. The use of screening methods, such as cytometry and automated microscopic analysis of urine sediment, allows the rapid prediction of negative samples. In addition, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a widely established technique in clinical microbiology laboratories used to identify microorganisms. We evaluated the ability of MALDI-TOF MS to identify microorganisms from direct urine samples and the predictive value of automated analyzers for the identification of microorganisms in urine by MALDI-TOF MS. A total of 451 urine samples from patients with suspected UTIs were first analyzed using the Sysmex UF-1000iflow cytometer, an automatic sediment analyzer with microscopy (SediMax), culture, and then processed by MALDI-TOF MS with a simple triple-centrifuged procedure to obtain a pellet that was washed and centrifuged and finally applied directly to the MALDI-TOF MS plate. The organisms in 336 samples were correctly identified, mainly those with Gram-negative bacteria (86.10%). No microorganisms were misidentified, and noCandidaspp. were correctly identified. Regarding the data from autoanalyzers, the best bacteriuria cutoffs were 1,000 and 200 U/μl for UF-1000iand SediMax, respectively. It was concluded that the combination of a urine screening method and MALDI-TOF MS provided a reliable identification from urine samples, especially in those containing Gram-negative bacteria. PMID:26818668

  3. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory.

    PubMed

    Peel, Trisha N; Cole, Nicolynn C; Dylla, Brenda L; Patel, Robin

    2015-03-01

    Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients

  4. Comparison of Vitek Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Versus Conventional Methods in Candida Identification.

    PubMed

    Keçeli, Sema Aşkın; Dündar, Devrim; Tamer, Gülden Sönmez

    2016-02-01

    Candida species are generally identified by conventional methods such as germ tube or morphological appearance on corn meal agar, biochemical methods using API kits and molecular biological methods. Alternative to these methods, rapid and accurate identification methods of microorganisms called matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDİ-TOF MS) has recently been described. In this study, Candida identification results by API Candida kit, API 20C AUX kit and identifications on corn meal agar (CMA) are compared with the results obtained on Vitek-MS. All results were confirmed by sequencing internal transcribed spacer (ITS) regions of rDNA. Totally, 97 Candida strains were identified by germ tube test, CMA, API and Vitek-MS. Vitek-MS results were compatible with 74.2 % of API 20C AUX and 81.4 % of CMA results. The difference between the results of API Candida and API 20C AUX was detected. The ratio of discrepancy between Vitek-MS and API 20C AUX was 25.8 %. Candida species mostly identified as C. famata or C. tropicalis by and not compatible with API kits were identified as C. albicans by Vitek-MS. Sixteen Candida species having discrepant results with Vitek-MS, API or CMA were randomly chosen, and ITS sequence analysis was performed. The results of sequencing were compatible 56.2 % with API 20C AUX, 50 % with CMA and 93.7 % with Vitek-MS. When compared with conventional identification methods, MS results are more reliable and rapid for Candida identification. MS system may be used as routine identification method in clinical microbiology laboratories.

  5. Comparison of Vitek Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Versus Conventional Methods in Candida Identification.

    PubMed

    Keçeli, Sema Aşkın; Dündar, Devrim; Tamer, Gülden Sönmez

    2016-02-01

    Candida species are generally identified by conventional methods such as germ tube or morphological appearance on corn meal agar, biochemical methods using API kits and molecular biological methods. Alternative to these methods, rapid and accurate identification methods of microorganisms called matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDİ-TOF MS) has recently been described. In this study, Candida identification results by API Candida kit, API 20C AUX kit and identifications on corn meal agar (CMA) are compared with the results obtained on Vitek-MS. All results were confirmed by sequencing internal transcribed spacer (ITS) regions of rDNA. Totally, 97 Candida strains were identified by germ tube test, CMA, API and Vitek-MS. Vitek-MS results were compatible with 74.2 % of API 20C AUX and 81.4 % of CMA results. The difference between the results of API Candida and API 20C AUX was detected. The ratio of discrepancy between Vitek-MS and API 20C AUX was 25.8 %. Candida species mostly identified as C. famata or C. tropicalis by and not compatible with API kits were identified as C. albicans by Vitek-MS. Sixteen Candida species having discrepant results with Vitek-MS, API or CMA were randomly chosen, and ITS sequence analysis was performed. The results of sequencing were compatible 56.2 % with API 20C AUX, 50 % with CMA and 93.7 % with Vitek-MS. When compared with conventional identification methods, MS results are more reliable and rapid for Candida identification. MS system may be used as routine identification method in clinical microbiology laboratories. PMID:26400863

  6. Development and validation of a whole-cell inhibition assay for bacterial methionine aminopeptidase by surface-enhanced laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Greis, Kenneth D; Zhou, Songtao; Siehnel, Richard; Klanke, Chuck; Curnow, Alan; Howard, Jeremy; Layh-Schmitt, Gerlinde

    2005-08-01

    Bacterial methionine aminopeptidase (MAP) is a protease that removes methionine from the N termini of newly synthesized bacterial proteins after the peptide deformylase enzyme cleaves the formyl group from the initiator formylmethionine. MAP is an essential bacterial gene product and thus represents a potential target for therapeutic intervention. A fundamental challenge in the antibacterial drug discovery field is demonstrating conclusively that compounds with in vitro enzyme inhibition activity produce the desired antibacterial effect by interfering with the same target in whole bacterial cells. One way to address the activity of inhibitor compounds is by profiling cellular biomarkers in whole bacterial cells using compounds that are known inhibitors of a particular target. However, in the case of MAP, no specific inhibitors were available for such studies. Instead, a genetically attenuated MAP strain was generated in which MAP expression was placed under the control of an inducible arabinose promoter. Thus, MAP inhibition in whole cells could be mimicked by growth in the absence of arabinose. This genetically attenuated strain was used as a benchmark for MAP inhibition by profiling whole-cell lysates for unprocessed proteins using surface-enhanced laser desorption ionization-time of flight mass spectrometry (MS). Eight proteins between 4 and 14 kDa were confirmed as being unprocessed and containing the initiator methionine by adding back purified MAP to the preparations prior to MS analysis. Upon establishing these unprocessed proteins as biomarkers for MAP inhibition, the assay was used to screen small-molecule chemical inhibitors of purified MAP for whole-cell activity. Fifteen compound classes yielded three classes of compound with whole-cell activity for further optimization by chemical expansion. This report presents the development, validation, and implementation of a whole-cell inhibition assay for MAP.

  7. Imaging Mass Spectrometry by Matrix-Assisted Laser Desorption/Ionization and Stress-Strain Measurements in Iontophoresis Transepithelial Corneal Collagen Cross-Linking

    PubMed Central

    Mencucci, Rita; Camesasca, Fabrizio I.; Favuzza, Eleonora

    2014-01-01

    Purpose. To compare biomechanical effect, riboflavin penetration and distribution in transepithelial corneal collagen cross-linking with iontophoresis (I-CXL), with standard cross linking (S-CXL) and current transepithelial protocol (TE-CXL). Materials and Methods. The study was divided into two different sections, considering, respectively, rabbit and human cadaver corneas. In both sections corneas were divided according to imbibition protocols and irradiation power. Imaging mass spectrometry by matrix-assisted laser desorption/ionization (MALDI-IMS) and stress-strain measurements were used. Forty-eight rabbit and twelve human cadaver corneas were evaluated. Results. MALDI-IMS showed a deep riboflavin penetration throughout the corneal layers with I-CXL, with a roughly lower concentration in the deepest layers when compared to S-CXL, whereas with TE-CXL penetration was considerably less. In rabbits, there was a significant increase (by 71.9% and P = 0.05) in corneal rigidity after I-CXL, when compared to controls. In humans, corneal rigidity increase was not significantly different among the subgroups. Conclusions. In rabbits, I-CXL induced a significant increase in corneal stiffness as well as better riboflavin penetration when compared to controls and TE-CXL but not to S-CXL. Stress-strain in human corneas did not show significant differences among techniques, possibly because of the small sample size of groups. In conclusion, I-CXL could be a valid alternative to S-CXL for riboflavin delivery in CXL, preserving the epithelium. PMID:25276786

  8. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory.

