Science.gov

Sample records for laser line pulse

  1. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, William J.; Alger, Terry W.

    1985-01-01

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  2. Inductive gas line for pulsed lasers

    DOEpatents

    Benett, W.J.; Alger, T.W.

    1982-09-29

    A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

  3. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  4. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  5. THz generation via optical rectification with ultrashort laser pulse focused to a line

    NASA Astrophysics Data System (ADS)

    Stepanov, A. G.; Hebling, J.; Kuhl, J.

    2005-07-01

    We report on efficient THz pulse generation via optical rectification with femtosecond laser pulses focused to a line by a cylindrical lens. This configuration provides phase-matched conditions in the superluminal regime. 35 pJ THz pulses have been generated with this technique in a stoichiometric LiNbO3 crystal pumped by 2 μJ femtosecond laser pulses at room temperature. An unusual superquadratic rise of the THz pulse energy with the laser pulse energy has been observed at high laser energies. This extraordinary energy dependence of the THz generation efficiency is explained by self-focusing of the laser beam in the crystal. Z-scan measurements and comparison of the THz pulse spectra created with laser pulses having different energies confirm this interpretation.

  6. THz generation from optical rectification tilted-pulse-front pumping scheme with laser pulse focused to a line

    NASA Astrophysics Data System (ADS)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko

    2015-10-01

    In this study, we investigate THz pulses generated from optical rectification with tilted-pulse-front pumping scheme in which the laser beam is focused to a line in a stoichiometric lithium niobate (sLN) crystal. A cylindrical lens and a common lens are used to focus the pump laser beam to a line. The power law of THz pulse generation and the redshift induced from the sLN crystal are measured. The spectral shapes of the laser pulse are changed by inserting a filter into the pump laser beam, causing the THz radiation to change. The filter is a metal wire with 2 mm diameter. Experimental results show that this method can change the generated THz time waveforms but not their spectra. Such method offers a simple means to change and manipulate THz field generated from optical rectification with tiled-pulse-front pumping scheme.

  7. Image enhancement for underwater pulsed laser line scan imaging system

    NASA Astrophysics Data System (ADS)

    Ouyang, B.; Dalgleish, F. R.; Caimi, F. M.; Vuorenkoski, A. K.; Giddings, T. E.; Shirron, J. J.

    2012-06-01

    Recent progress in system hardware such as laser, photon detectors and other electronic and optical components resulted in significant improvement for the underwater serial laser imaging system. Nevertheless, during normal system operation, system issues such as laser instability, electronic noise, and environmental conditions such as imaging in highly turbid water can still put constraint on the performance of imager. In this work, post-processing to take advantage of the improvement hardware to further reduce image noise and enhance the image quality as a critical aspect of the overall system design is studied. A novel realization of the bilateral principle based image/pulse noise reduction and image deconvolution using point spread function (PSF) predicted with EODES radiative transfer model is used to implement the processing chain. The concept is further extended to a multichannel deconvolution to exploit the benefit offered by the new multi element PMT configuration developed in HBOI. Two datasets were used to test the developed techniques respectively.

  8. Fiber Optic Picosecond Laser Pulse Transmission Line for Hydrogen Ion Beam Profile Measurement

    SciTech Connect

    Liu, Yun; Huang, Chunning; Aleksandrov, Alexander V

    2013-01-01

    We present a fiber optic laser pulse transmission line for non-intrusive longitudinal profile measurement of the hydrogen ion (H-) beam at the front-end of the Spallation Neutron Source (SNS) accelerator. The 80.5 MHz, 2.5 ps, multi-killowatt optical pulses are delivered to the accelerator beam line through a large mode area polarization maintaining optical fiber to ensure a high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter and pulse width broadening over a 100-ft fiber line are experimentally investigated. A successful measurement of the H- beam microbunch (~130 ps) profile is obtained. Our experiment is the first demonstration of particle beam profile diagnostics using fiber optic laser pulse transmission line.

  9. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  10. Pulse-by-pulse multi-beam-line operation for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Fukami, Kenji; Inagaki, Takahiro; Kawaguchi, Hideaki; Kinjo, Ryota; Kondo, Chikara; Otake, Yuji; Tajiri, Yasuyuki; Takebe, Hideki; Togawa, Kazuaki; Yoshino, Tatsuya; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2016-02-01

    The parallel operation of plural undulator beam lines is an important means of improving the efficiency and usability of x-ray free-electron laser facilities. After the installation of a second undulator beam line (BL2) at SPring-8 Angstrom compact free-electron laser (SACLA), pulse-by-pulse switching between two beam lines was tested using kicker and dc twin-septum magnets. To maintain a compact size, all undulator beam lines at SACLA are designed to be placed within the same undulator hall located downstream of the accelerator. In order to ensure broad tunability of the laser wavelength, the electron bunches are accelerated to different beam energies optimized for the wavelengths of each beam line. In the demonstration, the 30 Hz electron beam was alternately deflected to two beam lines and simultaneous lasing was achieved with 15 Hz at each beam line. Since the electron beam was deflected twice by 3° in a dogleg to BL2, the coherent synchrotron radiation (CSR) effects became non-negligible. Currently in a wavelength range of 4-10 keV, a laser pulse energy of 100 - 150 μ J can be obtained with a reduced peak current of around 1 kA by alleviating the CSR effects. This paper reports the results and operational issues related to the multi-beam-line operation of SACLA.

  11. Pulse compression techniques to improve modulated pulsed laser line scan systems

    NASA Astrophysics Data System (ADS)

    Lee, Robert W.; Nash, Justin K.; Cochenour, Brandon M.; Mullen, Linda J.

    2015-05-01

    A modulated pulse laser imaging system has been developed which utilizes coded/chirped RF modulation to mitigate the adverse effects of optical scattering in degraded visual underwater environments. Current laser imaging techniques employ either short pulses or single frequency modulated pulses to obtain both intensity and range images. Systems using short pulses have high range resolution but are susceptible to scattering due to the wide bandwidth nature of the pulse. Range gating can be used to limit the effects of backscatter, but this can lead to blind spots in the range image. Modulated pulse systems can help suppress the contribution from scattered light in generated imagery without gating the receiver. However, the use of narrowband, single tone modulation results in limited range resolution where small targets are camouflaged within the background. This drives the need for systems which have high range resolution while still suppressing the effects of scattering caused by the environment. Coded/chirped modulated pulses enable the use of radar pulse compression techniques to substantially increase range resolution while also providing a way to discriminate the object of interest from the light scattered from the environment. Linearly frequency chirped waveforms and phase shift keyed barker codes were experimentally investigated to determine the effects that pulse compression would have on intensity/range data. The effect of modulation frequency on the data produced with both wideband and narrowband modulation was also investigated. The results from laboratory experiments will be presented and compared to model predictions.

  12. Design and operation of the multiple-pulse driver line on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Waxer, L. J.

    2016-05-01

    The multiple-pulse driver line (MPD) provides on-shot co-propagation of two separately generated pulse shapes in all 60 OMEGA beams at the Laboratory for Laser Energetics. Smoothing by spectral dispersion (SSD), which increases the laser bandwidth, can be applied to either one of the two pulse shapes, thereby enabling dynamic bandwidth reduction. The design of the MPD required careful consideration of beam combination as well as the minimum pulse separation for two pulses generated by two separate seed sources. A new combined-pulse-shape diagnostic needed to be designed and installed after the last SSD grating. The capability of MPD to reduce dynamic bandwidth has been used on a series of campaigns on OMEGA and the performance data are presented.

  13. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor

    PubMed Central

    Brandli, Christian; Mantel, Thomas A.; Hutter, Marco; Höpflinger, Markus A.; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

    2014-01-01

    Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm. PMID:24478619

  14. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor.

    PubMed

    Brandli, Christian; Mantel, Thomas A; Hutter, Marco; Höpflinger, Markus A; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

    2013-01-01

    Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm.

  15. Automated measurement of the EUREKA EU213 excimer laser pulse-forming line

    NASA Astrophysics Data System (ADS)

    Boardman, Allan D.; Hodgson, Elizabeth M.; Spence, A. J.; Wilkins, M.; Wu, Jian; Ashton, J. A.

    1990-08-01

    This paper describes part of the EUREKA Eurolaser project EU213, to build an excimer laser. The emphasis is on control and monitoring systems. The performance of a test-bed laser built at Salford will be described. In the design discussed, two voltage components are generated separately and combined at the laser head to form a pumping pulse. A "magnetic switch" is used to isolate the two parts of the transmission line'. A theoretical analysis of the sustainer section of the line has been carried out and compared with measurements made using a dummy load in place of the laser head. A control system is discussed that is being developed to monitor the shape of each laser pulse at a high repetition rate. The control system is designed to protect the laser from damage. The construction of various conventional probes, and the progress towards various fibre probes will be reported with emphasis on measuring fast current pulses on the various parts of the line.

  16. Pulse transformer package for impedance matching a laser diode to a transmission line

    NASA Astrophysics Data System (ADS)

    Bender, G. M.

    1984-11-01

    This patent covers a package for matching the characteristics impedance of a transmission line to the impedance of a pulsed semiconductor laser diode so that short duration pulse of light can be produced with a fast repetition rate. The package has a toroidal transformer in a cavity of a mainbody, with a multiturn primary connected to a transmission line. The laser diode is mounted at the edge of a known sandwich between two thin metal plates separated by an insulating layer. A space and metal cover cap are placed over the sandwich, and a screw passing through holes of all the parts is threaded into the main body. The screw passing through the transformer core forms a one-turn secondary. Not only does this allow the matching of the characteristic impedance, but also provides heat sinking for the diode. Assembly with a screw makes the unit easy to fabricate, and to replace the laser diode sandwich.

  17. Dynamic Line-by-line Pulse Shaping

    NASA Astrophysics Data System (ADS)

    Willits, John Thomas

    In pursuit of optical arbitrary waveform generation (OAWG), line-by-line pulse shapers use dynamic masks that can be modulated at the repetition rate of an input pulse train. The pulse-to-pulse control of the output pulse train with the waveform fidelity provided by line-by-line pulse shaping creates the most arbitrary waveform output possible, OAWG. This thesis studies the theoretical dynamic effects of such a pulse shaper and presents efforts towards realization of OAWG. Pulse shaping theory is extended to include rapid waveform update for line-by-line pulse shaping. The fundamental tradeoff between response speed and waveform fidelity is illustrated by several examples. Line-by-line pulse shaping is demonstrated at a repetition rate of 890 MHz on a mode-locked titanium sapphire laser. This pulse shaper relies on a virtual imaged phased array (VIPA) to obtain the necessary high spectral resolution. The details of the VIPA's ideal and nonideal performance are analyzed, simulated and tested. Individual frequency modes from the mode-locked titanium sapphire laser are also resolved using the same VIPA paired with a diffraction grating creating a 2-D spectral brush with a resolution of 357 MHz. The advantages and nonideal effects of VIPA-based pulse shaping are investigated. Analysis of several high speed modulation techniques are explored. The optical system required to separate adjacent comb lines into different single mode (SM) fibers necessary for several modulation techniques is designed and tested.

  18. [Doppler effect on width of characteristic line in plasma induced by pulsed laser ablating Al].

    PubMed

    Song, Yi-Zhong; He, An-Zhi

    2005-05-01

    Aluminum (Al) plasma was induced with a pulsed Nd: YAG laser beam ablating Al target in Ar. Time-resolved information of the plasma radiation was taken with time-resolved technique, and the spectra of the radiation were recorded with an optical multi-path analyzer (OMA III ), whereupon, time-resolved spectra of the plasma radiation induced by pulsed laser were acquired. Based on the experiment data, Al resonant double lines, Al I 396.15 nm, Al I 394.40 nm, were respectively fitted with Lorentz, Gauss and their linear integrated function (abbr. Integrated function), whereupon, Lorentz and Gauss elements were separated from the experiment data profile curve. By contrasting Lorentz with Gauss curve separated, it was found that the experiment curve mainly consisted of Lorentz element, a with little Gauss. By contrasting Lorentz with Integrated fitting curve for experiment data, a visual picture of the characteristic lines broadened by Doppler effect was exhibited. According to the visual picture, the increase of full half-high width of the characteristic line broadened by Doppler effect was estimated. It was about 2 x 10(-)3 -8 x 10(-3) nm, approximating the theoretical value 6.7 x 10(-)3 nm. As a result, Doppler effect on the width of characteristic lines in the plasma could be reasonably explained by curve fitting analysis and theoretical calculation.

  19. Pulsed excimer laser processing

    NASA Astrophysics Data System (ADS)

    Wong, D.

    1985-06-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  20. Pulsed excimer laser processing

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1985-01-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  1. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    SciTech Connect

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  2. Laser-induced breakdown spectroscopy for on-line control of selective removal of cobalt binder from tungsten carbide hardmetal by pulsed UV laser surface ablation

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-09-01

    Laser-induced breakdown spectroscopy (LIBS) was successfully used in on-line control of selective removal of cobalt from tungsten carbide hardmetal by pulsed UV laser surface ablation. The dependence of LIBS on number of laser shots was investigated at different laser fluences. The optimal laser fluence of 2.5 J/cm 2 suited for selective removal of cobalt from surface layer of hardmetal was confirmed. The result sample was also subject to different post-examinations to evaluate the feasibility of the application of LIBS in this laser ablation process. It was demonstrated that, monitoring of the emission intensity of cobalt lines could be used as a control parameter for selective removal of cobalt from surface layer of hardmetal by pulsed UV laser. The on-line implementation of the spectroscopic technique LIBS to the surface-ablation process provided important information about the optimal-ablation parameters.

  3. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  4. Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Lobach, Ivan A.; Kablukov, Sergey I.; Podivilov, Evgeniy V.; Babin, Sergey A.

    2011-08-01

    The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1 pm) Yb-doped fiber laser has been demonstrated experimentally. It is found that the effect arises from the self-sustained relaxation oscillations. As a result, the sweeping rate increases as square root of the laser power and decreases with increasing cavity length. Based on these results we propose a model describing dynamics of the laser frequency. The model takes into account the effects of gain saturation at the laser transition and spatial hole burning in the self-pulsing regime.

  5. Broad-range self-sweeping of a narrow-line self-pulsing Yb-doped fiber laser.

    PubMed

    Lobach, Ivan A; Kablukov, Sergey I; Podivilov, Evgeniy V; Babin, Sergey A

    2011-08-29

    The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1 pm) Yb-doped fiber laser has been demonstrated experimentally. It is found that the effect arises from the self-sustained relaxation oscillations. As a result, the sweeping rate increases as square root of the laser power and decreases with increasing cavity length. Based on these results we propose a model describing dynamics of the laser frequency. The model takes into account the effects of gain saturation at the laser transition and spatial hole burning in the self-pulsing regime.

  6. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air

    NASA Astrophysics Data System (ADS)

    Bogatov, N. A.; Kuznetsov, A. I.; Smirnov, A. I.; Stepanov, A. N.

    2009-10-01

    The channeling of microwave radiation is demonstrated experimentally in a double line in which a plasma filament produced in air by intense femtosecond laser pulses serves as one of the conductors. It is shown that during the propagation of microwave radiation in this line, ultrashort pulses are formed, their duration monotonically decreasing with increasing the propagation length (down to the value comparable with the microwave field period). These effects can be used for diagnostics of plasma in a filament.

  7. On-line wavelength calibration of pulsed laser for CO2 DIAL sensing

    NASA Astrophysics Data System (ADS)

    Han, Ge; Gong, Wei; Lin, Hong; Ma, Xin; Xiang, Chengzhi

    2014-12-01

    Accurate on-line wavelength calibration is a crucial procedure for sensing atmospheric CO2 using the DIAL technique. Drastic fluctuations in the intensity of a pulsed laser pose a great challenge for accurate on-line wavelength determination and stabilization, resulting in CO2 retrievals lacking the desired accuracy for global climate change and carbon cycle research. To tackle this problem, a two-stage wavelength calibration method based on Voigt fitting was proposed in this work. Simulation analysis demonstrated that the proposed method is superior to the conventional method and provides wavelength calibration results with an accuracy of 0.1 pm when the noise level does not exceed than 5 %. This conclusion was confirmed through experiments with real signals. Furthermore, simulation analysis revealed that the proposed method could yield results with an accuracy of 0.1 pm by increasing the number of sample points, even for signals with noise levels of up to 20 %. This is a promising feature that could facilitate the development of DIAL systems without gas cells.

  8. QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source

    NASA Astrophysics Data System (ADS)

    Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira

    2017-01-01

    Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.

  9. Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities

    NASA Astrophysics Data System (ADS)

    Peterka, Pavel; Navrátil, Petr; Dussardier, Bernard; Slavík, Radan; Honzátko, Pavel; Kubecek, Václav

    2012-06-01

    Rare-earth doped fiber lasers are subject to instabilities and various self-pulsed regimes that can lead to catastrophic damage of their components. An interesting self-pulsing regime accompanied with laser wavelength drift with time is the so called self-induced laser line sweeping (SLLS). Despite the early observations of the SLLS in solid-state ruby lasers, in fiber lasers it was first time mentioned in literature only in 2009 where such a laser wavelength drift with time was observed in a relatively broad range of about 1076 -1084 nm in ring ytterbium-doped fiber laser (YDFL). The main characteristic of the SLLS is the scanning of the laser wavelength from shorter to longer wavelength, spanning over large interval of several nanometers, and instantaneous bounce backward. The period of this sweeping is usually quite long, of the order of seconds. This spectacular effect was attributed to spatial-hole burning caused by standing-wave in the laser cavity. In this paper we present experimental investigation of the SLLS in YDFLs in Fabry-Perot cavity and ring cavities. The SLLS was observed also in erbium-doped fiber laser around 1560 nm. We present for the first time observation of the laser wavelength sweep in reverse direction, i.e., from longer towards shorter wavelengths. It was observed in YDFL around 1080 nm.

  10. Fiber-laser frequency combs for the generation of tunable single-frequency laser lines, mm- and THz-waves and sinc-shaped Nyquist pulses

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas

    2015-03-01

    High-quality frequency comb sources like femtosecond-lasers have revolutionized the metrology of fundamental physical constants. The generated comb consists of frequency lines with an equidistant separation over a bandwidth of several THz. This bandwidth can be broadened further to a super-continuum of more than an octave through propagation in nonlinear media. The frequency separation between the lines is defined by the repetition rate and the width of each comb line can be below 1 Hz, even without external stabilization. By extracting just one of these lines, an ultra-narrow linewidth, tunable laser line for applications in communications and spectroscopy can be generated. If two lines are extracted, the superposition of these lines in an appropriate photo-mixer produces high-quality millimeter- and THz-waves. The extraction of several lines can be used for the creation of almost-ideally sinc-shaped Nyquist pulses, which enable optical communications with the maximum-possible baud rate. Especially combs generated by low-cost, small-footprint fs-fiber lasers are very promising. However due to the resonator length, the comb frequencies have a typical separation of 80 - 100 MHz, far too narrow for the selection of single tones with standard optical filters. Here the extraction of single lines of an fs-fiber laser by polarization pulling assisted stimulated Brillouin scattering is presented. The application of these extracted lines as ultra-narrow, stable and tunable laser lines, for the generation of very high-quality mm and THz-waves with an ultra-narrow linewidth and phase noise and for the generation of sinc-shaped Nyquist pulses with arbitrary bandwidth and repetition rate is discussed.

  11. Pulsed IR inductive lasers

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.

    2014-07-01

    Pulsed inductive discharge is a new alternative method of pumping active gas laser media. The work presents results of experimental investigations of near, mid, and far IR inductive gas lasers (H2, HF, and CO2) operating at different transitions of atoms and molecules with different mechanisms of formation of inversion population. The excitation systems of a pulsed inductive cylindrical discharge (pulsed inductively coupled plasma) and pulsed RF inductive discharge in the gases are developed. Various gas mixtures including H2, N2, He, Ne, F2, NF3, and SF6 are used. Characteristics of near IR H2 laser radiation are investigated. Maximal pulse peak power of 7 kW is achieved. The possibility of using a pulsed inductive discharge as a new method of pumping HF laser active medium is demonstrated. The pulsed RF inductive CO2 laser is created and a total efficiency of 17% is achieved.

  12. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  13. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  14. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  15. Pulsed Laser Propulsion.

    DTIC Science & Technology

    1978-10-01

    afforded by a pulsed laser propulsion system over a CW laser propulsion system are 1) simplicity in engine design as a result of permitting the laser...to engineering and weight considerations. The lower boundary of the corridor is set by propellant feed considerations. To the right of this boundary...example, a OOJ -5 per pulse laser operating at 7 x 10 sec between pulses (14, 285 pps) is capable of powering a 30 lb (135 Nt)thrust rocket engine that has

  16. Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain

    NASA Astrophysics Data System (ADS)

    Somoskoi, T.; Vass, Cs; Mero, M.; Mingesz, R.; Bozoki, Z.; Osvay, K.

    2015-05-01

    We carried out single-shot laser-induced damage threshold measurements on dielectric high reflectors guided by the corresponding ISO standard. Four simultaneous on-line detection techniques were tested and compared using 532 nm, 9 ns and 266 nm, 6 ns laser pulses. Two methods, microscope aided visual inspection and detection of scattered light off the damaged surface, were based on optical signals. The other two techniques exploited the acoustic waves accompanying a damage event in ambient air and in the substrate by a microphone and a piezoelectric sensor, respectively. A unified criterion based on the statistical analysis of the detector signals was applied to assign an objective and unambiguous damage threshold value for all of our diverse detection methods. Microscope aided visual inspection showed the lowest damage thresholds for both wavelengths. However, the sensitivity of the other three techniques proved to be only slightly lower.

  17. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 - F2(NF3 or SF66) and He(Ne) - H2 - F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% - 6%.

  18. Comparison of line x-ray emission from solid and porous nano-layer coated targets irradiated by double laser pulses

    SciTech Connect

    Fazeli, R.; Mahdieh, M. H.

    2015-11-15

    Enhancement of line x-ray emission from both solid and porous iron targets induced by irradiation of single and double laser pulses is studied numerically. The line emission from laser produced plasma is calculated within the extreme ultra-violet lithography wavelength range of 13.5–13.7 nm. The effects of pre-pulse intensity and delay time between two pulses (pre-pulse and main pulse) are examined. The results show that using double pulses irradiation in the conditions of porous target can reduce the x-ray enhancement. According to the results, the use of both pre-pulse and porous target leads to efficient absorption of the laser energy. Calculations also show that such enhanced laser absorption can ionize atoms of the target material to very high degrees of ionization, leading to decrease of the density of appropriate ions that are responsible for line emission in the selected wavelength region. By increasing the target porosity, x-ray yield was more reduced.

  19. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  20. X-ray line spectral signatures of plasmas driven by high- intensity ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2001-11-01

    In this dissertation we report on our atomic-kinetics and X-ray line spectra modeling work in the context of plasmas generated by high-intensity, ultrashort-duration pulsed lasers. We focus on characterizing the properties of X-ray line emissions (i.e., intensity, broadening, and polarization) as signatures of plasma conditions, discuss the relevant atomic processes, and introduce atomic kinetics as a means for their quantitative assessment. This also requires the knowledge of detailed line shapes including the effects of Doppler and natural broadening, Stark broadening, line shifts and radiation transport. A suite of time-dependent, collisional-radiative atomic kinetics and spectral codes, CRAK/SPECTRUM, were developed. We applied these codes to the analysis of K- shell aluminum X-ray line spectra recorded in experiments using layered targets performed at the Max-Planck- Institut für Quantenoptik. Modeling calculations indicate that red line shifts observed in these experiments cannot be explained by shifts in the centers of gravity of composite spectral features due to enhanced satellite contributions, but are consistent with line shift effects in resonance and satellite lines. We discuss the mechanism of polarized X-ray line emission in plasmas, its connection to plasma anisotropy, and introduce an atomic kinetics model and code (POLAR) based on the population kinetics of magnetic sublevels. POLAR represents a multi-level, multi-process approach to the problem of polarized spectra in plasmas, and hence it is well suited for plasma applications where cascade effects and alignment transfer can become important. Polarization degrees of X-ray spectral lines computed with POLAR were successfully benchmarked against calculations done with other formalisms, and experimental results obtained at the EBIT facility of Lawrence Livermore National Laboratory. We investigate the polarization of He-like Si X-ray satellite lines as spectral signatures of anisotropy in the

  1. Nanofabrication with pulsed lasers.

    PubMed

    Kabashin, Av; Delaporte, Ph; Pereira, A; Grojo, D; Torres, R; Sarnet, Th; Sentis, M

    2010-02-24

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  2. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  3. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  4. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  5. Pulsed inductive HF laser

    SciTech Connect

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S; Demchuk, S V

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  6. Pulsed laser beam intensity monitor

    SciTech Connect

    Cason, C.M.; Jones, R.W.

    1982-07-13

    A pulsed laser beam intensity monitor measures the peak power within a selectable cross section of a test laser beam and measures integrated energy of the beam during the pulse period of a test laser. A continuous wave laser and a pulsed ruby laser are coaxially arranged for simultaneously transmitting optical output energy through a crystal flat during the time a test laser pulse is transmitted through the flat. Due to stress birefringence in the crystal, the ruby laser pulse transmitted through the flat is recorded and analyzed to provide peak power information about the test laser output pulse, and the continuous wave laser output reflected from the crystal flat provides a measurement of energy during the test laser pulse.

  7. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  8. Pulse line ion accelerator concept

    NASA Astrophysics Data System (ADS)

    Briggs, Richard J.

    2006-06-01

    The pulse line ion accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of high energy density physics and warm dense matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3 5MeV/meter acceleration gradients. The concept might be described crudely as an “air core” induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  9. Laser pulse sampler

    DOEpatents

    Vann, Charles

    1998-01-01

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  10. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  11. Pulsed micro-laser line thermography on submillimeter porosity in carbon fiber reinforced polymer composites: experimental and numerical analyses for the capability of detection.

    PubMed

    Zhang, Hai; Fernandes, Henrique; Djupkep Dizeu, Frank Billy; Hassler, Ulf; Fleuret, Julien; Genest, Marc; Ibarra-Castanedo, Clemente; Robitaille, François; Joncas, Simon; Maldague, Xavier

    2016-12-01

    In this article, pulsed micro-laser line thermography (pulsed micro-LLT) was used to detect the submillimeter porosities in a 3D preformed carbon fiber reinforced polymer composite specimen. X-ray microcomputed tomography was used to verify the thermographic results. Then, finite element analysis was performed on the corresponding models on the basis of the experimental results. The same infrared image processing techniques were used for the experimental and simulation results for comparative purposes. Finally, a comparison of experimental and simulation postprocessing results was conducted. In addition, an analysis of probability of detection was performed to evaluate the detection capability of pulsed micro-LLT on submillimeter porosity.

  12. Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner

    DOEpatents

    Veligdan, James T.

    1994-01-01

    An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90.degree. angle of incidence.

  13. Laser pulse detector

    DOEpatents

    Mashburn, Douglas N.; Akerman, M. Alfred

    1981-01-01

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  14. Laser pulse detector

    DOEpatents

    Mashburn, D.N.; Akerman, M.A.

    1979-08-13

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  15. Bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  16. Bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A [Pleasanton, CA

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  17. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  18. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  19. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  20. Means and method for characterizing high power, ultra short laser pulses in a real time, on line manner

    DOEpatents

    Veligdan, J.T.

    1994-03-08

    An ultra short (<10 ps), high power laser pulse is temporally characterized by a system that uses a physical measurement of a wavefront that has been altered in a known manner. The system includes a first reflection switch to remove a portion of a pulse from a beam of pulses, then includes a second reflection switch, operating in a mode that is opposite to the first reflection switch, to slice off a portion of that removed portion. The sliced portion is then directed to a measuring device for physical measurement. The two reflection switches are arranged with respect to each other and with respect to the beam of ultra short pulses such that physical measurement of the sliced portion is related to the temporal measurement of the ultra short pulse by a geometric or trigonometric relationship. The reflection switches are operated by a control pulse that is directed to impinge on each of the reflection switches at a 90[degree] angle of incidence. 8 figures.

  1. Pulsed Submillimeter Laser Program.

    DTIC Science & Technology

    1979-05-15

    flouride (CH3 F) located in a 7 cm absorption cell. The signal derived from the interaction occurring in this cell is used in conjunction with phase...methyl flouride it appears this technique can be generally applied to optimize the pump frequency for many other optically pumped FIR laser transitions...line of the 9 pm band with CH3 F. In Figure 37 is shown a simplified energy- level diagram of the prolate symmetric top methyl flouride molecule. The

  2. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  3. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  4. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  5. Passivation process in quasi-continuous laser derusting with intermediate pulse width and line-scanning method.

    PubMed

    Li, Wei; Du, Peng; Zhang, Jun; Shi, Shudong; Liu, Shujing; Chen, Nianjiang; Zhao, Hong; Song, Feng

    2014-02-20

    Floating rust composed of particles and aggregates is the primary product of iron or steel corrosion. Because the floating rust has a porous structure and small thickness, part of the irradiating laser energy can be transmitted through the rust layer and be absorbed by the iron substrate. The adherent force between the floating rust and the metal substrate is weak. In this paper we carried out a series of experiments on this specific rust type to achieve laser derusting and passivating simultaneously. We used a line-scanning method (50% overlapping ratio between adjacent laser spots) to get the nearly average uniform distribution of laser fluence in a large cleaning area. The laser irradiation can directly heat a metal surface to cause thermo-elastic vibration to shake off the rust layer and to cause oxidization to form a protective layer. The most important factor of laser passivating is that the iron surface must be heated to the melting point of iron but not much higher. During this short melting period, on the one hand the iron surface could be oxidized completely; on the other hand the melting of the iron surface could make uniform the oxygen concentration and temperature in the molten iron bath.

  6. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  7. Helical Pulse Line Structures for Ion Acceleration

    SciTech Connect

    Briggs, R.J.; Reginato, L.L.; Waldron, W.L.

    2005-05-01

    The basic concept of the ''Pulse Line Ion Accelerator'' is presented, where pulse power sources create a ramped traveling wave voltage pulse on a helical pulse line. Ions can surf on this traveling wave and achieve energy gains much larger than the peak applied voltage. Tapered and untapered lines are compared, and a transformer coupling technique for launching the wave is described.

  8. Ultrashort laser pulse beam shaping.

    PubMed

    Zhang, Shuyan; Ren, Yuhang; Lüpke, Gunter

    2003-02-01

    We calculated the temporal and spatial characteristics of an ultrashort laser pulse propagating through a diffractive beam-shaping system that converts a Gaussian beam into a beam with a uniform irradiance profile that was originally designed for continuous waves [Proc. SPIE 2863, 237(1996)]. The pulse front is found to be considerably curved for a 10-fs pulse, resulting in a temporal broadening of the pulse that increases with increasing radius. The spatial intensity distribution deviates significantly from a top-hat profile, whereas the fluence shows a homogeneous radial distribution.

  9. Generating Submillimeter-Wave Frequencies From Laser Pulses

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Maserjian, Joseph

    1994-01-01

    Semiconductor photoconductive switches generate electrical pulses containing submillimeter-wavelength carrier signals (frequency between 300 and 3,000 GHz) and harmonics thereof when illuminated with short-rise-time pulses from lasers. Device of this type used as local oscilator in heterodyne submillimeter-wave receiver. Electrical output of device coupled via transmission line, waveguide, or antenna to mixer circuitry of receiver. Phase delays between optically activated semiconductor switches determine output carrier frequencies. N electrical pulses generated by each laser pulse. Thus, fundamental output frequency is N times laser-pulse-repetition rate.

