Sample records for laser marking process

  1. High contrast laser marking of alumina

    NASA Astrophysics Data System (ADS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  2. An embedded laser marking controller based on ARM and FPGA processors.

    PubMed

    Dongyun, Wang; Xinpiao, Ye

    2014-01-01

    Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking.

  3. An Embedded Laser Marking Controller Based on ARM and FPGA Processors

    PubMed Central

    Dongyun, Wang; Xinpiao, Ye

    2014-01-01

    Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking. PMID:24772028

  4. Surface laser marking optimization using an experimental design approach

    NASA Astrophysics Data System (ADS)

    Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.

    2017-04-01

    Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.

  5. Everlasting Dark Printing on Alumina by Laser

    NASA Astrophysics Data System (ADS)

    Penide, J.; Quintero, F.; Arias-González, F.; Fernández, A.; del Val, J.; Comesaña, R.; Riveiro, A.; Lusquiños, F.; Pou, J.

    Marks or prints are needed in almost every material, mainly for decorative or identification purposes. Despite alumina is widely employed in many different industries, the need of printing directly on its surface is still a complex problem. In this sense, lasers have largely demonstrated their high capacities to mark almost every material including ceramics, but performing dark permanent marks on alumina is still an open challenge. In this work we present the results of a comprehensive experimental analysis on the process of marking alumina by laser. Four different laser sources were used in this study: a fiber laser (1075 nm) and three diode pumped Nd:YVO4 lasers emitting at near-infrared (1064 nm), visible (532 nm) and ultraviolet (355 nm) wavelengths, respectively. The results obtained with the four lasers were compared and physical processes involved were explained in detail. Colorimetric analyses allowed to identify the optimal parameters and conditions to produce everlasting and high contrast marks on alumina.

  6. Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine.

    PubMed

    Suter, Melissa J; Jillella, Priyanka A; Vakoc, Benjamin J; Halpern, Elkan F; Mino-Kenudson, Mari; Lauwers, Gregory Y; Bouma, Brett E; Nishioka, Norman S; Tearney, Guillermo J

    2010-02-01

    Random biopsy esophageal surveillance can be subject to sampling errors, resulting in diagnostic uncertainty. Optical frequency domain imaging (OFDI) is a high-speed, 3-dimensional endoscopic microscopy technique. When deployed through a balloon-centering catheter, OFDI can automatically image the entire distal esophagus (6.0 cm length) in approximately 2 minutes. To test a new platform for guided biopsy that allows the operator to select target regions of interest on an OFDI dataset, and then use a laser to mark the esophagus at corresponding locations. The specific goals include determining the optimal laser parameters, testing the accuracy of the laser marking process, evaluating the endoscopic visibility of the laser marks, and assessing the amount of mucosal damage produced by the laser. Experimental study conducted in 5 swine in vivo. Massachusetts General Hospital. Success rate, including endoscopic visibility of laser marks and accuracy of the laser marking process for selected target sites, and extent of the thermal damage caused by the laser marks. All of the laser-induced marks were visible by endoscopy. Target locations were correctly marked with a success rate of 97.07% (95% confidence interval, 89.8%-99.7%). Thermal damage was limited to the superficial layers of the mucosa and was observed to partially heal within 2 days. An animal study with artificially placed targets to simulate pathology. The study demonstrates that laser marking of esophageal sites identified in comprehensive OFDI datasets is feasible and can be performed with sufficient accuracy, precision, and visibility to guide biopsy in vivo.

  7. Laser marking as environment technology

    NASA Astrophysics Data System (ADS)

    Sobotova, Lydia; Badida, Miroslav

    2017-11-01

    The contribution deals with the laser marking as one of the progressive and environment friendly technologies with utilisation in many branches of industry. Engraving and other types of laser marking of different types of materials are very actual technologies these days. Laser marking decreases the waste creation in comparison with the other classical marking technologies, which use paintings or created chips. In this experimental investigation the laser marking surface texturing of material AL99,7 according to STN 42 4003:1993-08 (STN EN 573) has been conducted. The laser marking machine TruMark 6020 and software TruTops Mark were used. Laser surface texturing after laser marking has been realised under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of engraving or annealing surfaces has been performed using scanning electron microscopy (SEM) technique. The evaluation of roughness of engraved surfaces has been realized according to STN EN ISO 4287 by using Surftest SJ 301. The aim of the contribution was to show how different laser parameters affect the surface texture and colour change of metallic materials while creating minimal waste.

  8. Image-Guided Biopsy in the Esophagus through Comprehensive Optical Frequency Domain Imaging and Laser Marking: A Study in Living Swine

    PubMed Central

    Suter, Melissa J.; Jillella, Priyanka A.; Vakoc, Benjamin J.; Halpern, Elkan F.; Mino-Kenudson, Mari; Lauwers, Gregory Y.; Bouma, Brett E.; Nishioka, Norman S.; Tearney, Guillermo J.

    2010-01-01

    Background Random biopsy esophageal surveillance can be subject to sampling errors, resulting in diagnostic uncertainty. Optical frequency domain imaging (OFDI) is a high-speed, three-dimensional endoscopic microscopy technique. When deployed through a balloon-centering catheter, OFDI can automatically image the entire distal esophagus (6.0 cm length) in approximately 2 minutes. Objective To test a new platform for guided biopsy that allows the operator to select target regions of interest on an OFDI dataset, and then use a laser to mark the esophagus at corresponding locations. The specific goals include determining the optimal laser parameters, testing the accuracy of the laser marking process, evaluating the endoscopic visibility of the laser marks, and assessing the amount of mucosal damage produced by the laser. Design Experimental study conducted in five swine in vivo. Setting Massachusetts General Hospital. Main Outcome Measurements Success rate, including endoscopic visibility of laser marks and accuracy of the laser marking process for selected target sites, and extent of the thermal damage caused by the laser marks. Results All of the laser-induced marks were visible by endoscopy. Target locations were correctly marked with a success rate of 97.07% (95% CI, 89.8%-99.7%). Thermal damage was limited to the superficial layers of the mucosa and was observed to partially heal within 2 days. Limitations An animal study with artificially placed targets to simulate pathology. Conclusions The study demonstrates that laser marking of esophageal sites identified in comprehensive OFDI datasets is feasible and can be performed with sufficient accuracy, precision, and visibility to guide biopsy in vivo. PMID:19879573

  9. Advanced Q-switched DPSS lasers for ID-card marking

    NASA Astrophysics Data System (ADS)

    Hertwig, Michael; Paster, Martin; Terbrueggen, Ralf

    2008-02-01

    Increased homeland security concerns across the world have generated a strong demand for forgery-proof ID documents. Manufacturers currently employ a variety of high technology techniques to produce documents that are difficult to copy. However, production costs and lead times are still a concern when considering any possible manufacturing technology. Laser marking has already emerged as an important tool in the manufacturer's arsenal, and is currently being utilized to produce a variety of documents, such as plastic ID cards, drivers' licenses, health insurance cards and passports. The marks utilized can range from simple barcodes and text to high resolution, true grayscale images. The technical challenges posed by these marking tasks include delivering adequate mark legibility, minimizing substrate burning or charring, accurately reproducing grayscale data, and supporting the required process throughput. This article covers the advantages and basic requirements on laser marking of cards and reviews how laser output parameters affect marking quality, speed and overall process economics.

  10. The research of laser marking control technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qiue; Zhang, Rong

    2009-08-01

    In the area of Laser marking, the general control method is insert control card to computer's mother board, it can not support hot swap, it is difficult to assemble or it. Moreover, the one marking system must to equip one computer. In the system marking, the computer can not to do the other things except to transmit marking digital information. Otherwise it can affect marking precision. Based on traditional control methods existed some problems, introduced marking graphic editing and digital processing by the computer finish, high-speed digital signal processor (DSP) control marking the whole process. The laser marking controller is mainly contain DSP2812, digital memorizer, DAC (digital analog converting) transform unit circuit, USB interface control circuit, man-machine interface circuit, and other logic control circuit. Download the marking information which is processed by computer to U disk, DSP read the information by USB interface on time, then processing it, adopt the DSP inter timer control the marking time sequence, output the scanner control signal by D/A parts. Apply the technology can realize marking offline, thereby reduce the product cost, increase the product efficiency. The system have good effect in actual unit markings, the marking speed is more quickly than PCI control card to 20 percent. It has application value in practicality.

  11. Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.

    PubMed

    Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R

    2016-12-01

    Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.

  12. Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Xia-Shuang; He, Wei-Ping; Lei, Lei; Wang, Jian; Guo, Gai-Fang; Zhang, Teng-Yun; Yue, Ting

    2016-03-01

    Precise miniaturization of 2D Data Matrix (DM) Codes on Aluminum alloy formed by raster mode laser direct part marking is demonstrated. The characteristic edge over-burn effects, which render vector mode laser direct part marking inadequate for producing precise and readable miniature codes, are minimized with raster mode laser marking. To obtain the control mechanism for the contrast and print growth of miniature DM code by raster laser marking process, the temperature field model of long pulse laser interaction with material is established. From the experimental results, laser average power and Q frequency have an important effect on the contrast and print growth of miniature DM code, and the threshold of laser average power and Q frequency for an identifiable miniature DM code are respectively 3.6 W and 110 kHz, which matches the model well within normal operating conditions. In addition, the empirical model of correlation occurring between laser marking parameters and module size is also obtained, and the optimal processing parameter values for an identifiable miniature DM code of different but certain data size are given. It is also found that an increase of the repeat scanning number effectively improves the surface finish of bore, the appearance consistency of modules, which has benefit to reading. The reading quality of miniature DM code is greatly improved using ultrasonic cleaning in water by avoiding the interference of color speckles surrounding modules.