    PubMed

    Peel, Trisha N; Cole, Nicolynn C; Dylla, Brenda L; Patel, Robin

    2015-03-01

    Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients

  9. The use of matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis

    PubMed Central

    Karatuna, Onur; Çelebi, Bekir; Can, Simge; Akyar, Işın; Kiliç, Selçuk

    2016-01-01

    Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institution of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica according to region of difference 1 (RD1) subspecies-specific PCR results. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories. PMID:26773181

  10. Identification of coagulase-negative staphylococci from bovine intramammary infection by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Tomazi, Tiago; Gonçalves, Juliano Leonel; Barreiro, Juliana Regina; de Campos Braga, Patrícia Aparecida; Prada e Silva, Luis Felipe; Eberlin, Marcos Nogueira; dos Santos, Marcos Veiga

    2014-05-01

    Coagulase-negative staphylococci (CoNS) are among the main pathogens causing bovine intramammary infection (IMI) in many countries. However, one of the limitations related to the specific diagnosis of CoNS is the lack of an accurate, rapid, and convenient method that can differentiate the bacterial species comprising this group. The aim of this study was to evaluate the ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to accurately identify CoNS species in dairy cow IMI. In addition, the study aimed to determine the frequency of CoNS species causing bovine IMI. A total of 108 bacterial isolates were diagnosed as CoNS by microbiological cultures from two milk samples collected from 21 dairy herds; the first sample was collected at the cow level (i.e., 1,242 composite samples from all quarters), while the second sample was collected at the mammary quarter level (i.e., 1,140 mammary samples collected from 285 cows). After CoNS isolation was confirmed by microbiological culture for both samples, all CoNS isolates (n=108) were genotypically differentiated by PCR restriction fragment length polymorphism (RFLP) analysis of a partial groEL gene sequence and subjected to the MALDI-TOF MS identification procedure. MALDI-TOF MS correctly identified 103 (95.4%) of the CoNS isolates identified by PCR-RFLP at the species level. Eleven CoNS species isolated from bovine IMI were identified by PCR-RFLP, and the most prevalent species was Staphylococcus chromogenes (n=80; 74.1%). In conclusion, MALDI-TOF MS may be a reliable alternative method for differentiating CoNS species causing bovine IMI. PMID:24622096

  11. ON-LINE ANALYSIS OF AQUEOUS AEROSOLS BY LASER DESORPTION IONIZATION. (R823980)

    EPA Science Inventory

    In this work the effects of water on the laser desorption ionization mass spectra of single aerosol particles are explored. Aqueous aerosols are produced by passing dry particles through a humid environment so that they undergo deliquescent growth. Laser desorption ionization is ...

  12. Calculating Relative Ionization Probabilities of Plutonium for Resonance Ionization Mass Spectrometry to Support Nuclear Forensic Investigations

    NASA Astrophysics Data System (ADS)

    Lensegrav, Craig; Smith, Craig; Isselhardt, Brett

    2015-03-01

    Ongoing work seeks to apply the technology of Resonance Ionization Mass Spectrometry (RIMS) to problems related to nuclear forensics and, in particular, to the analysis and quantification of debris from nuclear detonations. As part of this effort, modeling and simulation methods are being applied to analyze and predict the potential for ionization by laser excitation of isotopes of both uranium and plutonium. Early work focused on the ionization potential of isotopes of uranium, and the present effort has expanded and extended the previous work by identifying and integrating new data for plutonium isotopes. In addition to extending the effort to this important new element, we have implemented more accurate descriptions of the spatial distribution of the laser beams to improve the accuracy of model predictions compared with experiment results as well as an ability to readily incorporate new experimental data as they become available. The model is used to estimate ionization cross sections and to compare relative excitation on two isotopes as a function of wavelength. This allows the study of sensitivity of these measurements to fluctuations in laser wavelength, irradiance, and bandwidth. We also report on initial efforts to include predictions of americium ionization probabilities into our modeling package. I would like to thank my co-authors, Gamani Karunasiri and Fabio Alves. My success is a product of their support and guidance.

  13. Laser ionized preformed plasma at FACET

    NASA Astrophysics Data System (ADS)

    Green, S. Z.; Adli, E.; Clarke, C. I.; Corde, S.; Edstrom, S. A.; Fisher, A. S.; Frederico, J.; Frisch, J. C.; Gessner, S.; Gilevich, S.; Hering, P.; Hogan, M. J.; Jobe, R. K.; Litos, M.; May, J. E.; Walz, D. R.; Yakimenko, V.; Clayton, C. E.; Joshi, C.; Marsh, K. A.; Vafaei-Najafabadi, N.; Muggli, P.

    2014-08-01

    The Facility for Advanced Accelerator and Experimental Tests (FACET) at SLAC installed a 10-TW Ti : sapphire laser system for pre-ionized plasma wakefield acceleration experiments. High energy (500 mJ), short (50 fs) pulses of 800 nm laser light at 1 Hz are used at the FACET experimental area to produce a plasma column. The laser pulses are stretched to 250 fs before injection into a vapor cell, where the laser is focused by an axicon lens to form a plasma column that can be sustained over the desired radius and length. A 20 GeV electron bunch interacts with this preformed plasma to generate a non-linear wakefield, thus accelerating a trailing witness bunch with gradients on the order of several GV m-1. The experimental setup and the methods for producing the pre-ionized plasma for plasma wakefield acceleration experiments performed at FACET are described.

  14. Production of negative osmium ions by laser desorption and ionization.

    PubMed

    Rodríguez, D; Sonnenschein, V; Blaum, K; Block, M; Kluge, H-J; Lallena, A M; Raeder, S; Wendt, K

    2010-01-01

    The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs(+) ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionization with pulsed lasers and identification of the ions by time-of-flight mass spectrometry. First investigations of negative osmium ion production using a pulsed laser for desorption and ionization and a commercial matrix-assisted laser desorption/ionization time-of-flight system for identification has demonstrated the suitability of this technique. More than 10(3) negative osmium ions per shot were registered after bombarding pure osmium powder with a 5 ns pulse width Nd:yttrium aluminum garnet laser. The limitation in the ion number was imposed by the detection limit of the microchannel plate detector.

  15. Fragmentation study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, using post-source decay matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Kéki, S; Deák, G; Zsuga, M

    2001-12-01

    A post-source decay matrix-assisted laser desorption/ionization mass spectrometric (PSD-MALDI-MS) study of rutin, a naturally occurring flavone glycoside cationized with different alkali metal ions, is reported. The fragmentations of rutin were performed by selecting the [R + Cat]+ peaks for PSD, where R represents a rutin molecule and Cat an alkali metal ion (Li+, Na+, K+). The PSD-MALDI mass spectra showed, depending on Cat, different fragmentation patterns with respect to both the quality and quantity of the fragment ions formed. The intensity of fragmentation decreased in the order Li+ > Na+ > K+. The fragmentation mechanism and an explanation for the observed differences are suggested.

  16. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  17. Tissue imaging and serum lipidomic profiling for screening potential biomarkers of thyroid tumors by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Guo, Shuai; Qiu, Ling; Wang, Yanming; Qin, Xuzhen; Liu, Hui; He, Manwen; Zhang, Yaping; Li, Zhili; Chen, Xiaohong

    2014-07-01

    Changes in serum lipidome and in tissue lipidome are associated with cancer. In this study, tissue mass spectrometry imaging (MSI) and serum lipid profiling by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) were performed to investigate significantly changed lipids in both tumor (malignant thyroid cancer (MTC) and benign thyroid tumor (BTT)) tissues and sera. Y-scatterplots of variable importance in the projection (VIP) values vs. fold change values indicate that change trends in the levels of ten lipids (i.e., phosphatidylcholine (PC)(34:1), PC(36:1), PC(38:6), phosphatidic acid (PA) (36:2), PA(36:3), PA(38:3), PA(38:4), PA(38:5), PA(40:5), and sphingomyelin (SM)(34:1)) in both tissues and sera from MTC patients, BTT patients, and normal individuals are significantly associated with these three types of pathophysiological status. In order to examine their diagnostic ability, 289 serum samples from 124 MTC patients, 43 BTT patients, and 122 normal controls were randomly divided into the training set and validation set. A biomarker of PC(34:1) exhibited excellent diagnostic ability to differentiate both MTC and BTT patients from normal individuals, with an area under the receiver operating characteristic (ROC) curve value of 0.984, a sensitivity of 96.4 %, and a specificity of 92.7 %. A panel which included PA(36:3) and SM(34:1) could distinguish between MTC and BTT, with an area under receiver operating characteristic curve (AUC) of 0.961, a sensitivity of 87.8 %, and a specificity of 92.9 %. It is worth noting that a panel consisting of PC(34:1), PA(36:3), and SM(34:1) could differentiate MTC patients from both BTT patients and normal individuals, with an AUC of 0.841, a sensitivity of 86.6 %, and a specificity of 75.5 %.