  10. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  11. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  12. Unsplit bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A [Pleasanton, CA

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  13. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  14. Ultrashort-pulse laser machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D; Rubenchik, A M; Sefcik, J A; Stuart, B C

    1998-09-01

    A new type of material processing is enabled with ultrashort (t < 10 ps) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms that eliminate thermal shock or collateral damage. High-precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  15. Ultrashort-pulse lasers machining

    SciTech Connect

    Banks, P S; Feit, M D; Nguyen, H T; Perry, M D, Stuart, B C

    1999-01-22

    A new type of material processing is enabled with ultrashort (t < 10 psec) laser pulses. Cutting, drilling, sculpting of all materials (biologic materials, ceramics, sapphire, silicon carbide, diamond, metals) occurs by new mechanisms which eliminate thermal shock or collateral damage. High precision machining to submicron tolerances is enabled resulting in high surface quality and negligible heat affected zone.

  16. Developing Pulsed Fiber Lasers

    DTIC Science & Technology

    2007-06-15

    moving pupil imaging system. Y. Kawagoe et al. furthered the research in the early 80’s by using a rotating aperture at the Fourier ...dependent terms in Eq. 16 by their respective Fourier Series Eq. 16 can be written in the following form, ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( ) 1 2 0...Asakura, “Speckle reduction by a rotating aperture at the Fourier transform plane,” Opt. Lasers in Eng., 3 197-218, (1982) [8] T. Iwai, N. Takai

  17. Investigation of Helical Pulse Forming Line

    NASA Astrophysics Data System (ADS)

    Liu, Zhenxiang; Zhang, Jiande

    2006-09-01

    To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The results indicate that it is feasible to employ a helical line as a long-pulse PFL, and the influence of its dispersion is negligible. Compared with a conventional coaxial PFL, the helical PFL with the same size can produce a longer pulse.

  18. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  19. Pulse transformer for GaAs laser

    NASA Technical Reports Server (NTRS)

    Rutz, E. M.

    1976-01-01

    High-radiance gallium arsenide (GaAs) laser operating at room temperature is utilized in optical navigation system. For efficient transformer-to-laser impedance match, laser should be connected directly to pulse transformer secondary winding.

  20. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  1. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  2. LASERS: Electric-discharge XeCl laser emitting 10-J, 300-ns pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, I. N.; Losev, V. F.; Panchenko, Yu N.; Ivanov, N. G.; Sukhov, M. Yu

    2005-03-01

    The development of a long-pulse electric-discharge XeCl laser with the 9 × 6 × 100 cm active volume is reported. Laser is excited by using a double circuit with a pulsed charged storage capacitor consisting of paper-oil capacitors forming the pulse-shaping line. The storage capacitor is switched by a multichannel extended gap. The laser mixture was preionised by X-rays. The laser generated the 10-J output pulses with the FWHM of 300 ns, and a uniform intensity distribution over the exit aperture.

  3. The Pulse Line Ion Accelerator Concept

    SciTech Connect

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  4. Dark pulse emission of a fiber laser

    SciTech Connect

    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X.

    2009-10-15

    We report on the dark pulse emission of an all-normal dispersion erbium-doped fiber laser with a polarizer in cavity. We found experimentally that apart from the bright pulse emission, under appropriate conditions the fiber laser could also emit single or multiple dark pulses. Based on numerical simulations we interpret the dark pulse formation in the laser as a result of dark soliton shaping.

  5. Ultrashort-pulse laser calligraphy

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Kazansky, Peter G.; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-10-01

    Control of structural modifications inside silica glass by changing the front tilt of an ultrashort pulse is demonstrated, achieving a calligraphic style of laser writing. The phenomena of anisotropic bubble formation at the boundary of an irradiated region and modification transition from microscopic bubbles formation to self-assembled form birefringence are observed, and the physical mechanisms are discussed. The results provide the comprehensive evidence that the light beam with centrosymmetric intensity distribution can produce noncentrosymmetric material modifications.

  6. Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    von Witzendorff, Philipp; Bordin, Andrea; Suttmann, Oliver; Patel, Rajesh S.; Bovatsek, James; Overmeyer, Ludger

    2016-03-01

    The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 - 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.

  7. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  8. Laser induced breakdown spectroscopy with picosecond pulse train

    NASA Astrophysics Data System (ADS)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  9. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  10. Measurements of line-averaged electron density of pulsed plasmas using a He-Ne laser interferometer in a magnetized coaxial plasma gun device

    NASA Astrophysics Data System (ADS)

    Iwamoto, D.; Sakuma, I.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    In next step of fusion devices such as ITER, lifetime of plasma-facing materials (PFMs) is strongly affected by transient heat and particle loads during type I edge localized modes (ELMs) and disruption. To clarify damage characteristics of the PFMs, transient heat and particle loads have been simulated by using a plasma gun device. We have performed simulation experiments by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The line-averaged electron density measured by a He-Ne interferometer is 2x10^21 m-3 in a drift tube. The plasma velocity measured by a time of flight technique and ion Doppler spectrometer was 70 km/s, corresponding to the ion energy of 100 eV for helium. Thus, the ion flux density is 1.4x10^26 m-2s-1. On the other hand, the MCPG is connected to a target chamber for material irradiation experiments. It is important to measure plasma parameters in front of target materials in the target chamber. In particular, a vapor cloud layer in front of the target material produced by the pulsed plasma irradiation has to be characterized in order to understand surface damage of PFMs under ELM-like plasma bombardment. In the conference, preliminary results of application of the He-Ne laser interferometer for the above experiment will be shown.

  11. A new pulsed laser deposition technique: Scanning multi-component pulsed laser deposition method

    SciTech Connect

    Fischer, D.; Jansen, M.; Fuente, G. F. de la

    2012-04-15

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 deg. C.

  12. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    PubMed

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  13. Pulse shaping on the Nova laser system

    SciTech Connect

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Weiland, T.L.

    1989-02-06

    Inertial confinement fusion requires temporally shaped pulses to achieve high gain efficiency. Recently, we demonstrated the ability to produce complex temporal pulse shapes at high power at 0.35 microns on the Nova laser system. 2 refs., 2 figs.

  14. Generation of modulated microchip laser pulses

    NASA Astrophysics Data System (ADS)

    Almabouada, F.; Aiadi, K. E.; Louhibi, D.

    2015-01-01

    Modulated 532 nm laser pulses were generated by a Nd:YVO4 microchip laser and a KTP crystal end-pumped by a 808 nm laser diode. The interest in such works arise from the efficiency of this type of laser in several applications. To obtain the desired type of the modulated laser pulses, the electrical circuit of the laser diode was designed so as to enable varying their driving signal and current values. Different modulated signals were used, such as square wave, sine wave, and burst mode pulses. Varying the peak drive current, the duty cycle, and the number of pulses allowed us to adjust the laser energy. For the burst mode experiment, the pulse energy obtained was about 1.2 μJ.

  15. A comparative study of single and double pulse laser induced breakdown spectroscopy

    SciTech Connect

    Ahmed, Rizwan; Baig, M. Aslam

    2009-08-01

    A comparative study of single and double pulse laser induced breakdown spectroscopy (LIBS) using the fundamental (1064 nm) and the second harmonics (532 nm) of Nd:YAG lasers is presented. The double pulse collinear configuration yields more than three hundred times signal enhancement in the singly ionized aluminum lines as compared to the single pulse LIBS spectrum. The effect of interpulse delay between the two laser pulses and the laser pulses energies ratio in the double pulse spectrum are studied. A comparison of variations of plasma parameters along the plume axis in the single and the double pulse has also been studied.

  16. Analysis of folded pulse forming line operation.

    PubMed

    Domonkos, M T; Watrous, J; Parker, J V; Cavazos, T; Slenes, K; Heidger, S; Brown, D; Wilson, D

    2014-09-01

    A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.

  17. Generation of skewed laser pulses for laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Toth, C.; Faure, J.; Geddes, C. G. R.; van Tilborg, J.; Leemans, W. P.

    2002-11-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied (W.P. Leemans et al., submitted to Phys. Rev. Lett.) using > 10^19 cm-3 plasmas and a 10 TW, > 45 fs, Ti:Al_2O3 laser. The non-Gaussian laser pulse shapes were controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise (positive skew) were found to significantly enhance the electron yield compared to pulses with a gentle rise (negative skew). These results demonstrate that laser wakefield accelerator can be optimized using skewed laser pulses. Controlling the skewness of laser pulses can be done by appropriate choice of the higher order spectral phase coefficients. Details on how this is done using non-linear chirp using grating compressor, as well as an acousto-optic system (DAZZLER) will be presented.

  18. Photoemission using femtosecond laser pulses

    SciTech Connect

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1991-10-01

    Successful operation of short wavelength FEL requires an electron bunch of current >100 A and normalized emittance < 1 mm-mrad. Recent experiments show that RF guns with photocathodes as the electron source may be the ideal candidate for achieving these parameters. To reduce the emittance growth due to space charge and RF dynamics effects, the gun may have to operate at high field gradient (hence at high RF frequency) and a spot size small compared to the aperture. This may necessitate the laser pulse duration to be in the subpicosecond regime to reduce the energy spread. We will present the behavior of metal photocathodes upon irradiation with femtosecond laser beams, comparison of linear and nonlinear photoemission, and scalability to high currents. Theoretical estimate of the intrinsic emittance at the photocathode in the presence of the anomalous heating of the electrons, and the tolerance on the surface roughness of the cathode material will be discussed.

  19. Chemical aerosol detection using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Alexander, Dennis R.; Rohlfs, Mark L.; Stauffer, John C.

    1997-07-01

    Many chemical warfare agents are dispersed as small aerosol particles. In the past, most electro-optical excitation and detection schemes have used continuous or pulsed lasers with pulse lengths ranging from nanoseconds to microseconds. In this paper, we present interesting ongoing new results on femtosecond imaging and on the time dependent solutions to the scattering problem of a femtosecond laser pulse interacting with a single small aerosol particle. Results are presented for various incident pulse lengths. Experimental imaging results using femtosecond pulses indicate that the diffraction rings present when using nanosecond laser pulses for imaging are greatly reduced when femtosecond laser pulses are used. Results are presented in terms of the internal fields as a function of time and the optical size parameter.

  20. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  1. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  2. Overview of The Pulse Line Ion Accelerator

    SciTech Connect

    Briggs, R.J.; Bieniosek, F.M.; Coleman, J.E.; Eylon, S.; Henestroza, E.; Leitner, M.; Logan, B.G.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Caporaso, G.J.; Friedman, A.; Grote, D.P.; Nelson, S.D.

    2006-06-29

    An overview of the Pulse Line Ion Accelerator (PLIA) concept and its development is presented. In the PLIA concept a pulse power driver applied to one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines a heavy ion beam pulse The motivation for its development at the IFE-VNL is the acceleration of intense, short pulse, heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The main attraction of the concept is the very low cost it promises. It might be described crudely as an ''air core'' induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  3. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing.

  4. The Chirped-Pulse Inverse Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Hartemann, F. V.; Landahl, E. C.; Song, L.; Troha, A. L.; van Meter, J. R.; Gibson, D. J.; Baldis Luhmann, H. A., Jr.

    1999-11-01

    The inverse free-electron laser (IFEL) concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrahigh-intensity chirped laser pulse, the dephasing length can be increased considerably, thus yielding high gradient IFEL acceleration. In addition, using negative dispersion focusing optics allows one to take advantage of the laser optical bandwidth and produce a chromatic line focus to maximize the accelerating field. The combination of these two novel ideas results in a compact, efficient, vacuum laser accelerator.

  5. Ultrashort Laser Pulses in Physics and Chemistry

    SciTech Connect

    Naskrecki, Ryszard

    2007-11-26

    Study of physical and chemical events accompanying light-matter interaction in pico- and femtosecond time scale have become possible with the use of ultrashort laser pulses. With the progress in generation of ultrashort laser pulses, the ultrafast optical spectroscopy, as a tool for dynamic study, is still evolving rapidly.

  6. Flexible pulse-controlled fiber laser

    PubMed Central

    Liu, Xueming; Cui, Yudong

    2015-01-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary. PMID:25801546

  7. Flexible pulse-controlled fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Xueming; Cui, Yudong

    2015-03-01

    Controlled flexible pulses have widespread applications in the fields of fiber telecommunication, optical sensing, metrology, and microscopy. Here, we report a compact pulse-controlled all-fiber laser by exploiting an intracavity fiber Bragg grating (FBG) system as a flexible filter. The width and wavelength of pulses can be tuned independently by vertically and horizontally translating a cantilever beam, respectively. The pulse width of the laser can be tuned flexibly and accurately from ~7 to ~150 ps by controlling the bandwidth of FBG. The wavelength of pulse can be tuned precisely with the range of >20 nm. The flexible laser is precisely controlled and insensitive to environmental perturbations. This fiber-based laser is a simple, stable, and low-cost source for various applications where the width-tunable and/or wavelength-tunable pulses are necessary.

  8. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  9. Relativistic laser pulse compression in magnetized plasmas

    SciTech Connect

    Liang, Yun; Sang, Hai-Bo Wan, Feng; Lv, Chong; Xie, Bai-Song

    2015-07-15

    The self-compression of a weak relativistic Gaussian laser pulse propagating in a magnetized plasma is investigated. The nonlinear Schrödinger equation, which describes the laser pulse amplitude evolution, is deduced and solved numerically. The pulse compression is observed in the cases of both left- and right-hand circular polarized lasers. It is found that the compressed velocity is increased for the left-hand circular polarized laser fields, while decreased for the right-hand ones, which is reinforced as the enhancement of the external magnetic field. We find a 100 fs left-hand circular polarized laser pulse is compressed in a magnetized (1757 T) plasma medium by more than ten times. The results in this paper indicate the possibility of generating particularly intense and short pulses.

  10. Pulse shaper assisted short laser pulse characterization

    NASA Astrophysics Data System (ADS)

    Galler, A.; Feurer, T.

    2008-03-01

    We demonstrate that a pulse shaper is able to simultaneously act as an optical waveform generator and a short pulse characterization device when combined with an appropriate nonlinear element. We present autocorrelation measurements and their frequency resolved counterparts. We show that control over the carrier envelope phase allows continuous tuning between an intensity-like and an interferometric autocorrelation. By changing the transfer function other measurement techniques, for example STRUT, are easily realized without any modification of the optical setup.

  11. Nonlinear dynamics of additive pulse modelocked lasers

    SciTech Connect

    Sucha, G.; Bolton, S.R.; Chemla, D.S.

    1995-04-01

    Nonlinear dynamics have been studied in a number of modelocked laser systems, primarily in actively modelocked systems. However, less attention has been paid to the dynamics of passively modelocked laser systems. With the recent revolutionary advances in femtosecond modelocked laser technology, the understanding of instabilities and dynamics in passively modelocked lasers is an important issue. Here, the authors present experimental and numerical studies of the dynamics of an additive-pulse modelocked (APM) color-center laser.

  12. Laser-Based Pulsed Photoacoustic Ammonia Detection

    NASA Astrophysics Data System (ADS)

    Vallespi, Arturo; Slezak, Verónica; Peuriot, Alejandro; Santiago, Guillermo

    2013-09-01

    Detecting ammonia traces is relevant in health, manufacturing, and security areas, among others. As ammonia presents a strong absorption band (the mode) around 10 m, some of the physical properties which may influence its detection by means of pulsed photoacoustic (PA) spectroscopy with a TEA laser have been studied. The characteristics of the ammonia molecule and the laser intensity may result in a nonlinear dependence of the PA signal amplitude on the laser fluence. Ammonia absorption can be described as a simple two-level system with power broadening. As is a polar molecule, it strongly undergoes adsorption phenomena in contact with different surfaces. Therefore, physical adsorption-desorption at the cell’s wall is studied. A theoretical model, based on Langmuir’s assumptions, fits well to the experimental results with stainless steel. Related to these studies, measurements led to the conclusion that, at the used fluenced values, dissociation by multiphotonic absorption at the 10P(32) laser line may be discarded. A calibration of the system was performed, and a detection limit around 190 ppb (at 224 ) was achieved.

  13. Pulsed laser nitriding of uranium

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin; Meng, Daqiao; Xu, Qinying; Zhang, Youshou

    2010-02-01

    Pulsed laser nitriding offers several advantages such as high nitrogen concentration, low matrix temperature, fast treatment, simple vacuum chamber and precise position control compare to ion implantation, which is favorable for radioactive material passivation. In this work, uranium metal was nitrided using an excimer laser for the first time. The nitrided layers are characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The nitride layer is composed mainly of UN and U 2N 3 and depends on nitriding process. The amount of nitride increases with energy density and pressure. The irradiated area has a wavy structure which increases the roughness, while scratches and asperities caused by sand paper polishing were eliminated. Scan speed has a profound influence on the nitride layer, at low speed U 2N 3 is more likely to form and the nitride layer tends to crack. XPS analysis shows that nitrogen has diffused into interior, while oxygen is only present on the surface. Ambient and humid-hot corrosion tests show the nitrided sample has good anticorrosion property.

  14. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  15. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  16. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  17. An improved rolled strip pulse forming line.

    PubMed

    Li, Song; Qian, Bao-Liang; Yang, Han-Wu; Gao, Jing-Ming; Liu, Zhao-Xi

    2013-06-01

    The rolled strip pulse forming line (RSPFL) has advantages of compactness, portability, and long pulse achievability which could well meet the requirements of industrial application of the pulse power technology. In this paper, an improved RSPFL with an additional insulator between the grounded conductors is investigated numerically and experimentally. Results demonstrate that the jitter on the flat-top of the output voltage waveform is reduced to 3.8% due to the improved structure. Theoretical analysis shows that the electromagnetic coupling between the conductors of the RSPFL strongly influences the output voltage waveform. Therefore, the new structure was designed to minimize the detrimental effect of the electromagnetic coupling. Simulation results show that the electromagnetic coupling can be efficiently reduced in the improved RSPFL. Experimental results illustrate that the improved RSPFL, with dimensions and weight of Φ 290 × 250 mm and 16 kg, when used as a simple pulse forming line, could generate a well shaped quasi-square pulse with output power of hundreds of MW and pulse duration of 250 ns. Importantly, the improved RSPFL was successfully used as a Blumlein pulse forming line, and a 10.8 kV, 260 ns quasi-square pulse was obtained on a 2 Ω dummy load. Experiments show reasonable agreement with numerical analysis.

  18. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  19. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  20. MOPA pulsed fiber laser for silicon scribing

    NASA Astrophysics Data System (ADS)

    Yang, Limei; Huang, Wei; Deng, Mengmeng; Li, Feng

    2016-06-01

    A 1064 nm master oscillator power amplifier (MOPA) pulsed fiber laser is developed with flexible control over the pulse width, repetition frequency and peak power, and it is used to investigate the dependence of mono-crystalline silicon scribe depth on the laser pulse width, scanning speed and repeat times. Experimental results indicate that long pulses with low peak powers lead to deep ablation depths. We also demonstrate that the ablation depth grows fast with the scanning repeat times at first and progressively tends to be saturated when the repeat times reach a certain level. A thermal model considering the laser pulse overlapping effect that predicts the silicon temperature variation and scribe depth is employed to verify the experimental conclusions with reasonably close agreement. These conclusions are of great benefits to the optimization of the laser material processing with high efficiency.

  1. Waveguide fabrication in KDP crystals with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Huang, Leilei; Salter, Patrick; Karpiński, Michał; Smith, Brian; Payne, Frank; Booth, Martin

    2015-03-01

    Optical waveguides fabricated in potassium dihydrogen phosphate (KDP) by ultrafast laser pulses are demonstrated. Dependent on the incident pulse energy, two different types of refractive index modification have been induced. For moderate laser powers, type I homogeneous waveguides are created. At higher pulse energies, type II waveguides are formed in the stressed area surrounding regions of laser-induced damage. Double-line and four-line structures are applied to the type II guides to increase mode confinement. Polarization sensitivity and transmission properties of the written waveguides are characterized and discussed. The results indicate that high-quality waveguides can be fabricated in KDP, which has potential for further applications in nonlinear integrated-optics.

  2. Ultrashort-pulsed laser microstructuring of diamond

    NASA Astrophysics Data System (ADS)

    Shirk, Michael D.; Molian, Pal; Wang, Cai; Ho, Kai M.; Malshe, Ajay P.

    2000-11-01

    Precision microfabrication of diamond has many applications in the fields of microelectronics and cutting tools. In this work, and ultra-short pulsed Ti: Sapphire laser was used to perform patterning, hold drilling, and scribing of synthetic and CVD diamonds. Scanning electron microscopy, atomic force microscopy, profilometry, and Raman spectroscopy were employed to characterize the microstructures. A tight-binding molecular dynamics (TBMD) model was used to investigate atomic movements during ablation and predict thresholds for ablation. The ultra- short pulsed laser generated holes and grooves that were nearly perfect with smooth edges, little collateral thermal damage and recast layer. The most exciting observation was the absence of graphite residue that always occurs in the longer-pulsed laser machining. The ablation threshold for ultra-short pulsed laser was two orders of magnitude lower than that of longer-pulsed laser. Finite-difference thermal modeling showed that ultra-short pulses raised the electron temperatures of diamond in excess of 100,ooo K due to multiphoton absorption, absence of hydrodynamic motion, and lack of time for energy transfer from electrons to the lattice during the pulse duration. TBMD simulations, carried out on (111) and (100) diamond surfaces, revealed that ultra-short pulses peel carbon atoms layer-by -layer from the surface, leaving a smooth surface after ablation. However, longer pulses cause thermal melting resulting in graphite residue that anchors to the diamond surface following ablation.

  3. Picosecond pulsed diode ring laser gyroscope

    SciTech Connect

    Rosker, M.J.; Christian, W.R.; McMichael, I.C.

    1994-12-31

    An external ring cavity containing as its active medium a pair of InGaAsP diodes is modelocked to produce picosecond pulses. In such a laser, a small frequency difference proportional to the nonreciprocal phase shift (resulting from, e.g., the Sagnac effect) can be observed by beating together the counter propagating laser arms; the device therefore acts as a rotating sensor. In contrast to a conventional (cw) ring laser gyroscope, the pulsed gyroscope can avoid gain competition, thereby enabling the use of homogeneously broadened gain media like semiconductor diodes. Temporal separation of the pulses within the cavity also discriminates against frequency locking of the lasers. The picosecond pulsed diode ring laser gyroscope is reviewed. Both active and passive modelocking are discussed.

  4. Effects of temporal laser profile on the emission spectra for underwater laser-induced breakdown spectroscopy: Study by short-interval double pulses with different pulse durations

    SciTech Connect

    Tamura, Ayaka Matsumoto, Ayumu; Nishi, Naoya; Sakka, Tetsuo; Nakajima, Takashi; Ogata, Yukio H.; Fukami, Kazuhiro

    2015-01-14

    We investigate the effects of temporal laser profile on the emission spectra of laser ablation plasma in water. We use short-interval (76 ns) double pulses with different pulse durations of the composing two pulses for the irradiation of underwater target. Narrow atomic spectral lines in emission spectra are obtained by the irradiation, where the two pulses are wide enough to be merged into a single-pulse-like temporal profile, while deformed spectra are obtained when the two pulses are fully separated. The behavior of the atomic spectral lines for the different pulse durations is consistent with that of the temporal profiles of the optical emission intensities of the plasma. All these results suggest that continuous excitation of the plasma during the laser irradiation for ∼100 ns is a key to obtain narrow emission spectral lines.

  5. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  6. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    NASA Astrophysics Data System (ADS)

    Hartemann, F. V.; Landahl, E. C.; Troha, A. L.; Van Meter, J. R.; Baldis, H. A.; Freeman, R. R.; Luhmann, N. C.; Song, L.; Kerman, A. K.; Yu, D. U. L.

    1999-10-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread.

  7. Simulation of Double-Pulse Laser Ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Itina, Tatian E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2010-10-01

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamicsimulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  8. Pulsed Laser Cladding of Ni Based Powder

    NASA Astrophysics Data System (ADS)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  9. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  10. Short Pulse Laser Applications Design

    SciTech Connect

    Town, R J; Clark, D S; Kemp, A J; Lasinski, B F; Tabak, M

    2008-02-11

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule. Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense ({approx}300 g/cm{sup 3}) fuel mass with an areal density of {approx}3.0 g/cm{sup 2}. To ignite such a fuel assembly requires depositing {approx}20kJ into a {approx}35 {micro}m spot delivered in a short time compared to the fuel disassembly time ({approx}20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI

  11. High-performance laser processing using manipulated ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya; Xu, Zhizhan; Hanada, Yasutaka; Midorikawa, Katsumi

    2012-07-01

    We employ manipulated ultrafast laser pulses to realize microprocessing with high-performance. Efficient microwelding of glass substrates by irradiation by a double-pulse train of ultrafast laser pulses is demonstrated. The bonding strength of two photostructurable glass substrates welded by double-pulse irradiation was evaluated to be 22.9 MPa, which is approximately 22% greater than that of a sample prepared by conventional irradiation by a single pulse train. Additionally, the fabrication of hollow microfluidic channels with a circular cross-sectional shape embedded in fused silica is realized by spatiotemporally focusing the ultrafast laser beam. We show both theoretically and experimentally that the spatiotemporal focusing of ultrafast laser beam allows for the creation of a three-dimensionally symmetric spherical peak intensity distribution at the focal spot.

  12. Pulsed laser irradiation of metal multilayers.

    SciTech Connect

    Adams, David Price; McDonald, Joel Patrick

    2010-11-01

    Vapor-deposited, exothermic metal-metal multilayer foils are an ideal class of materials for detailed investigations of pulsed laser-ignited chemical reactions. Created in a pristine vacuum environment by sputter deposition, these high purity materials have well-defined reactant layer thicknesses between 1 and 1000 nm, minimal void density and intimate contact between layers. Provided that layer thicknesses are made small, some reactive metal-metal multilayer foils can be ignited at a point by laser irradiation and exhibit subsequent high-temperature, self-propagating synthesis. With this presentation, we describe the pulsed laser-induced ignition characteristics of a single multilayer system (equiatomic Al/Pt) that exhibits self-propagating synthesis. We show that the thresholds for ignition are dependent on (i) multilayer design and (ii) laser pulse duration. With regard to multilayer design effects on ignition, there is a large range of multilayer periodicity over which ignition threshold decreases as layer thicknesses are made small. We attribute this trend of decreased ignition threshold to reduced mass transport diffusion lengths required for rapid exothermic mixing. With regard to pulse duration effects, we have determined how ignition threshold of a single Al/Pt multilayer varies with pulse duration from 10{sup -2} to {approx} 10{sup -13} sec (wavelength and spot size are held constant). A higher laser fluence is required for ignition when using a single laser pulse {approx} 100 fs or 1 ps compared with nanosecond or microsecond exposure, and we attribute this, in part, to the effects of reactive material being ablated when using the shorter pulse durations. To further understand these trends and other pulsed laser-based processes, our discussion concludes with an analysis of the heat-affected depths in multilayers as a function of pulse duration.

  13. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  14. Laser glass marking: influence of pulse characteristics

    NASA Astrophysics Data System (ADS)

    Rolo, Ana; Coelho, João; Pires, Margarida

    2005-09-01

    Laser glass marking is currently used in several glass materials for different purposes, such as bar codes for product tracking, brand logos or just decoration. Systems with a variety of different laser sources, with inherent power ranges, wavelengths and pulse regimes have been used, namely CO2, Nd:YAG, Excimer, Ti-Sapphire lasers. CO2 Lasers systems, although being a reliable tool for materials processing, and very compact in the case of sealed low power lasers, are usually associated with a localized thermal loading on the material, causing brittle materials like glass to crack around the irradiated area. In this experimental study a pulsed CO2 laser was used to direct marking the glass surface. The temporal characteristics of the laser pulse--pulse length, period and duty cycle were varied, and glass materials with different thermal properties were used in order to correlate the marking process--cracking or softening with or without material removal with the laser and material characteristics. Glass materials with major industrial application, such as soda-lima, borosilicate (PYREX) glasses and crystal have been investigated. Laser marked areas have been characterized in terms of surface optical properties, like diffuse and direct reflectance and transmittance for white light, directly related with marked surface quality.

  15. Pulsed lasers in dentistry: sense or nonsense?

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.; Frentzen, Matthias

    1991-05-01

    The great interest in the field of laser applications in dentistry provokes the question, if all these new techniques may really fulfill advantages, which are expected after initial in-vitro studies. Whereas laser surgery of soft oral tissues has been developed to a standard method, laser treatment of dental hard tissues and the bone are attended with many unsolved problems. Different laser types, especially pulsed lasers in a wide spectrum of wavelengths have been proofed for dental use. Today neither the excimer lasers, emitting in the far uv-range from 193 to 351 nm, nor the mid-infrared lasers like Nd:YAG (1,064 μm), Ho:YAG (2,1 μm) and Er:YAG (2,96 μm) or the C02-laser (10,6 μm) show mechanism of interaction more carefully and faster than a preparation of teeth with diamond drillers. The laser type with the most precise and considerate treatment effects in the moment is the short pulsed (15 ns) ArF-excimer laser with a wavelength of 193 nm. However this laser type has not yet the effectivity of mechanical instruments and it needs a mirror system to deliver the radiation. Histological results point out, that this laser shows no significant pathological alterations in the adjacent tissues. Another interesting excimer laser, filled with XeCI and emitting at a wavelength of 308 nm has the advantage to be good to deliver through quartz fibers. A little more thermal influence is to be seen according to the longer wavelength. Yet the energy density, necessary to cut dental hard tissues will not be reached with the laser systems available now. Both the pulsed Er:YAG- (2,94 μm, pulse duration 250 s) and the Ho:YAG -laser (2,1 μm, pulse duration 250 μs) have an effective coupling of the laser energy to hydrogeneous tissues, but they do not work sufficient on healthy enamel and dentine. The influence to adjacent healthy tissue is not tolerable, especially in regard of the thermal damage dentine and pulp tissues. Moreover, like the 193 nm ArF-excimer laser

  16. Evolution of laser pulse shape in a parabolic plasma channel

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  17. Ultrashort pulse generation in semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J.; Johnston, A. R.

    1981-01-01

    Techniques to generate picosecond optical pulses from semiconductor lasers are reviewed. Experimental methods and results of theoretical analysis of active modelocking are presented. It is shown that modelocking will achieve the shortest pulses; but the use of a cumbersome external cavity will probably limit its practical use. Short pulses produced by direct modulation such as gain switching are considerably broader than those obtained by passive modelocking. However, no external cavity is needed; and the simplicity of this method makes it important to be explored further. Recent experimental results are discussed where picosecond pulses from a buried heterostructure laser diode with ultrashort current pulses obtained from a comb generator are generated. Also, 28 ps pulses were obtained at 2.5 GHz repetition frequency, using the gain switching method. An analytical analysis based on the rate equations shows qualitative agreement with our experimental results.

