Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations
Markauskas, Edgaras; Gečys, Paulius; Repins, Ingrid; ...
2017-04-27
Here, the transition to fully sized solar modules requires additional three-step laser structuring processes to preserve small-scale cell efficiencies over the large areas. The adjacent cell isolation (the P3 scribe) was found to be the most sensitive process in the case of laser induced damage. The laser induced layer lift-off mechanism seems to be a very attractive process for the P3 patterning, since almost all the laser affected material is removed by mechanical spallation. However, a laser induced layer spallation behavior together with scribe electrical validation under the different laser pulse durations was not investigated extensively in the past. Therefore,more » we report our novel results on the P2 and P3 laser lift-off processing of the Cu 2ZnSn(S, Se 4) (CZTSe) thin-film solar cells covering the pulse duration range from 300 fs to 60 ps. Shorter sub-ps pulses enabled us to process smaller P2 and P3 craters, although the lift-off threshold fluences were higher compared to the longer ps pulses. In the case of the layer lift-off, the laser radiation had to penetrate through the layer stack down to the CZTSe/Mo interface. At shorter sub-ps pulses, the nonlinear effects triggered absorption of the laser radiation in the bulk of the material, resulting in increased damage of the CZTSe layer. The Raman measurements confirmed the CZTSe surface stoichiometry changes for shorter pulses. Furthermore, shorter pulses induced higher electrical conductivity of a scribe, resulting in lower photo-electrical efficiency during the mini-module simulation. In the case of the P3 lift-off scribing, the 10 ps pulses were more favorable than shorter femtosecond pulses.« less
Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markauskas, Edgaras; Gečys, Paulius; Repins, Ingrid
Here, the transition to fully sized solar modules requires additional three-step laser structuring processes to preserve small-scale cell efficiencies over the large areas. The adjacent cell isolation (the P3 scribe) was found to be the most sensitive process in the case of laser induced damage. The laser induced layer lift-off mechanism seems to be a very attractive process for the P3 patterning, since almost all the laser affected material is removed by mechanical spallation. However, a laser induced layer spallation behavior together with scribe electrical validation under the different laser pulse durations was not investigated extensively in the past. Therefore,more » we report our novel results on the P2 and P3 laser lift-off processing of the Cu 2ZnSn(S, Se 4) (CZTSe) thin-film solar cells covering the pulse duration range from 300 fs to 60 ps. Shorter sub-ps pulses enabled us to process smaller P2 and P3 craters, although the lift-off threshold fluences were higher compared to the longer ps pulses. In the case of the layer lift-off, the laser radiation had to penetrate through the layer stack down to the CZTSe/Mo interface. At shorter sub-ps pulses, the nonlinear effects triggered absorption of the laser radiation in the bulk of the material, resulting in increased damage of the CZTSe layer. The Raman measurements confirmed the CZTSe surface stoichiometry changes for shorter pulses. Furthermore, shorter pulses induced higher electrical conductivity of a scribe, resulting in lower photo-electrical efficiency during the mini-module simulation. In the case of the P3 lift-off scribing, the 10 ps pulses were more favorable than shorter femtosecond pulses.« less
Erbium Doped GaN Lasers by Optical Pumping
2016-07-13
obtained via growth by hydride vapor phase epitaxy (HVPE) in conjunction with a laser-lift-off (LLO) process. An Er doping level of 1.4 × 10^20 atoms/cm3... conjunction with a laser-lift-off (LLO) 2 process. An Er doping level
Kim, Seungjun; Son, Jung Hwan; Lee, Seung Hyun; You, Byoung Kuk; Park, Kwi-Il; Lee, Hwan Keon; Byun, Myunghwan; Lee, Keon Jae
2014-11-26
Crossbar-structured memory comprising 32 × 32 arrays with one selector-one resistor (1S-1R) components are initially fabricated on a rigid substrate. They are transferred without mechanical damage via an inorganic-based laser lift-off (ILLO) process as a result of laser-material interaction. Addressing tests of the transferred memory arrays are successfully performed to verify mitigation of cross-talk on a plastic substrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cho, H. K.; Krüger, O.; Külberg, A.; Rass, J.; Zeimer, U.; Kolbe, T.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.
2017-12-01
We report on a chip design which allows the laser lift-off (LLO) of the sapphire substrate sustaining the epitaxial film of flip-chip mounted deep ultraviolet light emitting diodes. A nanosecond pulsed excimer laser with a wavelength of 248 nm was used for the LLO. A mechanically stable chip design was found to be the key to prevent crack formation in the epitaxial layers and material chipping during the LLO process. Stabilization was achieved by introducing a Ti/Au leveling layer that mechanically supports the fragile epitaxial film. The electrical and optical characterization of devices before and after the LLO process shows that the device performance did not degrade by the LLO.
Ultra-fast movies of thin-film laser ablation
NASA Astrophysics Data System (ADS)
Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2012-11-01
Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.
Laser polymerization-based novel lift-off technique
NASA Astrophysics Data System (ADS)
Bhuian, B.; Winfield, R. J.; Crean, G. M.
2009-03-01
The fabrication of microstructures by two-photon polymerization has been widely reported as a means of directly writing three-dimensional nanoscale structures. In the majority of cases a single point serial writing technique is used to form a polymer model. Single layer writing can also be used to fabricate two-dimensional patterns and we report an extension of this capability by using two-photon polymerization to form a template that can be used as a sacrificial layer for a novel lift-off process. A Ti:sapphire laser, with wavelength 795 nm, 80 MHz repetition rate, 100 fs pulse duration and an average power of 700 mW, was used to write 2D grid patterns with pitches of 0.8 and 1.0 μm in a urethane acrylate resin that was spun on to a lift-off base layer. This was overcoated with gold and the grid lifted away to leave an array of gold islands. The optical transmission properties of the gold arrays were measured and found to be in agreement with a rigorous coupled-wave analysis simulation.
Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist
NASA Astrophysics Data System (ADS)
Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey
1999-06-01
In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.
High density circuit technology, part 1
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
The metal (or dielectric) lift-off processes used in the semiconductor industry to fabricate high density very large scale integration (VLSI) systems were reviewed. The lift-off process consists of depositing the light-sensitive material onto the wafer and patterning first in such a manner as to form a stencil for the interconnection material. Then the interconnection layer is deposited and unwanted areas are lifted off by removing the underlying stencil. Several of these lift-off techniques were examined experimentally. The use of an auxiliary layer of polyimide to form a lift-off stencil offers considerable promise.
NASA Astrophysics Data System (ADS)
Boxx, I.; Stöhr, M.; Carter, C.; Meier, W.
2009-04-01
We describe an approach of imaging the dynamic interaction of the flamefront and flowfield. Here, a diode-pumped Nd:YLF laser operating at 5 kHz is used to pump a dye laser, which is then frequency doubled to 283 nm to probe flamefront OH, while a dual cavity diode-pumped Nd:YAG system produces pulse-pairs for particle image velocimetry (PIV). CMOS digital cameras are used to detect both planar laser-induced fluorescence (PLIF) and particle scattering (in a stereo arrangement) such that a 5 kHz measurement frequency is attained. This diagnostic is demonstrated in lifted-jet and swirl-stabilized flames, wherein the dynamics of the flame stabilization processes are seen. Nonperiodic effects such as local ignition and/or extinction, lift-off and flashback events, and their histories can be captured by this technique. As such, this system has the potential to significantly extend our understanding of nonstationary combustion processes relevant to industrial and technical applications.
Lift-off process for fine-patterned PZT film using metal oxide as a sacrificial layer
NASA Astrophysics Data System (ADS)
Trong Tue, Phan; Shimoda, Tatsuya; Takamura, Yuzuru
2017-01-01
Patterning of lead zirconium titanate (PZT) films is crucial for highly integrated piezoelectric/ferroelectric micro-devices. In this work, we report a novel lift-off method using solution-processed indium zinc oxide (IZO) thin film as a sacrificial layer for sub-5 µm fine-patterning PZT film. The processes include IZO layer deposition and patterning, PZT film preparation, and final lift-off. The results reveal that the lift-off PZT processes provide better structural and electrical properties than those formed by the conventional wet-etching method. The successful patterning by the lift-off was mainly due to the fact that the IZO sacrificial layer is easy to etch and has a high-temperature resistance. This finding shows great promise for highly integrated electronic devices.
Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off
NASA Astrophysics Data System (ADS)
Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Zhang, Zhiqiang; Duan, Huigao
2015-10-01
Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process.
A Practical Approach To Lift-Off
NASA Astrophysics Data System (ADS)
Jones, Susan K.; Chapman, Richard C.; Pavelchek, Edward K.
1987-08-01
Lift-off technology provides an alternate metal patterning technology to that of subtractive etching. In this raper, we describe an image reversal process which provides a practical means for reliably producing resist stencils which are required for successful lift-off in a 2.0 μm metal pitch CMOS process, as well as for experimental submicron processing. Experimental data and PROSIM simulations are presented to show the effects of patterning exposure dose, flood exposure dose, develop time, and focus parameters on resist linewidths as well as for control of resist retrograde (undercut) sidewall angles. Deposition and subsequent lift-off of Al/Cu alloys and sandwich metallizations is demonstrated. Because the image reversal process enables pattern definition at the top of the resist film, it is demonstrated that thicker resist films can be used to produce finer resolution of lift-off stencils over topography than would have been expected without resorting to multilayer resist structures.
Navy Supplement to the DOD Dictionary of Military and Associated Terms
2012-06-01
rate LI interference level LI/ LO lock-in/lock-out LIA laser illuminator assembly LIC low-intensity conflict lidar laser identification, detection, and...liaison officer LO locked open; low observable; lubricating oil fill, transfer and purification LO /LI lock-out/lock-in LO / LO lift-on/lift-off LOA letter...aid to navigation LOS launch on search; law of the sea; line of sight; line of sound; lubricating oil service, main LOT letter of transmittal LOTS
Navy Supplement to the DOD Dictionary of Military and Associated Terms
2011-04-01
light harpoon landing restraint system LI interference level LI/ LO lock-in/lock-out LIA laser illuminator assembly LIC low-intensity conflict lidar...monitoring system LMSR large, medium-speed roll-on/roll-off (ship) LN legalman (USN rating) LND land LNO liaison officer LO locked open; low...observable; lubricating oil fill, transfer and purification LO /LI lock-out/lock-in LO / LO lift-on/lift-off LOA letter of approval; letter of authorization
Bilayer lift-off process for aluminum metallization
NASA Astrophysics Data System (ADS)
Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.
2015-01-01
Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (<100 nm) and thick aluminum devices with micron-feature sizes. Our patterning recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.
Thermally induced nonlinear optical absorption in metamaterial perfect absorbers
NASA Astrophysics Data System (ADS)
Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha
2015-03-01
A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.
NASA Astrophysics Data System (ADS)
Genç, Eminegül; Kepceoǧlu, Abdullah; Gezgin, Serap Yiǧit; Kars, Meltem Demirel; Kılıç, Hamdi Şükür
2017-02-01
The use of the femtosecond (fs) laser pulses for ablation applications have several advantageous and Laser-Induced Forward Transfer (LIFT) is an ablation-driven transfer process. The use of fs laser pulses for LIFT is gaining a great attraction nowadays. The most of the Direct Writing (DW) methods are laser based techniques and the LIFT technique is the one of them. This spectacular technique allows high resolution without lithographic processes. In this study, we have grown Ti, Pt and Ta thin films on the microscope slides by Pulse Laser Deposition (PLD) technique using Nd:YAG laser in the high vacuum condition. As a result, thin films produced in this work is a good candidate to produce native DNA biosensors based on LIFT technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voronenkov, V. V.; Virko, M. V.; Kogotkov, V. S.
The intense absorption of CO{sub 2} laser radiation in sapphire is used to separate GaN films from GaN templates on sapphire. Scanning of the sapphire substrate by the laser leads to the thermal dissociation of GaN at the GaN/sapphire interface and to the detachment of GaN films from the sapphire. The threshold density of the laser energy at which n-GaN started to dissociate is 1.6 ± 0.5 J/cm{sup 2}. The mechanical-stress distribution and the surface morphology of GaN films and sapphire substrates before and after laser lift-off are studied by Raman spectroscopy, atomic-force microscopy, and scanning electron microscopy. A verticalmore » Schottky diode with a forward current density of 100 A/cm{sup 2} at a voltage of 2 V and a maximum reverse voltage of 150 V is fabricated on the basis of a 9-μm-thick detached n-GaN film.« less
Vertical III-nitride thin-film power diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.
2017-03-14
A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.
NASA Astrophysics Data System (ADS)
Sun, Yongjian; Trieu, Simeon; Yu, Tongjun; Chen, Zhizhong; Qi, Shengli; Tian, Pengfei; Deng, Junjing; Jin, Xiaoming; Zhang, Guoyi
2011-08-01
Vertical structure LEDs have been fabricated with a novel light extraction composite surface structure composed of a micron grating and nano-structure. The composite surface structure was generated by using a modified YAG laser lift-off technique, separating the wafers from cone-shaped patterned sapphire substrates. LEDs thus fabricated showed the light output power increase about 1.7-2.5 times when compared with conventional vertical structure LEDs grown on plane sapphire substrates. A three-dimensional finite difference time domain method was used to simulate this new kind of LED device. It was determined that nano-structures in composite surface patterns play a key role in the improvement of light extraction efficiency of LEDs.
Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.
Park, Kwi-Il; Son, Jung Hwan; Hwang, Geon-Tae; Jeong, Chang Kyu; Ryu, Jungho; Koo, Min; Choi, Insung; Lee, Seung Hyun; Byun, Myunghwan; Wang, Zhong Lin; Lee, Keon Jae
2014-04-23
A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
276 nm Substrate-Free Flip-Chip AlGaN Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Hwang, Seongmo; Morgan, Daniel; Kesler, Amanda; Lachab, Mohamed; Zhang, Bin; Heidari, Ahmad; Nazir, Haseeb; Ahmad, Iftikhar; Dion, Joe; Fareed, Qhalid; Adivarahan, Vinod; Islam, Monirul; Khan, Asif
2011-03-01
Lateral-conduction, substrate-free flip-chip (SFFC) light-emitting diodes (LEDs) with peak emission at 276 nm are demonstrated for the first time. The AlGaN multiple quantum well LED structures were grown by metal-organic chemical vapor deposition (MOCVD) on thick-AlN laterally overgrown on sapphire substrates. To fabricate the SFFC LEDs, a newly-developed laser-assisted ablation process was employed to separate the substrate from the LED chips. The chips had physical dimensions of 1100×900 µm2, and were comprised of four devices each with a 100×100 µm2 junction area. Electrical and optical characterization of the devices revealed no noticeable degradation to their performance due to the laser-lift-off process.
A study of the mechanism of metal deposition by the laser-induced forward transfer process
NASA Astrophysics Data System (ADS)
Adrian, F. J.; Bohandy, J.; Kim, B. F.; Jette, A. N.; Thompson, P.
1987-10-01
The mechanism of the laser-induced forward transfer (LIFT) technique for transferring metal features from a film to a substrate is examined by using the one-dimensional thermal diffusion equation with a moving solid-melt boundary to model the heating, melting, and vaporization of the metal film by the laser. For typical LIFT conditions the calculations show that the back of the film (i.e., the part exposed to the laser) will reach the boiling point before the film melts through, which supports the qualitative picture that the LIFT process involves vapor-driven propulsion of metal from the film onto the target.
Ultrasound generation with high power and coil only EMAT concepts.
Rueter, Dirk; Morgenstern, Tino
2014-12-01
Electro-magnetic acoustic transducers (EMATs) are intended as non-contact and non-destructive ultrasound transducers for metallic material. The transmitted intensities from EMATS are modest, particularly at notable lift off distances. Some time ago a concept for a "coil only EMAT" was presented, without static magnetic field. In this contribution, such compact "coil only EMATs" with effective areas of 1-5cm(2) were driven to excessive power levels at MHz frequencies, using pulsed power technologies. RF induction currents of 10kA and tens of Megawatts are applied. With increasing power the electroacoustic conversion efficiency also increases. The total effect is of second order or quadratic, therefore non-linear and progressive, and yields strong ultrasound signals up to kW/cm(2) at MHz frequencies in the metal. Even at considerable lift off distances (cm) the ultrasound can be readily detected. Test materials are aluminum, ferromagnetic steel and stainless steel (non-ferromagnetic). Thereby, most metal types are represented. The technique is compared experimentally with other non-contact methods: laser pulse induced ultrasound and spark induced ultrasound, both damaging to the test object's surface. At small lift off distances, the intensity from this EMAT concept clearly outperforms the laser pulses or heavy spark impacts. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bo, T. L.; Fu, L. T.; Liu, L.; Zheng, X. J.
2017-06-01
The studies on wind-blown sand are crucial for understanding the change of climate and landscape on Mars. However, the disadvantages of the saltation models may result in unreliable predictions. In this paper, the saltation model has been improved from two main aspects, the aerodynamic surface roughness and the lift-off parameters. The aerodynamic surface roughness is expressed as function of particle size, wind strength, air density, and air dynamic viscosity. The lift-off parameters are improved through including the dependence of restitution coefficient on incident parameters and the correlation between saltating speed and angle. The improved model proved to be capable of reproducing the observed data well in both stable stage and evolution process. The modeling of wind-blown sand is promoted by all improved aspects, and the dependence of restitution coefficient on incident parameters could not be ignored. The constant restitution coefficient and uncorrelated lift-off parameter distributions would lead to both the overestimation of the sand transport rate and apparent surface roughness and the delay of evolution process. The distribution of lift-off speed and the evolution of lift-off parameters on Mars are found to be different from those on Earth. This may thus suggest that it is inappropriate to predict the evolution of wind-blown sand by using the lift-off velocity obtained in steady state saltation. And it also may be problematic to predict the wind-blown sand on Mars through applying the lift-off velocity obtained upon terrestrial conditions directly.
Study of lifting operation of a tripod foundation for offshore wind turbine
NASA Astrophysics Data System (ADS)
Zhu, H.; Li, L.; Ong, M. C.
2017-12-01
This study addresses numerical analysis of the installation of a tripod foundation using a heavy lift vessel (HLV). Limiting sea states are firstly predicted in the frequency domain based on crane tip vertical motions using linear transfer functions. Then, numerical modelling and simulations are carried out in the time domain to analyse the coupled dynamic system taking into consideration of the nonlinearities of the system. In time-domain analysis, two lifting phases are brought into focus, i.e., the lift-off and the lowering phases. For the lift-off phase, two scenarios are considered, i.e., lift-off from the own deck of the HLV and lift-off from a transport barge. Moreover, comparative studies using two types of installation vessels, a floating vessel and a Jack-up, are investigated for the lowering process. Critical responses including the motions of the tripod and the lift wire tensions are presented and compared under various environmental and loading conditions.
Laser-induced forward transfer (LIFT) of congruent voxels
NASA Astrophysics Data System (ADS)
Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric
2016-06-01
Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.
High-quality vertical light emitting diodes fabrication by mechanical lift-off technique
NASA Astrophysics Data System (ADS)
Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen
2011-10-01
We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.
NASA Astrophysics Data System (ADS)
Moench, Ingo; Peter, Laszlo; Priem, Roland; Sturm, Volker; Noll, Reinhard
1999-09-01
In plants of the chemical, nuclear and off-shore industry, application specific high-alloyed steels are used for pipe fittings. Mixing of different steel grades can lead to corrosion with severe consequential damages. Growing quality requirements and environmental responsibilities demand a 100% material control in the production of the pipe fittings. Therefore, LIFT, an automatic inspection machine, was developed to insure against any mix of material grades. LIFT is able to identify more than 30 different steel grades. The inspection method is based on Laser-Induced Breakdown Spectrometry (LIBS). An expert system, which can be easily trained and recalibrated, was developed for the data evaluation. The result of the material inspection is transferred to an external handling system via a PLC interface. The duration of the inspection process is 2 seconds. The graphical user interface was developed with respect to the requirements of an unskilled operator. The software is based on a realtime operating system and provides a safe and reliable operation. An interface for the remote maintenance by modem enables a fast operational support. Logged data are retrieved and evaluated. This is the basis for an adaptive improvement of the configuration of LIFT with respect to changing requirements in the production line. Within the first six months of routine operation, about 50000 pipe fittings were inspected.
NASA Astrophysics Data System (ADS)
Kim, Youngjo; Kim, Kangho; Jung, Sang Hyun; Kim, Chang Zoo; Shin, Hyun-Beom; Choi, JeHyuk; Kang, Ho Kwan
2017-12-01
Flexible thin film (In)GaAs solar cells are grown by metalorganic chemical vapor deposition on GaAs substrates and transferred to 30 μm thick Au foil by internal stress-assisted epitaxial lift-off processes. The internal stress is induced by replacing the solar cell epi-layers from GaAs to In0.015Ga0.985As, which has a slightly larger lattice constant. The compressive strained layer thickness was varied from 0 to 4.5 μm to investigate the influence of the internal stress on the epitaxial lift-off time. The etching time in the epitaxial lift-off process was reduced from 36 to 4 h by employing a GaAs/In0.015Ga0.985As heterojunction structure that has a compressive film stress of -59.0 MPa. We found that the partially strained epi-structure contributed to the much faster lateral etching rate with spontaneous bending. Although an efficiency degradation problem occurred in the strained solar cell, it was solved by optimizing the epitaxial growth conditions.
NASA Astrophysics Data System (ADS)
Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu
2017-01-01
This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted chemical etching and photo-enhanced post-annealing at 100 °C for 1 min. As a result, the light output power of GaN-based TF-LEDs with wet etching and post-annealing was over 72% more than that of LEDs that did not undergo these treatments.
Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003
NASA Technical Reports Server (NTRS)
Holdeman, James D. (Technical Monitor); Cabra, Ricardo
2004-01-01
Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of coflow or jet velocity. An explanation for this phenomenon is that entrainment of ambient air at the high lift-off heights prevents autoignition. Analysis of the results suggests that flame stabilization occurs through a combination of flame propagation, autoignition, and localized extinction processes. Proposed is an expanded view of distributed reaction combustion based on analysis of the distributions of probe volume conditions at the stabilization region of the lifted hydrogen and methane flames. Turbulent eddies the size of the flame thickness mix fuel and hot coflow across the flame front, thereby enhancing the reaction zone with autoignition of reactants at elevated temperatures; this is the reverse effect of turbulent flames in ambient air, where intense turbulence in cool mixtures result in localized extinction. Each of the three processes (i.e., flame propagation, autoignition and localized extinction) contributes to flame stabilization in varying degrees, depending on flow conditions.
NASA Astrophysics Data System (ADS)
Harada, Takayuki; Tsukazaki, Atsushi
2018-02-01
Oxides provide various fascinating physical properties that could find use in future device applications. However, the physical properties of oxides are often affected by formation of oxygen vacancies during device fabrication processes. In this study, to develop a damage-free patterning process for oxides, we focus on a lift-off process using a sacrificial template layer, by which we can pattern oxide thin films without severe chemical treatment or plasma bombardment. As oxides need high thin-film growth temperature, a sacrificial template needs to be made of thermally stable and easily etchable materials. To meet these requirements, we develop a sacrificial template with a carefully designed bilayer structure. Combining a thermally and chemically stable LaAlO3 and a water-soluble BaOx, we fabricated a LaAlO3/BaOx sacrificial bilayer. The patterned LaAlO3/BaOx sacrificial bilayers were prepared on oxide substrates by room-temperature pulsed laser deposition and standard photolithography process. The structure of the sacrificial bilayer can be maintained even in rather tough conditions needed for oxide thin film growth: several hundred degrees Celsius under high oxygen pressure. Indeed, the LaAlO3/BaOx bilayer is easily removable by sonication in water. We applied the lift-off method using the LaAlO3/BaOx sacrificial bilayer to a representative oxide conductor SrRuO3 and fabricated micron-scale Hall-bar devices. The SrRuO3 channels with the narrowest line width of 5 μm exhibit an almost identical transport property to that of the pristine film, evidencing that the developed process is beneficial for patterning oxides. We show that the LaAlO3/BaOx lift-off process is applicable to various oxide substrates: SrTiO3, MgO, and Al2O3. The new versatile patterning process will expand the range of application of oxide thin films in electronic and photonic devices.
Single cell isolation process with laser induced forward transfer.
Deng, Yu; Renaud, Philippe; Guo, Zhongning; Huang, Zhigang; Chen, Ying
2017-01-01
A viable single cell is crucial for studies of single cell biology. In this paper, laser-induced forward transfer (LIFT) was used to isolate individual cell with a closed chamber designed to avoid contamination and maintain humidity. Hela cells were used to study the impact of laser pulse energy, laser spot size, sacrificed layer thickness and working distance. The size distribution, number and proliferation ratio of separated cells were statistically evaluated. Glycerol was used to increase the viscosity of the medium and alginate were introduced to soften the landing process. The role of laser pulse energy, the spot size and the thickness of titanium in energy absorption in LIFT process was theoretically analyzed with Lambert-Beer and a thermal conductive model. After comprehensive analysis, mechanical damage was found to be the dominant factor affecting the size and proliferation ratio of the isolated cells. An orthogonal experiment was conducted, and the optimal conditions were determined as: laser pulse energy, 9 μJ; spot size, 60 μm; thickness of titanium, 12 nm; working distance, 700 μm;, glycerol, 2% and alginate depth, greater than 1 μm. With these conditions, along with continuous incubation, a single cell could be transferred by the LIFT with one shot, with limited effect on cell size and viability. LIFT conducted in a closed chamber under optimized condition is a promising method for reliably isolating single cells.
Chen, Lung-Chien; Lin, Wun-Wei; Liu, Te-Yu
2017-12-01
This study investigates the optoelectronic characteristics of gallium nitride (GaN)-based thin-film light-emitting diodes (TF-LEDs) that are formed by a two-step transfer process that involves wet etching and post-annealing. In the two-step transfer process, GaN LEDs were stripped from sapphire substrates by the laser lift-off (LLO) method using a KrF laser and then transferred onto ceramic substrates. Ga-K nanorods were formed on the surface of the GaN-based TF-LEDs following photo-assisted chemical etching and photo-enhanced post-annealing at 100 °C for 1 min. As a result, the light output power of GaN-based TF-LEDs with wet etching and post-annealing was over 72% more than that of LEDs that did not undergo these treatments.
Optically-free-standing InGaN microdisks with metallic reflectors
NASA Astrophysics Data System (ADS)
Zhang, Xuhui; To, Chap Hang; Choi, Hoi Wai
2017-01-01
The optical properties of free-standing thin-film microdisks with NiAg metallic reflectors are compared with those with an indium tin oxide (ITO) interfacial layer. The microdisks have been fabricated by a combination of microsphere lithography and laser lift-off processes. Optical-pumped lasing from the microdisk with NiAg reflector has been observed, with reduced threshold and higher quality factor compared those with ITO layers, attributed to improved optical confinement due to the reflectivity of the Ag coating. The results are supported by three-dimensional (3D) finite-difference-time-domain (FDTD) simulations.
Free-standing membrane polymer laser on the end of an optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Tianrui, E-mail: trzhai@bjut.edu.cn, E-mail: zhangxinping@bjut.edu.cn; Li, Songtao; Hu, Yujie
2016-01-25
One- and two-dimensional distributed feedback cavities were constructed on free-standing polymer membranes using spin-coating and lift-off techniques. Low threshold lasing was generated through feedback amplification when the 290-nm membrane device was optically pumped, which was attributed to the strong confinement mechanism provided by the active waveguide layer without a substrate. The free-standing membrane polymer laser is flexible and can be transplanted. Single- and dual-wavelength fiber lasers were achieved by directly attaching the membrane polymer laser on the optical fiber end face. This technique provides potential to fabricate polymer lasers on surfaces with arbitrary shapes.
LIFT Tenant Is Off and Running
NASA Technical Reports Server (NTRS)
Steele, Gynelle C.
2001-01-01
Lewis Incubator for Technology (LIFT) tenant, Analiza Inc., graduated from the incubator July 2000. Analiza develops technology and products for the early diagnosis of diseases, quality control of bio-pharmaceutical therapeutics, and other applications involving protein analyses. Technology links with NASA from existing and planned work are in areas of microfluidics and laser light scattering. Since their entry in LIFT in May, 1997, Analiza has: Received a $750,000 grant from the National Institutes of Health. Collaborated with a Nobel Prize winner on drug design. Collaborated with Bristol-Myers Squibb on the characterization of biological therapeutics. Added a Ph.D. senior scientist and several technicians. Received significant interest from major pharmaceutical companies about collaborating and acquiring Analiza technology.
Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan
2018-05-02
Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.
Thick adherent dielectric films on plastic substrates and method for depositing same
Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.
2002-01-01
Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.
2015-03-14
In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less
NASA Astrophysics Data System (ADS)
Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2016-12-01
Ultrashort pulse lasers have been increasingly gaining importance for the selective structuring of dielectric thin films in industrial applications. In a variety of works the ablation of thin SiO2 and SiNx films from Si substrates has been investigated with near infrared laser wavelengths with photon energies of about 1.2 eV where both dielectrics are transparent (E_{{gap,SiO2}}≈ 8 eV; E_{{gap,SiN}x}≈ 2.5 eV). In these works it was found that few 100 nm thick SiO2 films are selectively ablated with a "lift-off" initiated by confined laser ablation whereas the SiN_{{x}} films are ablated by a combination of confined and direct laser ablation. In the work at hand, ultrafast pump-probe imaging was applied to compare the laser ablation dynamics of the two thin film systems directly with the uncoated Si substrate—on the same setup and under identical parameters. On the SiO2 sample, results show the pulse absorption in the Si substrate, leading to the confined ablation of the SiO2 layer by the expansion of the substrate. On the SiN_{{x}} sample, direct absorption in the layer is observed leading to its removal by evaporation. The pump-probe measurements combined with reflectivity corrected threshold fluence investigations suggest that melting of the Si substrate is sufficient to initiate the lift-off of an overlaying transparent film—evaporation of the substrate seems not to be necessary.
NASA Technical Reports Server (NTRS)
Cabra, R.; Chen, J. Y.; Dibble, R. W.; Myhrvold, T.; Karpetis, A. N.; Barlow, R. S.
2002-01-01
An experiment and numerical investigation is presented of a lifted turbulent H2/N2 jet flame in a coflow of hot, vitiated gases. The vitiated coflow burner emulates the coupling of turbulent mixing and chemical kinetics exemplary of the reacting flow in the recirculation region of advanced combustors. It also simplifies numerical investigation of this coupled problem by removing the complexity of recirculating flow. Scalar measurements are reported for a lifted turbulent jet flame of H2/N2 (Re = 23,600, H/d = 10) in a coflow of hot combustion products from a lean H2/Air flame ((empty set) = 0.25, T = 1,045 K). The combination of Rayleigh scattering, Raman scattering, and laser-induced fluorescence is used to obtain simultaneous measurements of temperature and concentrations of the major species, OH, and NO. The data attest to the success of the experimental design in providing a uniform vitiated coflow throughout the entire test region. Two combustion models (PDF: joint scalar Probability Density Function and EDC: Eddy Dissipation Concept) are used in conjunction with various turbulence models to predict the lift-off height (H(sub PDF)/d = 7,H(sub EDC)/d = 8.5). Kalghatgi's classic phenomenological theory, which is based on scaling arguments, yields a reasonably accurate prediction (H(sub K)/d = 11.4) of the lift-off height for the present flame. The vitiated coflow admits the possibility of auto-ignition of mixed fluid, and the success of the present parabolic implementation of the PDF model in predicting a stable lifted flame is attributable to such ignition. The measurements indicate a thickened turbulent reaction zone at the flame base. Experimental results and numerical investigations support the plausibility of turbulent premixed flame propagation by small scale (on the order of the flame thickness) recirculation and mixing of hot products into reactants and subsequent rapid ignition of the mixture.
NASA Astrophysics Data System (ADS)
Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.
2013-01-01
Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.
Laser-induced Forward Transfer of Ag Nanopaste.
Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto
2016-03-31
Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.
Laser-induced Forward Transfer of Ag Nanopaste
Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto
2016-01-01
Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645
Fuel effects on flame lift-off under diesel conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, Helena; Andersson, Oeivind; Egnell, Rolf
An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlationmore » with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)« less
Germanium Lift-Off Masks for Thin Metal Film Patterning
NASA Technical Reports Server (NTRS)
Brown, Ari
2012-01-01
A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.
Möller, Jens; Lühmann, Tessa; Chabria, Mamta; Hall, Heike; Vogel, Viola
2013-10-07
To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis.
Möller, Jens; Lühmann, Tessa; Chabria, Mamta; Hall, Heike; Vogel, Viola
2013-01-01
To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis. PMID:24097079
Laser-induced forward transfer of single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T.
2014-10-01
The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.
NASA Astrophysics Data System (ADS)
Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey
2010-10-01
The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.
A 10-GHz amplifier using an epitaxial lift-off pseudomorphic HEMT device
NASA Technical Reports Server (NTRS)
Young, Paul G.; Romanofsky, Robert R.; Alterovitz, Samuel A.; Mena, Rafael A.; Smith, Edwyn D.
1993-01-01
A process to integrate epitaxial lift-off devices and microstrip circuits has been demonstrated using a pseudomorphic HEMT on an alumina substrate. The circuit was a 10 GHz amplifier with the interconnection between the device and the microstrip circuit being made with photolithographically patterned metal. The measured and modeled response correlated extremely well with a maximum gain of 6.8 dB and a return loss of -14 dB at 10.4 GHz.
Direct-writing lithography using laser diode beam focused with single elliptical microlens
NASA Astrophysics Data System (ADS)
Hasan, Md. Nazmul; Haque, Muttahid-Ull; Trisno, Jonathan; Lee, Yung-Chun
2015-10-01
A lithography method is proposed for arbitrary patterning using an elliptically diverging laser diode beam focused with a single planoconvex elliptical microlens. Simulations are performed to model the propagation properties of the laser beam and to design the elliptical microlens, which has two different profiles in the x- and y-axis directions. The microlens is fabricated using an excimer laser dragging method and is then attached to the laser diode using double-sided optically cleared adhesive (OCA) tape. Notably, the use of OCA tape removes the need for a complicated alignment procedure and thus significantly reduces the assembly cost. The minimum focused spot of the laser diode beam is investigated by performing single-shot exposure tests on a photoresist (PR) layer. Finally, the practical feasibility of this lithography technique to generate an arbitrary pattern is demonstrated by dotted and continuous features through thin chromium layer deposition on PR and a metal lift-off process. The results show that the minimum feature size for the dotted patterns is around 6.23 μm, while the minimum linewidths for continuous patterns is 6.44 μm. In other words, the proposed focusing technique has significant potential for writing any arbitrary high-resolution pattern for applications like printed circuit board fabrication.
Applications of laser printing for organic electronics
NASA Astrophysics Data System (ADS)
Delaporte, Ph.; Ainsebaa, A.; Alloncle, A.-P.; Benetti, M.; Boutopoulos, C.; Cannata, D.; Di Pietrantonio, F.; Dinca, V.; Dinescu, M.; Dutroncy, J.; Eason, R.; Feinaugle, M.; Fernández-Pradas, J.-M.; Grisel, A.; Kaur, K.; Lehmann, U.; Lippert, T.; Loussert, C.; Makrygianni, M.; Manfredonia, I.; Mattle, T.; Morenza, J.-L.; Nagel, M.; Nüesch, F.; Palla-Papavlu, A.; Rapp, L.; Rizvi, N.; Rodio, G.; Sanaur, S.; Serra, P.; Shaw-Stewart, J.; Sones, C. L.; Verona, E.; Zergioti, I.
2013-03-01
The development of organic electronic requires a non contact digital printing process. The European funded e-LIFT project investigated the possibility of using the Laser Induced Forward Transfer (LIFT) technique to address this field of applications. This process has been optimized for the deposition of functional organic and inorganic materials in liquid and solid phase, and a set of polymer dynamic release layer (DRL) has been developed to allow a safe transfer of a large range of thin films. Then, some specific applications related to the development of heterogeneous integration in organic electronics have been addressed. We demonstrated the ability of LIFT process to print thin film of organic semiconductor and to realize Organic Thin Film Transistors (OTFT) with mobilities as high as 4 10-2 cm2.V-1.s-1 and Ion/Ioff ratio of 2.8 105. Polymer Light Emitting Diodes (PLED) have been laser printed by transferring in a single step process a stack of thin films, leading to the fabrication of red, blue green PLEDs with luminance ranging from 145 cd.m-2 to 540 cd.m-2. Then, chemical sensors and biosensors have been fabricated by printing polymers and proteins on Surface Acoustic Wave (SAW) devices. The ability of LIFT to transfer several sensing elements on a same device with high resolution allows improving the selectivity of these sensors and biosensors. Gas sensors based on the deposition of semiconducting oxide (SnO2) and biosensors for the detection of herbicides relying on the printing of proteins have also been realized and their performances overcome those of commercial devices. At last, we successfully laser-printed thermoelectric materials and realized microgenerators for energy harvesting applications.
Deng, Yu; Huang, Zhigang; Wang, Wenbing; Chen, Yinghuai; Guo, Zhongning; Chen, Ying
2017-01-01
Aiming to improve the laser-induced forward transfer (LIFT) cell isolation process, a polydimethylsiloxane (PDMS) layer with micro-hole arrays was employed to improve the cell separation precision, and a microchip with heater was developed to maintain the working area at 100% humidity and 37°C with the purpose to preserve the viability of the isolated cells. A series of experiments were conducted to verify the contributions of the optimization to LIFT cell isolation process as well as to study the effect of laser pulse energy, laser spot size and the titanium thickness on cell isolation. With 40µm laser spot size and 40nm thick of titanium, laser energy threshold for 100% single cell isolating succeed ratio is 7µJ. According to the staining images and proliferation ratios, the chip did help to improve the cell availability and the cells can recover from the juries at least a day earlier comparing to the samples processed without the chip. With a Lattice Boltzmann model, the cell isolation process is numerically studied and it turns out that the micro-hole makes the isolation process shift to a micro-syringe injection model leading to the lower laser energy threshold for cell separation and fewer injuries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Space Shuttle Systems Engineering Processes for Liftoff Debris Risk Mitigation
NASA Technical Reports Server (NTRS)
Mitchell, Michael; Riley, Christopher
2011-01-01
This slide presentation reviews the systems engineering process designed to reduce the risk from debris during Space Shuttle Launching. This process begins the day of launch from the tanking to the vehicle tower clearance. Other debris risks (i.e., Ascent, and micrometeoroid orbital debit) are mentioned) but are not the subject of this presentation. The Liftoff debris systems engineering process and an example of how it works are reviewed (i.e.,STS-119 revealed a bolt liberation trend on the Fixed Service Structure (FSS) 275 level elevator room). The process includes preparation of a Certification of Flight Readiness (CoFR) that includes (1) Lift-off debris from previous mission dispositioned, (2) Flight acceptance rationale has been provided for Lift-off debris sources/causes (3) Lift-off debris mission support documentation, processes and tools are in place for the up-coming mission. The process includes a liftoff debris data collection that occurs after each launch. This includes a post launch walkdown, that records each liftoff debris, and the entry of the debris into a database, it also includes a review of the imagery from the launch, and a review of the instrumentation data. There is also a review of the debris transport analysis process, that includes temporal and spatial framework and a computational fluid dynamics (CFD) analysis. which incorporates a debris transport analyses (DTA), debris materials and impact tests, and impact analyses.