  13. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    NASA Astrophysics Data System (ADS)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-01

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  14. Laser marking as a result of applying reverse engineering

    NASA Astrophysics Data System (ADS)

    Mihalache, Andrei; Nagîţ, Gheorghe; Rîpanu, Marius Ionuţ; Slǎtineanu, Laurenţiu; Dodun, Oana; Coteaţǎ, Margareta

    2018-05-01

    The elaboration of a modern manufacturing technology needs a certain quantum of information concerning the part to be obtained. When it is necessary to elaborate the technology for an existing object, such an information could be ensured by using the principles specific to the reverse engineering. Essentially, in the case of this method, the analysis of the surfaces and of other characteristics of the part must offer enough information for the elaboration of the part manufacturing technology. On the other hand, it is known that the laser marking is a processing method able to ensure the transfer of various inscriptions or drawings on a part. Sometimes, the laser marking could be based on the analysis of an existing object, whose image could be used to generate the same object or an improved object. There are many groups of factors able to affect the results of applying the laser marking process. A theoretical analysis was proposed to show that the heights of triangles obtained by means of a CNC marking equipment depend on the width of the line generated by the laser spot on the workpiece surface. An experimental research was thought and materialized to highlight the influence exerted by the line with and the angle of lines intersections on the accuracy of the marking process. By mathematical processing of the experimental results, empirical mathematical models were determined. The power type model and the graphical representation elaborated on the base of this model offered an image concerning the influences exerted by the considered input factors on the marking process accuracy.

  15. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actualmore » experimental observations.« less

  16. Effect of fibre laser marking on surface properties and corrosion resistance of a Fe-Ni-Cr alloy

    NASA Astrophysics Data System (ADS)

    Astarita, Antonello; Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla; Squillace, Antonino; Scherillo, Fabio

    2017-10-01

    Fiber laser techniques are increasing their use in many applications, including modification of material surface properties. In particular they are often used for materials' marking as a non-contact processing. In spite of this, the impact of the laser beam on the surface causes metallurgical and morphological changes. The developments during the laser-material interaction can also affect other surface properties, especially corrosion properties which are crucial in the case of Iron-Nickel alloys. Effect of laser marking on a Fe-Cr-Ni alloy using a Tm-fibre laser (IPG Photonics TRL1904; maximum power: 50W, wavelength: 1904 nm), is described in this paper. In order to evaluate the effect of the laser on corrosion properties a specific ageing test in salt spray has been performed. Moreover, superficial morphology analyses have been performed on samples before and after corrosion tests. Possibilities and limitations of laser marking on these alloys have been discussed, in particular from the point of view of the marked surface corrosion resistance preservation.

  17. Part Marking and Identification Materials' for MISSE

    NASA Technical Reports Server (NTRS)

    Roxby, Donald; Finckenor, Miria M.

    2008-01-01

    The Materials on International Space Station Experiment (MISSE) is being conducted with funding from NASA and the U.S. Department of Defense, in order to evaluate candidate materials and processes for flight hardware. MISSE modules include test specimens used to validate NASA technical standards for part markings exposed to harsh environments in low-Earth orbit and space, including: atomic oxygen, ultraviolet radiation, thermal vacuum cycling, and meteoroid and orbital debris impact. Marked test specimens are evaluated and then mounted in a passive experiment container (PEC) that is affixed to an exterior surface on the International Space Station (ISS). They are exposed to atomic oxygen and/or ultraviolet radiation for a year or more before being retrieved and reevaluated. Criteria include percent contrast, axial uniformity, print growth, error correction, and overall grade. MISSE 1 and 2 (2001-2005), MISSE 3 and 4 (2006-2007), and MISSE 5 (2005-2006) have been completed to date. Acceptable results were found for test specimens marked with Data Matrix(TradeMark) symbols by Intermec Inc. and Robotic Vision Systems Inc using: laser bonding, vacuum arc vapor deposition, gas assisted laser etch, chemical etch, mechanical dot peening, laser shot peening, laser etching, and laser induced surface improvement. MISSE 6 (2008-2009) is exposing specimens marked by DataLase(Registed TradeMark), Chemico technologies Inc., Intermec Inc., and tesa with laser-markable paint, nanocode tags, DataLase and tesa laser markings, and anodized metal labels.

  18. The Effects of Laser Marking and Symbol Etching on the Fatigue Life of Medical Devices.

    PubMed

    Ogrodnik, P J; Moorcroft, C I; Wardle, P

    2013-01-01

    This paper examines the question;" does permanent laser marking affect the mechanical performance of a metallic medical component?" The literature review revealed the surprising fact that very little has been presented or studied even though intuition suggests that its effect could be detrimental to a component's fatigue life. A brief investigation of laser marking suggests that defects greater than 25 μm are possible. A theoretical investigation further suggests that this is unlikely to cause issues with relation to fast fracture but is highly likely to cause fatigue life issues. An experimental investigation confirmed that laser marking reduced the fatigue life of a component. This combination of lines of evidence suggests, strongly, that positioning of laser marking is highly critical and should not be left to chance. It is further suggested that medical device designers, especially those related to orthopaedic implants, should consider the position of laser marking in the design process. They should ensure that it is in an area of low stress amplitude. They should also ensure that they investigate worst-case scenarios when considering the stress environment; this, however, may not be straightforward.

  19. The Effects of Laser Marking and Symbol Etching on the Fatigue Life of Medical Devices

    PubMed Central

    Ogrodnik, P. J.; Moorcroft, C. I.; Wardle, P.

    2013-01-01

    This paper examines the question;“ does permanent laser marking affect the mechanical performance of a metallic medical component?” The literature review revealed the surprising fact that very little has been presented or studied even though intuition suggests that its effect could be detrimental to a component's fatigue life. A brief investigation of laser marking suggests that defects greater than 25 μm are possible. A theoretical investigation further suggests that this is unlikely to cause issues with relation to fast fracture but is highly likely to cause fatigue life issues. An experimental investigation confirmed that laser marking reduced the fatigue life of a component. This combination of lines of evidence suggests, strongly, that positioning of laser marking is highly critical and should not be left to chance. It is further suggested that medical device designers, especially those related to orthopaedic implants, should consider the position of laser marking in the design process. They should ensure that it is in an area of low stress amplitude. They should also ensure that they investigate worst-case scenarios when considering the stress environment; this, however, may not be straightforward. PMID:27006919

  20. Multi Response Optimization of Laser Micro Marking Process:A Grey- Fuzzy Approach

    NASA Astrophysics Data System (ADS)

    Shivakoti, I.; Das, P. P.; Kibria, G.; Pradhan, B. B.; Mustafa, Z.; Ghadai, R. K.

    2017-07-01

    The selection of optimal parametric combination for efficient machining has always become a challenging issue for the manufacturing researcher. The optimal parametric combination always provides a better machining which improves the productivity, product quality and subsequently reduces the production cost and time. The paper presents the hybrid approach of Grey relational analysis and Fuzzy logic to obtain the optimal parametric combination for better laser beam micro marking on the Gallium Nitride (GaN) work material. The response surface methodology has been implemented for design of experiment considering three parameters with their five levels. The parameter such as current, frequency and scanning speed has been considered and the mark width, mark depth and mark intensity has been considered as the process response.

  1. Quality improvement of polymer parts by laser welding

    NASA Astrophysics Data System (ADS)

    Puetz, Heidrun; Treusch, Hans-Georg; Welz, M.; Petring, Dirk; Beyer, Eckhard; Herziger, Gerd

    1994-09-01

    The growing significance of laser technology in industrial manufacturing is also observed in case of plastic industry. Laser cutting and marking are established processes. Laser beam welding is successfully practiced in processes like joining foils or winding reinforced prepregs. Laser radiation and its significant advantages of contactless and local heating could even be an alternative to conventional welding processes using heating elements, vibration or ultrasonic waves as energy sources. Developments in the field of laser diodes increase the interest in laser technology for material processing because in the near future they will represent an inexpensive energy source.

  2. Role of tool marks inside spherical mitigation pit fabricated by micro-milling on repairing quality of damaged KH2PO4 crystal

    PubMed Central

    Chen, Ming-Jun; Cheng, Jian; Yuan, Xiao-Dong; Liao, Wei; Wang, Hai-Jun; Wang, Jing-He; Xiao, Yong; Li, Ming-Quan

    2015-01-01

    Repairing initial slight damage site into stable structures by engineering techniques is the leading strategy to mitigate the damage growth on large-size components used in laser-driven fusion facilities. For KH2PO4 crystals, serving as frequency converter and optoelectronic switch-Pockels cell, micro-milling has been proven the most promising method to fabricate these stable structures. However, tool marks inside repairing pit would be unavoidably introduced due to the wearing of milling cutter in actual repairing process. Here we quantitatively investigate the effect of tool marks on repairing quality of damaged crystal components by simulating its induced light intensification and testing the laser-induced damage threshold. We found that due to the formation of focusing hot spots and interference ripples, the light intensity is strongly enhanced with the presence of tool marks, especially for those on rear surfaces. Besides, the negative effect of tool marks is mark density dependent and multiple tool marks would aggravate the light intensification. Laser damage tests verified the role of tool marks as weak points, reducing the repairing quality. This work offers new criterion to comprehensively evaluate the quality of repaired optical surfaces to alleviate the bottleneck issue of low laser damage threshold for optical components in laser-driven fusion facilities. PMID:26399624

  3. Identification marking by means of laser peening

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  4. The advances and characteristics of high-power diode laser materials processing

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2000-10-01

    This paper presents a review of the direct applications of high-power diode lasers for materials processing including soldering, surface modification (hardening, cladding, glazing and wetting modifications), welding, scribing, sheet metal bending, marking, engraving, paint stripping, powder sintering, synthesis, brazing and machining. The specific advantages and disadvantages of diode laser materials processing are compared with CO 2, Nd:YAG and excimer lasers. An effort is made to identify the fundamental differences in their beam/material interaction characteristics and materials behaviour. Also an appraisal of the future prospects of the high-power diode lasers for materials processing is given.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Lunt, Barry M.; Gates, Richard J.