  18. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  19. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  20. Pulse laser assist optical tweezers (PLAT) with long-duration pulse laser

    NASA Astrophysics Data System (ADS)

    Maeda, Saki; Sugiura, Tadao; Minato, Kotaro

    2011-07-01

    Optical tweezers is a technique to trap and to manipulate micron sized objects under a microscope by radiation pressure force exerted by a laser beam. Optical tweezers has been utilized for single-molecular measurements of force exerted by molecular interactions and for cell palpation. To extend applications of optical tweezers we have developed a novel optical tweezers system combined with a pulse laser. We utilize a pulse laser (Q-switched Nd: YAG laser, wavelength of 1064 nm) to assist manipulations by conventional optical tweezers with a continuous wave (CW) laser. The pulse laser beam is introduced into the same optics for conventional optical tweezers. In principle, instantaneous radiation force is proportional to instantaneous power of laser beam. As a result, pulse laser beam generates strong instantaneous force on an object to be manipulated. If the radiation force becomes strong enough to get over an obstacle structure and/or to be released from adhesion, the object will be free from these difficulties. We investigate the effect of pulse laser assistance with changing pulse duration of the laser. We report optimum pulse duration of 100 ns to 200 ns deduced from motion analysis of a particle in a beam spot. Our goal is to realize in-vivo manipulation and operation of a cell. For this purpose we need to reduce light energy of pulse laser beam and to avoid laser induced breakdown caused by strong light field. So we have developed a pulse laser with 160-ns pulse duration and have confirmed that availability on manipulation of living cells.

  1. Pulse-shaping circuit for laser excitation

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.

    1981-01-01

    Narrower, impedence-matched pulses initiate stabler electric discharges for gas lasers. Discharges are more efficient, more compact, capable of high repetition rate, and less expensive than conventional electron-beam apparatus, but gas tends to break down and form localized arcs. Pulse-shaping circuit compresses width of high-voltage pulses from relatively-slow rise-time voltage generator and gradually grades circuit impedance from inherent high impedance of generator to low impedence of gas.

  2. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  3. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  4. Chirped-Pulse Inverse Free Electron Laser: A Tabletop, High-Gradient Vacuum Laser Accelerator

    SciTech Connect

    Hartemann, F V; Troha, A L; Baldis, H A

    2001-03-05

    The inverse free-electron laser (IFEL) interaction is studied both theoretically and numerically in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. We show that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. A computer code which takes into account the three-dimensional nature of the interaction is currently in development and results are expected this Spring.

  5. Pressure wave charged repetitively pulsed gas laser

    DOEpatents

    Kulkarny, Vijay A.

    1982-01-01

    A repetitively pulsed gas laser in which a system of mechanical shutters bracketing the laser cavity manipulate pressure waves resulting from residual energy in the cavity gas following a lasing event so as to draw fresh gas into the cavity and effectively pump spent gas in a dynamic closed loop.

  6. X-ray production with sub-picosecond laser pulses

    SciTech Connect

    Schappert, G.T.; Cobble, J.A.; Fulton, R.D.; Kyrala, G.A.

    1993-12-31

    The interaction of intense, sub-picosecond laser pulses with solid targets produces intense picosecond x-ray pulses. With focused laser pulses of several 10 {sup 18} W/cm{sup 2}, He-like and H-like line radiation from targets such as aluminum and silicon has been produced. The energy conversion efficiency from the laser pulse energy to the 1--2 keV line x-rays is nearly one percent. The duration of the line x-ray radiation is of the order of ten picoseconds, although this may be an upper estimate because of the temporal resolution of the x-ray streak camera. The spatial extent of the x-ray source region is only slightly larger than the laser focal spot, or about 10 {mu}m in diameter. With these characteristics, such x-ray sources emit an intensity of nearly 10{sup 14} W/cm{sup 2}. Experiments and modeling which led to the above conclusions will be discussed.

  7. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  8. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  9. Quantifying pulsed laser induced damage to graphene

    SciTech Connect

    Currie, Marc; Caldwell, Joshua D.; Bezares, Francisco J.; Robinson, Jeremy; Anderson, Travis; Chun, Hayden; Tadjer, Marko

    2011-11-21

    As an emerging optical material, graphene's ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp{sup 2}-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm{sup 2}, an order-of-magnitude lower than measured and theoretical ablation thresholds.

  10. Pulsed solid state lasers for medicine

    NASA Astrophysics Data System (ADS)

    Kertesz, Ivan; Danileiko, A. Y.; Denker, Boris I.; Kroo, Norbert; Osiko, Vyacheslav V.; Prokhorov, Alexander M.

    1994-02-01

    The effect on living tissues of different pulsed solid state lasers: Nd:YAG ((lambda) equals 1.06 micrometers ) Er:glass (1.54 micrometers ), Ho:YAG (2.1 micrometers ) and Er:YAG (2.94 micrometers ) is compared with the continuous wave Nd:YAG- and CO2-lasers used in operating theaters. Portable Er:glass- and Er:YAG-lasers are developed for surgery/cosmetics and HIV-safe blood testing.

  11. Frequency modulation of semiconductor disk laser pulses

    SciTech Connect

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  12. Classical dynamics of free electromagnetic laser pulses

    NASA Astrophysics Data System (ADS)

    Goto, S.; Tucker, R. W.; Walton, T. J.

    2016-02-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.

  13. Pulsed infrared laser ablation and clinical applications

    NASA Astrophysics Data System (ADS)

    Chan, Kin Foong

    Sufficient light energy deposited in tissue can result in ablation and excessive thermal and mechanical damage to adjacent tissues. The goals of this research are to investigate the mechanisms of pulsed infrared laser ablation of tissue, to optimize laser parameters for minimizing unnecessary damage to healthy tissue, and to explore the potential of using pulsed infrared lasers for clinical applications, especially laser lithotripsy. A dual-channel optical low coherence reflectometer was implemented to measure the expansion and collapse velocities of a Q-switched Ho:YAG (λ = 2.12 μm) laser-induced cavitation in water. Cavitation wall velocities up to 11 m/s were measured with this technique, and the results were in fair agreement with those calculated from fast-flash photographic images. The dependence of ablation threshold fluence on calculus absorption was examined. Preliminary results indicated that the product of optical absorption and ablation threshold fluence, which is the heat of ablation, remained constant for a given urinary calculus type and laser pulse duration. An extended study examined the influence of optical absorption on pulsed infrared laser ablation. An analytical photothermal ablation model was applied and compared to experimental ablation results using an infrared free-electron laser at selected wavelengths between 2.12 μm and 6.45 μm Results were in good agreement with the model, and the ablation depths of urinary calculi were highly dependent upon the calculus optical absorption as well as light attenuation within the intrapulse ablation plume. An efficient wavelength for ablation corresponded to the wavelength of the Er:YAG laser (λ = 2.94 μm) suggested this laser should be examined for laser lithotripsy. Schlieren flash photography, acoustic transient measurements with a piezoelectric polyvinylidene-fluoride needle-hydrophone, mass loss measurements, and chemical analyses were employed to study the ablation mechanisms of the free

  14. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-05

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

  15. RF synchronized short pulse laser ion source

    SciTech Connect

    Fuwa, Yasuhiro Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji; Okamura, Masahiro; Yamazaki, Atsushi

    2016-02-15

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe.

  16. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  17. Intense Nanosecond-Pulsed Cavity-Dumped Laser Radiation at 1.04 THz

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas

    2013-03-01

    We report first results of intense far-infrared (FIR) nanosecond-pulsed laser radiation at 1.04 THz from a previously described[2] cavity-dumped, optically-pumped molecular gas laser. The gain medium, methyl fluoride, is pumped by the 9R20 line of a TEA CO2 laser[3] with a pulse energy of 200 mJ. The THz laser pulses contain of 30 kW peak power in 5 nanosecond pulse widths at a pulse repetition rate of 10 Hz. The line width, measured by a scanning metal-mesh FIR Fabry-Perot interferometer, is 100 MHz. The novel THz laser is being used in experiments to resonantly excite coherent ns-pulsed 1.04 THz longitudinal acoustic phonons in silicon doping-superlattices. The research is supported by NASA EPSCoR NNX11AM04A and AFOSR FA9550-12-1-0100 awards.

  18. Tunable high-efficient pulsed NH3 terahertz lasers

    NASA Astrophysics Data System (ADS)

    Jiu, Zhi-Xian; Li, Qiang; Zuo, Du-Luo; Miao, Liang; Cheng, Zu-Hai

    2012-03-01

    Experimental studies on a tunable efficient high-efficient pulsed NH3 terahertz (THz) lasers pumped by TEA CO2 lasers are presented. When NH3 is pumped by the different lines with the CO2 lasers, the generation of different terahertz radiations is discussed. The lines of the CO2 lasers are 9R(08), 9P(20), 10R(14), 10R(08), and 10R(06). To improve THz laser energy and photon conversion efficiency, different higher power of the CO2 laser can effectively improve THz laser energy and photon conversion efficiency. When the 9P(20) CO2 lasers with 9.68 J and 4.12 J pump NH3, the corresponding energy conversion efficiencies are 0.28% and 0.19%, increasing by a factor of about 1.5. The generation of terahertz radiations with energy as high as 27.29 mJ and 7.73 mJ are obtained, respectively, increasing by a factor of about 3.5. Meanwhile, for 10R(14) line, the energy conversion efficiencies increase to 8.5 times and the energy of THz lasers increase to 32 times.

  19. Tunable high-efficient pulsed NH3 terahertz lasers

    NASA Astrophysics Data System (ADS)

    Jiu, Zhi-Xian; Li, Qiang; Zuo, Du-Luo; Miao, Liang; Cheng, Zu-Hai

    2011-11-01

    Experimental studies on a tunable efficient high-efficient pulsed NH3 terahertz (THz) lasers pumped by TEA CO2 lasers are presented. When NH3 is pumped by the different lines with the CO2 lasers, the generation of different terahertz radiations is discussed. The lines of the CO2 lasers are 9R(08), 9P(20), 10R(14), 10R(08), and 10R(06). To improve THz laser energy and photon conversion efficiency, different higher power of the CO2 laser can effectively improve THz laser energy and photon conversion efficiency. When the 9P(20) CO2 lasers with 9.68 J and 4.12 J pump NH3, the corresponding energy conversion efficiencies are 0.28% and 0.19%, increasing by a factor of about 1.5. The generation of terahertz radiations with energy as high as 27.29 mJ and 7.73 mJ are obtained, respectively, increasing by a factor of about 3.5. Meanwhile, for 10R(14) line, the energy conversion efficiencies increase to 8.5 times and the energy of THz lasers increase to 32 times.

  20. Control of multiphoton molecular excitation with shaped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Xu, Bingwei

    The work presented in this dissertation describes the use of shaped femtosecond laser pulses to control the outcome of nonlinear optical process and thus to achieve the selectivity for multiphoton molecular transitions. This research could lead to applications in various fields including nonlinear optical spectroscopy, chemical identification, biological imaging, communications, photodynamic therapy, etc. In order to realize accurate pulse shaping of the femtosecond laser pulses, it is essential to measure and correct the spectral phase distortion of such pulses. A method called multiphoton intrapulse interference phase scan is used to do so throughout this dissertation. This method is highly accurate and reproducible, and has been proved in this work to be compatible with any femtosecond pulses regardless of bandwidth, intensity and repetition rate of the laser. The phase control of several quasi-octave laser sources is demonstrated in this dissertation, with the generation of 4.3 fs and 5.9 fs pulses that reach the theoretically predicted transform-limited pulse duration. The excellent phase control achieved also guarantees the reproducibility for selective multiphoton excitations by accurate phase and/or amplitude shaping. Selective two-photon excitation, stimulated Raman scattering and coherent anti-Stokes Raman scattering with a single broadband laser source are demonstrated in this dissertation. Pulse shaping is used to achieve a fast and robust approach to measure the two-photon excitation spectrum from fluorescent molecules, which provide important information for two-photon biological imaging. The selective excitation concept is also applied in the field of remote chemical identification. Detection of characteristic Raman lines for several chemicals using a single beam coherent anti-Stokes Raman scattering spectroscopy from a 12 meter standoff distance is shown, providing a promising approach to standoff detection of chemicals, hazardous contaminations

  1. Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique

    SciTech Connect

    Volfbeyn, P.; Leemans, W.P.

    1998-07-01

    The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (< 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a > 5 {times} 10{sup 17} W/cm{sup 2}, 75 fs laser pulse.

  2. Concerted manipulation of laser plasma dynamics with two laser pulses

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Sommer, D.; Schnürer, M.

    2017-05-01

    In this article we present experimental results from a counter-propagating two laser pulse experiment at high intensity and using ultrathin gold and plastic foil targets. We applied one laser pulse as a pre-pulse with an intensity of up to 1x1018 W/cm2. By this method we manipulated the pre-plasma of the foil target with which the stronger laser pulse with an intensity of 6x1019W/cm2 interacts. This alters significantly subsequent processes from the laser plasma interaction which we show the ion acceleration and high harmonic generation. On the one hand, the maximum kinetic ion energy and the maximum charge state for gold ions decline due to the pre-heating of the target in the time range of few ps, on the other hand the number of accelerated ions is increased. For the same parameter range we detected a significant raise of the high harmonic emission. Moreover, we present first experimental observations, that when the second laser pulse is applied as a counter-propagating post-pulse the energy distribution of accelerated carbon ions is charge selective altered. Our findings indicate that using this method a parametric optimization can be achieved, which promises new insights about the concurrent processes of the laser plasma dynamics.

  3. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOEpatents

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  4. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOEpatents

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  5. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy.

    PubMed

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0μs with 0.5μs increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  6. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  7. Short-pulse Laser Processing of CFRP

    NASA Astrophysics Data System (ADS)

    Weber, Rudolf; Freitag, Christian; Kononenko, Taras V.; Hafner, Margit; Onuseit, Volkher; Berger, Peter; Graf, Thomas

    Short-pulse lasers allow processing of carbon fiber reinforced plastics (CFRP) with very high quality, i.e. showing thermal damage in the range of only a few micrometers. Due to the usually high intensities and the short interaction times of such short pulses, only a small fraction of the incident laser energy is converted to residual heat which does not contribute to the ablation process. However, if the next pulse arrives before the material had time to cool down, i.e. this residual thermal energy did not sufficiently flow out of the interaction region, it encounters material which is still hot. This remaining energy and temperature is summing up during the sequence of pulses and is commonly referred to as "heat accumulation". Thermal damage in addition to the damage created by the process itself is induced, if the resulting temperature sum exceeds the damage temperatures of either the fibre or the plastic. The current paper presents the influence of the laser parameters such as pulse energy and repetition rate on this heat accumulation. An analytical model was used to describe the heat accumulation for different laser parameters. It describes the heat accumulation process and allows estimating the maximum number of pulses allowed at the same place before a detrimental temperature increase occurs.

  8. A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver

    SciTech Connect

    Rashid, Babar; Ahmed, Rizwan; Ali, Raheel; Baig, M. A.

    2011-07-15

    We present a comparative study of the collinear and orthogonal pre-ablation dual pulse configurations of laser induced breakdown spectroscopy (LIBS) of silver using Nd:YAG lasers. The effect of the inter-pulse delay and the ratio of the laser pulse energies on the signal intensity enhancement for both the dual pulse configurations have been investigated. Using the first laser at 532 nm and second laser at 1064 nm delayed by 5 {mu}s, we achieved nearly 2 times signal enhancement in the collinear double-pulsed configuration and nearly 12 times in the pre-ablation orthogonal configuration as compared to SP LIBS. It is ascertained that at the optimized value of the inter-pulse delay between the two lasers, the intensity ratio of the neutral silver lines follows the local thermo dynamical equilibrium (LTE) condition and it is also in excellent agreement with that of the relative transitions probabilities ratio listed in the NIST data base.

  9. Mode selection and frequency tuning by injection in pulsed TEA-CO2 lasers

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.

    1983-01-01

    An analytical model characterizing pulsed-TEA-CO2-laser injection locking by tunable CW-laser radiation is presented and used to explore the requirements for SLM pulse generation. Photon-density-rate equations describing the laser mechanism are analyzed in terms of the mode competition between photon densities emitted at two frequencies. The expression derived for pulsed dye lasers is extended to homogeneously broadened CO2 lasers, and locking time is defined as a function of laser parameters. The extent to which injected radiation can be detuned from the CO2 line center and continue to produce SLM pulses is investigated experimentally in terms of the analytical framework. The dependence of locking time on the detuning/pressure-broadened-halfwidth ratio is seen as important for spectroscopic applications requiring tuning within the TEA-laser line-gain bandwidth.

  10. Note: Fast double pulse system using transmission line characteristic of the pulse forming line

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Deb, P.; Sharma, Archana; Shyam, A.

    2012-11-01

    A fast double pulse system is designed and developed using the transmission line characteristic of the pulse forming line to generate two flat top rectangular pulses with extremely short interpulse repetition interval. The helical pulse forming line (HPFL) is used to generate longer duration rectangular pulses in smaller length. The HPFL inner conductor is made up of 13 turns of SS-304 strip, 39.5 mm wide and 0.5 mm thick wounded on the 168 mm delrin cylinder. The impedance of the HPFL is 22 Ω. The 2 turns at the input side of the HPFL are wounded with ethylene propylene rubber tape on the strip. The HPFL is charged to 180 kV in 4 μs and discharges into a matched load through a spark switch. It generates two flat top rectangular pulses of 90 kV, 100 ns duration with the 30 ns interval between the pulses. The system can be used as fast double pulse source for repetitive pulsed power loads.

  11. Note: fast double pulse system using transmission line characteristic of the pulse forming line.

    PubMed

    Sharma, Surender Kumar; Deb, P; Sharma, Archana; Shyam, A

    2012-11-01

    A fast double pulse system is designed and developed using the transmission line characteristic of the pulse forming line to generate two flat top rectangular pulses with extremely short interpulse repetition interval. The helical pulse forming line (HPFL) is used to generate longer duration rectangular pulses in smaller length. The HPFL inner conductor is made up of 13 turns of SS-304 strip, 39.5 mm wide and 0.5 mm thick wounded on the 168 mm delrin cylinder. The impedance of the HPFL is 22 Ω. The 2 turns at the input side of the HPFL are wounded with ethylene propylene rubber tape on the strip. The HPFL is charged to 180 kV in 4 μs and discharges into a matched load through a spark switch. It generates two flat top rectangular pulses of 90 kV, 100 ns duration with the 30 ns interval between the pulses. The system can be used as fast double pulse source for repetitive pulsed power loads.

  12. Ophthalmic applications of ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Spooner, Greg; Sacks, Zachary S.; Suarez, Carlos G.; Raksi, Ferenc; Zadoyan, Ruben; Sarayba, Melvin; Kurtz, Ronald M.

    2004-06-01

    Ultrashort laser pulses can be used to create high precision incision in transparent and translucent tissue with minimal damage to adjacent tissue. These performance characteristics meet important surgical requirements in ophthalmology, where femtosecond laser flap creation is becoming a widely used refractive surgery procedure. We summarize clinical findings with femtosecond laser flaps as well as early experiments with other corneal surgical procedures such as corneal transplants. We also review laser-tissue interaction studies in the human sclera and their consequences for the treatment of glaucoma.

  13. Nonequilibrium Interlayer Transport in Pulsed Laser Deposition

    SciTech Connect

    Tischler, Jonathan Zachary; Eres, Gyula; Larson, Ben C; Rouleau, Christopher M; Zschack, P.; Lowndes, Douglas H

    2006-01-01

    We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes.

  14. Laser and intense pulsed light management of couperose and rosacea.

    PubMed

    Dahan, S

    2011-11-01

    Management of couperosis and rosacea has been totally renewed by laser and vascular laser techniques, with efficacy targeted on the telangiectases and to a lesser extent on the erythrosis. Laser management of hypertrophic rosacea or rhinophyma depends on surgical treatment with decortication, continuous CO(2) ablative laser or Erbium, fractionated at high power, then vascular laser treatment for the telangiectases: lasers with pulsed dye, KTP, or pulsed lights for red laser telangiectases and long pulse Nd-Yag laser for blue telangiectases. For papulopustular rosacea, vascular laser treatment (pulsed dye and KTP) and intense pulsed light will be begun once the inflammation has been treated. The major indication for vascular lasers and intense pulsed light is found in erythematotelangiectatic rosacea, with high efficacy for the telangiectases. Diffuse erythrosis is difficult to treat, requiring a high number of laser and/or intense pulsed light sessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. [Laser and intense pulsed light management of couperose and rosacea].

    PubMed

    Dahan, S

    2011-09-01

    Management of couperosis and rosacea has been totally renewed by laser and vascular laser techniques, with efficacy targeted on the telangiectases and to a lesser extent on the erythrosis. Laser management of hypertrophic rosacea or rhinophyma depends on surgical treatment with decortication, continuous CO(2) ablative laser or Erbium, fractionated at high power, then vascular laser treatment for the telangiectases: lasers with pulsed dye, KTP, or pulsed lights for red laser telangiectases and long pulse Nd-Yag laser for blue telangiectases. For papulopustular rosacea, vascular laser treatment (pulsed dye and KTP) and intense pulsed light will be begun once the inflammation has been treated. The major indication for vascular lasers and intense pulsed light is found in erythematotelangiectatic rosacea, with high efficacy for the telangiectases. Diffuse erythrosis is difficult to treat, requiring a high number of laser and/or intense pulsed light sessions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. New laser glass for short pulsed laser applications: the BLG80 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    George, Simi A.

    2017-03-01

    For achieving highest peak powers in a solid state laser (SSL) system, significant energy output and short pulses are necessary. For mode-locked lasers, it is well-known from the Fourier theorem that the largest gain bandwidths produce the narrowest pulse-widths; thus are transform limited. For an inhomogeneously broadened line width of a laser medium, if the intensity of pulses follow a Gaussian function, then the resulting mode-locked pulse will have a Gaussian shape with the emission bandwidth/pulse duration relationship of pulse ≥ 0.44?02/c. Thus, for high peak power SSL systems, laser designers incorporate gain materials capable of broad emission bandwidths. Available energy outputs from a phosphate glass host doped with rare-earth ions are unparalleled. Unfortunately, the emission bandwidths achievable from glass based gain materials are typically many factors smaller when compared to the Ti:Sapphire crystal. In order to overcome this limitation, a hybrid "mixed" laser glass amplifier - OPCPA approach was developed. The Texas petawatt laser that is currently in operation at the University of Texas-Austin and producing high peak powers uses this hybrid architecture. In this mixed-glass laser design, a phosphate and a silicate glass is used in series to achieve a broader bandwidth required before compression. Though proven, this technology is still insufficient for the future compact petawatt and exawatt systems capable of producing high energies and shorter pulse durations. New glasses with bandwidths that are two and three times larger than what is now available from glass hosts is needed if there is to be an alternative to Ti:Sapphire for laser designers. In this paper, we present new materials that may meet the necessary characteristics and demonstrate the laser and emission characteristics these through the internal and external studies.

  17. Pulsed Laser Deposition of Gallium Arsenide.

    NASA Astrophysics Data System (ADS)

    Leppert, Valerie Jean

    Recent applications of pulsed laser deposition to the growth of various types of thin films suggest that it may be successfully used for III-V semiconductors. The goal of this work is to characterize the growth of GaAs using PLD and to determine the scope of the technique for this material. Therefore, laser ablation of GaAs is characterized here using spectroscopic analysis of the optical emission lines from the laser plasma plume. Additionally, the influence of growth conditions on GaAs films grown on a range of substrates is examined. In-situ analysis of the GaAs plume revealed that atomic, rather than molecular, arsenic is a major constituent of the GaAs plume. This may explain why no arsenic overpressure was needed to grow stoichiometric material. Nonlinear behavior of Ga emission intensity with laser power density indicated that several ablation mechanisms may be at work. EDAX studies indicate that deposited material is stoichiometric. Single crystal GaAs was grown on GaAs, Si and InP using PLD. A deposition rate of 0.65 mu m/hr was obtained. Defects consisting of dislocations, twinning and stacking faults were observed. An increase in laser power density decreased the minimum temperature for good film growth. Films were smooth overall, but suffered from an occasional inclusion of macroparticulates. Methods for screening particles were examined. The optimum growth temperature for GaAs/GaAs growth was 470^circC, but good films could be obtained as low as 335^circ C. GaAs/Si underwent a transition from a (110) oriented film to single crystal (100) film at 470 ^circC. Photoluminescence was obtained for the GaAs/GaAs and GaAs/InP systems. Well oriented films of GaAs (110) on an amorphous substrate (fused silica) were obtained for the first time using PLD at temperatures as low as 288^ circC. The effects of deposition temperature, deposition time, background gas, annealing, MOCVD overlayer and shadow masking were examined.

  18. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  19. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  20. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE PAGES

    Moody, J. T.; Anderson, S. G.; Anderson, G.; ...

    2016-02-29

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  1. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    NASA Astrophysics Data System (ADS)

    Moody, J. T.; Anderson, S. G.; Anderson, G.; Betts, S.; Fisher, S.; Tremaine, A.; Musumeci, P.

    2016-02-01

    In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200 MV /m using a 4 TW 100 fs long 800 nm Ti :Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100 fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  2. Propagation of chirped laser pulses in a plasma channel

    SciTech Connect

    Jha, Pallavi; Malviya, Amita; Upadhyay, Ajay K.

    2009-06-15

    Propagation of an initially chirped, Gaussian laser pulse in a preformed parabolic plasma channel is analyzed. A variational technique is used to obtain equations describing the evolution of the phase shift and laser spot size. The effect of initial chirp on the laser pulse length and intensity of a matched laser beam propagating in a plasma channel has been analyzed. The effective pulse length and chirp parameter of the laser pulse due to its interaction with plasma have been obtained and graphically depicted. The resultant variation in laser frequency across the laser pulse is discussed.

  3. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  4. Development of a 1 J short pulse tunable TEA CO2 laser with high energy stability

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Reghu, T.; Biswas, A. K.; Bhargav, Pankaj; Pakhare, J. S.; Kumar, Shailesh; Verma, Abrat; Mandloi, Vagesh; Kukreja, L. M.

    2014-12-01

    The design, development and operational characteristics of a 1 J, repetitively pulsed, line tunable TEA CO2 laser producing nearly tail free short pulses (~170 ns) suitable for laser isotope separation is discussed. Tail free short laser pulses were generated by employing a nitrogen lean gaseous active medium. Use of an indigenously developed stable pulsed power supply, uniform and intense UV spark pre-ionization and optimum gas purging with catalytic regeneration to control the deleterious oxygen accumulation helps generate laser pulses with high energy stability. Integration of a sensitive arc detection system allows long term arc-free operation of the laser and protects it from catastrophic failure. Laser pulses in more than 90 lines in 10.6 μm and 9.6 μm bands of CO2 laser spectrum with energy about 1 J in as many as 50 lines could be generated with a typical efficiency of about 4%. A typical pulse to pulse energy stability of ±1.4% was obtained during one hour of continuous operation of the TEA CO2 laser at 75 Hz.

  5. Modeling Pulsed Laser Melting of Embedded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sawyer, Carolyn Anne

    A model of pulsed laser melting of embedded nanoparticles is introduced. Pulsed laser melting (PLM) is commonly used to achieve a fast quench rate in nanoparticles; this model enables a better understanding of the influence of PLM on the size distribution of nanoparticles, which is crucial for studying or using their size-dependent properties. The model includes laser absorption according to the Mie theory, a full heat transport model, and rate equations for nucleation, growth, coarsening, and melting and freezing of nanoparticles embedded in a transparent matrix. The effects of varying the laser parameters and sample properties are studied, as well as combining PLM and rapid thermal annealing (RTA) processing steps on the same sample. A general theory for achieving narrow size distributions of nanoparticles is presented, and widths as narrow as 12% are achieved using PLM and RTA.

  6. Ceramic dentures manufactured with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Werelius, Kristian; Weigl, Paul

    2004-06-01

    Conventional manufacturing of individual ceramic dental prosthesis implies a handmade metallic framework, which is then veneered with ceramic layers. In order to manufacture all-ceramic dental prosthesis a CAD/CAM system is necessary due to the three dimensional shaping of high strength ceramics. Most CAD/CAM systems presently grind blocks of ceramic after the construction process in order to create the prosthesis. Using high-strength ceramics, such as Hot Isostatic Pressed (HIP)-zirconia, this is limited to copings. Anatomically shaped fixed dentures have a sculptured surface with small details, which can't be created by existing grinding tools. This procedure is also time consuming and subject to significant loss in mechanical strength and thus reduced survival rate once inserted. Ultra-short laser pulses offer a possibility in machining highly complex sculptured surfaces out of high-strength ceramic with negligible damage to the surface and bulk of the ceramic. In order to determine efficiency, quality and damage, several laser ablation parameters such as pulse duration, pulse energy and ablation strategies were studied. The maximum ablation rate was found using 400 fs at high pulse energies. High pulse energies such as 200μJ were used with low damage in mechanical strength compared to grinding. Due to the limitation of available laser systems in pulse repetition rates and power, the use of special ablation strategies provide a possibility to manufacture fully ceramic dental prosthesis efficiently.

  7. Optoelectronic delay-time controller for laser pulses.

    PubMed

    Lin, G R

    2000-06-01

    A dc-voltage-controlled optoelectronic delay line for continuous tuning of the relative delay time of an optical pulse train generated from a gain-switched laser diode is demonstrated. A maximum tunable range delay time of 3.9 ns ( approximately 2 periods) for optical pulses at a 500-MHz repetition rate is reported, which corresponds to a phase shift of as much as 4pi. The tuning responsivity and resolution of the current apparatus are 0.54 ps/mV and <0.2 ps, respectively. The measured timing fluctuation and long-term drift at any delay time are 0.13 ps and 20 fs/min, respectively. This scheme further permits the simultaneous phase tracking of the laser pulse train to unknown signals generated from the device under test.

  8. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  9. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  10. Laser Cooling with Ultrafast Pulse Trains

    DTIC Science & Technology

    2011-08-08

    of the electron cutoff energy for a laser intensity of ~5.3 x 1014 W/cm2. Record-breaking atomic imaging resolution and first absorption imaging...unprecedented agreement between ab initio theory and experiment in this field by investigating ionisation of atomic hydrogen with few-cycle pulses [1]. Figure 1...2a). We have made a systematic study of the electron energy and laser intensity dependence of the CEP modulation depth and relative phase offset

  11. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    DOE PAGES

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; ...

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  12. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    SciTech Connect

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary D.; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parameter dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.

  13. Propagation of ultrashort laser pulses through water.

    PubMed

    Li, Jianchao; Alexander, Dennis R; Zhang, Haifeng; Parali, Ufuk; Doerr, David W; Bruce, John C; Wang, Hao

    2007-02-19

    In this paper, propagation of ultrashort pulses through a long 3.5 meter water channel was studied. Of particular interest was the attenuation of the beam at various lengths along the variable path length and to find an explanation of why the attenuation deviates from typical Beer Lambert law around 3 meters for ultrashort laser pulse transmission. Laser pulses of 10 fs at 75 MHz, 100 fs at 80 MHz and 300 fs at 1 KHz were employed to investigate the effects of pulse duration, spectrum and repetition rate on the attenuation after propagating through water up to 3 meters. Stretched pulse attenuation measurements produced from 10 fs at a frequency of 75 MHz were compared with the 10 fs attenuation measurements. Results indicate that the broad spectrum of the ultrashort pulse is the dominant reason for the observed decrease in attenuation after 3 meters of travel in a long water channel. The repetition rate is found not to play a significant role at least for the long pulse scenario in this reported attenuation studies.