Kerfless epitaxial silicon wafers with 7 ms carrier lifetimes and a wide lift-off process window
NASA Astrophysics Data System (ADS)
Gemmel, Catherin; Hensen, Jan; David, Lasse; Kajari-Schröder, Sarah; Brendel, Rolf
2018-04-01
Silicon wafers contribute significantly to the photovoltaic module cost. Kerfless silicon wafers that grow epitaxially on porous silicon (PSI) and are subsequently detached from the growth substrate are a promising lower cost drop-in replacement for standard Czochralski (Cz) wafers. However, a wide technological processing window appears to be a challenge for this process. This holds in particularly for the etching current density of the separation layer that leads to lift-off failures if it is too large or too low. Here we present kerfless PSI wafers of high electronic quality that we fabricate on weakly reorganized porous Si with etch current densities varying in a wide process window from 110 to 150 mA/cm2. We are able to detach all 17 out of 17 epitaxial wafers. All wafers exhibit charge carrier lifetimes in the range of 1.9 to 4.3 ms at an injection level of 1015 cm-3 without additional high-temperature treatment. We find even higher lifetimes in the range of 4.6 to 7.0 ms after applying phosphorous gettering. These results indicate that a weak reorganization of the porous layer can be beneficial for a large lift-off process window while still allowing for high carrier lifetimes.
49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?
Code of Federal Regulations, 2011 CFR
2011-10-01
... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...
49 CFR 393.134 - What are the rules for securing roll-on/roll-off or hook lift containers?
Code of Federal Regulations, 2010 CFR
2010-10-01
... or hook lift containers? 393.134 Section 393.134 Transportation Other Regulations Relating to... for securing roll-on/roll-off or hook lift containers? (a) Applicability. The rules in this section apply to the transportation of roll-on/roll-off or hook lift containers. (b) Securement of a roll-on...
Laser-induced forward transfer for flip-chip packaging of single dies.
Kaur, Kamal S; Van Steenberge, Geert
2015-03-20
Flip-chip (FC) packaging is a key technology for realizing high performance, ultra-miniaturized and high-density circuits in the micro-electronics industry. In this technique the chip and/or the substrate is bumped and the two are bonded via these conductive bumps. Many bumping techniques have been developed and intensively investigated since the introduction of the FC technology in 1960(1) such as stencil printing, stud bumping, evaporation and electroless/electroplating2. Despite the progress that these methods have made they all suffer from one or more than one drawbacks that need to be addressed such as cost, complex processing steps, high processing temperatures, manufacturing time and most importantly the lack of flexibility. In this paper, we demonstrate a simple and cost-effective laser-based bump forming technique known as Laser-induced Forward Transfer (LIFT)3. Using the LIFT technique a wide range of bump materials can be printed in a single-step with great flexibility, high speed and accuracy at RT. In addition, LIFT enables the bumping and bonding down to chip-scale, which is critical for fabricating ultra-miniature circuitry.
Kuriyama, Shinichi; Ishikawa, Masahiro; Nakamura, Shinichiro; Furu, Moritoshi; Ito, Hiromu; Matsuda, Shuichi
2016-08-01
Condylar lift-off can induce excessive polyethylene wear after total knee arthroplasty (TKA). A computer simulation was used to evaluate the influence of femoral varus alignment and lateral collateral ligament (LCL) laxity on lift-off after single-design TKA. It was hypothesised that proper ligament balancing and coronal alignment would prevent lift-off. The computer model in this study is a dynamic musculoskeletal program that simulates gait up to 60° of knee flexion. The lift-off phenomenon was defined as positive with an intercomponent distance of >2 mm. In neutrally aligned components in the coronal plane, the femoral and tibial components were set perpendicular to the femoral and tibial mechanical axis, respectively. The femoral coronal alignment was changed from neutral to 5° varus in 1° increments. Simultaneously, the LCL length was elongated from 0 to 5 mm in 1-mm increments to provide a model of pathological slack. Within 2° of femoral varus alignment, lift-off did not occur even if the LCL was elongated by up to 5 mm. However, lift-off occurred easily in the stance phase in femoral varus alignments of >3° with slight LCL slack. The contact forces of the tibiofemoral joint were influenced more by femoral varus alignment than by LCL laxity. Aiming for neutral alignment in severely varus knees makes it difficult to achieve appropriate ligament balance. Our study suggests that no lift-off occurs with excessive LCL laxity alone in a neutrally aligned TKA and therefore that varus alignment should be avoided to decrease lift-off after TKA. Case series, Level IV.
NASA Astrophysics Data System (ADS)
Seredyński, B.; Król, M.; Starzyk, P.; Mirek, R.; Ściesiek, M.; Sobczak, K.; Borysiuk, J.; Stephan, D.; Rousset, J.-G.; Szczytko, J.; Pietka, B.; Pacuski, W.
2018-04-01
Opaque substrates precluded, so far, transmission studies of II-VI semiconductor microcavities. This work presents the design and molecular beam epitaxy growth of semimagnetic (Cd,Zn,Mn)Te quantum wells embedded into a (Cd,Zn,Mg)Te-based microcavity, which can be easily separated from the GaAs substrate. Our lift-off process relies on the use of a MgTe sacrificial layer which stratifies in contact with water. This allowed us to achieve a II-VI microcavity prepared for transmission measurements. We evidence the strong light-matter coupling regime using photoluminescence, reflectivity, and transmission measurements at the same spot on the sample. By comparing a series of reflectance spectra before and after lift-off, we prove that the microcavity quality remains high. Thanks to Mn content in quantum wells we show the giant Zeeman splitting of semimagnetic exciton-polaritons in our transmitting structure.
NASA Astrophysics Data System (ADS)
Zhao, J. K.; Xu, X. S.
2017-11-01
The cutting off column and jacking technology is a method for increasing story height, which has been widely used and paid much attention in engineering. The stiffness will be changed after the process of cutting off column and jacking, which directly affects the overall seismic performance. It is usually necessary to take seismic strengthening measures to enhance the stiffness. A five story frame structure jacking project in Jinan High-tech Zone was taken as an example, and three finite element models were established which contains the frame model before lifting, after lifting and after strengthening. Based on the stiffness, the dynamic time-history analysis was carried out to research its seismic performance under the EL-Centro seismic wave, the Taft seismic wave and the Tianjin artificial seismic wave. The research can provide some guidance for the design and construction of the entire jack lifting structure.
Method and apparatus for off-gas composition sensing
Ottesen, David Keith; Allendorf, Sarah Williams; Hubbard, Gary Lee; Rosenberg, David Ezechiel
1999-01-01
An apparatus and method for non-intrusive collection of off-gas data in a steelmaking furnace includes structure and steps for transmitting a laser beam through the off-gas produced by a steelmaking furnace, for controlling the transmitting to repeatedly scan the laser beam through a plurality of wavelengths in its tuning range, and for detecting the laser beam transmitted through the off-gas and converting the detected laser beam to an electrical signal. The electrical signal is processed to determine characteristics of the off-gas that are used to analyze and/or control the steelmaking process.
Time-resolved second-harmonic generation from gold nanoparticle arrays
NASA Astrophysics Data System (ADS)
Ferrara, D. W.; Tetz, K. A.; McMahon, M. D.; Haglund, R. F., Jr.
2007-09-01
We have studied the effects of planar inversion symmetry and particle-coupling of gold nanoparticle (NP) arrays by angle dependent second-harmonic generation (SHG). Time- and angle- resolved measurements were made using a mode-locked Ti:sapphire 800 nm laser onto gold NP arrays with plasmon resonance tuned to match the laser wavelength in order to produce maximum SHG signal. Finite-difference time domain simulations are used to model the near-field distributions for the various geometries and compared to experiment. The arrays were fabricated by focused ion-beam lithography and metal vapor deposition followed by standard lift-off protocols, producing NPs approximately 20nm high with various in-plane dimensions and interparticle gaps. Above a threshold fluence of ~ 7.3 × 10 -5 mJ/cm2 we find that the SHG scales with the third power of intensity, rather than the second, and atomic-force microscopy shows that the NPs have undergone a reshaping process leading to more nearly spherical shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, S; Longman, D. E.; Luo, Z
2012-01-01
Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well asmore » Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.« less
Li, Wei; Wang, Hongbo; Feng, Zhihua
2016-04-01
This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation.
Development of a technology for fabricating low-cost parallel optical interconnects
NASA Astrophysics Data System (ADS)
Van Steenberge, Geert; Hendrickx, Nina; Geerinck, Peter; Bosman, Erwin; Van Put, Steven; Van Daele, Peter
2006-04-01
We present a fabrication technology for integrating polymer waveguides and 45° micromirror couplers into standard electrical printed circuit boards (PCBs). The most critical point that is being addressed is the low-cost manufacturing and the compatibility with current PCB production. The latter refers to the processes as well as material compatibility. In the fist part the waveguide fabrication technology is discussed, both photo lithography and laser ablation are proposed. It is shown that a frequency tripled Nd-YAG laser (355 nm) offers a lot of potential for defining single mode interconnections. Emphasis is on multimode waveguides, defined by KrF excimer laser (248 nm) ablation using acrylate polymers. The first conclusion out of loss spectrum measurements is a 'yellowing effect' of laser ablated waveguides, leading to an increased loss at shorter wavelengths. The second important conclusion is a potential low loss at a wavelength of 850 nm, 980 nm and 1310 nm. This is verified at 850 nm by cut-back measurements on 10-cm-long waveguides showing an average propagation loss of 0.13 dB/cm. Photo lithographically defined waveguides using inorganic-organic hybrid polymers show an attenuation loss of 0.15 dB/cm at 850 nm. The generation of debris and the presence of microstructures are two main concerns for KrF excimer laser ablation of hybrid polymers. In the second part a process for embedding metal coated 45° micromirrors in optical waveguiding layers is described. Mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Initial loss measurements indicate an excess mirror loss of 1.5 dB.
Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter
2007-01-01
This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.
Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4
NASA Astrophysics Data System (ADS)
Qi, S. L.; Chen, Z. Z.; Fang, H.; Sun, Y. J.; Sang, L. W.; Yang, X. L.; Zhao, L. B.; Tian, P. F.; Deng, J. J.; Tao, Y. B.; Yu, T. J.; Qin, Z. X.; Zhang, G. Y.
2009-08-01
Hot phosphor acid (H3PO4) etching is presented to form a roughened surface with dodecagonal pyramids on laser lift-off N face GaN grown by metalorganic chemical vapor deposition. A detailed analysis of time evolution of surface morphology is described as a function of etching temperature. The activation energy of the H3PO4 etching process is 1.25 eV, indicating the process is reaction-limited scheme. And it is found that the oblique angle between the facets and the base plane increases as the temperature increases. Thermodynamics and kinetics related factors of the formation mechanism of the dodecagonal pyramid are also discussed. The light output power of a vertical injection light-emitting-diode (LED) with proper roughened surface shows about 2.5 fold increase compared with that of LED without roughened surface.
Single step high-speed printing of continuous silver lines by laser-induced forward transfer
NASA Astrophysics Data System (ADS)
Puerto, D.; Biver, E.; Alloncle, A.-P.; Delaporte, Ph.
2016-06-01
The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.
ERIC Educational Resources Information Center
Higgins, Edel; Fitzgerald, Johanna; Howard, Siobhán
2015-01-01
Worldwide, considerable emphasis is currently being placed on the provision of appropriate classroom-based preventative interventions and in-class literacy support, in preference to withdrawal methods of educational support. Many schools in Ireland are currently implementing Literacy Lift-Off in their classrooms. Literacy Lift-Off is an adaption…
Park, Jaewon; Kim, Hyun Soo; Han, Arum
2009-01-01
A poly(dimethylsiloxane) (PDMS) patterning method based on a photoresist lift-off technique to make an electrical insulation layer with selective openings is presented. The method enables creating PDMS patterns with small features and various thicknesses without any limitation in the designs and without the need for complicated processes or expensive equipments. Patterned PDMS layers were created by spin-coating liquid phase PDMS on top of a substrate having sacrificial photoresist patterns, followed by a photoresist lift-off process. The thickness of the patterned PDMS layers could be accurately controlled (6.5–24 µm) by adjusting processing parameters such as PDMS spin-coating speeds, PDMS dilution ratios, and sacrificial photoresist thicknesses. PDMS features as small as 15 µm were successfully patterned and the effects of each processing parameter on the final patterns were investigated. Electrical resistance tests between adjacent electrodes with and without the insulation layer showed that the patterned PDMS layer functions properly as an electrical insulation layer. Biocompatibility of the patterned PDMS layer was confirmed by culturing primary neuron cells on top of the layer for up to two weeks. An extensive neuronal network was successfully formed, showing that this PDMS patterning method can be applied to various biosensing microdevices. The utility of this fabrication method was further demonstrated by successfully creating a patterned electrical insulation layer on flexible substrates containing multi-electrode arrays. PMID:19946385
Study of the laser-induced forward transfer of liquids for laser bioprinting
NASA Astrophysics Data System (ADS)
Duocastella, M.; Colina, M.; Fernández-Pradas, J. M.; Serra, P.; Morenza, J. L.
2007-07-01
Laser-induced forward transfer (LIFT) is a direct-writing technique that allows printing patterns of diverse materials with a high degree of spatial resolution. In conventional LIFT a small fraction of a solid thin film is vaporized by means of a laser pulse focused on the film through its transparent holder, and the resulting material recondenses on the receptor substrate. It has been recently shown that LIFT can also be used to transfer materials from liquid films. This widened its field of application to biosensors manufacturing, where small amounts of biomolecules-containing solutions have to be deposited with high precision on the sensing elements. However, there is still little knowledge on the physical processes and parameters determining the characteristics of the transfers. In this work, different parameters and their effects upon the transferred material were studied. It was found that the deposited material corresponds to liquid droplets which volume depends linearly on the laser pulse energy, and that a minimum threshold energy has to be overcome for transfer to occur. The liquid film thickness was varied and droplets as small as 10 μm in diameter were obtained. Finally, the effects of the variation of the film to substrate distance were also studied and it was found that there exists a wide range of distances where the morphology of the transferred droplets is independent of this parameter, what provides LIFT with a high degree of flexibility.
NASA Technical Reports Server (NTRS)
Strutzenberg, L. L.; Dougherty, N. S.; Liever, P. A.; West, J. S.; Smith, S. D.
2007-01-01
This paper details advances being made in the development of Reynolds-Averaged Navier-Stokes numerical simulation tools, models, and methods for the integrated Space Shuttle Vehicle at launch. The conceptual model and modeling approach described includes the development of multiple computational models to appropriately analyze the potential debris transport for critical debris sources at Lift-Off. The conceptual model described herein involves the integration of propulsion analysis for the nozzle/plume flow with the overall 3D vehicle flowfield at Lift-Off. Debris Transport Analyses are being performed using the Shuttle Lift-Off models to assess the risk to the vehicle from Lift-Off debris and appropriately prioritized mitigation of potential debris sources to continue to reduce vehicle risk. These integrated simulations are being used to evaluate plume-induced debris environments where the multi-plume interactions with the launch facility can potentially accelerate debris particles toward the vehicle.
Spalling of a Thin Si Layer by Electrodeposit-Assisted Stripping
NASA Astrophysics Data System (ADS)
Kwon, Youngim; Yang, Changyol; Yoon, Sang-Hwa; Um, Han-Don; Lee, Jung-Ho; Yoo, Bongyoung
2013-11-01
A major goal in solar cell research is to reduce the cost of the final module. Reducing the thickness of the crystalline silicon substrate to several tens of micrometers can reduce material costs. In this work, we describe the electrodeposition of a Ni-P alloy, which induces high stress in the silicon substrate at room temperature. The induced stress enables lift-off of the thin-film silicon substrate. After lift-off of the thin Si film, the mother substrate can be reused, reducing material costs. Moreover, the low-temperature process expected to be improved Si substrate quality.
NASA Technical Reports Server (NTRS)
Elrod, David A.
1989-01-01
The Space Shuttle main engine (SSME) alternate turbopump development program (ATD) high pressure fuel turbopump (HPFTP) design utilizes an innovative lift-off seal (LOS) design that is located in close proximity to the turbine end bearing. Cooling flow exiting the bearing passes through the lift-off seal during steady state operation. The potential for fluid excitation of lift-off seal structural resonances is investigated. No fluid excitation of LOS resonances is predicted. However, if predicted LOS natural frequencies are significantly lowered by the presence of the coolant, pressure oscillations caused by synchronous whirl of the HPFTP rotor may excite a resonance.
Laser-induced forward transfer for printed electronics applications
NASA Astrophysics Data System (ADS)
Fernández-Pradas, J. M.; Sopeña, P.; González-Torres, S.; Arrese, J.; Cirera, A.; Serra, P.
2018-02-01
Laser-induced forward transfer (LIFT) is a printing technique based on the action of a laser pulse that is focused on a thin film of a precursor ink for getting the transfer of a droplet onto a receiver substrate. The experiments presented in this article aim to demonstrate the ability of LIFT to produce electronic circuits on paper, a substrate that is flexible, cheap and recyclable. Tests were conducted to study the printing of conductive tracks with an Ag ink. The printing of a suspension of carbon nanofibers was also studied to demonstrate the ability of LIFT for printing inks with particles with some microns in size that provoke inkjet nozzles to clog. As a proof-of-concept of the LIFT possibilities, both inks were used to print entirely by LIFT a functional humidity sensor on a piece of paper. All the LIFT experiments were performed with a Nd:YAG laser that delivers pulses of a few hundreds of ns in an attempt to approach the technique to laser systems that are already introduced in many production lines for marking and labeling.
Effect of marking pens on femtosecond laser-assisted flap creation.
Ide, Takeshi; Kymionis, George D; Abbey, Ashkan M; Yoo, Sonia H; Culbertson, William W; O'Brien, Terrence P
2009-06-01
To compare the ease of the flap lift after central corneal marking with 2 types of marking pens after femtosecond laser-assisted flap creation in laser in situ keratomileusis. Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. Porcine eyes were prepared for flap creation with a femtosecond laser (IntraLase). The eyes were assigned to 1 of 4 groups. After the femtosecond laser treatment, the difficulty of flap lifting the 4 groups was compared. Twelve porcine eyes, 3 in each group, were evaluated. In the 2 groups in which an oil-based pen was used, the corneal flap could not be lifted. In the 2 groups in which a water-based pen was used, the corneal flap was easily lifted. Oil-based ink may reduce the ability of the femtosecond laser to penetrate the cornea. The resultant corneal flap may require aggressive manipulation to be lifted. When used to mark the center of the cornea before flap creation, water-based ink provided greater ease of corneal flap lifting than oil-based ink. Because the marking is located over the center of the pupil, any alteration of the cornea in this area from aggressive flap lifting may result in substantial visual loss. Therefore, the use of an oil-based ink to mark the central cornea must be avoided to prevent traumatic irregularities of the flap stroma.
Spatially modulated laser pulses for printing electronics.
Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto
2015-11-01
The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.
Influence of solution properties in the laser forward transfer of liquids
NASA Astrophysics Data System (ADS)
Dinca, V.; Patrascioiu, A.; Fernández-Pradas, J. M.; Morenza, J. L.; Serra, P.
2012-09-01
The influence of the viscosity of the printed solution on the laser-induced forward transfer (LIFT) of liquids is investigated. A set of water and glycerol mixtures with different glycerol content are prepared with the aim of having a collection of solutions covering a wide range of viscosities, from 1.9 to 850 mPa s. Arrays of micrometric droplets of those solutions are spotted through LIFT and characterized by means of optical microscopy, revealing that for all the analyzed solutions there always exists a range of laser fluences leading to the formation of regular circular droplets, with that range increasing and widening with viscosity. The dynamics of liquid ejection is investigated through time-resolved imaging with the aim of understanding the role of viscosity in the process, and its influence on the morphology of the deposited droplets. The acquired stop-action movies reveal that liquid transfer proceeds mainly through jetting, with the exception of LIFT at low viscosities and high laser fluences, in which bursting develops. From this study it is concluded that viscosity plays an important role in the stabilization of liquid ejection and transport, which contributes to the uniformity of the deposited droplets.
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
NASA Astrophysics Data System (ADS)
Konishi, Satoshi; Nakagami, Chise; Kobayashi, Taizo; Tonomura, Wataru; Kaizuma, Yoshihiro
2015-04-01
In this work, a lift-off process with bi-layer photoresist patterns was applied to the formation of hydrophobic/hydrophilic micropatterns on practical polymer substrates used in healthcare diagnostic commercial products. The bi-layer photoresist patterns with undercut structures made it possible to peel the conformal-coated silicon oxide (SiOx) films from substrates. SiOx and silicon carbide (SiCx) layers were deposited by pulsed plasma chemical vapor deposition (PPCVD) method which can form roughened surfaces to enhance hydrophilicity of SiOx and hydrophobicity of SiCx. Microfluidic applications using hydrophobic/hydrophilic patterns were also demonstrated on low-cost substrates such as poly(ethylene terephthalate) (PET) and paper films.
NASA Astrophysics Data System (ADS)
Dinca, V.; Mattle, T.; Palla Papavlu, A.; Rusen, L.; Luculescu, C.; Lippert, T.; Dinescu, M.
2013-08-01
The use of LIFT (Laser Induced Forward Transfer) for localized and high spatial resolution printing of many types of functional organic and inorganic, biological or synthetic materials onto substrates is an effective method in various domains (electronics, sensors, and surface biofunctionalization). Although extensive research has been dedicated to the LIFT process in the last years, there is an increasing interest for combining the advantages of this technique with specific materials characteristics for obtaining localized structures or for creating physical guidance structures that could be used as biological scaffolds. Within this context, we aim to study a new aspect related to combining the advantages of Dynamic Release Layer assisted LIFT (DRL-LIFT) with a soft substrate (i.e. Thermanox) for obtaining surface functionalization with micro and nano "porous" polymeric structures. The structures obtained with different topographical properties were evaluated by scanning electron microscopy, atomic force microscopy, optical and fluorescence microscopy. Subsequently, the structures were used as a base for cellular behavior study platforms. Preliminary in vitro tests involving two types of cells, fibroblast and oligodendrocytes, were performed on these LIFT printed platforms.
RF Properties of Epitaxial Lift-Off HEMT Devices
NASA Technical Reports Server (NTRS)
Young, Paul G.; Alterovitz, Samuel A.; Mena, Rafael A.; Smith, Edwyn D.
1993-01-01
Epitaxial layers containing GaAs HEMT and P-HEMT structures have been lifted-off the GaAs substrate and attached to other host substrates using an AlAs parting layer. The devices were on-wafer RF probed before and after the lift-off step showing no degradation in the measured S-parameters. The maximum stable gain indicates a low frequency enhancement of the gain of 1-2 dB with some devices showing an enhancement of F(sub max)F(sub T) consistently shows an increase of 12-20% for all lifted-off HEMT structures. Comparison of the Hall measurements and small signal models show that the gain is improved and this is most probably associated with an enhanced carrier concentration.
Microlens fabrication by replica molding of frozen laser-printed droplets
NASA Astrophysics Data System (ADS)
Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí
2017-10-01
In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.
NASA Technical Reports Server (NTRS)
Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew
2006-01-01
This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.
Laser printing of 3D metallic interconnects
NASA Astrophysics Data System (ADS)
Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto
2016-04-01
The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.
Fabrication and analysis of radiofrequency MEMS series capacitive single-pole double-throw switch
NASA Astrophysics Data System (ADS)
Bansal, Deepak; Bajpai, Anuroop; Kumar, Prem; Kaur, Maninder; Rangra, Kamaljit
2016-10-01
A compact radiofrequency (RF) MEMS single-pole double-throw (SPDT) switch based on series capacitive configuration is proposed. The critical process parameters are analyzed to improve the fabrication process. A technique of cold-hot thermal shock for lift-off method is explored. The residual stress in the structure is quantified by lancet test structures that come out to be 51 MPa. Effect of residual stress on actuation voltage is explored, which changes its value from 24 to 22 V. Resonance frequency and switching speed of the switch are 11 kHz and 44 μs, respectively, measured using laser Doppler vibrometer. Measured bandwidth of the SPDT switch is 20 GHz (5 to 25 GHz), which is verified with finite element method simulations in high frequency structure simulator©; and an equivalent LCR circuit in advanced design system©;. Insertion loss of the switch lies in -0.1 to -0.5 dB with isolation better than -20 dB for the above-mentioned bandwidth.
Ferrocene pixels by laser-induced forward transfer: towards flexible microelectrode printing
NASA Astrophysics Data System (ADS)
Mitu, B.; Matei, A.; Filipescu, M.; Palla Papavlu, A.; Bercea, A.; Lippert, T.; Dinescu, M.
2017-03-01
The aim of this work is to demonstrate the potential of laser-induced forward transfer (LIFT) as a printing technology, alternative to standard microfabrication techniques, in the area of flexible micro-electrode fabrication. First, ferrocene thin films are deposited onto fused silica and fused silica substrates previously coated with a photodegradable polymer film (triazene polymer) by matrix assisted pulsed laser evaporation (MAPLE). The morphology and chemical structure of the ferrocene thin films deposited by MAPLE has been investigated by atomic force microscopy and Fourier transformed infrared spectroscopy, and no structural damage occurs as a result of the laser deposition. Second, LIFT is applied to print for the first time ferrocene pixels and lines onto flexible polydimethylsiloxane (PDMS) substrates. The ferrocene pixels and lines are flawlessly transferred onto the PDMS substrates in air at room temperature, without the need of additional conventional photolithography processes. We believe that these results are very promising for a variety of applications ranging from flexible electronics to lab-on-a-chip devices, MEMS, and medical implants.
Growth and characterization of PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers on Si (100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachar, H.K.; Chao, I.; Fang, X.M.
1998-12-31
Crack-free layers of PbSe were grown on Si (100) by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. The PbSe layer was grown by LPE on Si(100) using a MBE-grown PbSe/BaF{sub 2}/CaF{sub 2} buffer layer structure. Pb{sub 1{minus}x}Sn{sub x}Se layers with tin contents in the liquid growth solution equal to 3%, 5%, 6%, 7%, and 10%, respectively, were also grown by LPE on Si(100) substrates using similar buffer layer structures. The LPE-grown PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers were characterized by optical Nomarski microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electronmore » microscopy (SEM). Optical Nomarski characterization of the layers revealed their excellent surface morphologies and good growth solution wipe-offs. FTIR transmission experiments showed that the absorption edge of the Pb{sub 1{minus}x}Sn{sub x}Se layers shifted to lower energies with increasing tin contents. The PbSe epilayers were also lifted-off from the Si substrate by dissolving the MBE-grown BaF{sub 2} buffer layer. SEM micrographs of the cleaved edges revealed that the lifted-off layers formed structures suitable for laser fabrication.« less
14 CFR 417.207 - Trajectory analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... after lift-off, the limits of a launch vehicle's normal flight, as defined by the nominal trajectory and... straight-up trajectory for any time after lift-off until the straight-up time that would result if the...
14 CFR 417.207 - Trajectory analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... after lift-off, the limits of a launch vehicle's normal flight, as defined by the nominal trajectory and... straight-up trajectory for any time after lift-off until the straight-up time that would result if the...
NASA Astrophysics Data System (ADS)
Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki
2007-02-01
We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.
NASA Astrophysics Data System (ADS)
Shaw-Stewart, James; Mattle, Thomas; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander
2013-08-01
Laser-induced forward transfer (LIFT) has already been used to fabricate various types of organic light-emitting diodes (OLEDs), and the process itself has been optimised and refined considerably since OLED pixels were first demonstrated. In particular, a dynamic release layer (DRL) of triazene polymer has been used, the environmental pressure has been reduced down to a medium vacuum, and the donor receiver gap has been controlled with the use of spacers. Insight into the LIFT process's effect upon OLED pixel performance is presented here, obtained through optimisation of three-colour polyfluorene-based OLEDs. A marked dependence of the pixel morphology quality on the cathode metal is observed, and the laser transfer fluence dependence is also analysed. The pixel device performances are compared to conventionally fabricated devices, and cathode effects have been looked at in detail. The silver cathode pixels show more heterogeneous pixel morphologies, and a correspondingly poorer efficiency characteristics. The aluminium cathode pixels have greater green electroluminescent emission than both the silver cathode pixels and the conventionally fabricated aluminium devices, and the green emission has a fluence dependence for silver cathode pixels.
Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu
2012-09-01
The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.
Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.
Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song
2015-09-01
Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.
Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...
2014-05-28
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senecal, P. K.; Pomraning, E.; Anders, J. W.
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
Ginn, Karen A; Reed, Darren; Jones, Chelsea; Downes, Anthony; Cathers, Ian; Halaki, Mark
2017-06-01
Although the belly press and lift off tests are recommended to assess subscapularis function, shoulder internal rotation (IR) exercises performed in other shoulder positions are more commonly used to restore subscapularis function. It is not known if shoulder IR exercises specifically activate subscapularis to the same degree as the lift off and belly press tests, and thus have the potential to effect subscapularis strength gains. Therefore, the aim was to compare subscapularis activation levels with those of other shoulder internal rotator muscles during the belly press and lift off tests and shoulder IR exercise positions. Original research. Twenty asymptomatic volunteers performed maximal isometric contractions during the belly press and lift off tests and shoulder IR performed at 90° and 0° abduction in an upright position and supported at 90° abduction in supine. Muscle activation levels were recorded using a combination of indwelling and surface electrodes. Data were normalized to maximum voluntary contractions and averaged. Moderate average subscapularis activation levels were recorded during all shoulder IR tasks examined with no significant difference between tasks (p=0.18). The belly press test was the only IR task in which subscapularis activation levels were significantly higher than all other shoulder internal rotator muscles (p<0.05). Shoulder IR exercises activate subscapularis to similar moderate levels as the belly press and lift off tests and therefore, have similar potential to strengthen subscapularis. However, the belly press test, with significantly higher subscapularis activation than other shoulder internal rotators, more specifically targets subscapularis. Copyright © 2016. Published by Elsevier Ltd.
Highly sensitive SnO2 sensor via reactive laser-induced transfer
Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas
2016-01-01
Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control. PMID:27118531
Adhesion Measurements of Epitaxially Lifted MBE-Grown ZnSe
NASA Astrophysics Data System (ADS)
Mavridi, N.; Zhu, J.; Eldose, N. M.; Prior, K. A.; Moug, R. T.
2018-05-01
ZnSe layers grown by molecular beam epitaxy (MBE), after processing by epitaxial lift-off, have been analyzed using fracture mechanics and thin-film interference to determine their adhesion properties on two different substrates, viz. ZnSe and glass, yielding adhesion energy of 270 ± 60 mJ m-2 and 34 ± 4 mJ m-2, respectively. These values are considerably larger than if only van der Waals forces were present and imply that adhesion arises from chemical bonding.
Wing high-lift system with spoiler droop
NASA Astrophysics Data System (ADS)
Gubsky, Vitaly; Pavlenko, Olga; Petrov, Albert
2018-05-01
Take-off and landing regimes are becoming increasingly difficult due to the increased aircraft mass and speed and the toughening of air safety demands. The capabilities of conventional single-slotted or multi-slotted flaps are limited. This problem can be resolved by the deflection or bending of the tail section, which forms a potential flow that results in an increase in the lift component at high angles of attack. Different versions of the flap on a two-part high-lift device with a spoiler are examined. Calculations show that the application of an adaptive high-lift system with spoiler droop to an aircraft increases the lift coefficient by as much as 15%. Aircraft model experiments indicated that a δs = 5° deflection of the trailing edge increases the lift coefficient by 11% - 13%. Setting the propeller load coefficient to B = 1 (thrust/velocity factor propeller area) under take-off δf = 20° and landing δf = 35° configurations increases the efficiency of a lift coefficient by 25% and 36%, respectively. The application of spoiler droop and leading edge modifications of the wing expands the operational range of angles of attack and increases the lift coefficient by 10% at a small intensity (B = 0.5). It is concluded that the application of spoiler droop to high-lift system allows improvement of the wing properties under take-off and landing regimes of various types.
Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao
2017-11-09
We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayari, Taha; Li, Xin; Voss, Paul L.
Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure tomore » be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.« less
A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.
Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing
2017-01-21
To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.
A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead
Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing
2017-01-01
To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety. PMID:28117721
Castable thermal insulation for use as heat shields
NASA Technical Reports Server (NTRS)
Mountvala, A. J.; Nakamura, H. H.; Rechter, H. L.
1974-01-01
Structural members supporting the afterburners of high thrust rocket engines are subjected to extreme heating, along with severe vibration and high acceleration levels during early lift-off. Chemically-bonded, castable, zircon composite foams were developed and successfully tested to meet specific, laboratory simulated lift-off conditions.
Patterning of oxide-hardened gold black by photolithography and metal lift-off
Deep Panjwani; Mehmet Yesiltas; Janardan Nath; D.E. Maukonen; Imen Rezadad; Evan M. Smith; R.E. Peale; Carol Hirschmugl; Julia Sedlmair; Ralf Wehlitz; Miriam Unger; Glenn Boreman
2014-01-01
A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at
Inlet Aerodynamics and Ram Drag of Laser-Propelled Lightcraft Vehicles
NASA Astrophysics Data System (ADS)
Langener, Tobias; Myrabo, Leik; Rusak, Zvi
2010-05-01
Numerical simulations are used to study the aerodynamic inlet properties of three axisymmetric configurations of laser-propelled Lightcraft vehicles operating at subsonic, transonic and supersonic speeds up to Mach 5. The 60 cm vehicles were sized for launching 0.1-1.0 kg nanosatellites with combined-cycle airbreathing/rocket engines, transitioning between propulsion modes at roughly Mach 5-6. Results provide the pressure, temperature, density, and velocity flowfields around and through the three representative vehicle/engine configurations, as well as giving the resulting ram drag and total drag coefficients—all as a function of flight Mach number. Simulations with rotating boundaries were also carried out, since for stability reasons, Lightcraft are normally spun up before lift-off. Given the three alternatives, it is demonstrated that the optimal geometry for minimum drag is the configuration with a parabola nose; hence, these inlet flow conditions are being applied in subsequent "direct connect" 2D laser propulsion experiments in a small transonic flow facility.
Preparation of nanowire specimens for laser-assisted atom probe tomography
NASA Astrophysics Data System (ADS)
Blumtritt, H.; Isheim, D.; Senz, S.; Seidman, D. N.; Moutanabbir, O.
2014-10-01
The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.
Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics
NASA Technical Reports Server (NTRS)
Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie
2009-01-01
Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility in Utah. The remaining RSRM static firings will take place on elevated terrain, with the nozzle exit plume being mostly undeflected and the landscape allowing placement of microphones within direct line of sight to the exhaust plume. These measurements will help assess the current extrapolation process by direct comparison between subscale and full scale solid rocket motor data.
2011-08-01
Field Length is defined as the total distance from brake release to the point at which the aircraft clears a height of 35 ft. The clearance height is...height clearance. The AEFL comprises two parts, the ground roll from brake release to lift-off (GR) plus the distance from lift-off to 35 ft height
2007-05-01
KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, external tank No. 117 seems to float above the transfer aisle as it is lifted off its transporter. The tank will be raised to a vertical position and then lifted into the checkout cell in high bay 2 for processing. ET-117 arrived aboard the Pegasus barge after its voyage around the Florida Peninsula from the Michoud Assembly Facility near New Orleans. The tank is slated for mission STS-118, which is targeted for launch in early August. Photo credit: NASA/Jack Pfaller
Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer
2016-01-01
The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently releases the 2D material (2DM) film. Interfacial composition change and selective dissolution can thereby be achieved in a single step or split into two individual process steps. We demonstrate that this method is not only highly versatile but also yields graphene and h-BN films of high quality regarding surface contamination, layer coherence, defects, and electronic properties, without requiring additional post-transfer annealing. We highlight how such transfers rely on targeted corrosion at the catalyst interface and discuss this in context of the wider CVD growth and 2DM transfer literature, thereby fostering an improved general understanding of widely used transfer processes, which is essential to numerous other applications. PMID:27934130
Measurement of droplet size distribution in core region of high-speed spray by micro-probe L2F
NASA Astrophysics Data System (ADS)
Sakaguchi, Daisaku; Le Amida, Oluwo; Ueki, Hironobu; Ishida, Masahiro
2008-03-01
In order to investigate the distribution of droplet sizes in the core region of diesel fuel spray, instantaneous measurement of droplet sizes was conducted by an advanced laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F is made up of two foci and the distance between them is 36 µm. The tested nozzle had a 0.2 mm diameter single-hole. The measurements of injection pressure, needle lift, and crank angle were synchronized with the measurement by the L2F at the position 10 mm downstream from the nozzle exit. It is clearly shown that the droplet near the spray axis is larger than that in the off-axis region under the needle full lift condition and that the spatial distribution of droplet sizes varies temporally. It is found that the probability density distribution of droplet sizes in the spray core region can be fitted to the Nukiyama-Tanasawa distribution in most injection periods.
2001-05-08
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Endeavour on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida.
Ares I Scale Model Acoustic Test Lift-Off Acoustics
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janie D.
2011-01-01
The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.
Method for welding an article and terminating the weldment within the perimeter of the article
NASA Technical Reports Server (NTRS)
Snyder, John H. (Inventor); Smashey, Russell W. (Inventor); Boerger, Eric J. (Inventor); Borne, Bruce L. (Inventor)
2000-01-01
An article is welded, as in weld repair of a defect, by positioning a weld lift-off block at a location on the surface of the article adjacent to the intended location of the end of the weldment on the surface of the article. The weld lift-off block has a wedge shape including a base contacting the surface of the article, and an upper face angled upwardly from the base from a base leading edge. A weld pool is formed on the surface of the article by directly heating the surface of the article using a heat source. The heat source is moved relative to the surface of the article and onto the upper surface of the weld lift-off block by crossing the leading edge of the wedge, without discontinuing the direct heating of the article by the heat source. The heating of the article with the heat source is discontinued only after the heat source is directly heating the upper face of the weld lift-off block, and not the article.
1997-01-12
STS-81 Mission Specialist Peter J. K. "Jeff" Wisoff prepares for the fifth ShuttleMir docking as he waits in the Operations and Checkout (O&C) Building for the operation to fit him into his launch/entry suit to be completed. He conducted a spacewalk on his on his first Shuttle mission, STS57 and holds a doctorate degree in applied physics with an emphasis on lasers and semiconductor materials. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12
STS-81 Mission Specialist Peter Wisoff suits up
NASA Technical Reports Server (NTRS)
1997-01-01
STS-81 Mission Specialist Peter J. K. 'Jeff' Wisoff prepares for the fifth Shuttle- Mir docking as he waits in the Operations and Checkout (O&C) Building for the operation to fit him into his launch/entry suit to be completed. He conducted a spacewalk on his on his first Shuttle mission, STS- 57 and holds a doctorate degree in applied physics with an emphasis on lasers and semiconductor materials. He and five crew members will shortly depart the O&C and head for Launch Pad 39B, where the Space Shuttle Atlantis will lift off during a 7-minute window that opens at 4:27 a.m. EST, January 12.