    A novel write-once-read-many (WORM) optical stack on Mylar tape is proposed as a replacement for magnetic tape for archival data storage. This optical tape contains a cosputtered bismuth–tellurium–selenium (BTS) alloy as the write layer sandwiched between thin, protective films of reactively sputtered carbon. The composition and thickness of the BTS layer were confirmed by Rutherford Backscattering (RBS) and atomic force microscopy (AFM), respectively. The C/BTS/C stack on Mylar was written to/marked by 532 nm laser pulses. Under the same conditions, control Mylar films without the optical stack were unaffected. Marks, which showed craters/movement of the write material, were characterized bymore » optical microscopy and AFM. The threshold laser powers for making marks on C/BTS/C stacks with different thicknesses were explored. Higher quality marks were made with a 60× objective compared to a 40× objective in our marking apparatus. Finally, the laser writing process was simulated with COMSOL.« less

  6. Clinical results of computerized tomography-based simulation with laser patient marking.

    PubMed

    Ragan, D P; Forman, J D; He, T; Mesina, C F

    1996-02-01

    Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.

  7. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  8. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhong, Ruofei; Tang, Tao; Wang, Liuzhao; Liu, Xianlin

    2017-08-01

    Pavement markings provide an important foundation as they help to keep roads users safe. Accurate and comprehensive information about pavement markings assists the road regulators and is useful in developing driverless technology. Mobile light detection and ranging (LiDAR) systems offer new opportunities to collect and process accurate pavement markings’ information. Mobile LiDAR systems can directly obtain the three-dimensional (3D) coordinates of an object, thus defining spatial data and the intensity of (3D) objects in a fast and efficient way. The RGB attribute information of data points can be obtained based on the panoramic camera in the system. In this paper, we present a novel method process to automatically extract pavement markings using multiple attribute information of the laser scanning point cloud from the mobile LiDAR data. This method process utilizes a differential grayscale of RGB color, laser pulse reflection intensity, and the differential intensity to identify and extract pavement markings. We utilized point cloud density to remove the noise and used morphological operations to eliminate the errors. In the application, we tested our method process on different sections of roads in Beijing, China, and Buffalo, NY, USA. The results indicated that both correctness (p) and completeness (r) were higher than 90%. The method process of this research can be applied to extract pavement markings from huge point cloud data produced by mobile LiDAR.

  9. Advances in process overlay on 300-mm wafers

    NASA Astrophysics Data System (ADS)

    Staecker, Jens; Arendt, Stefanie; Schumacher, Karl; Mos, Evert C.; van Haren, Richard J. F.; van der Schaar, Maurits; Edart, Remi; Demmerle, Wolfgang; Tolsma, Hoite

    2002-07-01

    Overlay budgets are getting tighter within 300 mm volume production and as a consequence the process effects on alignment and off-line metrology becomes more important. In a short loop experiment, with cleared reference marks in each image field, the isolated effect of processing was measured with a sub-nanometer accuracy. The examined processes are Shallow Trench Isolation (STI), Tungsten-Chemical Mechanical Processing (W-CMP) and resist spinning. The alignment measurements were done on an ASML TWINSCANT scanner and the off-line metrology measurements on a KLA Tencor. Mark type and mark position dependency of the process effects are analyzed. The mean plus 3 (sigma) of the maximum overlay after correcting batch average wafer parameters is used as an overlay performance indicator (OPI). 3 (sigma) residuals to the wafer-model are used as an indicator of the noise that is added by the process. The results are in agreement with existing knowledge of process effects on 200 mm wafers. The W-CMP process introduces an additional wafer rotation and scaling that is similar for alignment marks and metrology targets. The effects depend on the mark type; in general they get less severe for higher spatial frequencies. For a 7th order alignment mark, the OPI measured about 12 nm and the added noise about 12 nm. For the examined metrology targets the OPI is about 20 nm with an added noise of about 90 nm. Two different types of alignment marks were tested in the STI process, i.e., zero layer marks and marks that were exposed together with the STI product. The overlay contribution due to processing on both types of alignment marks is very low (smaller than 5 nm OPI) and independent on mark type. Some flyers are observed fot the zero layer marks. The flyers can be explained by the residues of oxide and nitride that is left behind in the spaces of the alignment marks. Resist spinning is examined on single layer resist and resist with an organic Bottom Anti-Reflective Coating (BARC) underneath. Single layer resist showed scaling on unsegmented marks that disappears using higher diffraction orders and/or mark segmentation. Resist with a planarizing BARC caused additional effects on the wafer edge for measurements with the red laser signal. The effects disappear using the green laser of ATHENAT.

  10. Ultrafast lasers for precise and corrosion free marking on chirurgical steels

    NASA Astrophysics Data System (ADS)

    Neugebauer, Christoph; Aalderink, Dennis; Maurer, Erich; Faisst, Birgit; Budnicki, Aleksander

    2017-02-01

    The unique properties of ultrashort laser pulses and the decrease of invest pave the way to numerous novel applications. Even in the very price sensitive field of laser marking, ultrashort laser can compete due to a new cost structure and remarkable properties of the marking results. In this study we concentrated on industrial marking of medical equipment by using IR ultrashort lasers and compared the results with common marking laser systems. We demonstrate the benefits of ultrashort lasers marking on chirurgical devices, observing the influence of pulse energy, pulse duration, scanning velocity in respect to the visibility, corrosion resistance and long term durability under clinical conditions. Nowadays many parts and products are marked for the purpose of identification and traceability. One kind of laser marking is the well known annealing of stainless steel by nanosecond marking lasers. When annealing occurs a colored oxide layer grows due to the local heating of the material surface. Compared to the raw material, the annealed marking shows increased corrosion sensitivity. Regarding the traceability, the poor durability of the ns marking resulting in contrast reduction and the corrosion susceptibility are a huge problem. Therefore three different laser sources with ns-psfs pulse duration were observed. The focus rests on the realization of parameter studies (various lasers) and their effect on the corrosion and passivation behavior. Furthermore analysis of the oxide layers by use of EDX and XRD were performed to obtain further information on the composition and structure of the markings.

  11. Increase of hole-drilling speed by using packs of laser pulses

    NASA Astrophysics Data System (ADS)

    Gorny, Sergey G.; Grigoriev, A. M.; Lopota, Vitaliy A.; Turichin, Gleb A.

    1999-09-01

    For realization of the optimum mode of hole drilling the packs of laser pulses of high intensity were used, when average level of intensity of radiation is not too high, that reduces specific energy of destruction, and the peak intensity is reasonably great, that the pulse of pressure of effect at evaporation has completely deleted the liquid from the zone of processing. The high peak intensity of radiation permits in this case to place a target not in focus of a optical system, creating on its surface the image with the help of masks. It permits to receive in metal plates the holes of any section, to execute marking of surfaces and deep engraving of sample material with the help of laser. With the using of focused radiation the cutting of thin materials can be executed without a auxiliary gas. The condition of melt replacement is excess of power of recoil pressure above the power of viscous forces and forces of inertia. The decision of the hydrodynamic problem permits to evaluate the necessary parameters of laser radiation, frequency and longitude of packs of pulses which provide increases of process speed in several times. The conducted experiments confirm the indicated theoretical analysis of process of removing of the material under action of packs of pulses of laser radiation. The given process is realized in laser technological installations for holes drilling and marks of materials.

  12. Laser material micro-working (LMμW): some new surface processes

    NASA Astrophysics Data System (ADS)

    Daurelio, G.; D'Alonzo, M.

    2007-05-01

    On the last recent years many new Laser Surface Processes have been studied and tested in the field of the L.M. μW. - Laser Material Micro Working. Still today many of these "young" processes are to study and more and more searches are dedicated to they. These are the Marking, Texturing, Fine Texturing, Filling, Polishing, Micro Shot-Penning, Silking and Colouring. This experimental work reports the results obtained in the field of the Laser Surface Fine Texturing on AISI 304 and 430 Stainless Steels by using a Marking System, that is a Nd:YAG Laser, VECTORMARK type by TRUMPH ( D ). So some new laser surface finishes, called by Authors, - Effetto tessuto, con trama e ordito (Woven effect, with weft and warp) - Effetto pelle scamosciata ( Effect shammy leather ) - Effetto pelle uncinata ( Effect hooked skin ) - Effetto pelle unghiata ( Effect skin looking like scratch ) - Effetto pelle damascata ( Effect damask skin ) - Effetto speculare , ottonato ( Specular effect, looking like brass ) Effetto speculare, bronzato ( specular effect looking like bronze ) - Effetto speculare, argenteo ( specular, looking like silver effect ) - Effetto speculare, ramato ( Specular effect, looking like copper ), Effetto Speculare, dorato ( Specular effect, looking like gold ) - Effetto speculare , dorato, a raggiera ( Specular effect, looking like gold, to aureole) , were carried out. The work is still in progress.

  13. Application of a liquid crystal spatial light modulator to laser marking.

    PubMed

    Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P

    2011-04-20

    Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America

  14. High Power Laser Processing Of Materials

    NASA Astrophysics Data System (ADS)

    Martyr, D. R.; Holt, T.

    1987-09-01

    The first practical demonstration of a laser device was in 1960 and in the following years, the high power carbon dioxide laser has matured as an industrial machine tool. Modern carbon dioxide gas lasers can be used for cutting, welding, heat treatment, drilling, scribing and marking. Since their invention over 25 years ago they are now becoming recognised as highly reliable devices capable of achieving huge savings in production costs in many situations. This paper introduces the basic laser processing techniques of cutting, welding and heat treatment as they apply to the most common engineering materials. Typical processing speeds achieved with a wide range of laser powers are reported. Accuracies achievable and fit-up tolerances required are presented. Methods of integrating lasers with machine tools are described and their suitability in a wide range of manufacturing industries is described by reference to recent installations. Examples from small batch manufacturing, high volume production using dedicated laser welding equipment, and high volume manufacturing using 'flexible' automated laser welding equipment are described Future applications of laser processing are suggested by reference to current process developments.