  14. Pulsed hollow-cathode ion lasers: pumping and lasing parameters

    SciTech Connect

    Zinchenko, S P; Ivanov, I G

    2012-06-30

    Optimal discharge conditions have been experimentally found for ion lasers excited in the hollow-cathode discharge plasma by microsecond current pulses by pumping working atoms in secondkind collisions with ions and metastable buffer-gas atoms. Measurements of the output power of krypton ion and zinc-, cadmium-, mercury-, thallium-, copper-, and gallium-vapour lasers in tubes with cathodes of different diameters showed that the pulse power reaches several tens of watts, and the average power obtained with cathodes 2 cm in diameter and a length of 40 cm or more approaches 1 W. Lasing in most media is observed simultaneously at several lines (the multi-wavelength regime). Lasing on a three-component (He - Kr - Hg) mixture is realised in the multi-wavelength regime at blue, red, and IR lines.

  15. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, S.A.; Hayden, J.S.

    1997-09-02

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P{sub 2}O{sub 5}, Al{sub 2}O{sub 3} and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules. 7 figs.

  16. Ultrafast pulsed laser utilizing broad bandwidth laser glass

    DOEpatents

    Payne, Stephen A.; Hayden, Joseph S.

    1997-01-01

    An ultrafast laser uses a Nd-doped phosphate laser glass characterized by a particularly broad emission bandwidth to generate the shortest possible output pulses. The laser glass is composed primarily of P.sub.2 O.sub.5, Al.sub.2 O.sub.3 and MgO, and possesses physical and thermal properties that are compatible with standard melting and manufacturing methods. The broad bandwidth laser glass can be used in modelocked oscillators as well as in amplifier modules.

  17. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  18. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  19. Modulated Pulsed Laser Sources for Imaging Lidars

    DTIC Science & Technology

    2007-10-01

    manufactured by QPC. This C-mount device has a monolithic semiconductor amplifier allowing the package to output up to 1.5 Watts at 1064 nm with linewidths ɘ.1...pulsed driver based on the avalanche transistor circuit being used for gain switching, a 1064 nm DFB laser manufactured by QPC and a DBR -style laser...available now that may provide the needed power. An example of such a laser is the QPC C-mount monolithic oscillator/amplifier which can output 1.5

  20. Chemically-Assisted Pulsed Laser-Ramjet

    NASA Astrophysics Data System (ADS)

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-01

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  1. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    PubMed

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chemically-Assisted Pulsed Laser-Ramjet

    SciTech Connect

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-13

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  3. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  4. Pulse solid state lasers in aesthetic surgery

    NASA Astrophysics Data System (ADS)

    Dobryakov, Boris S.; Greben'kova, Ol'ga B.; Gulev, Valerii S.

    1996-04-01

    The emission of a pulse-periodic laser on alumo-ittrium garnet applied for preventive and medical treatment of a capsule contracture round implanted prostheses in xenoplastics is described in the present paper. The results obtained testify to a high efficiency of suggested method.

  5. Pulsed cyclic laser based on dissociative excitation

    SciTech Connect

    Celto, J.E.; Schimitschek, E.J.

    1980-10-14

    A pulsed laser produces emitted laser energy by dissociative excitation of metal dihalide and cyclic recombination. A metal dihalide selected from subgroup ii-b of the periodic table of elements is contained within an elongate sealed enclosure. Two elongate electrodes having external terminals are supported in parallel relationship within the enclosure, forming a gap parallel to the principal axis of the enclosure. A source of pulsed electric power is connected to the terminals of the two electrodes, producing repetitive transverse electric discharges across the gap. An inert buffer gas is included within the enclosure for aiding electric discharge uniformity, and to provide vibrational relaxation of the lasing medium in its electronic states. The buffer gas is ionized by a third electrode within the enclosure connected to a source of pulses which immediately precede the pulses applied to the first and second electrode so that the lasing medium is preionized immediately prior to the principal electric discharge. Two reflective surfaces, one of which is only partially reflective, are aligned with the principal axis of the laser assembly for producing an optical resonator for the emitted laser energy.

  6. Ultrashort Pulse (USP) Laser-Matter Interactions

    DTIC Science & Technology

    2013-03-05

    unlimited 2D electron wavepacket quantum simulation Source: Luis Plaja, U Salamanca 31 Direct Frequency Comb Spectroscopy in the Extreme...intensity short pulse laser interacting with structured targets yields an enhancement in the number and energy of hot electron. • Monte Carlo

  7. Pulsed laser deposition: Prospects for commercial deposition of epitaxial films

    SciTech Connect

    Muenchausen, R.E.

    1999-03-01

    Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique for the deposition of thin films. The vapor source is induced by the flash evaporation that occurs when a laser pulse of sufficient intensity (about 100 MW/cm{sup 2}) is absorbed by a target. In this paper the author briefly defines pulsed laser deposition, current applications, research directed at gaining a better understanding of the pulsed laser deposition process, and suggests some future directions to enable commercial applications.

  8. Laser zona dissection using short-pulse ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Tadir, Yona; Ho, Peter D.; Whalen, William E.; Asch, Richardo H.; Ord, Teri; Berns, Michael W.

    1992-06-01

    The interaction of pulsed ultraviolet radiation with the zona pellucida of human oocytes which had failed to fertilize in standard IVF cycles, was investigated. Two lasers were studied: a 100 ps pulsed Nd:YAG with a nonlinear crystal emitting light at 266 nm, and a 15 ns XeCl excimer laser with 308 nm radiation. Incisions in the zona were made by aiming the beam tangentially to the oocyte. The results indicate superior, high precision performance by the excimer laser creating trenches as narrow as 1 micrometers and as shallow as 1 micrometers . The incision size was found to be sensitive to the laser's energy and to the position of the microscope's objective focal plane, but relatively insensitive to the laser pulse repetition rate. Once the minimum spot size was defined by the system parameters, the laser beam was used to curve out any desired zona shape. This laser microsurgery technique as applied to partial zone dissection or zona drilling could prove very useful as a high-precision, non-contact method for treatments of low fertilization rate and for enhancing embryo implantation rates in patients undergoing IVF treatments.

  9. Generation in electric-discharge XeCl lasers of a high energy long pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, Ivan; Losev, Valery F.; Panchenko, Yury N.

    2004-06-01

    Experimental results of long-pulse generation in X-ray preionized XeCl lasers with a 9 x 7 cm2 and 5.4 x 3 cm2 apertures are described. Lasers operate at Ne-Xe-HCl mixture with pressure up to 4 atm. Paper-oil pulse forming lines and rail-gap switch for discharge pump was used. An 2 - 10 J output with optical pulse duration of 250 - 300 ns (FWHM) have been extracted. Problems and peculiarities of long laser pulse formation are discussed.

  10. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  11. High power parallel ultrashort pulse laser processing

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  12. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  13. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  14. Laser-pulse compression using magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-01

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longer durations. In addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.

  15. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  16. Double nanosecond pulses generation in ytterbium fiber laser

    SciTech Connect

    Veiko, V. P.; Samokhvalov, A. A. Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.; Lednev, V. N.; Pershin, S. M.

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  17. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  18. Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper.

    PubMed

    Schröder, Jochen B; Coen, Stéphane; Sylvestre, Thibaut; Eggleton, Benjamin J

    2010-10-25

    We demonstrate the integration of a spectral pulse-shaper into a passive mode-locked laser cavity for direct control of the output pulse-shape of the laser. Depending on the dispersion filter applied with the pulse-shaper we either observe a bright or dark "soliton-like" pulse train. The results demonstrate the strong potential of an in-cavity spectral pulse-shaper as an experimental tool for controlling the dynamics of passively mode-locked lasers.

  19. Pulsed Power for Solid-State Lasers

    SciTech Connect

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  20. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  1. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  2. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  3. Line-scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Ustun, Teoman E.; Bigelow, Chad E.; Iftimia, Nicusor V.; Webb, Robert H.

    2006-07-01

    Scanning laser ophthalmoscopy (SLO) is a powerful imaging tool with specialized applications limited to research and ophthalmology clinics due in part to instrument size, cost, and complexity. Conversely, low-cost retinal imaging devices have limited capabilities in screening, detection, and diagnosis of diseases. To fill the niche between these two, a hand-held, nonmydriatic line-scanning laser ophthalmoscope (LSLO) is designed, constructed, and tested on normal human subjects. The LSLO has only one moving part and uses a novel optical approach to produce wide-field confocal fundus images. Imaging modes include multiwavelength illumination and live stereoscopic imaging with a split aperture. Image processing and display functions are controlled with two stacked prototype compact printed circuit boards. With near shot-noise limited performance, the digital LSLO camera requires low illumination power (<500 µW) at near-infrared wavelengths. The line-scanning principle of operation is examined in comparison to SLO and other imaging modes. The line-scanning approach produces high-contrast confocal images with nearly the same performance as a flying-spot SLO. The LSLO may significantly enhance SLO utility for routine use by ophthalmologists, optometrists, general practitioners, and also emergency medical personnel and technicians in the field for retinal disease detection and other diverse applications.

  4. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  5. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  6. Selective laser melting of copper using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Kaden, Lisa; Matthäus, Gabor; Ullsperger, Tobias; Engelhardt, Hannes; Rettenmayr, Markus; Tünnermann, Andreas; Nolte, Stefan

    2017-09-01

    Within the field of laser-assisted additive manufacturing, the application of ultrashort pulse lasers for selective laser melting came into focus recently. In contrast to conventional lasers, these systems provide extremely high peak power at ultrashort interaction times and offer the potential to control the thermal impact at the vicinity of the processed region by tailoring the pulse repetition rate. Consequently, materials with extremely high melting points such as tungsten or special composites such as AlSi40 can be processed. In this paper, we present the selective laser melting of copper using 500 fs laser pulses at MHz repetition rates emitted at a center wavelength of about 1030 nm. To identify an appropriate processing window, a detailed parameter study was performed. We demonstrate the fabrication of bulk copper parts as well as the realization of thin-wall structures featuring thicknesses below 100 {μ }m. With respect to the extraordinary high thermal conductivity of copper which in general prevents the additive manufacturing of elements with micrometer resolution, this work demonstrates the potential for sophisticated copper products that can be applied in a wide field of applications extending from microelectronics functionality to complex cooling structures.

  7. Optical emission of silicon plasma induced by femtosecond double-pulse laser

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Wang, Xiaowei; Zhang, Dan; Wang, Ying; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing

    2017-05-01

    In this paper, we present a study on the influence of interpulse delay in laser-induced silicon plasma with femtosecond double-pulse, and two subpulses have different laser energies. The meansured optical emission line collected by a lens is the Si (I) at 390.55 nm. The range of double-pulse interpulse delay is from -150 ps to 150 ps. Unlike the femtosecond double pulses with two same energies, the combination of low + high energies can enhance the spectral emission intensity, while the combination of high + low energies probably reduces the spectral line intensity compared with single-pulse femtosecond laser. The results indicate that the interpulse delay is very important for laser-induced breakdown spectroscopy with femtosecond double-pulse to improve the optical emission intensity.

  8. Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

    SciTech Connect

    Dawson, J; Siders, C; Phan, H; Kanz, V; Barty, C

    2007-07-02

    We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.

  9. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  10. Spontaneous laser-line sweeping in Ho-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Aubrecht, Jan; Peterka, Pavel; Koška, Pavel; Honzátko, Pavel; Jelínek, Michal; Kamrádek, Michal; Frank, Milan; Kubeček, Václav; Kašík, Ivan

    2017-02-01

    Spontaneous laser-line sweeping refers to fiber laser instabilities with regular laser wavelength drift within a broad range that may exceed 10 nm; other characteristics of the laser output are sustained relaxation self-pulsing and narrow spectral linewidth. The laser wavelength drift is caused by standing-wave in the cavity; it can be regarded as a special case of mode instability of longitudinal modes of the laser resonator. Self-sweeping was observed so far in Yb, Er, Tm and Bidoped fiber lasers. We report on Ho-doped fiber laser self-sweeping in interval of 3-5 nm near 2100 nm. The sweeping rate was typically 0.7-0.9 nm/s. The thulium-doped fiber lasers at around 2030 nm and 1950 nm were tested as pump sources. The self-sweeping was registered by FTIR spectrometer and the data processing is discussed.

  11. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  12. Method and apparatus for the production of pre pulse free smooth laser radiation pulses of variable pulse duration

    SciTech Connect

    Witte, K. J.; Fill, E.; Scrlac, W.

    1985-04-30

    The pulse duration of an iodine laser is adjusted between 400 ps and 20 ns primarily by changing the resonator length in the range of about 2 cm to about 100 cm and secondarily by the ratio of excitation energy to threshold energy of the laser. Iodine laser pulses without pre-pulse and substructure are achieved in that the gas pressure of the laser gas of the iodine laser is adapted to the resonator length in order to limit the band width of the amplification and thus the band width of the pulse to be produced. The longer are the laser pulses to be produced the lower is the pressure chosen. A prerequisite for the above results is that the excitation of the iodine laser occurs extremely rapidly. This is advantageously achieved by photo-dissociation of a perfluoroalkyl iodide as CF/sub 3/I by means of laser providing sufficiently short output pumping pulses, e.g. an excimer laser, as a KrF laser or XeCl laser or a frequency-multiplied Nd-glass or Nd-YAG laser, or a N/sub 2/ laser (in combination with t-C/sub 4/F/sub 9/I as laser medium). In addition to the substantial advantage of the easy variability of the pulse duration the method additionally has a number of further advantages, namely pre-pulse-free rise of the laser pulse up to the maximum amplitude; exchange of the laser medium between two pulses is not necessary at pulse repetition rates below about 1 hertz; high pulse repetion rates obtainable with laser gas regeneration; switching elements for isolating a laser oscillator from a subsequent amplifier cascade for the purpose of avoiding parasitic oscillations are not as critical as with flashlamp-pumped lasers.

  13. Laser-driven hydrothermal process studied with excimer laser pulses

    NASA Astrophysics Data System (ADS)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  14. Pulsed laser radiation therapy of skin tumors

    SciTech Connect

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  15. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  16. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  17. GEOS-1 laser pulse return shape analysis

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.

    1972-01-01

    An attempt has been made to predict the shape of the laser return pulse from the corner cube retroreflectors on the GEOS-1 spacecraft. The study is geometrical only, and neglects factors such as optical interference, atmospheric perturbations, etc. A function giving the intensity of the return signal at any given time has been derived. In addition, figures are given which show the predicted return pulse shape as a function of time, the angle between the beam and the spin axis, and an in-plane angle (designating the orientation of the intersection of the planar waves with the plane of the corner cubes).

  18. Wavelength modulation spectroscopy with a pulsed quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Manne, Jagadeeshwari; Lim, Alan; Jäger, Wolfgang; Tulip, John

    2010-12-01

    A pulsed distributed feedback quantum cascade laser (QCL) operating near 957 cm-1 was employed in wavelength modulation mode for spectroscopic trace gas sensing applications. The laser was excited with short current pulses (5-10 ns) with < 2% duty cycle. The pulse amplitude was modulated with a linear sub-threshold current ramp at 20 Hz resulting in a ~ 2.5 cm-1 frequency scan, which is typically wider than what has been reported for these lasers, and would allow one to detect molecular absorption features with line widths up to 1 cm-1. A demodulation approach followed by numerical filtering was utilized to improve the signal-to-noise ratio. We then superimposed a sine wave current modulation at 10 kHz onto the 20 Hz current ramp. The resulting high frequency temperature modulation of the distributed feedback (DFB) structure results in wavelength modulation (WM). The set-up was tested by recording relatively weak absorption lines of carbon dioxide. We demonstrated a minimum detectable absorbance of 10-5 for this spectrometer. Basic instrument performance and optimization of the experimental parameters for sensitivity improvement are discussed.

  19. Pulsed laser planarization of metal films for multilevel interconnects

    SciTech Connect

    Tuckerman, D.B.; Schmitt, R.L.

    1985-05-01

    Multilevel interconnect schemes for integrated circuits generally require one or more planarization steps, in order to maintain an acceptably flat topography for lithography and thin-film step coverage on the higher levels. Traditional approaches have involved planarization of the interlevel insulation (dielectric) layers, either by spin-on application (e.g., polyimide), or by reflow (e.g., phosphosilicate glass). We have pursued an alternative approach, in which each metal level is melted (hence planarized) using a pulsed laser prior to patterning. Short (approx.1 ..mu..s) pulses are used to preclude undesirable metallurgical reactions between the film, adhesion or barrier layer, and dielectric layer. Laser planarization of metals is particularly well suited to multilevel systems which include ground or power planes. Results are presented for planarization of gold films on SiO/sub 2/ dielectric layers using a flashlamp-pumped dye laser. The pulse duration is approx.1 ..mu..s, which allows the heat pulse to uniformly penetrate the gold while not penetrating substantially through the underlying SiO/sub 2/ (hence not perturbing the lower levels of metal). Excellent planarization of the gold films is achieved (less than 0.1 ..mu..m surface roughness, even starting with extreme topographic variations), as well as improved conductivity. To demonstrate the process, numerous planarized two-layer structures (transmission lines under a ground plane) were fabricated and characterized. 9 refs., 2 figs.

  20. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  1. High speed sampling circuit design for pulse laser ranging

    NASA Astrophysics Data System (ADS)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  2. Electron acceleration by a propagating laser pulse in vacuum

    SciTech Connect

    Wang Fengchao; Shen Baifei; Zhang Xiaomei; Li Xuemei; Jin Zhangying

    2007-08-15

    Electrons accelerated by a propagating laser pulse of linear or circular polarization in vacuum have been investigated by one-dimensional particle-in-cell simulations and analytical modeling. A stopping target is used to stop the laser pulse and extract the energetic electrons from the laser field. The effect of the reflected light is taken into account. The maximum electron energy depends on the laser intensity and initial electron energy. There is an optimal acceleration length for electrons to gain maximum energy where electrons meet the peak of the laser pulse. The optimal acceleration length depends strongly on the laser pulse duration and amplitude.

  3. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  4. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  5. Pulsed laser triggered high speed microfluidic switch

    NASA Astrophysics Data System (ADS)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  6. Photostimulation of astrocytes with femtosecond laser pulses.

    PubMed

    Zhao, Yuan; Zhang, Yuan; Liu, Xiuli; Lv, Xiaohua; Zhou, Wei; Luo, Qingming; Zeng, Shaoqun

    2009-02-02

    The involvement of astrocytes in brain functions rather than support has been identified and widely concerned. However the lack of an effective stimulation of astrocytes hampers our understanding of their essential roles. Here, we employed 800-nm near infrared (NIR) femtosecond laser to induce Ca2+ wave in astrocytes. It was demonstrated that photostimulation of astrocytes with femtosecond laser pulses is efficient with the advantages of non-contact, non-disruptiveness, reproducibility, and high spatiotemporal precision. Photostimulation of astrocytes would facilitate investigations on information processing in neuronal circuits by providing effective way to excite astrocytes.

  7. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  8. Water depth measurement using an airborne pulsed neon laser system

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.; Frederick, E. B.

    1980-01-01

    The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.

  9. Spectral narrowing in gases using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Karpate, Tanvi; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Mathur, D.

    2017-05-01

    Filamentation in gases due to high power femtosecond pulses results from the combined action of the optical Kerr effect (giving rise to self-focusing) and plasma formation (giving rise to defocusing) that confines optical energy in a small region over a distance longer than the Rayleigh range. Since the discovery of N2 as a potential gain medium, which subsequently led to the formation of nitrogen lasers, it has held a keen interest due to its potential in achieving lasing by remote excitation. Recently, Yamanouchi and coworkers demonstrated lasing action in N2 in the forward as well the backward directions along the femtosecond pulse propagation. In the present work, we have focused on excitation of N2 + (corresponding to the 391nm spectral feature) and have measured spectral narrowing. We have investigated the influence exerted by the incident pulse power and gas pressure for incident pulses of durations 40 fs and 10 fs in forward and backward detection modes. Spectral narrowing that occurs for N2 gas at 391 nm shows a dependence on the incident pulse duration. Pressure threshold for different incident powers for lasing has been established. Increase in the signal intensity on varying the incident power is ascribed to amplified spontaneous emission (ASE). White-light-seeded lasing in N2 + is generated by a Ti:sapphire femtosecond laser for different focusing. The lasing lines peak over the trail of the incident broadband spectra.

  10. Control of XeF laser output by pulse injection

    NASA Technical Reports Server (NTRS)

    Pacala, T. J.; Christensen, C. P.

    1980-01-01

    Injection locking is investigated as a means for control of optical pulse duration and polarization in a XeF laser. Intense short-pulse generation in the ultraviolet is achieved by injection of a low-level 1-ns optical pulse into a XeF oscillator. Control of laser output polarization by injection locking is demonstrated and studied as a function of injected signal level. Enhancement of XeF electric-discharge laser efficiency by injection pulse 'priming' is observed.

  11. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  12. Plasma generated during underwater pulsed laser processing

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  13. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  14. Short-pulse laser materials processing

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Myers, B.R.; Banks, P.S.; Honea, E.C.

    1997-06-18

    While there is much that we have learned about materials processing in the ultrashort-pulse regime, there is an enormous amount that we don`t know. How short does the pulse have to be to achieve a particular cut (depth, material, quality)? How deep can you cut? What is the surface roughness? These questions are clearly dependent upon the properties of the material of interest along with the short-pulse interaction physics. From a technology standpoint, we are asked: Can you build a 100 W average power system ? A 1000 W average power system? This proposal seeks to address these questions with a combined experimental and theoretical program of study. Specifically, To develop an empirical database for both metals and dielectrics which can be used to determine the pulse duration and wavelength necessary to achieve a specific machining requirement. To investigate Yb:YAG as a potential laser material for high average power short-pulse systems both directly and in combination with titanium doped sapphire. To develop a conceptual design for a lOOW and eventually 5OOW average power short-pulse system.

  15. Laser pulse stretcher method and apparatus

    DOEpatents

    Hawkins, Jon K.; Williams, William A.

    1990-01-01

    The output of an oscillator stage of a laser system is monitored by a photocell which is coupled to a feedback section to control a Pockels Cell and change the light output of the oscillator stage. A synchronizing pulse is generated in timed relation to the initiation of operation of the oscillator stage and is applied to a forward feed section which cooperates with the feedback section to maintain the light output constant for an extended time interval.

  16. Magnetron Sputtered Pulsed Laser Deposition Scale Up

    DTIC Science & Technology

    2003-08-14

    2:721-726 34 S. J. P. Laube and E. F. Stark, “ Artificial Intellegence in Process Control of Pulsed Laser Deposition”, Proceedings of...The model would be based on mathematical simulation of real process data, neural-networks, or other artificial intelligence methods based on in situ...Laube and E. F. Stark, Proc. Symp. Artificial Intel. Real Time Control, Valencia, Spain, 3-5 Oct. ,1994, p.159-163. International Federation of

  17. Metal-Silicide Formation With Laser Pulses

    NASA Astrophysics Data System (ADS)

    Luches, Armando; Leggieri, Gilberto; D'Anna, Emilia

    1989-05-01

    The most relevant results obtained in the field of the synthesis of metal suicides with pulsed lasers in the nanosecond regime are reviewed. Particular emphasis is given to the results obtained in our laboratories. Formation of stable and metastable compounds, their structure and the surface morphology of the irradiated materials are discussed. The reaction kinetics is investigated through a comparison of the experimental results with the temperatures of the irradiated samples, calculated by solving the heat diffusion equation.

  18. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    SciTech Connect

    Kishida, Yoshiaki; Katayama, Masahiro; Horisawa, Hideyuki

    2010-10-13

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 {mu}Nsec, 6,200 sec and 22%, respectively.

  19. Evaluation of retinal exposures from repetitively pulsed and scanning lasers.

    PubMed

    Ham, W T; Mueller, H A; Wolbarsht, M L; Sliney, D H

    1988-03-01

    Threshold damage in the macaque retina is shown to be equivalent for the argon-krypton (Ar-Kr) 647 nm and the helium-neon (He-Ne) 632.8-nm lines for exposures to continuous wave (CW) radiation from 1 to 1,000 s. This equivalence allows interpolation from experiments with 647-nm, exposures at power levels that are unavailable with the He-Ne laser. To simulate He-Ne laser scanner exposures, 40-microseconds pulses of 647-nm light transmitted through a revolving disk with holes in the periphery were used to expose the retinas of monkeys under deep anesthesia at pulse repetition frequencies (PRFs) of 100, 200, 400, and 1,600 Hz for exposure durations of 1, 10, 100, and 1,000 s. The thresholds between laser exposure at 488 nm (Ar-Kr) and between laser exposure at 647 nm (Kr) are compared to assess thermal versus photochemical effects on the retina. The threshold for 488-nm pulses was consistently lower than that for 647-nm pulses at all PRFs and exposure times. The difference in thresholds increased with exposure time and PRF. The sharp decreases in 488-nm thresholds at 100-s exposure times for each PRF can be interpreted as a basically photochemical effect. The radiant exposure required for damage at 647 nm was several orders of magnitude above the radiant exposure from typical He-Ne scanner applications. From the similarity of the macaque retina to the human retina, it is concluded that no realistic ocular hazard exists from exposure to scanning laser systems of 1 mW or less, operating at higher than 100 Hz.

  20. Large capacitor performs as a distributed parameter pulse line

    NASA Technical Reports Server (NTRS)

    Gooding, T. J.

    1966-01-01

    Capacitor of extended foil construction performs as a distributed parameter pulse line in which current, amplitude, and period are readily controlled. The capacitor is used as the energy storage element in a pulsed plasma accelerator.

  1. Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Pershin, S. M.; Bunkin, A. F.; Samokhvalov, A. A.; Veiko, V. P.; Kudryashov, S. I.; Ionin, A. A.

    2016-10-01

    Single vs multimode laser beams were compared for double pulse laser ablation, plasma properties and laser induced breakdown spectroscopy (LIBS) analytical capabilities. Laser beams with Gaussian and multimode profiles were generated within the same Nd:YAG laser in single and double pulse regimes. Gaussian beam produced a small and deep crater while multimode beam formed a wide shallow crater. Greater double pulse enhancement of ablated material and plasma volume were observed for Gaussian beam sampling. The higher intensity for atomic/ionic lines in the plasma spectra was observed for multimode beam sampling due to greater laser pulse energy and larger ablated mass. Interestingly, spectra line intensity enhancement for double pulse ablation was 2-3 times greater for Gaussian than for multimode beam ablation. Background emission decreased for plasma induced by multimode beam when using double pulse mode while for Gaussian beam an opposite dependence was observed. Surprisingly, higher peak fluence at sample surface for Gaussian beam didn't provide higher plasma temperature and electron density for double pulse ablation. Analytical capabilities of LIBS method were compared for double pulse plasma induced by Gaussian and multimode beam in terms of precision, sensitivity and linearity of calibration curves. It was observed that Gaussian beam sampling leads to improvement of analysis precision while sensitivity was element dependent.

  2. Picosecond pulse measurements using the active laser medium

    NASA Technical Reports Server (NTRS)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  3. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  4. Shock profile induced by short laser pulses

    NASA Astrophysics Data System (ADS)

    Couturier, S.; de Rességuier, T.; Hallouin, M.; Romain, J. P.; Bauer, F.

    1996-06-01

    Standard 25-μm-thick polyvinilydene fluoride (PVDF) piezoelectric gauges and new 450-μm-thick P(VDF 70%, TrFE 30%) piezoelectric copolymer have been used to record shock profiles at the back face of metallic targets irradiated by laser pulses of 2.5 and 0.6 ns duration at a 1.06 μm wavelength. The records are fully explained with simplified space-time diagram analysis. The pressure profile applied at the front face of the target has been determined from these records combined with numerical simulations of wave propagation through the target. A numerical code describing the interaction of laser with matter (FILM) has also been used for computing the applied pressure. Both methods lead to very close results. The peak pressure dependence on incident laser intensity is determined up to 30 GPa at 1012 W/cm2.

  5. Pulsed Nd-YAG laser in endodontics

    NASA Astrophysics Data System (ADS)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  6. Ultrafast laser pulses for medical applications

    NASA Astrophysics Data System (ADS)

    Lubatschowski, Holger; Heisterkamp, Alexander; Will, Fabian; Serbin, Jesper; Bauer, Thorsten; Fallnich, Carsten; Welling, Herbert; Mueller, Wiebke; Schwab, Burkard; Singh, Ajoy I.; Ertmer, Wolfgang

    2002-04-01

    Ultrafast lasers have become a promising tool for micromachining and extremely precise ablation of all kinds of materials. Due to the low energy threshold, thermal and mechanical side effects are limited to the bu micrometers range. The neglection of side effects enables the use of ultrashort laser pulses in a broad field of medical applications. Moreover, the interaction process based on nonlinear absorption offers the opportunity to process transparent tissue three dimensionally inside the bulk. We demonstrate the feasibility of surgical procedures in different fields of medical interest: in ophthalmology intrastromal cutting and preparing of cornael flaps for refractive surgery in living animals is presented. Besides, the very low mechanical side effects enables the use of fs- laser in otoralyngology to treat ocecular bones. Moreover, the precise cutting quality can be used in fields of cardiovascular surgery for the treatment of arteriosklerosis as well as in dentistry to remove caries from dental hard tissue.

  7. Enhanced Photoacoustic Beam Profiling of Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    González, M.; Santiago, G.; Paz, M.; Slezak, V.; Peuriot, A.

    2013-09-01

    An improved version of a photoacoustic beam profiler of pulsed lasers is presented. The new model resorts to high-bandwidth condenser microphones to register higher-order, excited acoustic modes, thus enabling more accurate profiling. In addition, Xe was used as a buffer gas since its high atomic weight further reduces the eigenfrequencies. Furthermore, a new gas-handling system makes up for some deficiencies found in the first model. The system was calibrated using the Airy pattern generated with a pinhole illuminated by a frequency-doubled Nd:YAG laser that excited traces. Once calibrated, the beam profile of a TEA laser was obtained, using ethylene as the absorbing species. This profiler returns more accurate profiles than thermal paper.

  8. The Chirped-Pulse Inverse Free-Electron Laser: a High-Gradient Vacuum Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Hartemann, Fred; Baldis, Hector; Gibson, David; Kerman, Arthur; Landahl Luhmann, Eric, Jr.; Troha, Anthony

    2000-10-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. This work was performed under the auspices of DoE by LLNL under Contract No. W-7405-ENG-48, and was partially supported by NIH Contract No. N01-CO-97113 and AFOSR MURI Grant No. F49620-99-1-0297.

  9. Corneal and skin laser exposures from 1540-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  10. Utilization of pulsed diode lasers to lidar remote sensing

    NASA Astrophysics Data System (ADS)

    Penchev, S.; Pencheva, Vasilka H.; Naboko, Vassily N.; Naboko, Sergei V.; Simeonov, P.

    2001-04-01

    Investigation of new aspects of application of pulsed quantum well (In)GaAs/AlGaAs diode lasers to atmospheric spectroscopy and lidar remote sensing is reported. The presented method utilizing these powerful multichipstack diode lasers of broad radiation line is approved theoretically and experimentally for monitoring of atmospheric humidity. Molecular absorption of gas species in the investigated spectral band 0.85 - 0.9 micrometer implemented by laser technology initiates further development of prospective DIAL analysis. A mobile lidar system is realized, employing optimal photodetection based on computer-operated boxcar and adaptive digital filter processing of the lidar signal in the analytical system. Aerosol profile exhibiting cloud strata in open atmosphere by testing of the sensor is demonstrative of the efficiency and high sensitivity of long-range sounding.

  11. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  12. Ultrashort-pulse laser generated nanoparticles of energetic materials

    SciTech Connect

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  13. X rays generated in the interaction of subpicosecond laser pulses with solid targets

    SciTech Connect

    Kyrala, G.A.; Wahlin, E.K.; Fulton, R.D.; Schappert, G.T.; Jones, L.A.; Taylor, A.J.; Casperson, D.E.; Cobble, J.A.