Process Waste Assessment, Mechanics Shop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, N.M.
1993-05-01
This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less
Self-actuating grapple automatically engages and releases loads from overhead cranes
NASA Technical Reports Server (NTRS)
Froehlich, J. A.; Karastas, G. A.
1966-01-01
Two-piece grapple mechanism consisting of a lift knob secured to the load and a grapple member connected to the crane or lift automatically disengages the load from the overhead lifting device when the load contacts the ground. The key feature is the sliding collar under the lift knob which enables the grapple latch to be stripped off over the lift knob.
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
49 CFR 571.404 - Standard No. 404; Platform lift installations in motor vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle, with the vehicle's HVAC system turned off, for a minimum of 20 minutes, after which the engine is... Motor Vehicle Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.2Lift... Safety Standard No. 403, Lift Systems for Motor Vehicles (49 CFR 571.403). S4.1.3Platform lifts must be...
Toward the realization of erbium-doped GaN bulk crystals as a gain medium for high energy lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z. Y.; Li, J.; Zhao, W. P.
Er-doped GaN (Er:GaN) is a promising candidate as a gain medium for solid-state high energy lasers (HELs) at the technologically important and eye-safe 1.54 μm wavelength window, as GaN has superior thermal properties over traditional laser gain materials such as Nd:YAG. However, the attainment of wafer-scale Er:GaN bulk or quasi-bulk crystals is a prerequisite to realize the full potential of Er:GaN as a gain medium for HELs. We report the realization of freestanding Er:GaN wafers of 2-in. in diameter with a thickness on the millimeter scale. These freestanding wafers were obtained via growth by hydride vapor phase epitaxy in conjunction withmore » a laser-lift-off process. An Er doping level of 1.4 × 10{sup 20} atoms/cm{sup 3} has been confirmed by secondary ion mass spectrometry measurements. The freestanding Er:GaN wafers exhibit strong photoluminescent emission at 1.54 μm with its emission intensity increasing dramatically with wafer thickness under 980 nm resonant excitation. A low thermal quenching of 10% was measured for the 1.54 μm emission intensity between 10 K and 300 K. This work represents a significant step in providing a practical approach for producing Er:GaN materials with sufficient thicknesses and dimensions to enable the design of gain media in various geometries, allowing for the production of HELs with improved lasing efficiency, atmosphere transmission, and eye-safety.« less
Design of the laser acupuncture therapeutic instrument.
Li, Chengwei; Zhen, Huang
2006-01-01
Laser acupuncture is defined as the stimulation of traditional acupuncture points with low-intensity, non-thermal laser irradiation. It has been well applied in clinic since the 1970s; however, some traditional acupuncture manipulating methods still cannot be implemented in the design of this kind of instruments, such as lifting and thrusting manipulating method, and twisting and twirling manipulating method, which are the essential acupuncture method in traditional acupuncture. The objective of this work was to design and build a low cost portable laser acupuncture therapeutic instrument, which can implement the two essential acupuncture manipulating methods. Digital PID control theory is used to control the power of laser diode (LD), and to implement the lifting and thrusting manipulating method. Special optical system is designed to implement twisting and twirling manipulating method. M5P430 microcontroller system is used as the control centre of the instrument. The realization of lifting and thrusting manipulating method and twisting and twirling manipulating method are technological innovations in traditional acupuncture coming true in engineering.
2008-12-10
Moments after sunrise, the modified Boeing 747 carrier aircraft carrying the Space Shuttle Endeavour lifts off from Edwards Air Force Base on the first leg of its ferry flight back to the Kennedy Space Center on Dec. 10, 2008.
Scout Launch Lift off on Wallops Island
1965-08-10
Scout launch vehicle lift off on Wallops Island in 1965. The Scout launch vehicle was used for unmanned small satellite missions, high altitude probes, and reentry experiments. Scout, the smallest of the basic launch vehicles, is the only United States launch vehicle fueled exclusively with solid propellants. Published in the book " A Century at Langley" by Joseph Chambers pg. 92
Patterning of oxide-hardened gold black by photolithography and metal lift-off
NASA Astrophysics Data System (ADS)
Panjwani, Deep; Yesiltas, Mehmet; Nath, Janardan; Maukonen, D. E.; Rezadad, Imen; Smith, Evan M.; Peale, R. E.; Hirschmugl, Carol; Sedlmair, Julia; Wehlitz, Ralf; Unger, Miriam; Boreman, Glenn
2014-01-01
A method to pattern infrared-absorbing gold black by conventional photolithography and lift-off is described. A photo-resist pattern is developed on a substrate by standard photolithography. Gold black is deposited over the whole by thermal evaporation in an inert gas at ˜1 Torr. SiO2 is then deposited as a protection layer by electron beam evaporation. Lift-off proceeds by dissolving the photoresist in acetone. The resulting sub-millimeter size gold black patterns that remain on the substrate retain high infrared absorption out to ˜5 μm wavelength and exhibit good mechanical stability. This technique allows selective application of gold black coatings to the pixels of thermal infrared imaging array detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Kanglin; Mi, Hongyi; Chang, Tzu-Hsuan
A novel method is developed to realize a III-V/Si dual-junction photovoltaic cell by combining epitaxial lift-off (ELO) and print-transfer-assisted bonding methods. The adoption of ELO enables III-V wafers to be recycled and reused, which can further lower the cost of III-V/Si photovoltaic panels. For demonstration, high crystal quality, micrometer-thick, GaAs/AlGaAs/GaAs films are lifted off, transferred, and directly bonded onto Si wafer without the use of any adhesive or bonding agents. The bonding interface is optically transparent and conductive both thermally and electrically. Prototype AlGaAs/Si dual-junction tandem solar cells have been fabricated and exhibit decent performance.
Xiong, Kanglin; Mi, Hongyi; Chang, Tzu-Hsuan; ...
2018-01-04
A novel method is developed to realize a III-V/Si dual-junction photovoltaic cell by combining epitaxial lift-off (ELO) and print-transfer-assisted bonding methods. The adoption of ELO enables III-V wafers to be recycled and reused, which can further lower the cost of III-V/Si photovoltaic panels. For demonstration, high crystal quality, micrometer-thick, GaAs/AlGaAs/GaAs films are lifted off, transferred, and directly bonded onto Si wafer without the use of any adhesive or bonding agents. The bonding interface is optically transparent and conductive both thermally and electrically. Prototype AlGaAs/Si dual-junction tandem solar cells have been fabricated and exhibit decent performance.
Wind Tunnel Testing of Powered Lift, All-Wing STOL Model
NASA Technical Reports Server (NTRS)
Collins, Scott W.; Westra, Bryan W.; Lin, John C.; Jones, Gregory S.; Zeune, Cal H.
2008-01-01
Short take-off and landing (STOL) systems can offer significant capabilities to warfighters and, for civil operators thriving on maximizing efficiencies they can improve airspace use while containing noise within airport environments. In order to provide data for next generation systems, a wind tunnel test of an all-wing cruise efficient, short take-off and landing (CE STOL) configuration was conducted in the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 14- by 22-foot Subsonic Wind Tunnel. The test s purpose was to mature the aerodynamic aspects of an integrated powered lift system within an advanced mobility configuration capable of CE STOL. The full-span model made use of steady flap blowing and a lifting centerbody to achieve high lift coefficients. The test occurred during April through June of 2007 and included objectives for advancing the state-of-the-art of powered lift testing through gathering force and moment data, on-body pressure data, and off-body flow field measurements during automatically controlled blowing conditions. Data were obtained for variations in model configuration, angles of attack and sideslip, blowing coefficient, and height above ground. The database produced by this effort is being used to advance design techniques and computational tools for developing systems with integrated powered lift technologies.
NASA Astrophysics Data System (ADS)
Kumar, Raghwendra; Ramakrishna, S. Anantha
2018-04-01
Dielectric micro-domes were mounted on the subwavelength holes of a periodically perforated gold film such that a lens-like micro-dome covers each hole. In comparison to the extraordinary transmission through an array of bare holes in the gold film, this structure showed a further enhanced transmission over a larger range of incident angles with much larger bandwidth at mid-wave infrared wavelengths (3-4.5~μ m). The structure was fabricated using laser interference lithography, a novel back-exposure with an ultra-violet laser, and lift-off process that left behind the micro-domes of SU-8, covering each of the holes in the gold film. The measured transmittance of these perforated gold films, with and without the micro-domes, was verified by electromagnetic wave simulations. The enhanced transmittance arises from the scattered electromagnetic fields of the micro-domes, which couple the incident light efficiently via the scattered near-fields into the waveguide modes of holes in the plasmonic film. The increased transmittance and the highly enhanced and localized near-fields can be used to enhance the photo-response of infrared detectors over relevant bands, for example, the 3-4.5~μ m band that is used for thermal imaging applications.
Robotic tool positioning process using a multi-line off-axis laser triangulation sensor
NASA Astrophysics Data System (ADS)
Pinto, T. C.; Matos, G.
2018-03-01
Proper positioning of a friction stir welding head for pin insertion, driven by a closed chain robot, is important to ensure quality repair of cracks. A multi-line off-axis laser triangulation sensor was designed to be integrated to the robot, allowing relative measurements of the surface to be repaired. This work describes the sensor characteristics, its evaluation and the measurement process for tool positioning to a surface point of interest. The developed process uses a point of interest image and a measured point cloud to define the translation and rotation for tool positioning. Sensor evaluation and tests are described. Keywords: laser triangulation, 3D measurement, tool positioning, robotics.
Laser interference fringe tomography: a novel 3D imaging technique for pathology
NASA Astrophysics Data System (ADS)
Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan
2011-03-01
Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.
2006-07-10
KENNEDY SPACE CENTER, FLA. - In the hazardous processing facility at Astrotech Space Operations in Titusville, Fla., technicians check Observatory A before lifting onto a scale for weight measurements. The observatory is one of two in the STEREO spacecraft and later will be fueled. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket no earlier than Aug. 1. Photo credit: NASA/Jack Pfaller
Laser printed interconnects for flexible electronics
NASA Astrophysics Data System (ADS)
Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas
Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.
STS-94 Mission Specialist Thomas in LC-39A White Room
NASA Technical Reports Server (NTRS)
1997-01-01
STS-94 Mission Specialist Donald A. Thomas prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He has flown on STS-83, STS-70 and STS-65. He holds a doctorate in materials science and has been the Principal Investigator for a Space Shuttle crystal growth experiment. Because of his background in materials science, Thomas will be concentrating his efforts during the Red shift on the five experiments in this discipline in the Large Isothermal Furnace. He also will work on the ten materials science investigations in the Electromagnetic Containerless Processing Facility and four that will be measuring the effects of microgravity and motion in the orbiter on the experiments. Thomas and six fellow crew members will lift off during a launch window that opens at 1:50 a.m. EDT, July opportunity to lift off before Florida summer rain showers reach the space center.
Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO
NASA Astrophysics Data System (ADS)
Pantzas, K.; Rogers, D. J.; Bove, P.; Sandana, V. E.; Teherani, F. H.; El Gmili, Y.; Molinari, M.; Patriarche, G.; Largeau, L.; Mauguin, O.; Suresh, S.; Voss, P. L.; Razeghi, M.; Ougazzaden, A.
2016-02-01
p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5 at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscoy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process.
1997-07-01
STS-94 Payload Specialist Roger K. Crouch prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He is the Chief Scientist of the NASA Microgravity Space and Applications Division. He also has served as a Program Scientist for previous Spacelab microgravity missions and is an expert in semiconductor crystal growth. Since Crouch has more than 25 years of experience as a materials scientist, he will be concentrating on the five physics of materials processing experiments in the Middeck Glovebox Facility on the Blue shift. He will also share the workload with Thomas by monitoring the materials furnace experiments during this time. Crouch and six fellow crew members will lift off during a launch window that opens at 1:50 p.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center
Wafer-scale layer transfer of GaAs and Ge onto Si wafers using patterned epitaxial lift-off
NASA Astrophysics Data System (ADS)
Mieda, Eiko; Maeda, Tatsuro; Miyata, Noriyuki; Yasuda, Tetsuji; Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki; Aoki, Takeshi; Yamamoto, Taketsugu; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko; Ogawa, Arito; Kikuchi, Toshiyuki; Kunii, Yasuo
2015-03-01
We have developed a wafer-scale layer-transfer technique for transferring GaAs and Ge onto Si wafers of up to 300 mm in diameter. Lattice-matched GaAs or Ge layers were epitaxially grown on GaAs wafers using an AlAs release layer, which can subsequently be transferred onto a Si handle wafer via direct wafer bonding and patterned epitaxial lift-off (ELO). The crystal properties of the transferred GaAs layers were characterized by X-ray diffraction (XRD), photoluminescence, and the quality of the transferred Ge layers was characterized using Raman spectroscopy. We find that, after bonding and the wet ELO processes, the quality of the transferred GaAs and Ge layers remained the same compared to that of the as-grown epitaxial layers. Furthermore, we realized Ge-on-insulator and GaAs-on-insulator wafers by wafer-scale pattern ELO technique.
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Space Shuttle Discovery clears Launch Pad 39B at 2:19 p.m. EST Oct. 29 as it lifts off on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Gutierrez, Eric; Quinn, Daniel B; Chin, Diana D; Lentink, David
2016-12-06
There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift generation with flapping wings.
Muhammed, Mufasila M; Alwadai, Norah; Lopatin, Sergei; Kuramata, Akito; Roqan, Iman S
2017-10-04
We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga 2 O 3 ) substrate, obtained using a straightforward growth process that does not require a high-cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multiquantum well (MQW) grown on the masked β-Ga 2 O 3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ∼86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.
Gender, Generation, and Off-Farm Employment on the Mexican "Ejido."
ERIC Educational Resources Information Center
Katz, Elizabeth
Chapter 7 of "The Economics of Gender in Mexico" discusses how Mexico's "ejido" system, a semicollective form of land tenure, has been undergoing a process of privatization in which parcels are being converted into privately held land. Simultaneously, small-scale producers have been hurt by the lifting of price and credit…
NASA Astrophysics Data System (ADS)
Köhler, M.; Boxx, I.; Geigle, K. P.; Meier, W.
2011-05-01
We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than "conventional" laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.
2004-12-01
the Japanese art of “ origami ”) involves patterning adjacent 2D membranes that can be lifted off (using methods we have developed) of a silicon...innovative process holds immense potential for the Army’s Objective Force Warrior. Nanostructured Origami enables many practical and promising...Nanostructured Origami allows such devices to be formed from a single, micro/nanofabricated layer. In addition, nanoarchitecture can be added
2003-06-26
VANDENBERG AIR FORCE BASE, CALIF.- The cover is being lifted off SciSat-1 spacecraft at Vandenberg Air Force Base, Calif. Sci-Sat, which will undergo instrument checkout and spacecraft functional testing, weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is lifted off the pallet for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
... thin flap in the cornea using either a blade or a laser. The surgeon folds back the ... an automated microsurgical device, either a laser or blade. This corneal flap is lifted and folded back. ...
NASA Astrophysics Data System (ADS)
Ruan, Shaohong; Swaminathan, Nedunchezhian; Darbyshire, Oliver
2014-03-01
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.
Part Repairing Using A Hybrid Manufacturing System (Preprint)
2007-03-01
laser . The laser processing parameters for cladding steel H13 powder were 600W with a stand-off distance from the nozzle to the top of the clad of 0.5...Journal of Materials Processing Technology, 2002:122, 63-68. [11]Richter, K., Orban, S., and Nowotny, S., Laser cladding of the titanium alloy TI6242...was used to repair the corroded steam generator tubes in nuclear plants [9], and turbine blades were repaired using the laser cladding process [10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsted, Michelle; Wilmoth, Jared L.; Briggs, Paige A.
Microbial communities are incredibly complex systems that dramatically and ubiquitously influence our lives. They help to shape our climate and environment, impact agriculture, drive business, and have a tremendous bearing on healthcare and physical security. Spatial confinement, as well as local variations in physical and chemical properties, affects development and interactions within microbial communities that occupy critical niches in the environment. Recent work has demonstrated the use of silicon based microwell arrays, combined with parylene lift-off techniques, to perform both deterministic and stochastic assembly of microbial communities en masse, enabling the high-throughput screening of microbial communities for their response tomore » growth in confined environments under different conditions. The implementation of a transparent microwell array platform can expand and improve the imaging modalities that can be used to characterize these assembled communities. In this paper, the fabrication and characterization of a next generation transparent microwell array is described. The transparent arrays, comprised of SU-8 patterned on a glass coverslip, retain the ability to use parylene lift-off by integrating a low temperature atomic layer deposition of silicon dioxide into the fabrication process. This silicon dioxide layer prevents adhesion of the parylene material to the patterned SU-8, facilitating dry lift-off, and maintaining the ability to easily assemble microbial communities within the microwells. These transparent microwell arrays can screen numerous community compositions using continuous, high resolution, imaging. Finally, the utility of the design was successfully demonstrated through the stochastic seeding and imaging of green fluorescent protein expressing Escherichia coli using both fluorescence and brightfield microscopies.« less
2007-07-01
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Atlantis on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida. The cross-country journey will take approximately two days, with stops at several intermediate points for refueling.
Patterning of supported gold monolayers via chemical lift-off lithography
Slaughter, Liane S; Cheung, Kevin M; Kaappa, Sami; Cao, Huan H; Yang, Qing; Young, Thomas D; Serino, Andrew C; Malola, Sami; Olson, Jana M; Link, Stephan
2017-01-01
The supported monolayer of Au that accompanies alkanethiolate molecules removed by polymer stamps during chemical lift-off lithography is a scarcely studied hybrid material. We show that these Au–alkanethiolate layers on poly(dimethylsiloxane) (PDMS) are transparent, functional, hybrid interfaces that can be patterned over nanometer, micrometer, and millimeter length scales. Unlike other ultrathin Au films and nanoparticles, lifted-off Au–alkanethiolate thin films lack a measurable optical signature. We therefore devised fabrication, characterization, and simulation strategies by which to interrogate the nanoscale structure, chemical functionality, stoichiometry, and spectral signature of the supported Au–thiolate layers. The patterning of these layers laterally encodes their functionality, as demonstrated by a fluorescence-based approach that relies on dye-labeled complementary DNA hybridization. Supported thin Au films can be patterned via features on PDMS stamps (controlled contact), using patterned Au substrates prior to lift-off (e.g., selective wet etching), or by patterning alkanethiols on Au substrates to be reactive in selected regions but not others (controlled reactivity). In all cases, the regions containing Au–alkanethiolate layers have a sub-nanometer apparent height, which was found to be consistent with molecular dynamics simulations that predicted the removal of no more than 1.5 Au atoms per thiol, thus presenting a monolayer-like structure. PMID:29259879
2006-07-13
KENNEDY SPACE CENTER, FLA. - At Launch Pad 17-B on Cape Canaveral Air Force Station, workers prepare the Boeing Delta II second stage for the STEREO launch to be lifted off the transporter. The second stage then will be lifted into the mobile service tower and mated with first stage already in place. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in August 2006. Photo credit: NASA/George Shelton
2006-07-10
KENNEDY SPACE CENTER, FLA. - In the hazardous processing facility at Astrotech Space Operations in Titusville, Fla., technicians remove the protective cover from the top of Observatory A, one of two STEREO spacecraft. The observatory will be lifted onto a scale for weight measurements and later will be fueled. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket no earlier than Aug. 1. Photo credit: NASA/Jack Pfaller
2006-07-10
KENNEDY SPACE CENTER, FLA. - In the hazardous processing facility at Astrotech Space Operations in Titusville, Fla., technicians begin removing the protective cover from Observatory A of the STEREO spacecraft. The observatory will be lifted onto a scale for weight measurements and later will be fueled. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket no earlier than Aug. 1. Photo credit: NASA/Jack Pfaller
2006-07-10
KENNEDY SPACE CENTER, FLA. - In the hazardous processing facility at Astrotech Space Operations in Titusville, Fla., technicians begin removing the protective cover from Observatory A of the STEREO spacecraft. The observatory will be lifted onto a scale for weight measurements and later will be fueled. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket no earlier than Aug. 1. Photo credit: NASA/Jack Pfaller
2009-04-15
CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, the first stage of a Delta II rocket is lifted off its transporter. It will be raised to vertical and lifted into the mobile service tower for processing. The rocket is the launch vehicle for the STSS Demonstrators Program. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller
Using Simple Machines to Leverage Learning
ERIC Educational Resources Information Center
Dotger, Sharon
2008-01-01
What would your students say if you told them they could lift you off the ground using a block and a board? Using a simple machine, they'll find out they can, and they'll learn about work, energy, and motion in the process! In addition, this integrated lesson gives students the opportunity to investigate variables while practicing measurement…
GOES-R Uncrating and Move to Vertical
2016-08-23
The shipping container is lifted off the GOES-R spacecraft inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
Representation of high frequency Space Shuttle data by ARMA algorithms and random response spectra
NASA Technical Reports Server (NTRS)
Spanos, P. D.; Mushung, L. J.
1990-01-01
High frequency Space Shuttle lift-off data are treated by autoregressive (AR) and autoregressive-moving-average (ARMA) digital algorithms. These algorithms provide useful information on the spectral densities of the data. Further, they yield spectral models which lend themselves to incorporation to the concept of the random response spectrum. This concept yields a reasonably smooth power spectrum for the design of structural and mechanical systems when the available data bank is limited. Due to the non-stationarity of the lift-off event, the pertinent data are split into three slices. Each of the slices is associated with a rather distinguishable phase of the lift-off event, where stationarity can be expected. The presented results are rather preliminary in nature; it is aimed to call attention to the availability of the discussed digital algorithms and to the need to augment the Space Shuttle data bank as more flights are completed.
She, Zhe; Difalco, Andrea; Hähner, Georg; Buck, Manfred
2012-01-01
Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around -0.7 V versus Cu(2+)/Cu and a growth phase at around -0.35 V versus Cu(2+)/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... counterbalanced lift truck is a rigid framed, engine- powered machine with lift arms that has additional weight...; \\7\\ (2) construction vehicles and equipment, including earthmover articulated dump products, rigid frame haul trucks,\\8\\ front end loaders,\\9\\ dozers,\\10\\ lift trucks, straddle carriers,\\11\\ graders,\\12...
Absorbing film assisted laser induced forward transfer of fungi (Trichoderma conidia)
NASA Astrophysics Data System (ADS)
Hopp, B.; Smausz, T.; Antal, Zs.; Kresz, N.; Bor, Zs.; Chrisey, D.
2004-09-01
We present an investigation on absorbing film assisted laser induced forward transfer (AFA-LIFT) of fungus (Trichoderma) conidia. A KrF excimer laser beam [λ =248nm,FWHM=30ns (FWHM, full width at half maximum)] was directed through a quartz plate and focused onto its silver coated surface where conidia of the Trichoderma strain were uniformly spread. The laser fluence was varied in the range of 0-2600mJ/cm2 and each laser pulse transferred a pixel of target material. The average irradiated area was 8×10-2mm2. After the transfer procedure, the yeast extract medium covered glass slide and the transferred conidia patterns were incubated for 20 h and then observed using an optical microscope. The transferred conidia pixels were germinated and the areas of the culture medium surfaces covered by the pixels were evaluated as a function of laser fluence. As the laser fluence was increased from 0 to 355mJ/cm2 the transferred and germinated pixel area increased from 0 to 0.25mm2. Further increase in fluence resulted in a drastic decrease down to an approximately constant value of 0.06mm2. The yield of successful transfer by AFA-LIFT and germination was as much as 75% at 355mJ/cm2. The results prove that AFA-LIFT can successfully be applied for the controlled transfer of biological objects.
NASA Astrophysics Data System (ADS)
Xie, Changan; Li, Yong-qing
2003-03-01
We report on the study of single biological cells with a confocal micro-Raman spectroscopy system that uses optical trapping and shifted excitation Raman difference technique. A tunable diode laser was used to capture a living cell in solution, confine it in the confocal excitation volume, and then excite the Raman scattering. The optical trapping allows us to lift the cell well off the cover plate so that the fluorescence interference from the plate can be effectively reduced. In order to further remove the interference of the fluorescence and stray light from the trapped cell, we employed a shifted excitation Raman difference technique with slightly tuned laser frequencies. With this system, high-quality Raman spectra were obtained from single optically trapped biological cells including E. coli bacteria, yeast cells, and red blood cells. A significant difference between control and heat-treated E. coli B cells was observed due to the denaturation of biomolecules.
Lift-Off: Using Reference Imagery and Freehand Sketching to Create 3D Models in VR.
Jackson, Bret; Keefe, Daniel F
2016-04-01
Three-dimensional modeling has long been regarded as an ideal application for virtual reality (VR), but current VR-based 3D modeling tools suffer from two problems that limit creativity and applicability: (1) the lack of control for freehand modeling, and (2) the difficulty of starting from scratch. To address these challenges, we present Lift-Off, an immersive 3D interface for creating complex models with a controlled, handcrafted style. Artists start outside of VR with 2D sketches, which are then imported and positioned in VR. Then, using a VR interface built on top of image processing algorithms, 2D curves within the sketches are selected interactively and "lifted" into space to create a 3D scaffolding for the model. Finally, artists sweep surfaces along these curves to create 3D models. Evaluations are presented for both long-term users and for novices who each created a 3D sailboat model from the same starting sketch. Qualitative results are positive, with the visual style of the resulting models of animals and other organic subjects as well as architectural models matching what is possible with traditional fine art media. In addition, quantitative data from logging features built into the software are used to characterize typical tool use and suggest areas for further refinement of the interface.
Investigation of the flow-field of two parallel round jets impinging normal to a flat surface
NASA Astrophysics Data System (ADS)
Myers, Leighton M.
The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2, was designed and fabricated with a 50% increase in nozzle exit diameter. The primary design improvement is the ability to quickly and easily exchange the nozzles of the model. This allowed experiments to be performed with rapid-prototyped nozzles that feature more realistic geometry to that of tactical military aircraft engines. One such nozzle, which was designed and demonstrated by previous researchers to reduce jet noise in a free-jet, was incorporated into the model. The nozzle, featuring deflected seals, was installed in the Generation 2 model and its effect on suckdown was evaluated.
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Framed by the foliage of the Canaveral National Sea Shore, Space Shuttle Discovery soars through bright blue skies as it lifts off from Launch Pad 39B at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National agency for Space Development (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Clouds of exhaust and blazing light fill Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
Clouds of exhaust seem to fill the marsh near Launch Pad 39B as Space Shuttle Discovery lifts off at 2:19 p.m. EST Oct. 29 on mission STS-95. Making his second voyage into space after 36 years is Payload Specialist John H. Glenn Jr., senator from Ohio. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Printing Functional 3D Microdevices by Laser-Induced Forward Transfer.
Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gert-Willem; Sun, Chao; Lohse, Detlef; Visser, Claas Willem
2017-03-01
Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables manufacturing in the micrometer to millimeter range, i.e., between lithography and other 3D printing technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode
NASA Astrophysics Data System (ADS)
Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.
2017-10-01
In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1-10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Pei, Jing; Covell, Peter F.; Favaregh, Noah M.; Gumbert, Clyde R.; Hanke, Jeremy L.
2011-01-01
NASA Langley Research Center, in partnership with NASA Marshall Space Flight Center and NASA Ames Research Center, was involved in the aerodynamic analyses, testing, and database development for the Ares I A106 crew launch vehicle in support of the Ares Design and Analysis Cycle. This paper discusses the development of lift-off/transition and ascent databases. The lift-off/transition database was developed using data from tests on a 1.75% scale model of the A106 configuration in the NASA Langley 14x22 Subsonic Wind Tunnel. The power-off ascent database was developed using test data on a 1% A106 scale model from two different facilities, the Boeing Polysonic Wind Tunnel and the NASA Langley Unitary Plan Wind Tunnel. The ascent database was adjusted for differences in wind tunnel and flight Reynolds numbers using USM3D CFD code. The aerodynamic jet interaction effects due to first stage roll control system were modeled using USM3D and OVERFLOW CFD codes.
Deniz, Cem M; Vaidya, Manushka V; Sodickson, Daniel K; Lattanzi, Riccardo
2016-01-01
We investigated global specific absorption rate (SAR) and radiofrequency (RF) power requirements in parallel transmission as the distance between the transmit coils and the sample was increased. We calculated ultimate intrinsic SAR (UISAR), which depends on object geometry and electrical properties but not on coil design, and we used it as the reference to compare the performance of various transmit arrays. We investigated the case of fixing coil size and increasing the number of coils while moving the array away from the sample, as well as the case of fixing coil number and scaling coil dimensions. We also investigated RF power requirements as a function of lift-off, and tracked local SAR distributions associated with global SAR optima. In all cases, the target excitation profile was achieved and global SAR (as well as associated maximum local SAR) decreased with lift-off, approaching UISAR, which was constant for all lift-offs. We observed a lift-off value that optimizes the balance between global SAR and power losses in coil conductors. We showed that, using parallel transmission, global SAR can decrease at ultra high fields for finite arrays with a sufficient number of transmit elements. For parallel transmission, the distance between coils and object can be optimized to reduce SAR and minimize RF power requirements associated with homogeneous excitation. © 2015 Wiley Periodicals, Inc.
Eddy Current Rail Inspection Using AC Bridge Techniques.
Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng
2013-01-01
AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... the rear tires. \\9\\ A log-skidder has a grappling lift arm that is used to grasp, lift and move trees... grading'' in road construction. \\14\\ A straddle carrier is a rigid frame, engine-powered machine that is... is a rigid framed, engine- powered machine with lift arms that has additional weight incorporated...
NASA Astrophysics Data System (ADS)
Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.
2017-12-01
Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.
NASA Astrophysics Data System (ADS)
Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop
2018-01-01
The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.
Unsteady fluid dynamics around a hovering wing
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Green, Melissa; Mulleners, Karen
2017-11-01
The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.
Sopeña, Pol; Arrese, Javier; González-Torres, Sergio; Fernández-Pradas, Juan Marcos; Cirera, Albert; Serra, Pere
2017-09-06
Laser-induced forward transfer (LIFT) is a direct-writing technique that allows printing inks from a liquid film in a similar way to inkjet printing but with fewer limitations concerning ink viscosity and loading particle size. In this work, we prove that liquid inks can be printed through LIFT by using continuous wave (CW) instead of pulsed lasers, which allows a substantial reduction in the cost of the printing system. Through the fabrication of a functional circuit on both rigid and flexible substrates (plastic and paper), we provide a proof-of-concept that demonstrates the versatility of the technique for printed electronics applications.
Halsted, Michelle; Wilmoth, Jared L.; Briggs, Paige A.; ...
2016-09-29
Microbial communities are incredibly complex systems that dramatically and ubiquitously influence our lives. They help to shape our climate and environment, impact agriculture, drive business, and have a tremendous bearing on healthcare and physical security. Spatial confinement, as well as local variations in physical and chemical properties, affects development and interactions within microbial communities that occupy critical niches in the environment. Recent work has demonstrated the use of silicon based microwell arrays, combined with parylene lift-off techniques, to perform both deterministic and stochastic assembly of microbial communities en masse, enabling the high-throughput screening of microbial communities for their response tomore » growth in confined environments under different conditions. The implementation of a transparent microwell array platform can expand and improve the imaging modalities that can be used to characterize these assembled communities. In this paper, the fabrication and characterization of a next generation transparent microwell array is described. The transparent arrays, comprised of SU-8 patterned on a glass coverslip, retain the ability to use parylene lift-off by integrating a low temperature atomic layer deposition of silicon dioxide into the fabrication process. This silicon dioxide layer prevents adhesion of the parylene material to the patterned SU-8, facilitating dry lift-off, and maintaining the ability to easily assemble microbial communities within the microwells. These transparent microwell arrays can screen numerous community compositions using continuous, high resolution, imaging. Finally, the utility of the design was successfully demonstrated through the stochastic seeding and imaging of green fluorescent protein expressing Escherichia coli using both fluorescence and brightfield microscopies.« less
OA-7 Service Module Arrival, Uncrating, Move from Airlock to Highbay inside SSPF
2017-02-01
The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida, sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. The service module is uncrate from the shipping container, lifted and positioned on a work stand, and moved from the airlock to the highbay for processing. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral
2015-02-13
KSC-2015-1341 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky
2006-06-16
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., technicians check the STEREO spacecraft "B" as it is lifted off a tilt table. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket on July 22. Photo credit: NASA/George Shelton
NASA Astrophysics Data System (ADS)
Pruett, L. E.; Burrell, S.; Chidester, C.; Metzger, E. P.
2010-12-01
The inclusion of global climate change education in California public high schools is constrained by several factors, including the planning time needed to effectively correlate state content standards to the multidisciplinary science of climate change, the lack of time in the curriculum, and budget constraints that limit resources for teachers. Recent efforts by the NASA LIFT-OFF program to support classroom teachers in the development of inquiry-based curricular materials have helped to alleviate many of these burdens. NASA LIFT-OFF is funded by a grant to the Alameda County Office of Education and involves a partnership between the Alameda, Santa Clara, and Los Angeles county offices of education and science faculty at California State University (CSU) East Bay, San Jose State University (SJSU), and Cal Poly Pomona. LIFT-OFF goals are to improve high school science teachers’ content knowledge through interactions with scientists from the CSU campuses, NASA, and the SETI Institute and to enhance their ability to plan and implement high-quality science inquiry in their classrooms. LIFT-OFF teachers at the three CSU campuses are developing instructional cases that use NASA resources and research-based pedagogical practices to explore engaging real-world questions. We participated in SJSU’s 2010 LIFT-OFF summer institute and worked as a team to develop a 12-day unit for high school students that focuses on the science behind global climate change. In addition to delivering science content, the unit engages students in critical thinking and evaluation. Students generate, access and interpret data, and use the knowledge gained to make small lifestyle changes that aid in the reduction of their greenhouse gas emissions. Not only does this unit of study empower students to make science-based decisions, it also incorporates diverse learning strategies, such as the use of visuals aids, language acquisition techniques to improve literacy, formative assessments and daily hands-on demonstrations and lab activities. Our unit begins with an introduction to greenhouse gases and the greenhouse effect. It progresses with several lessons focused on the carbon cycle and its role in global climate, including the anthropogenic contribution to atmospheric carbon. This unit includes a longitudinal analysis of atmospheric CO2 concentrations, how they have changed over time and one method for studying historical levels (ice cores). Earth’s CO2 levels are then compared to that of our celestial neighbors, Mars and Venus. Students will use this data to make predictions about the nature of life on Earth given higher CO2 levels. We present lessons meant to give students time to reflect upon their daily lives and find small ways to help reduce their carbon footprint. They will be presented with information on alternative forms of energy and be given a summative assessment. Once refined, this and all NASA LIFT-OFF instructional cases will made available online for use by any interested teacher. For more information go to http://nasaliftoff.merlot.org/.
NASA Astrophysics Data System (ADS)
Chu, Shu-Chun
2009-02-01
This paper introduces a scheme for generation of vortex laser beams from a solid-state laser with off-axis laser-diode pumping. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p × p vortex array beams from Ince-Gaussian modes, IGep,p modes. An incident IGe p,p laser beam of variety order p can easily be generated from an end-pumped solid-state laser with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation and discusses beam propagation effects. The formation of ordered transverse emission patterns have applications in a variety of areas such as optical data storage, distribution, and processing that exploit the robustness of soliton and vortex fields and optical manipulations of small particles and atoms in the featured intensity distribution.
Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off
She, Zhe; DiFalco, Andrea; Hähner, Georg
2012-01-01
Summary Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around −0.7 V versus Cu2+/Cu and a growth phase at around −0.35 V versus Cu2+/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off. PMID:22428101
Low Boom Configuration Analysis with FUN3D Adjoint Simulation Framework
NASA Technical Reports Server (NTRS)
Park, Michael A.
2011-01-01
Off-body pressure, forces, and moments for the Gulfstream Low Boom Model are computed with a Reynolds Averaged Navier Stokes solver coupled with the Spalart-Allmaras (SA) turbulence model. This is the first application of viscous output-based adaptation to reduce estimated discretization errors in off-body pressure for a wing body configuration. The output adaptation approach is compared to an a priori grid adaptation technique designed to resolve the signature on the centerline by stretching and aligning the grid to the freestream Mach angle. The output-based approach produced good predictions of centerline and off-centerline measurements. Eddy viscosity predicted by the SA turbulence model increased significantly with grid adaptation. Computed lift as a function of drag compares well with wind tunnel measurements for positive lift, but predicted lift, drag, and pitching moment as a function of angle of attack has significant differences from the measured data. The sensitivity of longitudinal forces and moment to grid refinement is much smaller than the differences between the computed and measured data.
In Search of the Physics: NASA's Approach to Airframe Noise
NASA Technical Reports Server (NTRS)
Macaraeg, Michele G.; Lockard, David P.; Streett, Craig L.
1999-01-01
An extensive numerical and experimental study of airframe noise mechanisms associated with a subsonic high-lift system has been performed at NASA Langley Research Center (LaRC). Investigations involving both steady and unsteady computations and experiments on small-scale models with part-span flaps and full-span flaps are presented. Both surface (steady and unsteady pressure measurements, hot films, oil flows, pressure sensitive paint) and off-surface (5 holeprobe, particle-imaged velocimetry, laser velocimetry, laser light sheet measurements) were taken in the LaRC Quiet Flow Facility (QFF) and several hard-wall tunnels. Experiments in the Low Turbulence Pressure Tunnel (LTPT) included Reynolds number variations up to flight conditions. Successful microphone array measurements were also taken providing both acoustic source maps on the model, and quantitative spectra. Critical directivity measurements were obtained in the QFF. NASA Langley unstructured and structured Reynolds-Averaged Navier-Stokes codes modeled the steady aspects of the flows. Excellent comparisons with surface and off-surface experimental data were obtained. Subsequently, these meanflow calculations were utilized in both linear stability and direct numerical simulations of the flow fields to calculate unsteady surface pressures and farfield acoustic spectra. Accurate calculations were critical in obtaining not only noise source characteristics, but shear layer correction data as well. Techniques utilized in these investigations as well as brief overviews of the results are given.
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Endeavour on top lifts of
NASA Technical Reports Server (NTRS)
2001-01-01
NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Endeavour on top lifts off from Edwards Air Force Base to begin its ferry flight back to the Kennedy Space Center in Florida.
A large array of high-performance artificial stars using airship-supported small mirrors
NASA Astrophysics Data System (ADS)
Content, Robert; Foxwell, Mark; Murray, Graham J.
2004-10-01
We propose a practical system that can provide a large number of high performance artificial stars, of the order of a few hundred, using an array of small mirrors on an airship supported platform illuminated from the ground by a laser. Our concept offers several advantages over other guide star schemes: Airborne mirror arrays can furnish tip-tilt information; they also permit a considerable reduction in the total ground-laser power required; high intensity guide stars with very small angular image size are possible; and finally they offer very low scattered parasite laser light. More basic & simpler launch-laser & AO technologies can therefore be employed, with potentially huge cost savings, with potentially significant improvement in the quality of the AO correction. The general platform scheme and suitable lift technologies are also discussed. A novel concept for achieving precise positioning is presented whereby the platform & the lifting vehicle are linked by a tether, the platform having a degree of independent control. Our proposal would employ as the lift vehicle an autonomous high altitude airship of the type currently under widespread development in the commercial sector, for use as hubs for telecommunication networks, mobile telephone relay stations, etc.