  18. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ayorinde, F O; Garvin, K; Saeed, K

    2000-01-01

    A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils

  19. MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry.

  20. MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry. PMID:27590549

  1. Skeletal muscle fiber analysis by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometric imaging at high mass and high spatial resolution.

    PubMed

    Tsai, Yu-Hsuan; Bhandari, Dhaka Ram; Garrett, Timothy J; Carter, Christy S; Spengler, Bernhard; Yost, Richard A

    2016-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers with various fiber types. These fibers can be classified into different classes based on their different characteristics. MALDI mass spectrometric imaging (MSI) has been applied to study and visualize different metabolomics profiles of different fiber types. Here, skeletal muscles were analyzed by atmospheric pressure scanning microprobe MALDI-MSI at high spatial and high mass resolution.

  2. Skeletal muscle fiber analysis by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometric imaging at high mass and high spatial resolution.

    PubMed

    Tsai, Yu-Hsuan; Bhandari, Dhaka Ram; Garrett, Timothy J; Carter, Christy S; Spengler, Bernhard; Yost, Richard A

    2016-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers with various fiber types. These fibers can be classified into different classes based on their different characteristics. MALDI mass spectrometric imaging (MSI) has been applied to study and visualize different metabolomics profiles of different fiber types. Here, skeletal muscles were analyzed by atmospheric pressure scanning microprobe MALDI-MSI at high spatial and high mass resolution. PMID:27198224

  3. Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures.

    PubMed

    Lamer, S; Jungblut, P R

    2001-03-10

    In theory, peptide mass fingerprinting by matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower microl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration.

  4. Analyses of the in vitro non-enzymatic glycation of peptides/proteins by matrix-assisted laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Bao-Shiang; Krishnanchettiar, Sangeeth; Lateef, Syed Salman; Gupta, Shalini

    2007-01-01

    Non-enzymatic glycation of proteins with the reducing agent glucose is implicated to be responsible for diabetes-derived complications, food browning, and aging. However, the non-enzymatic glycation process of peptides/proteins is not well understood and further research is needed to gain an understanding of the underlying principles involved in diabetes-related complications. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is used to analyze the in vitro glycation of peptides/proteins. In addition to the physiological conditions, harsh conditions (higher concentration of glucose, higher or lower pH, and higher temperature) are also used in this study. Peptides/proteins are reacted with glucose for up to 120 h at 4 [degree sign]C, 37 [degree sign]C, or 65 [degree sign]C. Single and/or multiple glycations are observed using broad pH conditions (from 10% TFA with pKa of 0.5 to pH 10) at various glucose concentrations (from 0.01 M to 1 M). Data suggest that glucose reacts readily with both peptides and proteins, and the efficiency of the glycation increases with higher temperature, higher pH, higher glucose concentration, or longer incubation time. However, influence of the buffer pH on the efficiency of the glycation of peptides is less pronounced compared to that of proteins. This effect could result from denaturation of proteins at higher pH and the resultant exposure of potential glycation sites. This data could lead to the inference that the glycation process of peptides/proteins would occur but proceed very slowly under the diabetes conditions in vivo (37 [degree sign]C, ~neutral pH, ~0.007 M glucose). Postsource decay and MS/MS results of singly glycated angiotensin I, P14R (PPPPPPPPPPPPPPR), and human adrenocorticotropic hormone (ATCH) fragments 1-13 indicate that glucose reacts with the amino group of the N-terminal of ATCH 1-13 and the guanidino group of the arginine residue of both angiotensin I and P14R.

  5. Rapid and reliable species identification of wild mushrooms by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Sugawara, Ryota; Yamada, Sayumi; Tu, Zhihao; Sugawara, Akiko; Suzuki, Kousuke; Hoshiba, Toshihiro; Eisaka, Sadao; Yamaguchi, Akihiro

    2016-08-31

    Mushrooms are a favourite natural food in many countries. However, some wild species cause food poisoning, sometimes lethal, due to misidentification caused by confusing fruiting bodies similar to those of edible species. The morphological inspection of mycelia, spores and fruiting bodies have been traditionally used for the identification of mushrooms. More recently, DNA sequencing analysis has been successfully applied to mushrooms and to many other species. This study focuses on a simpler and more rapid methodology for the identification of wild mushrooms via protein profiling based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). A preliminary study using 6 commercially available cultivated mushrooms suggested that a more reproducible spectrum was obtained from a portion of the cap than from the stem of a fruiting body by the extraction of proteins with a formic acid-acetonitrile mixture (1 + 1). We used 157 wild mushroom-fruiting bodies collected in the centre of Hokkaido from June to November 2014. Sequencing analysis of a portion of the ribosomal RNA gene provided 134 identifications of mushrooms by genus or species, however 23 samples containing 10 unknown species that had lower concordance rate of the nucleotide sequences in a BLAST search (less than 97%) and 13 samples that had unidentifiable poor or mixed sequencing signals remained unknown. MALDI-TOF MS analysis yielded a reproducible spectrum (frequency of matching score ≥ 2.0 was ≥6 spectra from 12 spectra measurements) for 114 of 157 samples. Profiling scores that matched each other within the database gave correct species identification (with scores of ≥2.0) for 110 samples (96%). An in-house prepared database was constructed from 106 independent species, except for overlapping identifications. We used 48 wild mushrooms that were collected in autumn 2015 to validate the in-house database. As a result, 21 mushrooms were identified at the species level with

  6. Rapid and reliable species identification of wild mushrooms by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS).

    PubMed

    Sugawara, Ryota; Yamada, Sayumi; Tu, Zhihao; Sugawara, Akiko; Suzuki, Kousuke; Hoshiba, Toshihiro; Eisaka, Sadao; Yamaguchi, Akihiro

    2016-08-31

    Mushrooms are a favourite natural food in many countries. However, some wild species cause food poisoning, sometimes lethal, due to misidentification caused by confusing fruiting bodies similar to those of edible species. The morphological inspection of mycelia, spores and fruiting bodies have been traditionally used for the identification of mushrooms. More recently, DNA sequencing analysis has been successfully applied to mushrooms and to many other species. This study focuses on a simpler and more rapid methodology for the identification of wild mushrooms via protein profiling based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). A preliminary study using 6 commercially available cultivated mushrooms suggested that a more reproducible spectrum was obtained from a portion of the cap than from the stem of a fruiting body by the extraction of proteins with a formic acid-acetonitrile mixture (1 + 1). We used 157 wild mushroom-fruiting bodies collected in the centre of Hokkaido from June to November 2014. Sequencing analysis of a portion of the ribosomal RNA gene provided 134 identifications of mushrooms by genus or species, however 23 samples containing 10 unknown species that had lower concordance rate of the nucleotide sequences in a BLAST search (less than 97%) and 13 samples that had unidentifiable poor or mixed sequencing signals remained unknown. MALDI-TOF MS analysis yielded a reproducible spectrum (frequency of matching score ≥ 2.0 was ≥6 spectra from 12 spectra measurements) for 114 of 157 samples. Profiling scores that matched each other within the database gave correct species identification (with scores of ≥2.0) for 110 samples (96%). An in-house prepared database was constructed from 106 independent species, except for overlapping identifications. We used 48 wild mushrooms that were collected in autumn 2015 to validate the in-house database. As a result, 21 mushrooms were identified at the species level with

  7. Resonance Ionization Mass Spectrometry System for Measurement of Environmental Samples

    NASA Astrophysics Data System (ADS)

    Pibida, L.; McMahon, C. A.; Nörtershäuser, W.; Bushaw, B. A.