  15. Picosecond and femtosecond lasers for industrial material processing

    NASA Astrophysics Data System (ADS)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.

    2016-03-01

    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  16. High-speed measurements of steel-plate deformations during laser surface processing.

    PubMed

    Jezersek, Matija; Gruden, Valter; Mozina, Janez

    2004-10-04

    In this paper we present a novel approach to monitoring the deformations of a steel plate's surface during various types of laser processing, e.g., engraving, marking, cutting, bending, and welding. The measuring system is based on a laser triangulation principle, where the laser projector generates multiple lines simultaneously. This enables us to measure the shape of the surface with a high sampling rate (80 Hz with our camera) and high accuracy (+/-7 microm). The measurements of steel-plate deformations for plates of different thickness and with different illumination patterns are presented graphically and in an animation.

  17. Possibilities of Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi

    Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.

  18. Controlled nanostructrures formation by ultra fast laser pulses for color marking.

    PubMed

    Dusser, B; Sagan, Z; Soder, H; Faure, N; Colombier, J P; Jourlin, M; Audouard, E

    2010-02-01

    Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes.

  19. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  20. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference

    NASA Astrophysics Data System (ADS)

    Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki

    2016-09-01

    For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800  ×  800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.

  1. Laser induced single spot oxidation of titanium

    NASA Astrophysics Data System (ADS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  2. Laser Scanning Reader For Automated Data Entry Operations

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C. K.

    1980-02-01

    The use of the Universal Product Code (UPC) in conjunction with the laser-scanner-equipped electronic checkout system has made it technologically possible for supermarket stores to operate more efficiently and accurately. At present, more than 90% of the packages in grocery stores have been marked by the manufacturer with laser-scannable UPC symbols and the installation of laser scanning systems is expected to expand into all major chain stores. Areas to be discussed are: system design features, laser-scanning pattern generation, signal-processing logical considerations, UPC characteristics and encodation.

  3. Research on laser marking speed optimization by using genetic algorithm.

    PubMed

    Wang, Dongyun; Yu, Qiwei; Zhang, Yu

    2015-01-01

    Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%.

  4. Research on Laser Marking Speed Optimization by Using Genetic Algorithm

    PubMed Central

    Wang, Dongyun; Yu, Qiwei; Zhang, Yu

    2015-01-01

    Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831

  5. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study.

    PubMed

    Suter, Melissa J; Gora, Michalina J; Lauwers, Gregory Y; Arnason, Thomas; Sauk, Jenny; Gallagher, Kevin A; Kava, Lauren; Tan, Khay M; Soomro, Amna R; Gallagher, Timothy P; Gardecki, Joseph A; Bouma, Brett E; Rosenberg, Mireille; Nishioka, Norman S; Tearney, Guillermo J

    2014-06-01

    Biopsy surveillance protocols for the assessment of Barrett's esophagus can be subject to sampling errors, resulting in diagnostic uncertainty. Optical coherence tomography is a cross-sectional imaging technique that can be used to conduct volumetric laser endomicroscopy (VLE) of the entire distal esophagus. We have developed a biopsy guidance platform that places endoscopically visible marks at VLE-determined biopsy sites. The objective of this study was to demonstrate in human participants the safety and feasibility of VLE-guided biopsy in vivo. A pilot feasibility study. Massachusetts General Hospital. A total of 22 participants were enrolled from January 2011 to June 2012 with a prior diagnosis of Barrett's esophagus. Twelve participants were used to optimize the laser marking parameters and the system platform. A total of 30 target sites were selected and marked in real-time by using the VLE-guided biopsy platform in the remaining 10 participants. Volumetric laser endomicroscopy. Endoscopic and VLE visibility, and accuracy of VLE diagnosis of the tissue between the laser cautery marks. There were no adverse events of VLE and laser marking. The optimal laser marking parameters were determined to be 2 seconds at 410 mW, with a mark separation of 6 mm. All marks made with these parameters were visible on endoscopy and VLE. The accuracies for diagnosing tissue in between the laser cautery marks by independent blinded readers for endoscopy were 67% (95% confidence interval [CI], 47%-83%), for VLE intent-to-biopsy images 93% (95% CI, 78%-99%), and for corrected VLE post-marking images 100% when compared with histopathology interpretations. This is a single-center feasibility study with a limited number of patients. Our results demonstrate that VLE-guided biopsy of the esophagus is safe and can be used to guide biopsy site selection based on the acquired volumetric optical coherence tomography imaging data. ( NCT01439633.). Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  6. Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study

    PubMed Central

    Suter, Melissa J.; Gora, Michalina J.; Lauwers, Gregory Y.; Arnason, Thomas; Sauk, Jenny; Gallagher, Kevin A.; Kava, Lauren; Tan, Khay M.; Soomro, Amna R.; Gallagher, Timothy P.; Gardecki, Joseph A.; Bouma, Brett E.; Rosenberg, Mireille; Nishioka, Norman S.; Tearney, Guillermo J.

    2018-01-01

    Background Biopsy surveillance protocols for the assessment of Barrett’s esophagus can be subject to sampling errors, resulting in diagnostic uncertainty. Optical coherence tomography is a cross-sectional imaging technique that can be used to conduct volumetric laser endomicroscopy (VLE) of the entire distal esophagus. We have developed a biopsy guidance platform that places endoscopically visible marks at VLE-determined biopsy sites. Objective The objective of this study was to demonstrate in human participants the safety and feasibility of VLE-guided biopsy in vivo. Design A pilot feasibility study. Setting Massachusetts General Hospital. Patients A total of 22 participants were enrolled from January 2011 to June 2012 with a prior diagnosis of Barrett’s esophagus. Twelve participants were used to optimize the laser marking parameters and the system platform. A total of 30 target sites were selected and marked in real-time by using the VLE-guided biopsy platform in the remaining 10 participants. Intervention Volumetric laser endomicroscopy. Main Outcome Measurements Endoscopic and VLE visibility, and accuracy of VLE diagnosis of the tissue between the laser cautery marks. Results There were no adverse events of VLE and laser marking. The optimal laser marking parameters were determined to be 2 seconds at 410 mW, with a mark separation of 6 mm. All marks made with these parameters were visible on endoscopy and VLE. The accuracies for diagnosing tissue in between the laser cautery marks by independent blinded readers for endoscopy were 67% (95% confidence interval [CI], 47%–83%), for VLE intent-to-biopsy images 93% (95% CI, 78%–99%), and for corrected VLE post-marking images 100% when compared with histopathology interpretations. Limitations This is a single-center feasibility study with a limited number of patients. Conclusion Our results demonstrate that VLE-guided biopsy of the esophagus is safe and can be used to guide biopsy site selection based on the acquired volumetric optical coherence tomography imaging data. (Clinical trial registration number: NCT01439633.) PMID:24462171

  7. Software for Use with Optoelectronic Measuring Tool

    NASA Technical Reports Server (NTRS)

    Ballard, Kim C.

    2004-01-01

    A computer program has been written to facilitate and accelerate the process of measurement by use of the apparatus described in "Optoelectronic Tool Adds Scale Marks to Photographic Images" (KSC-12201). The tool contains four laser diodes that generate parallel beams of light spaced apart at a known distance. The beams of light are used to project bright spots that serve as scale marks that become incorporated into photographic images (including film and electronic images). The sizes of objects depicted in the images can readily be measured by reference to the scale marks. The computer program is applicable to a scene that contains the laser spots and that has been imaged in a square pixel format that can be imported into a graphical user interface (GUI) generated by the program. It is assumed that the laser spots and the distance(s) to be measured all lie in the same plane and that the plane is perpendicular to the line of sight of the camera used to record the image

  8. Laser micro-processing of amorphous and partially crystalline Cu45Zr48Al7 alloy

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.; Kovacs, Z.; Browne, D. J.

    2010-11-01

    This paper presents a microstructural study of laser micro-processed high-purity Cu45Zr48Al7 alloys prepared by arc melting and Cu-mould casting. Microprocessing of the Cu45Zr48Al7 alloy was performed using a Rofin DC-015 diffusion-cooled CO2 slab laser system with 10.6-μm wavelength. The laser was defocused to a spot size of 0.2 mm on the sample surface. The laser parameters were set to give 300- and 350-W peak power, 30% duty cycle and a 3000-Hz laser pulse repetition frequency (PRF). About 100-micrometer-wide channels were scribed on the surfaces of disk-shaped amorphous and partially crystalline samples at traverse speeds of 500 and 5000 mm/min. These channels were analysed using scanning electron microscopy (SEM) and 2D stylus profilometry. The metallographic study and profile of these processed regions are discussed in terms of the applied laser processing parameters. The SEM micrographs showed that striation marks developed at the edge and inside these regions as a result of the laser processing. The results from this work showed that microscale features can be produced on the surface of amorphous Cu-Zr-Al alloys by CO2 laser processing.