NASA Technical Reports Server (NTRS)
Cabra, R.; Chen, J. Y.; Dibble, R. W.; Hamano, Y.; Karpetis, A. N.; Barlow, R. S.
2002-01-01
An experimental and numerical investigation is presented of a H2/N2 turbulent jet flame burner that has a novel vitiated coflow. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces. Additionally, since the vitiated gases are coflowing, the burner allows for exploration of recirculation chemistry without the corresponding fluid mechanics of recirculation. Thus the vitiated coflow burner design facilitates the development of chemical kinetic combustion models without the added complexity of recirculation fluid mechanics. Scalar measurements are reported for a turbulent jet flame of H2/N2 in a coflow of combustion products from a lean ((empty set) = 0.25) H2/Air flame. The combination of laser-induced fluorescence, Rayleigh scattering, and Raman scattering is used to obtain simultaneous measurements of the temperature, major species, as well as OH and NO. Laminar flame calculation with equal diffusivity do agree when the premixing and preheating that occurs prior to flame stabilization is accounted for in the boundary conditions. Also presented is an exploratory pdf model that predicts the flame's axial profiles fairly well, but does not accurately predict the lift-off height.
Scattering of laser light - more than just smoke and mirrors
NASA Technical Reports Server (NTRS)
Davis, Anthony B.; Love, Stephen; Cahalan, Robert
2004-01-01
A short course on off-beam cloud lidar is given. Specific topics addressed include: motivation and goal of off-beam cloud lidar; diffusion physics; numeric amalysis; and validity of the diffusion approximation. A demo of the process is included.
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Norman, Thomas R.
1987-01-01
A wind tunnel experiment simulating a steady three-dimensional helicopter rotor blade/vortex interaction is reported. The experimental configuration consisted of a vertical semispan vortex-generating wing, mounted upstream of a horizontal semispan rotor blade airfoil. A three-dimensional laser velocimeter was used to measure the velocity field in the region of the blade. Sectional lift coefficients were calculated by integrating the velocity field to obtain the bound vorticity. Total lift values, obtained by using an internal strain-gauge balance, verified the laser velocimeter data. Parametric variations of vortex strength, rotor blade angle of attack, and vortex position relative to the rotor blade were explored. These data are reported (with attention to experimental limitations) to provide a dataset for the validation of analytical work.
Hydrodynamic lift for single cell manipulation in a femtosecond laser fabricated optofluidic chip
NASA Astrophysics Data System (ADS)
Bragheri, Francesca; Osellame, Roberto
2017-08-01
Single cell sorting based either on fluorescence or on mechanical properties has been exploited in the last years in microfluidic devices. Hydrodynamic focusing allows increasing the efficiency of theses devices by improving the matching between the region of optical analysis and that of cell flow. Here we present a very simple solution fabricated by femtosecond laser micromachining that exploits flow laminarity in microfluidic channels to easily lift the sample flowing position to the channel portion illuminated by the optical waveguides used for single cell trapping and analysis.
Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral
2015-02-13
KSC-2015-1363 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers
Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral
2015-02-13
Open Image KSC-2015-1368.KSC-2015-1368 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers
STS-56 Discovery, OV-103, lifts off from KSC LC Pad 39B into darkness
NASA Technical Reports Server (NTRS)
1993-01-01
STS-56 Discovery, Orbiter Vehicle (OV) 103, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B into the early morning darkness at 1:29 am (Eastern Daylight Time (EDT)). OV-103, atop its external tank (ET) and flanked by solid rocket boosters (SRBs), rises above the mobile launcher platform. Exhaust plumes trail from the SRBs. The glow of the SRB / space shuttle main engine (SSME) firings illuminate the fixed service structure (FSS) tower. Trees are silhouetted against the launch fireworks in the foreground.
NASA Technical Reports Server (NTRS)
Jia, Kezhong; Venuturumilli, Rajasekhar; Ryan, Brandon J.; Chen, Lea-Der
2001-01-01
Enclosed diffusion flames are commonly found in practical combustion systems, such as the power-plant combustor, gas turbine combustor, and jet engine after-burner. In these systems, fuel is injected into a duct with a co-flowing or cross-flowing air stream. The diffusion flame is found at the surface where the fuel jet and oxygen meet, react, and consume each other. In combustors, this flame is anchored at the burner (i.e., fuel jet inlet) unless adverse conditions cause the flame to lift off or blow out. Investigations of burner stability study the lift off, reattachment, and blow out of the flame. Flame stability is strongly dependent on the fuel jet velocity. When the fuel jet velocity is sufficiently low, the diffusion flame anchors at the burner rim. When the fuel jet velocity is increased, the flame base gradually moves downstream. However, when the fuel jet velocity increases beyond a critical value, the flame base abruptly jumps downstream. When this "jump" occurs, the flame is said to have reached its lift-off condition and the critical fuel jet velocity is called the lift-off velocity. While lifted, the flame is not attached to the burner and it appears to float in mid-air. Flow conditions are such that the flame cannot be maintained at the burner rim despite the presence of both fuel and oxygen. When the fuel jet velocity is further increased, the flame will eventually extinguish at its blowout condition. In contrast, if the fuel jet velocity of a lifted flame is reduced, the flame base moves upstream and abruptly returns to anchor at the burner rim. The fuel jet velocity at reattachment can be much lower than that at lift off, illustrating the hysteresis effect present in flame stability. Although there have been numerous studies of flame stability, the controlling mechanisms are not well understood. This uncertainty is described by Pitts in his review of various competing theories of lift off and blow out in turbulent jet diffusion flames. There has been some research on the stability of laminar flames, but most studies have focused on turbulent flames. It is also well known that the airflow around the fuel jet can significantly alter the lift off, reattachment and blow out of the jet diffusion flame. Buoyant convection is sufficiently strong in 1-g flames that it can dominate the flow-field, even at the burner rim. In normal-gravity testing, it is very difficult to delineate the effects of the forced airflow from those of the buoyancy-induced flow. Comparison of normal-gravity and microgravity flames provides clear indication of the influence of forced and buoyant flows on the flame stability. The overall goal of the Enclosed Laminar Flames (ELF) investigation (STS-87/USMP-4 Space Shuttle mission, November to December 1997) is to improve our understanding of the effects of buoyant convection on the structure and stability of co-flow diffusion flame, e.g., see http://zeta.lerc.nasa.gov/expr/elf.htm. The ELF hardware meets the experiment hardware limit of the 35-liter interior volume of the glovebox working area, and the 180x220-mm dimensions of the main door. The ELF experiment module is a miniature, fan-driven wind tunnel, equipped with a gas supply system. A 1.5-mm diameter nozzle is located on the duct's flow axis. The cross section of the duct is nominally a 76-mm square with rounded corners. The forced air velocity can be varied from about 0.2 to 0.9 m/s. The fuel flow can be set as high as 3 std. cubic centimeter (cc) per second, which corresponds to a nozzle exit velocity of up to 1.70 m/s. The ELF hardware and experimental procedure are discussed in detail in Brooker et al. The 1-g test results are repeated in several experiments following the STS-87 Mission. The ELF study is also relevant to practical systems because the momentum-dominated behavior of turbulent flames can be achieved in laminar flames in microgravity. The specific objectives of this paper are to evaluate the use reduced model for simulation of flame lift-off and blowout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, A. V.; Gupta, A.; Althammer, M.
We investigate the switching characteristics in BaTiO{sub 3}-based ferroelectric tunnel junctions patterned in a capacitive geometry with circular Ru top electrode with diameters ranging from ∼430 to 2300 nm. Two different patterning schemes, viz., lift-off and ion-milling, have been employed to examine the variations in the ferroelectric polarization, switching, and tunnel electro-resistance resulting from differences in the pattering processes. The values of polarization switching field are measured and compared for junctions of different diameter in the samples fabricated using both patterning schemes. We do not find any specific dependence of polarization switching bias on the size of junctions in both samplemore » stacks. The junctions in the ion-milled sample show up to three orders of resistance change by polarization switching and the polarization retention is found to improve with increasing junction diameter. However, similar switching is absent in the lift-off sample, highlighting the effect of patterning scheme on the polarization retention.« less
1997-07-01
STS-94 Payload Specialist Roger K. Crouch is helped into his launch/entry suit by a suit technician in the Operations and Checkout (O&C) Building after the suit has been given a pressure test. He is the Chief Scientist of the NASA Microgravity Space and Applications Division. He also has served as a Program Scientist for previous Spacelab microgravity missions and is an expert in semiconductor crystal growth. Since Crouch has more than 25 years of experience as a materials scientist, he will be concentrating on the five physics of materials processing experiments in the Middeck Glovebox Facility on the Blue shift. He will also share the workload with Thomas by monitoring the materials furnace experiments during this time. Crouch and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 1:50 p.m. EDT, July 1. The launch window was opened 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reached the space center
1997-07-01
STS-94 Mission Specialist Donald A. Thomas smiles as a suit technician helps him into his launch/entry suit in the Operations and Checkout (O&C) Building. He has flown on STS-83, STS-70 and STS-65. He holds a doctorate in materials science and has been the Principal Investigator for a Space Shuttle crystal growth experiment. Because of his background in materials science, Thomas will be concentrating his efforts during the Red shift on the five experiments in this discipline in the Large Isothermal Furnace. He also will work on the ten materials science investigations in the Electromagnetic Containerless Processing Facility and four that will be measuring the effects of microgravity and motion in the orbiter on the experiments. Thomas and six fellow crew members will shortly depart the O&C and head for Launch Pad 39A, where the Space Shuttle Columbia will lift off during a launch window that opens at 1:50 p.m. EDT, July 1. The launch window was opened 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reached the space center
Space Shuttle Discovery lifts off successfully
NASA Technical Reports Server (NTRS)
1998-01-01
As if sprung from the rolling exhaust clouds below, Space Shuttle Discovery shoots into the heavens over the blue Atlantic Ocean from Launch Pad 39B on mission STS-95. Lifting off at 2:19 p.m. EST, Discovery carries a crew of six, including Payload Specialist John H. Glenn Jr., senator from Ohio, who is making his second voyage into space after 36 years. Other crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Payload Specialist Chiaki Mukai, (M.D., Ph.D.), with the National Space Development Agency of Japan (NASDA), Mission Specialist Stephen K. Robinson, Mission Specialist Pedro Duque of Spain, representing the European Space Agency (ESA), and Mission Specialist Scott E. Parazynski. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Discovery is expected to return to KSC at 11:49 a.m. EST on Nov. 7.
Study on off-axis detection of pulsed laser in atmosphere
NASA Astrophysics Data System (ADS)
Liang, Weiwei
2018-02-01
Laser communication, designation, and ranging are point to point and have a high degree of specificity, current laser detection, such as laser warning receiver system, could detect the scattering laser from the off-axis distance by scattering track on natural aerosols, which is helpful to locate the laser source. However, the intensity of the scattering laser is extremely weak and affected by many factors, in order to evaluate the detection characteristic, a simplified model of off-axis detection for scattering laser in the lower atmosphere based on the Mie scattering theory is presented in this paper, the performances of the off-axis laser detection in different conditions such as off-axis distance, visibility, incidence angle, and delay time are investigated.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods is lifted off its stand to move it toward Atlantis for installation. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
Metal oxide multilayer hard mask system for 3D nanofabrication
NASA Astrophysics Data System (ADS)
Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko
2018-02-01
We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.
NASA Technical Reports Server (NTRS)
Sewell, James S.; Bozada, Christopher A.
1994-01-01
Advanced radar and communication systems rely heavily on state-of-the-art microelectronics. Systems such as the phased-array radar require many transmit/receive (T/R) modules which are made up of many millimeter wave - microwave integrated circuits (MMIC's). The heart of a MMIC chip is the Gallium Arsenide (GaAs) field-effect transistor (FET). The transistor gate length is the critical feature that determines the operating frequency of the radar system. A smaller gate length will typically result in a higher frequency. In order to make a phased array radar system economically feasible, manufacturers must be capable of producing very large quantities of small-gate-length MMIC chips at a relatively low cost per chip. This requires the processing of a large number of wafers with a large number of chips per wafer, minimum processing time, and a very high chip yield. One of the bottlenecks in the fabrication of MIMIC chips is the transistor gate definition. The definition of sub-half-micron gates for GaAs-based field-effect transistors is generally performed by direct-write electron beam lithography (EBL). Because of the throughput limitations of EBL, the gate-layer fabrication is conventionally divided into two lithographic processes where EBL is used to generate the gate fingers and optical lithography is used to generate the large-area gate pads and interconnects. As a result, two complete sequences of resist application, exposure, development, metallization and lift-off are required for the entire gate structure. We have baselined a hybrid process, referred to as EBOL (electron beam/optical lithography), in which a single application of a multi-level resist is used for both exposures. The entire gate structure, (gate fingers, interconnects and pads), is then formed with a single metallization and lift-off process. The EBOL process thus retains the advantages of the high-resolution E-beam lithography and the high throughput of optical lithography while essentially eliminating an entire lithography/metallization/lift-off process sequence. This technique has been proven to be reliable for both trapezoidal and mushroom gates and has been successfully applied to metal-semiconductor and high-electron-mobility field-effect transistor (MESFET and HEMT) wafers containing devices with gate lengths down to 0.10 micron and 75 x 75 micron gate pads. The yields and throughput of these wafers have been very high with no loss in device performance. We will discuss the entire EBOL process technology including the multilayer resist structure, exposure conditions, process sensitivities, metal edge definition, device results, comparison to the standard gate-layer process, and its suitability for manufacturing.
NASA Astrophysics Data System (ADS)
Sewell, James S.; Bozada, Christopher A.
1994-02-01
Advanced radar and communication systems rely heavily on state-of-the-art microelectronics. Systems such as the phased-array radar require many transmit/receive (T/R) modules which are made up of many millimeter wave - microwave integrated circuits (MMIC's). The heart of a MMIC chip is the Gallium Arsenide (GaAs) field-effect transistor (FET). The transistor gate length is the critical feature that determines the operating frequency of the radar system. A smaller gate length will typically result in a higher frequency. In order to make a phased array radar system economically feasible, manufacturers must be capable of producing very large quantities of small-gate-length MMIC chips at a relatively low cost per chip. This requires the processing of a large number of wafers with a large number of chips per wafer, minimum processing time, and a very high chip yield. One of the bottlenecks in the fabrication of MIMIC chips is the transistor gate definition. The definition of sub-half-micron gates for GaAs-based field-effect transistors is generally performed by direct-write electron beam lithography (EBL). Because of the throughput limitations of EBL, the gate-layer fabrication is conventionally divided into two lithographic processes where EBL is used to generate the gate fingers and optical lithography is used to generate the large-area gate pads and interconnects. As a result, two complete sequences of resist application, exposure, development, metallization and lift-off are required for the entire gate structure. We have baselined a hybrid process, referred to as EBOL (electron beam/optical lithography), in which a single application of a multi-level resist is used for both exposures. The entire gate structure, (gate fingers, interconnects and pads), is then formed with a single metallization and lift-off process. The EBOL process thus retains the advantages of the high-resolution E-beam lithography and the high throughput of optical lithography while essentially eliminating an entire lithography/metallization/lift-off process sequence. This technique has been proven to be reliable for both trapezoidal and mushroom gates and has been successfully applied to metal-semiconductor and high-electron-mobility field-effect transistor (MESFET and HEMT) wafers containing devices with gate lengths down to 0.10 micron and 75 x 75 micron gate pads. The yields and throughput of these wafers have been very high with no loss in device performance. We will discuss the entire EBOL process technology including the multilayer resist structure, exposure conditions, process sensitivities, metal edge definition, device results, comparison to the standard gate-layer process, and its suitability for manufacturing.
2012-08-30
CAPE CANAVERAL, Fla. – Spotlights bounce off the clouds over Space Launch Complex 41 on Cape Canaveral Air Force Station as NASA's Radiation Belt Storm Probes, or RBSP, lift off the pad at 4:05 a.m. EDT aboard a United Launch Alliance Atlas V rocket. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Ben Smegelsky and Gary Thompson
Nishida, Masahiro; Nakayama, Kento; Sakota, Daisuke; Kosaka, Ryo; Maruyama, Osamu; Kawaguchi, Yasuo; Kuwana, Katsuyuki; Yamane, Takashi
2016-06-01
The effect of the flow path geometry of the impeller on the lift-off and tilt of the rotational axis of the impeller against the hydrodynamic force was investigated in a centrifugal blood pump with an impeller supported by a single-contact pivot bearing. Four types of impeller were compared: the FR model with the flow path having both front and rear cutouts on the tip, the F model with the flow path having only a front cutout, the R model with only a rear cutout, and the N model with a straight flow path. First, the axial thrust and the movement about the pivot point, which was loaded on the surface of the impeller, were calculated using computational fluid dynamics (CFD) analysis. Next, the lift-off point and the tilt of the rotational axis of the impeller were measured experimentally. The CFD analysis showed that the axial thrust increased gently in the FR and R models as the flow rate increased, whereas it increased drastically in the F and N models. This difference in axial thrust was likely from the higher pressure caused by the smaller circumferential velocity in the gap between the top surface of the impeller and the casing in the FR and R models than in the F and N models, which was caused by the rear cutout. These results corresponded with the experimental results showing that the impellers lifted off in the F and N models as the flow rate increased, whereas it did not in the FR and R models. Conversely, the movement about the pivot point increased in the direction opposite the side with the pump outlet as the flow rate increased. However, the tilt of the rotational axis of the impeller, which oriented away from the pump outlet, was less than 0.8° in any model under any conditions, and was considered to negligibly affect the rotational attitude of the impeller. These results confirm that a rear cutout prevents lift-off of the impeller caused by a decrease in the axial thrust. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.
1976-01-01
Low-aspect-ratio highly swept arrow-wing supersonic aircraft possess high levels of aerodynamic efficiency at supersonic cruising speeds, however, their inherently poor low-speed lift characteristics require design constraints that compromise supersonic performance. The data discussed in this paper were obtained in wind tunnel tests with supersonic crusing configurations, in which propulsive-lift concepts were used to improve low-speed performance. The data show that the increased low-speed lift provided by propulsive-lift permits reduction of both wing size and installed thrust. This yields a batter engine/airframe match for improved supersonic cruise efficiency and range, while still providing acceptable take-off field lengths.
A Leadership Intervention to Further the Training of Female Faculty (LIFT-OFF) in Radiology.
Spalluto, Lucy B; Spottswood, Stephanie E; Deitte, Lori A; Chern, Alexander; Dewey, Charlene M
2017-06-01
Women are under-represented in the field of radiology, occupy a minority of leadership positions, and, at our institution, have not achieved the same level of academic success as their male counterparts. Consequently, the authors designed, implemented, and evaluated the Leadership Intervention to Further the Training of Female Faculty (LIFT-OFF) program to (1) improve access to opportunities for women's faculty development and advancement, and (2) improve clarification of expectations about the role and path of advancement. LIFT-OFF was developed based on the results of a needs assessment survey. The results generated 14 priority topics, which served as the basis for educational modules conducted by expert speakers. Module effectiveness was assessed with pre- and postsurveys to elicit participant knowledge about the targeted subject matter. A formative program evaluation was performed at the completion of year 1 of 2 to assess outcomes and impacts to date. Seventeen of 55 (31%) educational module post-survey questions demonstrated a statistically significant (P < 0.05) increase in "yes" responses, indicating an improved understanding of targeted information. At year 1, 75% of the participants indicated that the program improved access to faculty development opportunities and 62% reported improved access to career advancement opportunities. Satisfaction with pace of professional advancement increased from 25% to 46% for junior women faculty (P = 0.046). Faculty development programs such as LIFT-OFF can provide career development opportunities and executive skills necessary for women to achieve academic career success and assume leadership positions. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Finite-rate chemistry effects in a Mach 2 reacting flow
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.; Jarrett, O., Jr.; Northam, G. B.
1991-01-01
UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) are combined and applied to a supersonic flame. For the first time, simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are obtained with a 'single' excimer laser in a supersonic-lifted hydrogen-air diffusion flame. In the supersonic flame, a small amount of reaction occurs upstream of the lifted flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and high total enthalpy fluctuations lead to nonequilibrium values of temperature, and major and minor species concentrations. Combustion occurs farther downstream of the lifted region where slow three-body recombination reactions result in superequilibrium OH concentrations that depress the temperatures below their equilibrium values. Farther downstream, ambient air entrainment contaminates flame properties.
NASA Astrophysics Data System (ADS)
Schulte-Huxel, H.; Blankemeyer, S.; Kajari-Schröder, S.; Brendel, R.
2014-03-01
We investigate a laser welding process for contacting aluminum metallized crystalline silicon solar cells to a 10-μm-thick aluminum layers on a glass substrate. The reduction of the solar cell metallization thickness is analyzed with respect to laser induced damage using SiNx passivated silicon wafers. Additionally, we measure the mechanical stress of the laser welds by perpendicular tear-off as well as the electrical contact resistance. We apply two types of laser processes; one uses one to eight 20-ns-laser pulses at 355 nm with fluences between 12 and 40 J/cm2 and the other single 1.2-μs-laser pulses at 1064 nm with 33 to 73 J/cm2. Ns laser pulses can contact down to 1-μm-thick aluminum layers on silicon without inducing laser damage to the silicon and lead to sufficient strong mechanical contact. In case of μs laser pulses the limiting thickness is 2 μm.
Stacking of ZnSe/ZnCdSe Multi-Quantum Wells on GaAs (100) by Epitaxial Lift-Off
NASA Astrophysics Data System (ADS)
Eldose, N. M.; Zhu, J.; Mavridi, N.; Prior, Kevin; Moug, R. T.
2018-05-01
Here we present stacking of GaAs/ZnSe/ZnCdSe single-quantum well (QW) structures using epitaxial lift-off (ELO). Molecular beam epitaxy (MBE)-grown II-VI QW structure was lifted using our standard ELO technique. The QW structures were transferred onto glass plates and then subsequent layers stacked on top of each other to form a triple-QW structure. This was compared to an MBE-grown multiple-QW (MQW) structure of similar design. Low-temperature (77 K) photoluminescence (PL) spectroscopy was used to compare the two structures and showed no obvious degradation of the ELO stacked layer. It was observed that by stacking the single QW layer on itself we could increase the PL emission intensity beyond that of the grown MQW structure while maintaining narrow line width.
RLV-TD Flight Measured Aeroacoustic Levels and its Comparison with Predictions
NASA Astrophysics Data System (ADS)
Manokaran, K.; Prasath, M.; Venkata Subrahmanyam, B.; Ganesan, V. R.; Ravindran, Archana; Babu, C.
2017-12-01
The Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a wing body configuration successfully flight tested. One of the important flight measurements is the acoustic levels. There were five external microphones, mounted on the fuselage-forebody, wing, vertical tail, inter-stage (ITS) and core base shroud to measure the acoustic levels from lift-off to splash down. In the ascent phase, core base shroud recorded the overall maximum at both lift-off and transonic conditions. In-flight noise levels measured on the wing is second highest, followed by fuselage and vertical tail. Predictions for flight trajectory compare well at all locations except for vertical tail (4.5 dB). In the descent phase, maximum measured OASPL occurs at transonic condition for the wing, followed by vertical tail and fuselage. Predictions for flight trajectory compare well at all locations except for wing (- 6.0 dB). Spectrum comparison is good in the ascent phase compared to descent phase. Roll Reaction control system (RCS) thruster firing signature is seen in the acoustic measurements on the wing and vertical tail during lift-off.
Directed self-assembly of nanogold using a chemically modified nanopatterned surface
NASA Astrophysics Data System (ADS)
Nidetz, Robert; Kim, Jinsang
2012-02-01
Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.
Choi, Dongchul; Hong, Sung-Jei; Son, Yongkeun
2014-11-27
In this study, indium-tin-oxide (ITO) nanoparticles were simply recovered from the thin film transistor-liquid crystal display (TFT-LCD) panel scraps by means of lift-off method. This can be done by dissolving color filter (CF) layer which is located between ITO layer and glass substrate. In this way the ITO layer was easily lifted off the glass substrate of the panel scrap without panel crushing. Over 90% of the ITO on the TFT-LCD panel was recovered by using this method. After separating, the ITO was obtained as particle form and their characteristics were investigated. The recovered product appeared as aggregates of particles less than 100 nm in size. The weight ratio of In/Sn is very close to 91/9. XRD analysis showed that the ITO nanoparticles have well crystallized structures with (222) preferred orientation even after recovery. The method described in this paper could be applied to the industrial recovery business for large size LCD scraps from TV easily without crushing the glass substrate.
Choi, Dongchul; Hong, Sung-Jei; Son, Yongkeun
2014-01-01
In this study, indium-tin-oxide (ITO) nanoparticles were simply recovered from the thin film transistor-liquid crystal display (TFT-LCD) panel scraps by means of lift-off method. This can be done by dissolving color filter (CF) layer which is located between ITO layer and glass substrate. In this way the ITO layer was easily lifted off the glass substrate of the panel scrap without panel crushing. Over 90% of the ITO on the TFT-LCD panel was recovered by using this method. After separating, the ITO was obtained as particle form and their characteristics were investigated. The recovered product appeared as aggregates of particles less than 100 nm in size. The weight ratio of In/Sn is very close to 91/9. XRD analysis showed that the ITO nanoparticles have well crystallized structures with (222) preferred orientation even after recovery. The method described in this paper could be applied to the industrial recovery business for large size LCD scraps from TV easily without crushing the glass substrate. PMID:28788267
NASA Technical Reports Server (NTRS)
Lyon, Jeffery A.
1995-01-01
Optimal control theory is employed to determine the performance of abort to orbit (ATO) and return to launch site (RTLS) maneuvers for a single-stage to orbit vehicle. The vehicle configuration examined is a seven engine, winged-body vehicle, that lifts-off vertically and lands horizontally. The abort maneuvers occur as the vehicle ascends to orbit and are initiated when the vehicle suffers an engine failure. The optimal control problems are numerically solved in discretized form via a nonlinear programming (NLP) algorithm. A description highlighting the attributes of this NLP method is provided. ATO maneuver results show that the vehicle is capable of ascending to orbit with a single engine failure at lift-off. Two engine out ATO maneuvers are not possible from the launch pad, but are possible after launch when the thrust to weight ratio becomes sufficiently large. Results show that single engine out RTLS maneuvers can be made for up to 180 seconds after lift-off and that there are scenarios for which RTLS maneuvers should be performed instead of ATP maneuvers.
NASA Technical Reports Server (NTRS)
Talay, T. A.; White, N. H.; Naftel, J. C.
1984-01-01
Simulations of aerobraking trajectories of aeroassisted orbital transfer vehicles (AOTV's) returning from geosynchronous orbit were analyzed to examine the effects of high-altitude viscous interactions and off-nominal atmospheres on AOTV return weight, heating, and loads performance. Viscous interaction effects encountered at high altitudes had little detrimental effect on the return weight capabilities for AOTV's representing a range of lift/drag ratios. Most of the AOTV return weight increase over an all-propulsive OTV occurred for a low lift/drag ratio. Smaller increases in return weight were observed for higher lift/drag ratios, at the expense of significantly higher heating and aerodynamic loads. Off-nominal atmospheres based on Shuttle-derived data and multipliers on a U.S. Standard Atmosphere were considered. AOTV's intended for entry under standard atmospheric conditions either deorbited during the pass through the off-nominal atmospheres or missed the target phasing orbit by wide margins. The AOTV's could successfully negotiate these atmospheres when new bank-angle histories were implemented with little loss and sometimes with a gain in return weight.
Additive and Photochemical Manufacturing of Copper
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-01-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733
Additive and Photochemical Manufacturing of Copper
NASA Astrophysics Data System (ADS)
Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung
2016-12-01
In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.
General view of the High Bay area of the Space ...
General view of the High Bay area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view shows the specially modified fork lift used for horizontal installation and removal of the SSMEs into and out of the Orbiters. SSME number 2059 is in the background and is in the process of being scanned with a high-definition laser scanner to acquire field documentation for the production of historic documentatin. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Astrophysics Data System (ADS)
Bobkowski, Romuald; Li, Yunlei; Fedosejevs, Robert; Broughton, James N.
1996-05-01
A process for the fabrication of surface acoustic wave (SAW) devices with line widths of 250 nm and less, based on x-ray lithography using a laser-plasma source has been developed. The x-ray lithography process is based on keV x-ray emission from Cu plasma produced by 15 Hz, 50 ps, 248 nm KrF excimer laser pulses. The full structure of a 2 GHz surface acoustic wave filter with interdigital transducers in a split-electrode geometry has been manufactured. The devices require patterning a 150 nm thick aluminum layer on a LiNbO3 substrate with electrodes 250 nm wide. The manufacturing process has two main steps: x-ray mask fabrication employing e-beam lithography and x-ray lithography to obtain the final device. The x-ray masks are fabricated on 1 micrometers thick membranes of Si2N4. The line patterns on the masks are written into PMMA resist using a scanning electron microscope which has been interfaced to a personal computer equipped to control the x and y scan voltages. The opaque regions of the x-ray mask are then formed by electroplating fine grain gold into the open spaces in the etched PMMA. The mask and sample are mounted in an exposure cassette with a fixed spacer of 10 micrometers separating them. The sample consists of a LiNbO3 substrate coated with Shipley XP90104C x-ray resist which has been previously characterized. The x-ray patterning is carried out in an exposure chamber with flowing helium background gas in order to minimize debris deposition on the filters. After etching the x-ray resist, the final patterns are produced using metallization and a standard lift-off technique. The SAW filters are then bonded and packaged onto impedance matching striplines. The resultant devices are tested using Scalar Network Analyzers. The final devices produced had a center frequency of 1.93 GHz with a bandwidth of 98 MHz, close to the expected performance of our simple design.
Banas, A; Banas, K; Breese, M B H; Loke, J; Lim, S K
2014-07-01
Fingerprint evidence offers great value to criminal investigations since it is an internationally recognized and established means of human identification. With recent advances in modern technology, scientists have started analyzing not only the ridge patterns of fingerprints but also substances which can be found within them. The aim of this work was to determine whether Fourier transform infrared (FTIR) spectromicroscopy could be used to detect contamination in a fingerprint which was dusted with powder (a technique already recognized as an effective and reliable method for developing latent fingerprints) and subsequently lifted off with adhesive tape. Explosive materials (pentaerythritol tetranitrate, C-4, TNT) and noncontrolled substances (sugar, aspirin) were used to prepare contaminated fingerprints on various substrates. Freshly deposited fingermarks with powders which were lifted off with adhesive tapes (provided by Singapore Police Force) were analyzed using a Bruker Hyperion 2000 microscope at the ISMI beamline (Singapore Synchrotron Light Source) with an attenuated total reflection objective. FTIR spectroscopy is a nondestructive technique which requires almost no sample preparation. Further, the fingerprint under analysis remains in pristine condition, allowing subsequent analysis if necessary. All analyzed substances were successfully distinguished using their FTIR spectra in powdered and lifted fingerprints. This method has the potential to significantly impact forensic science by greatly enhancing the information that can be obtained from the study of fingerprints.
Analysis of e-beam impact on the resist stack in e-beam lithography process
NASA Astrophysics Data System (ADS)
Indykeiwicz, K.; Paszkiewicz, B.
2013-07-01
Paper presents research on the sub-micron gate, AlGaN /GaN HEMT type transistors, fabrication by e-beam lithography and lift-off technique. The impact of the electron beam on the resists layer and the substrate was analyzed by MC method in Casino v3.2 software. The influence of technological process parameters on the metal structures resolution and quality for paths 100 nm, 300 nm and 500 nm wide and 20 μm long was studied. Qualitative simulation correspondences to the conducted experiments were obtained.
NASA Astrophysics Data System (ADS)
Frankfater, Cheryl; Jiang, Xuntian; Hsu, Fong-Fu
2018-05-01
Charge remote fragmentation (CRF) elimination of CnH2n+2 residues along the aliphatic tail of long chain fatty acid is hall mark of keV high-energy CID fragmentation process. It is an important fragmentation pathway leading to structural characterization of biomolecules by CID tandem mass spectrometry. In this report, we describe MALDI LIFT TOF-TOF mass spectrometric approach to study a wide variety of fatty acids (FAs), which were derivatized to N-(4-aminomethylphenyl) pyridinium (AMPP) derivative, and desorbed as M+ ions by laser with or without matrix. The high-energy MALDI LIFT TOF-TOF mass spectra of FA-AMPP contain fragment ions mainly deriving from CRF cleavages of CnH2n+2 residues, as expected. These ions together with ions from specific cleavages of the bond(s) involving the functional group within the molecule provide more complete structural identification than those produced by low-energy CID/HCD using a linear ion-trap instrument. However, this LIFT TOF-TOF mass spectrometric approach inherits low sensitivity, a typical feature of high-energy CID tandem mass spectrometry. Because of the lack of unit mass precursor ion selection with sufficient sensitivity of the current LIFT TOF-TOF technology, product ion spectra from same chain length fatty acids with difference in one or two double bonds in a mixture are not distinguishable.
STS-49 Endeavour, Orbiter Vehicle (OV) 105, lifts off from KSC LC Pad 39B
1992-05-07
STS049-S-251 (7 May 1992) --- The Space Shuttle Endeavour soars toward Earth orbit where a crew of seven NASA astronauts will spend at least a week. Endeavour, the newest orbiter in NASA's Space Shuttle fleet, lifted off from Pad 39B at 7:40 p.m. (EDT), May 7, 1992. A diamond shock effect can be seen beneath the three main engines. Onboard are astronauts Daniel C. Brandenstein, mission commander; Kevin P. Chilton, pilot; and Richard J. Hieb, Bruce E. Melnick, Pierre J. Thuot, Kathryn C. Thornton and Thomas D. Akers, all mission specialists.
STS-45 Atlantis, OV-104, lifts off from KSC Launch Complex (LC) Pad
1992-03-24
STS-45 Atlantis, Orbiter Vehicle (OV) 104, lifts off from a Kennedy Space Center (KSC) Launch Complex (LC) Pad at 8:13:40:048 am (Eastern Standard Time (EST)). Exhaust billows out the solid rocket boosters (SRBs) as OV-104 atop its external tank (ET) soars above the mobile launcher platform and is nearly clear of the fixed service structure (FSS) tower. The diamond shock effect produced by the space shuttle main engines (SSMEs) is visible. The glow of the SRB/SSME firings is reflected in a nearby waterway. An exhaust cloud covers the launch pad area.
NASA Technical Reports Server (NTRS)
Haynes, Jared; Kenny, Jeremy
2009-01-01
Lift-off acoustic environments for NASA's Ares I - Crew Launch Vehicle are predicted using the second source distribution methodology described in the NASA SP-8072. Three modifications made to the model include a shorter core length approximation, a core termination procedure upon plume deflection, and a new set of directivity indices measured from static test firings of the Reusable Solid Rocket Motor (RSRM). The modified sound pressure level predictions increased more than 5 dB overall, and the peak levels shifted two third-octave bands higher in frequency.
MPLM Raffaello is moved for a weight and balance check in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, an overhead frame lifts the Italian-built Multi-Purpose Logistics Module '''Raffaello''' off its workstand. The module is being moved to a weight-and-balance workstand. Rafaello is the payload on mission STS-100, a Lab outfitting flight. Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001.
1995-05-15
cooled to room temperature. Titanium isopropoxide and zirconium n-propoxide were then added (inside a glove box) to levels that correspond to the...ously patterned with a 200-nm-thick evaporated platinum film. In addition to the platinum there was a 40-nm titanium adhesion layer between the...an etch composed of buffered HF, HC1 and H20 [6]. By using a photoresist lift-off process, the top titanium -gold layer is formed, which provides the
2017-06-06
Preparations are underway to launch the latest resupply run to the International Space Station. Another SpaceX Falcon 9 will lift off from historic Launch Complex 39A. The Dragon spacecraft will spend about a month attached to the space station and return to Earth in early July. The spacecraft is filled with supplies and experiments for more than 250 science and research investigations - all prepared in Kennedy’s world-class Space Station Processing Facility.
Database Driven 6-DOF Trajectory Simulation for Debris Transport Analysis
NASA Technical Reports Server (NTRS)
West, Jeff
2008-01-01
Debris mitigation and risk assessment have been carried out by NASA and its contractors supporting Space Shuttle Return-To-Flight (RTF). As a part of this assessment, analysis of transport potential for debris that may be liberated from the vehicle or from pad facilities prior to tower clear (Lift-Off Debris) is being performed by MSFC. This class of debris includes plume driven and wind driven sources for which lift as well as drag are critical for the determination of the debris trajectory. As a result, NASA MSFC has a need for a debris transport or trajectory simulation that supports the computation of lift effect in addition to drag without the computational expense of fully coupled CFD with 6-DOF. A database driven 6-DOF simulation that uses aerodynamic force and moment coefficients for the debris shape that are interpolated from a database has been developed to meet this need. The design, implementation, and verification of the database driven six degree of freedom (6-DOF) simulation addition to the Lift-Off Debris Transport Analysis (LODTA) software are discussed in this paper.
View southwest, wharf A and timber breakwater, showing sawn off ...
View southwest, wharf A and timber breakwater, showing sawn off section and steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ
Simulation of Acoustic Noise Generated by an Airbreathing, Beam-Powered Launch Vehicle
NASA Astrophysics Data System (ADS)
Kennedy, W. C.; Van Laak, P.; Scarton, H. A.; Myrabo, L. N.
2005-04-01
A simple acoustic model is developed for predicting the noise signature vs. power level for advanced laser-propelled lightcraft — capable of single-stage flights into low Earth orbit. This model predicts the noise levels generated by a pulsed detonation engine (PDE) during the initial lift-off and acceleration phase, for two representative `tractor-beam' lightcraft designs: a 1-place `Mercury' vehicle (2.5-m diameter, 900-kg); and a larger 5-place `Apollo' vehicle (5-m diameter, 5555-kg) — both the subject of an earlier study. The use of digital techniques to simulate the expected PDE noise signature is discussed, and three examples of fly-by noise signatures are presented. The reduction, or complete elimination of perceptible noise from such engines, can be accomplished by shifting the pulse frequency into the supra-audible or sub-audible range.