    1991-01-01

    We are investigating the generation of short pulse short wavelength x-rays for pumping inner-shell x-ray lasers by photo-ionization. In contrast with previous proposals, we are looking at the use of a single line as an efficient means of pumping these lasers. As a first step we are optimizing the flashlamp x-ray conversion efficiency and characterizing the x-ray pulse length. 18 refs., 5 figs., 2 tabs.

  14. 10-J long-pulse electric-discharge XeCl laser

    NASA Astrophysics Data System (ADS)

    Losev, Valery F.; Konovalov, Ivan; Liu, Jingru; Panchenko, Yury

    2003-11-01

    An X-ray preionized XeCl laser with a large aperture (9x7 cm) is described. Laser operates at Ne-Xe-HCl mixture with pressure up to 4 atm. Paper-oil pulse forming lines and rail-gap switch for discharge pump was used. 10 J output with optical pulse duration up to 300 ns (FWHM) have been extracted from active volume 5.4 l with an electric efficiency 1.2%.

  15. Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid

    SciTech Connect

    Rai, Virendra N.; Yueh, F.Y.; Singh, Jagdish P

    2008-11-01

    A study of aqueous solutions of chromium using single and double pulse laser-induced breakdown spectroscopy (LIBS) is presented. Three atomic emission lines show enhancement in emission under dual pulse LIBS excitation. The temporal evolution of line emission indicates that a shock wave front produced by the first laser pulse plays an important role in determining the decay rate of intensity by excitation transfer in single pulse LIBS and by plasma confinement in double pulse LIBS. The ratio of emission in dual pulse LIBS to single pulse LIBS with time shows a linear increase followed by the onset of saturation. A theoretical calculation of the enhancement is found to be in qualitative agreement with the experimental results, suggesting that material ablation in dual pulse LIBS should be {>=}3.5 times that of single pulse LIBS. There is indication that the increase in ablation and subsequent enhancement in emission may be due to the rarefied gas density inside the region enclosed by the shock wave produced by the first laser pulse. The limit of detection of Cr in aqueous solution has been improved by an order of magnitude with double pulse LIBS.

  16. Pulse shape control in a dual cavity laser: numerical modeling

    NASA Astrophysics Data System (ADS)

    Yashkir, Yuri

    2006-04-01

    We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.

  17. Tailored terahertz pulses from a laser-modulated electron beam.

    PubMed

    Byrd, J M; Hao, Z; Martin, M C; Robin, D S; Sannibale, F; Schoenlein, R W; Zholents, A A; Zolotorev, M S

    2006-04-28

    We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.

  18. Tailored Terahertz Pulses from a Laser-Modulated Electron Beam

    SciTech Connect

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Zholents, A.A.; Zolotorev, M.S.

    2006-04-28

    We present a new method to generate steady and tunable, coherent, broadband terahertz radiation from a relativistic electron beam modulated by a femtosecond laser. We have demonstrated this in the electron storage ring at the Advanced Light Source. Interaction of an electron beam with a femtosecond laser pulse copropagating through a wiggler modulates the electron energies within a short slice of the electron bunch with about the same duration of the laser pulse. The bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories, and the resulting hole emits short pulses of temporally and spatially coherent terahertz pulses synchronized to the laser. We present measurements of the intensity and spectra of these pulses. This technique allows tremendous flexibility in shaping the terahertz pulse by appropriate modulation of the laser pulse.

  19. Pulsed laser fluorometry for environmental monitoring

    SciTech Connect

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    1990-01-01

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration. 16 refs., 14 figs., 3 tabs.

  20. Landau damping of a driven plasma wave from laser pulses

    SciTech Connect

    Bu Zhigang; Ji Peiyong

    2012-01-15

    The interaction between a laser pulse and a driven plasma wave with a phase velocity approaching the speed of light is studied, and our investigation is focused on the Gaussian laser pulse. It is demonstrated that when the resonance condition between the plasma wave and the laser pulse is satisfied, the Landau damping phenomenon of the plasma wave originated from the laser pulse will emerge. The dispersion relations for the plasma waves in resonance and non-resonance regions are obtained. It is proved that the Landau damping rate for a driven plasma wave is {gamma}>0 in the resonance region, so the laser pulse can produce an inverse damping effect, namely Landau growth effect, which leads an instability for the plasma wave. The Landau growth means that the energy is transmitted from the laser pulse to the plasma wave, which could be an effective process for enhancing the plasma wave.

  1. Nanosecond double-pulse fiber laser with arbitrary sub-pulse combined based on a spectral beam combining system

    NASA Astrophysics Data System (ADS)

    Hu, Man; Zheng, Ye; Yang, Yifeng; Chen, Xiaolong; Liu, Kai; Zhao, Chun; Wang, Jianhua; Qi, Yunfeng; He, Bing; Zhou, Jun

    2017-05-01

    In order to improve the processing efficiency and quality of nanosecond pulse laser drilling, a new double-pulse technique is put forward. Two single pulse lasers with different pulse duration or different repetition rate are spectrally combined by a home-made polarization-independent multilayer dielectric reflective diffraction grating. The pulse energy of single lasers and the inter-pulse separation can both be set at one's option. Then, double-pulse lasers represent two closely conjoint pulses with tunable pulse duration and tunable repetition rate and tunable pulse energy and tunable inter-pulse separation are obtained.

  2. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  3. Transportation of megawatt millijoule laser pulses via optical fibers?

    NASA Astrophysics Data System (ADS)

    Tauer, Johannes; Kofler, Heinrich; Schwarz, Elisabeth; Wintner, Ernst

    2010-04-01

    Laser ignition is considered to be one of the most promising future concepts for internal combustion engines. It combines the legally required reduction of pollutant emissions and higher engine efficiencies. The igniting plasma is generated by a focused pulsed laser beam. Having pulse durations of a few nanoseconds, the pulse energy E p for reliable ignition amounts to the order of 10 mJ. Different methods of laser ignition with an emphasis on fiber-based systems will be discussed and evaluated.

  4. Pulsed holmium laser ablation of cardiac valves

    SciTech Connect

    Lilge, L.; Radtke, W.; Nishioka, N.S. )

    1989-01-01

    Ablation efficiency and residual thermal damage produced by pulsed holmium laser radiation were investigated in vitro for bovine mitral valves and human calcified and noncalcified cardiac valves. Low-OH quartz fibers (200 and 600 microns core diameter) were used in direct contact perpendicular to the specimen under saline or blood. Etch rate was measured with a linear motion transducer. Radiant exposure was varied from 0 to 3 kJ/cm{sup 2}. For 200-microns fibers, the energy of ablation was approximately 5 kJ/cm{sup 3} in noncalcified and 15 kJ/cm{sup 3} in calcified valves. Etch rates were dependent on mechanical tissue properties. Maximum etch rate at 1,000 J/cm{sup 2} was 1-2 mm/pulse at 3 Hz repetition rate. Microscopic examination revealed a zone of thermal damage extending 300 microns lateral into adjacent tissue. Thermal damage was independent of radiant exposure beyond twice threshold.

  5. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  6. Investigation of a Pulsed 1550 nm Fiber Laser System

    DTIC Science & Technology

    2015-12-15

    14. ABSTRACT There is a strong need for a pulsed laser system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber...system at eye safe wavelengths for illuminator applications . High power pulsed 1550 nm fiber lasers systems are able to generate, shaped, pulses at...for illuminator applications . Considerations which impact the wavelength to be used are the transmissivity of the atmosphere and the responsivity of

  7. Pulse compression below 40fs at 1μm: The first step towards a short-pulse, high-energy beam line at LULI

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Zou, Jiping; Martin, Luc; Simon, Francois; Lopez-Martens, Rodrigo; Audebert, Patrick

    2010-08-01

    We present the upgrading project ELFIE (Equipement Laser de Forte Intensité et Energie) based on the "100TW" mixed Nd:glass CPA laser system at 1μm at LULI, which includes an energy enhancement and the development of a short-pulse, high-energy, good temporal contrast beam line (50fs/5J). We report the first experimental step towards the short-pulse, high-energy beam line: spectral broadening above 60nm from 7nm and temporal pulse compression below 40fs from 300fs at 1μm through a Krypton-filled hollow fiber compressor.

  8. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  9. Pulsed laser deposition—invention or discovery?

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    2014-01-01

    The evolution of pulsed laser deposition had been an exciting process of invention and discovery, with the development of high Tc superconducting films as the main driver. It has become the method of choice in research and development for rapid prototyping of multicomponent inorganic materials for preparing a variety of thin films, heterostructures and atomically sharp interfaces, and has become an indispensable tool for advancing oxide electronics. In this paper I will give a personal account of the invention and development of this process at Bellcore/Rutgers, the opportunity, challenges and mostly the extraordinary excitement that was generated, typical of any disruptive technology.

  10. Metallic Clusters in Strong Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Suraud, Eric; Reinhard, P.-G.; Ullrich, Carsten A.

    1998-03-01

    We present a theoretical study of the electron response of a Na_9^+ cluster excited by strong femtosecond laser pulses.(C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B 30), 5043 (1997) Our approach is based on time-dependent density functional theory within the adiabatic local density approximation, including a recently developed self-interaction correction scheme. We investigate numerically the full electronic dipolar response and multiphoton ionization of the cluster and discuss the ionization mechanism. A strong correlation between induced electronic dipole oscillations and electron emission is observed, leading to a pronounced resonant enhancement of ionization at the frequency of the Mie plasmon.

  11. Improved pulse laser ranging algorithm based on high speed sampling

    NASA Astrophysics Data System (ADS)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  12. High power repetitive Blumlein pulse generators to drive lasers

    NASA Astrophysics Data System (ADS)

    Bhawalkar, J. D.; Davanloo, F.; Collins, C. B.; Agee, F. J.; Kingsley, L.

    The stacked Blumlein pulse power sources developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single thyratron at the other end. In this way, relatively low charging voltages are multiplied to give the desired discharge voltage across an arbitrary load without the need for complex Marx bank circuitry. In this report, we review the characteristics of this novel pulser. Performances with different line configurations and extended Blumlein lengths are given. With only slight modifications, the pulsers described with different line configurations and extended Blumlein lengths are given. With only slight modifications, the pulsers described here can be used to produce intense transverse discharges across a wide range of loads including lasers.

  13. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  14. In situ diagnosis of pulsed UV laser surface ablation of tungsten carbide hardmetal by using laser-induced optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Lou, Qihong; Wei, Yunrong; Huang, Feng; Dong, Jingxing; Liu, Jingru

    2001-12-01

    Surface ablation of cobalt cemented tungsten carbide hardmetal with pulsed UV laser has been in situ diagnosed by using the technique of laser-induced optical emission spectroscopy. The dependence of emission intensity of cobalt lines on number of laser shots was investigated at laser fluence of 2.5 J/cm 2. As a comparison, the reliance of emission intensity of cobalt lines as a function of laser pulse number by using pure cobalt as ablation sample was also studied at the same laser condition. It was found that for surface ablation of tungsten carbide hardmetal at laser fluence of 2.5 J/cm 2, the intensities of cobalt lines fell off dramatically in the first 300 consecutive laser shots and then slowed down to a low stable level with even more shots. For surface ablation of pure cobalt at the same laser condition, the intensities of cobalt lines remained constant more or less even after 500 laser shots and then reduced very slowly with even more shots. It was concluded that selective evaporation of cobalt at this laser fluence should be responsible for the dramatic fall-off of cobalt lines with laser shots accumulation for surface ablation of tungsten carbide hardmetal. In contrast, for surface ablation of pure cobalt, the slow reduction of cobalt lines with pulse number accumulation should be due to the formation of laser-induced crater effect.

  15. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  16. Pulsed HF laser ablation of dentin

    NASA Astrophysics Data System (ADS)

    Papagiakoumou, Eirini I.; Papadopoulos, Dimitris N.; Makropoulou, Mersini I.; Khabbaz, Maruan G.; Serafetinides, Alexander A.

    2005-03-01

    The interaction of a TEA (Transversally Excited Atmospheric pressure) corona preionized oscillator double amplifier HF (hydrogen fluoride) laser beam with dentin tissue is reported. Pulses of 39 ns in the wavelength range of 2.65-3.35 μm and output energies in the range of 10-45 mJ, in a predominantly TEM00 beam were used to interact with dentin tissue. Ablation experiments were conducted with the laser beam directly focused on the tissue. Several samples of freshly extracted human teeth were used, cut longitudinally in facets of about 1mm thick and stored in phosphate buffered saline after being cleaned from the soft tissue remains. The experimental data (ablation thresholds, ablation rates) are discussed with respect to the ablation mechanism(s). Adequate tissue removal was observed and the ablation behavior was, in the greates part of the available fluences, almost linear. From the microscopic examination of teh samples, in a scanning electron microscope (SEM), the irradiated surfaces displayed oval craters (reflecting the laser beam shape) with absence of any melting or carbonization zone. It is suggested that the specific laser removes hard tissue by a combined photothermal and plasma mediated ablation mechanism, leaving a surface free from thermal damage and with a well-shaped crater.

  17. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared (NIR) ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of-cavity pulse- stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two-photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two- photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond layers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  18. Laser-Induced Breakdown Spectroscopy and Plasma Characterization Generated by Long-Pulse Laser on Soil Samples

    NASA Astrophysics Data System (ADS)

    Xu, S.; Duan, W.; Ning, R.; Li, Q.; Jiang, R.

    2017-03-01

    The plasma is generated by focusing a long-pulse (80 μs) Nd:YAG laser on chromium-doped soil samples. The calibration curves are drawn using the intensity ratio of the chromium spectral line at 425.435 nm with the iron spectral line (425.079 nm) as reference. The regression coefficient of the calibration curve is 0.993, and the limit of detection is 16 mg/kg, which is 19% less than that for the case of a Q-switched laser In the method of long-pulse laser-induced breakdown spectroscopy, the laser-induced plasma had a temperature of 15795.907 K and an electron density of 2.988 × 1017 cm-3, which exceeded the corresponding plasma parameters of the Q-switched laser-induced breakdown spectroscopy by 75% and 24% respectively.

  19. 25 years of pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a

  20. PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS

    SciTech Connect

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn

    2006-08-27

    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  1. Reshaping of intense laser pulse with a capillary

    SciTech Connect

    Cao Lihua; Yu Wei; Yu, M. Y.; Wang Xin; Gu Yuqiu; He, X. T.

    2009-09-15

    The reshaping of intense laser pulse by vacuum capillary is studied by particle-in-cell simulation. It is shown that as an intense laser pulse propagates from free space into a capillary, its profile is reshaped due to laser-plasma interaction near the entrance of capillary. As a result, the free-space mode is self-consistently converted into a capillary mode. Only the relatively low-intensity periphery of the reshaped pulse interacts with the capillary-wall plasma, so that the high-intensity center of the pulse can propagate in the narrow vacuum channel over a distance much larger than the Rayleigh length. The mechanism is then applied to reshape a radially imperfect laser pulse having two wings around the center spot. Most of the output light energy is concentrated in the center spot, and the wings are almost completely removed. That is, the quality of the laser pulse can be greatly improved by a capillary.

  2. Stabilization of CO2 laser short-pulse oscillation by tickle pulse for dot processing

    NASA Astrophysics Data System (ADS)

    Tokita, Daisaku; Sakurada, Noriyo; Ishii, Yoshio; Kubota, Yuzuru; Watanabe, Kazuhiro

    2005-03-01

    Image drawing using a laser system has been attempted by Segmented Pixel Drawing (SPD) method and Laser Plastic Coloring (LPC) method in our laboratory. Laser dot processing by a short pulse oscillation of a CO2 laser is used for these laser methods. Stable short pulse oscillation is required for an accurate image drawing. That oscillation has a tendency to be unstable because of its long oscillation interval. A tickle pulse is known as one of a technique which is conventionally used for a continuous pulse oscillation of a CO2 laser in order to make rising rate of laser oscillation quick. In this study, this tickle pulse has been improved and applied to the short pulse oscillation in order to stable short pulse oscillation and high accurate laser dot processing. In the result, processed dots are appeared bigger with less variation in their sizes with the improved tickle pulse case compared with the conventional case. Short pulse oscillation is stabilized by these improved tickle pulse. Reproducibility and accuracy ofthe SPD method and LPC method might be realized by this stabilized dot processing.

  3. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    SciTech Connect

    Trines, R. M. G. M.; Bingham, R.; Norreys, P. A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2011-09-02

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  4. Pulsed laser deposition of pepsin thin films

    NASA Astrophysics Data System (ADS)

    Kecskeméti, G.; Kresz, N.; Smausz, T.; Hopp, B.; Nógrádi, A.

    2005-07-01

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ( λ = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm 2. The pressure in the PLD chamber was 2.7 × 10 -3 Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm 2. The protein digesting capacity of the transferred pepsin was tested by adapting a modified "protein cube" method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  5. Nanosecond pulsed laser texturing of optical diffusers

    NASA Astrophysics Data System (ADS)

    Alqurashi, Tawfiq; Sabouri, Aydin; Yetisen, Ali K.; Butt, Haider

    2017-02-01

    High-quality optical glass diffusers have applications in aerospace, displays, imaging systems, medical devices, and optical sensors. The development of rapid and accurate fabrication techniques is highly desirable for their production. Here, a micropatterning method for the fast fabrication of optical diffusers by means of nanosecond pulsed laser ablation is demonstrated (λ=1064 nm, power=7.02, 9.36 and 11.7 W and scanning speed=200 and 800 mm s-1). The experiments were carried out by point-to-point texturing of a glass surface in spiral shape. The laser machining parameters, the number of pulses and their power had significant effect on surface features. The optical characteristics of the diffusers were characterized at different scattering angles. The features of the microscale structures influenced average roughness from 0.8 μm to 1.97 μm. The glass diffusers scattered light at angles up to 20° and their transmission efficiency were measured up to ˜97% across the visible spectrum. The produced optical devices diffuse light less but do so with less scattering and energy losses as compared to opal diffusing glass. The presented fabrication method can be applied to any other transparent material to create optical diffusers. It is anticipated that the optical diffusers presented in this work will have applications in the production of LED spotlights and imaging devices.

  6. Peculiar critical current density and irreversibility line in double perovskite Ba2SmNbO6-doped SmBa2Cu3O y film prepared by Nd:YAG pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ichino, Yusuke; Kusafuka, Yuma; Ichinose, Ataru; Yoshida, Yutaka

    2017-07-01

    We prepared SmBa2Cu3O y (SmBCO) films including Ba2SmNbO6 (BSNO) by Nd:YAG pulsed laser deposition (PLD) on LaAlO3 single-crystalline substrates. The BSNO formed many nanorods with a large diameter of 35 nm, which is the largest nanorod diameter in REBa2Cu3O y films, and their in-plane distribution was random. The matching field estimated from the number density of 202 µm-2 was 0.42 T. We measured J c-B curves at various measurement temperatures and these J c-B curves had a J c peak at approximately 0.37 T. Interestingly, the irreversibility line showed a “reverse S” shape and an anomalous curve was observed at approximately 0.37 T near T c. To the best of our knowledge, this is the first time that these distinctive features were found in this sample. We concluded that these peculiar behaviors originated from the large-diameter, straight, and threading BSNO nanorods.

  7. Relation Between Discharge Length and Laser Pulse Characteristics in Longitudinally Excited CO2 Laser

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Dobashi, Kazuma; Akitsu, Tetsuya; Jitsuno, Takahisa

    2013-04-01

    A longitudinally excited CO2 laser pumped by a fast discharge emits a short laser pulse, similarly to TEA and Q-switched CO2 lasers. We investigated the relation between the discharge length and the laser pulse characteristics to develop a longitudinally excited CO2 laser producing a high spike laser pulse. We examined discharge lengths of 30, 45, and 60 cm, using the same mirrors and the same excitation circuit with the same input energy. A longer discharge length increased the discharge volume and improved the laser output energy. However, the longer discharge length caused a long discharge formation time (a slow fall time of the discharge voltage) due to the higher discharge impedance, which resulted in a long laser pulse tail. Therefore, the longitudinally excited CO2 laser had optimum conditions for obtaining a high spike laser pulse effectively.

  8. Stimulated brillouin backscatter of a short-pulse laser

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-11-03

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x{prime} = x {minus} V{sub g}t, t{prime} = t, where V{sub g} is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency).

  9. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  10. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  11. Generation of ultrashort electron bunches by colliding laser pulses.

    PubMed

    Schroeder, C B; Lee, P B; Wurtele, J S; Esarey, E; Leemans, W P

    1999-05-01

    A proposed laser-plasma-based relativistic electron source [E. Esarey et al., Phys. Rev. Lett. 79, 2682 (1997)] using laser-triggered injection of electrons is investigated. The source generates ultrashort electron bunches by dephasing and trapping background plasma electrons undergoing fluid oscillations in an excited plasma wake. The plasma electrons are dephased by colliding two counterpropagating laser pulses which generate a slow phase velocity beat wave. Laser pulse intensity thresholds for trapping and the optimal wake phase for injection are calculated. Numerical simulations of test particles, with prescribed plasma and laser fields, are used to verify analytic predictions and to study the longitudinal and transverse dynamics of the trapped plasma electrons. Simulations indicate that the colliding laser pulse injection scheme has the capability to produce relativistic femtosecond electron bunches with fractional energy spread of order a few percent and normalized transverse emittance less than 1 mm mrad using 1 TW injection laser pulses.

  12. Glass drilling by longitudinally excited CO2 laser with short laser pulse

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Yamamoto, Takuya; Akitsu, Tetsuya; Jitsuno, Takahisa

    2015-03-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse and a pulse tail. The energy of the pulse tail was controlled by adjusting medium gas. Using three types of CO2 laser pulse with the same spike-pulse energy and the different pulse-tail energy, the characteristics of the hole drilling of synthetic silica glass was investigated. Higher pulse-tail energy gave deeper ablation depth. In the short laser pulse with the spike-pulse energy of 1.2 mJ, the spike pulse width of 162 ns, the pulse-tail energy of 24.6 mJ, and the pulse-tail length of 29.6 μs, 1000 shots irradiation produced the ablation depth of 988 μm. In the hole drilling of synthetic silica glass by the CO2 laser, a crack-free process was realized.

  13. System for rapidly tuning a low pressure pulsed laser

    SciTech Connect

    Fox, J.A.; Ahl, J.L.

    1989-09-19

    This patent describes a system for rapidly tuning a low pressure pulsed laser over multiple wavelengths. The system comprising: a low pressure one electrode pair discharge region in a laser cavity having a laser trigger means connected to the electrode pair for initiating low pressure discharge within the discharge region; a quarterwave plate and a Q-switch in optical alignment with the one electrode pair discharge region along the laser optical axis; a fixed laser output coupler at the discharge region end of the laser cavity; and a rotatable grating means for wavelength switching the at least two high gain Q-switched pulses.

  14. Pulse front adaptive optics: a new method for control of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2015-07-27

    Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

  15. Solitary Nanostructures Produced by Ultrashort Laser Pulse.

    PubMed

    Inogamov, Nail A; Zhakhovsky, Vasily V; Khokhlov, Viktor A; Petrov, Yury V; Migdal, Kirill P

    2016-12-01

    Laser-produced surface nanostructures show considerable promise for many applications while fundamental questions concerning the corresponding mechanisms of structuring are still debated. Here, we present a simple physical model describing those mechanisms happened in a thin metal film on dielectric substrate irradiated by a tightly focused ultrashort laser pulse. The main ingredients included into the model are (i) the film-substrate hydrodynamic interaction, melting and separation of the film from substrate with velocity increasing with increase of absorbed fluence; (ii) the capillary forces decelerating expansion of the expanding flying film; and (iii) rapid freezing into a solid state if the rate of solidification is comparable or larger than hydrodynamic velocities. The developed model and performed simulations explain appearance of microbump inside the focal spot on the film surface. The model follows experimental findings about gradual transformation of the bump from small parabolic to a conical shape and to the bump with a jet on its tip with increasing fluence. Disruption of the bump as a result of thinning down the liquid film to a few interatomic distances or due to mechanical break-off of solid film is described together with the jetting and formation of one or many droplets. Developed theory opens door for optimizing laser parameters for intended nanostructuring in applications.

  16. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  17. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  18. High speed, high strength microwelding of Si/glass using ps-laser pulses.

    PubMed

    Miyamoto, Isamu; Okamoto, Yasuhiro; Hansen, Assi; Vihinen, Joma; Amberla, Tiina; Kangastupa, Jarno

    2015-02-09

    A novel microwelding procedure to join Si-to-glass using ps-laser pulses with high repetition rates is presented. The procedure provides weld joint with mechanical strength as high as 85 MPa and 45 MPa in sample pairs of Si/aluminosilicate (Si/SW-Y) and Si/borosilicate (Si/Borofloat 33), respectively, which are higher than anodic bonding, at high spatial resolution (< 20 µm) and very high throughput without pre- and post-heating. Laser-matter interaction analysis indicates that excellent weld joint of Si/glass is obtained by avoiding violent evaporation of Si substrate using ps-laser pulses. Laser welded Si/glass samples can be singulated along the weld lines by standard blade dicer without defects, demonstrating welding by ps-laser pulses is applicable to wafer-level packaging.

  19. Chirped-Pulse Inverse Free-Electron Laser: A High Gradient Vacuum Accelerator

    NASA Astrophysics Data System (ADS)

    Hartemann, F.; Landahl, E.; Song, L.; Luhmann, N. C., Jr.; Baldis, H. A.

    1998-11-01

    The inverse free-electron laser (IFEL) interaction has been demonstrated as a viable vacuum laser acceleration process. It is shown here that by using an ultrahigh intensity chirped laser pulse, the dephasing length can be increased considerably, thus yielding high gradient IFEL acceleration. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with all-reflective, negative dispersion focusing optics to produce a line focus. The combination of these two novel ideas results in a compact, efficient vacuum laser accelerator.

  20. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  1. Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer.

    PubMed

    Wada, Kenji; Takamatsu, Shuji; Watanebe, Hideyuki; Matsuyama, Tetsuya; Horinaka, Hiromichi

    2008-11-24

    We propose a pulse-tail elimination and pulse shortening method using an optical interferometer, which is effective for picosecond chirped pulses from gain-switched multimode laser diodes. In a numerical simulation, when the delay distance between a chirped pulse and its replica in an optical interferometer matches two times the round-trip optical length of the laser cavity, the pulse-front and -rear tail parts are effectively eliminated from the input chirped pulse after passing through the optical interferometer. Using this method with a fiber Sagnac interferometer, a 33 ps pulse with a long-tail emitted from a gain-switched 1540 nm multimode laser diode was linearly transformed into a 20 ps pulse with a substantially reduced tail.

  2. Clutter discrimination algorithm simulation in pulse laser radar imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Su, Xuan; Zhu, Fule

    2015-10-01

    Pulse laser radar imaging performance is greatly influenced by different kinds of clutter. Various algorithms are developed to mitigate clutter. However, estimating performance of a new algorithm is difficult. Here, a simulation model for estimating clutter discrimination algorithms is presented. This model consists of laser pulse emission, clutter jamming, laser pulse reception and target image producing. Additionally, a hardware platform is set up gathering clutter data reflected by ground and trees. The data logging is as clutter jamming input in the simulation model. The hardware platform includes a laser diode, a laser detector and a high sample rate data logging circuit. The laser diode transmits short laser pulses (40ns FWHM) at 12.5 kilohertz pulse rate and at 905nm wavelength. An analog-to-digital converter chip integrated in the sample circuit works at 250 mega samples per second. The simulation model and the hardware platform contribute to a clutter discrimination algorithm simulation system. Using this system, after analyzing clutter data logging, a new compound pulse detection algorithm is developed. This new algorithm combines matched filter algorithm and constant fraction discrimination (CFD) algorithm. Firstly, laser echo pulse signal is processed by matched filter algorithm. After the first step, CFD algorithm comes next. Finally, clutter jamming from ground and trees is discriminated and target image is produced. Laser radar images are simulated using CFD algorithm, matched filter algorithm and the new algorithm respectively. Simulation result demonstrates that the new algorithm achieves the best target imaging effect of mitigating clutter reflected by ground and trees.

  3. Spectral compression of single-photon-level laser pulse

    PubMed Central

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  4. Spectral compression of single-photon-level laser pulse

    NASA Astrophysics Data System (ADS)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-02-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window.

  5. Evolution of chirped laser pulses in a magnetized plasma channel

    SciTech Connect

    Jha, Pallavi; Hemlata,; Mishra, Rohit Kumar

    2014-12-15

    The propagation of intense, short, sinusoidal laser pulses in a magnetized plasma channel has been studied. The wave equation governing the evolution of the radiation field is set up and a variational technique is used to obtain the equations describing the evolution of the laser spot size, pulse length and chirp parameter. Numerical methods are used to analyze the simultaneous evolution of these parameters. The effect of the external magnetic field on initially chirped as well as unchirped laser pulses on the spot size, pulse length and chirping has been analyzed.

  6. Ultrashort-pulse laser system for hard dental tissue procedures

    NASA Astrophysics Data System (ADS)

    Neev, Joseph; Da Silva, Luiz B.; Feit, Michael D.; Perry, Michael D.; Rubenchik, Alexander M.; Stuart, Brent C.

    1996-04-01

    In spite of intensive research, lasers have not replaced conventional tools in many hard tissue applications. Ultrashort pulse lasers offer several advantages in their highly per-pulse-efficient operation, negligible thermal and mechanical damage and low noise operation. Possible development of optimal laser systems to replace the high-speed dental drill is discussed. Applications of ultrashort pulse systems for dental procedures are outlined. Selection criteria and critical parameters are considered, and are compared to the conventional air-turbine drill and to long and short pulsed systems.

  7. Soft X-Ray Emission of Laser-Produced Plasmas: Comparison for 30-ps and 20-ns Laser Pulses.

    PubMed

    van Brug, H; van Dorssen, G E; van der Wiel, M J

    1989-01-01

    Soft x-ray emission spectra (250-875 eV) are presented for plasmas, produced by picosecond and nanosecond frequency-doubled Nd:YAG-glass laser pulses incident on 14 different target materials. The emitted spectra have been corrected for various apparatus functions which enables a direct comparison between plasmas produced by pico- and nanosecond laser pulses. The relative integrated emission intensity as a function of Z number, obtained from the corrected spectra, shows an oscillatory behavior, with distinct maxima for those elements exhibiting a dominant line emission in our photon energy window. We found for our two pulse lengths an approximately equal conversion efficiency from laser light into x-ray photons. General suggestions are given as to what target material should be used for different applications using the laser plasma as x-ray source in the energy range Studied.

  8. Line sensing device for ultrafast laser acoustic inspection using adaptive optics

    DOEpatents

    Hale, Thomas C.; Moore, David S.

    2003-11-04

    Apparatus and method for inspecting thin film specimens along a line. A laser emits pulses of light that are split into first, second, third and fourth portions. A delay is introduced into the first portion of pulses and the first portion of pulses is directed onto a thin film specimen along a line. The third portion of pulses is directed onto the thin film specimen along the line. A delay is introduced into the fourth portion of pulses and the delayed fourth portion of pulses are directed to a photorefractive crystal. Pulses of light reflected from the thin film specimen are directed to the photorefractive crystal. Light from the photorefractive crystal is collected and transmitted to a linear photodiode array allowing inspection of the thin film specimens along a line.

  9. Tailored terahertz pulses from a laser-modulated electronbeam

    SciTech Connect

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Zholents, A.A.; Zolotorev, M.S.