  9. Optoelectronic Tool Adds Scale Marks to Photographic Images

    NASA Technical Reports Server (NTRS)

    Stevenson, Charlie; Rivera, Jorge; Youngquist, Robert; Cox, Robert; Haskell, William

    2003-01-01

    A simple, easy-to-use optoelectronic tool projects scale marks that become incorporated into photographic images (including film and electronic images). The sizes of objects depicted in the images can readily be measured by reference to the scale marks. The role played by the scale marks projected by this tool is the same as that of the scale marks on a ruler placed in a scene for the purpose of establishing a length scale. However, this tool offers the advantage that it can put scale marks quickly and safely in any visible location, including a location in which placement of a ruler would be difficult, unsafe, or time-consuming. The tool (see Figure 1) includes an aluminum housing, within which are mounted four laser diodes that operate at a wavelength of 670 nm. The laser diodes are spaced 1 in. (2.54 cm) apart along a baseline. The laser diodes are mounted with setscrews, which are used to adjust their beams to make them all parallel to each other and perpendicular to the baseline. During the adjustment process, the effect of the adjustments is observed by measuring the positions of the laser-beam spots on a target 80 ft (approx.24 m) away. Once the adjustments have been completed, the laser beams define three 1-in. (2.54-cm) intervals and the location of each beam is defined to within 1/16 in. (approx.1.6 mm) at any target distance out to about 80 ft (approx.24 m). The distance between the laser-beam spots as seen in an image is strictly defined only along an axis parallel to the baseline and perpendicular to the laser beam (also perpendicular to the line of sight of the camera, assuming that the camera-to-target distance is much greater than the distance between the tool and the camera lens). If a flat target surface illuminated by the laser beams is tilted with respect to the aforesaid axis, then the distance along the target surface between scale marks is proportional to the secant of the tilt angle. If one knows the tilt angle, one can correct for it. Even if one does not know the tilt angle precisely, it may not matter: For example, at a tilt of 10 , the secant is approximately 1.0154, so that the tilt error is only about 1.54 percent, which is negligibly small for a typical application in which only approximate measurements are needed.

  10. Electrochemical Micromachining with Fiber Laser Masking for 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han

    2017-10-01

    In order to fabricate micro structure, the combined machining of electrochemical micro machining (EMM) and laser masking for 304 stainless steel was studied. A device of composite machining of EMM with laser masking was developed, and the experiments of EMM with laser masking were carried out. First, by marking pattern with fiber laser on the surface of 304 stainless steel, the special masking layer can be formed. Through X ray photoelectron spectroscopy (XPS), the corrosion resistance of laser masking layer was analyzed. It is proved by XPS that the iron oxide and chromium oxide on the surface of stainless steel generates due to air oxidation when laser scanning heats. Second, the localization and precision of EMM are improved, since the marking patterns forming on the surface of stainless steel by laser masking play a protective role in the process of subsequent EMM when the appropriate parameters of EMM are selected. At last, the shape and the roughness of the machined samples were measured by SEM and optical profilometer and analyzed. The results show that the rapid fabrication of micro structures on the 304 stainless steel surface can be achieved by EMM with fiber laser masking, which has a good prospect in the field of micro machining.

  11. A simple approach to industrial laser safety.

    PubMed

    Lewandowski, Michael A; Hinz, Michael W

    2005-02-01

    Industrial applications of lasers include marking, welding, cutting, and other material processing. Lasers used in these ways have significant power output but are generally designed to limit operator exposure to direct or scattered laser radiation to harmless levels in order to meet the Federal Laser Product Performance Standard (21CFR1040) for Class 1 laser products. Interesting challenges occur when companies integrate high power lasers into manufacturing or process control equipment. A significant part of the integration process is developing engineering and administrative controls to produce an acceptable level of laser safety while balancing production, maintenance, and service requirements. 3M Company uses a large number of high power lasers in numerous manufacturing processes. Whether the laser is purchased as a Class 1 laser product or whether it is purchased as a Class 4 laser and then integrated into a manufacturing application, 3M Company has developed an industrial laser safety program that maintains a high degree of laser safety while facilitating the rapid and economical integration of laser technology into the manufacturing workplace. This laser safety program is based on the requirements and recommendations contained in the American National Standard for Safe Use of Lasers, ANSI Z136.1. The fundamental components of the 3M program include hazard evaluation, engineering, administrative, and procedural controls, protective equipment, signs and labels, training, and re-evaluation upon change. This program is implemented in manufacturing facilities and has resulted in an excellent history of laser safety and an effective and efficient use of laser safety resources.

  12. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPEmore » for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.« less

  13. Laser-Marking Mechanism of Thermoplastic Polyurethane/Bi2O3 Composites.

    PubMed

    Zhong, Wei; Cao, Zheng; Qiu, Pengfei; Wu, Dun; Liu, Chunlin; Li, Huili; Zhu, He

    2015-11-04

    Using bismuth oxide (Bi2O3) as a laser-marking additive and thermoplastic polyurethane (TPU) as the matrix, TPU/Bi2O3 composite materials were prepared by melt blending in a torque rheometer. The sheet samples prepared from the TPU/Bi2O3 composites were treated in air by scanning with a neodymium-doped yttrium aluminum garnet (Nd: YAG) pulsed laser beam at a wavelength of 1064 nm. Compared with the pure TPU sample, the laser-marked composite samples exhibited differences in marking contrast as the Bi2O3 content increased from 0.1% to 1.0% based on stereomicroscope analysis. Scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, thermogravimetry analysis, and X-ray diffraction were used to characterize the laser-marked surface material of the composite samples. Furthermore, a mechanism for the laser-effected darkening of the TPU/Bi2O3 composites was proposed. The results herein indicated that the addition of the Bi2O3 laser-sensitive additive to TPU resulted in laser darkening of the TPU/Bi2O3 composites. The marking contrast and visual appearance of the surface of the TPU/Bi2O3 composites after laser irradiation was due to a synergistic effect consisting of carbonization via TPU pyrolysis and reduction of Bi2O3 to black bismuth metal.

  14. Feasibility of laser marking in Barrett's esophagus with volumetric laser endomicroscopy: first-in-man pilot study.

    PubMed

    Swager, Anne-Fré; de Groof, Albert J; Meijer, Sybren L; Weusten, Bas L; Curvers, Wouter L; Bergman, Jacques J

    2017-09-01

    Volumetric laser endomicroscopy (VLE) provides a circumferential scan of the esophageal wall layers and has potential to improve detection of neoplasia in Barrett's esophagus (BE). The novel VLE laser marking system enables direct in vivo marking of suspicious areas as identified on VLE. These laser marked areas can subsequently be targeted for biopsies. The aim was to evaluate the visibility and positional accuracy of laser marks (LMs) in different esophageal tissue types on white light endoscopy (WLE) and VLE. Patients with BE with or without neoplasia underwent imaging with VLE. Protocol refinements were practiced in a learning phase. In the second phase, visibility of LMs was assessed by random marking in squamous, BE, and gastric tissue. In phase 3, positional accuracy of the LMs was tested by identifying and laser marking surrogate targets (endoscopically placed cautery marks). In the final phase, the most suspicious areas for neoplasia were identified in each patient using VLE, targeted by LMs, and biopsy samples subsequently obtained. Sixteen patients with BE were included (14 men; median age, 68 years), 1 of whom was included twice in different study phases. Worst histologic diagnoses were 9 non-dysplastic Barrett's esophagus (NDBE), 3 low-grade dysplasia (LGD), 4 high-grade dysplasia (HGD), and 1 early adenocarcinoma (EAC). In total, 222 LMs were placed, of which 97% was visible on WLE. All LMs were visible on VLE directly after marking, and 86% could be confirmed during post hoc analysis. LM targeting was successful with positional accuracy in 85% of cautery marks. Inaccurate targeting was caused by system errors or difficult cautery mark visualization on VLE. In the final phase (5 patients), 18 areas suspicious on VLE were identified, which were all successfully targeted by LMs (3 EAC, 3 HGD, 1 LGD, and 11 NDBE). Mean VLE procedure time was 22 minutes (±6 minutes standard deviation); mean endoscopy time was 56 minutes (±17 minutes). No adverse events were reported. This first-in-human study of VLE-guided laser marking was found to be feasible and safe in 17 procedures. Most LMs were visible on WLE and VLE. Targeting VLE areas of interest proved to be highly successful. VLE-guided laser marking may improve the detection and delineation of Barrett's neoplasia in the future. Copyright © 2017 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  15. UV lasers for drilling and marking applications.

    PubMed

    Hannon, T

    1999-10-01

    Lasers emitting ultraviolet (UV) light have unique capabilities for precision micromachining and marking plastic medical devices. This review of the benefits offered by laser technology includes a look at recently developed UV diode-pumped solid-state lasers and their key features.

  16. The effect of repeated laser stimuli to ink-marked skin on skin temperature-recommendations for a safe experimental protocol in humans.

    PubMed

    Madden, Victoria J; Catley, Mark J; Grabherr, Luzia; Mazzola, Francesca; Shohag, Mohammad; Moseley, G Lorimer

    2016-01-01

    Background. Nd:YAP laser is widely used to investigate the nociceptive and pain systems, generating perpetual and laser-evoked neurophysiological responses. A major procedural concern for the use of Nd:YAP laser stimuli in experimental research is the risk of skin damage. The absorption of Nd:YAP laser stimuli is greater in darker skin, or in pale skin that has been darkened with ink, prompting some ethics boards to refuse approval to experimenters wishing to track stimulus location by marking the skin with ink. Some research questions, however, require laser stimuli to be delivered at particular locations or within particular zones, a requirement that is very difficult to achieve if marking the skin is not possible. We thoroughly searched the literature for experimental evidence and protocol recommendations for safe delivery of Nd:YAP laser stimuli over marked skin, but found nothing. Methods. We designed an experimental protocol to define safe parameters for the use of Nd:YAP laser stimuli over skin that has been marked with black dots, and used thermal imaging to assess the safety of the procedure at the forearm and the back. Results. Using thermal imaging and repeated laser stimulation to ink-marked skin, we demonstrated that skin temperature did not increase progressively across the course of the experiment, and that the small change in temperature seen at the forearm was reversed during the rest periods between blocks. Furthermore, no participant experienced skin damage due to the procedure. Conclusion. This protocol offers parameters for safe, confident and effective experimentation using repeated Nd:YAP laser on skin marked with ink, thus paving the way for investigations that depend on it.