Establishing security of quantum key distribution without monitoring disturbance
NASA Astrophysics Data System (ADS)
Koashi, Masato
2015-10-01
In conventional quantum key distribution (QKD) protocols, the information leak to an eavesdropper is estimated through the basic principle of quantum mechanics dictated in the original version of Heisenberg's uncertainty principle. The amount of leaked information on a shared sifted key is bounded from above essentially by using information-disturbance trade-off relations, based on the amount of signal disturbance measured via randomly sampled or inserted probe signals. Here we discuss an entirely different avenue toward the private communication, which does not rely on the information disturbance trade-off relations and hence does not require a monitoring of signal disturbance. The independence of the amount of privacy amplification from that of disturbance tends to give it a high tolerance on the channel noises. The lifting of the burden of precise statistical estimation of disturbance leads to a favorable finite-key-size effect. A protocol based on the novel principle can be implemented by only using photon detectors and classical optics tools: a laser, a phase modulator, and an interferometer. The protocol resembles the differential-phase-shift QKD protocol in that both share a simple binary phase shift keying on a coherent train of weak pulses from a laser. The difference lies in the use of a variable-delay interferometer in the new protocol, which randomly changes the combination of pulse pairs to be superposed. This extra randomness has turned out to be enough to upper-bound the information extracted by the eavesdropper, regardless of how they have disturbed the quantum signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilles, Michael J.
A shipping container containing an unirradiated nuclear fuel assembly is lifted off the ground by operating a crane to raise a lifting tool comprising a winch. The lifting tool is connected with the shipping container by a rigging line connecting with the shipping container at a lifting point located on the shipping container between the top and bottom of the shipping container, and by winch cabling connecting with the shipping container at the top of the shipping container. The shipping container is reoriented by operating the winch to adjust the length of the winch cabling so as to rotate themore » shipping container about the lifting point. Shortening the winch cabling rotates the shipping container about the lifting point from a horizontal orientation to a vertical orientation, while lengthening the winch cabling rotates the shipping container about the lifting point from the vertical orientation to the horizontal orientation.« less
NASA Astrophysics Data System (ADS)
Hosseini, S. M. A.; Baran, I.; Akkerman, R.
2018-05-01
The laser-assisted tape winding (LATW) is an automated process for manufacturing fiber-reinforced thermoplastic tubular products, such as pipes and pressure vessels. Multi-physical phenomena such as heat transfer, mechanical bonding, phase changes and solid mechanics take place during the process. These phenomena need to be understood and described well for an improved product reliability. Temperature is one of the important parameters in this process to control and optimize the product quality which can be employed in an intelligent model-based inline control system. The incoming tape can overlap with the already wounded layer during the process based on the lay-up configuration. In this situation, the incoming tape can step-on or step-off to an already deposited layer/laminate. During the overlapping, the part temperature changes due to the variation of the geometry caused by previously deposited layer, i.e. a bump geometry. In order to qualify the temperature behavior at the bump regions, an experimental set up is designed on a flat laminate. Artificial bumps/steps are formed on the laminate with various thicknesses and fiber orientations. As the laser head experiences the step-on and step-off, the IR (Infra-Red) camera and the embedded thermocouples measure the temperature on the surface and inside the laminate, respectively. During the step-on, a small drop in temperature is observed while in step-off a higher peak in temperature is observed. It can be concluded that the change in the temperature during overlapping is due to the change in laser incident angle made by the bump geometry. The effect of the step thickness on the temperature peak is quantified and found to be significant.
Comparing the effectiveness of laser vs. conventional endoforehead lifting.
Chang, Cheng-Jen; Yu, De-Yi; Chang, Shu-Ying; Hsiao, Yen-Chang
2018-04-01
The objective of this study was to compare the efficacy and safety of laser versus conventional endoforehead lifting. Over a period of 12 years (January 2000-January 2012), a total of 110 patients with hyperactive muscles over the frontal region have been collected for a retrospective study. The SurgiLase 150XJ CO 2 laser system, in conjunction with the flexible FIBERLASE, was used. The endoscope was 4 mm in diameter with an angle of 30°. The primary efficacy measurement was the assessment of the final outcome for using laser vs. conventional methods. Both groups were observed at three weeks, six weeks and six months after surgery. The most common complication in early convalescence (three weeks) was swelling. This was followed by local paraesthesia, ecchymosis, localized hematomas and scar with alopecia. All these problems disappeared completely after the 6-month study period. Based on a chi-square analysis, there were clinically and statistically significant differences favouring the laser endoforehead surgery in the operative time, early and late complications. All patients achieved significant improvement after both laser and conventional endoforehead surgery in the final outcome. However, the early and late complications indicated a greater difference in the laser group.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.; Gaeta, R.
2005-01-01
Circulation Control technology is a very effective way of achieving high lift forces required by aircraft during take-off and landing. This technology can also directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate comparable or higher lift forces during take-off/landing with fewer or no moving parts and much less complexity. In this work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to Circulation Control Wing configurations. The effects of 2-D steady jets and 2-D pulsed jets on the aerodynamic performance of CCW airfoils have been investigated. It is found that a steady jet can generate very high lift at zero angle of attack without stall, and that a small amount of blowing can eliminate vortex shedding at the trailing edge, a potential noise source. It is also found that a pulsed jet can achieve the same high lift as a steady jet at lower mass flow rates, especially at a high frequency, and that the Strouhal number has a more dominant effect on the pulsed jet performance than just the frequency or the free-stream velocity.
Comparative Flight and Full-Scale Wind-Tunnel Measurements of the Maximum Lift of an Airplane
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S; Hootman, James A
1938-01-01
Determinations of the power-off maximum lift of a Fairchild 22 airplane were made in the NACA full-scale wind tunnel and in flight. The results from the two types of test were in satisfactory agreement. It was found that, when the airplane was rotated positively in pitch through the angle of stall at rates of the order of 0.1 degree per second, the maximum lift coefficient was considerably higher than that obtained in the standard tests, in which the forces are measured with the angles of attack fixed. Scale effect on the maximum lift coefficient was also investigated.
Overview of Fundamental High-Lift Research for Transport Aircraft at NASA
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.
2007-01-01
NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.
NASA Technical Reports Server (NTRS)
Larson, T. J.; Schweikhard, W. G.
1974-01-01
A method for evaluating aircraft takeoff performance from brake release to air-phase height that requires fewer tests than conventionally required is evaluated with data for the XB-70 airplane. The method defines the effects of pilot technique on takeoff performance quantitatively, including the decrease in acceleration from drag due to lift. For a given takeoff weight and throttle setting, a single takeoff provides enough data to establish a standardizing relationship for the distance from brake release to any point where velocity is appropriate to rotation. The lower rotation rates penalized takeoff performance in terms of ground roll distance; the lowest observed rotation rate required a ground roll distance that was 19 percent longer than the highest. Rotations at the minimum rate also resulted in lift-off velocities that were approximately 5 knots lower than the highest rotation rate at any given lift-off distance.
V-Shaped Molecular Configuration of Wax Esters of Jojoba Oil in a Langmuir Film Model.
Caruso, Benjamín; Martini, M Florencia; Pickholz, Mónica; Perillo, María A
2018-06-19
The aim of the present work was to understand the interfacial properties of a complex mixture of wax esters (WEs) obtained from Jojoba oil (JO). Previously, on the basis of molecular area measurements, a hairpin structure was proposed as the hypothetical configuration of WEs, allowing their organization as compressible monolayers at the air-water interface. In the present work, we contributed with further experimental evidence by combining surface pressure (π), surface potential (Δ V), and PM-IRRAS measurements of JO monolayers and molecular dynamic simulations (MD) on a modified JO model. WEs were self-assembled in Langmuir films. Compression isotherms exhibited π lift-off at 100 Å 2 /molecule mean molecular area ( A lift-off ) and a collapse point at π c ≈ 2.2 mN/m and A c ≈ 77 Å 2 /molecule. The Δ V profile reflected two dipolar reorganizations, with one of them at A > A lift-off due to the release of loosely bound water molecules and another one at A c < A < A lift-off possibly due to reorientations of a more tightly bound water population. This was consistent with the maximal SP value that was calculated according to a model that considered two populations of oriented water and was very close to the experimental value. The orientation of the ester group that was assumed in that calculation was coherent with the PM-IRRAS behavior of the carbonyl group with the C═O oriented toward the water and the C-O oriented parallel to the surface and was in accordance with their orientational angles (∼45 and ∼90°, respectively) determined by MD simulations. Taken together, the present results confirm a V shape rather than a hairpin configuration of WEs at the air-water interface.
Aqueous-based thick photoresist removal for bumping applications
NASA Astrophysics Data System (ADS)
Moore, John C.; Brewer, Alex J.; Law, Alman; Pettit, Jared M.
2015-03-01
Cleaning processes account for over 25% of processing in microelectronic manufacturing [1], suggesting electronics to be one of the most chemical intensive markets in commerce. Industry roadmaps exist to reduce chemical exposure, usage, and waste [2]. Companies are encouraged to create a safer working environment, or green factory, and ultimately become certified similar to LEED in the building industry [3]. A significant step in this direction is the integration of aqueous-based photoresist (PR) strippers which eliminate regulatory risks and cut costs by over 50%. One of the largest organic solvent usages is based upon thick PR removal during bumping processes [4-6]. Using market projections and the benefits of recycling, it is estimated that over 1,000 metric tons (mt) of residuals originating from bumping processes are incinerated or sent to a landfill. Aqueous-based stripping would eliminate this disposal while also reducing the daily risks to workers and added permitting costs. Positive-tone PR dissolves in aqueous strippers while negative-tone systems are lifted-off from the substrate, bumps, pillars, and redistribution layers (RDL). While the wafers are further processed and rinsed, the lifted-off PR is pumped from the tank, collected onto a filter, and periodically back-flushed to the trash. The PR solids become a non-hazardous plastic waste while the liquids are mixed with the developer stream, neutralized, filtered, and in most cases, disposed to the sewer. Regardless of PR thickness, removal processes may be tuned to perform in <15min, performing at rates nearly 10X faster than solvents with higher bath lives. A balanced formula is safe for metals, dielectrics, and may be customized to any fab.
14 CFR 91.609 - Flight data recorders and cockpit voice recorders.
Code of Federal Regulations, 2010 CFR
2010-01-01
... recorder or cockpit voice recorder is turned off to test it or to test any communications or electrical... recorder or cockpit voice recorder is turned off to test it or to test any communications or electrical... continuously from the instant the airplane begins the takeoff roll or the rotorcraft begins lift-off until the...
2017-02-07
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, thousands of pounds of supplies, equipment and scientific research materials are prepared for loading aboard a Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
Sub-100-nm trackwidth development by e-beam lithography for advanced magnetic recording heads
NASA Astrophysics Data System (ADS)
Chang, Jei-Wei; Chen, Chao-Peng
2006-03-01
Although semiconductor industry ramps the products with 90 nm much quicker than anticipated [1], magnetic recording head manufacturers still have difficulties in producing sub-100 nm read/write trackwidth. Patterning for high-aspectratio writer requires much higher depth of focus (DOF) than most advanced optical lithography, including immersion technique developed recently [2]. Self-aligning reader with its stabilized bias requires a bi-layer lift-off structure where the underlayer is narrower than the top image layer. As the reader's trackwidth is below 100nm, the underlayer becomes very difficult to control. Among available approaches, e-beam lithography remains the most promising one to overcome the challenge of progressive miniaturization. In this communication, the authors discussed several approaches using ebeam lithography to achieve sub-100 nm read/write trackwidth. Our studies indicated the suspended resist bridge design can not only widen the process window for lift-off process but also makes 65 nm trackwidth feasible to manufacture. Necked dog-bone structure seems to be the best design in this application due to less proximity effects from adjacent structures and minimum blockages for ion beam etching. The trackwidth smaller than 65 nm can be fabricated via the combination of e-beam lithography with auxiliary slimming and/or trimming. However, deposit overspray through undercut becomes dominated in such a small dimension. To minimize the overspray, the effects of underlayer thickness need to be further studied.
Nanoimprint methods for the fabrication of macroscopic plasmonically active metal nanostructures
NASA Astrophysics Data System (ADS)
Nagel, Robin D.; Filser, Simon; Zhang, Tianyue; Manzi, Aurora; Schönleber, Konrad; Lindsly, James; Zimmermann, Josef; Maier, Thomas L.; Scarpa, Giuseppe; Krischer, Katharina; Lugli, Paolo
2017-02-01
In this article, we present a refined nanostructuring method, lift-off nanoimprint lithography (LO-NIL), which allows the deposition of high-quality metal nanostructures due to a bilayer resist process and compare it to nano-transfer printing (nTP), a purely additive metal printing technique. LO-NIL and nTP are used as accurate methods for the fabrication of ordered plasmonic metal nanostructure arrays on semiconducting substrates over large areas using the example of gold nanodisks on silicon. The possibility of feature size adjustment in LO-NIL during the fabrication process is especially useful for tuning plasmonic resonance peaks between the visible and the mid-infrared range as well as fine-tuning of these resonances. In UV-VIS-NIR spectroscopic measurements, a significant blueshift in the plasmonic resonance was found for nTP samples compared to the ones fabricated with the lift-off technique. It was concluded that this shift originates from a metal/substrate interface roughness resulting in a change in the dielectric properties of this layer. This finding was verified with finite difference time-domain simulations where a similar trend was found for a model with an assumed thin air gap in this interface. In cyclic voltammetry measurements under illumination, a reduced overpotential by almost 400 mV for CO2 reduction and hydrogen evolution was found for LO-NIL samples.
Laser induced forward transfer of SnO2 for sensing applications using different precursors systems
NASA Astrophysics Data System (ADS)
Mattle, Thomas; Hintennach, Andreas; Lippert, Thomas; Wokaun, Alexander
2013-02-01
This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 ∘C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.
Patterning of organic photovoltaic on R2R processed thin film barriers using IR laser sources
NASA Astrophysics Data System (ADS)
Fledderus, H.; Akkerman, H. B.; Salem, A.; Friedrich Schilling, N.; Klotzbach, U.
2017-02-01
We present the development of laser processes for flexible OPV on roll-to-roll (RR2R) produced thin film barrier with indium tin oxide (ITO) as transparent conductive (TC) bottom electrode. Direct laser structuring of ITO on such barrier films (so-called P1 process) is very challenging since the layers are all transparent, a complete electrical isolation is required, and the laser process should not influence the barrier performance underneath the scribes. Based on the optical properties off the SiN and ITTO, ultra-short pulse lasers inn picosecond and femtosecond regime with standard infrared (IR) wavelength as well as lasers with new a wavelength (22 μm regime) are tested for this purpose. To determine a process window for a specific laser a fixed methodology is adopted. Single pulse ablation tests were followed by scribing experiments where the pulse overlap was tuned by varying laser pulse fluence, writing speed and frequency. To verify that the laser scribing does not result inn barrier damage underneath, a new test method was developed based on the optical Ca-test. This method shows a clear improvement in damage analysis underneath laser scribes over normal optical inspection methods (e.g. microscope, optical profiler, SEM). This way clear process windows can be obtained for IR TC patterning.
Development of optically pumped DBR-free semiconductor disk lasers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, Zhou; Albrecht, Alexander R.; Cederberg, Jeffrey G.; Sheik-Bahae, Mansoor
2017-03-01
Semiconductor disk lasers (SDLs) are attractive for applications requiring good beam quality, wavelength versatility, and high output powers. Typical SDLs utilize the active mirror geometry, where a semiconductor DBR is integrated with the active region by growth or post-growth bonding. This imposes restrictions for the SDL design, like material system choice, thermal management, and effective gain bandwidth. In DBR-free geometry, these restrictions can be alleviated. An integrated gain model predicts DBR-free geometry with twice the gain bandwidth of typical SDLs, which has been experimentally verified with active regions near 1 μm and 1.15 μm. The lift-off and bonding technique enables the integration of semiconductor active regions with arbitrary high quality substrates, allowing novel monolithic geometries. Bonding an active region onto a straight side of a commercial fused silica right angle prism, and attaching a high reflectivity mirror onto the hypotenuse side, with quasi CW pumping at 780 nm, lasing operation was achieved at 1037 nm with 0.2 mW average power at 1.6 mW average pump power. Laser dynamics show that thermal lens generation in the active region bottlenecks the laser efficiency. Investigations on total internal reflection based monolithic ring cavities are ongoing. These geometries would allow the intracavity integration of 2D materials or other passive absorbers, which could be relevant for stable mode locking. Unlike typical monolithic microchip SDLs, with the evanescent wave coupling technique, these monolithic geometries allow variable coupling efficiency.
Natural substrate lift-off technique for vertical light-emitting diodes
NASA Astrophysics Data System (ADS)
Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen
2014-04-01
Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.
Method of lift-off patterning thin films in situ employing phase change resists
Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio
2014-09-23
Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.
STS-38 Atlantis, OV-104, lifts off from KSC LC Pad during night launch
NASA Technical Reports Server (NTRS)
1990-01-01
STS-38 Atlantis, Orbiter Vehicle (OV) 104, lifts off from Kennedy Space Center (KSC) Launch Complex (LC) Pad at 6:48:15:0639 pm (Eastern Standard Time (EST)) for Department of Defense (DOD)-devoted mission. OV-104, atop the external tank (ET) and flanked by solid rocket boosters (SRBs), is almost clear of the launch tower which is lit up by the SRB and space shuttle main engine (SSME) firings. Spotlight equipment is silhouetted against the SRB/SSME glow in the foreground. The retracted rotating service structure (RSS) is highlighted against the evening darkness by the launch fireworks.
Cutting planes for the multistage stochastic unit commitment problem
Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul
2016-04-20
As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less
Cutting planes for the multistage stochastic unit commitment problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul
As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less
2011-07-08
CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach, and Payloads Launch Manager and Deputy Director of ISS and Spacecraft Processing at Kennedy, Bill Dowdell along with the launch control members, watch intently as space shuttle Atlantis lifts off on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
1997-07-01
The STS-94 crew walks out of the Operations and Checkout Building and heads for the Astrovan that will transport them to Launch Pad 39A as KSC employees show their support. Waving to the crowd and leading the way are Mission Commander James D. Halsell, Jr. and Pilot Susan L. Still. Behind Still is Mission Specialist Donald A.Thomas, followed by Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the scheduled 16-day Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay.The Space Shuttle Columbia is scheduled to lift off when the launch window opens at 1:50 p.m. EDT, July 1. The launch window was opened 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reached the space center
Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy.
Fan, Fengjia; Voznyy, Oleksandr; Sabatini, Randy P; Bicanic, Kristopher T; Adachi, Michael M; McBride, James R; Reid, Kemar R; Park, Young-Shin; Li, Xiyan; Jain, Ankit; Quintero-Bermudez, Rafael; Saravanapavanantham, Mayuran; Liu, Min; Korkusinski, Marek; Hawrylak, Pawel; Klimov, Victor I; Rosenthal, Sandra J; Hoogland, Sjoerd; Sargent, Edward H
2017-04-06
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
Ortega-Usobiaga, J; Llovet-Osuna, F; Katz, T; Djodeyre, M R; Druchkiv, V; Bilbao-Calabuig, R; Baviera, J
2018-02-01
To assess visual outcomes of retreatment after laser in situ keratomileusis (LASIK) by lifting the flap or performing photorefractive keratectomy (PRK) on the flap, as well as to establish whether there was an increased risk of epithelial ingrowth (EIG) when LASIK and lifting of the flap are separated by a long time interval and to determine the incidence of corneal haze after PRK. Retrospective study of 4077 patients (5468 eyes) who underwent LASIK and subsequent retreatment were reviewed in order to study their visual results and identify cases of EIG and corneal haze. Enhancements included 5196 eyes from 3876 patients that were retreated by lifting the flap, and 272 eyes from 201 patients that were retreated by PRK on the flap. No statistically significant differences were found between the retreatments in terms of predictability, efficacy, and safety. A total of 704 cases of EIG were found after lifting the flap, for which surgical cleansing was necessary in 70. Surgical cleansing decreased the efficacy index when compared with patients with EIG who did not need cleansing (P=.01). Differences in terms of safety and predictability were not statistically significant. The incidence of corneal haze after ablation of the surface of the previous flap was 14.34%, although none of these cases were clinically relevant. Visual outcomes were similar between patients who were retreated by lifting the flap and those who underwent PRK. The incidence of EIG when the flap was lifted was 13.55%. The incidence of EIG increases with the time elapsed between the primary procedure and retreatment. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Qianqian
2008-12-01
When laser ranger is transported or used in field operations, the transmitting axis, receiving axis and aiming axis may be not parallel. The nonparallelism of the three-light-axis will affect the range-measuring ability or make laser ranger not be operated exactly. So testing and adjusting the three-light-axis parallelity in the production and maintenance of laser ranger is important to ensure using laser ranger reliably. The paper proposes a new measurement method using digital image processing based on the comparison of some common measurement methods for the three-light-axis parallelity. It uses large aperture off-axis paraboloid reflector to get the images of laser spot and white light cross line, and then process the images on LabVIEW platform. The center of white light cross line can be achieved by the matching arithmetic in LABVIEW DLL. And the center of laser spot can be achieved by gradation transformation, binarization and area filter in turn. The software system can set CCD, detect the off-axis paraboloid reflector, measure the parallelity of transmitting axis and aiming axis and control the attenuation device. The hardware system selects SAA7111A, a programmable vedio decoding chip, to perform A/D conversion. FIFO (first-in first-out) is selected as buffer.USB bus is used to transmit data to PC. The three-light-axis parallelity can be achieved according to the position bias between them. The device based on this method has been already used. The application proves this method has high precision, speediness and automatization.
Trade-off between linewidth and slip rate in a mode-locked laser model.
Moore, Richard O
2014-05-15
We demonstrate a trade-off between linewidth and loss-of-lock rate in a mode-locked laser employing active feedback to control the carrier-envelope offset phase difference. In frequency metrology applications, the linewidth translates directly to uncertainty in the measured frequency, whereas the impact of lock loss and recovery on the measured frequency is less well understood. We reduce the dynamics to stochastic differential equations, specifically diffusion processes, and compare the linearized linewidth to the rate of lock loss determined by the mean time to exit, as calculated from large deviation theory.
An experimental investigation of the flow physics of high-lift systems
NASA Technical Reports Server (NTRS)
Thomas, Flint O.; Nelson, R. C.
1995-01-01
This progress report, a series of viewgraphs, outlines experiments on the flow physics of confluent boundary layers for high lift systems. The design objective is to design high lift systems with improved C(sub Lmax) for landing approach and improved take-off L/D and simultaneously reduce acquisition and maintenance costs. In effect, achieve improved performance with simpler designs. The research objectives include: establish the role of confluent boundary layer flow physics in high-lift production; contrast confluent boundary layer structure for optimum and non-optimum C(sub L) cases; formation of a high quality, detailed archival data base for CFD/modeling; and examination of the role of relaminarization and streamline curvature.
NASA Technical Reports Server (NTRS)
Horton, Elmer A; Loftin, Laurence K; Racisz, Stanley F; Quinn, John
1951-01-01
A performance analysis has been made to determine whether boundary-layer control by suction might reduce the minimum take-off and landing distances of a four-place or five-place airplane or a liaison type of airplane below those obtainable with conventional high-lift devices. The airplane was assumed to have a cruise duration of 5 hours at 60-percent power and to be operating from airstrips having a ground friction coefficient of 0.2 or a combined ground and braking coefficient of 0.4. The payload was fixed at 1500 pounds, the wing span was varied from 25 to 100 feet, the aspect ratio was varied from 5 to 15, and the power was varied from 300 to 1300 horsepower. Maximum lift coefficients of 5.0 and 2.8 were assumed for the airplanes with and without boundary-layer-control --equipment weight was included. The effects of the boundary-layer control on total take-off distance, total power-off landing distance, landing and take-off ground run, stalling speed, sinking speed, and gliding speed were determined.
Demonstration of a Wingless Electromagnetic Air Vehicle
2011-12-20
moving parts and assures near instantaneous response time. For the first time, the aircraft structure, propulsion, energy production and storage, and...of an electromagnetically driven wingless aircraft * with no moving component that will be able to self- lift, hover and fly reliably especially...8217&)?$@&;! First successful lift-off using plasma propulsion. Main Achievement Aerogel actuators are thus far the lightest plasma actuators with minimum
Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao
2017-12-11
Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.
GaN-based photon-recycling green light-emitting diodes with vertical-conduction structure.
Sheu, Jinn-Kong; Chen, Fu-Bang; Yen, Wei-Yu; Wang, Yen-Chin; Liu, Chun-Nan; Yeh, Yu-Hsiang; Lee, Ming-Lun
2015-04-06
A p-i-n structure with near-UV(n-UV) emitting InGaN/GaN multiple quantum well(MQW) structure stacked on a green unipolar InGaN/GaN MQW was epitaxially grown at the same sapphire substrate. Photon recycling green light-emitting diodes(LEDs) with vertical-conduction feature on silicon substrates were then fabricated by wafer bonding and laser lift-off techniques. The green InGaN/GaN QWs were pumped with n-UV light to reemit low-energy photons when the LEDs were electrically driven with a forward current. Efficiency droop is potentially insignificant compared with the direct green LEDs due to the increase of effective volume of active layer in the optically pumped green LEDs, i.e., light emitting no longer limited in the QWs nearest to the p-type region to cause severe Auger recombination and carrier overflow losses.
Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran
2016-01-11
Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.
Peng, Kaung-Jay; Lin, Yung-Hsiang; Wu, Chung-Lun; Lin, Sheng-Fong; Yang, Chun-Yu; Lin, Shih-Meng; Tsai, Din-Ping; Lin, Gong-Ru
2015-01-01
The in-situ dissolution-and-reduction CVD synthesized few-layer graphene on ultra-thin nickel catalyst film is demonstrated at temperature as low as 550 °C, which can be employed to form transmission-type or reflection-type saturable absorber (SA) for mode-locking the erbium-doped fiber lasers (EDFLs). With transmission-type graphene SA, the EDFL shortens its pulsewidth from 483 to 441 fs and broadens its spectral linewidth from 4.2 to 6.1 nm with enlarging the pumping current from 200 to 900 mA. In contrast, the reflection-type SA only compresses the pulsewidth from 875 to 796 fs with corresponding spectral linewidth broadened from 2.2 to 3.3 nm. The reflection-type graphene mode-locker increases twice of its equivalent layer number to cause more insertion loss than the transmission-type one. Nevertheless, the reflection-type based saturable absorber system can generate stabilized soliton-like pulse easier than that of transmission-type system, because the nonlinearity induced self-amplitude modulation depth is simultaneously enlarged when passing through the graphene twice under the retro-reflector design. PMID:26328535
Lab-on-Fiber biosensing for cancer biomarker detection
NASA Astrophysics Data System (ADS)
Ricciardi, A.; Severino, R.; Quero, G.; Carotenuto, B.; Consales, M.; Crescitelli, A.; Esposito, E.; Ruvo, M.; Sandomenico, A.; Borriello, A.; Giordano, M.; Sansone, L.; Granata, Carmine; Cutolo, A.; Cusano, A.
2015-09-01
This work deals with a novel Lab-on-Fiber biosensor able to detect in real time thyroid carcinomas biomarkers. The device is based on a gold nanostructure supporting localized surface plasmon resonances (LSPR) directly fabricated on the fiber tip by means of electron beam lithography and lift-off process. Following a suitable chemical and biological functionalization of the sensing area, human Thyroglobulin has been detected at nanomolar concentrations. Also, compatibility with full baseline restoration, achieved through biomarkers/bioreceptors dissociation, has been demonstrated.
2007-05-28
KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, technicians check the progress of the Dawn spacecraft as it is lifted off the transporter. Dawn will be moved to a scale for weighing and then prepared for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser
Lift Optimization Study of a Multi-Element Three-Segment Variable Camber Airfoil
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Nguyen, Nhan T.
2016-01-01
This paper reports a detailed computational high-lift study of the Variable Camber Continuous Trailing Edge Flap (VCCTEF) system carried out to explore the best VCCTEF designs, in conjunction with a leading edge flap called the Variable Camber Krueger (VCK), for take-off and landing. For this purpose, a three-segment variable camber airfoil employed as a performance adaptive aeroelastic wing shaping control effector for a NASA Generic Transport Model (GTM) in landing and take-off configurations is considered. The objective of the study is to define optimal high-lift VCCTEF settings and VCK settings/configurations. A total of 224 combinations of VCK settings/configurations and VCCTEF settings are considered for the inboard GTM wing, where the VCCTEFs are configured as a Fowler flap that forms a slot between the VCCTEF and the main wing. For the VCK settings of deflection angles of 55deg, 60deg and 65deg, 18, 19 and 19 vck configurations, respectively, were considered for each of the 4 different VCCTEF deflection settings. Different vck configurations were defined by varying the horizontal and vertical distance of the vck from the main wing. A computational investigation using a Reynolds-Averaged Navier-Stokes (RANS) solver was carried out to complement a wind-tunnel experimental study covering three of these configurations with the goal of identifying the most optimal high-lift configurations. Four most optimal high-lift configurations, corresponding to each of the VCK deflection settings, have been identified out of all the different configurations considered in this study yielding the highest lift performance.
NASA Technical Reports Server (NTRS)
Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.
1995-01-01
A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
Laser Resurfacing at the Time of Rhytidectomy.
Scheuer, Jack F; Costa, Christopher R; Dauwe, Phillip B; Ramanadham, Smita R; Rohrich, Rod J
2015-07-01
Laser resurfacing with simultaneous rhytidectomy has been used to augment aesthetic results and decrease overall patient recuperative time, yet presents a potential dual insult to the microvasculature supply of facial skin flaps. This study describes the authors' experience with rhytidectomy and simultaneous laser resurfacing. Between May of 1999 and January of 2013, 85 face lifts with concomitant erbium laser resurfacing were reviewed retrospectively. Seven procedures were excluded for incomplete charting. Patient demographics, treatment zone, concomitant procedures, and secondary/tertiary face lifts were analyzed for associations with postoperative complications attributable to laser resurfacing. No complications were reported in the perioral resurfacing group. There was one instance of delayed wound healing and prolonged erythema in the full face group, and one instance of moderate hyperpigmentation in the central face group. No instances of hypopigmentation or flap necrosis attributable to laser resurfacing were noted. The overall complication rate was 3.8 percent. There was a statistically significant difference when comparing the number of complications between the facial laser resurfacing zones (p = 0.037). When analyzing zone of laser resurfacing as an independent risk factor for complications, no significant association was derived, but full face zone resurfacing approached statistical significance (p = 0.063). Although a significant difference in the number of complications between treatment groups existed, the authors were not able to definitively attribute this solely to the extent of laser resurfacing. Simultaneous laser resurfacing and rhytidectomy can be performed safely in select patients using ablative mode only over the undermined flap. Therapeutic, IV.
On the physics of electron ejection from laser-irradiated overdense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thévenet, M.; Vincenti, H.; Faure, J.
2016-06-15
Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less
NASA Astrophysics Data System (ADS)
Miyashita, Naoya; Behaghel, Benoît; Guillemoles, Jean-François; Okada, Yoshitaka
2018-07-01
This work focuses on the characterization of GaInNAsSb solar cells whose substrates are removed via the epitaxial lift-off (ELO) technique. As a result of the substrate removal, increases in the photocurrent and the interference feature were clearly observed. This is clear evidence of the light-confinement effect, whereby some of the unabsorbed photons at the rear metal contact were reflected back towards the front side of the ELO thin-film cell. We successfully demonstrated that the ELO technique can be applied for the GaInNAsSb cell, and the light management should add flexibility in designing the cell structures.
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
NASA Astrophysics Data System (ADS)
Myrabo, L. N.; Rosa, R. J.
2004-03-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.
Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires
NASA Astrophysics Data System (ADS)
Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei
2018-07-01
Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.
Hybrid welding of hollow section beams for a telescopic lifter
NASA Astrophysics Data System (ADS)
Jernstroem, Petteri
2003-03-01
Modern lifting equipment is normally constructed using hollow section beams in a telescopic arrangement. Telescopic lifters are used in a variety number of applications including e.g. construction and building maintenance. Also rescue sector is one large application field. It is very important in such applications to use a lightweight and stable beam construction, which gives a high degree of flexibility in working high and width. To ensure a high weld quality of hollow section beams, high efficiency and minimal distortion, a welding process with a high power density is needed. The alternatives, in practice, which fulfill these requirements, are laser welding and hybrid welding. In this paper, the use of hybrid welding process (combination of CO2 laser welding and GMAW) in welding of hollow section beam structure is presented. Compared to laser welding, hybrid welding allows wider joint tolerances, which enables joints to be prepared and fit-up less accurately, aving time and manufacturing costs. A prerequisite for quality and effective use of hybrid welding is, however, a complete understanding of the process and its capabilities, which must be taken into account during both product design and manufacture.
A Biomechanical Analysis of the Effects of Bouncing the Barbell in the Conventional Deadlift.
Krajewski, Kellen; LeFavi, Robert; Riemann, Bryan
2018-02-27
The purpose of this study is to analyze biomechanical differences between the bounce and pause styles of deadlifting. Twenty physically active males performed deadlifts at their 75% one repetition maximum testing utilizing both pause and bounce techniques in a within-subjects randomized study design. The average peak height the barbell attained from the three bounce style repetitions was used to compute a compatible phase for analysis of the pause style repetitions. Net joint moment impulse (NJMI), work, average vertical ground reaction force (vGRF), vGRF impulse and phase time were computed for two phases, lift off to peak barbell height and the entire ascent. Additionally, the ankle, knee, hip, and trunk angles at the location of peak barbell height. During the lift off to peak barbell height phase, although each of the joints demonstrated significantly less NJMI and work during the bounce style, the hip joint was impacted the most. The average vGRF was greater for the bounce however the vGRF impulse was greater for the pause. The NJMI results for the ascent phase were similar to the lift off to peak barbell height phase, while work was significantly less for the bounce condition compared to the pause condition across all three joints. Strength and conditioning specialists utilizing the deadlift should be aware that the bounce technique does not allow the athlete to develop maximal force production in the early portion of the lift. Further analyses should focus on joint angles and potential vulnerability to injury when the barbell momentum generated from the bounce is lost.
A Wind-Tunnel Investigation of the Development of Lift on Wings in Accelerated Longitudinal Motion
NASA Technical Reports Server (NTRS)
Turner, Thomas R.
1960-01-01
An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the development of lift on a wing during a simulated constant-acceleration catapult take-off. The investigation included models of a two-dimensional wing, an unswept wing having an aspect ratio of 6, a 35 deg. swept wing having an aspect ratio of 3.05, and a 60 deg. delta wing having an aspect ratio of 2.31. All the wings investigated developed at least 90 percent of their steady-state lift in the first 7 chord lengths of travel. The development of lift was essentially independent of the acceleration when based on chord lengths traveled, and was in qualitative agreement with theory.
High on/off ratio nanosecond laser pulses for a triggered single-photon source
NASA Astrophysics Data System (ADS)
Jin, Gang; Liu, Bei; He, Jun; Wang, Junmin
2016-07-01
An 852 nm nanosecond laser pulse chain with a high on/off ratio is generated by chopping a continuous-wave laser beam using a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). The detailed dependence of the MZ-EOIM’s on/off ratio on various parameters is characterized. By optimizing the incident beam polarization and stabilizing the MZ-EOIM temperature, a static on/off ratio of 12600:1 is achieved. The dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. The high-on/off-ratio nanosecond pulsed laser system was used in a triggered single-photon source based on a trapped single cesium atom, which reveals clear antibunching.
Model based optimization of driver-pickup separation for eddy current measurement of gap
NASA Astrophysics Data System (ADS)
Klein, G.; Morelli, J.; Krause, T. W.
2018-04-01
The fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of a pressure tube (PT) contained within a larger diameter calandria tube (CT). The separation between the tubes, known as the PT-CT gap, ensures PT hydride blisters, which could lead to potential cracking of the PT, do not develop. Therefore, accurate measurements are required to confirm that contact between PT and CT is not imminent. Gap measurement uses an eddy current probe. However this probe is sensitive to lift-off variations, which can adversely affect estimated gap. A validated analytical flat plate model of eddy current response to gap was used to examine the effect of driver-pickup spacing on lift-off and response to gap at a frequency of 4 kHz, which is used for in-reactor measurements. This model was compared against, and shown to have good agreement with, a COMSOL® finite element method (FEM) model. The optimum coil separation, which included the constraint of coil size, was found to be 11 mm, resulting in a phase response between lift-off and response to change in gap of 66°. This work demonstrates the advantages of using analytical models for optimizing coil designs for measurement of parameters that may negatively influence the outcome of an inspection measurement.
Three-dimensional structure of dilute pyroclastic density currents
NASA Astrophysics Data System (ADS)
Andrews, B. J.
2013-12-01
Unconfined experimental density currents dynamically similar to pyroclastic density currents (PDCs) suggest that cross-stream motions of the currents and air entrainment through currents' lateral margins strongly affects PDC behavior. Experiments are conducted within an air-filled tank 8.5 m long by 6.1 m wide by 2.6 m tall. Currents are generated by feeding heated powders down a chute into the tank at controlled rates to form dilute, particle-laden, turbulent gravity currents that are fed for 30 to 600 seconds. Powders include 5 μm aluminum oxide, 25 μm talc, 27 μm walnut, 76 μm glass beads and mixtures thereof. Experiments are scaled such that Froude, densimetric and thermal Richardson, particle Stokes and Settling numbers, and thermal to kinetic energy densities are all in agreement with dilute PDCs; experiments have lower Reynolds numbers that natural currents, but the experiments are fully turbulent, thus the large scale structures should be similar. The experiments are illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps); this system provides synchronous observation of a vertical streamwise and cross-stream planes, and a horizontal plane. Ambient temperature currents tend to spread out radially from the source and have long run out distances, whereas warmer currents tend to focus along narrow sectors and have shorter run outs. In addition, when warm currents lift off to form buoyant plumes, lateral spreading ceases. The behavior of short duration currents are dominated by the current head; as eruption duration increases, current transport direction tends to oscillate back and forth (this is particularly true for ambient temperature currents). Turbulent structures in the horizontal plane show air entrainment and advection downstream. Eddies illuminated by the vertical cross-stream laser sheet often show vigorous mixing along the current margins, particularly after the current head has passed. In some currents, the head can persist as a large, vertically oriented vortex long after the bulk of the current has lifted off to form a coignimbrite plume. These unconfined experiments show that three-dimensional structures can affect PDC behavior and suggest that our typical cross-sectional or 'cartoon' understanding of PDCs misses what may be very important parts of PDC dynamics.
NASA Technical Reports Server (NTRS)
Harris, Elizabeth; Ogle, James; Schoppe, Dean
1989-01-01
The lifting machine will assist in lifting cargo off of landers sent to the Moon and in the construction of a lunar base. Three possible designs were considered for the overall configuration of the lifting machine: the variable angle crane, the tower crane, and the gantry crane. Alternate designs were developed for the major components of the lifting machine. A teleoperable, variable angle crane was chosen as its final design. The design consists of a telescoping boom mounted to a chassis that is supported by two conical wheels for towing and four outriggers for stability. Attached to the end of the boom is a seven degree of freedom robot arm for light, dexterous, lifting operations. A cable and hook suspends from the end of the boom for heavy, gross, lifting operations. Approximate structural sizes were determined for the lifter and its components. However, further analysis is needed to determine the optimum design dimensions. The design team also constructed a model of the design which demonstrates its features and operating principals.
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.
2017-01-01
A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.
NASA Astrophysics Data System (ADS)
Gardner, J. E.; Andrews, B. J.
2016-12-01
Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.
Buck, Maren E.