    2006-03-06

    We present a new method to generate steady and tunable,coherent, broadband terahertz radiation from a relativistic electron beammodulated by a femtosecond laser. We have demonstrated this in theelectron storage ring at the Advanced Light Source. Interaction of anelectron beam with a femtosecond laser pulse copropagating through awiggler modulates the electron energies within a short slice of theelectron bunch with about the same duration of the laser pulse. The bunchdevelops a longitudinal density perturbation due to the dispersion ofelectron trajectories, and the resulting hole emits short pulses oftemporally and spatially coherent terahertz pulses synchronized to thelaser. We present measurements of the intensity and spectra of thesepulses. This technique allows tremendous flexibility in shaping theterahertz pulse by appropriate modulation of the laser pulse.

  10. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  11. Mid-ultraviolet pulsed laser micromachining of SiC

    NASA Astrophysics Data System (ADS)

    Qi, Litao; Li, Mingxing; Lin, Haipeng; Hu, Jinping; Tang, Qingju; Liu, Chunsheng

    2014-11-01

    This paper provides an investigation of the ablation behavior of single crystal 4H-SiC and 6H-SiC wafer to improve the manufacturability and high-temperature performance of SiC using laser applications. 266nm pulsed laser micromachining of SiC was investigated. The purpose is to establish suitable laser parametric regime for the fabrication of high accuracy, high spatial resolution and thin diaphragms for high-temperature MEMS pressure sensor applications. Etch rate, ablation threshold and quality of micromachined features were evaluated. The governing ablation mechanisms, such as thermal vaporization, phase explosion, and photomechanical fragmentation, were correlated with the effects of pulse energy. The ablation threshold is obtained with ultraviolet pulsed laser ablation. The results suggested ultraviolet pulsed laser's potential for rapid manufacturing. Excellent quality of machined features with little collateral thermal damage was obtained in the lower pulse energy range. The leading material removal mechanisms under these conditions were discussed.

  12. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  13. Single-grating laser pulse stretcher and compressor.

    PubMed

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  14. Dark pulse generation in fiber lasers incorporating carbon nanotubes.

    PubMed

    Liu, H H; Chow, K K

    2014-12-01

    We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

  15. Method and circuit for shaping laser output pulses

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor)

    1990-01-01

    The invention is a method and circuit for shaping laser pulses 17' in which a laser medium 12' in a laser resonator 10' that includes a Q-switch 14' and polarizer 13' which act in combination to control the loss of the resonator 10' and provide the laser output 17' representative of such loss. An optical diode 22' senses the level of the output pulse 17' and provides an output signal 23' that when amplified is used with a control voltage from a supply 29' provide a control signal 19' which is applied to Q-switch 14' to control the shape of the output pulse 17' by adjusting its length.

  16. The collinear laser beam line at ISAC

    NASA Astrophysics Data System (ADS)

    Levy, C. D. P.; Baartman, R.; Behr, J. A.; Kiefl, R. F.; Pearson, M.; Poutissou, R.; Hatakeyama, A.; Hirayama, Y.

    2004-12-01

    The collinear laser beam line at ISAC is producing a range of highly polarized Li and Na isotopes with high beam transmission efficiency. Using a Ta production target, a 8Li rate of more than 10 8 atoms s -1 with 60% polarization at the user experiment is typical. The beam line is also used for laser induced fluorescence spectroscopy on heavy ions and atoms. A preliminary scheme for polarizing 20F is presented.

  17. Simultaneous phase, amplitude, and polarization control of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Weber, S. M.; Plewicki, M.; Weise, F.

    2012-12-01

    We present a serial pulse shaper design which allows us to shape the phase, amplitude, and polarization of fs laser pulses independently and simultaneously. The capabilities of this setup are demonstrated by implementing a method for generating parametrically tailored laser pulses. This method is applied on the ionization of NaK molecules by feedback loop optimization, employing a temporal sub pulse encoding. Moreover, we introduce and characterize a further development of this common path pulse shaper scheme for full control of all light field parameters.

  18. High energy protons generation by two sequential laser pulses

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Xu, Jiancai; Yi, Longqing; Shi, Yin

    2015-04-15

    The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. In a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.

  19. A compact picosecond pulsed laser source using a fully integrated CMOS driver circuit

    NASA Astrophysics Data System (ADS)

    He, Yuting; Li, Yuhua; Yadid-Pecht, Orly

    2016-03-01

    Picosecond pulsed laser source have applications in areas such as optical communications, biomedical imaging and supercontinuum generation. Direct modulation of a laser diode with ultrashort current pulses offers a compact and efficient approach to generate picosecond laser pulses. A fully integrated complementary metaloxide- semiconductor (CMOS) driver circuit is designed and applied to operate a 4 GHz distributed feedback laser (DFB). The CMOS driver circuit combines sub-circuits including a voltage-controlled ring oscillator, a voltagecontrolled delay line, an exclusive-or (XOR) circuit and a current source circuit. Ultrashort current pulses are generated by the XOR circuit when the delayed square wave is XOR'ed with the original square wave from the on-chip oscillator. Circuit post-layout simulation shows that output current pulses injected into an equivalent circuit load of the laser have a pulse full width at half maximum (FWHM) of 200 ps, a peak current of 80 mA and a repetition rate of 5.8 MHz. This driver circuit is designed in a 0.13 μm CMOS process and taped out on a 0.3 mm2 chip area. This CMOS chip is packaged and interconnected with the laser diode on a printed circuit board (PCB). The optical output waveform from the laser source is captured by a 5 GHz bandwidth photodiode and an 8 GHz bandwidth oscilloscope. Measured results show that the proposed laser source can output light pulses with a pulse FWHM of 151 ps, a peak power of 6.4 mW (55 mA laser peak forward current) and a repetition rate of 5.3 MHz.

  20. Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films

    NASA Astrophysics Data System (ADS)

    Mercado, A. L.; Allmond, C. E.; Hoekstra, J. G.; Fitz-Gerald, J. M.

    2005-08-01

    Thin films of poly (lactide-co-glycolide) (PLGA), a biodegradable polymer, were deposited on Si wafers by both conventional pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) using chloroform (CHCl3) as a matrix solvent. This research represents an initial study to investigate the deposition characteristics of each technique at comparable conditions to gain insight into the transport and degradation mechanisms of each approach. The deposited materials were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and gel permeation chromatography (GPC) with refractive index (RI) detection. While FTIR and NMR results do not show a measurable departure from the native, in sharp contrast GPC results show a significant change (up to 95%) in molecular weight for both deposition methods. This result makes it clear that it is possible to overlook substantial degradation when incomplete chemical analysis is conducted.

  1. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    SciTech Connect

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C.; Buffechoux, S.; Albertazzi, B.; Capelli, D.; Antici, P.; Levy, A.; Fuchs, J.; Lecherbourg, L.; Marjoribanks, R. S.

    2013-01-15

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  2. Studies of Photosynthesis Using a Pulsed Laser

    PubMed Central

    De Vault, Don; Chance, Britton

    1966-01-01

    The rate of oxidation of cytochrome following absorption of a short pulse of light from a ruby laser in the photosynthetic bacterium Chromatium has been measured spectrophotometrically. The half-time is about 2 μsec at room temperature increasing to 2.3 msec at about 100°K and constant at the latter value to 35°K or below. The temperature dependence above 120°K corresponds to an activation energy of 3.3 kcal/mole; that below 100°K to less than 80 cal/mol: essentially a temperature-independent electron transport reaction. Since the slowness below 100°K indicates the presence of a barrier, the lack of activation energy is taken to mean penetration by quantum-mechanical “tunneling.” PMID:5972381

  3. Computer Modeling of Pulsed Chemical Lasers.

    DTIC Science & Technology

    1983-12-31

    laser pulse was by photolysis of molecular fluorine using flashlamps. The initiation reaction pro- ceeded as: F2 + hvP = 2F (1.4) with Vp being an... MEN a~ji -U-O--- C C, ca. 04 ( i’ c4 CL viM m0 LA 04 016 166 Elm1 E FI ozF LA- 10 --- - -6’~ 167 =VE 0.ik 0ww 1 68 -wl MAIN t...# r Al w YVfaia we. a...0m NoJ IS-90I IRA -. OEM 179 180 MIN im, IUAINNE Ililm MINE 17i mmm mums NOW1911mmoImm, man .AKE-# 0 ON1 INA 0 Suffillan Ellmmm MEN IFIRM 0 W-mv- um I

  4. Approaches to solar cell design for pulsed laser power receivers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1993-01-01

    Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.

  5. Laser nanoablation of diamond surface at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Gololobov, V. M.; Pashinin, V. P.; Konov, V. I.

    2016-10-01

    The chemical etching of the surface of a natural diamond single crystal irradiated by subpicosecond laser pulses with a high repetition rate (f ≤slant 500 {\\text{kHz}}) in air is experimentally investigated. The irradiation has been performed by the second-harmonic (515 {\\text{nm}}) radiation of a disk Yb : YAG laser. Dependences of the diamond surface etch rate on the laser energy density and pulse repetition rate are obtained.

  6. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  7. CO{sub 2} laser pulse shortening by laser ablation of a metal target

    SciTech Connect

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-15

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO{sub 2} laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to {approx}2 ns and to remove the low power, long duration tails that are present in TEA CO{sub 2} pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is {approx}10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  8. CO2 laser pulse shortening by laser ablation of a metal target.

    PubMed

    Donnelly, T; Mazoyer, M; Lynch, A; O'Sullivan, G; O'Reilly, F; Dunne, P; Cummins, T

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO(2) laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ~2 ns and to remove the low power, long duration tails that are present in TEA CO(2) pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ~10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  9. CO2 laser pulse shortening by laser ablation of a metal target

    NASA Astrophysics Data System (ADS)

    Donnelly, T.; Mazoyer, M.; Lynch, A.; O'Sullivan, G.; O'Reilly, F.; Dunne, P.; Cummins, T.

    2012-03-01

    A repeatable and flexible technique for pulse shortening of laser pulses has been applied to transversely excited atmospheric (TEA) CO2 laser pulses. The technique involves focusing the laser output onto a highly reflective metal target so that plasma is formed, which then operates as a shutter due to strong laser absorption and scattering. Precise control of the focused laser intensity allows for timing of the shutter so that different temporal portions of the pulse can be reflected from the target surface before plasma formation occurs. This type of shutter enables one to reduce the pulse duration down to ˜2 ns and to remove the low power, long duration tails that are present in TEA CO2 pulses. The transmitted energy is reduced as the pulse duration is decreased but the reflected power is ˜10 MW for all pulse durations. A simple laser heating model verifies that the pulse shortening depends directly on the plasma formation time, which in turn is dependent on the applied laser intensity. It is envisaged that this plasma shutter will be used as a tool for pulse shaping in the search for laser pulse conditions to optimize conversion efficiency from laser energy to useable extreme ultraviolet (EUV) radiation for EUV source development.

  10. Dielectric breakdown induced by picosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  11. Transform-limited pulses generated by an actively Q-switched distributed fiber laser.

    PubMed

    Cuadrado-Laborde, C; Pérez-Millán, P; Andrés, M V; Díez, A; Cruz, J L; Barmenkov, Yu O

    2008-11-15

    A single-mode, transform-limited, actively Q-switched distributed-feedback fiber laser is presented, based on a new in-line acoustic pulse generator. Our technique permits a continuous adjustment of the repetition rate that modulates the Q factor of the cavity. Optical pulses of 800 mW peak power, 32 ns temporal width, and up to 20 kHz repetition rates were obtained. The measured linewidth demonstrates that these pulses are transform limited: 6 MHz for a train of pulses of 10 kHz repetition rate, 80 ns temporal width, and 60 mW peak power. Efficient excitation of spontaneous Brillouin scattering is demonstrated.

  12. Laser pulsing in linear Compton scattering

    DOE PAGES

    Krafft, G. A.; Johnson, E.; Deitrick, K.; ...

    2016-12-16

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such anmore » approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions in collision. The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. In addition, as discussed in the body of the paper, many of the results allow easy scaling estimates to be made of the expected spectrum. A misconception in the literature on Compton scattering of circularly polarized beams is corrected and recorded.« less

  13. Laser pulsing in linear Compton scattering

    NASA Astrophysics Data System (ADS)

    Krafft, G. A.; Johnson, E.; Deitrick, K.; Terzić, B.; Kelmar, R.; Hodges, T.; Melnitchouk, W.; Delayen, J. R.

    2016-12-01

    Previous work on calculating energy spectra from Compton scattering events has either neglected considering the pulsed structure of the incident laser beam, or has calculated these effects in an approximate way subject to criticism. In this paper, this problem has been reconsidered within a linear plane wave model for the incident laser beam. By performing the proper Lorentz transformation of the Klein-Nishina scattering cross section, a spectrum calculation can be created which allows the electron beam energy spread and emittance effects on the spectrum to be accurately calculated, essentially by summing over the emission of each individual electron. Such an approach has the obvious advantage that it is easily integrated with a particle distribution generated by particle tracking, allowing precise calculations of spectra for realistic particle distributions "in collision." The method is used to predict the energy spectrum of radiation passing through an aperture for the proposed Old Dominion University inverse Compton source. Many of the results allow easy scaling estimates to be made of the expected spectrum.

  14. Hemocompatible, pulsed laser deposited coatings on polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Bruckert, Franz

    2010-02-01

    State-of-the-art non-thrombogenic blood contacting surfaces are based on heparin and struggle with the problem of bleeding. However, appropriate blood flow characteristics are essential for clinical application. Thus, there is increasing demand to develop new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low because of the applied substrate materials of low temperature resistance (polymers). Most of the recently used plasma-based deposition techniques cannot fulfill this demand. However, adequate film structure and high adhesion can be reached by the pulsed laser deposition at room temperature, which was developed to an industrial-scaled process at Laser Center Leoben. Here, this process is described in detail and the resulting structural film properties are shown for titanium, titanium nitride, titanium carbonitride, and diamond-like carbon on polyurethane, titanium and silicon substrates. Additionally, we present the biological response of blood cells and the kinetic mechanism of eukaryote cell attachment. In conclusion, high biological acceptance and distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents.

  15. Ablation of steel using picosecond laser pulses in burst mode

    NASA Astrophysics Data System (ADS)

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  16. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser.

    PubMed

    Haxsen, Frithjof; Wandt, Dieter; Morgner, Uwe; Neumann, Jörg; Kracht, Dietmar

    2012-03-15

    We report on monotonically positively chirped pulse operation of a hybridly mode-locked thulium fiber laser. Dispersion management was realized with a small-core, high-NA fiber providing normal dispersion in the 2 μm wavelength region. The laser delivered pulses with 0.7 nJ energy at the 1927 nm center wavelength and sub-500-fs pulse duration after compression.

  17. Optimizing Atom Probe Analysis with Synchronous Laser Pulsing and Voltage Pulsing.

    PubMed

    Zhao, Lu; Normand, Antoine; Houard, Jonathan; Blum, Ivan; Delaroche, Fabien; Latry, Olivier; Ravelo, Blaise; Vurpillot, Francois

    2017-04-01

    Atom probe has been developed for investigating materials at the atomic scale and in three dimensions by using either high-voltage (HV) pulses or laser pulses to trigger the field evaporation of surface atoms. In this paper, we propose an atom probe setup with pulsed evaporation achieved by simultaneous application of both methods. This provides a simple way to improve mass resolution without degrading the intrinsic spatial resolution of the instrument. The basic principle of this setup is the combination of both modes, but with a precise control of the delay (at a femtosecond timescale) between voltage and laser pulses. A home-made voltage pulse generator and an air-to-vacuum transmission system are discussed. The shape of the HV pulse presented at the sample apex is experimentally measured. Optimizing the delay between the voltage and the laser pulse improves the mass spectrum quality.

  18. Multichannel optoacoustic spectroscopy of molecular gases with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Ponomarev, Iu. N.

    1989-05-01

    The linear and nonlinear absorption of laser radiation by H20 and CO2 is studied using dual-channel optoacoustic spectroscopy (OAS) with pulsed ruby and CO2 lasers. The possibility of VT-relaxation time determination is studied with allowance made for its dependence on laser radiation intensity. The advantages of the OAS method are outlined.

  19. Optical pulse generation using fiber lasers and integrated optics

    SciTech Connect

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-03-27

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics.

  20. Bismuth thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  1. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  2. Ultrashort laser pulse interaction with photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Siiman, Leo A.

    Photo-thermo-refractive (PTR) glass is an ideal photosensitive material for recording phase volume holograms. It is a homogeneous multi-component silicate glass that demonstrates all the advantages of optical glass: thermal stability, high laser damage threshold, and a wide transparency range. Moreover the ability to record phase patterns (i.e. spatial refractive index variations) into PTR glass has resulted in the fabrication of volume holograms with diffraction efficiency greater than 99%. The conventional method of recording a hologram in PTR glass relies on exposure to continuous-wave ultraviolet laser radiation. In this dissertation the interaction between infrared ultrashort laser pulses and PTR glass is studied. It is shown that photosensitivity in PTR glass can be extended from the UV region to longer wavelengths (near-infrared) by exposure to ultrashort laser pulses. It is found that there exists a focusing geometry and laser pulse intensity interval for which photoionization and refractive index change in PTR glass after thermal development occur without laser-induced optical damage. Photoionization of PTR glass by IR ultrashort laser pulses is explained in terms of strong electric field ionization. This phenomenon is used to fabricate phase optical elements in PTR glass. The interaction between ultrashort laser pulses and volume holograms in PTR glass is studied in two laser intensity regimes. At intensities below ˜10 12 W/cm2 properties such as diffraction efficiency, angular divergence, selectivity, and pulse front tilt are shown to agree with the theory of linear diffraction for broad spectral width lasers. A volume grating pair arrangement is shown to correct the laser pulse distortions arising from pulse front tilt and angular divergence. At higher intensities of irradiation, nonlinear generation and diffraction of third harmonic is observed for three types of interactions: sum-frequency generation, front-surface THG generation, and THG due to

  3. Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang Hee

    2009-08-01

    Pulse compression in a differentially pumped neon-filled hollow fiber was used to generate high-power few-cycle laser pulses. The pulse compression process was optimized by adjusting gas pressure and laser chirp to produce the shortest laser pulses. Precise dispersion control enabled the generation of laser pulses with duration of 3.7 fs and energy of 1.2 mJ. This corresponds to an output of 1.5 cycle, 0.3 TW pulses at a 1 kHz repetition rate using positively chirped 33 fs laser pulses.

  4. Application of Yb:YAG short pulse laser system

    DOEpatents

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Crane, John K.; Telford, Steve; Perry, Michael D.

    2004-07-06

    A diode pumped, high power (at least 20W), short pulse (up to 2 ps), chirped pulse amplified laser using Yb:YAG as the gain material is employed for material processing. Yb:YAG is used as the gain medium for both a regenerative amplifier and a high power 4-pass amplifier. A single common reflective grating optical device is used to both stretch pulses for amplification purposes and to recompress amplified pulses before being directed to a workpiece.

  5. Fiber Optic Solutions for Short Pulse Lasers

    SciTech Connect

    Beach, R; Dawson, J; Liao, Z; Jovanovic, I; Wattellier, B; Payne, S; Barty, C P

    2003-01-29

    For applications requiring high beam quality radiation from efficient, compact and rugged sources, diffraction limited fiber lasers are ideal, and to date have been demonstrated at average CW power levels exceeding 100 W with near diffraction limited: output. For conventional single-core step-index single-mode fibers, this power level represents the sealing limit because of nonlinear and laser damage considerations. Higher average powers would exceed nonlinear process thresholds such as the Raman and stimulated Brillouin scattering limit, or else damage the fiber due to the high intensity level in the fiber's core. The obvious way to increase the average power capability of fibers is to increase the area of their core. Simply expanding the core dimensions of the fiber allows a straightforward power sealing due to enhanced nonlinear and power handling characteristics that scale directly with the core area. Femtosecond, chirped-pulse, fiber lasers with pulse energies greater than 1mJ have been demonstrated in the literature [2] using this technique. This output energy was still limited by the onset of stimulated Raman scattering. We have pursued an alternative and complimentary approach which is to reduce the intensity of light propagating in the core by distributing it more evenly across the core area via careful design of the refractive index profile [3]. We have also sought to address the primary issue that results from scaling the core. The enhanced power handling capability comes at the expense of beam quality, as increasing the core diameter in standard step index fibers permits multiple transverse modes to lase simultaneously. Although this problem of multimode operation can be mitigated to some extent by appropriately designing the fiber's waveguide structure, limitations such as bend radius loss, sensitivity to thermally induced perturbations of the waveguide structure, and refractive index control, all become more stringent as the core diameter grows

  6. A laser spectrometer and wavemeter for pulsed lasers

    NASA Technical Reports Server (NTRS)

    Mckay, J. A.; Laufer, P. M.; Cotnoir, L. J.

    1989-01-01

    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function.

  7. Laser micro-machining strategies for transparent brittle materials using ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Matylitsky, Victor

    2017-02-01

    Cutting and drilling of transparent materials using short pulsed laser systems are important industrial production processes. Applications ranging from sapphire cutting, hardened glass processing, and flat panel display cutting, to diamond processing are possible. The ablation process using a Gaussian laser beam incident on the topside of a sample with several parallel overlapping lines leads to a V-shaped structured groove. This limits the structuring depth for a given kerf width. The unique possibility for transparent materials to start the ablation process from the backside of the sample is a well-known strategy to improve the aspect ratio of the ablated features. This work compares the achievable groove depth depending on the kerf width for front-side and back-side ablation and presents the best relation between the kerf width and number of overscans. Additionally, the influence of the number of pulses in one burst train on the ablation efficiency is investigated. The experiments were carried out using Spirit HE laser from Spectra-Physics, with the features of adjustable pulse duration from <400 fs to 10 ps, three different repetition rates (100 kHz, 200 kHz and 400 kHz) and average output powers of >16 W ( at 1040 nm wavelength).

  8. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  9. A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras.

    PubMed

    Wiegand, Christian; Herrmann, Michael; Bachtler, Sebastian; Klier, Jens; Molter, Daniel; Jonuscheit, Joachim; Beigang, René

    2010-03-15

    We present a pulsed THz Imaging System with a line focus intended to speed up measurements. A balanced 1-D detection scheme working with two industrial line-scan cameras is used. The instrument is implemented without the need for an amplified laser system, increasing the industrial applicability. The instrumental characteristics are determined.

  10. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  11. Prepulse effect on intense femtosecond laser pulse propagation in gas

    SciTech Connect

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-09-15

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration.

  12. Recent progress in picosecond pulse generation from semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    This paper reviews the recent progress in producing picosecond optical pulses from semiconductor laser diodes. The discussion concentrates on the mode-locking of a semiconductor laser diode in an external resonator. Transform-limited optical pulses ranging from several picoseconds to subpicosecond durations have been observed with active and passive mode-locking. Even though continuing research on the influence of impurities and defects on the mode-locking process is still needed, this technique has good promise for being utilized in fiber-optic communication systems. Alternative methods of direct electrical and optical excitation to produce ultrashort laser pulses are also described. They can generate pulses of similar widths to those obtained by mode-locking. The pulses generated will find applications in laser ranging and detector response measurement.

  13. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  14. Response of silicon solar cell to pulsed laser illumination

    NASA Technical Reports Server (NTRS)

    Willowby, D.; Alexander, D.; Edge, T.; Herren, K.

    1993-01-01

    The response of silicon solar cell(s) to pulsed laser illumination is discussed. The motivation was due to the interest of Earth to space/Moon power beaming applications. When this work began, it was not known if solar cells would respond to laser light with pulse lengths in the nanosecond range and a repetition frequency in the kHz range. This is because the laser pulse would be shorter than the minority carrier lifetime of silicon. A 20-nanosecond (ns) full width half max (FWHM) pulse from an aluminum-gallium/arsenide (Al-Ga-As) diode laser was used to illuminate silicon solar cells at a wavelength of 885 nanometers (nm). Using a high-speed digital oscilloscope, the response of the solar cells to individual pulses across various resistive loads was observed and recorded.

  15. LIBS using dual- and ultra-short laser pulses.

    PubMed

    Angel, S M; Stratis, D N; Eland, K L; Lai, T; Berg, M A; Gold, D M

    2001-02-01

    Pre-ablation dual-pulse LIBS enhancement data for copper, brass and steel using ns laser excitation are reported. Although large enhancements are observed for all samples, the magnitude of the enhancement is matrix dependent. Whereas all of the dual-pulse studies used ns laser excitation we see interesting effects when using ps and fs laser excitation for single-pulse LIBS. LIBS spectra of copper using 1.3 ps and 140 fs laser pulses show much lower background signals compared to ns pulse excitation. Also, the atomic emission decays much more rapidly with time. Because of relatively low backgrounds when using ps and fs pulses, non-gated detection of LIBS is shown to be very effective. The plasma dissipates quickly enough using ps and fs laser pulses, that high pulse rates, up to 1,000 Hz, are effective for increasing the LIBS signal, for a given measurement time. Finally, a simple near-collinear dual-pulse fiber-optic LIBS probe is shown to be useful for enhanced LIBS measurements.

  16. Synchronous pulse generation in a multicavity fiber laser system

    NASA Astrophysics Data System (ADS)

    Gómez-Pavón, L. C.; Martí-Panameño, E.; Gómez-de la Fuente, O.; Luis-Ramos, A.

    2006-09-01

    We report the experimental synchronous pulse generation in a multicavity fiber laser system with two Erbium-doped fiber laser cavities. We have demonstrated that through the evanescent fields interaction between one cavity with active modulation and other one in continuous wave it is possible to generate more intense pulses in both cavities. Moreover, the synchronous pulse generation between cavities is achieved with an appropriate selection of pump intensity, modulation frequency and coupling ratio. We found that the pulse intensity is 2.5 times greater and the pulse duration lowers than a single Erbium-doper fiber laser. Furthermore, by means of the synchronous diagram we determined the synchronization strength in temporal pulse emission between cavities.

  17. Inter-pulse delay optimization in dual-pulse laser induced breakdown vacuum ultraviolet spectroscopy of a steel sample in ambient gases at low pressure

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Hayden, P.; Laasch, R.; Costello, J. T.; Kennedy, E. T.

    2013-08-01

    Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions.

  18. Observation of voids and optical seizing of voids in silica glass with infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Toma, Tadamasa; Yamada, Kazuhiro; Nishii, Junji; Hayashi, Ken-ichi; Itoh, Kazuyoshi

    2000-11-01

    Many researchers have investigated the interaction of femtosecond laser pulses with a wide variety of materials. The structural modifications both on the surface and inside the bulk of transparent materials have been demonstrated. When femtosecond laser pulses are focused into glasses with a high numerical-aperture objective, voids are formed. We demonstrate that one can seize and move voids formed by femtosecond laser pulses inside silica glass and also merge two voids into one. We also present clear evidence that a void is a cavity by showing a scanning-electron-microscope image of cleft voids: we clove through the glass along a plane that includes the laser-ablated thin line on the surface and the voids formed inside. The optical seizing and merging of voids are important basic techniques for fabricate micro-optical dynamic devices, such as the rewritable 3-D optical storage.

  19. Double-pulse laser-induced breakdown spectroscopy for trace element analysis in sintered iron oxide ceramics

    NASA Astrophysics Data System (ADS)

    Heilbrunner, H.; Huber, N.; Wolfmeir, H.; Arenholz, E.; Pedarnig, J. D.; Heitz, J.

    2012-01-01

    Double-pulse laser-induced breakdown spectroscopy (LIBS) is an emerging technique for accurate compositional analysis of many different materials. We present a systematic study of collinear double-pulse LIBS for analysis of the trace and side elements boron, manganese, copper, aluminum, titanium, silicon, chromium, nickel, potassium, and calcium in sintered iron oxide targets. The samples were ablated in air by single-pulse and double-pulse Nd:YAG laser radiation (6 ns pulse duration, laser wavelength of 532 nm) and spectra were recorded with an Echelle spectrometer equipped with an ICCD camera. We investigated the evolution of atomic and ionic line emission intensities for different interpulse delay times between the laser pulses (from 100 ns to 50 μs) and gate delays after the second laser pulse. We also varied the energy partition between the first and second laser pulse and the size of the irradiated spot at the sample surface. For the trace and side elements, we observed double-pulse LIBS signals that were enhanced as compared to single-pulse measurements depending on the interpulse delay time, the energy partition between the pulses, and the spot size. For the elements boron, copper, aluminum, titanium, chromium, potassium, and calcium limits of detection below 10 ppm were achieved.

  20. Ponderomotive acceleration of electrons by a self focused laser pulse

    SciTech Connect

    Singh, Rohtash; Sharma, A. K.

    2010-12-15

    Ponderomotive acceleration of electrons by a short laser pulse undergoing relativistic self-focusing in a plasma is investigated. The saturation in nonlinear plasma permittivity causes periodic self-focusing of the laser. The periodicity lengths are different for different axial segments of the pulse. As a result, pulse shape is distorted. An electron initially on the laser axis and at the front of the self-focusing pulse gains energy from the pulse until it is run over by the pulse peak. By the time electron reaches the tail, if pulse begins diverging, the deceleration of the electron is slower and the electron is left with net energy gain. The electrons slightly off the laser axis see a radial ponderomotive force too. Initially, when they are accelerated by the pulse front the acceleration is strong as they are closer to the axis. When they see the tail of the pulse (after being run by the pulse), they are farther from the axis and the retardation ponderomotive force is weaker. Thus, there is net energy gain.

  1. Repetitively pulsed cryogenically cooled quasi-sealed-off slab RF discharge first-overtone CO laser

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kozlov, A. Yu.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.

    2016-07-01

    A slab first-overtone CO laser of improved design excited by repetitively pulsed RF discharge was researched and developed. Its quasi-sealed-off operation appeared to be possible only by using active gas mixture composition with extremely high content of oxygen — up to 50 % with respect to CO concentration. Average output power of the first-overtone CO laser came up to ~2 W with the efficiency of ~2 %. The laser spectrum obtained by using three sets of output couplers consisted of more than 100 vibrational-rotational spectral lines in 28 vibrational first-overtone bands of CO molecule within 2.55÷3.90 μm wavelength range. The number of laser radiation pulses which could be produced by the laser in sealed-off mode of operation (without gas mixture renovation) reached ~5×105 at the averaged output power near its maximum, and ~106 at lower (near its half-maximum) averaged output power. Special features of laser radiation temporal behavior were discussed. Under repetitively pulse pump with repetition rate from 300 up to 7500 Hz, a temporal profile of the CO laser radiation changed from the train of time-separated laser pulses with high peak power to quasi-CW mode of operation.

  2. Efficient spectral-step expansion of a filamenting laser pulse.

    PubMed

    Théberge, Francis; Lassonde, Philippe; Payeur, Stéphane; Châteauneuf, Marc; Dubois, Jacques; Kieffer, Jean-Claude

    2013-05-01

    We report an efficient transfer of 800 nm energy into both the ultraviolet and the far infrared (IR) during the filamentation in air of an appropriately shaped laser pulse. The multiorder enhancement of the IR supercontinuum in the 3-5 μm atmospheric transmission windows was achieved thanks to spectral-step cascaded four-wave mixing occurring within the spectrum of the shaped femtosecond laser pulse. These results also point out the limit of the self-phase modulation model to explain the spectral broadening of a filamenting laser pulse.