  17. Corneal limbal marking in the treatment of myopic astigmatism with the excimer laser.

    PubMed

    Bucher, Celine; Zuberbuhler, Bruno; Goggin, Michael; Esterman, Adrian; Schipper, Isaak

    2010-07-01

    To determine whether preoperative marking of the limbal cornea improves treatment of myopic astigmatism with the excimer laser. Retrospective study on 108 eyes with myopic astigmatism that underwent LASIK or laser epithelial keratomileusis (LASEK) with the Technolas 217 (Bausch & Lomb) excimer laser. Preoperative limbal marking was performed in 47 eyes (marked group). The 12-month results were used for refractive and visual analysis. The achieved cylinder reduction, spherical reduction, and refractive predictability were similar for the marked and unmarked groups in the overall study collective, in the LASIK and LASEK subgroup analysis, and in a higher astigmatism (> 1.25 diopters) subgroup analysis. Limbal marking showed no influence on the refractive results, and vector analysis showed no significant difference in angle of error among groups. Corneal limbal marking failed to improve the refractive outcome in LASIK and LASEK for myopic astigmatism.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, H.Lee; Thompson, Dan; United States. Bonneville Power Administration. Division of Fish and Wildlife

    The first year of work with development of lasers as a mass marking technique provided both disappointing and encouraging results. A Coumarin Dye 480 laser was used to mark coho salmon in a variety of body locations and with varying energy levels. A ``bleached`` white mark was made void of any pigment. Areas marked included the nape area behind the head and in front of the dorsal fin, slightly above the anal fin, the upper lobe of the caudal fin, the dorsal fin and on the operculum. The mark appeared immediately after being lasered but started to gradually fade aftermore » one month and was fairly completely re-pigmented after three months. Complete removal and notching of the adipose fin was also attempted with a Carbon Dioxide laser. This surgical method of fin removal appears to have advantages over scissor excision (no bleeding or regeneration), and has possible application as part of a device or system which could be employed for mass marking.« less

  19. Photonic jet μ-etching: from static to dynamic process

    NASA Astrophysics Data System (ADS)

    Abdurrochman, A.; Lecler, S.; Zelgowski, J.; Mermet, F.; Fontaine, J.; Tumbelaka, B. Y.

    2017-05-01

    Photonic jet etching is a direct-laser etching method applying photonic jet phenomenon to concentrate the laser beam onto the proceeded material. We call photonic jet the phenomenon of the localized sub-wavelength propagative beam generated at the shadow-side surfaces of micro-scale dielectric cylinders or spheres, when they are illuminated by an electromagnetic plane-wave or laser beam. This concentration has made possible the laser to yield sub-μ etching marks, despite the laser was a near-infrared with nano-second pulses sources. We will present these achievements from the beginning when some spherical glasses were used for static etching to dynamic etching using an optical fiber with a semi-elliptical tip.

  20. Infrared image construction with computer-generated reflection holograms. [using carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.; Rugh, R. W.; Gallagher, N. C.

    1977-01-01

    Computer-generated reflection holograms hold substantial promise as a means of carrying out complex machining, marking, scribing, welding, soldering, heat treating, and similar processing operations simultaneously and without moving the work piece or laser beam. In the study described, a photographically reduced transparency of a 64 x 64 element Lohmann hologram was used to make a mask which, in turn, was used (with conventional photoresist techniques) to produce a holographic reflector. Images from a commercial CO2 laser (150W TEM(00)) and the holographic reflector are illustrated and discussed.

  1. Efficient production by laser materials processing integrated into metal cutting machines

    NASA Astrophysics Data System (ADS)

    Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut

    1994-09-01

    Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.

  2. Laser Marking of the Meridian of Retinal Breaks at the Ora: A Novel Technique for Pneumatic Retinopexy.

    PubMed

    Yan, Peng; Minaker, Samuel; Mandelcorn, Efrem D

    2016-06-01

    Localization of retinal breaks in rhegmatogenous retinal detachment (RRD) after pneumatic retinopexy (PR) can be challenging once the retina is reattached. Laser can be applied to the pigmented and always-attached ora serrata in the meridian of the retinal breaks prior to pneumatic retinopexy, resulting in subsequent rapid localization of the breaks even in the presence of a gas bubble or media opacity. Ten cases of indirect laser photocoagulation marking at the ora prior to intraocular gas injection in PR for RRD. Subsequent laser retinopexy was completed 48 hours after utilizing the landmarks at the ora to localize the reattached retinal breaks. In all 10 cases, laser photocoagulation marking was easily applied to the ora in the meridian of the retinal breaks prior to gas injection with no complications. The retinal breaks were subsequently identified 48 hours after gas injection. Laser marking of the ora prior to pneumatic retinopexy is a rapid and effective way to localize the re-attached retina breaks. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:570-572.]. Copyright 2016, SLACK Incorporated.

  3. A post-processing study on aluminum surface by fiber laser: Removing face milling patterns

    NASA Astrophysics Data System (ADS)

    Kayahan, Ersin

    2018-05-01

    The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.

  4. Effect of marking pens on femtosecond laser-assisted flap creation.

    PubMed

    Ide, Takeshi; Kymionis, George D; Abbey, Ashkan M; Yoo, Sonia H; Culbertson, William W; O'Brien, Terrence P

    2009-06-01

    To compare the ease of the flap lift after central corneal marking with 2 types of marking pens after femtosecond laser-assisted flap creation in laser in situ keratomileusis. Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. Porcine eyes were prepared for flap creation with a femtosecond laser (IntraLase). The eyes were assigned to 1 of 4 groups. After the femtosecond laser treatment, the difficulty of flap lifting the 4 groups was compared. Twelve porcine eyes, 3 in each group, were evaluated. In the 2 groups in which an oil-based pen was used, the corneal flap could not be lifted. In the 2 groups in which a water-based pen was used, the corneal flap was easily lifted. Oil-based ink may reduce the ability of the femtosecond laser to penetrate the cornea. The resultant corneal flap may require aggressive manipulation to be lifted. When used to mark the center of the cornea before flap creation, water-based ink provided greater ease of corneal flap lifting than oil-based ink. Because the marking is located over the center of the pupil, any alteration of the cornea in this area from aggressive flap lifting may result in substantial visual loss. Therefore, the use of an oil-based ink to mark the central cornea must be avoided to prevent traumatic irregularities of the flap stroma.

  5. Basic Research of Intrinsic Tamper Indication Markings Defined by Pulsed Laser Irradiation (Quad Chart).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Neville R.

    Objective: We will research how short (ns) and ultrashort (fs) laser pulses interact with the surfaces of various materials to create complex color layers and morphological patterns. Method: We are investigating the site-specific, formation of microcolor features. Also, research includes a fundamental study of the physics underlying periodic ripple formation during femtosecond laser irradiation. Status of effort: Laser induced color markings were demonstrated on an increased number of materials (including metal thin films) and investigated for optical properties and microstructure. Technology that allows for marking curved surfaces (and large areas) has been implemented. We have used electro-magnetic solvers to modelmore » light-solid interactions leading to periodic surface ripple patterns. This includes identifying the roles of surface plasmon polaritons. Goals/Milestones: Research corrosion resistance of oxide color markings (salt spray, fog, polarization tests); Through modeling, investigate effects of multi-source scattering and interference on ripple patterns; Investigate microspectrophotometry for mapping color; and Investigate new methods for laser color marking curved surfaces and large areas.« less

  6. Effect of limbal marking prior to laser ablation on the magnitude of cyclotorsional error.

    PubMed

    Chen, Xiangjun; Stojanovic, Aleksandar; Stojanovic, Filip; Eidet, Jon Roger; Raeder, Sten; Øritsland, Haakon; Utheim, Tor Paaske

    2012-05-01

    To evaluate the residual registration error after limbal-marking-based manual adjustment in cyclotorsional tracker-controlled laser refractive surgery. Two hundred eyes undergoing custom surface ablation with the iVIS Suite (iVIS Technologies) were divided into limbal marked (marked) and non-limbal marked (unmarked) groups. Iris registration information was acquired preoperatively from all eyes. Preoperatively, the horizontal axis was recorded in the marked group for use in manual cyclotorsional alignment prior to surgical iris registration. During iris registration, the preoperative iris information was compared to the eye-tracker captured image. The magnitudes of the registration error angle and cyclotorsional movement during the subsequent laser ablation were recorded and analyzed. Mean magnitude of registration error angle (absolute value) was 1.82°±1.31° (range: 0.00° to 5.50°) and 2.90°±2.40° (range: 0.00° to 13.50°) for the marked and unmarked groups, respectively (P<.001). Mean magnitude of cyclotorsional movement during the laser ablation (absolute value) was 1.15°±1.34° (range: 0.00° to 7.00°) and 0.68°±0.97° (range: 0.00° to 6.00°) for the marked and unmarked groups, respectively (P=.005). Forty-six percent and 60% of eyes had registration error >2°, whereas 22% and 20% of eyes had cyclotorsional movement during ablation >2° in the marked and unmarked groups, respectively. Limbal-marking-based manual alignment prior to laser ablation significantly reduced cyclotorsional registration error. However, residual registration misalignment and cyclotorsional movements remained during ablation. Copyright 2012, SLACK Incorporated.

  7. [Application of rational ant colony optimization to improve the reproducibility degree of laser three-dimensional copy].

    PubMed

    Cui, Xiao-Yan; Huo, Zhong-Gang; Xin, Zhong-Hua; Tian, Xiao; Zhang, Xiao-Dong

    2013-07-01

    Three-dimensional (3D) copying of artificial ears and pistol printing are pushing laser three-dimensional copying technique to a new page. Laser three-dimensional scanning is a fresh field in laser application, and plays an irreplaceable part in three-dimensional copying. Its accuracy is the highest among all present copying techniques. Reproducibility degree marks the agreement of copied object with the original object on geometry, being the most important index property in laser three-dimensional copying technique. In the present paper, the error of laser three-dimensional copying was analyzed. The conclusion is that the data processing to the point cloud of laser scanning is the key technique to reduce the error and increase the reproducibility degree. The main innovation of this paper is as follows. On the basis of traditional ant colony optimization, rational ant colony optimization algorithm proposed by the author was applied to the laser three-dimensional copying as a new algorithm, and was put into practice. Compared with customary algorithm, rational ant colony optimization algorithm shows distinct advantages in data processing of laser three-dimensional copying, reducing the error and increasing the reproducibility degree of the copy.