2010-01-01
We report an approach to the fabrication of freestanding and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently crosslinked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These freestanding membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.g., ‘polyelectrolyte multilayers’ assembled by electrostatic interactions or hydrogen bonding). We demonstrate further that these PEI/PVDMA assemblies contain residual reactive azlactone functionality that can be exploited to chemically modify the films (either directly after fabrication or after they have been lifted off of the substrates on which they were fabricated) using a variety of amine-functionalized small molecules. These freestanding membranes can also be transferred readily onto other objects (for example, onto the surfaces of planar substrates containing holes or pores) to fabricate suspended polymer membranes and other film-functionalized interfaces. In addition to planar, two-dimensional freestanding films, this approach can be used to fabricate and isolate three-dimensional freestanding membranes (e.g., curved films or tubes) by layer-by-layer assembly on, and subsequent lift-off from, the surfaces of topologically complex substrates (e.g., the curved ends of glass tubing, etc.). The results of this investigation, when combined, suggest the basis of methods for the fabrication of stable, chemically-reactive, and flexible polymer thin films and membranes of potential utility in a variety of fundamental and applied contexts. PMID:20857952
Daus, Alwin; Roldán-Carmona, Cristina; Domanski, Konrad; Knobelspies, Stefan; Cantarella, Giuseppe; Vogt, Christian; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Tröster, Gerhard
2018-06-01
Metal-halide perovskites have emerged as promising materials for optoelectronics applications, such as photovoltaics, light-emitting diodes, and photodetectors due to their excellent photoconversion efficiencies. However, their instability in aqueous solutions and most organic solvents has complicated their micropatterning procedures, which are needed for dense device integration, for example, in displays or cameras. In this work, a lift-off process based on poly(methyl methacrylate) and deep ultraviolet lithography on flexible plastic foils is presented. This technique comprises simultaneous patterning of the metal-halide perovskite with a top electrode, which results in microscale vertical device architectures with high spatial resolution and alignment properties. Hence, thin-film transistors (TFTs) with methyl-ammonium lead iodide (MAPbI 3 ) gate dielectrics are demonstrated for the first time. The giant dielectric constant of MAPbI 3 (>1000) leads to excellent low-voltage TFT switching capabilities with subthreshold swings ≈80 mV decade -1 over ≈5 orders of drain current magnitude. Furthermore, vertically stacked low-power Au-MAPbI 3 -Au photodetectors with close-to-ideal linear response (R 2 = 0.9997) are created. The mechanical stability down to a tensile radius of 6 mm is demonstrated for the TFTs and photodetectors, simultaneously realized on the same flexible plastic substrate. These results open the way for flexible low-power integrated (opto-)electronic systems based on metal-halide perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling lift operations with SASmacr Simulation Studio
NASA Astrophysics Data System (ADS)
Kar, Leow Soo
2016-10-01
Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.
NASA Astrophysics Data System (ADS)
Pfennigbauer, Martin; Ullrich, Andreas
2010-04-01
Newest developments in laser scanner technologies put surveyors in the position to comply with the ever increasing demand of high-speed, high-accuracy, and highly reliable data acquisition from terrestrial, mobile, and airborne platforms. Echo digitization in pulsed time-of-flight laser ranging has demonstrated its superior performance in the field of bathymetry and airborne laser scanning for more than a decade, however at the cost of somewhat time consuming off line post processing. State-of-the-art online waveform processing as implemented in RIEGL's V-Line not only saves users post-processing time to obtain true 3D point clouds, it also adds the assets of calibrated amplitude and reflectance measurement for data classification and pulse deviation determination for effective and reliable data validation. We present results from data acquisitions in different complex target situations.
NASA Technical Reports Server (NTRS)
Salem, Ali F.; Smith, Arlynn W.; Brennan, Kevin F.
1994-01-01
The sizing and efficiency of an aircraft is largely determined by the performance of its high-lift system. Subsonic civil transports most often use deployable multi-element airfoils to achieve the maximum-lift requirements for landing, as well as the high lift-to-drag ratios for take-off. However, these systems produce very complex flow fields which are not fully understood by the scientific community. In order to compete in today's market place, aircraft manufacturers will have to design better high-lift systems. Therefore, a more thorough understanding of the flows associated with these systems is desired. Flight and wind-tunnel experiments have been conducted on NASA Langley's B737-100 research aircraft to obtain detailed full-scale flow measurements on a multi-element high-lift system at various flight conditions. As part of this effort, computational aerodynamic tools are being used to provide preliminary flow-field information for instrumentation development, and to provide additional insight during the data analysis and interpretation process. The purpose of this paper is to demonstrate the ability and usefulness of a three-dimensional low-order potentialflow solver, PMARC, by comparing computational results with data obtained from 1/8 scale wind-tunnel tests. Overall, correlation of experimental and computational data reveals that the panel method is able to predict reasonably well the pressures of the aircraft's multi-element wing at several spanwise stations. PMARC's versatility and usefulness is also demonstrated by accurately predicting inviscid threedimensional flow features for several intricate geometrical regions.
76 FR 39775 - Drawbridge Operation Regulation; Lafourche Bayou, Lafourche, LA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... deviation from the regulation governing the operation of the Cut Off vertical lift span bridge across the Lafourche Bayou, mile 36.3, at Cut Off, Lafourche Parish, LA. The deviation is necessary to perform major... INFORMATION CONTACT: If you have questions on this rule, call or e-mail Jim Wetherington, Bridge...
Improvement in etching rate for epilayer lift-off with surfactant
NASA Astrophysics Data System (ADS)
Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng
2013-03-01
In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.
A NASA helicopter lifts off from KSC after being painted
NASA Technical Reports Server (NTRS)
2000-01-01
At S.R. 3 a NASA helicopter lifts off to return to Patrick Air Force Base. The helicopter is one of four UH-1H helicopters that have had its blades painted, changing the previous black color to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.
STS-34 Atlantis, Orbiter Vehicle (OV) 104, lifts off from KSC LC Pad 39B
1989-10-18
STS034-S-025 (18 Oct 1989) --- The STS-34 Space Shuttle Atlantis lifts off from Launch Pad 39-B at 2:53:39:983 p.m. (EDT), marking the beginning of a five-day mission in space. Atlantis carries a crew of five and the spacecraft Galileo, along with a number of other scientific experiments. The Jupiter-bound probe will be deployed from Atlantis some six hours after launch. The journey to the giant planet is expected to take over six years. Crewmembers for the mission are astronauts Donald E. Williams, Michael J. McCulley, Shannon W. Lucid, Franklin R. Chang-Diaz and Ellen S. Baker. The scene was recorded with a 70mm camera.
Method and device for stand-off laser drilling and cutting
Copley, John A.; Kwok, Hoi S.; Domankevitz, Yacov
1989-09-26
A device for perforating material and a method of stand-off drilling using a laser. In its basic form a free-running laser beam creates a melt on the target and then a Q-switched short duration pulse is used to remove the material through the creation of a laser detonation wave. The advantage is a drilling/cutting method capable of working a target at lengthy stand-off distance. The device may employ 2 lasers or a single one operated in a free-running/Q-switched dual mode.
Measurement of the electron shake-off in the β-decay of laser-trapped 6He atoms
NASA Astrophysics Data System (ADS)
Hong, Ran; Bagdasarova, Yelena; Garcia, Alejandro; Storm, Derek; Sternberg, Matthew; Swanson, Erik; Wauters, Frederik; Zumwalt, David; Bailey, Kevin; Leredde, Arnaud; Mueller, Peter; O'Connor, Thomas; Flechard, Xavier; Liennard, Etienne; Knecht, Andreas; Naviliat-Cuncic, Oscar
2016-03-01
Electron shake-off is an important process in many high precision nuclear β-decay measurements searching for physics beyond the standard model. 6He being one of the lightest β-decaying isotopes, has a simple atomic structure. Thus, it is well suited for testing calculations of shake-off effects. Shake-off probabilities from the 23S1 and 23P2 initial states of laser trapped 6He matter for the on-going beta-neutrino correlation study at the University of Washington. These probabilities are obtained by analyzing the time-of-flight distribution of the recoil ions detected in coincidence with the beta particles. A β-neutrino correlation independent analysis approach was developed. The measured upper limit of the double shake-off probability is 2 ×10-4 at 90% confidence level. This result is ~100 times lower than the most recent calculation by Schulhoff and Drake. This work is supported by DOE, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11357 and DE-FG02-97ER41020.
... options include laser treatments, high-tech light devices, chemical peels, dermabrasion, liposuction, lifts, vein treatments, soft-tissue fillers, neuromodulators (Botox) and hair restoration among others. The first thing to remember ...
2011-01-01
Here we report the method of anastomosis based on double stapling technique (hereinafter, DST) using a trans-oral anvil delivery system (EEATM OrVilTM) for reconstructing the esophagus and lifted jejunum following laparoscopic total gastrectomy or proximal gastric resection. As a basic technique, laparoscopic total gastrectomy employed Roux-en-Y reconstruction, laparoscopic proximal gastrectomy employed double tract reconstruction, and end-to-side anastomosis was used for the cut-off stump of the esophagus and lifted jejunum. We used EEATM OrVilTM as a device that permitted mechanical purse-string suture similarly to conventional EEA, and endo-Surgitie. After the gastric lymph node dissection, the esophagus was cut off using an automated stapler. EEATM OrVilTM was orally and slowly inserted from the valve tip, and a small hole was created at the tip of the obliquely cut-off stump with scissors to let the valve tip pass through. Yarn was cut to disconnect the anvil from a tube and the anvil head was retained in the esophagus. The end-Surgitie was inserted at the right subcostal margin, and after the looped-shaped thread was wrapped around the esophageal stump opening, assisting Maryland forceps inserted at the left subcostal and left abdomen were used to grasp the left and right esophageal stump. The surgeon inserted anvil grasping forceps into the right abdomen, and after grasping the esophagus with the forceps, tightened the end Surgitie, thereby completing the purse-string suture on the esophageal stump. The main unit of the automated stapler was inserted from the cut-off stump of the lifted jejunum, and a trocar was made to pass through. To prevent dropout of the small intestines from the automated stapler, the automated stapler and the lifted jejunum were fastened with silk thread, the abdomen was again inflated, and the lifted jejunum was led into the abdominal cavity. When it was confirmed that the automated stapler and center rod were made completely linear, the anvil and the main unit were connected with each other and firing was carried out. Then, DST-based anastomosis was completed with no dog-ear. The method may facilitate safe laparoscopic anastomosis between the esophagus and reconstructed intestine. This is also considered to serve as a useful anastomosis technique for upper levels of the esophagus in laparotomy. PMID:21599911
Experimental Validation Techniques for the Heleeos Off-Axis Laser Propagation Model
2010-03-01
EXPERIMENTAL VALIDATION TECHNIQUES FOR THE HELEEOS OFF-AXIS LASER PROPAGATION MODEL THESIS John Haiducek, 1st Lt, USAF AFIT/GAP/ENP/10-M07 DEPARTMENT...Department of Defense, or the United States Government. AFIT/GAP/ENP/10-M07 EXPERIMENTAL VALIDATION TECHNIQUES FOR THE HELEEOS OFF-AXIS LASER ...BS, Physics 1st Lt, USAF March 2010 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GAP/ENP/10-M07 Abstract The High Energy Laser End-to-End
Sequential lift and suture technique for post-LASIK corneal striae.
Mackool, Richard J; Monsanto, Vivian R
2003-04-01
We describe a surgical technique to manage persistent corneal striae after laser in situ keratomileusis (LASIK). The sequential lift and suture technique reduces the time required for LASIK, eliminates the need to fixate the flap with forceps during suturing, and increases the accuracy of suture placement. The results in 10 eyes (9 patients) showed complete resolution of striae with improvement in subjective symptoms (glare and blurred vision) and best corrected visual acuity.
Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study
Petschow, Christine; Scheef, Lukas; Paus, Sebastian; Zimmermann, Nadine; Schild, Hans H.; Klockgether, Thomas; Boecker, Henning
2016-01-01
Background & Objective Pain is a common non-motor symptom in Parkinson’s disease. As dopaminergic dysfunction is suggested to affect intrinsic nociceptive processing, this study was designed to characterize laser-induced pain processing in early-stage Parkinson’s disease patients in the dopaminergic OFF state, using a multimodal experimental approach at behavioral, autonomic, imaging levels. Methods 13 right-handed early-stage Parkinson’s disease patients without cognitive or sensory impairment were investigated OFF medication, along with 13 age-matched healthy control subjects. Measurements included warmth perception thresholds, heat pain thresholds, and central pain processing with event-related functional magnetic resonance imaging (erfMRI) during laser-induced pain stimulation at lower (E = 440 mJ) and higher (E = 640 mJ) target energies. Additionally, electrodermal activity was characterized during delivery of 60 randomized pain stimuli ranging from 440 mJ to 640 mJ, along with evaluation of subjective pain ratings on a visual analogue scale. Results No significant differences in warmth perception thresholds, heat pain thresholds, electrodermal activity and subjective pain ratings were found between Parkinson’s disease patients and controls, and erfMRI revealed a generally comparable activation pattern induced by laser-pain stimuli in brain areas belonging to the central pain matrix. However, relatively reduced deactivation was found in Parkinson’s disease patients in posterior regions of the default mode network, notably the precuneus and the posterior cingulate cortex. Conclusion Our data during pain processing extend previous findings suggesting default mode network dysfunction in Parkinson’s disease. On the other hand, they argue against a genuine pain-specific processing abnormality in early-stage Parkinson’s disease. Future studies are now required using similar multimodal experimental designs to examine pain processing in more advanced stages of Parkinson’s disease. PMID:27776130
OA-7 Cargo Module Hatch Closure and Rotate to Vertical at SSPF
2017-02-12
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the hatch is closed on the Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. The module is then rotated to vertical for mating to the service module. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
2012-08-30
CAPE CANAVERAL, Fla. – NASA's Radiation Belt Storm Probes, or RBSP, lift off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V rocket at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Rusty Backer
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA’s Radiation Belt Storm Probes, or RBSP, is a breath away from lifting off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kenny Allen
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifted off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Rusty Backer
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifted off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Rusty Backer
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kenny Allen
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Ben Smegelsky
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifted off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kenny Allen
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Rusty Backer
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Rusty Backer
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kenny Allen
2012-08-30
CAPE CANAVERAL, Fla. - The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifted off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Rusty Backer
1999-06-24
The shadow of a photographer (right) is caught watching the perfect launch of the Boeing Delta II rocket in the background after it lifted off at 11:44 a.m. EDT. The rocket carries NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, which was developed to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (seen from the back) is lifted off its transporter. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (seen from the front) is lifted off its transporter. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2008-11-11
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, space shuttle Atlantis is lifted by a sling. Atlantis is being taken off its external fuel tank and solid rocket boosters stack after of the delay of its STS-125 mission to NASA's Hubble Space Telescope. Atlantis will be returned to the Orbiter Processing Facility. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Jim Grossmann
2008-11-11
CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, space shuttle Atlantis is lifted by a sling. Atlantis is being taken off its external fuel tank and solid rocket boosters stack after of the delay of its STS-125 mission to NASA's Hubble Space Telescope. Atlantis will be returned to the Orbiter Processing Facility. Atlantis' targeted launch on Oct. 14 was delayed when a system that transfers science data from the orbiting observatory to Earth malfunctioned on Sept. 27. The new target launch date is under review. Photo credit: NASA/Jim Grossmann
2001-05-31
KODIAK ISLAND, Alaska -- Technicians prepare the Athena I launch vehicle for flight at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.
OA-7 Mate Service Module to Cargo Module
2017-02-14
In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers mate a Cygnus spacecraft's pressurized cargo module to its service module. Cygnus is being prepared to deliver thousands of pounds of supplies, equipment and scientific research materials on the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.
Three-Dimensional Effects in Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.
2003-01-01
In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.
NASA Technical Reports Server (NTRS)
Goodyer, M. J.; Britcher, C. P.
1983-01-01
The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.
High-Volume Production of Lightweight Multijunction Solar Cells
NASA Technical Reports Server (NTRS)
Youtsey, Christopher
2015-01-01
MicroLink Devices, Inc., has transitioned its 6-inch epitaxial lift-off (ELO) solar cell fabrication process into a manufacturing platform capable of sustaining large-volume production. This Phase II project improves the ELO process by reducing cycle time and increasing the yield of large-area devices. In addition, all critical device fabrication processes have transitioned to 6-inch production tool sets designed for volume production. An emphasis on automated cassette-to-cassette and batch processes minimizes operator dependence and cell performance variability. MicroLink Devices established a pilot production line capable of at least 1,500 6-inch wafers per month at greater than 80 percent yield. The company also increased the yield and manufacturability of the 6-inch reclaim process, which is crucial to reducing the cost of the cells.
Reconstruction dynamics of recorded holograms in photochromic glass.
Mihailescu, Mona; Pavel, Eugen; Nicolae, Vasile B
2011-06-20
We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO₄ laser radiation (λ=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, Δn) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.
NASA Astrophysics Data System (ADS)
Feinaeugle, Matthias; Horak, Peter; Sones, Collin L.; Lippert, Thomas; Eason, Rob W.
2014-09-01
In this study, we investigate both experimentally and numerically laser-induced forward transfer (LIFT) of thin films to determine the role of a thin polymer layer coating the receiver with the aim of modifying the rate of deceleration and reduction of material stress preventing intact material transfer. A numerical model of the impact phase during LIFT shows that such a layer reduces the modelled stress. The evolution of stress within the transferred deposit and the substrate as a function of the thickness of the polymer layer, the transfer velocity and the elastic properties of the polymer are evaluated. The functionality of the polymer layer is verified experimentally by LIFT printing intact 1- m-thick bismuth telluride films and polymeric light-emitting diode pads onto a layer of 12-m-thick polydimethylsiloxane and 50-nm-thick poly(3,4-ethylenedioxythiophene) blended with poly(styrenesulfonate) (PEDOT:PSS), respectively. Furthermore, it is demonstrated experimentally that the introduction of such a compliant layer improves adhesion between the deposit and its substrate.
Analysis of laser-induction hybrid cladding processing conditions
NASA Astrophysics Data System (ADS)
Huang, Yongjun; Zeng, Xiaoyan; Hu, Qianwu
2007-12-01
A new cladding approach based on laser-induction hybrid technique on flat sheets is presented in this paper. Coating is produced by means of 5kw cw CO II laser equipped with 100kw high frequent inductor, and the experiments set-up, involving a special machining-head, which can provide laser-induction hybrid heat resources simultaneously. The formation of thick NiCrSiB coating on a steel substrate by off-axial powder feeding is studied from an experimental point of view. A substrate melting energy model is developed to describe the energy relationship between laser-induction hybrid cladding and laser cladding alone quantitatively. By comparing the experimental results with the calculational ones, it is shown that the tendency of fusion zone height of theoretical calculation is in agreement with that of tests in laser-induction hybrid cladding. Via analyses and tests, the conclusions can be lead to that the fusion zone height can be increased easily and the good bond of cladding track can be achieved within wide cladding processing window in laser-induction hybrid processing. It shows that the induction heating has an obvious effect on substrate melting and metallurgical bond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Rui; Su, Rongxin, E-mail: surx@tju.edu.cn; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072
Highlights: {yields} We compare the structures of insulin upon heating with or without laser irradiation. {yields} Laser irradiation inhibits insulin fibrillation and may be of insert for mechanistic disease studies. {yields} Online laser measurements should be carefully used in the study of amyloid proteins. -- Abstract: Protein aggregation and amyloid fibrillation can lead to several serious diseases and protein drugs ineffectiveness; thus, the detection and inhibition of these processes have been of great interest. In the present study, the inhibition of insulin amyloid fibrillation by laser irradiation was investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), far-UV circularmore » dichroism (far-UV CD), and thioflavin T (ThT) fluorescence. During heat-induced aggregation, the size distribution of two insulin solutions obtained by online and offline dynamic light scattering were different. The laser-on insulin in the presence of 0.1 M NaCl exhibited fewer fibrils than the laser-off insulin, whereas no insulin fibril under laser irradiation was observed in the absence of 0.1 M NaCl for 45 h incubation. Moreover, our CD results showed that the laser-irradiated insulin solution maintained mainly an {alpha}-helical conformation, but the laser-off insulin solution formed bulk fibrils followed by a significant increase in {beta}-sheet content for 106 h incubation. These findings provide an inhibition method for insulin amyloid fibrillation using the laser irradiation and demonstrate that the online long-time laser measurements should be carefully used in the study of amyloid proteins because they may change the original results.« less
Transfers from Earth to LEO and LEO to interplanetary space using lasers
NASA Astrophysics Data System (ADS)
Phipps, Claude R.; Bonnal, Christophe; Masson, Fréderic; Boustie, Michel; Berthe, Laurent; Schneider, Matthieu; Baton, Sophie; Brambrink, Erik; Chevalier, Jean-Marc; Videau, Laurent; Boyer, Séverine A. E.
2018-05-01
New data on some materials at 80ps pulse duration and 1057 nm wavelength give us the option of proportionally combining them to obtain arbitrary values between 35 (aluminum) and 800 N/MW (POM, polyoxymethylene) for momentum coupling coefficient Cm. Laser ablation physics lets us transfer to LEO from Earth, or to interplanetary space using repetitively pulsed lasers and Cm values appropriate for each mission. We discuss practical results for lifting small payloads from Earth to LEO, and space missions such as a cis-Mars orbit with associated laser system parameters.
NASA Technical Reports Server (NTRS)
Liu, Yi; Sankar, Lakshmi N.; Englar, Robert; Ahuja, K.; Gaeta, R.
2003-01-01
Circulation Control Wing (CCW) technology is a very effective way of achieving very high lift coefficients needed by aircraft during take-off and landing. This technology can also be used to directly control the flow field over the wing. Compared to a conventional high-lift system, a Circulation Control Wing (CCW) can generate the required values of lift coefficient C(sub L,max) during take-off/landing with fewer or no moving parts and much less complexity. Earlier designs of CCW configurations used airfoils with a large radius rounded trailing edge to maximize the lift benefit. However, these designs also produced very high drag. These high drag levels associated with the blunt, large radius trailing edge can be prohibitive under cruise conditions when Circulation Control is no longer necessary. To overcome this difficulty, an advanced CCW section, i.e., a circulation hinged flap was developed to replace the original rounded trailing edge CC airfoil. This concept developed by Englar is shown. The upper surface of the CCW flap is a large-radius arc surface, but the lower surface of the flap is flat. The flap could be deflected from 0 degrees to 90 degrees. When an aircraft takes-off or lands, the flap is deflected as in a conventional high lift system. Then this large radius on the upper surface produces a large jet turning angle, leading to high lift. When the aircraft is in cruise, the flap is retracted and a conventional sharp trailing edge shape results, greatly reducing the drag. This kind of flap does have some moving elements that increase the weight and complexity over an earlier CCW design. But overall, the hinged flap design still maintains most of the Circulation Control high lift advantages, while greatly reducing the drag in cruising condition associated with the rounded trailing edge CCW design. In the present work, an unsteady three-dimensional Navier-Stokes analysis procedure has been developed and applied to this advanced CCW configuration. The solver can be used in both a 2-D and a 3-D mode, and can thus model airfoils as well as finite wings. The jet slot location, slot height, and the flap angle can all be varied easily and individually in the grid generator and the flow solver. Steady jets, pulsed jets, the leading edge and trailing edge blowing can all be studied with this solver.
NASA Astrophysics Data System (ADS)
Deng, Dongge; Wu, Xinjun
2018-03-01
An electromagnetic method for determining axial stress in ferromagnetic bars is proposed. In this method, the tested bar is under the static magnetization provided by permanent magnets. The tested bar do not have to be magnetized up to the technical saturation because reciprocal amplitude of initial differential susceptibility (RAIDS) is adopted as the feature parameter. RAIDS is calculated from the radial magnetic flux density Br Lo = 0.5 at the Lift-off Lo = 0.5 mm, radial magnetic flux density Br Lo = 1 at the Lift-off Lo = 1 mm and axial magnetic flux density Bz Lo = 1 at the Lift-off Lo = 1 mm from the surface of the tested bar. Firstly, the theoretical derivation of RAIDS is carried out according to Gauss' law for magnetism, Ampere's Law and the Rayleigh relation in Rayleigh region. Secondly, the experimental system is set up for a 2-meter length and 20 mm diameter steel bar. Thirdly, an experiment is carried out on the steel bar to analyze the relationship between the obtained RAIDS and the axial stress. Experimental results show that the obtained RAIDS decreases almost linearly with the increment of the axial stress inside the steel bar in the initial elastic region. The proposed method has the potential to determine tensile axial stress in the slender cylindrical ferromagnetic bar.
Automatic detection of lift-off and touch-down of a pick-up walker using 3D kinematics.
Grootveld, L; Thies, S B; Ogden, D; Howard, D; Kenney, L P J
2014-02-01
Walking aids have been associated with falls and it is believed that incorrect use limits their usefulness. Measures are therefore needed that characterize their stable use and the classification of key events in walking aid movement is the first step in their development. This study presents an automated algorithm for detection of lift-off (LO) and touch-down (TD) events of a pick-up walker. For algorithm design and initial testing, a single user performed trials for which the four individual walker feet lifted off the ground and touched down again in various sequences, and for different amounts of frame loading (Dataset_1). For further validation, ten healthy young subjects walked with the pick-up walker on flat ground (Dataset_2a) and on a narrow beam (Dataset_2b), to challenge balance. One 88-year-old walking frame user was also assessed. Kinematic data were collected with a 3D optoelectronic camera system. The algorithm detected over 93% of events (Dataset_1), and 95% and 92% in Dataset_2a and b, respectively. Of the various LO/TD sequences, those associated with natural progression resulted in up to 100% correctly identified events. For the 88-year-old walking frame user, 96% of LO events and 93% of TD events were detected, demonstrating the potential of the approach. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Yamada, Takayoshi; Demura, Shin-ichi
2009-01-01
This study aimed to examine the relationships between ground reaction force during a sit-to-stand (STS) movement and physical activity and falling risk of the elderly and the difference of the movement characteristics between the young and the elderly. Sixty elderly females who can achieve a STS movement by themselves and 30 healthy young females were measured for ground reaction force during STS movement from a chair, adjusted for lower leg length height. The elderly's physical activity and falling risk were also assessed. Physical activity and falling risk significantly correlated with parameters on force exertion during hip lift-off and knee-hip joint extension phases (|r|=0.26-0.41). Significant differences were found in ground reaction force parameters of all phases between the young and the elderly and STS movement of the elderly was suggested to result in poor force exertion and slowing down. The above tendency was noticeable in the hip lift-off and knee-hip joint extension phases. In conclusion, force exertion in hip lift-off and knee-hip joint extension phases of STS movement is related to physical activity and falling risk in the elderly. These phases may be useful to evaluate the elderly's physical activity and falling risk.
NASA Astrophysics Data System (ADS)
Oh, Seungyoung; Oh, Sehyeong; Choi, Haecheon; Lee, Boogeon; Park, Hyungmin; Kim, Sun-Tae
2015-11-01
The elytra are a pair of hardened wings that cover the abdomen of a beetle to protect beetle's hind wings. During the take-off, these elytra open and flap in phase with the hind wings. We investigate the effect of the elytra flapping on beetle's aerodynamic performance. Numerical simulations are performed at Re=10,000 (based on the wingtip mean velocity and mean chord length of the hind wing) using an immersed boundary method. The simulations are focused on a take-off, and the wing kinematics used is directly obtained from the experimental observations using high speed cameras. The simulation result shows three-dimensional vortical structures generated by the hind wing of the beetle and their interaction with the elytra. The presence of elytra has a negative effect on the lift generation by the hind wings, but the lift force on the elytra themselves is negligible. Further discussions on the elytra - hind wing interaction will be provided during the presentation. Supported by UD130070ID.
Inkjet-Printed In-Ga-Zn Oxide Thin-Film Transistors with Laser Spike Annealing
NASA Astrophysics Data System (ADS)
Huang, Hang; Hu, Hailong; Zhu, Jingguang; Guo, Tailiang
2017-07-01
Inkjet-printed In-Ga-Zn oxide (IGZO) thin-film transistors (TFTs) have been fabricated at low temperature using laser spike annealing (LSA) treatment. Coffee-ring effects during the printing process were eliminated to form uniform IGZO films by simply increasing the concentration of solute in the ink. The impact of LSA on the TFT performance was studied. The field-effect mobility, threshold voltage, and on/off current ratio were greatly influenced by the LSA treatment. With laser scanning at 1 mm/s for 40 times, the 30-nm-thick IGZO TFT baked at 200°C showed mobility of 1.5 cm2/V s, threshold voltage of -8.5 V, and on/off current ratio >106. Our findings demonstrate the feasibility of rapid LSA treatment of low-temperature inkjet-printed oxide semiconductor transistors, being comparable to those obtained by conventional high-temperature annealing.
On beam models and their paraxial approximation
NASA Astrophysics Data System (ADS)
Waters, W. J.; King, B.
2018-01-01
We derive focused laser pulse solutions to the electromagnetic wave equation in vacuum. After reproducing beam and pulse expressions for the well-known paraxial Gaussian and axicon cases, we apply the method to analyse a laser beam with Lorentzian transverse momentum distribution. Whilst a paraxial approach has some success close to the focal axis and within a Rayleigh range of the focal spot, we find that it incorrectly predicts the transverse fall-off typical of a Lorentzian. Our vector-potential approach is particularly relevant to calculation of quantum electrodynamical processes in weak laser pulse backgrounds.
Nanofabrication on unconventional substrates using transferred hard masks
Li, Luozhou; Bayn, Igal; Lu, Ming; ...
2015-01-15
Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less
Experimental and Computational Study fo CH, CH*, and OH* in an Axisymmetric Laminar Diffusion Flame
NASA Technical Reports Server (NTRS)
Walsh, K. T.
1998-01-01
In this study, we extend the results of previous combined numerical and experimental investigations of an axisymmetric laminar diffusion flame in which difference Raman spectroscopy, laser-induced fluorescence (LIF), and a multidimensional flame model were used to generate profiles of the temperature and major and minor species. A procedure is outlined by which the number densities of ground-state CH (X(sup 2)II) excited-state CH (A(sup 2)Delta, denoted CH*), and excited-state OH (A(sup 2)Sigma, denoted OH*) are measured and modeled. CH* and OH* number densities are deconvoluted from line-of-sight flame-emission measurements. Ground-state CH is measured using linear LIF. The computations are done with GRI Mech 2.11 as well as an alternate hydrocarbon mechanism. In both cases, additional reactions for the production and consumption of CH* and OH* are added from recent kinetic studies. Collisional quenching and spontaneous emission are responsible for the de-excitation of the excited-state radicals. As with our previous investigations, GRI Mech 2.11 continues to produce very good agreement with the overall flame length observed in the experiments, while significantly under predicting the flame lift-off height. The alternate kinetic scheme is much more accurate in predicting lift-off height but overpredicts the over-all flame length. Ground-state CH profiles predicted with GRI Mech 2.11 are in excellent agreement with the corresponding measurements, regarding both spatial distribution and absolute concentration (measured at 4 ppm) of the CH radical. Calculations of the excited-state species show reasonable agreement with the measurements as far as spatial distribution and overall characteristics are concerned. For OH*, the measured peak mole fraction, 1.3 x 10(exp -8), compared well with computed peaks, while the measured peak level for CH*, 2 x 10(exp -9), was severely underpredicted by both kinetic schemes, indicating that the formation and destruction kinetics associated with excited-state species in flames require further research.
NASA Technical Reports Server (NTRS)
Hipol, Philip J.
1990-01-01
The development of force and acceleration control spectra for vibration testing of Space Shuttle (STS) orbiter sidewall-mounted payloads requiresreliable estimates of the sidewall apparent weight and free (i.e. unloaded) vibration during lift-off. The feasibility of analytically predicting these quantities has been investigated through the development and analysis of a finite element model of the STS cargo bay. Analytical predictions of the sidewall apparent weight were compared with apparent weight measurements made on OV-101, and analytical predictions of the sidewall free vibration response during lift-off were compared with flight measurements obtained from STS-3 and STS-4. These analysis suggest that the cargo bay finite element model has potential application for the estimation of force and acceleration control spectra for STS sidewall-mounted payloads.
STS-57 Endeavour, OV-105, framed by Florida vegetation, lifts off from KSC LC
1993-06-21
STS057-S-055 (21 June 1993) --- Framed by a variety of flora types, the Space Shuttle Endeavour lifts off Launch Pad 39B to begin the STS-57 mission. Launch occurred at 9:07:22 a.m. (EDT), June 21, 1993. The mission represents the first flight of the commercially developed SPACEHAB laboratory module and also will feature a retrieval of the European Retrievable Carrier (EURECA). Onboard for Endeavour's fourth flight are a crew of six - Ronald J. Grabe, mission commander; Brian Duffy, pilot; G. David Low, payload commander; and Nancy J. Sherlock, Peter J.K. (Jeff) Wisoff and Janice E. Voss, all mission specialists. An earlier launch attempt was scrubbed due to unacceptable weather conditions both at KSC and the overseas contingency landing sites.
Methods for fabricating thin film III-V compound solar cell
Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve
2011-08-09
The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.
Microwave GaAs Integrated Circuits On Quartz Substrates
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara
1994-01-01
Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.
The surprising dynamics of a chain on a pulley: lift off and snapping.
Brun, P-T; Audoly, Basile; Goriely, Alain; Vella, Dominic
2016-06-01
The motion of weights attached to a chain or string moving on a frictionless pulley is a classic problem of introductory physics used to understand the relationship between force and acceleration. Here, we consider the dynamics of the chain when one of the weights is removed and, thus, one end is pulled with constant acceleration. This simple change has dramatic consequences for the ensuing motion: at a finite time, the chain 'lifts off' from the pulley, and the free end subsequently accelerates faster than the end that is pulled. Eventually, the chain undergoes a dramatic reversal of curvature reminiscent of the crack or snap, of a whip. We combine experiments, numerical simulations and theoretical arguments to explain key aspects of this dynamical problem.
Three-Dimensional Effects on Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.
2002-01-01
In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.
Time-resolved measurements of statistics for a Nd:YAG laser.
Hubschmid, W; Bombach, R; Gerber, T
1994-08-20
Time-resolved measurements of the fluctuating intensity of a multimode frequency-doubled Nd:YAG laser have been performed. For various operating conditions the enhancement factors in nonlinear optical processes that use a fluctuating instead of a single-mode laser have been determined up to the sixth order. In the case of reduced flash-lamp excitation and a switched-off laser amplifier, the intensity fluctuations agree with the normalized Gaussian model for the fluctuations of the fundamental frequency, whereas strong deviations are found under usual operating conditions. The frequencydoubled light has in the latter case enhancement factors not so far from values of Gaussian statistics.
New method of writing long-period fiber gratings using high-frequency CO2 laser
NASA Astrophysics Data System (ADS)
Guo, Gao-Ran; Song, Ying; Zhang, Wen-Tao; Jiang, Yue; Li, Fang
2016-11-01
In the paper, the Long period fiber gratings (LPFG) were fabricated in a single-mode fiber using a high frequency CO2 laser system with the point-to-point technique. The experimental setup consists of a CO2 laser controlling system, a focusing system located at a motorized linear stage, a fiber alignment stage, and an optical spectrum analyzer to monitor the transmission spectrum of the LPFG. The period of the LPFG is precisely inscribed by periodically turning on/off the laser shutter while the motorized linear stage is driven to move at a constant speed. The efficiency of fiber writing process is improved.
Kennedy Space Center's Command and Control System - "Toasters to Rocket Ships"
NASA Technical Reports Server (NTRS)
Lougheed, Kirk; Mako, Cheryle
2011-01-01
This slide presentation reviews the history of the development of the command and control system at Kennedy Space Center. From a system that could be brought to Florida in the trunk of a car in the 1950's. Including the development of larger and more complex launch vehicles with the Apollo program where human launch controllers managed the launch process with a hardware only system that required a dedicated human interface to perform every function until the Apollo vehicle lifted off from the pad. Through the development of the digital computer that interfaced with ground launch processing systems with the Space Shuttle program. Finally, showing the future control room being developed to control the missions to return to the moon and Mars, which will maximize the use of Commercial-Off-The Shelf (COTS) hardware and software which was standards based and not tied to a single vendor. The system is designed to be flexible and adaptable to support the requirements of future spacecraft and launch vehicles.
Lee, Chia-Yen; Chen, C M; Chang, Guan-Liang; Lin, Che-Hsin; Fu, Lung-Ming
2006-12-01
This study uses simple and reliable microfabrication techniques to fabricate CE biochips, integrating a novel contactless conductivity detector in a miniaturized detection system in a microfluidic biochip. The off-channel electrodes are deposited around side channels by Au sputtering and patterned using a standard "lift-off" process. A vacuum fusion bonding process is employed to seal the lower substrate containing the microchannels and the electrodes to an upper glass cover plate. The variations in the capacitance between the semicircular detection electrodes in the side channels are measured as different samples and ions pass through the detection region of the CE separation channel. Samples of Rhodamine B, commercial sports drinks, mineral waters, and a red wine, respectively, are mixed in different buffer solutions, separated, and successfully detected using the developed device. The semicircular detection electrodes for the contactless conductivity detector have microscale dimensions and provide a valuable contribution to the realization of the lab-on-a-chip concept.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... station platforms, that passengers with disabilities can get on and off any accessible car of the train... train car that other passengers can board at the station. These means include providing car-borne lifts... disabilities can get on and off any accessible car that is available to passengers at a station platform. At...
2006-07-13
KENNEDY SPACE CENTER, FLA. - With guidelines attached, the second stage of the Boeing Delta II rocket is lifted by a crane toward the mobile service tower on Launch Pad 17-B on Cape Canaveral Air Force Station. The second stage then will be lifted into the mobile service tower and mated with first stage already in place. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in August 2006. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
McCurdy, David R.; Roche, Joseph M.
2004-01-01
In support of NASA's Next Generation Launch Technology (NGLT) program, the Andrews Gryphon booster was studied. The Andrews Gryphon concept is a horizontal lift-off, two-stage-to-orbit, reusable launch vehicle that uses an air collection and enrichment system (ACES). The purpose of the ACES is to collect atmospheric oxygen during a subsonic flight loiter phase and cool it to cryogenic temperature, ultimately resulting in a reduced initial take-off weight To study the performance and size of an air-collection based booster, an initial airplane like shape was established as a baseline and modeled in a vehicle sizing code. The code, SIZER, contains a general series of volume, surface area, and fuel fraction relationships that tie engine and ACES performance with propellant requirements and volumetric constraints in order to establish vehicle closure for the given mission. A key element of system level weight optimization is the use of the SIZER program that provides rapid convergence and a great deal of flexibility for different tank architectures and material suites in order to study their impact on gross lift-off weight. This paper discusses important elements of the sizing code architecture followed by highlights of the baseline booster study.
Laser Raman Diagnostics in Subsonic and Supersonic Turbulent Jet Diffusion Flames.