  3. Efficient photoassociation with a train of asymmetric laser pulses

    SciTech Connect

    Zhang Wei; Wang Gaoren; Cong Shulin

    2011-04-15

    The photoassociation (PA) dynamics implemented by a train of asymmetric slowly turned-on and rapidly turned-off (STRT) laser pulses is investigated theoretically with Cs{sub 2} as an example. A higher PA efficiency is achieved by optimizing the parameters of the STRT pulse train. The PA reaction goes partly beyond the scope of the PA window. Numerical calculations show that an efficient population accumulation in the PA process can be realized with the STRT laser-pulse train which is available in the current experiment based on laser mode-lock and shaping technology.

  4. Airborne bathymetric charting using pulsed blue-green lasers

    NASA Technical Reports Server (NTRS)

    Kim, H. H.

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 plus or minus 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m. A 2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  5. Airborne bathymetric charting using pulsed blue-green lasers.

    PubMed

    Kim, H H

    1977-01-01

    Laboratory and airborne experiments have proven the feasibility and demonstrated the techniques of an airborne pulsed laser system for rapidly mapping coastal water bathymetry. Water depths of 10 +/- 0.25 m were recorded in waters having an effective attenuation coefficient of 0.175 m(-1). A2-MW peak power Nd:YAG pulsed laser was flown at an altitude of 600 m. An advanced system, incorporating a mirror scanner, a high pulsed rate laser, and a good signal processor, could survey coastal zones at the rate of several square miles per hour.

  6. Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army Research Laboratory

    DTIC Science & Technology

    2016-02-01

    pulse at pulse widths between 50 µs to 10 ms. Maximum energy output is only achieved by proper alignment and laser operation. This report provides...not included in the operator’s manual. 15. SUBJECT TERMS pulse width, laser energy , laser alignment, peak power, laser operation 16. SECURITY...Acknowledgments v 1. Introduction 1 2. Energy Output of the Variable Pulse Width Laser 1 3. Operation of the Variable Pulse Width Laser 2 4

  7. All-fiber ring Raman laser generating parabolic pulses

    SciTech Connect

    Kruglov, V. I.; Mechin, D.; Harvey, J. D.

    2010-02-15

    We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses ('similaritons') designed to operate using self-similar propagation regimes. The similariton laser features a frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser. Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by numerical simulations for large numbers of round trips.

  8. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  9. High-charge energetic ions generated by intersecting laser pulses

    SciTech Connect

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-15

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  10. Pulse Splitting in Short Wavelength Seeded Free Electron Lasers

    SciTech Connect

    Labat, M.; Couprie, M. E.; Joly, N.; Bruni, C.

    2009-12-31

    We investigate a fundamental limitation occurring in vacuum ultraviolet and extreme ultraviolet seeded free electron lasers (FELs). For a given electron beam and undulator configuration, an increase of the FEL output energy at saturation can be obtained via an increase of the seed pulse duration. We put in evidence a complex spatiotemporal deformation of the amplified pulse, leading ultimately to a pulse splitting effect. Numerical studies of the Colson-Bonifacio FEL equations reveal that slippage length and seed laser pulse wings are core ingredients of the dynamics.

  11. Propagation of Complex Laser Pulses in Optically Dense Media

    NASA Astrophysics Data System (ADS)

    Fetterman, M. R.; Davis, J. C.; Goswami, D.; Yang, W.; Warren, W. S.

    1999-05-01

    Ultrafast laser pulses with complex envelopes (amplitude and frequency modulated) are used to excite an optically dense column of rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation in the Rb vapor are all shown to depend strongly on the laser pulse shape. Pulses that produce adiabatic passage in the optically thin limit exhibit more complex behavior in optically thick samples, including an unexpected dependence on the sign of the frequency sweep. Numerical solutions of the Maxwell-Bloch equations are shown to account for our results.

  12. High pulse energy 2 µm femtosecond fiber laser.

    PubMed

    Wan, Peng; Yang, Lih-Mei; Liu, Jian

    2013-01-28

    In the paper, a 2 µm high energy fs fiber laser and amplification system is presented based on Tm doped fibers. The seed laser was designed to generate pulse train at 2024 nm at a repetition rate of 2.5 MHz. An AOM was used as a pulse picker to further lower the repetition rate down to 100 kHz. Two-stage fiber pre-amplifiers and a high energy large mode area (LMA) fiber amplifier were used to boost pulse energy up to 54 µJ before pulse compressor with chirped pulse amplification technique. After compressor, pulse energy of 36.7µJ and pulse duration of 910 fs and were obtained.

  13. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    NASA Astrophysics Data System (ADS)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  14. Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses

    NASA Astrophysics Data System (ADS)

    Gopal, K.; Gupta, D. N.

    2017-10-01

    Optimization and control of electron beam quality in laser wakefield acceleration are explored by using a temporally asymmetric laser pulse of the sharp rising front portion. The temporally asymmetric laser pulse imparts stronger ponderomotive force on the ambient plasma electrons. The stronger ponderomotive force associated with the asymmetric pulse significantly affects the injection of electrons into the wakefield and consequently the quality of the injected bunch in terms of injected charge, mean energy, and emittance. Based on particle-in-cell simulations, we report to generate a monoenergetic electron beam with reduced emittance and enhanced charge in laser wakefield acceleration using an asymmetric pulse of duration 30 fs.

  15. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  16. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    NASA Astrophysics Data System (ADS)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  17. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  18. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  19. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    NASA Astrophysics Data System (ADS)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  20. Pulsed infrared laser irradiation of biological tissue: effect of pulse duration and repetition rate

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Chundru, Ravi K.; Samanani, Salim A.; Tibbetts, Todd A.; Welch, Ashley J.

    1993-07-01

    Pulsed laser ablation is a trade off between minimizing thermal damage (for relatively long pulses) and mechanical damage (for relatively short pulses) to tissue adjacent to the ablation crater. Often it is not known what the optimal laser parameters are for a specific application, since clinically used parameters have at least partially been dictated by physical limitations of the laser devices. We recently obtained a novel type of cryogenic continuous wave holmium:YAG laser ((lambda) equals 2.09 micrometers ) with a galvanometric drive outcouple mirror that acts as a Q-switch. This unique device provides pulse repetition rates from a few Hz up to kHz and the pulse length is variable from microsecond(s) to ms. The effect of pulse duration and repetition rate on the thermal response of chicken breast is documented using temperature measurements with a thermal camera. We varied the pulse width from 10 microsecond(s) to 5 ms and fond that these pulse durations can be considered impulses of thermalized optical energy. In this paper some theoretical considerations of the pulse length will be described that support the experimental data. It was also found that even at 1 pulse per second thermal superposition occurs, indicating a much longer thermal relaxation time than predicted by a simple time constant model.

  1. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-07-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) {copyright} {ital 1999 American Institute of Physics.}

  2. Synchronization of sub-picosecond electron and laser pulses

    SciTech Connect

    Rosenzweig, J. B.; Le Sage, G. P.

    1999-07-12

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail.

  3. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  4. Excitation and Control of Plasma Wakefields by Multiple Laser Pulses

    NASA Astrophysics Data System (ADS)

    Cowley, J.; Thornton, C.; Arran, C.; Shalloo, R. J.; Corner, L.; Cheung, G.; Gregory, C. D.; Mangles, S. P. D.; Matlis, N. H.; Symes, D. R.; Walczak, R.; Hooker, S. M.

    2017-07-01

    We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that a plasma wave can be damped by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multikilohertz repetition rates.

  5. 50W CW output power and 12mJ pulses from a quasi-2-level Yb:YAG ceramic rod laser end-pumped at the 969nm zero-phonon line

    NASA Astrophysics Data System (ADS)

    Fries, Christian; Weitz, Marco; Theobald, Christian; v. Löwis of Menar, Patric; Bartschke, Jürgen; L'huillier, Johannes A.

    2015-02-01

    With the advent of high power and narrow bandwidth 969 nm pump diodes, direct pumping into the upper laser level of Yb:YAG and hence quasi-2-level lasers became possible. Pumping directly into the emitting level leads to higher quantum efficiency and reduction of non-radiative decay. Consequently, thermal load, thermal lensing and risk of fracture are reduced significantly. Moreover pump saturation and thermal population of uninvolved energy-levels in ground and excited states are benefical for a homogenous distribution of the pump beam as well as the reduction of reabsorption loss compared to 3-level systems, which allows for high-power DPSS lasers. Beside continuous-wave (cw) operation, nanosecond pulses with a repetition rate between 1 and 5 kHz are an attractive alternative to flashlamp-pumped systems (10-100 Hz) in various measurement applications that require higher data acquisition rates because of new faster detectors. Based on measurements of the absorption and a detailed numerical model for pump beam distribution, including beam propagation and saturation factors, power-scaling of a ceramic rod Yb:YAG oscillator was possible. Finally a cw output power of 50 W with 33 % pump efficiency at 1030 nm has been demonstrated (M2 < 1.2). Nanosecond pulses have been produced by cavity-dumping of this system. The cavity-dumped setup allowed for 3-10 ns pulses with a pulse energy of 12.5 mJ at 1 kHz (M2 < 1.1). In order to achieve these results a systematic experimental and numerical investigation on gain dynamics and the identification of different stable operating regimes has been carried out.

  6. Obstacle avoidance using a line laser

    NASA Astrophysics Data System (ADS)

    Ricotti, Marcello; Barili, Antonio; Ceresa, Marco

    1994-02-01

    A line laser has been used to help navigation and obstacle detection for the indoor mobile robot PARIDE (Pavia autonomous robot for industrial environment). PARIDE is an A.M.R. based on a TRC platform that is being implemented using a subsumption architecture simulated through software on a 68030 board. The line is projected on the robot path and continually monitored using a CCD camera to detect line interruption or deviation. Laser, CCD camera, and frame grabber have been chosen in order to be commercially available and within the power requirements and physical dimensions of the mobile platform. The robot has to act in a human environment thus the laser must be safe (class 3A), visible (685 nm) and powerful to allow good quality images acquisition. Images are filtered, during acquisition, in order to simplify the low-level image processing.

  7. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  8. Multiple-line laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Gidon, S.; Behar, G.

    1988-06-01

    The luminosity of an LDV diagnostic suitable for study of the high strain-rate motion of solids, as in shock-wave experiments, is presently increased by an order of magnitude through the use of a broadband pulsed laser that is coupled to a Fabry-Perot device which acts as a spectrum modulator/demodulator. This instrumental configuration facilitates the analysis of weakly reflective materials' behavior during shock loading. Illustrative experimental results are presented.

  9. Pulsed diode laser-based monitor for singlet molecular oxygen

    PubMed Central

    Lee, Seonkyung; Zhu, Leyun; Minhaj, Ahmed M.; Hinds, Michael F.; Vu, Danthu H.; Rosen, David I.; Davis, Steven J.; Hasan, Tayyaba

    2010-01-01

    Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Δ) are believed to be the species that destroys cancerous cells during PDT. Monitoring singlet oxygen produced by PDT may lead to more precise and effective PDT treatments. Our approach uses a pulsed diode laser-based monitor with optical fibers and a fast data acquisition system to monitor singlet oxygen during PDT. We present results of in vitro singlet oxygen detection in solutions and in a rat prostate cancer cell line as well as PDT mechanism modeling. PMID:18601555

  10. Metal Processing with Ultra-Short Laser Pulses

    SciTech Connect

    Banks, P S; Feit, M D; Komashko, A M; Perry, M D; Rubenchik, A M; Stuart, B C

    2000-05-01

    Femtosecond laser ablation has been shown to produce well-defined cuts and holes in metals with minimal heat effect to the remaining material. Ultrashort laser pulse processing shows promise as an important technique for materials processing. We will discuss the physical effects associated with processing based experimental and modeling results. Intense ultra-short laser pulse (USLP) generates high pressures and temperatures in a subsurface layer during the pulse, which can strongly modify the absorption. We carried out simulations of USLP absorption versus material and pulse parameters. The ablation rate as function of the laser parameters has been estimated. Since every laser pulse removes only a small amount of material, a practical laser processing system must have high repetition rate. We will demonstrate that planar ablation is unstable and the initially smooth crater bottom develops a corrugated pattern after many tens of shots. The corrugation growth rate, angle of incidence and the polarization of laser electric field dependence will be discussed. In the nonlinear stage, the formation of coherent structures with scales much larger than the laser wavelength was observed. Also, there appears to be a threshold fluence above which a narrow, nearly perfectly circular channel forms after a few hundred shots. Subsequent shots deepen this channel without significantly increasing its diameter. The role of light absorption in the hole walls will be discussed.

  11. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  12. Pulsed laser deposition of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  13. Power Enhancement Cavity for Burst-Mode Laser Pulses

    SciTech Connect

    Liu, Yun

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  14. Schwinger vacuum pair production in chirped laser pulses

    SciTech Connect

    Dumlu, Cesim K.

    2010-08-15

    The recent developments of high intensity ultrashort laser pulses have raised the hopes of observing Schwinger vacuum pair production which is one of the important nonperturbative phenomena in QED. The quantitative analysis of realistic high intensity laser pulses is vital for understanding the effect of the field parameters on the momentum spectrum of the produced particles. In this study, we analyze chirped laser pulses with a subcycle structure, and investigate the effects of the chirp parameter on the momentum spectrum of the produced particles. The combined effect of the chirp and carrier phase of the laser pulse is also analyzed. These effects are qualitatively explained by investigating the turning-point structure of the potential within the framework of the complex WKB scattering approach to pair production.

  15. Vector self-pulsing in erbium-doped fiber lasers.

    PubMed

    Sergeyev, Sergey V

    2016-10-15

    Insight into instabilities of fiber laser regimes leading to complex self-pulsing operations is an opportunity to unlock the high power and dynamic operation tunability of lasers. Though many models have been suggested, there is no complete covering of self-pulsing complexity observed experimentally. Here, I further generalized our previous vector model of erbium-doped fiber laser and, for the first time, to the best of my knowledge, map tunability of complex vector self-pulsing on Poincare sphere (limit cycles and double scroll polarization attractors) for laser parameters, e.g., power, ellipticity of the pump wave, and in-cavity birefringence. Analysis validated by extensive numerical simulations demonstrates good correspondence to the experimental results on complex self-pulsing regimes obtained by many authors during the last 20 years.

  16. Study of ambient air ionization with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wang, Xiaolei; Zhang, Nan; Zhai, Hongchen; Zhu, Xiaonong

    2005-01-01

    The laser induced ionization of ambient air is studied experimentally with laser pulses whose durations range from 50 fs up to 10 ps at 800 nm. It is found that the minimum pulse energy for detectable air ionization follows the scaling law of ɛth varies direct as tpx, with 0.23 < x < 0.5, and x tends to rise for longer pulses within the range of 50 fs - 500 fs. For laser pulses from 0.7 ps to 10 ps, however, x is approximately equal to 0.8. The dependence of the critical intensity for air ionization on the beam spot size is also examined with a variety of focused laser beam spot sizes in the experiments.

  17. Pulsed excimer laser processing for cost-effective solar cells

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1984-01-01

    The goal was to demonstrate the cost effectiveness feasibility of fabricating 16% efficient solar cells on 125 mm diameter Cz wafers using pulsed excimer laser for junction formation, surface passivation, and front metallization.

  18. Pulse laser assisted optical tweezers for biomedical applications.

    PubMed

    Sugiura, Tadao; Maeda, Saki; Honda, Ayae

    2012-01-01

    Optical tweezers which enables to trap micron to nanometer sized objects by radiation pressure force is utilized for manipulation of particles under a microscope and for measurement of forces between biomolecules. Weak force of optical tweezers causes some limitations such as particle adhesion or steric barrier like lipid membrane in a cell prevent further movement of objects. For biomedical applications we need to overcome these difficulties. We have developed a technique to exert strong instantaneous force by use of a pulse laser beam and to assist conventional optical tweezers. A pulse laser beam has huge instantaneous laser power of more than 1000 times as strong as a conventional continuous-wave laser beam so that the instantaneous force is strong enough to break chemical bonding and molecular force between objects and obstacles. We derive suitable pulse duration for pulse assist of optical tweezers and demonstrate particle manipulation in difficult situations through an experiment of particle removal from sticky surface of glass substrate.

  19. Pulsed lasers on plasmas produced by electron beams and discharges

    SciTech Connect

    Tarasenko, Viktor F; Yakovlenko, Sergei I

    2003-02-28

    The use of electron beams for pumping dense gases made it possible to obtain lasing on atomic and molecular transitions in different spectral ranges and to develop high-power pulsed lasers. N.G. Basov and coworkers made a substantial contribution to the formation and advancement of this field. A brief review of the research on efficient elevated-pressure active media and high-power pulsed lasers utilising plasmas produced both by an electron beam and an electron-beam-controlled discharge is presented. These are excimer and exciplex lasers, lasers utilising atomic transitions in xenon and neon, an Ar -N{sub 2} mixture laser, a molecular nitrogen ion laser, and a high-pressure CO{sub 2} laser. Data obtained in the investigation of the radiation of rare-gas halide complexes are given. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  20. Longitudinally excited CO2 laser with short laser pulse for hard tissue drilling

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Hayashi, Hiroyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2014-02-01

    We developed a longitudinally excited CO2 laser that produces a short laser pulse with a circular beam and a low divergence angle. The laser was very simple and consisted of a 45-cm-long alumina ceramic pipe with an inner diameter of 9 mm, a pulse power supply, a step-up transformer, a storage capacitance, and a spark-gap switch. The laser pulse had a spike pulse width of 103 ns and a pulse tail length of 32.6 μs. The beam cross-section was circular and the full-angle beam divergence was 1.7 mrad. The laser was used to drill ivory samples without carbonization at fluences of 2.3-7.1 J/cm2. The drilling depth of the dry ivory increased with the fluence. The drilling mechanism of the dry ivory was attributed to absorption of the laser light by the ivory.

  1. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  2. Effect of Pulse Length on Engraving Efficiency in Nanosecond Pulsed Laser Engraving of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manninen, Matti; Hirvimäki, Marika; Poutiainen, Ilkka; Salminen, Antti

    2015-10-01

    Dependency of laser pulse length on the effectiveness of laser engraving 304 stainless steel with nanosecond pulses was investigated. Ytterbium fiber laser with pulse lengths from 4 to 200 ns was used at a constant average power of 20 W. Measured criteria for effective laser engraving were high material removal rate (MRR), good visual quality of the engraved surface, and low processing temperature. MRR was measured by weighing the samples prior and after the engraving process. Visual quality was evaluated from magnified images. Surface temperature of the samples was measured by two laser spot-welded K-type thermocouples near the laser-processed area. It was noticed that MRR increases significantly with longer pulse lengths, while the quality decreases and processing temperature increases. Some peculiar process behavior was noticed. With short pulses (<20 ns), the process temperature steadily increased as the engraving process continued, whereas with longer pulses the process temperature started to decrease after initially jumping to a specific level. From visually analyzing the samples, it was noticed that the melted and resolidified bottom structure had cracks and pores on the surface when 50 ns or longer pulse lengths were used.

  3. Effect of pulse duty cycle on Inconel 718 laser welds

    NASA Technical Reports Server (NTRS)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  4. Long Pulse Narrowband XeCl Laser Studies

    DTIC Science & Technology

    1990-03-15

    longest pulse width obtained with an e-beam pumped excimer laser . The kinetics processes of the long pulse narrowband were investigated by measurements...electrically triggered switch driven by a small Marx bank which produces the high voltage trigger required. This allows a high standoff voltage and...Phys. Lett 45, p. 507 (1984). 13 M. W. Taylor, J. Goldhar, and J. R. Murray, "Dylux: an instant image photographic material suitable for UV laser beam

  5. Rapid scanning autocorrelator for measurements of picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Harde, H.; Burggraf, H.

    1981-08-01

    A rapid scanning autocorrelation interferometer for measurements of picosecond laser pulses is described which uses a rotating prism as scanning device in one arm of the interferometer to permit continuous display of autocorrelation traces at audio frequencies on an oscilloscope. Scan widths of more than 500 ps with high linearity can be achieved. Autocorrelation measurements of picosecond pulses from a synchronously pumped mode-locked dye laser are presented.

  6. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  7. Tunable mode and line selection by injection in a TEA CO2 laser

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Flamant, P. H.; Kavaya, M. J.; Kuiper, E. N.

    1984-01-01

    Tunable mode selection by injection in pulsed CO2 lasers is examined, and both analytical and numerical models are used to compute the required injection power for a variety of experimental cases. These are treated in two categories: mode selection at a desired frequency displacement from the center frequency of a transition line in a dispersive cavity and mode (and line) selection at the center frequency of a selected transition line in a nondispersive cavity. The results point out the potential flexibility of pulsed injection in providing wavelength tunable high-energy single-frequency pulses.

  8. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  9. Interaction of cold atoms with short laser pulses.

    NASA Astrophysics Data System (ADS)

    Chamberlin, Karen; Lilla, Derek; Taylor, Kyle; Zick, Kevin; Taft, Greg; Nguyen, Hai

    2006-05-01

    We present a powerful diagnostic system to observe the interaction of ultrafast laser pulses with trapped ^87Rb atoms. The ionization of cold atoms and the formation of cold molecules in an intense laser field in the μK temperature range open new branches of research in chemistry, metrology, and quantum physics. However, the interaction of cold atoms with short laser pulses and the subsequent ionization or molecule formation are processes which are not well understood and can be easily misinterpreted. In our proposed experimental setup, an existing ultrafast laser system at the University of Wisconsin-Stevens Point will be used in conjunction with Magneto Optical Trap Recoil Ion Momentum Spectroscopy (MOTRIMS) to directly measure the products formed by the interaction of ultrafast laser pulses with the cold trapped ^87Rb atoms.

  10. High power repetitive TEA CO2 pulsed laser

    NASA Astrophysics Data System (ADS)

    Yang, Guilong; Li, Dianjun; Xie, Jijiang; Zhang, Laiming; Chen, Fei; Guo, Jin; Guo, Lihong

    2012-07-01

    A high power repetitive spark-pin UV-preionized TEA CO2 laser system is presented. The discharge for generating laser pulses is controlled by a rotary spark switch and a high voltage pulsed trigger. Uniform glow discharge between two symmetrical Chang-electrodes is realized by using an auto-inversion circuit. A couple of high power axial-flow fans with the maximum wind speed of 80 m/s are used for gas exchange between the electrodes. At a repetitive operation, the maximum average output laser power of 10.4 kW 10.6 μm laser is obtained at 300 Hz, with an electro-optical conversion efficiency of 15.6%. At single pulsed operation, more pumping energy and higher gases pressures can be injected, and the maximum output laser energy of 53 J is achieved.

  11. Three-stage compression of nanosecond laser pulses

    SciTech Connect

    Akulinichev, V.V.; Mavrichev, M.E.; Pivinskii, E.G.

    1994-04-01

    Three-stage compression of 8-ns pulses of a Nd:YAG laser was investigated. One of the stages used SBS (Stimulated Brillouin Scattering) in CCl4 and the other two used backward SRS (Stimulated Raman Scattering) in compressed methane. Conditions for substantial enhancement of the energy stability of picosecond pulses formed by the output compression stage were found. 8 refs.

  12. Magnetization in ruby induced by a short laser pulse

    SciTech Connect

    Usmanov, R.G.; Khaimovich, E.P.

    1995-09-01

    Specific features of formation of nonequilibrium magnetization in ruby crystal excited by a laser pulse are experimentally studied. It is shown theoretically that the circularly polarized light pulse induces orientation of the medium and its magnetization. Changes of the magnetization direction induced by an external magnetic field are analyzed. 11 refs., 3 figs.

  13. Experimental verification of physical model of pulsed laser welding

    SciTech Connect

    Jellison, J.L.; Keicher, D.M.

    1990-01-01

    Whereas most experimental and theoretical studies of the role of convection in fusion welding have been concerned with continuous heat sources, a pulsed heat source is the focus of this study. This is primarily an experimental study of the pulsed Nd:YAG laser welding of austenitic stainless steels. 12 refs., 9 figs.

  14. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  15. Fabrication of micro-convex domes using long pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xingsheng; Zhang, Yongnian; Wang, Ling; Xian, Jieyu; Jin, Meifu; Kang, Min

    2017-01-01

    Micro-convex domes inspired from nature can be machined by chemical and physical routes to achieve specific functions. Laser surface texturing (LST) is the front runner among the current material micro-processing technologies. However, most of the studies relating to LST dealt with the formation of micro-dimples. In this paper, LST using long pulse laser was used to create micro-convex domes on 304L stainless steel. Spherical-cap-shaped domes with diameters of 30-75 μm and height of 0.9-5.5 μm were created through LST. The effects of laser-processing parameters on surface morphologies of the created convex domes were investigated. The height of the convex dome increased at first and then decreased with the increasing laser power. The change tendency of the height with the pulse duration varied at different laser powers. The diameter of the convex dome increased almost linearly with the laser power or pulse duration. The superior micro-convex domes were achieved at a pulse energy of 5.6 mJ with a laser power of 80 W and pulse duration of 70 μs.

  16. Excitability in semiconductor microring lasers: Experimental and theoretical pulse characterization

    SciTech Connect

    Gelens, L.; Coomans, W.; Van der Sande, G.; Verschaffelt, G.; Mashal, L.; Beri, S.; Danckaert, J.

    2010-12-15

    We characterize the operation of semiconductor microring lasers in an excitable regime. Our experiments reveal a statistical distribution of the characteristics of noise-triggered optical pulses that is not observed in other excitable systems. In particular, an inverse correlation exists between the pulse amplitude and duration. Numerical simulations and an interpretation in an asymptotic phase space confirm and explain these experimentally observed pulse characteristics.

  17. Nonlinear high voltage transmission line for transversely excited CO{sub 2} lasers

    SciTech Connect

    Ishi, Akira; Yasuoka, Koichi; Tamagawa, Tohru

    1995-12-31

    A high voltage Pulse with the risetime less than a few hundreds nanoseconds and the amplitude of several tens kilovolts is required to establish stable glow discharge excitation in high power pulsed gas lasers. To make the high voltage pulse fast, we have developed a nonlinear high voltage transmission line for transversely excited CO{sub 2} lasers. Fig.1 shows the electrical circuit of switching unit, pulse sharpening unit with nonlinear high voltage transmission line and discharge electrodes for TE-CO{sub 2} laser. The nonlinear high voltage transmission line is a 15-step LC ladder circuit that consists of linear inductors (L=6 {mu}H) and nonlinear BaTiO{sub 3} capacitors. Fig.2 shows a capacitance dependence on applied voltages. If an LC ladder circuit is constructed using a capacitor with the characteristics, the transmission velocity is fast at the high-voltage section and is slow at the low-voltage section. High voltage pulse with slow risetime is expected to be sharpen. The voltage and the current waveforms of the discharge measured at the point {open_quotes}c{close_quotes}. The risetime of 1{mu}s of the input voltage pulse was compressed to less than 200 ns at the output terminal of the LC ladder circuit and the outout pulse was applied to the discharge gap of the laser.

  18. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  19. Synchronization of Sub-Picosecond Electron and Laser Pulses

    SciTech Connect

    Rosenzweig, J.B.; Le Sage G.P.

    2000-08-15

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is subpicosecond, with tens of femtosecond synchronization implied for next-generation experiments. Typically, an RF electron accelerator is synchronized to a short pulse laser system by detecting the repetition signal of a laser oscillator, adjusted to an exact subharmonic of the linac RF frequency, and multiplying or phase locking this signal to produce the master RF clock. Pulse-to-pulse jitter characteristic of self-mode-locked laser oscillators represents a direct contribution to the ultimate timing jitter between a high intensity laser focus and electron beam at the interaction point, or a photocathode drive laser in an RF photoinjector. This timing jitter problem has been addressed most seriously in the context of the RF photoinjector, where the electron beam properties are sensitive functions of relative timing jitter. The timing jitter achieved in synchronized photocathode drive laser systems is near, or slightly below one picosecond. The ultimate time of arrival jitter of the beam at the photoinjector exit is typically a bit smaller than the photocathode drive-laser jitter due to velocity compression effects in the first RF cell of the gun. This tendency of the timing of the electron beam arrival at a given spatial point to lock to the RF lock is strongly reinforced by use of magnetic compression.

  20. ULTRASHORT LIGHT PULSES: Formation of subfemtosecond laser pulses in aperiodically poled nonlinear-optical crystals

    NASA Astrophysics Data System (ADS)

    Shutov, I. V.; Novikov, A. A.; Chirkin, A. S.

    2008-03-01

    The method of synthesis of ultrashort laser pulses in nonlinear aperiodically poled crystals based on the simultaneous generation of several higher optical harmonics is considered. The interaction of four waves with multiple frequencies involving three mutually coupled nonlinear three-frequency processes is studied. It is shown that by introducing intense laser radiation into a crystal, pulses of duration of the order of a few hundreds of attoseconds can be produced at the crystal output.

  1. Multiplexed Chirped Pulse Quantum Cascade Laser Measurements of Ammonia and Other Small Molecules

    NASA Astrophysics Data System (ADS)

    Picken, Craig; Langford, Nigel; Duxbury, Geoffrey

    2014-06-01

    Spectrometers based on Quantum Cascade (QC) lasers can be run in either continuous or pulsed operation. Although the instrumentation based upon the most recent versions of continuously operating QC lasers can have higher resolution than chirped lasers, using chirped pulse QC lasers can give an advantage when rapid changes in gas composition occur. For example, when jet engines are being tested, a variety of temperature dependent effects on the trace gas concentrations of the plume may be observed. Most pulsed QC lasers are operated in the down chirped mode, in which the chirp rate slows during the pulse. In our spectrometer the changes in frequency are recorded using two Ge etalons, one with a free spectral range of 0.0495 cm-1, and the other with a fringe spacing of 0.0195 cm-1.They can also be deployed in multiplex schemes in which two or more down-chirped lasers are used. In this paper we wish to show examples of the use of multiplexed chirped pulse lasers to allow overlapping spectra to be recorded. The examples of multiplex methods used are taken partly from measurements of 14NH3 and 15NH3 in the region from 1630 to 1622 cm-1, and partly from the use of other chirped pulse lasers operating in the 8 μm region. Among the effects seen are rapid passage effects caused by the rapid down-chirp, and the use of gases such as nitrogen to cause variation in the shape of the collisional broadened absorption lines.

  2. Pulsed laser processing of electronic materials in micro/nanoscale

    NASA Astrophysics Data System (ADS)

    Hwang, David Jen

    2005-08-01

    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  3. On the use of the cross section concept as applied to pulsed CO2 laser dynamics

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.

    1985-01-01

    The 'cross sections' which are commonly used in combination with the molecular vibrational level densities to describe induced transition rates are time dependent in a pulsed discharge. This greatly affects the relative rates of buildup of radiation at the various lines of a molecular gain medium in a nondispersive cavity, and the consequences for line selection by injection in a TEA-CO2 laser are discussed.

  4. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    DTIC Science & Technology

    2015-01-02

    passively mode-locked vertical-external-cavity surface- emitting lasers ( VECSELs ) [5, 6], quantum dot lasers with tapered gain sections [7], and...Ritchie, B. Kunert, B. Heinen, and W. Stolz, Ř.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation," Opt. Express 21

  5. Profile of Laser-Produced Acoustic Pulse in a Liquid.

    DTIC Science & Technology

    1983-10-12

    Tam, AppL Phys. Lett. 40, 310 (1982). 7. G. C. Wetsel , Jr., in Acoustic Imaging, Vol. 12, edited by E. A. Ash and C. R. Hill (Plenum, New York, 1982...p. 137. 8. G. C. Wetsel , "Photothermal Excitation of Elastic Waves by 10 ns Laser Pulses and Detection by Photoelastic Laser Beam Deflection," to

  6. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Possibility of generating femtosecond laser pulses by a deflection method

    NASA Astrophysics Data System (ADS)

    Isaakyan, A. R.; Kolchin, K. V.; Makshantsev, B. I.