    2002-10-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4×10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed.

  8. Two step laser desorption - laser ionization of PAHs. Experimental Setup

    NASA Astrophysics Data System (ADS)

    Poveda, Juan C.; Guerrero, Alfonso; Álvarez, Ignacio; Cisneros, Carmen

    2012-11-01

    We present an experimental setup for the photoionization of PAHs in a cooled molecular beam using laser radiation of 266 nm. Molecular beams was produced by laser desorption of samples using unfocused laser radiation of 522 nm, which was synchronously coupled with ionization laser pulses. At low energies per pulse, <1 mJ, the molecular ionization of PAHs take place in the soft conditions regimen producing a poor molecular dissociation. The R-ToF spectra are mainly characterized by the presence of the parent molecular ion. When buffer gases as Helium were used it helps to avoid the molecular clustering and contributes to the molecular cooling when the adiabatic expansion takes place.

  9. Laser-induced air ionization microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, N.; Yang, J.; Zhu, X.

    2006-06-01

    A nonlinear scanning imaging method is introduced that uses the highly localized air ionization initiated by photoelectrons from the sample surface under irradiation of femtosecond laser pulses as the microprobe. This type of microscopy with realizable subdiffraction spatial resolution has the unique advantages of being highly sensitive to both elemental and topographical properties of the samples of interest. Microscopic images of a femtosecond laser ablated micropattern, the cross section and the side view profile of an optical fiber, and a fresh mulberry leaf are obtained with this imaging technique, which demonstrate this technique's broad applicability in microscopic studies of different materials.

  10. A rapid screening method to monitor expression of recombinant proteins from various prokaryotic and eukaryotic expression systems using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    PubMed

    Jebanathirajah, Judith A; Andersen, Søren; Blagoev, Blagoy; Roepstorff, Peter

    2002-06-15

    Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive expression systems were measured and monitored from whole cells and growth media, thus providing an alternative to time-consuming traditional methods for screening and monitoring of protein expression. The methods described here involve minimal processing of samples and are therefore relevant to high-throughput screening applications. PMID:12054453

  11. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens.

  12. Reactions of metal ions and their clusters in the gas phase using laser ionization: Fourier transform mass spectrometry. Progress report, February 1, 1993--January 31, 1994

    SciTech Connect

    Freiser, B.S.

    1993-09-01

    This report focuses on progress in seven areas: (1) Gas-Phase Reactions of Fe(Benzyne){sup +} with Simple Alkyl Halides; (2) Photodissociation and Collision-Induced Dissociation of Molecular Ions From Methylphenol and Chloromethylphenol; (3) Isotopomer Differentiation Using Metal Ion Chemical Ionization Reagents; (4) Multiple Excitation Collisional Activation (MECA) in Fourier Transform Mass Spectrometry; (5) Chemistry of Fe{sup +}-Arene Ions with Halobenzenes; (6) Gas-Phase Photodissociaton Study of Ag(Benzene){sup +} and Ag(Toluene){sup +}; and (7) Reactivity of Ti{sup 2+} and V{sup 2+} with Small Alkanes.

  13. Using laser-induced acoustic desorption/electrospray ionization mass spectrometry to characterize small organic and large biological compounds in the solid state and in solution under ambient conditions.

    PubMed

    Cheng, Sy-Chyi; Cheng, Tain-Lu; Chang, Hui-Chiu; Shiea, Jentaie

    2009-02-01

    We have coupled laser-induced acoustic desorption (LIAD) with electrospray ionization (ESI) mass spectrometry (LIAD/ESI/MS) to characterize molecules in the solid state and in solution under ambient conditions. To perform an LIAD/ESI analysis, the sample droplet is deposited on the surface of a thin aluminum foil by a micropipette; the rear side of the foil with the sample spot is then irradiated with a pulse from a Nd:YAG IR laser. The resulting shockwave and heat cause the sample on the rear side to change from the condensed phase to the gas phase. The desorbed species then move upward to enter an ESI plume to react with charged solvent species (methanol- and water-related ions and droplets), forming singly or multiply charged analyte ions. A quadrupole/time-of-flight (Q-TOF) mass analyzer attached to the LIAD/ESI source detects the analyte ions to obtain an ESI-like mass spectrum. Both small organic and large biological compounds (including amino acids, peptides, and proteins) were successfully ionized and detected by the LIAD/ESI/MS system. Although native and denatured myoglobin ions were both detected from a liquid sample solution, only the denatured myoglobin ions were detected from a dried sample.

  14. Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix-free infrared laser desorption and ionization.

    PubMed

    Ullom, J N; Frank, M; Gard, E E; Horn, J M; Labov, S E; Langry, K; Magnotta, F; Stanion, K A; Hack, C A; Benner, W H

    2001-05-15

    We demonstrate that molecular ions with mass-to-charge ratios (m/z) ranging from a few hundred to 19 050 can be desorbed from whole bacterial spores using infrared laser desorption and no chemical matrix. We have measured the mass of these ions using time-of-flight mass spectrometry and we observe that different ions are desorbed from spores of Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Bacillus niger. Our results raise the possibility of identifying microorganisms using mass spectrometry without conventional sample preparation techniques such as the addition of a matrix. We have measured the dependence of the ion yield from B. subtilis on desorption wavelength over the range 3.05-3.8 microm, and we observe the best results at 3.05 microm. We have also generated mass spectra from whole spores using 337-nm ultraviolet laser desorption, and we find that these spectra are inferior to spectra generated with infrared desorption. Since aerosol analysis is a natural application for matrix-free desorption, we have measured mass spectra from materials such as ragweed pollen and road dust that are likely to form a background to microbial aerosols. We find that these materials are readily differentiated from bacterial spores.

  15. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in the subunit stoichiometry study of high-mass non-covalent complexes

    NASA Astrophysics Data System (ADS)

    Moniatte, M.; Lesieur, C.; Vecsey-Semjen, B.; Buckley, J. T.; Pattus, F.; van der Goot, F. G.; van Dorsselaer, A.

    1997-12-01

    This study explores the potential of MALDI-TOF MS for the mass measurement of large non-covalent protein complexes. The following non-covalent complexes have been investigated: aerolysin from Aeromonas hydrophila (335 kDa) and [alpha]-haemolysin from Staphylococcus aureus (233 kDa) which are both cytolytic toxins, three enzymes known to be homotetramers in solution: bovine liver catalase (235 kDa), rabbit muscle pyruvate kinase (232 kDa), yeast alcohol dehydrogenase (147 kDa) and finally a lectin, concanavalin A (102 kDa). Three different matrix preparations were systematically tested under various conditions: ferulic acid dissolved in THF, 2,6-dihydroxyacetophenone in 20 mM aqueous ammonium citrate and a two-step sample preparation with sinapinic acid. It was possible to find a suitable combination of matrix and preparation type which allowed the molecularity of all complexes tested to be deduced from the MALDI mass spectrum. Trimeric and tetrameric intermediates accumulating during the formation of the active heptameric aerolysin complex were also identified, this allowing a formation mechanism to be proposed. The observation of large specific non-covalent complexes has been found to be dependent on the choice of matrix, the type of sample preparation used, the solvent evaporation speed, the pH of the resulting matrix-sample mixture and the number of shots acquired on a given area. From this set of experiments, some useful guidelines for the observation of large complexes by MALDI could therefore be deduced. Fast evaporation of the solvent is particularly necessary in the case of pH sensitive complexes. An ESMS study on the same non-covalent complexes indicated that, rather surprisingly, reliable results could be obtained by MALDI-TOF MS on several very large complexes (above 200 kDa) for which ESMS yielded no clear spectra.

  16. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.

    PubMed

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2014-06-01

    Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions.

  17. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.

    PubMed

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2014-06-01

    Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions. PMID:24913399

  18. Resonant Ionization Laser Ion Source for Radioactive Ion Beams

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Vane, C Randy; Gottwald, T.; Wendt, K.; Mattolat, C.; Lassen, J.