NASA Astrophysics Data System (ADS)
Cheng, Tsarng-Sheng
1991-02-01
UV spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. For the first time, simultaneous measurements of temperature, major species (H_2, O_2, N_2, H_2O), and minor species (OH) concentrations are made with a "single" narrowband KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat -flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. UV Raman measurements in the subsonic lifted turbulent diffusion flame indicate that fuel and oxidizer are in rich, premixed, and unignited conditions in the center core of the lifted flame base. The unignited mixtures are due to rapid turbulent mixing that affects chemical reaction. Combustion occurs in an intermittent annular turbulent flame brush with strong finite-rate chemistry effects. The OH radical exists in sub-equilibrium and super-equilibrium concentrations. Major species and temperature are found with non-equilibrium values. Further downstream the super-equilibrium OH radicals decay toward equilibrium through slow three-body recombination reactions. In the supersonic lifted flame, a little reaction occurs upstream of the flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and total enthalpy fluctuations lead to temperature, major, and minor species concentrations with non-equilibrium values. Combustion occurs farther downstream of the lifted region. Slow three-body recombination reactions result in super-equilibrium OH concentrations that depress temperature below the equilibrium values. Near the equilibrium region, ambient air entrainment contaminates flame properties. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
A laser optical torquemeter for measuring the mechanical power furnished by a chirale turbine
NASA Astrophysics Data System (ADS)
Bonfanti, Marco; La Rosa, Guido; Lo Savio, Fabio
2005-02-01
The design of the present laser optical torquemeter arose from the need to measure the mechanical power furnished by a prototype of chirale turbine, which exploits the lift force produced in the rotor, due to the "Magnus effect." The particular optical reading system allows the device to determine both the torque and the mechanical power. The torque value is obtained through the reading of the torsional angle. From this value, together with that of the transmission shaft angular speed measured by the same torquemeter, the mechanical power of the turbine is calculated. The optical system output signals are acquired, processed and elaborated by a virtual logic circuit, simulated by means of a suitable home-made software in LabVIEW environment. The torquemeter has been tested operating with the prototype of turbine in a wind tunnel.
1998-09-23
KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test Platform (HOST) is lifted off its work stand in the Space Station Processing Facility before moving it to its payload canister. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry other payloads such as the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker (IEH-3), and the SPACEHAB single module with experiments on space flight and the aging process
The effectiveness of strong afterglow phosphor powder in the detection of fingermarks.
Liu, Li; Zhang, Zhongliang; Zhang, Limei; Zhai, Yuchun
2009-01-10
There are numerous types of fluorescent fingermark powders or reagents used with the visualization of latent fingermarks deposited on multicolored substrate surfaces that can present a contrast problem if developed with regular fingermark powders. The developed fingermarks can show bright fluorescence upon exposure to laser, ultraviolet light and other light sources. These kinds of methods share a common concern, where surfaces and other substrates may fluoresce also. To overcome this concern, we have developed a phosphor powder which offers a strong afterglow effect which aid in the establishment of better fingermark detection. With the advent of a phosphor powder no special devices are required and the results obtained from fresh or a few days aged latent fingermarks left on: non-porous; semi-porous and also on some porous surfaces have been good. The strong afterglow effect offered by phosphor powder is also applicable for cyanoacrylate fumed fingermarks. Lift off and photography procedures of the developed fingermarks are incorporated in this paper.
A numerical simulation of machining glass by dual CO 2-laser beams
NASA Astrophysics Data System (ADS)
Jiao, Junke; Wang, Xinbing
2008-03-01
In the flat panel display (FPD) industry, lasers may be used to cut glass plates. In order to reduce the possibility of fracture in the process of cutting glass by lasers, the thermal stress has to be less than the critical rupture strength. In this paper, a dual-laser-beam method is proposed, where an off-focus CO 2-laser beam was used to preheat the glass sample to reduce the thermal gradients and a focused CO 2-laser beam was used to machine the glass. The distribution of the thermal stress and the temperature was simulated by using finite element analysis software, Ansys. The thermal stress was studied both when the glass sample was machined by a single CO 2-laser beam and by dual CO 2-laser beams. It was concluded that the thermal stress can be reduced by means of the dual-laser-beam method.
Prins, A H; Kaptein, B L; Banks, S A; Stoel, B C; Nelissen, R G H H; Valstar, E R
2014-05-07
Knee contact mechanics play an important role in knee implant failure and wear mechanics. Femoral condylar contact loss in total knee arthroplasty has been reported in some studies and it is considered to potentially induce excessive wear of the polyethylene insert.Measuring in vivo forces applied to the tibial plateau with an instrumented prosthesis is a possible approach to assess contact loss in vivo, but this approach is not very practical. Alternatively, single-plane fluoroscopy and pose estimation can be used to derive the relative pose of the femoral component with respect to the tibial plateau and estimate the distance from the medial and lateral parts of the femoral component towards the insert. Two measures are reported in the literature: lift-off is commonly defined as the difference in distance between the medial and lateral condyles of the femoral component with respect to the tibial plateau; separation is determined by the closest distance of each condyle towards the polyethylene insert instead of the tibia plateau.In this validation study, lift-off and separation as measured with single-plane fluoroscopy are compared to in vivo contact forces measured with an instrumented knee implant. In a phantom study, lift-off and separation were compared to measurements with a high quality bi-plane measurement.The results of the in vivo contact-force experiment demonstrate a large discrepancy between single-plane fluoroscopy and the in vivo force data: single-plane fluoroscopy measured up to 5.1mm of lift-off or separation, whereas the force data never showed actual loss of contact. The phantom study demonstrated that the single-plane setup could introduce an overestimation of 0.22mm±±0.36mm. Correcting the out-of-plane position resulted in an underestimation of medial separation by -0.20mm±±0.29mm.In conclusion, there is a discrepancy between the in vivo force data and single-plane fluoroscopic measurements. Therefore contact loss may not always be determined reliably by single plane fluoroscopy analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo
2010-05-01
A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on coastal diffusion using image analysis. Applied Scientific Research 59,.191-204. 1998. [5] J.M. Redondo. Turbulent mixing in the Atmosphere and Ocean. Fluid Physics. 584-597. World Scientific. New York. 1994
EMG Processing Based Measures of Fatigue Assessment during Manual Lifting.
Shair, E F; Ahmad, S A; Marhaban, M H; Mohd Tamrin, S B; Abdullah, A R
2017-01-01
Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.
Lin, Huan-Ting; Tien, Ching-Ho; Hsu, Chen-Peng; Horng, Ray-Hua
2014-12-29
We fabricated a phosphor-conversion white light emitting diode (PC-WLED) using a thin-film flip-chip GaN LED with a roughened u-GaN surface (TFFC-SR-LED) that emits blue light at 450 nm wavelength with a conformal phosphor coating that converts the blue light into yellow light. It was found that the TFFC-SR-LED with the thin-film substrate removal process and surface roughening exhibits a power enhancement of 16.1% when compared with the TFFC-LED without a sapphire substrate. When a TFFC-SR-LED with phosphors on a Cu-metal packaging-base (TFFC-SR-Cu-WLED) was operated at a forward-bias current of 350 mA, luminous flux and luminous efficacy were increased by 17.8 and 11.9%, compared to a TFFC-SR-LED on a Cup-shaped packaging-base (TFFC-SR-Cup-WLED). The angular correlated color temperature (CCT) deviation of a TFFC-SR-Cu-WLED reaches 77 K in the range of -70° to + 70° when the average CCT of white LEDs is around 4300 K. Consequently, the TFFC-SR-LED in a conformal coating phosphor structure on a Cu packaging-base could not only increase the luminous flux output, but also improve the angular-dependent CCT uniformity, thereby reducing the yellow ring effect.
Project Dawdler: a Proposal in Response to a Low Reynolds Number Station Keeping Mission
NASA Technical Reports Server (NTRS)
Bartilotti, Rich; Coakley, Jill; Golla, Warren; Scamman, Glenn; Tran, Hoa T.; Trippel, Chris
1990-01-01
In direct response to Request for Proposals: Flight at very low Reynolds numbers - a station keeping mission, the members of Design Squad E present Project Dawdler: a remotely-piloted airplane supported by an independently controlled take-off cart. A brief introduction to Project Dawdler's overall mission and design, is given. The Dawdler is a remotely-piloted airplane designed to fly in an environmentally-controlled closed course at a Reynolds number of 10(exp 5) and at a cruise velocity of 25 ft/s. The two primary goals were to minimize the flight Reynolds number and to maximize the loiter time. With this in mind, the general design of the airplane was guided by the belief that a relatively light aircraft producing a fairly large amount of lift would be the best approach. For this reason the Dawdler utilizes a canard rather than a conventional tail for longitudinal control, primarily because the canard contributes a positive lift component. The Dawdler also has a single vertical tail mounted behind the wing for lateral stability, half of which is used as a rudder for yaw control. Due to the fact that the power required to take-off and climb to altitude is much greater than that required for cruise flight and simple turning maneuvers, it was decided that a take-off cart be used. Based on the current design, there are two unknowns which could possibly threaten the success of Project Dawdler. First, the effect of the fully-movable canard with its large appropriation of total lift on the performance of the plane, and secondly, the ability of the take-off procedure to go as planned are examined. These are questions which can only be answered by a prototype.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.
2011-01-01
Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.
The design of two-stage-to-orbit vehicles
NASA Technical Reports Server (NTRS)
1991-01-01
Two separate student design groups developed conceptual designs for a two-stage-to-orbit vehicle, with each design group consisting of a carrier team and an orbiter team. A two-stage-to-orbit system is considered in the event that single-stage-to-orbit is deemed not feasible in the foreseeable future; the two-stage system would also be used as a complement to an already existing heavy lift vehicle. The design specifications given are to lift a 10,000-lb payload 27 ft long by 10 ft diameter, to low Earth orbit (300 n.m.) using an air breathing carrier configuration that will take off horizontally within 15,000 ft. The staging Mach number and altitude were to be determined by the design groups. One group designed a delta wing/body carrier with the orbiter nested within the fuselage of the carrier, and the other group produced a blended cranked-delta wing/body carrier with the orbiter in the more conventional piggyback configuration. Each carrier used liquid hydrogen-fueled turbofanramjet engines, with data provided by General Electric Aircraft Engine Group. While one orbiter used a full-scale Space Shuttle Main Engine (SSME), the other orbiter employed a half-scale SSME coupled with scramjet engines, with data again provided by General Electric. The two groups conceptual designs, along with the technical trade-offs, difficulties, and details that surfaced during the design process are presented.
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is lifted up the mobile service tower at Pad 17-B, Cape Canaveral Air Force Station. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Strategic Airlift Modernization: Analysis of C-5 Modernization and C-17 Acquisition Issues
2008-04-15
shaped more like an aircraft’s wing, to generate lift through aerodynamic forces. Advocates hope airships may be capable of carrying a complete Army...airships use aerodynamic lift and will take-off and land much like conventional aircraft. Some estimate that 1,000 ton-class hybrid aircraft will require...Description153 Power plant: Four Pratt & Whitney F117-PW-100 turbofan engines Wingspan: 169 feet 10 inches (to winglet tips) (51.76 meters) Length: 174
NASA Astrophysics Data System (ADS)
Palneedi, Haribabu; Maurya, Deepam; Kim, Gi-Yeop; Priya, Shashank; Kang, Suk-Joong L.; Kim, Kwang-Ho; Choi, Si-Young; Ryu, Jungho
2015-07-01
A highly dense, 4 μm-thick Pb(Zr,Ti)O3 (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, a colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.
Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Pirzadeh, S.
1999-01-01
A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.
Feasibility study of modern airships. Phase 2: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
A feasibility study of modern airships has been completed. Three promising modern airship systems' concepts and their associated missions were studied; (1) a heavy-lift airship, employing a non-rigid hull and a significant amount of rotor lift, used for short-range transport and positioning of heavy military and civil payloads, (2) a VTOL (vertical take-off and landing), metalclad, partially buoyant airship used as a short-haul commercial transport; and (3) a class of fully-buoyant airships used for long-endurance Navy missions. The heavy-lift airship concept offers a substantial increase in vertical lift capability over existing systems and is projected to have lower total operating costs per ton-mile. The VTOL airship transport concept appears to be economically competitive with other VTOL aircraft concepts but can attain significantly lower noise levels. The fully-buoyant airship concept can provide an airborne platform with long endurance that satisfies many Navy mission requirements.
Muniak, John E.
2001-01-01
A gripper that is designed to incorporate the functions of gripping, supporting and pressure tongs into one device. The gripper has two opposing finger sections with interlocking fingers that incline and taper to form a wedge. The interlocking fingers are vertically off-set so that the opposing finger sections may close together allowing the inclined, tapered tips of the fingers to extend beyond the plane defined by the opposing finger section's engagement surface. The range of motion defined by the interlocking relationship of the finger sections allows the gripper to grab, lift and support objects of varying size and shape. The gripper has one stationary and one moveable finger section. Power is provided to the moveable finger section by an actuating device enabling the gripper to close around an object to be lifted. A lifting bail is attached to the gripper and is supported by a crane that provides vertical lift.
Progress in high-lift aerodynamic calculations
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1993-01-01
The current work presents progress in the effort to numerically simulate the flow over high-lift aerodynamic components, namely, multi-element airfoils and wings in either a take-off or a landing configuration. The computational approach utilizes an incompressible flow solver and an overlaid chimera grid approach. A detailed grid resolution study is presented for flow over a three-element airfoil. Two turbulence models, a one-equation Baldwin-Barth model and a two equation k-omega model are compared. Excellent agreement with experiment is obtained for the lift coefficient at all angles of attack, including the prediction of maximum lift when using the two-equation model. Results for two other flap riggings are shown. Three-dimensional results are presented for a wing with a square wing-tip as a validation case. Grid generation and topology is discussed for computing the flow over a T-39 Sabreliner wing with flap deployed and the initial calculations for this geometry are presented.
Reconfiguration control system for an aircraft wing
NASA Technical Reports Server (NTRS)
Wakayama, Sean R. (Inventor)
2008-01-01
Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.
NASA Astrophysics Data System (ADS)
Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.
2006-05-01
Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.
Prosa, T J; Alvis, R; Tsakalakos, L; Smentkowski, V S
2010-08-01
Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour-liquid-solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis.
Development of a low-cost multiple diode PIV laser for high-speed flow visualization
NASA Astrophysics Data System (ADS)
Bhakta, Raj; Hargather, Michael
2017-11-01
Particle imaging velocimetry (PIV) is an optical visualization technique that typically incorporates a single high-powered laser to illuminate seeded particles in a fluid flow. Standard PIV lasers are extremely costly and have low frequencies that severely limit its capability in high speed, time-resolved imaging. The development of a multiple diode laser system consisting of continuous lasers allows for flexible high-speed imaging with a wider range of test parameters. The developed laser system was fabricated with off-the-shelf parts for approximately 500. A series of experimental tests were conducted to compare the laser apparatus to a standard Nd:YAG double-pulsed PIV laser. Steady and unsteady flows were processed to compare the two systems and validate the accuracy of the multiple laser design. PIV results indicate good correlation between the two laser systems and verifies the construction of a precise laser instrument. The key technical obstacle to this approach was laser calibration and positioning which will be discussed. HDTRA1-14-1-0070.
Longitudinal study of the effect of high intensity weight training on aerobic capacity.
Nakao, M; Inoue, Y; Murakami, H
1995-01-01
To investigate the effect of a long-term weight lifting programme characterized by high intensity, low repetition and long rest period between sets on maximal oxygen consumption (VO2max) and to determine the advantage of this programme combined with jogging, 26 male untrained students were involved in weight training for a period of 3 years. The VO2max and body composition of the subjects were examined at beginning, 1 year, 2 years (T2), and 3 years after (T3) training. Of the group, 19 subjects performed the weight lifting programme 5 days each week for 3 years (W-group), 4 subjects performed the same weight lifting programme for 3 years with an additional running programme consisting of 2 miles of jogging once a week during the 3rd year (R1-group), and 3 subjects performed the weight lifting programme during the 1st year and the same combined jogging and weight lifting programme as the R1-group during the 2nd and 3rd years (R2-group). The average VO2max relative to their body mass of the W-group decreased significantly during the 1st year, followed by an insignificant decrease in the 2nd year and a levelling off in the 3rd year. The average VO2max of the W-group at T2 and T3 was 44.2 and 44.1 ml.kg-1.min-1, respectively. The tendency of VO2max changes in the R1- and R2-groups was similar to the W-group until they started the jogging programme, after which they recovered significantly to the initial level within a year of including that programme, and they then levelled off during the next year. Lean body mass estimated from skinfold thicknesses had increased by about 8% after 3 years of weight lifting. The maximal muscle strength, defined by total olympic lifts (snatch, and clean and jerk), of these three groups increased significantly and there was no significant difference among the amounts of the increase in the three groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Dream Chaser ALT-2 Free Flight
2017-11-11
Sierra Nevada Corp’s Dream Chaser crew prepared for helicopter lift off ramp at NASA’s Armstrong Flight Research Center in California, for its successful approach and landing flight test on Nov. 11, 2017.
Transport properties of epitaxial lift off films
NASA Technical Reports Server (NTRS)
Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.
1993-01-01
Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.
Elevated waterproof access floor system and method of making the same
NASA Technical Reports Server (NTRS)
Cohen, Marc M. (Inventor)
1987-01-01
An elevated waterproof access floor system having subfloor channels or compartments for power lines, gas lines or the like is adapted such that it can be opened and subsequently resealed without destroying the waterproofing and without destroying its aesthetic appearance. A multiplicity of tiles are supported on a support grid, and a flooring sheet is supported on the tiles. Attachment means are provided to prevent lateral but not vertical movement of the flooring sheet with respect to the tiles so that the flooring sheet can be lifted off the tiles, but when the flooring sheet is supported on the tiles, no lateral slipping will occur. The flooring sheet is made of a heat resealable material, so that it can be cut away in sections, and the tiles therebelow lifted off, to provide access to subfloor compartments.
Aerodynamics model for a generic ASTOVL lift-fan aircraft
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Mcneil, Walter E.; Wardwell, Douglas A.
1995-01-01
This report describes the aerodynamics model used in a simulation model of an advanced short takeoff and vertical landing (ASTOVL) lift-fan fighter aircraft. The simulation model was developed for use in piloted evaluations of transition and hover flight regimes, so that only low speed (M approximately 0.2) aerodynamics are included in the mathematical model. The aerodynamic model includes the power-off aerodynamic forces and moments and the propulsion system induced aerodynamic effects, including ground effects. The power-off aerodynamics data were generated using the U.S. Air Force Stability and Control Digital DATCOM program and a NASA Ames in-house graphics program called VORVIEW which allows the user to easily analyze arbitrary conceptual aircraft configurations using the VORLAX program. The jet-induced data were generated using the prediction methods of R. E. Kuhn et al., as referenced in this report.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Reddy, D. R.; Kapoor, K.
1993-01-01
A three-dimensional implicit Full Navier-Stokes (FNS) analysis and a 3D Reduced Navier-Stokes (RNS) initial value space marching solution technique has been applied to a class of separate flow problems within a diffusing S-duct configuration characterized as vortex-liftoff. Both Full Navier-Stokes and Reduced Navier-Stokes solution techniques were able to capture the overall flow physics of vortex lift-off, however more consideration must be given to the development of turbulence models for the prediction of the locations of separation and reattachment. This accounts for some of the discrepancies in the prediction of the relevant inlet distortion descriptors, particularly circumferential distortion. The 3D RNS solution technique adequately described the topological structure of flow separation associated with vortex lift-off.
Wagon instability in long trains
NASA Astrophysics Data System (ADS)
Cole, Colin; McClanachan, Mitchell; Spiryagin, Maksym; Sun, Yan Quan
2012-01-01
Lateral force components and impacts from couplers can adversely affect wagon stability. These issues are significant in longer and heavier trains increasing the risk of wagon rollover, wheel climb, wagon body pitch, bogie pitch and wagon lift-off. Modelling of coupler angles has been added to normal longitudinal train simulation to allow comprehensive study of lateral components of coupler forces. Lateral coupler forces are then combined with centripetal inertia calculations to determine quasi-static lateral forces, quasi-static vertical forces and quasi-static bogie lateral to vertical ratio, allowing the study of stringlining, buckling and wagon rollover risks. The approach taken allows for different rolling stock lengths, overhang and coupling lengths, and allows the study of angles occurring in transitions. Wagon body and bogie pitch are also studied with enhancements added to previous modelling to allow the study of wagon lift-off.
Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition
NASA Astrophysics Data System (ADS)
Breckenfeld, Eric; Kim, Heungsoo; Gorzkowski, Edward P.; Sutto, Thomas E.; Piqué, Alberto
2017-03-01
We investigate a novel route for synthesis and laser-sintering of VO2 thin films via solution-based polymer-assisted-deposition (PAD). By replacing the traditional solvent for PAD (water) with propylene glycol, we are able to control the viscosity and improve the environmental stability of the precursor. The solution stability and ability to control the viscosity makes for an ideal solution to pattern simple or complex shapes via direct-write methods. We demonstrate the potential of our precursor for printing applications by combining PAD with laser induced forward transfer (LIFT). We also demonstrate large-area film synthesis on 4 in. diameter glass wafers. By varying the annealing temperature, we identify the optimal synthesis conditions, obtaining optical transmittance changes of 60% at a 2500 nm wavelength and a two-order-of-magnitude semiconductor-to-metal transition. We go on to demonstrate two routes for improved semiconductor-to-metal characteristics. The first method uses a multi-coating process to produce denser films with large particles. The second method uses a pulsed-UV-laser sintering step in films annealed at low temperatures (<450° C) to promote particle growth and improve the semiconductor-to-metal transition. By comparing the hysteresis width and semiconductor-to-metal transition magnitude in these samples, we demonstrate that both methods yield high quality VO2 with a three-order-of-magnitude transition.
2010-08-27
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida an overhead crane lifts the Alpha Magnetic Spectrometer, or AMS, off of the tractor-trailer that delivered it. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. - The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Rusty Backer
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. - The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kenny Allen
2012-08-30
CAPE CANAVERAL, Fla. - The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Rusty Backer
2012-08-30
CAPE CANAVERAL, Fla. – Exhaust clouds billow across the pad at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida as the United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Gianni Woods
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. - The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kenny Allen
2012-08-30
CAPE CANAVERAL, Fla. – The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Ben Smegelsky
2012-08-30
CAPE CANAVERAL, Fla. – The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifts off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, is a breath away from lifting off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Ben Smegelsky
2012-08-30
CAPE CANAVERAL, Fla. – The engines ignite under the United Launch Alliance Atlas V rocket at 4:05 a.m. EDT lifting NASA's Radiation Belt Storm Probes, or RBSP, off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA's Radiation Belt Storm Probes, or RBSP, lifted off Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
High Precision Metal Thin Film Liftoff Technique
NASA Technical Reports Server (NTRS)
Brown, Ari D. (Inventor); Patel, Amil A. (Inventor)
2015-01-01
A metal film liftoff process includes applying a polymer layer onto a silicon substrate, applying a germanium layer over the polymer layer to create a bilayer lift off mask, applying a patterned photoresist layer over the germanium layer, removing an exposed portion of the germanium layer, removing the photoresist layer and a portion of the polymer layer to expose a portion of the substrate and create an overhanging structure of the germanium layer, depositing a metal film over the exposed portion of the substrate and the germanium layer, and removing the polymer and germanium layers along with the overlaying metal film.
2006-07-10
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., technicians are ready to wrap more plastic around STEREO's Observatory B before its transfer to the hazardous processing facility where it will be weighed and fueled. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket no earlier than Aug. 1. Photo credit: NASA/George Shelton
1970-06-20
The M2-F3 Lifting Body is seen here on the lakebed next to the NASA Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California. The May 1967 crash of the M2-F2 had torn off the left fin and landing gear. It had also damaged the external skin and internal structure. Flight Research Center engineers worked with Ames Research Center and the Air Force in redesigning the vehicle with a center fin to provide greater stability. Then Northrop Corporation cooperated with the FRC in rebuilding the vehicle. The entire process took three years.
2001-05-31
KODIAK ISLAND, Alaska -- Technicians install Orbis 21D Equipment Section Boost Motor, the second stage of the Athena 1 launch vehicle, at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.
STS-95 Space Shuttle Discovery rollout to Launch Pad 39B
NASA Technical Reports Server (NTRS)
1998-01-01
Perched on the Mobile Launch Platform, in the early morning hours Space Shuttle Discovery approaches Launch Complex Pad 39B after a 6-hour, 4.2-mile trip from the Vehicle Assembly Building. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.
Canard-wing lift interference related to maneuvering aircraft at subsonic speeds
NASA Technical Reports Server (NTRS)
Gloss, B. B.; Mckinney, L. W.
1973-01-01
An investigation was conducted at Mach numbers of 0.7 and 0.9 to determine the lift interference effect of canard location on wing planforms typical of maneuvering fighter configurations. The canard had an exposed area of 16.0 percent of the wing reference area and was located in the plane of the wing or in a position 18.5 percent of the wing mean geometric chord above the wing plane. In addition, the canard could be located at two longitudinal stations. Two different wing planforms were tested: one with a leading-edge sweep angle of 60 deg and the other with a leading-edge sweep angle of 44 deg. The results indicated that although downwash from the canard reduced the wing lift at angles of attack up to approximately 16 deg, the total lift was substantially greater with the canard on than with the canard off. At angles of attack above 16 deg, the canard delayed the wing stall. Changing canard deflection had essentially no effect on the total lift, since the additional lift generated by the canard deflection was lost on the wing due to an increased downwash at the wing from the canard.
NASA Technical Reports Server (NTRS)
Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric
2013-01-01
Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.
Under-sampling in a Multiple-Channel Laser Vibrometry System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corey, Jordan
2007-03-01
Laser vibrometry is a technique used to detect vibrations on objects using the interference of coherent light with itself. Most vibrometry systems process only one target location at a time, but processing multiple locations simultaneously provides improved detection capabilities. Traditional laser vibrometry systems employ oversampling to sample the incoming modulated-light signal, however as the number of channels increases in these systems, certain issues arise such a higher computational cost, excessive heat, increased power requirements, and increased component cost. This thesis describes a novel approach to laser vibrometry that utilizes undersampling to control the undesirable issues associated with over-sampled systems. Undersamplingmore » allows for significantly less samples to represent the modulated-light signals, which offers several advantages in the overall system design. These advantages include an improvement in thermal efficiency, lower processing requirements, and a higher immunity to the relative intensity noise inherent in laser vibrometry applications. A unique feature of this implementation is the use of a parallel architecture to increase the overall system throughput. This parallelism is realized using a hierarchical multi-channel architecture based on off-the-shelf programmable logic devices (PLDs).« less
Laser and Stand-off Spectroscopy Quantum and Statistical Optics
2011-01-01
medium" PRA 81, 063824 (2010). Cooperative Spontaneous Emission (CSE) 12 U.S. Das, G.S. Agarwal, M.O. Scully, " Quantum Interferences in Cooperative...Sautenkov, and M. Scully. "Excitation of atomic coherence using off-resonant strong laser pulses," PRA 79, 06833 (2009). 34. M.O. Scully, " Quantum ...SUBTITLE Laser and Stand-off Spectroscopy, Quantum and Statistical Optics 6. AUTHORS Marian O. Scully 5. FUNDING NUMBERS Award No. N00014-08-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stredde, H.; /Fermilab
1998-05-27
A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comersmore » for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.« less
Ultrafast characterization of optoelectronic devices and systems
NASA Astrophysics Data System (ADS)
Zheng, Xuemei
The recent fast growth in high-speed electronics and optoelectronics has placed demanding requirements on testing tools. Electro-optic (EO) sampling is a well-established technique for characterization of high-speed electronic and optoelectronic devices and circuits. However, with the progress in device miniaturization, lower power consumption (smaller signal), and higher throughput (higher clock rate), EO sampling also needs to be updated, accordingly, towards better signal-to-noise ratio (SNR) and sensitivity, without speed sacrifice. In this thesis, a novel EO sampler with a single-crystal organic 4-dimethylamino-N-methy-4-stilbazolium tosylate (DAST) as the EO sensor is developed. The system exhibits sub-picosecond temporal resolution, sub-millivolt sensitivity, and a 10-fold improvement on SNR, compared with its LiTaO3 counterpart. The success is attributed to the very high EO coefficient, the very low dielectric constant, and the fast response, coming from the major contribution of the pi-electrons in DAST. With the advance of ultrafast laser technology, low-noise and compact femtosecond fiber lasers have come to maturation and become light-source options for ultrafast metrology systems. We have successfully integrated a femtosecond erbium-doped-fiber laser into an EO sampler, making the system compact and very reliable. The fact that EO sampling is essentially an impulse-response measurement process, requires integration of ultrashort (sub-picosecond) impulse generation network with the device under test. We have implemented a reliable lift-off and transfer technique in order to obtain epitaxial-quality freestanding low-temperature-grown GaAs (LT-GaAs) thin-film photo-switches, which can be integrated with many substrates. The photoresponse of our freestanding LT-GaAs devices was thoroughly characterized with the help of our EO sampler. As fast as 360 fs full-width-at-half-maximum (FWHM) and >1 V electrical pulses were obtained, with quantum efficiency reaching 54%. The response time was found to not depend on either the device bias or excitation power. Nitrogen-implanted GaAs is a novel ion-implanted semiconductor. Its intrinsic property of high density of incorporated defects due to the implantation process makes it a promising candidate for ultrafast photodetection. A novel photodetector based on N+-GaAs has been successfully fabricated and its performance was characterized, using again our EO sampler. Our photodetectors, based on N+-GaAs, exhibit ˜2.1 ps FWHM photoresponse and very high sensitivity.
EMG Processing Based Measures of Fatigue Assessment during Manual Lifting
Marhaban, M. H.; Abdullah, A. R.
2017-01-01
Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Susanta Kumar, E-mail: skdasfpy@kiit.ac.in; Andreev, Alexander; Braenzel, Julia
2016-03-21
The feasibility of femtosecond laser-induced periodic nanostructures on thin Ti and Cu foils (thickness down to 1 μm) is demonstrated. At pulse durations of 120 fs and a wavelength of 400 nm, periods of 61 nm to 320 nm were obtained. Particle-in-cell simulations of laser ion acceleration processes with such nanostructured targets indicate their potential for high energy particle physics applications. In particular, a measurable enhancement of the proton cut-off energy and a significant enhancement of the number of accelerated particles compared to non- or weakly structured targets of same thickness and material are expected.
Recommendations for the design and the installation of large laser scanning microscopy systems
NASA Astrophysics Data System (ADS)
Helm, P. Johannes
2012-03-01
Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.
Laser Ultrasonic System for On-Line Steel Tube Gauging
NASA Astrophysics Data System (ADS)
Monchalin, Jean-Pierre; Choquet, Marc; Padioleau, Christian; Néron, Christian; Lévesque, Daniel; Blouin, Alain; Corbeil, Christian; Talbot, Richard; Bendada, Abdelhakim; Lamontagne, Mario; Kolarik, Robert V.; Jeskey, Gerald V.; Dominik, Erich D.; Duly, Larry J.; Samblanet, Kenneth J.; Agger, Steven E.; Roush, Kenneth J.; Mester, Michael L.
2003-03-01
A laser-ultrasonic system has been installed on a seamless tubing production line of The Timken Company and is being used to measure on-line the wall thickness of tubes during processing. The seamless process consists essentially in forcing a mandrel through a hot cylindrical billet in rotation and typically results in fairly large wall thickness variations that should be minimized and controlled to respect specifications. The system includes a Q-switched Nd-YAG laser for generation of ultrasound by ablation, a long pulse very stable Nd-YAG laser for detection coupled to a confocal Fabry-Perot interferometer, a pyrometer to measure tube temperature and two laser Doppler velocimeters to measure the coordinates of the probing location at the tube surface. The laser, data acquisition and processing units are housed in a cabin off line and connected to a front coupling head located over the passing tube by optical fibers. The system has been integrated into the plant computer network and provides in real time thickness data to the plant operators. It allow much faster mill setups, has been used since its deployment for inspecting more than 100,000 tubes and has demonstrated very significant savings.
Miniature hybrid microwave IC's using a novel thin-film technology
NASA Astrophysics Data System (ADS)
Eda, Kazuo; Miwa, Tetsuji; Taguchi, Yutaka; Uwano, Tomoki
1990-12-01
A novel thin-film technology for miniature hybrid microwave ICs is presented. All passive components, such as resistors and capacitors, are fully integrated on ordinary alumina ceramic substrates using the thin-film technology with very high yield. The numbers of parts and wiring processes were significantly reduced. This technology was applied to the fabrication of Ku-band solid-state power amplifiers. This thin-film technology offers the following advantages: (1) a very high yield fabrication process of thin-film capacitor having excellent electrical characteristics in the gigahertz range (Q = 230 at 12 GHz) and reliability: (2) two kinds of thin-film resistors having different temperature coefficients of resistivity and a lift-off process to integrate them with thin-film capacitors; and (3) a matching method using the thin-film capacitor.
Robotic Laser Coating Removal System
2008-07-01
Materiel Command IRR Internal Rate of Return JTP Joint Test Protocol JTR Joint Test Report LARPS Large Area Robotic Paint Stripping LASER Light...use of laser paint stripping systems is applicable to depainting activities on large off-aircraft components and weapons systems for the Air Force...The use of laser paint stripping systems is applicable to depainting activities on large off-aircraft components and weapons systems for the Air
Biomimetic spiroid winglets for lift and drag control
NASA Astrophysics Data System (ADS)
Guerrero, Joel E.; Maestro, Dario; Bottaro, Alessandro
2012-01-01
In aeronautical engineering, drag reduction constitutes a challenge and there is room for improvement and innovative developments. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80-90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a bird's wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon. The numerical investigation of such a wingtip device is described and preliminary indications of its aerodynamic performance are provided.
Installed nacelle drag-improvement tests of an M = 0.8 turboprop transport configuration
NASA Technical Reports Server (NTRS)
Levin, A. D.; Smith, R. C.
1983-01-01
An unpowered semispan model of a representative turboprop configuration was tested to determine the effect of configuration modifications on the the nonmetric body and wing juncture. It is indicated that the jet off nacelle-installation drag can be approximately 25% of the cruise drag. However, the losses can be reduced to 17% by changes to the wing leading edge and nacelle intersection. Comparison of test results from a semispan nonmetric fuselage model with those from a full span metric fuselage show differences in angles of attack produced the same lift. It is found that the constant lift drag rise of the semispan model is higher because of the increased angle of attack to achieve the same lift.
Spanwise lift distributions and wake velocity surveys of a semi-span wing with a discontinuous twist
NASA Technical Reports Server (NTRS)
Kumagai, Hiroyuki
1989-01-01
A wind tunnel test was conducted in the NASA-Ames 7 x 10 ft wind tunnel to investigate the lift distribution on a semispan wing with a discontinuous change in spanwise twist. The semispan wing had a tip with an adjustable pitch angle independent on the inboard section pitch angle simulating the free tip rotor blade when its free tip is at a deflected position. The spanwise lift distribution over the wing and the tip were measured and three component velocity surveys behind the wing were obtained with a 3-D laser Doppler velocimeter (LV) with the wing at one angle of attack and the tip deflected at different pitch angles. A six-component internal strain gage balance was also used to measure total forces and moments on the tip. The 3-D lift was computed from the 2-D lift distributions obtained from the LV and from the strain gage balance. The results from both experimental methods are shown to be in agreement with predictions made by a steady, 3-D panel code, VSAERO.
PEER - Earthquake Reconnaissance Reports
struck off Mexico's Pacific coast - Wave 3 News - Live video Kirakira, Solomon Islands 2016 - USGS image - M7.8 - 69km WSW of Kirakira, Solomon Islands - BBC - Solomon Islands tsunami warning lifted after
1992-10-15
On the 500th arniversary of Christopher Columbus' discovery of the New World, replicas of his three ships sailed past the launch pad at the Kennedy Space Center (KSC) while the space shuttle Columbia sat poised for lift off.
1968-01-22
The Saturn IB launch vehicle (SA204) for the Apollo 5 mission lifted off on January 22, 1968. The unmarned Apollo 5 mission verified the ascent and descent stage propulsion systems, including restart and throttle operations of the Lunar Module.
NASA Astrophysics Data System (ADS)
Zhang, Haikun; Xia, Wei; Song, Peng; Wang, Jing; Li, Xin
2018-03-01
A laser-diode-pumped actively Q-switched Yb:NaY(WO4)2 laser operating at around 1040 nm is presented for the first time with acoustic-optic modulator. The dependence of pulse width on incident pump power for different pulse repetition rates is measured. By considering the Guassian spatial distribution of the intracavity photon density and the initial population-inversion density as well as the longitudinal distribution of the photon density along the cavity axis and the turn off time of the acoustic-optic Q-switch, the coupled equations of the actively Q-switched Yb:NaY(WO4)2 laser are given. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.
Layerwise Monitoring of the Selective Laser Melting Process by Thermography
NASA Astrophysics Data System (ADS)
Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.
Selective Laser Melting is utilized to build parts directly from CAD data. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout. By integration of an off-axis mounted uncooled thermal detector, the solidification as well as the layer deposition are monitored and evaluated. This enables the identification of hot spots in an early stage during the solidification process and helps to avoid process interrupts. Potential quality indicators are derived from spatially resolved measurement data and are correlated to the resulting part properties. A model of heat dissipation is presented based on the measurement of the material response for varying heat input. Current results show the feasibility of process surveillance by thermography for a limited section of the building platform in a commercial system.
Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics
NASA Technical Reports Server (NTRS)
Kenny, Robert Jeremy
2009-01-01
NASA's current models to predict lift-off acoustics for launch vehicles are currently being updated using several numerical and empirical inputs. One empirical input comes from free-field acoustic data measured at three Space Shuttle Reusable Solid Rocket Motor (RSRM) static firings. The measurements were collected by a joint collaboration between NASA - Marshall Space Flight Center, Wyle Labs, and ATK Launch Systems. For the first time NASA measured large-thrust solid rocket motor plume acoustics for evaluation of both noise sources and acoustic radiation properties. Over sixty acoustic free-field measurements were taken over the three static firings to support evaluation of acoustic radiation near the rocket plume, far-field acoustic radiation patterns, plume acoustic power efficiencies, and apparent noise source locations within the plume. At approximately 67 m off nozzle centerline and 70 m downstream of the nozzle exit plan, the measured overall sound pressure level of the RSRM was 155 dB. Peak overall levels in the far field were over 140 dB at 300 m and 50-deg off of the RSRM thrust centerline. The successful collaboration has yielded valuable data that are being implemented into NASA's lift-off acoustic models, which will then be used to update predictions for Ares I and Ares V liftoff acoustic environments.
NASA Technical Reports Server (NTRS)
Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.
2017-01-01
Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.
Printz, Adam D; Chan, Esther; Liong, Celine; Martinez, René S; Lipomi, Darren J
2013-01-01
This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1) and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices.
Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding
NASA Astrophysics Data System (ADS)
Luo, Masiyang; Shin, Yung C.