    1993-05-01

    The transmission of a laser beam through a multiple-prism traveling-wave deflector is examined theoretically. Femtosecond laser pulses can be generated through the use of such a deflector. Possibilities for using a deflector to measure the shape of pulses with a femtosecond time resolution are discussed.

  7. Information coding of exciting laser pulses in an optical echo-processor

    SciTech Connect

    Rusanova, I A

    2013-07-31

    We report the possibility of controlling the distribution of quantum bits within an inhomogeneously broadened line of a resonant transition in recording and transforming information in optical echo-processors. We consider the efficiency of realisation of the elementary logic XOR gate based on a two-pulse excitation of a resonant medium with phase memory. The encoded information is incorporated into the temporal shape of laser pulses in the form of amplitude modulation of an 'echelon' of present ('1') and absent ('0') pulse-codes for obtaining more efficient logic elements that reduce the noise in a quantum communication channel. (optical information processing)

  8. Applying laser pulse stretching technique on photoacoustic imaging for efficiently delivering laser energy

    NASA Astrophysics Data System (ADS)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-02-01

    High-energy and short-duration outputs from lasers are desirable to improve the photoacoustic image quality when imaging deeply-seated lesions. In many clinical applications, optical fibers are used to couple the high-energy laser pulse to tissue. These high peak intensity pulses can damage an optical fiber input face if the damage threshold is exceeded. It is necessary to reduce the peak intensity to minimize the fiber damage and to delivery sufficient light for imaging. In this paper, a laser-pulse-stretching technique is introduced to reduce the peak intensity of laser pulses. To demonstrate the technique, an initial 17ns pulse was stretched to 37ns by a ring-cavity laser-pulse-stretching system, and the laser peak power reduced to 42%. The stretched pulse increased the fiber damage threshold by 1.5-fold. Three ultrasound transducers centered at 1.3MHz, 3.5MHz, 6MHz frequencies were simulated and the results showed that the photoacoustic signal of 0.5mm-diameter target obtained with 37ns pulse was about 98%, 91% and 80% respectively using the same energy as with the 17ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding ultrasound transducers showed that the image quality was not affected by stretching the pulse.

  9. Varied laser induced damage phenomena of gold coated gratings for pulse compression

    NASA Astrophysics Data System (ADS)

    Xia, Zhilin; Huang, Haopeng; Kong, Fanyu; Wang, Leilei; Jin, Yunxia

    2017-08-01

    In this paper, gold-coated gratings for pulse compression have been prepared and their laser damage experiments have been performed. Varied laser damage morphologies have been observed: when a 60 fs-pulsed laser with energy density slightly higher than the damage threshold was used, damage morphology with a characteristic of discrete distribution of small pits was appeared. These damage pits are linearly distributed at the junction of ridges and grooves. If the laser energy density is much higher than the damage threshold, the gold films was overall ablated and the grating structure disappeared. Besides, if the gold film has poor adhesion, it was peeled off. When a 450 ps-pulsed laser with energy density slightly higher than the damage threshold was used, part of grating ridges will be ablated and an obvious line exists between the ablated area and the unchanged area. In theory, the laser induced temperature field and stress field in gold-coated gratings were calculated based on the electromagnetic field using the finite element method. It is demonstrated that the temperature and thermal stress distribution characteristics are affected by the laser heating rate and the heat diffusion time (the calculated diffusion time ranges from 6 fs to 450 ps), which determines the laser damage characteristics. The possible damage drivers have electron hydrodynamic pressure, thermal ablation and thermal stress.

  10. High voltage ultrawide band pulse generator using Blumlein pulse forming line

    NASA Astrophysics Data System (ADS)

    Jin, Y. S.; Lim, S. W.; Cho, C. H.; Kim, J. S.; Kim, Y. B.; Lee, S. H.; Roh, Y.

    2012-04-01

    A high voltage ultrawide band pulse generation system has been developed to radiate intense and ultrawide band electric fields for the examination of effects of the electric fields on the operation of electronic devices. As major components of the system, a helical strip/wire type of air-cored pulse transformer and a triaxial type of Blumlein pulse forming line have been designed and fabricated to amplify and shape the output pulse, respectively. For the construction of a compact system, the pulse transformer and the Blumlein line are installed in a single cylindrical container. An ultrawide band TEM horn antenna has been fabricated to radiate the Blumlein output pulses to electronic devices. A number of experimental results demonstrate that the system is capable of providing an output pulse whose voltage is greater than 300 kV, pulse duration is ˜5 ns, and rise time is ˜500 ps with repetition rate of 10 Hz. The peak-to-peak value of electric field intensity of a radiated pulse is also measured to be approximately 42 kV/m at a distance of 10 m away from the antenna.

  11. High voltage ultrawide band pulse generator using Blumlein pulse forming line.

    PubMed

    Jin, Y S; Lim, S W; Cho, C H; Kim, J S; Kim, Y B; Lee, S H; Roh, Y

    2012-04-01

    A high voltage ultrawide band pulse generation system has been developed to radiate intense and ultrawide band electric fields for the examination of effects of the electric fields on the operation of electronic devices. As major components of the system, a helical strip∕wire type of air-cored pulse transformer and a triaxial type of Blumlein pulse forming line have been designed and fabricated to amplify and shape the output pulse, respectively. For the construction of a compact system, the pulse transformer and the Blumlein line are installed in a single cylindrical container. An ultrawide band TEM horn antenna has been fabricated to radiate the Blumlein output pulses to electronic devices. A number of experimental results demonstrate that the system is capable of providing an output pulse whose voltage is greater than 300 kV, pulse duration is ~5 ns, and rise time is ~500 ps with repetition rate of 10 Hz. The peak-to-peak value of electric field intensity of a radiated pulse is also measured to be approximately 42 kV/m at a distance of 10 m away from the antenna. © 2012 American Institute of Physics

  12. Pulse-duration dependent sequential double ionization by elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Deng, Yongju; Liu, Dan

    2016-05-01

    Using a fully classical model, we have studied sequential double ionization of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that the joint electron momentum distributions in the minor elliptical direction depend strongly on the pulse duration. From pulse number N = 4 to 10, the clustering regions of the joint electron momentum increase with the pulse duration. For even larger pulse durations, the clustering region does not increase further but the population of the joint electron momentum in these regions changes with the pulse duration. Back analysis of double ionization trajectories shows the phenomenon of multiple ionization bursts and the pulse duration-dependent multiple ionization bursts of the second electron is responsible for the evolution of the joint electron momentum distribution with the pulse duration.

  13. Emission properties of plasmas induced by near IR laser pulses in the far VUV

    NASA Astrophysics Data System (ADS)

    Khater, Mohamed

    2013-07-01

    Influence of pulsed laser energy on emission characteristics of laser plasmas induced in various inert atmospheres and pressures is demonstrated by emission spectroscopy in the far vacuum UV zone (around 100 nm). In this context, argon and helium were employed and their pressures were controlled in the range 0.005-5.0 mbar. A Q-switched Nd:YAG laser emitting in the near IR at 1064 nm was employed in the experiments. The laser energy was varied between 200 and 800 mJ and focused onto a reference steel sample within a vacuum-tight chamber. The radiation emitted from the line plasmas generated was recorded from a section located 2.5 mm from the target surface. Under any gas composition and pressure studied, line and background emission intensities as well as signal-to-background ratios showed significant dependence on the laser energy. For example, at 800 mJ the highest spectral line intensity was obtained in argon atmosphere at a pressure of about 0.5 mbar, while helium at the same pressure produced the largest signal-to-background ratio using lower laser pulse energy of 400 mJ. In any case, the nature and characteristics of laser plasma-based emission in the far vacuum UV are similar to those recorded in the UV-visible range.

  14. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  15. Plasma detector for TEA CO2 laser pulse measurement

    NASA Astrophysics Data System (ADS)

    Ichikawa, Y.; Yamanaka, M.; Mitsuishi, A.; Fujita, S.; Yamanaka, T.; Yamanaka, C.; Tsunawaki, Y.; Iwasaki, T.; Takai, M.

    1983-10-01

    Laser-pulse evolution can be detected by measuring the emf generated by fast electrons in a laser-produced plasma when the laser radiation is focused onto a solid metal target in a vacuum. Using this phenomenon a 'plasma detector' is constructed, and its characteristics for the TEA CO2 laser radiation of intensity 10 to the 9th to 10 to the 10th W/sq cm are investigated experimentally. The plasma detector operates at room temperature and is strong against laser damages. For the evacuated plasma detector down to 0.1 torr, a maximum output voltage of 90 V and a rise time shorter than 1 ns are observed. The plasma detector, therefore, can be used as a power monitor for laser pulses and as a trigger voltage source.

  16. O2^+ dissociation caused by an ultrashort intense laser pulse

    NASA Astrophysics Data System (ADS)

    Sayler, A. M.

    2005-05-01

    Laser-induced dissociation of O2^+ has been experimentally studied with ultrashort (˜50 fs) intense (10^14 to 10^15 W/cm^2) laser pulses at 790 nm using kinematically complete coincidence 3D momentum imaging. The resulting kinetic energy release (KER) distribution has several distinct peaks, each of which has a unique angular distribution. The lower KER features are peaked around the laser polarization, while at higher KER, dissociation perpendicular to the laser polarization is significant. For comparison, a theoretical study of O2^+ dissociation using the Electron-Nuclear Dynamics (END) approach with a laser pulse included in the time-dependent dynamics is underway. Preliminary results also indicate that ionization, which occurs predominantly at the high end of the intensity range, is strongly peaked along the laser polarization.

  17. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  18. Pulsed UV and ultrafast laser micromachining of surface structures

    NASA Astrophysics Data System (ADS)

    Apte, Paul; Sykes, Neil

    2015-07-01

    We describe and compare the cutting and patterning of various "difficult" materials using pulsed UV Excimer, picosecond and femtosecond laser sources. Beam delivery using both fast galvanometer scanners and scanning mask imaging are described. Each laser source has its own particular strengths and weaknesses, and the optimum choice for an application is also decided by financial constraints. With some materials notable improvements in process quality have been observed using femtosecond lasers compared to picosecond lasers, which makes for an interesting choice now that cost effective reliable femtosecond systems are increasingly available. By contrast Pulsed UV Excimer lasers offer different imaging characteristics similar to mask based Lithographic systems and are particularly suited to the processing of polymers. We discuss optimized beam delivery techniques for these lasers.

  19. Pulse duration dependence of atomic sequential double ionization by circular laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Chen, Liangyuan; Li, Yingbin

    2016-09-01

    Using classical ensemble method, we have investigated the pulse duration dependence of sequential double ionization (SDI) of Ar atoms driven by circularly polarized laser pulses. The results show that the ion momentum distribution of Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from single-ring to double-ring structure, and finally to the single-ring structure. Back analysis of double ionization trajectories shows that the variation of the ring structure originates from the dependence of the ionization time of the second electron on the pulse duration. Moreover, our calculations clearly manifest the subcycle electron emission in sequential double ionization by circularly polarized laser pulses.

  20. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Composition and dynamics of an erosion plasma produced by microsecond laser pulses

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Sebrant, A. Yu; Stepanova, M. A.

    1995-08-01

    The ion and energy compositions were determined and the dynamics was studied of an erosion plume formed by microsecond CO2 laser pulses incident on a graphite target. The ionic emission lines were used to find the electron density and temperature of the plasma on the target surface. The temperature of the plasma source did not change throughout the line emission time (4 μs). At the plasma recombination stage the lines of the C II, C III, and C IV ions were accompanied by bands of the C2 molecule near the target surface and also near the surface of an substrate when a plasma flow interacted with it. Ways were found for controlling the plume expansion anisotropy and for producing plasma flows with controlled parameters by selection of the conditions during formation of a quasisteady erosion plasma flow.

  1. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  2. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  3. Fluorescence liftime imaging (FLIM) using ps-pulsed diode lasers in laser scanning microscopes

    NASA Astrophysics Data System (ADS)

    Ruck, Angelika C.; Dolp, Frank; Happ, Claudia; Steiner, Rudolf; Beil, Michael

    2003-06-01

    A setup consisting on a laser scanning microscope equipped with appropriate detection units was developed for time-resolved intracellular fluorescence spectroscopy and fluorescence lifetime imaging (FLIM) for on-line detection of structural changes of various biomolecules. Short-pulsed excitation was performed with a diode laser which emits pulses at 398 nm with 70 ps duration. The laser was coupled to the laser scanning microscope. For time resolved spectroscopy a setup consisting of an Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module was used to determine the fluorescence lifetime from single spots and to record lifetime images (τ-mapping). The time-resolved fluorescence characteristics of 5-ALA (5-aminolevulinic-acid), as well as 5-ALAhe (5-aminolevulinic-acid-hexylester)- induced protoporphyrine IX (PPIX) were investigated before and during PDT with subcellular resolution. For cells which were incubated with 5-ALA, a component with a fluorescence lifetime of about 7 ns was correlated with a structured fluorescence, which probably coincides with mitochondria, whereas a shorter lifetime was found in the cytoplasm. In the case of 5-ALAhe the lifetime of PPIX was longer, which could be due to different localization. During PDT the component with the longer lifetime completely vanished, whereas the shorter liftime was retained. It seems that FLIM is a valuable method to selectively identify and localize the photodynamically active photosensitizer.

  4. Analysis on volume grating induced by femtosecond laser pulses.

    PubMed

    Zhou, Keya; Guo, Zhongyi; Ding, Weiqiang; Liu, Shutian

    2010-06-21

    We report on a kind of self-assembled volume grating in silica glass induced by tightly focused femtosecond laser pulses. The formation of the volume grating is attributed to the multiple microexplosion in the transparent materials induced by the femtosecond pulses. The first order diffractive efficiency is in dependence on the energy of the pulses and the scanning velocity of the laser greatly, and reaches as high as 30%. The diffraction pattern of the fabricated grating is numerically simulated and analyzed by a two dimensional FDTD method and the Fresnel Diffraction Integral. The numerical results proved our prediction on the formation of the volume grating, which agrees well with our experiment results.

  5. Fast gas switch for characterizing laser output pulses.

    PubMed

    Anderholm, N C

    1972-09-01

    A device is described that allows detailed and sensitive examination of the precursors to both nanosecond and possibly picosecond laser pulses without damaging detectors. A one-to-one telescope, constructed with lenses with focal lengths 5.0 cm and which may be pressurized to 800-Torr argon gas, is used to demonstrate the operation. It is shown that breakdown in the gas, at times before the peak power of the pulses, absorbs the energy allowing only the early portion of the laser pulse to pass unattenuated. Energy loss is observed at argon pressures below the threshold for observation of nonlinear transmission (gas breakdown).

  6. Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm

    NASA Technical Reports Server (NTRS)

    Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.

    1998-01-01

    We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.

  7. Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser

    NASA Astrophysics Data System (ADS)

    Honea, Eric; Savage-Leuchs, Matthias; Bowers, Mark S.; Yilmaz, Tolga; Mead, Roy

    2013-03-01

    We describe a pulsed blue (485 nm) laser source based on frequency quadrupling a pulsed Tm fiber laser. Up to 1.2 W at 485 nm was generated with an M2 of 1.3. At 10 kHz pulse repetition frequency, the output pulse at 485 nm was 65 ns FWHM resulting in an estimated peak power of 1.8 kW. We anticipate further improvements in power scaling with higher power Tm fiber lasers and improved conversion efficiency to the blue with optimized AR coatings and nonlinear optical crystals.

  8. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Goswami, Tapas; Karthick Kumar, S. K.; Dutta, Aveek; Goswami, Debabrata

    2009-06-01

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H 3 + and C5H 5 + in the case of negatively chirped pulses and C6H 5 + in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  9. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses.

    PubMed

    Goswami, Tapas; Karthick Kumar, S K; Dutta, Aveek; Goswami, Debabrata

    2009-06-12

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H3+ and C5H5+ in the case of negatively chirped pulses and C6H5+ in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  10. Retinal Injuries From Single and Multiple Picosecond Laser Pulses

    DTIC Science & Technology

    1994-04-30

    cell diameter -10 pm) can experience a pressure transient of >22 Kbar when the melanin granules contained within the cells are exposed to these laser...0719 Bolling AFB DC 20332-0001 Dr Walter KozumboF 11. SUPPLEMENTARY NOTES 60iia oontais~u solar -, plates: All D210 Mproduot- ioins ull. be 12 blaokSn...Maximum 200 words) We investigate laser-induced shock waves from melanin particles as a possible cause of retinal injury from ultrashort pulse laser

  11. Power-scalable subcycle pulses from laser filaments

    PubMed Central

    Voronin, A.A.; Zheltikov, A.M.

    2017-01-01

    Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-established technology of modern laser science. Extending these methods to pulses with high peak powers, which become available due to the rapid progress of laser technologies, is, however, limited by the universal physical principles. With the ratio P/Pcr of the peak power of an ultrashort laser pulse, P, to the critical power of self-focusing, Pcr, playing the role of the fundamental number-of-particles integral of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the principle of constant P/Pcr. We identify filamentation self-compression scaling strategies whereby subcycle field waveforms with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds of Pcr. PMID:28367980

  12. Power-scalable subcycle pulses from laser filaments

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Zheltikov, A. M.

    2017-04-01

    Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-established technology of modern laser science. Extending these methods to pulses with high peak powers, which become available due to the rapid progress of laser technologies, is, however, limited by the universal physical principles. With the ratio P/Pcr of the peak power of an ultrashort laser pulse, P, to the critical power of self-focusing, Pcr, playing the role of the fundamental number-of-particles integral of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the principle of constant P/Pcr. We identify filamentation self-compression scaling strategies whereby subcycle field waveforms with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds of Pcr.

  13. Short pulse generation by laser slicing at NSLSII

    SciTech Connect

    Yu, L.; Blednykh, A.; Guo, W.; Krinsky, S.; Li, Y.; Shaftan, T.; Tchoubar, O.; Wang, G.; Willeke, F.; Yang, L.

    2011-03-28

    We discuss an upgrade R&D project for NSLSII to generate sub-pico-second short x-ray pulses using laser slicing. We discuss its basic parameters and present a specific example for a viable design and its performance. Since the installation of the laser slicing system into the storage ring will break the symmetry of the lattice, we demonstrate it is possible to recover the dynamical aperture to the original design goal of the ring. There is a rapid growth of ultrafast user community interested in science using sub-pico-second x-ray pulses. In BNL's Short Pulse Workshop, the discussion from users shows clearly the need for a sub-pico-second pulse source using laser slicing method. In the proposal submitted following this workshop, NSLS team proposed both hard x-ray and soft x-ray beamlines using laser slicing pulses. Hence there is clearly a need to consider the R&D efforts of laser slicing short pulse generation at NSLSII to meet these goals.

  14. Power-scalable subcycle pulses from laser filaments.

    PubMed

    Voronin, A A; Zheltikov, A M

    2017-04-03

    Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-established technology of modern laser science. Extending these methods to pulses with high peak powers, which become available due to the rapid progress of laser technologies, is, however, limited by the universal physical principles. With the ratio P/Pcr of the peak power of an ultrashort laser pulse, P, to the critical power of self-focusing, Pcr, playing the role of the fundamental number-of-particles integral of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the principle of constant P/Pcr. We identify filamentation self-compression scaling strategies whereby subcycle field waveforms with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds of Pcr.

  15. Pulsed frequency-shifted feedback laser for laser guide stars: intracavity preamplifier.

    PubMed

    Pique, Jean-Paul; Fesquet, Vincent; Jacob, Sylvie

    2011-11-20

    Intensive use of laser guide stars with the new generation of extremely large telescopes and hypertelescopes will require the use of more efficient lasers to surmount novel limitations and aberrations. The pulsed frequency-shifted feedback (FSF) laser we have developed overcomes the saturation of sodium atoms and solves the new problems. This work presents a highly efficient solution for operating pulsed FSF lasers. For the first time, an intracavity preamplifier achieves a gain of 10(4) and more than 40 μJ per pulse, with a near-diffraction-limited beam and without amplified spontaneous emission. Endurance tests have shown that good performance is maintained over several hundred hours.

  16. Laser ablation of iron: A comparison between femtosecond and picosecond laser pulses

    SciTech Connect

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-08-28

    In this study, a comparison between femtosecond (fs) and picosecond (ps) laser ablation of electrolytic iron was carried out in ambient air. Experiments were conducted using a Ti:sapphire laser that emits radiation at 785 nm and at pulse widths of 110 ps and 130 fs, before and after pulse compression, respectively. Ablation rates were calculated from the depth of craters produced by multiple laser pulses incident normally to the target surface. Optical and scanning electron microscopy showed that picosecond laser pulses create craters that are deeper than those created by the same number of femtosecond laser pulses at the same fluence. Most of the ablated material was ejected from the ablation site in the form of large particles (few microns in size) in the case of picosecond laser ablation, while small particles (few hundred nanometers) were produced in femtosecond laser ablation. Thermal effects were apparent at high fluence in both femtosecond and picosecond laser ablation, but were less prevalent at low fluence, closer to the ablation threshold of the material. The quality of craters produced by femtosecond laser ablation at low fluence is better than those created at high fluence or using picosecond laser pulses.

  17. Development of pulse laser processing for mounting fiber Bragg grating

    SciTech Connect

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  18. Control of relativistic ionization by polarization of short laser pulses

    NASA Astrophysics Data System (ADS)

    Krajewska, K.; Cajiao Vélez, F.; Kamiński, J. Z.

    2017-07-01

    The Born approximation is applied to study the high-energy ionization that is driven by short, relativistically intense laser pulses. Assuming the fixed radiation flow through a surface of the laser focus, we investigate the optimal conditions for generating most energetic photoelectrons. We demonstrate that, under such constraint, one can control the photoelectron spectra using the polarization of the driving field. More precisely, the most energetic electrons are produced for a nearly linear polarization of the laser field. At the same time, the resulting electrons are detected in a narrow angular window which is of great importance for their potential applications; one of them being the generation of attosecond electron pulses.

  19. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  20. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  1. Propagation of intense laser pulses in strongly magnetized plasmas

    SciTech Connect

    Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.

    2015-06-01

    Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.

  2. Development of pulse laser processing for mounting fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  3. Size control of nanoparticles by multiple-pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Nan, Junyi; Zeng, Heping

    2017-04-01

    Bare nanoparticles synthesized by laser ablation in water have found their application in catalysis, spectroscopy and biomedical research fields. In this perspective, how to efficiently produce stable nanoparticles with controllable size is an important topic and has attracted a lot of interests. Here, we introduce a multiple-pulse laser as the ablation source. By changing the number of sub-pulses, the average size of nanoparticles can be tuned in a broad range from ∼120 nm to ∼4 nm. The demonstration in this article may offer a new approach to fabricate ultrafine nanostructures and also help the scientific study of the mechanism in laser ablation.

  4. Transforming graphite to nanoscale diamonds by a femtosecond laser pulse

    SciTech Connect

    Nueske, R.; Jurgilaitis, A.; Enquist, H.; Harb, M.; Larsson, J.; Fang, Y.; Haakanson, U.

    2012-01-23

    Formation of cubic diamond from graphite following irradiation by a single, intense, ultra-short laser pulse has been observed. Highly oriented pyrolytic graphite (HOPG) samples were irradiated by a 100 fs pulse with a center wavelength of 800 nm. Following laser exposure, the HOPG samples were studied using Raman spectroscopy of the sample surface. In the laser-irradiated areas, nanoscale cubic diamond crystals have been formed. The exposed areas were also studied using grazing incidence x-ray powder diffraction showing a restacking of planes from hexagonal graphite to rhombohedral graphite.

  5. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  6. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  7. Pulsed delivery of laser energy in experimental thermal retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Pankratov, Michail M.

    1990-06-01

    Retinal lesions produced with a pulsed laser beam of 1-20 kHz frequency and 10-100% duty cycle were compared with lesions produced with a continuous wave (cw) laser of the same peak power and total energy. Photocoagulation was applied to the retina of three black pigmented rabbits using krypton red laser (647.1 nm) equipped with an acousto-optical modulator to convert cw laser emission to a pulsating beam. An optical fiber fed the laser beam into an optical system delivering a collimated beam of predetermined divergence; the animal's eye focused this beam to a 50-pm spot on the retina. Peak power was kept constant at 0.2 W, and energy was kept constant at 20 mJ. After 7 months the animals were sacrificed and retinal tissue examined by light microscopy. The central section of each lesion was identified and photographed. For lesions with the same energy per pulse and the same pulse duration, the most influential factor, in the frequency range of 1-20 kHz, appeared to be the duty cycle: the smaller the duty cycle, the smaller the lesion, and vice versa. In other words, the shorter the time interval between consecutive pulses, the larger were the pulsed laser lesions.

  8. Femtosecond pulsed laser ablation of thin gold film

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, K.; Tan, B.; Ngoi, B. K. A.

    2002-04-01

    Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/ e2 diameter). The sample was translated at a linear speed of 400 μm/ s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.

  9. Laser hazard analysis for various candidate diode lasers associated with the high resolution pulsed scanner.

    SciTech Connect

    Augustoni, Arnold L.

    2004-10-01

    A laser hazard analysis and safety assessment was performed for each various laser diode candidates associated with the High Resolution Pulse Scanner based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers. A theoretical laser hazard analysis model for this system was derived and an Excel{reg_sign} spreadsheet model was developed to answer the 'what if questions' associated with the various modes of operations for the various candidate diode lasers.

  10. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  11. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    PubMed

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  12. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  13. Measuring the effective pulse duration of nanosecond and femtosecond laser pulses for laser-induced damage experiments

    NASA Astrophysics Data System (ADS)

    Zorila, Alexandru; Rusen, Laurentiu; Stratan, Aurel; Nemes, George

    2013-05-01

    We report on our approach to measure the quantity named effective pulse duration as defined in the ISO 21254-1:2011 standard, which deals with laser-induced damage (LID) threshold measurements. The approach is applied to measure pulses from two laser sources: an injection-seeded electro-optically Q-switched Nd:YAG nanosecond system with 10-Hz pulse repetition frequency, and a fully integrated Ti:sapphire laser with 150-400 fs and 2-kHz pulse repetition frequency. For comparison, the full-width-half-maximum (FWHM) of the same pulses is also measured. The analysis and description of the measurement process, the experimental results, and the corresponding uncertainties are presented. A smaller combined uncertainty is obtained for the effective pulse duration than for the FWHM-defined pulse duration for each time scale involved in experiments. This suggests that the effective pulse duration is the appropriate parameter to characterize the pulse duration in LID experiments.

  14. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Navratil, P.; Peterka, P.; Honzatko, P.; Kubecek, V.

    2017-03-01

    Self-induced laser line sweeping of various regimes of sweep direction is reported for an experimental ytterbium fiber laser. The regimes involve sweeping from shorter to longer wavelengths (1076~\\text{nm}\\to 1083 nm)—so-called normal self-sweeping; from longer to shorter wavelengths (1079~\\text{nm}\\to 1073 nm)—so-called reverse self-sweeping; and a mixed regime in which a precarious balance of the normal and reverse sweeping exists and the sweep direction can change between consecutive sweeps. The regimes of sweeping were selected by changing the pump wavelength only. A detailed explanation of this sweep direction dynamics is presented based on a semi-empirical model. This model also provides a way to predict the sweep direction of fiber lasers based on other rare-earth-doped laser media.

  15. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology

    NASA Astrophysics Data System (ADS)

    Mohanraj, J.; Velmurugan, V.; Sivabalan, S.

    2016-10-01

    Ultrashort pulsed laser is an indispensable tool for the evolution of photonic technology in the present and future. This laser has been progressing tremendously with new pulse regimes and incorporating novel devices inside its cavity. Recently, a nanomaterial based saturable absorber (SA) was used in ultrafast laser that has improved the lasing performance and caused a reduction in the physical dimension when compared to conventional SAs. To date, the nanomaterials that are exploited for the development of SA devices are carbon nanotubes, graphene, topological insulators, transition metal dichalcogenides (TMDs) and black phosphorous. These materials have unique advantages such as high nonlinear optical response, fiber compatibility and ease of fabrication. In these, TMDs are prominent and an emerging two-dimensional nanomaterial for photonics and optoelectronics applications. Therefore, we review the reports of Q-switched and mode-locked pulsed lasers using TMDs (specifically MoS2, MoSe2, WS2 and WSe2) based SAs.

  16. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  17. Ultrashort Pulse Laser Accelerated Proton Beams for First Radiobiological Applications

    SciTech Connect

    Schramm, U.; Zeil, K.; Beyreuther, E.; Bussmann, M.; Cowan, T. E.; Kluge, T.; Kraft, S.; Metzkes, J.; Sauerbrey, R.; Richter, C.; Enghardt, W.; Pawelke, J.; Karsch, L.; Laschinsky, L.; Naumburger, D.

    2010-11-04

    We report on the generation of proton pulses with maximum energies exceeding 15 MeV by means of the irradiation of few micron thick metal foils by ultrashort (30 fs) laser pulses at a power level of 100 TW. In contrast to the well known situation for longer laser pulses, here, a near linear scaling of the maximum proton energy with laser power can be found. Aiming for radiobiological applications the long and short term stability of the laser plasma accelerator as well as a compact energy selection and dosimetry system is presented. The first irradiation of in vitro tumour cells showing dose dependent biological damage is demonstrated paving the way for systematic radiobiological studies.

  18. Medical applications of ultra-short pulse lasers

    SciTech Connect

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment community perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.

  19. Investigation the interaction between the pulsed ultraviolet laser beams and PEDOT:PSS/graphene composite films

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Chung, Chien-Kai; Chang, Tien-Li

    2015-11-01

    This research aims to investigate the interaction between pulsed ultraviolet (UV) laser beams and transparent PEDOT:PSS/graphene composite films. The laser ablated microstructure on film surfaces provides the electrical isolation and prevents the electrical contact from each location for the projected capacitive touch screen. Before the laser processing, the surface roughness, microhardness, spectrum and cross-sectional view of PEDOT:PSS/graphene composite film were measured by an atomic force microscope, a nanoindenter, a spectrometer and a scanning electron microscope, respectively. The focused UV laser beam was irradiated along line patterns with an overlapping rate of 60% and the applied laser fluences much over the ablation thresholds of 1.27 J/cm2 to 3.82 J/cm2. The surface morphology, three-dimensional topography, and cross-sectional profile of isolated lines and electrode structures after laser microstructuring were measured by a confocal laser scanning microscope. By increasing the laser fluence from 1.27 J/cm2 to 3.82 J/cm2, the ablated line widths and depths increased from 12.17 ± 0.24 μm to 21 ± 0.37 μm and from 190 ± 9 nm to 227 ± 15 nm, respectively. Moreover, the ablated lines of microstructuring electrodes had a clear and regular ablated edge quality.

  20. Automatic Rejection Of Multimode Laser Pulses

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Esproles, Carlos

    1991-01-01

    Characteristic modulation detected, enabling rejection of multimode signals. Monitoring circuit senses multiple longitudinal mode oscillation of transversely excited, atmospheric-pressure (TEA) CO2 laser. Facility developed for inclusion into coherent detection laser radar (LIDAR) system. However, circuit described of use in any experiment where desireable to record data only when laser operates in single longitudinal mode.