  8. Laser-assisted marking for toric intraocular lens alignment.

    PubMed

    Dick, H Burkhard; Schultz, Tim

    2016-01-01

    We describe a technique of 3-dimensional spectral-domain optical coherence tomography-controlled laser-assisted corneal marking for toric intraocular lens implantation. To facilitate accurate alignment, the technique creates 2 perpendicular intrastromal incisions (width 0.75 mm) using an image-guided femtosecond laser. This was performed in a case series comprising 10 eyes of 10 patients. No posterior corneal perforation or epithelial alterations occurred. The incisions were plainly visible under the operating microscope, and no optical phenomena were reported 6 weeks after surgery. Laser-assisted marking can be performed safely and has the potential to enable precise axis marking. Dr. Dick is a paid consultant to Abbott Medical Optics, Inc. Dr. Schultz has no financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  10. Forensic firearm identification of semiautomatic handguns using laser formed microstamping elements

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest

    2008-08-01

    For well over one hundred years the science of Firearm and Tool Mark Identification has relied on the theory that unintentional random tooling marks generated during the manufacture of a firearm onto its interior surfaces are unique to each individual firearm.[1][2] Forensic Firearm and Tool Mark Examiners have had to rely on the analysis of these randomly formed unintentional striations, or scratches and dings, transferred onto ammunition components from firearms used to commit crimes, as a way of developing clues and evidence. Such transfers take place during the cycle of fire and ejection of the cartridge from the firearm during the commission of a crime. The typical striations on the cartridge casings are caused by tooling marks that are randomly formed during the machining of interior surfaces of the manufactured firearm and by other firearm components that come in contact with the cycling ammunition. Components like the firing pin, extractor and ejector, impact the surfaces of the cartridges as they are fed, fired and ejected from the firearm. When found at a crime scene, these striae constitute ballistic evidence when effectively analyzed by a Forensic Firearm and Tool Mark Examiner. Examiners categorize these striations looking for matches to be made between the components that created the marks and the recovered firearm. Reality is that nearly 50% of firearms used in violent crimes are not recovered at a crime scene, requiring the analysis to be processed and logged into evidence files or imaged into reference image databases for future comparison whenever a firearm might be recovered. This paper will present a unique law enforcement technology, embedded into firearms for tracking the sources of illegally trafficked firearms, called Microstamping. Microstamping is a laser based micromachining process that forms microscopic "intentional structures and marks" on components within a firearm. Thus when the firearm is fired, these microstamp structures transfer an identifying tracking code onto the expended cartridge ejected from the firearm. Microstamped structures are laser micromachined alpha numeric and encoded geometric tracking numbers, linked to the serial number of the firearm. Ballistic testing data will be presented covering microstamp transfer quality, transfer rates and survivability/durability. Further information will provide an overview on how microstamping information can be utilized by law enforcement to combat illegal firearm trafficking.

  11. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Veiko, Vadim; Karlagina, Yulia; Moskvin, Mikhail; Mikhailovskii, Vladimir; Odintsova, Galina; Olshin, Pavel; Pankin, Dmitry; Romanov, Valery; Yatsuk, Roman

    2017-09-01

    In this work, we studied a method of laser-induced coloration of metals, where small-scale spatially periodic structures play a key role in the process of color formation. The formation of such structures on a surface of AISI 304 stainless steel was demonstrated for the 1.06 μm fiber laser with nanosecond duration of pulses and random (elliptical) polarization. The color of the surface depends on the period, height and orientation of periodic surface structures. Adjustment of the polarization of the laser radiation or change of laser incidence angle can be used to control the orientation of the structures. The formation of markings that change their color under the different viewing angles becomes possible. The potential application of the method is metal product protection against falsification.

  12. Marks of Laser Exam on Martian Soil

    NASA Image and Video Library

    2012-08-30

    The Chemistry and Camera ChemCam instrument on NASA Mars rover Curiosity used its laser to examine side-by-side points in a target patch of soil, leaving the marks apparent in this before-and-after comparison.

  13. Comparison of two techniques of marking the horizontal axis during excimer laser keratorefractive surgery for myopic astigmatism.

    PubMed

    Burka, Jenna M; Bower, Kraig S; Cute, David L; Stutzman, Richard D; Subramanian, Prem S; Rabin, Jeff C

    2005-04-01

    To compare two methods of limbal marking used during laser refractive surgery for myopic astigmatism. Retrospective chart review. Forty-two eyes of 42 patients who underwent photorefractive keratectomy (PRK) or laser-assisted in-situ keratomileusis (LASIK) for myopic astigmatism were marked preoperatively to identify the horizontal axis. In 18 eyes, marks were placed at the slit lamp (SL) with the slit beam set at 180 degrees as a reference. In 24 eyes, marks were placed in the laser room (LR) immediately before reclining under the laser. All treatments were performed with the Alcon LADARVision excimer laser system. Vector analysis of postoperative cylinder and reduction in cylinder and uncorrected and best-corrected visual acuity were evaluated for both groups. The mean postoperative magnitude of error was -0.19 +/- 0.44 diopters for the LR group and -0.09 +/- 0.42 diopters for the SL group (P = .439, NS). Both groups had a mean angle of error indicating an overall counterclockwise rotation of axis with an angle of error of 6.3 +/- 8.7 degrees for the LR group and 8.0 +/- 10.2 degrees for the SL group (P = .562, NS). We found no significant difference in outcomes with an overall trend toward undercorrection of cylinder in both groups, leaving room for improvement after refractive surgery for myopic astigmatism.

  14. Infrared technique for decoding of invisible laser markings

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Jaeschke, Peter; Stein, Johannes; Goede, Martin

    2002-03-01

    Counterfeiting and product piracy continues to be an important issue not only for the Western industry, but also for the society in general. Due to the drastic increase in product imitation and the request for plagiarism protection as well as for reducing thefts there is a high interest in new protection methods providing new security features. The method presented here consists of security markings which are included below paint layers. These markings are invisible for the human eye due to the non-transparency of the upper layers in the visible spectral range. However, the markings can be detected by an infrared technique taking advantage on the partial transparency of the upper paint layers in the IR-region. Metal sheets are marked using laser radiation. The beam of a Nd:YAG-laser provides a modification of the surface structure, resulting in dark markings due to the annealing effect. After coating of the laser-marked material, the markings are invisible for the bare eye. In order to read out the invisible information below the coating, an infrared reflection technique is used. The samples are illuminated with halogen lamps or infrared radiators. Many coating materials (i. e. paints) show a certain transparency in the mid-infrared region, especially between 3 - 5 micrometers . The reflected radiation is detected using an IR-camera with a sensitivity range from 3.4 - 5 micrometers . Due to the different reflection properties between the markings and their surrounding, the information can be detected.

  15. The applicability of a material-treatment laser pulse in non-destructive evaluations.

    PubMed

    Hrovatin, R; Petkovsek, R; Diaci, J; Mozina, J

    2006-12-22

    A practical optodynamic study was performed to determine the usability of different lengths of laser pulses for the generation of ultrasonic transients in a solid material. The aim of the study was to evaluate the possibility of a dual use for a laser pulse-for laser material processing, on the one hand, and for the ultrasonic wave generation on the other-with both processes being combined on the same production line. The propagation of the laser-generated ultrasonic waves is evaluated by detecting and measuring with a PID-controlled stabilized interferometer. Thus, both systems provided the basic tools, the generation and detection of ultrasonic waves, for an ultrasonic, laser-based, non-destructive material evaluation. The ultrasonic transients generated by 'classical' nanosecond laser pulses were compared with the transients generated by industrial laser pulses with a duration of a few tenths of a microsecond. The experimental results are compared with the results of a time-of-flight analysis that also involved part of a mode-conversion analysis for both regimes in a layered material structure. The differences between the two waveforms were assessed in terms of their visibility, wavelength and resolution. The limit values were calculated and estimated for the laser-pulse parameters, when such pulses are intended for use in an ultrasonic, laser-based, non-destructive evaluation. The possibility of using an industrial marking laser for laser ultrasound generation is thus demonstrated.

  16. Legal requirements and guidelines for the control of harmful laser generated particles, vapours and gases

    NASA Astrophysics Data System (ADS)

    Horsey, John

    2015-07-01

    This paper is a review of the Health and Safety laws and guidelines relating to laser generated emissions into the workplace and outside environment with emphasis on the differences between legal requirements and guideline advice. The types and nature of contaminants released by various laser processes (i.e. cutting, coding, engraving, marking etc) are discussed, together with the best methods for controlling them to within legal exposure limits. A brief description of the main extract air filtration techniques, including the principles of particulate removal and the action of activated carbon for gas/vapour/odour filtration, is given.

  17. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping.