2015-01-01
In keyhole fiber laser welding processes, the weld pool behavior is essential to determining welding quality. To better observe and control the welding process, the accurate extraction of the weld pool boundary as well as the width is required. This work presents a weld pool edge detection technique based on an off axial green illumination laser and a coaxial image capturing system that consists of a CMOS camera and optic filters. According to the difference of image quality, a complete developed edge detection algorithm is proposed based on the local maximum gradient of greyness searching approach and linear interpolation. The extracted weld pool geometry and the width are validated by the actual welding width measurement and predictions by a numerical multi-phase model.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der
2014-08-11
Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm²/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased.
Fan, Ching-Lin; Shang, Ming-Chi; Li, Bo-Jyun; Lin, Yu-Zuo; Wang, Shea-Jue; Lee, Win-Der
2014-01-01
Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm2/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased. PMID:28788159
The Dusty Dynamics Within a Regional Mars Dust Storm
NASA Astrophysics Data System (ADS)
Rafkin, Scot C. R.; Pla-Garcia, Jorge; Leung, Cecilia
2017-10-01
There have never been in situ observations at or near the active lifting center of a regional dust storm on Mars. In the absence of in situ data, it is common to employ numerical models to provide guidance on the physical processes and conditions operating in an unobserved location or weather system. Consequently, the Mars Regional Atmospheric Modeling System (MRAMS) is employed to study the structure and dynamics of a simulated large regional storm using a fully interactive dust cycle. The simulations provide the first ever glimpse of the conditions that might occur inside one of these storms.The simulated storm shows extremely complex structure with narrow lifting centers and a variety of deep dust transport circulations. The active lifting centers are broadly into a mesoscale system in much the same way that thunderstorms on Earth can organize into mesoscale convective structures. In many of the active dusty plumes, the mixing ratio of dust peaks near the surface and drops off with height. Once lifted, the largest dust tends to sediment out while the smaller dust continues to be advected upward by the plume. This size-sorting process combined with entrainment of less dusty air tends to drive the mixing ratio profile to a maximum near the surface. In dusty plumes near the surface, the air temperature is as much as 20K colder than nearby areas. This is due to solar absorption higher in the dust column limiting direct heating deeper into the atmosphere. Overall, within the plume, there is an inversion, and although the top of the plume is warmer than below, it is near neutral buoyancy compared to the less dusty air on either side. Apparently, adiabatic cooling nearly offsets the expected positive heating perturbation at the top of the dusty plume. A very strong low level just forms in the vicinity of the storm, accompanied by system-wide negative pressure deficits and circulation patterns strongly suggestive of the wind-enhanced interaction of radiation and dust (WEIRD) feedback mechanism.
ScienceCast 135: Follow the Water
2014-02-21
NASA and JAXA launched a new satellite that can see through storms, tracking rain and snow around the globe better than any previous observatory. The Global Precipitation Measurement Core Observatory lifted off from Japan on Feb. 27th
Lift Off (Granite City C. U. School District 9)
ERIC Educational Resources Information Center
Goodall, Robert C.; And Others
1970-01-01
Describes and evaluates the ESEA Title I program in Granite City (Illinois) target area schools which provide preschool classes, remedial reading, and supportive health and counseling services. The programs are considered to be efficient. (DM)
New test techniques and analytical procedures for understanding the behavior of advanced propellers
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Bober, L. J.; Neumann, H. E.
1983-01-01
Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.
Chemical lift-off of (11-22) semipolar GaN using periodic triangular cavities
NASA Astrophysics Data System (ADS)
Jeon, Dae-Woo; Lee, Seung-Jae; Jeong, Tak; Baek, Jong Hyeob; Park, Jae-Woo; Jang, Lee-Woon; Kim, Myoung; Lee, In-Hwan; Ju, Jin-Woo
2012-01-01
Chemical lift-off of (11-22) semipolar GaN using triangular cavities was investigated. The (11-22) semipolar GaN was grown using epitaxial lateral overgrowth by metal-organic chemical vapor deposition on m-plane sapphire, in such a way as to keep N terminated surface of c-plane GaN exposed in the cavities. After regrowing 300 μm thick (11-22) semipolar GaN by hydride vapor phase epitaxy for a free-standing (11-22) semipolar GaN substrate, the triangular cavities of the templates were chemically etched in molten KOH. The (000-2) plane in the triangular cavities can be etched in the [0002] direction with the high lateral etching rate of 196 μm/min. The resulting free-standing (11-22) semipolar GaN substrate was confirmed to be strain-free by the Raman analysis.
STS-57 Endeavour, Orbiter Vehicle (OV) 105, lifts off from KSC LC Pad 39B
1993-06-21
STS057-S-053 (21 June 1993) --- The Space Shuttle Endeavour lifts off Launch Pad 39B as captured on film by an audio-activated camera positioned at the 270-feet level on the Rotating Service Structure (RSS) at Launch Pad 39B. STS-57 launch occurred at 9:07:22 a.m. (EDT), June 21, 1993. The mission represents the first flight of the commercially developed SpaceHab laboratory module and also will feature a retrieval of the European Retrievable Carrier (EURECA). Onboard for Endeavour's fourth flight are a crew of six NASA astronauts; Ronald J. Grabe, mission commander; Brian Duffy, pilot; G. David Low, payload commander; and Nancy J. Sherlock, Peter J. K. (Jeff) Wisoff and Janice E. Voss, all mission specialists. An earlier launch attempt was scrubbed due to unacceptable weather conditions both at the Kennedy Space Center (KSC) and the overseas contingency landing sites.
STS-94 Mission Specialist Gernhardt in LC-39A White Room
NASA Technical Reports Server (NTRS)
1997-01-01
STS-94 Mission Specialist Michael L. Gernhardt prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He first flew in this capacity on STS-69. He has been a professional deep sea diver and engineer and holds a doctorate in bioengineering. Gernhardt will be in charge of the Blue shift and as flight engineer will operate and maintain the orbiter while Halsell and Still are asleep as members of the Red shift. He will also back them up on the flight deck during the ascent and re- entry phases of the mission. Gernhardt and six fellow crew members will lift off during a launch window that opens at 1:50 a.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center.
STS-94 Payload Specialist Linteris in LC-39A White Room
NASA Technical Reports Server (NTRS)
1997-01-01
STS-94 Payload Specialist Gregory T. Linteris prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He holds a doctorate in mechanical and aerospace engineering. Linteris has worked at the National Institute of Standards and Technology and is the Principal Investigator on a NASA microgravity combustion experiment. As a member of the Red team, Linteris will concentrate on three combustion experiments. Two of these experiments are housed in the Combustion Module. He will also be backing up crew members on the other Microgravity Science Laboratory-1 (MSL-1) investigations. He and six fellow crew members will lift off during a launch window that opens at 1:50 a.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center.
NASA Technical Reports Server (NTRS)
Silverstein, Abe; White, James A
1937-01-01
The theory of wind tunnel boundary influence on the downwash from a wing has been extended to provide more complete corrections for application to airplane test data. The first section of the report gives the corrections of the lifting line for wing positions above or below the tunnel center line; the second section shows the manner in which the induced boundary influence changes with distance aft of the lifting line. Values of the boundary corrections are given for off-center positions of the wing in circular, square, 2:1 rectangular, and 2:1 elliptical tunnels. Aft of the wing the corrections are presented for only the square and the 2:1 rectangular tunnels, but it is believed that these may be applied to jets of circular and 2:1 elliptical cross sections. In all cases results are included for both open and closed tunnels.
ATK Launch Vehicle (ALV-X1) Liftoff Acoustic Environments: Prediction vs. Measurement
NASA Technical Reports Server (NTRS)
Houston, J.; Counter, Douglas; Kenny, Jeremy; Murphy, John
2010-01-01
Launched from the Mid-Atlantic Regional Spaceport (MARS) Pad 01B on August 22, 2008, the ATK Launch Vehicle (ALV-X1) provided an opportunity to measure liftoff acoustic noise data. Predicted lift-off acoustic environments were developed by both NASA MSFC and ATK engineers. ATK engineers developed predictions for use in determining vibro-acoustic loads using the method described in the monograph NASA SP-8072. The MSFC ALV-X1 lift-off acoustic prediction was made with the Vehicle Acoustic Environment Prediction Program (VAEPP). The VAEPP and SP-8072 methods predict acoustic pressures of rocket systems generally scaled to existing rocket motor data based upon designed motor or engine characteristics. The predicted acoustic pressures are sound-pressure spectra at specific positions on the vehicle. This paper presents the measured liftoff acoustics on the vehicle and tower. This data is useful for the ALV-X1 in validating the pre-launch environments and loads predictions.
Data and performances of selected aircraft and rotorcraft
NASA Astrophysics Data System (ADS)
Filippone, Antonio
2000-11-01
The purpose of this article is to provide a synthetic and comparative view of selected aircraft and rotorcraft (nearly 300 of them) from past and present. We report geometric characteristics of wings (wing span, areas, aspect-ratios, sweep angles, dihedral/anhedral angles, thickness ratios at root and tips, taper ratios) and rotor blades (type of rotor, diameter, number of blades, solidity, rpm, tip Mach numbers); aerodynamic data (drag coefficients at zero lift, cruise and maximum absolute glide ratio); performances (wing and disk loadings, maximum absolute Mach number, cruise Mach number, service ceiling, rate of climb, centrifugal acceleration limits, maximum take-off weight, maximum payload, thrust-to-weight ratios). There are additional data on wing types, high-lift devices, noise levels at take-off and landing. The data are presented on tables for each aircraft class. A graphic analysis offers a comparative look at all types of data. Accuracy levels are provided wherever available.
2006-10-11
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, the STEREO spacecraft is lifted off its transporter alongside the mobile service tower. In the tower, STEREO will be mated with its launch vehicle, a Boeing Delta II rocket. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. The STEREO mission is managed by Goddard Space Flight Center. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts
NASA Technical Reports Server (NTRS)
Emanuel, G.; Rasmussen, M. L.
1991-01-01
Research efforts related to the development of a unified aerospace plane analysis based on waverider technology are summarized. Viscous effects on the forebodies of cone-derived waverider configurations were studied. A simple means for determining the average skin friction coefficient of laminar boundary layers was established. This was incorporated into a computer program that provides lift and drag coefficients and lift/drag ratio for on-design waveriders when the temperature and Reynolds number based on length are specified. An effort was made to carry out parabolized Navier-Stokes (PNS) calculations for cone-derived waveriders. When the viscous terms were turned off (in the Euler mode) computations for elliptic cone-derived waveriders could be carried out for a wide range of on-design and off-design situations. Work related to waveriders derived from power law shocks is described in some detail.
Vehicle lift-off modelling and a new rollover detection criterion
NASA Astrophysics Data System (ADS)
Mashadi, Behrooz; Mostaghimi, Hamid
2017-05-01
The modelling and development of a general criterion for the prediction of rollover threshold is the main purpose of this work. Vehicle dynamics models after the wheels lift-off and when the vehicle moves on the two wheels are derived and the governing equations are used to develop the rollover threshold. These models include the properties of the suspension and steering systems. In order to study the stability of motion, the steady-state solutions of the equations of motion are carried out. Based on the stability analyses, a new relation is obtained for the rollover threshold in terms of measurable response parameters. The presented criterion predicts the best time for the prevention of the vehicle rollover by applying a correcting moment. It is shown that the introduced threshold of vehicle rollover is a proper state of vehicle motion that is best for stabilising the vehicle with a low energy requirement.
He, Jianpeng; Dixon, Steve; Hill, Samuel; Xu, Ke
2017-01-01
Electromagnetic acoustic transducers (EMATs) are non-contact, ultrasonic transducers that are usually kept within 5 mm from the sample surface to obtain a sufficient signal-to-noise ratio (SNR). One important issue associated with operation on a ferromagnetic plate is that the strong attraction force from the magnet can affect measurements and make scanning difficult. This paper investigates a method to generate fundamental, symmetric Lamb waves on a ferromagnetic plate. A coil-only, low-weight, generation EMAT is designed and investigated, operating at lift-offs of over 5 mm. Another design of an EMAT is investigated using a rectangular magnet with a much higher lift-off than the coil, of up to 19 mm. This results in a much lower force between the EMAT and sample, making scanning the EMAT much easier. PMID:28471377
1969-07-16
At the press site, thousands of news reporters from the world over watched, taking many pictures, as the Saturn V launch vehicle (AS-506) lifted off to start Apollo 11 on its historic mission to land on the Moon. The total number of news people officially registered to cover the launch was 3,497. The craft lifted off from launch pad 39 at Kennedy Space Flight Center (KSC) on July 16, 1969. A three man crew included astronauts Neil A. Armstrong, commander; Michael Collins, Command Module(CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The mission finalized with splashdown into the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Werher von Braun.
NASA Technical Reports Server (NTRS)
Sokoloski, Martin M. (Editor)
1989-01-01
Various papers on laser applications in meteorology and earth and atmospheric remote sensing are presented. The individual topics addressed include: solid state lasers for the mid-IR region, tunable chromium lasers, GaInAsSb/AlGaAsSb injection lasers for remote sensing applications, development and design of an airborne autonomous wavemeter for laser tuning, fabrication of lightweight Si/SiC lidar mirrors, low-cost double heterostructure and quantum-well laser array development, nonlinear optical processes for the mid-IR region, simulated space-based Doppler lidar performance in regions of backscatter inhomogeneities, design of CO2 recombination catalysts for closed-cycle CO2 lasers, density measurements with combined Raman-Rayleigh lidar, geodynamics applications of spaceborne laser ranging, use of aircraft laser ranging data for forest mensuration, remote active spectrometer, multiwavelngth and triple CO2 lidars for trace gas detection, analysis of laser diagnostics in plumes, laser atmospheric wind sounder, compact Doppler lidar system using commercial off-the-shelf components, and preliminary design for a laser atmospheric wind sounder.
Experimental Optimization Methods for Multi-Element Airfoils
NASA Technical Reports Server (NTRS)
Landman, Drew; Britcher, Colin P.
1996-01-01
A modern three element airfoil model with a remotely activated flap was used to investigate optimum flap testing position using an automated optimization algorithm in wind tunnel tests. Detailed results for lift coefficient versus flap vertical and horizontal position are presented for two angles of attack: 8 and 14 degrees. An on-line first order optimizer is demonstrated which automatically seeks the optimum lift as a function of flap position. Future work with off-line optimization techniques is introduced and aerodynamic hysteresis effects due to flap movement with flow on are discussed.
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is ready for lifting up the mobile service tower at Pad 17-B, Cape Canaveral Air Force Station. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
1959-03-19
Lockheed JF-104A (AF56-745A Tail No. 60745) Starfighter airplane piloted by Fred Drinkwater conducted flight testing that demonstrated steep approaches that were ultimately used by the space shuttle. Steep descent testing, including power-off landing approaches and demonstration of minimum lift-to-drag ratio (L/D) landings came out of the interest in the use of low L/D lifting bodies for recovery to landing from space. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 93
Wade, Elman E.
1978-01-01
A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.
What Is New with Sexual Side Effects After Transurethral Male Lower Urinary Tract Symptom Surgery?
Rieken, Malte; Antunes-Lopes, Tiago; Geavlete, Bogdan; Marcelissen, Tom
2018-01-01
Transurethral resection of the prostate as well as laser prostatectomy (by either holmium laser enucleation of the prostate or Greenlight laser vaporization) is associated with risks of sexual dysfunction such as antegrade ejaculation and occasionally erectile dysfunction. While ejaculation-sparing variations of these techniques show promising results, larger multicenter studies are needed to confirm promising data. Prostatic urethral lift maintains erectile and ejaculatory function at 5-yr follow-up. The same is true for the 3-yr data on the Rezum system. Recently, Aquablation has shown promising results; however, these 6-mo data need to be confirmed during longer follow-up. An individualized, shared decision-making process based on clinical parameters and patient preference is warranted to select the ideal treatment option for each patient. Sexual dysfunction such as loss of ejaculation and, less frequently, erectile dysfunction can occur after transurethral prostate surgery. Ejaculation-sparing modifications as well as minimally invasive alternatives show promising results. An individualized approach is warranted to select the ideal technique for each patient. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Leading edge embedded fan airfoil concept -- A new powered high lift technology
NASA Astrophysics Data System (ADS)
Phan, Nhan Huu
A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power input. The CFD results show that airfoil circulation control is achieved by the varying the CFF intake flow rate and the momentum of the CFF exhaust jet (e.g. through airfoil AoA or fan rotational speed). The presence of the CFF has the effect of moving the stagnation point on the airfoil pressure surface from the CFF airfoil LE region near the CFF to as far back as the airfoil trailing edge. At high AoA operation, LE flow separation on the airfoil suction surface is delayed by flow entrainment of the high-energy jet leaving the CFF. Detailed analysis of the flow field through the crossflow fan and its housing were carried out to understand its fluid-dynamics behavior, and it is found that the airfoil geometry acts as inlet guide vanes to the crossflow fan as the angle-of-attack is varied, thus introducing pre-swirl or co-swirl into the first stage of the crossflow fan. An experimental study of the LEEF concept confirmed that the concept works and it is robust. Finally, as application examples, the LEEF technology is applied to a Remote Control model and to a generic tiltrotor aircraft similar in characteristics to DARPA's Aerial Reconfigurable Embedded System. These aircraft configurations were analyzed using 2D and 3D CFD.
Leaner Lifted-Flame Combustion Enabled by the Use of an Oxygenated Fuel in an Optical CI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehmlich, Ryan K.; Dumitrescu, Cosmin E.; Wang, Yefu
Leaner lifted-flame combustion (LLFC) is a mixing-controlled combustion strategy for compression-ignition engines that does not produce soot because the equivalence ratio at the lift-off length, Φ(H), is less than or equal to approximately two. In addition to preventing soot formation, LLFC can simultaneously control emissions of nitrogen oxides because it is tolerant to the use of exhaust-gas recirculation for lowering in-cylinder temperatures. LLFC can be achieved through the use of oxygenated fuels and enhanced fuel/charge-gas mixing upstream of the lift-off length. Enhanced mixing can be obtained via higher injection pressures, smaller injector orifice diameters, lower intake-manifold and coolant temperatures, and/ormore » more retarded injection timings. This study focuses on the effects of an oxygenated fuel blend (T50) made up of 50% by volume tri-propylene glycol mono-methyl ether with a #2 ULSD emissions-certification fuel (CFA), compared against baseline testing of the CFA fuel without the oxygenate. Experimental measurements include crank-angle resolved natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics. EGR is simulated by adding nitrogen and carbon dioxide to the intake charge to produce a 16% intake-oxygen mole fraction (XO2), and results are compared against cases with no charge dilution (i.e., 21% XO2). Initial experiments with a two-hole tip achieved soot-free LLFC at low loads with the T50 fuel, 240 MPa injection pressure, 50 °C intake-manifold temperature (IMT), 95 °C coolant temperature, and -5 crank-angle degree (CAD) after top-dead-center (ATDC) start of combustion (SOC) timing. The strategy was extended to more moderate loads by employing a 6-hole injector tip, where lowering the IMT to 30 °C, reducing the coolant temperature to 85 °C, and retarding the SOC timing to +5 CAD ATDC resulted in sustained LLFC at both 21% and 16% XO2 at up to 6.2 bar gross indicated mean effective pressure (gIMEP) with T50. The achievement of LLFC was confirmed by independent soot measurements using a smoke meter, spatially integrated natural luminosity from the NL diagnostics, and laser-induced incandescence for measuring soot volume fraction in the exhaust stream. In contrast to the results with T50, LLFC was not achieved under any of the test conditions with CFA. Combustion was stable under LLFC conditions, with a coefficient of variation of gIMEP less than 1.5%. Nitrogen oxides and hydrocarbon emissions were also lowered by up to 25% each for LLFC with T50 relative to using the same operating conditions with CFA. Combustion noise was similarly reduced by 4-6 dBA, and ringing intensity by 60-80%, for LLFC with T50.« less
Leaner Lifted-Flame Combustion Enabled by the Use of an Oxygenated Fuel in an Optical CI Engine
Gehmlich, Ryan K.; Dumitrescu, Cosmin E.; Wang, Yefu; ...
2016-04-05
Leaner lifted-flame combustion (LLFC) is a mixing-controlled combustion strategy for compression-ignition engines that does not produce soot because the equivalence ratio at the lift-off length, Φ(H), is less than or equal to approximately two. In addition to preventing soot formation, LLFC can simultaneously control emissions of nitrogen oxides because it is tolerant to the use of exhaust-gas recirculation for lowering in-cylinder temperatures. LLFC can be achieved through the use of oxygenated fuels and enhanced fuel/charge-gas mixing upstream of the lift-off length. Enhanced mixing can be obtained via higher injection pressures, smaller injector orifice diameters, lower intake-manifold and coolant temperatures, and/ormore » more retarded injection timings. This study focuses on the effects of an oxygenated fuel blend (T50) made up of 50% by volume tri-propylene glycol mono-methyl ether with a #2 ULSD emissions-certification fuel (CFA), compared against baseline testing of the CFA fuel without the oxygenate. Experimental measurements include crank-angle resolved natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics. EGR is simulated by adding nitrogen and carbon dioxide to the intake charge to produce a 16% intake-oxygen mole fraction (XO2), and results are compared against cases with no charge dilution (i.e., 21% XO2). Initial experiments with a two-hole tip achieved soot-free LLFC at low loads with the T50 fuel, 240 MPa injection pressure, 50 °C intake-manifold temperature (IMT), 95 °C coolant temperature, and -5 crank-angle degree (CAD) after top-dead-center (ATDC) start of combustion (SOC) timing. The strategy was extended to more moderate loads by employing a 6-hole injector tip, where lowering the IMT to 30 °C, reducing the coolant temperature to 85 °C, and retarding the SOC timing to +5 CAD ATDC resulted in sustained LLFC at both 21% and 16% XO2 at up to 6.2 bar gross indicated mean effective pressure (gIMEP) with T50. The achievement of LLFC was confirmed by independent soot measurements using a smoke meter, spatially integrated natural luminosity from the NL diagnostics, and laser-induced incandescence for measuring soot volume fraction in the exhaust stream. In contrast to the results with T50, LLFC was not achieved under any of the test conditions with CFA. Combustion was stable under LLFC conditions, with a coefficient of variation of gIMEP less than 1.5%. Nitrogen oxides and hydrocarbon emissions were also lowered by up to 25% each for LLFC with T50 relative to using the same operating conditions with CFA. Combustion noise was similarly reduced by 4-6 dBA, and ringing intensity by 60-80%, for LLFC with T50.« less
Transition from leg to wing forces during take-off in birds.
Provini, Pauline; Tobalske, Bret W; Crandell, Kristen E; Abourachid, Anick
2012-12-01
Take-off mechanics are fundamental to the ecology and evolution of flying animals. Recent research has revealed that initial take-off velocity in birds is driven mostly by hindlimb forces. However, the contribution of the wings during the transition to air is unknown. To investigate this transition, we integrated measurements of both leg and wing forces during take-off and the first three wingbeats in zebra finch (Taeniopygia guttata, body mass 15 g, N=7) and diamond dove (Geopelia cuneata, body mass 50 g, N=3). We measured ground reaction forces produced by the hindlimbs using a perch mounted on a force plate, whole-body and wing kinematics using high-speed video, and aerodynamic forces using particle image velocimetry (PIV). Take-off performance was generally similar between species. When birds were perched, an acceleration peak produced by the legs contributed to 85±1% of the whole-body resultant acceleration in finch and 77±6% in dove. At lift-off, coincident with the start of the first downstroke, the percentage of hindlimb contribution to initial flight velocity was 93.6±0.6% in finch and 95.2±0.4% in dove. In finch, the first wingbeat produced 57.9±3.4% of the lift created during subsequent wingbeats compared with 62.5±2.2% in dove. Advance ratios were <0.5 in both species, even when taking self-convection of shed vortices into account, so it was likely that wing-wake interactions dominated aerodynamics during wingbeats 2 and 3. These results underscore the relatively low contribution of the wings to initial take-off, and reveal a novel transitional role for the first wingbeat in terms of force production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palneedi, Haribabu; Functional Ceramics Group, Korea Institute of Materials Science; Maurya, Deepam
2015-07-06
A highly dense, 4 μm-thick Pb(Zr,Ti)O{sub 3} (PZT) film is deposited on amorphous magnetostrictive Metglas foil (FeBSi) by granule spray in vacuum process at room temperature, followed by its localized annealing with a continuous-wave 560 nm ytterbium fiber laser radiation. This longer-wavelength laser radiation is able to anneal the whole of thick PZT film layer without any deteriorative effects, such as chemical reaction and/or atomic diffusion, at the interface and crystallization of amorphous Metglas substrate. Greatly enhanced dielectric and ferroelectric properties of the annealed PZT are attributed to its better crystallinity and grain growth induced by laser irradiation. As a result, amore » colossal off-resonance magnetoelectric (ME) voltage coefficient that is two orders of magnitude larger than previously reported output from PZT/Metglas film-composites is achieved. The present work addresses the problems involved in the fabrication of PZT/Metglas film-composites and opens up emerging possibilities in employing piezoelectric materials with low thermal budget substrates (suitable for integrated electronics) and designing laminate composites for ME based devices.« less
Digital Imaging of Pipeline Mechanical Damage and Residual Stress
DOT National Transportation Integrated Search
2010-02-19
The purpose of this program was to enhance characterization of mechanical damage in pipelines through application of digital eddy current imaging. Lift-off maps can be used to develop quantitative representations of mechanical damage and magnetic per...
JBFA-Buoyant Flight, Special Edition
NASA Technical Reports Server (NTRS)
Wada, C.; Terada, K.; Ishii, C.; Nagamatsu, K.; Makino, M.; Ichiyoshi, S.
1982-01-01
Progress in the project to traverse the Pacific Ocean by manned balloon is summarized. The development of a hybrid lighter than aircraft combining the buoyancy of a gas bag with the vertical lift off capabilities of the helicopter is also addressed.
Liquid-Phase Laser Induced Forward Transfer for Complex Organic Inks and Tissue Engineering.
Nguyen, Alexander K; Narayan, Roger J
2017-01-01
Laser induced forward transfer (LIFT) acts as a novel alternative to incumbent plotting techniques such as inkjet printing due to its ability to precisely deposit and position picoliter-sized droplets while being gentle enough to preserve sensitive structures within the ink. Materials as simple as screen printing ink to complex eukaryotic cells have been printed with applications spanning from microelectronics to tissue engineering. Biotechnology can benefit from this technique due to the efficient use of low volumes of reagent and the compatibility with a wide range of rheological properties. In addition, LIFT can be performed in a simple lab environment, not requiring vacuum or other extreme conditions. Although the basic apparatus is simple, many strategies exist to optimize the performance considering the ink and the desired pattern. The basic mechanism is similar between studies so the large number of variants can be summarized into a couple of categories and reported on with respect to their specific applications. In particular, precise and gentle deposition of complex molecules and eukaryotic cells represent the unique abilities of this technology. LIFT has demonstrated not only marked improvements in the quality of sensors and related medical devices over those manufactured with incumbent technologies but also great applicability in tissue engineering due to the high viability of printed cells.
NASA Astrophysics Data System (ADS)
Papazoglou, Symeon; Chatzipetrou, Marianeza; Massaouti, Maria; Zergioti, Ioanna
2017-02-01
Laser Induced Forward Transfer (LIFT) is a direct write technique, able to create micropatterns of biomaterials on sensing devices. In this conference we will present a new approach using LIFT for the printing and direct immobilization of biomaterials on a great variety of surfaces, for bio-sensor applications. The basic requirement for the fabrication of a biosensor is to stabilize a biomaterial that brings the physicochemical changes in close proximity to a transducer. In this direction, several immobilization methods such as covalent binding and crosslinking have been implemented. The presence of the additional functionalization steps in the biosensors fabrication, is among the main disadvantages of chemical immobilization methods. Our approach employs the LIFT technique for the direct immobilization of biomaterials, either by physical adsorption or by covalent bonding of the biomaterials. The physical adsorption of the biomaterials, occurs on hydrophobic or super-hydrophobic surfaces, due to the transition of the wetting properties of the surfaces upon the impact of the biomaterials with high velocity. The unique characteristic of LIFT technique to create high speed liquid jets, leads to the penetration of the biomaterial in the micro/nano roughness of the surface, resulting in their direct immobilization, without the need of any chemical functionalization layers. Moreover, we will also present the direct immobilization of biomaterials on Screen Printed Electrodes, for enzymatic biosensors, with a limit of detection (LOD) for catechol at 150 nM, and protein biosensors, used for the detection of herbicides, with an LOD of 8-10 nM.
Corneal tissue interactions of a new 345 nm ultraviolet femtosecond laser.
Hammer, Christian M; Petsch, Corinna; Klenke, Jörg; Skerl, Katrin; Paulsen, Friedrich; Kruse, Friedrich E; Seiler, Theo; Menzel-Severing, Johannes
2015-06-01
To assess the suitability of a new 345 nm ultraviolet (UV) femtosecond laser for refractive surgery. Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany. Experimental study. Twenty-five porcine corneas were used for stromal flap or lamellar bed creation (stromal depth, 150 μm) and 15 rabbit corneas for lamellar bed creation near the endothelium. Ultraviolet femtosecond laser cutting-line morphology, gas formation, and keratocyte death rate were evaluated using light and electron microscopy and compared with a standard infrared (IR) femtosecond laser. Endothelial cell survival was examined after application of a laser cut near the endothelium. Flaps created by the UV laser were lifted easily. Gas formation was reduced 4.2-fold compared with the IR laser (P = .001). The keratocyte death rate near the interface was almost doubled; however, the death zone was confined to a region within 38 μm ± 10 (SD) along the cutting line. Histologically and ultrastructurally, a distinct and continuous cutting line was not found after UV femtosecond laser application if flap lifting was omitted and standard energy parameters were used. Instead, a regular pattern of vertical striations, presumably representing self-focusing induced regions of optical tissue breakdown, were identified. Lamellar bed creation with standard energy parameters 50 μm from the endothelium rendered the endothelial cells intact and viable. The new 345 nm femtosecond laser is a candidate for pending in vivo trials and future high-precision flap creation, intrastromal lenticule extraction, and ultrathin Descemet-stripping endothelial keratoplasty. Mr. Klenke and Ms. Skerl were paid employees of Wavelight GmbH when the study was performed. Dr. Seiler is a scientific consultant to Wavelight GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
2017-02-01
The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The service module is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
2017-01-09
The Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) arrives at the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The PCM is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch in March 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA’s Radiation Belt Storm Probes, or RBSP, spacecraft creates a halo of light at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida as it lifts off the pad at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA’s Radiation Belt Storm Probes, or RBSP, spacecraft creates a halo of light at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida as it lifts off the pad at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
2012-08-30
CAPE CANAVERAL, Fla. – Spotlights dance along the clouds over Space Launch Complex 41 on Cape Canaveral Air Force Station as NASA's Radiation Belt Storm Probes, or RBSP, lift off the pad at 4:05 a.m. EDT aboard a United Launch Alliance Atlas V rocket. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Ben Smegelsky and Gary Thompson
2012-08-30
CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket carrying NASA’s Radiation Belt Storm Probes, or RBSP, spacecraft illuminates Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida as it lifts off the pad at 4:05 a.m. EDT. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Tony Gray and Robert Murray
1999-06-24
KENNEDY SPACE CENTER, FLA. -- A fireball erupts under the Boeing Delta II rocket, amid clouds of smoke and steam, as it lifts off from Launch Pad 17A, Cape Canaveral Air Station, at 11:44 a.m. EDT. The shadow of a photographer (right) is caught watching the perfect launch. The rocket carries NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, which was developed to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum
Design of a Low-Cost Air Levitation System for Teaching Control Engineering.
Chacon, Jesus; Saenz, Jacobo; Torre, Luis de la; Diaz, Jose Manuel; Esquembre, Francisco
2017-10-12
Air levitation is the process by which an object is lifted without mechanical support in a stable position, by providing an upward force that counteracts the gravitational force exerted on the object. This work presents a low-cost lab implementation of an air levitation system, based on open solutions. The rapid dynamics makes it especially suitable for a control remote lab. Due to the system's nature, the design can be optimized and, with some precision trade-off, kept affordable both in cost and construction effort. It was designed to be easily adopted to be used as both a remote lab and as a hands-on lab.
2006-07-10
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., technicians perform black-light inspection and cleaning of Observatory B, part of the STEREO spacecraft. The observatory will later be wrapped for transfer to the hazardous processing facility where it will be weighed and fueled. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket no earlier than Aug. 1. Photo credit: NASA/George Shelton
Concentric transmon qubit featuring fast tunability and site-selective Z coupling
NASA Astrophysics Data System (ADS)
Weides, Martin; Braumueller, Jochen; Sandberg, Martin; Vissers, Michael; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey; Pappas, David
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
2001-07-31
KODIAK ISLAND, Alaska -- Technicians prepare the Starshine 3 payload for its launch aboard the Athena 1 launch vehicle, while the payload fairing awaits processing, at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.
2001-05-31
KODIAK ISLAND, Alaska -- Technicians inspect and secure Castor 120, the first stage of the Athena 1 launch vehicle, on the launch mount at Kodiak Island, Alaska, as processing for the launch of Kodiak Star proceeds. The first orbital launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program.
Orbital ATK's Ground Support Equipment (GSE) Delivery for OA-7
2016-12-15
Sealed in its shipping container, the ground support equipment for the Orbital ATK OA-7 commercial resupply services mission was moved inside the low bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Orbital ATK CRS-7 with the Cygnus cargo module will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
OA-7 Cargo Module Move from Airlock to Highbay
2017-01-10
Inside an environmentally controlled shipping container the Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) moves from an airlock to the high bay of the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
OA-7 Cargo Module Move from Airlock to Highbay
2017-01-10
The Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) arrives at the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The PCM is sealed in an environmentally controlled shipping container. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudawar, I.; Galloway, J.E.; Gersey, C.O.
Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling.more » Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.« less
Lift-fan aircraft: Lessons learned-the pilot's perspective
NASA Technical Reports Server (NTRS)
Gerdes, Ronald M.
1993-01-01
This paper is written from an engineering test pilot's point of view. Its purpose is to present lift-fan 'lessons learned' from the perspective of first-hand experience accumulated during the period 1962 through 1988 while flight testing vertical/short take-off and landing (V/STOL) experimental aircraft and evaluating piloted engineering simulations of promising V/STOL concepts. Specifically, the scope of the discussions to follow is primarily based upon a critical review of the writer's personal accounts of 30 hours of XV-5A/B and 2 hours of X-14A flight testing as well as a limited simulator evaluation of the Grumman Design 755 lift-fan aircraft. Opinions of other test pilots who flew these aircraft and the aircraft simulator are also included and supplement the writer's comments. Furthermore, the lessons learned are presented from the perspective of the writer's flying experience: 10,000 hours in 100 fixed- and rotary-wing aircraft including 330 hours in 5 experimental V/STOL research aircraft. The paper is organized to present to the reader a clear picture of lift-fan lessons learned from three distinct points of view in order to facilitate application of the lesson principles to future designs. Lessons learned are first discussed with respect to case histories of specific flight and simulator investigations. These principles are then organized and restated with respect to four selected design criteria categories in Appendix I. Lastly, Appendix Il is a discussion of the design of a hypothetical supersonic short take-off vertical landing (STOVL) fighter/attack aircraft.
New Insights into Shape Memory Alloy Bimorph Actuators Formed by Electron Beam Evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hao; Nykypanchuk, Dmytro
In order to create shape memory alloy (SMA) bimorph microactuators with high-precision features, a novel fabrication process combined with electron beam (E-beam) evaporation, lift-off resist and isotropic XeF2 dry etching method was developed. To examine the effect of E-beam deposition and annealing process on nitinol (NiTi) characteristics, the NiTi thin film samples with different deposition rate and overflow conditions during annealing process were investigated. With the characterizations using scanning electron microscope and x-ray diffraction, the results indicated that low E-beam deposition rate and argon employed annealing process could benefit the formation of NiTi crystalline structure. In addition, SMA bimorph microactuatorsmore » with high-precision features as small as 5 microns were successfully fabricated. Furthermore, the thermomechanical performance was experimentally verified and compared with finite element analysis simulation results.« less
1997-05-01
KENNEDY SPACE CENTER, FLA. -- KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
1997-05-01
KENNEDY SPACE CENTER, FLA. -- KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
1997-05-01
KSC payloads processing employees work to reservice the Microgravity Science Laboratory-1 (MSL-1) Spacelab module in the Space Shuttle Orbiter Columbia’s payload bay for the STS-94 mission in Orbiter Processing Facility 1. That mission is now scheduled to lift off in early July. This was the first time that this type of payload was reserviced without removing it from the payload bay. This new procedure pioneers processing efforts for quick relaunch turnaround times for future payloads. The Spacelab module was scheduled to fly again with the full complement of STS-83 experiments after that mission was cut short due to a faulty fuel cell. During the scheduled 16-day STS-94 mission, the experiments will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments
NASA Technical Reports Server (NTRS)
Prokopuk, Nicholas (Inventor); Son, Kyung-Ah (Inventor)
2008-01-01
Methods of fabricating nano-gap electrode structures in array configurations, and the structures so produced. The fabrication method involves depositing first and second pluralities of electrodes comprising nanowires using processes such as lithography, deposition of metals, lift-off processes, and chemical etching that can be performed using conventional processing tools applicable to electronic materials processing. The gap spacing in the nano-gap electrode array is defined by the thickness of a sacrificial spacer layer that is deposited between the first and second pluralities of electrodes. The sacrificial spacer layer is removed by etching, thereby leaving a structure in which the distance between pairs of electrodes is substantially equal to the thickness of the sacrificial spacer layer. Electrode arrays with gaps measured in units of nanometers are produced. In one embodiment, the first and second pluralities of electrodes are aligned in mutually orthogonal orientations.
Characterisation of Ductile Prepregs
NASA Astrophysics Data System (ADS)
Pinto, F.; White, A.; Meo, M.
2013-04-01
This study is focused on the analysis of micro-perforated prepregs created from standard, off the shelf prepregs modified by a particular laser process to enhance ductility of prepregs for better formability and drapability. Fibres are shortened through the use of laser cutting in a predetermined pattern intended to maintain alignment, and therefore mechanical properties, yet increase ductility at the working temperature. The increase in ductility allows the product to be more effectively optimised for specific forming techniques. Tensile tests were conducted on several specimens in order to understand the ductility enhancement offered by this process with different micro-perforation patterns over standard prepregs. Furthermore, the effects of forming temperature was also analysed to assess the applicability of this material to hot draping techniques and other heated processes.
Solar power satellite system definition study. Volume 1: Executive summary, phase 3
NASA Technical Reports Server (NTRS)
1980-01-01
Results of a three phase study of the Solar Power Satellite System are summarized. Various options and alternate systems were considered and the following conclusions were reached: antenna mounted solid state transmitters are potentially as cost effective as the klystron approach, althrough limited to 2500 megawatts net output; the free electron laser and optical diode laser appear most promising for laser power transmission; ground antenna siting need not be restricted to below 35 degrees of latitude; and nonrecurring cost reductions attainable by using a smaller Heavy Lift Launch Vehicle are highly attractive.