    2009-01-01

    A resonant ionization laser ion source based on all-solid-state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot-cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto-ionization or a Rydberg state for numerous elements of interest. Three-photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lasers could be well suited for laser ion source applications. The time structures of the ions produced by the pulsed lasers are investigated. The information may help to improve the laser ion source performance.

  19. Classical cutoffs for laser-induced nonsequential double ionization

    SciTech Connect

    Milosevic, D.B.; Becker, W.

    2003-12-01

    Classical cutoffs for the momenta of electrons ejected in laser-induced nonsequential double ionization are derived for the recollision-impact-ionization scenario. Such simple cutoff laws can aid in the interpretation of the observed electron spectra.

  20. Characterization by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry of the major photoproducts of temoporfin (m-THPC) and bacteriochlorin (m-THPBC).

    PubMed

    Angotti, M; Maunit, B; Muller, J F; Bezdetnaya, L; Guillemin, F

    2001-07-01

    The photobleaching of 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (temoporfin, m-THPC) and 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (bacteriochlorin, m-THPBC) was studied in ethanol-water (1 : 99, v/v) and in physiological medium (phosphate-buffered saline, PBS) with or without fetal calf serum (FCS). m-THPC solution was irradiated with the laser radiation of 650 nm, whereas m-THPBC solution underwent two consecutive irradiations at 532 and 650 nm. The photoproducts were characterized by UV-visible absorption spectrophotometry and by matrix-assisted laser desorption/ionization (MALDI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Independent of the solvent used, the phototransformation of either photosensitizer yielded the formation of 5,10,15,20-tetrakis (m-hydroxyphenyl)porphyrin (m-THPP) through a major dehydrogenation process. PMID:11473406

  1. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopes

    SciTech Connect

    Kudryavtsev, Yu. Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P.; Vermeeren, L.

    2014-02-15

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented.

  2. Electrostatic-spray ionization mass spectrometry.

    PubMed

    Qiao, Liang; Sartor, Romain; Gasilova, Natalia; Lu, Yu; Tobolkina, Elena; Liu, Baohong; Girault, Hubert H

    2012-09-01

    An electrostatic-spray ionization (ESTASI) method has been used for mass spectrometry (MS) analysis of samples deposited in or on an insulating substrate. The ionization is induced by a capacitive coupling between an electrode and the sample. In practice, a metallic electrode is placed close to but not in direct contact with the sample. Upon application of a high voltage pulse to the electrode, an electrostatic charging of the sample occurs leading to a bipolar spray pulse. When the voltage is positive, the bipolar spray pulse consists first of cations and then of anions. This method has been applied to a wide range of geometries to emit ions from samples in a silica capillary, in a disposable pipet tip, in a polymer microchannel, or from samples deposited as droplets on a polymer plate. Fractions from capillary electrophoresis were collected on a polymer plate for ESTASI MS analysis. PMID:22876737

  3. How Suitable is Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight for Metabolite Imaging from Clinical Formalin-Fixed and Paraffin-Embedded Tissue Samples in Comparison to Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry?

    PubMed

    Buck, Achim; Balluff, Benjamin; Voss, Andreas; Langer, Rupert; Zitzelsberger, Horst; Aichler, Michaela; Walch, Axel

    2016-05-17

    In research and clinical settings, formalin-fixed and paraffin-embedded (FFPE) tissue specimens are collected routinely and therefore this material constitutes a highly valuable source to gather insight in metabolic changes of diseases. Among mass spectrometry techniques to examine the molecular content of FFPE tissue, mass spectrometry imaging (MSI) is the most appropriate when morphological and histological features are to be related to metabolic information. Currently, high-resolution mass spectrometers are widely used for metabolomics studies. However, with regards to matrix-assisted laser desorption/ionization (MALDI) MSI, no study has so far addressed the necessity of instrumental mass resolving power in terms of clinical diagnosis and prognosis using archived FFPE tissue. For this matter we performed for the first time a comprehensive comparison between a high mass resolution Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer and a time-of-flight (TOF) instrument with lower mass resolving power. Spectra analysis revealed that about one-third of the detected peaks remained unresolved by MALDI-TOF, which led to a 3-5 times lower number of m/z features compared to FTICR measurements. Overlaid peak information and background noise in TOF images made a precise assignment of molecular attributes to morphological features more difficult and limited classification approaches. This clearly demonstrates the need for high-mass resolution capabilities for metabolite imaging. Nevertheless, MALDI-TOF allowed reproducing and verifying individual markers identified previously by MALDI-FTICR MSI. The systematic comparison gives rise to a synergistic combination of the different MSI platforms for high-throughput discovery and validation of biomarkers.

  4. Real-time monitoring of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting by resonant laser ionization time-of-flight mass spectrometry.

    PubMed

    Dorfner, Ralph; Ferge, Thomas; Kettrup, Antonius; Zimmermann, Ralf; Yeretzian, Chahan

    2003-09-10

    The formation of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting was monitored in real-time, using resonance enhanced multiphoton ionization and time-of-flight mass spectrometry. A model is proposed, based on two connected reaction channels. One channel, termed the "low activation energy" channel, consists of ester hydrolysis of 5-FQA followed by decarboxylation of the ferulic acid to form 4-vinylguaiacol, and finally polymerization at the vinyl group to form partly insoluble polymers (coffee melanoidins). The second "high activation energy" channel opens up once the beans have reached higher temperatures. It leads to formation of guaiacol, via oxidation of 4-vinylguaiacol, and subsequently to phenol and other phenolic VOCs. This work aims at developing strategies to modify the composition of coffee flavor compounds based on the time-temperature history during roasting. PMID:12952431

  5. CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Zian; Zheng, Jiangnan; Bian, Wei; Cai, Zongwei

    2015-08-01

    CuFe2O4 magnetic nanocrystal clusters (CuFe2O4 MNCs) were proposed as a new matrix for small molecule analysis by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the first time. We demonstrated its advantages over conventional organic matrices in the detection of small molecules such as amino acids, peptides, nucleobases, fatty acids, and steroid hormones. A systematic comparison of CuFe2O4 MNCs with different ionization modes revealed that MS spectra obtained for the CuFe2O4 MNC matrix in the negative ion mode was only featured by deprotonated ion peaks with a free matrix background, which was different from the complicated alkali metal adducts produced in the positive ion mode. The developed method was found relatively tolerant to salt contamination and exhibited good reproducibility. A detection limit down to the subpicomolar level was achieved when testosterone was analyzed. In addition, by comparison of the MS spectra obtained from bare Fe3O4 and MFe2O4 MNC (M = Co, Ni, Cu, Zn) matrices, two main factors of MFe2O4 MNC matrices were revealed to play a vital role in assisting the negative ion desorption/ionization (D/I) process: doping transition metals into ferrite nanocrystals favoring laser absorption and energy transfer and a good match between the UV absorption of MFe2O4 MNCs and the excitation of nitrogen laser source facilitating LDI efficiency. This work creates a new branch of application for MFe2O4 MNCs and provides an alternative solution for small molecule analysis. PMID:26086699

  6. A microwave-mediated saponification of galactosylceramide and galactosylceramide I3-sulfate and identification of their lyso-compounds by delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Taketomi, T; Hara, A; Uemura, K; Kurahashi, H; Sugiyama, E

    1996-07-16

    Small amounts of galactosylceramide (cerebroside) and galactosylceramide I3-sulfate (sulfatide) obtained from porcine spinal cord and equine kidney were deacylated by a rapid method of microwave-mediated saponification to prepare their lyso-compounds. Mass spectra of their protonated or deprotonated molecular ion peaks were detected by recently developed new technology of a delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometer with reflector detector in positive or negative ion mode. Long chain bases of lysocerebroside and lysosulfatide were different between porcine spinal cord and equine kidney, but similar to each other in the same organ, suggesting their common synthetic pathway. It is noted that the new rapid method can be similarly applied to the deacylation of both cerebroside and sulfatide in contrast to our classical method which was able to be applied to cerebroside, but not to sulfatide.

  7. "Whole cell"--matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libraries of natural compounds-present state of research.

    PubMed

    Vater, Joachim; Gao, Xuewen; Hitzeroth, Gabriele; Wilde, Christopher; Franke, Peter

    2003-09-01

    Whole Cell-matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) is an emerging sensitive technique for rapid typing of microorganisms, efficient screening of biocombinatorial libraries of natural compounds and the analysis of complex biological samples, as whole cells, subcellular particles, cell extracts and culture filtrates. It is unique to detect metabolites in-situ without the need to isolate and purify the investigated compounds. In favourite cases it enables in-situ structure analysis on the basis of the fragment pattern generated by postsource MALDI-TOF-mass spectrometry. The state of research of this methodology which has mainly been obtained by investigation of lipopeptides from bacilli and the large spectrum of bioactive peptides produced by cyanobacteria is reviewed. The potential of this innovative technique is demonstrated for the lipopeptides produced by various Bacillus subtilis strains.

  8. Enhancement of molecular ions in mass spectrometry using an ultrashort optical pulse in multiphoton ionization.

    PubMed

    Shimizu, Takashi; Watanabe-Ezoe, Yuka; Yamaguchi, Satoshi; Tsukatani, Hiroko; Imasaka, Tomoko; Zaitsu, Shin-Ichi; Uchimura, Tomohiro; Imasaka, Totaro

    2010-05-01

    The spectral domain of an ultraviolet femtosecond laser was expanded by stimulated Raman scattering/four-wave Raman mixing, and the resulting laser pulse was compressed using a pair of gratings. The pulse width was then measured using an autocorrelator comprised of a Michelson interferometer equipped with a multiphoton ionization/mass spectrometer which was used as a two-photon detector. A gas chromatograph/mass spectrometer was employed to analyze triacetone triperoxide (TATP), and the molecular ion induced by multiphoton ionization was substantially enhanced by decreasing the laser pulse width. PMID:20364824

  9. Effects of Growth Medium on Matrix-Assisted Laser Desorption–Ionization Time of Flight Mass Spectra: a Case Study of Acetic Acid Bacteria

    PubMed Central

    Wieme, Anneleen D.; Spitaels, Freek; Aerts, Maarten; De Bruyne, Katrien; Van Landschoot, Anita

    2014-01-01

    The effect of the growth medium used on the matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectra generated and its consequences for species and strain level differentiation of acetic acid bacteria (AAB) were determined by using a set of 25 strains. The strains were grown on five different culture media that yielded a total of more than 600 mass spectra, including technical and biological replicates. The results demonstrate that the culture medium can have a profound effect on the mass spectra of AAB as observed in the presence and varying signal intensities of peak classes, in particular when culture media do not sustain optimal growth. The observed growth medium effects do not disturb species level differentiation but strongly affect the potential for strain level differentiation. The data prove that a well-constructed and robust MALDI-TOF mass spectrometry identification database should comprise mass spectra of multiple reference strains per species grown on different culture media to facilitate species and strain level differentiation. PMID:24362425

  10. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with multidimensional scaling, binary hierarchical cluster tree and selected diagnostic masses improves species identification of Neolithic keratin sequences from furs of the Tyrolean Iceman Oetzi.

    PubMed

    Hollemeyer, Klaus; Altmeyer, Wolfgang; Heinzle, Elmar; Pitra, Christian

    2012-08-30

    The identification of fur origins from the 5300-year-old Tyrolean Iceman's accoutrement is not yet complete, although definite identification is essential for the socio-cultural context of his epoch. Neither have all potential samples been identified so far, nor there has a consensus been reached on the species identified using the classical methods. Archaeological hair often lacks analyzable hair scale patterns in microscopic analyses and polymer chain reaction (PCR)-based techniques are often inapplicable due to the lack of amplifiable ancient DNA. To overcome these drawbacks, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was used exclusively based on hair keratins. Thirteen fur specimens from his accoutrement were analyzed after tryptic digest of native hair. Peptide mass fingerprints (pmfs) from ancient samples and from reference species mostly occurring in the Alpine surroundings at his lifetime were compared to each other using multidimensional scaling and binary hierarchical cluster tree analysis. Both statistical methods highly reflect spectral similarities among pmfs as close zoological relationships. While multidimensional scaling was useful to discriminate specimens on the zoological order level, binary hierarchical cluster tree reached the family or subfamily level. Additionally, the presence and/or absence of order, family and/or species-specific diagnostic masses in their pmfs allowed the identification of mammals mostly down to single species level. Red deer was found in his shoe vamp, goat in the leggings, cattle in his shoe sole and at his quiver's closing flap as well as sheep and chamois in his coat. Canid species, like grey wolf, domestic dog or European red fox, were discovered in his leggings for the first time, but could not be differentiated to species level. This is widening the spectrum of processed fur-bearing species to at least one member of the Canidae family. His fur cap was

  11. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry

    PubMed Central

    2010-01-01

    Background Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. Results When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. Conclusion These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates. PMID:21073689

  12. Fragmentation processes of hydrogen-deficient peptide radicals in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    PubMed

    Asakawa, Daiki; Takayama, Mitsuo

    2012-04-01

    The mechanism of in-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) has been described. The MALDI-ISD with an oxidizing matrix is initiated by hydrogen abstraction from peptides to matrix molecules, leading to hydrogen-deficient peptide radicals. Subsequently, the C(α)-C and C(α)-H bonds are cleaved, forming the a•/x fragment pair and [M-2H], respectively. Those reactions competitively occur during MALDI-ISD processes. Our results suggest that the C(α)-H bond cleavage to form [M-2H] was induced by collisions between hydrogen-deficient peptide radicals and matrix molecules in the MALDI plume. In contrast, the C(α)-C bond cleavages occur via a unimolecular dissociation process and independently of the collision rate in the MALDI plume. The formation mechanism of the a-, b-, and d-series fragments are also described. We report 2,5-bis(2-hydroxyethoxy)-7,7,8,8-tetracyanoquinodimethane (bisHE-TCNQ), being known as an organic semiconductor and an electron acceptor, as a novel suitable matrix for the MALDI-ISD of peptides via hydrogen abstraction.

  13. Influences of Proline and Cysteine Residues on Fragment Yield in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Smargiasso, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2014-06-01

    Matrix-assisted laser desorption/ionization in-source decay produces highly informative fragments for the sequencing of peptides/proteins. Among amino acids, cysteine and proline residues were found to specifically influence the fragment yield. As they are both frequently found in small peptide structures for which de novo sequencing is mandatory, the understanding of their specific behaviors would allow useful fragmentation rules to be established. In the case of cysteine, a c•/ w fragment pair originating from Xxx-Cys is formed by side-chain loss from the cysteine residue. The presence of a proline residue contributes to an increased yield of ISD fragments originating from N-Cα bond cleavage at Xxx1-Xxx2Pro, which is attributable to the cyclic structure of the proline residue. Our results suggest that the aminoketyl radical formed by MALDI-ISD generally induces the homolytic N-Cα bond cleavage located on the C-terminal side of the radical site. In contrast, N-Cα bond cleavage at Xxx-Pro produces no fragments and the N-Cα bond at the Xxx1-Xxx2Pro bond is alternatively cleaved via a heterolytic cleavage pathway.

  14. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  15. In situ analysis of plant tissue underivatized carbohydrates and on-probe enzymatic degraded starch by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by using carbon nanotubes as matrix.

    PubMed

    Gholipour, Yousef; Nonami, Hiroshi; Erra-Balsells, Rosa

    2008-12-15

    Underivatized carbohydrates of tulip bulb and leaf tissues were characterized in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by using carbon nanotubes (CNTs) as matrix. Two sample preparation methods--(i) depositing CNTs on the fresh tissue slices placed on the probe and (ii) locating semitransparent tissues on a dried layer of CNTs on the probe--were examined. Furthermore, practicability of in situ starch analysis by MALDI-TOF MS was examined by detection of glucose originated from on-probe amyloglucosidase-catalyzed degradation of starch on the tissue surface. Besides, CNTs could efficiently desorb/ionize natural mono-, di-, and oligosaccharides extracted from tulip bulb tissues as well as glucose resulting from starch enzymatic degradation in vitro. These results were compared with those obtained by in situ MALDI-TOF MS analysis of similar tissues. Positive ion mode showed superior signal reproducibility. CNTs deposited under semitransparent tissue could also desorb/ionize neutral carbohydrates, leading to nearly complete elimination of matrix cluster signals but with an increase in tissue-originated signals. Furthermore, several experiments were carried out to compare the efficiency of 2,5-dihydroxybenzoic acid, nor-harmane, alpha-cyano-4-hydroxycinnamic acid, and CNTs as matrices for MALDI of neutral carbohydrates from the intact plant tissue surface and for enzymatic tissue starch degradation; these results are discussed in brief. Among matrices studied, the lowest laser power was needed to acquire carbohydrate signals with high signal-to-noise ratio and resolution when CNTs were used.

  16. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    SciTech Connect

    Futrell, Jean H.; Laskin, Julia

    2010-04-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands appli¬cations of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  17. Top-down synthesized TiO2 nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry.

    PubMed

    Kim, Jo-Il; Park, Jong-Min; Hwang, Seung-Ju; Kang, Min-Jung; Pyun, Jae-Chul

    2014-07-11

    Top-down synthesized TiO2 nanowires are presented as an ideal solid matrix to analyze small biomolecules at a m/z of less than 500. The TiO2 nanowires were synthesized as arrays using a modified hydrothermal process directly on the surface of a Ti plate. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix. The crystal and electronic structures of the top-down TiO2 nanowires were analyzed at each step of the hydrothermal process, and the optimal TiO2 nanowires were identified by checking their performance toward the ionization of analytes in surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Finally, the feasibility of the TiO2 nanowires in the anatase phase as a solid matrix for SALDI-TOF mass spectrometry was demonstrated using eight types of amino acids and peptides as model analytes.

  18. Mass spectrometry imaging with laser-induced postionization.

    PubMed

    Soltwisch, Jens; Kettling, Hans; Vens-Cappell, Simeon; Wiegelmann, Marcel; Müthing, Johannes; Dreisewerd, Klaus

    2015-04-10

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can simultaneously record the lateral distribution of numerous biomolecules in tissue slices, but its sensitivity is restricted by limited ionization. We used a wavelength-tunable postionization laser to initiate secondary MALDI-like ionization processes in the gas phase. In this way, we could increase the ion yields for numerous lipid classes, liposoluble vitamins, and saccharides, imaged in animal and plant tissue with a 5-micrometer-wide laser spot, by up to two orders of magnitude. Critical parameters for initiation of the secondary ionization processes are pressure of the cooling gas in the ion source, laser wavelength, pulse energy, and delay between the two laser pulses. The technology could enable sensitive MALDI-MS imaging with a lateral resolution in the low micrometer range.

  19. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  20. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  1. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI. PMID:25828352

  2. Recognition of Streptococcus pseudoporcinus Colonization in Women as a Consequence of Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Group B Streptococcus Identification.

    PubMed

    Suwantarat, Nuntra; Grundy, Maureen; Rubin, Mayer; Harris, Renee; Miller, Jo-Anne; Romagnoli, Mark; Hanlon, Ann; Tekle, Tsigereda; Ellis, Brandon C; Witter, Frank R; Carroll, Karen C

    2015-12-01

    During a 14-month period of using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for group B streptococcus (GBS) identification, we recovered 32 (1%) Streptococcus pseudoporcinus isolates from 3,276 GBS screening cultures from female genital sources (25 isolates from pregnant women and 7 from nonpregnant women). An additional two S. pseudoporcinus isolates were identified from a urine culture and a posthysterectomy wound culture. These isolates were found to cross-react with three different GBS antigen agglutination kits, PathoDx (Remel) (93%), Prolex (Pro-Lab Diagnostics) (38%), and Streptex (Remel) (53%). New approaches to bacterial identification in routine clinical microbiology laboratories may affect the prevalence of S. pseudoporcinus.

  3. Ease-of-use protocol for the rapid detection of third-generation cephalosporin resistance in Enterobacteriaceae isolated from blood cultures using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    PubMed

    Foschi, C; Compri, M; Smirnova, V; Denicolò, A; Nardini, P; Tamburini, M V; Lombardo, D; Landini, M P; Ambretti, S

    2016-06-01

    An ease-of-use protocol for the identification of resistance against third-generation cephalosporins in Enterobacteriaceae isolated from blood culture bottles was evaluated using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. A cefotaxime hydrolysis assay from chocolate agar subcultures using antibiotic discs and without inoculum standardization was developed for routine work flow, with minimal hands-on time. This assay showed good performance in distinguishing between cefotaxime-susceptible and cefotaxime-resistant strains, with excellent results for Escherichia coli (sensitivity 94.7%, specificity 100%). However, cefotaxime resistance was not detected reliably in Enterobacteriaceae expressing AmpC genes or carbapenemase-producing Klebsiella pneumoniae. PMID:27105753

  4. A Miniature Laser Desorption/Ionization Time-of-Flight Mass Spectrometer for in Situ Analysis of Mars Surface Composition and Identification of Hazard in Advance of Future Manned Exploration

    NASA Technical Reports Server (NTRS)

    Getty, S. A.; Brinckerhoff, W. B.; Arevalo, R. D.; Floyd, M. M.; Li, X.; Cornish, T.; Ecelberger, S. A.

    2012-01-01

    Future landed missions to Mars will be guided by two strategic directions: (1) sample return to Earth, for comprehensive compositional analyses, as recommended by the 2011 NRC Planetary Decadal Survey; and (2) preparation for human exploration in the 2030s and beyond, as laid out by US space policy. The resultant mission architecture will likely require high-fidelity in situ chemical/organic sample analyses within an extremely constrained resource envelope. Both science goals (e.g., MEPAG Goal 1, return sample selection, etc.) as well as identification of any potential toxic and biological hazards to humans, must be addressed. Over the past several years of instrument development, we have found that the adaptable, compact, and highly capable technique of laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) has significant potential to contribute substantially to these dual objectives. This concept thus addresses Challenge Area 1: instrumentation and Investigation Approaches.

  5. Sensitive Detection of Aromatic Hydrophobic Compounds in Water and Perfluorooctane Sulfonate in Human Serum by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) with Amine Functionalized Graphene-Coated Cobalt Nanoparticles

    PubMed Central

    Nakai, Keisuke; Kawasaki, Hideya; Yamamoto, Atsushi; Arakawa, Ryuichi; Grass, Robert N.; Stark, Wendelin J.

    2014-01-01

    In this article, we describe the application of surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with the use of amine functionalized graphene-coated cobalt nanoparticles (CoC–NH2 nanoparticles) to analyse aromatic hydrophobic compounds that are known environmental contaminants, including polycyclic aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP). Our results demonstrated that SALDI-MS can detect PCP, anthracene, and pyrene in water. In particular, the CoC–NH2 nanoparticles proved to be an efficient means of capturing PCP in water because of the high adsorption capacity of the nanoparticles for PCP, which resulted in a detectability of 100 ppt. Furthermore, the CoC–NH2 nanoparticles also functioned as an adsorbent for solid-phase extraction of perfluorooctane sulfonate (PFOS) from human serum, displaying good performance with a detectability of 10 ppb by SALDI-MS. PMID:26819871

  6. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology.

    PubMed

    Nomura, Fumio

    2015-06-01

    Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics.

  7. Sensitive Detection of Aromatic Hydrophobic Compounds in Water and Perfluorooctane Sulfonate in Human Serum by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) with Amine Functionalized Graphene-Coated Cobalt Nanoparticles.

    PubMed

    Nakai, Keisuke; Kawasaki, Hideya; Yamamoto, Atsushi; Arakawa, Ryuichi; Grass, Robert N; Stark, Wendelin J

    2014-01-01

    In this article, we describe the application of surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with the use of amine functionalized graphene-coated cobalt nanoparticles (CoC-NH2 nanoparticles) to analyse aromatic hydrophobic compounds that are known environmental contaminants, including polycyclic aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP). Our results demonstrated that SALDI-MS can detect PCP, anthracene, and pyrene in water. In particular, the CoC-NH2 nanoparticles proved to be an efficient means of capturing PCP in water because of the high adsorption capacity of the nanoparticles for PCP, which resulted in a detectability of 100 ppt. Furthermore, the CoC-NH2 nanoparticles also functioned as an adsorbent for solid-phase extraction of perfluorooctane sulfonate (PFOS) from human serum, displaying good performance with a detectability of 10 ppb by SALDI-MS.

  8. Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).

    PubMed

    Kwak, Hye-Lim; Han, Sun-Kyung; Park, Sunghoon; Park, Si Hong; Shim, Jae-Yong; Oh, Mihwa; Ricke, Steven C; Kim, Hae-Yeong

    2015-09-01

    Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDI-TOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

  9. Ultraviolet laser desorption/ionization mass spectrometry of single-core and multi-core polyaromatic hydrocarbons under variable conditions of collisional cooling: insights into the generation of molecular ions, fragments and oligomers.

    PubMed

    Gámez, Francisco; Hortal, Ana R; Martínez-Haya, Bruno; Soltwisch, Jens; Dreisewerd, Klaus

    2014-11-01

    The ultraviolet laser desorption/ionization of polyaromatic hydrocarbons (PAHs) has been investigated under different background pressures of an inert gas (up to 1.2 mbar of N2) in the ion source of a hybrid, orthogonal-extracting time-of-flight mass spectrometer (oTOF-MS). The study includes an ensemble of six model PAHs with isolated single polyaromatic cores and four ones with multiple cross-linked aromatic and polyaromatic cores. In combination with a weak ion extraction field, the variation of the buffer gas pressure allowed to control the degree of collisional cooling of the desorbed PAHs and, thus, to modulate their decomposition into fragments. The dominant fragmentation channels observed are related to dehydrogenation of the PAHs, in most cases through the cleavage of even numbers of C-H bonds. Breakage of C-C bonds leading to the fragmentation of rings, side chains and core linkages is also observed, in particular, at low buffer gas pressures. The precise patterns of the combined fragmentation processes vary significantly between the PAHs. The highest abundances of molecular PAH ions and cleanest mass spectra were consistently obtained at the highest buffer gas pressure of 1.2 mbar. The effective quenching of the fragmentation pathways at this elevated pressure improves the sensitivity and data interpretation for analytical applications, although the fragmentation of side chains and of bonds between (poly)aromatic cores is not completely suppressed in all cases. Moreover, these results suggest that the detected fragments are generated through thermal equilibrium processes rather than as a result of rapid photolysis. This assumption is further corroborated by a laser desorption/ionization post-source decay analysis using an axial time-of-flight MS. In line with these findings, covalent oligomers of the PAHs, which are presumably formed by association of two or more dehydrogenated fragments, are detected with higher abundances at the lower buffer gas

  10. Identification by Molecular Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Antifungal Susceptibility Profiles of Clinically Significant Rare Aspergillus Species in a Referral Chest Hospital in Delhi, India.

    PubMed

    Masih, Aradhana; Singh, Pradeep K; Kathuria, Shallu; Agarwal, Kshitij; Meis, Jacques F; Chowdhary, Anuradha

    2016-09-01

    Aspergillus species cause a wide spectrum of clinical infections. Although Aspergillus fumigatus and Aspergillus flavus remain the most commonly isolated species in aspergillosis, in the last decade, rare and cryptic Aspergillus species have emerged in diverse clinical settings. The present study analyzed the distribution and in vitro antifungal susceptibility profiles of rare Aspergillus species in clinical samples from patients with suspected aspergillosis in 8 medical centers in India. Further, a matrix-assisted laser desorption ionization-time of flight mass spectrometry in-house database was developed to identify these clinically relevant Aspergillus species. β-Tubulin and calmodulin gene sequencing identified 45 rare Aspergillus isolates to the species level, except for a solitary isolate. They included 23 less common Aspergillus species belonging to 12 sections, mainly in Circumdati, Nidulantes, Flavi, Terrei, Versicolores, Aspergillus, and Nigri Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified only 8 (38%) of the 23 rare Aspergillus isolates to the species level. Following the creation of an in-house database with the remaining 14 species not available in the Bruker database, the MALDI-TOF MS identification rate increased to 95%. Overall, high MICs of ≥2 μg/ml were noted for amphotericin B in 29% of the rare Aspergillus species, followed by voriconazole in 20% and isavuconazole in 7%, whereas MICs of >0.5 μg/ml for posaconazole were observed in 15% of the isolates. Regarding the clinical diagnoses in 45 patients with positive rare Aspergillus species cultures, 19 (42%) were regarded to represent colonization. In the remaining 26 patients, rare Aspergillus species were the etiologic agent of invasive, chronic, and allergic bronchopulmonary aspergillosis, allergic fungal rhinosinusitis, keratitis, and mycetoma. PMID:27413188

  11. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  12. Comparison of vacuum matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI (AP-MALDI) tandem mass spectrometry of 2-dimensional separated and trypsin-digested glomerular proteins for database search derived identification.

    PubMed

    Mayrhofer, Corina; Krieger, Sigurd; Raptakis, Emmanuel; Allmaier, Günter

    2006-08-01

    Mass spectrometric based sequencing of enzymatic generated peptides is widely used to obtain specific sequence tags allowing the unambiguous identification of proteins. In the present study, two types of desorption/ionization techniques combined with different modes of ion dissociation, namely vacuum matrix-assisted laser desorption/ionization (vMALDI) high energy collision induced dissociation (CID) and post-source decay (PSD) as well as atmospheric pressure (AP)-MALDI low energy CID, were applied for the fragmentation of singly protonated peptide ions, which were derived from two-dimensional separated, silver-stained and trypsin-digested hydrophilic as well as hydrophobic glomerular proteins. Thereby, defined properties of the individual fragmentation pattern generated by the specified modes could be observed. Furthermore, the compatibility of the varying PSD and CID (MS/MS) data with database search derived identification using two public accessible search algorithms has been evaluated. The peptide sequence tag information obtained by PSD and high energy CID enabled in the majority of cases an unambiguous identification. In contrast, part of the data obtained by low energy CID were not assignable using similar search parameters and therefore no clear results were obtainable. The knowledge of the properties of available MALDI-based fragmentation techniques presents an important factor for data interpretation using public accessible search algorithms and moreover for the identification of two-dimensional gel separated proteins.

  13. High-efficiency electron ionizer for a mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); Orient, Otto J. (Inventor)

    2001-01-01

    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures.

  14. Polymer-based metal nano-coated disposable target for matrix-assisted and matrix-free laser desorption/ionization mass spectrometry.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2016-07-15

    The ideal MALDI/LDI mass spectrometry sample target for an axial TOF instrument possesses a variety of properties. Primarily, it should be chemically inert to the sample, i.e. analyte, matrix and solvents, highly planar across the whole target, without any previous chemical contact and provide a uniform surface to facilitate reproducible measurements without artifacts from previous sample or matrix compounds. This can be hard to achieve with a metal target, which has to be extensively cleaned every time after use. Any cleaning step may leave residues behind, may change the surface properties due to the type of cleaning method used or even cause microscopic scratches over time hence altering matrix crystallization behavior. Alternatively, use of disposable targets avoids these problems. As each possesses the same surface they therefore have the potential to replace the conventional full metal targets so commonly employed. Furthermore, low cost single-use targets with high planarity promise an easier compliance with GLP guidelines as they alleviate the problem of low reproducibility due to inconsistent sample/matrix crystallization and changes to the target surface properties. In our tests, polymeric metal nano-coated targets were compared to a stainless steel reference. The polymeric metal nano-coated targets exhibited all the performance characteristics for a MALDI MS sample support, and even surpassed the - in our lab commonly used - reference in some aspects like limit of detection. The target exhibits all necessary features such as electrical conductivity, vacuum, laser and solvent compatibility.

  15. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  16. Laser stripping of hydrogen atoms by direct ionization

    DOE PAGES

    Brunetti, E.; Becker, W.; Bryant, H. C.; Jaroszynski, D. A.; Chou, W.

    2015-05-08

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.