    PubMed

    Jaakkola, Anttoni; Hyyppä, Juha; Hyyppä, Hannu; Kukko, Antero

    2008-09-01

    Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  18. Free Electron Laser Induced Forward Transfer Method of Biomaterial for Marking

    NASA Astrophysics Data System (ADS)

    Suzuki, Kaoru

    Biomaterial, such as chitosan, poly lactic acid, etc., containing fluorescence agent was deposited onto biology hard tissue, such as teeth, fingernail of dog or cat, or sapphire substrate by free electron laser induced forward transfer method for direct write marking. Spin-coated biomaterial with fluorescence agent of rhodamin-6G or zinc phthalochyamine target on sapphire plate was ablated by free electron laser (resonance absorption wavelength of biomaterial : 3380 nm). The influence of the spin-coating film-forming temperature on hardness and adhesion strength of biomaterial is particularly studied. Effect of resonance excitation of biomaterial target by turning free electron laser was discussed to damage of biomaterial, rhodamin-6G or zinc phtarochyamine for direct write marking

  19. Portable laser speckle perfusion imaging system based on digital signal processor.

    PubMed

    Tang, Xuejun; Feng, Nengyun; Sun, Xiaoli; Li, Pengcheng; Luo, Qingming

    2010-12-01

    The ability to monitor blood flow in vivo is of major importance in clinical diagnosis and in basic researches of life science. As a noninvasive full-field technique without the need of scanning, laser speckle contrast imaging (LSCI) is widely used to study blood flow with high spatial and temporal resolution. Current LSCI systems are based on personal computers for image processing with large size, which potentially limit the widespread clinical utility. The need for portable laser speckle contrast imaging system that does not compromise processing efficiency is crucial in clinical diagnosis. However, the processing of laser speckle contrast images is time-consuming due to the heavy calculation for enormous high-resolution image data. To address this problem, a portable laser speckle perfusion imaging system based on digital signal processor (DSP) and the algorithm which is suitable for DSP is described. With highly integrated DSP and the algorithm, we have markedly reduced the size and weight of the system as well as its energy consumption while preserving the high processing speed. In vivo experiments demonstrate that our portable laser speckle perfusion imaging system can obtain blood flow images at 25 frames per second with the resolution of 640 × 480 pixels. The portable and lightweight features make it capable of being adapted to a wide variety of application areas such as research laboratory, operating room, ambulance, and even disaster site.

  20. Characterization of Titanium Oxide Layers Formation Produced by Nanosecond Laser Coloration

    NASA Astrophysics Data System (ADS)

    Brihmat-Hamadi, F.; Amara, E. H.; Kellou, H.

    2017-06-01

    Laser marking technique is used to produce colors on titanium while scanning a metallic sample under normal atmospheric conditions. To proceed with different operating conditions related to the laser beam, the parameters of a Q-switched diode-pumped Nd:YAG ( λ = 532 nm) laser, with a pulse duration of τ = 5 ns, are varied. The effect on the resulting mark quality is the aim of the present study which is developed to determine the influence of the operating parameters ( i.e., pulse frequency, beam scanning speed, and pumping intensity) and furthermore their combination, such as the accumulated fluences and the overlapping rate of laser impacts. From the obtained experimental results, it is noted that the accumulated fluences and the scanning speed are the most influential operating parameters during laser marking, since they have a strong effect on the surface roughness and reflectance, and the occurrence of many oxide phases such as TiO, Ti2O3, TiO2 ( γ- phase, anatase, and rutile).

  1. Morphological Observations of Mesenchymal Stem Cell Adhesion to a Nanoperiodic-Structured Titanium Surface Patterned Using Femtosecond Laser Processing

    NASA Astrophysics Data System (ADS)

    Oya, Kei; Aoki, Shun; Shimomura, Kazunori; Sugita, Norihiko; Suzuki, Kenji; Nakamura, Norimasa; Fujie, Hiromichi

    2012-12-01

    It is known that the adhesive and anisotropic properties of cell-derived biomaterials are affected by micro- or nanoscale structures processed on culture surfaces. In the present study, the femtosecond laser processing technique was used to scan a laser beam at an intensity of approximately the ablation threshold level on a titanium surface for nanoscale processing. Microscopy observation revealed that the processed titanium exhibited a periodic-patterned groove structure at the surface; the width and depth of the groove were 292 ±50 and 99 ±31 nm, respectively, and the periodic pitch of the groove was 501 ±100 nm. Human synovium-derived mesenchymal stem cells were cultured on the surface at a cell density of 3.0×103 cells/cm2 after 4 cell passages. For comparison, the cells were also cultured on a nonprocessed titanium surface under the condition identical to that of the processed surface. Results revealed that the duration for cell attachment to the surface was markedly reduced on the processed titanium as compared with the nonprocessed titanium. Moreover, on the processed titanium, cell extension area significantly increased while cell orientation was aligned along the direction of the periodic grooves. These results suggest that the femtosecond laser processing improves the adhesive and anisotropic properties of cells by producing the nanoperiodic structure on titanium culture surfaces.

  2. Lane Marking Detection and Reconstruction with Line-Scan Imaging Data.

    PubMed

    Li, Lin; Luo, Wenting; Wang, Kelvin C P

    2018-05-20

    A bstract: Lane marking detection and localization are crucial for autonomous driving and lane-based pavement surveys. Numerous studies have been done to detect and locate lane markings with the purpose of advanced driver assistance systems, in which image data are usually captured by vision-based cameras. However, a limited number of studies have been done to identify lane markings using high-resolution laser images for road condition evaluation. In this study, the laser images are acquired with a digital highway data vehicle (DHDV). Subsequently, a novel methodology is presented for the automated lane marking identification and reconstruction, and is implemented in four phases: (1) binarization of the laser images with a new threshold method (multi-box segmentation based threshold method); (2) determination of candidate lane markings with closing operations and a marching square algorithm; (3) identification of true lane marking by eliminating false positives (FPs) using a linear support vector machine method; and (4) reconstruction of the damaged and dash lane marking segments to form a continuous lane marking based on the geometry features such as adjacent lane marking location and lane width. Finally, a case study is given to validate effects of the novel methodology. The findings indicate the new strategy is robust in image binarization and lane marking localization. This study would be beneficial in road lane-based pavement condition evaluation such as lane-based rutting measurement and crack classification.

  3. High-power thulium-doped fiber laser in an all-fiber configuration

    NASA Astrophysics Data System (ADS)

    Baravets, Yauhen; Todorov, Filip; Honzatko, Pavel

    2016-12-01

    High-power Tm-doped fiber lasers are greatly suitable for various applications, such as material processing, medicine, environmental monitoring and topography. In this work we present an all-fiber narrowband CW laser in near fundamental mode operation based on a Tm-doped double-clad active fiber pumped by 793 nm laser diodes with a central wavelength stabilized at 2039 nm by a fiber Bragg grating. The achieved output power is 60 W with a slope efficiency of 46%. The measured beam quality factor is less than 1.4. Further increasing of the output power is possible using various power scaling techniques, for example, coherent combination of several Tm-doped fiber lasers. The developed fiber laser could be employed for welding, cutting and marking of thermoplastics in industry, minimally invasive surgery in medicine or sensors in lidar systems. Future improvements of thulium fiber lasers are possible due to the extremely wide gain-bandwidth of the active medium and the rapid growth of 2-μm fiber components production.

  4. Next generation high-brightness diode lasers offer new industrial applications

    NASA Astrophysics Data System (ADS)

    Timmermann, Andre; Meinschien, Jens; Bruns, Peter; Burke, Colin; Bartoschewski, Daniel

    2008-02-01

    So far, diode laser systems could not compete against CO II-lasers or DPSSL in industrial applications like marking or cutting due to their lower brightness. Recent developments in high-brightness diode laser bars and beam forming systems with micro-optics have led to new direct diode laser applications. LIMO presents 400W output from a 200μm core fibre with an NA of 0.22 at one wavelength. This is achieved via the combination of newly designed laser diode bars on passive heat sinks coupled with optimized micro-optical beam shaping. The laser is water cooled with a housing size of 375mm x 265mm x 70mm. The applications for such diode laser modules are mainly in direct marking, cutting and welding of metals and other materials, but improved pumping of fibre lasers and amplifiers is also possible. The small spot size leads to extremely high intensities and therefore high welding speeds in cw operation. For comparison: The M2 of the fibre output is 70, which gives a comparable beam parameter product (22mm*mrad) to that of a CO II laser with a M2 of 7 because of the wavelength difference. Many metals have a good absorption within the wavelength range of the laser diodes (NIR, 808nm to 980nm), which permits the cutting of thin sheets of aluminium or steel with a 200W version of this laser. First welding tests show reduced splatters and pores owing to the optimized process behaviour in cw operation with short wavelengths. The availability of a top-hat profile proves itself to be advantageous compared to the traditional Gaussian beam profiles of fibre, solid-state and gas lasers in that the laser energy is evenly distributed over the working area. For the future, we can announce an increase of the output power up to 1200W out of a 200μm fibre (0.22 NA). This will be achieved by further sophistication and optimisation of the coupling technique and the coupling of three wavelengths. The beam parameter product will then remain at 22mm*mrad with a power density of 3.8 MW/cm2 if focussed to a 200µm spot. This leads to excellent laser cutting results with extremely small cutting kerfs down to 200μm and very plane cutting edges. Process speeds rise up to more than 10m/min i.e. for thin sheets of stainless steel or titanium.

  5. SDIO (Strategic Defense Initiative Office) Technical Information Management Center Bibliography of Unclassified Reports: January - December 1986.

    DTIC Science & Technology

    1986-12-01

    Classification. U Security Marks, Accession *:U00298 AD *. ADA096538 TITLE: Assessment of the Crossed Porro Prism Resonator AUTHOR. Seea, B.A.; Fueloep, K...Laser Range Finder Mechanical Property Stability Resonator Porro Prism Standord Mirror Examine Pgs: 16 Classification: U Security Marks: Accession...Gamma-Ray Laser Graser Mossbauer Effect Borrman Superradiance Nuclear-Magnetic Resonance Pgs: 26 Classification: U Security Marks: Accession *:U00484 AD

  6. [CT-guided intervention by means of a laser marking and targeting aid].

    PubMed

    Klöppel, R; Wilke, W; Weisse, T; Steinecke, R

    1997-08-01

    The present study evaluates the use of a laser guidance system for CT-guided intervention. 94 cases of diagnostic biopsies and lumbar sympathectomies (54 cases with laser guidance system and 40 without) were compared. Using the laser guidance system, the number of control scans decreased by 30 to 50%, and necessary corrections of needle location were reduced by a maximum of 30%. The average target deviation of the needle decreased to less than 5 mm in 50% of cases. The laser guidance system is strongly recommended in CT-guided interventions for quality assurance and higher efficiency. The advantage is especially marked if the target area is small.

  7. Laser Technology Is Primed for the Classroom.

    ERIC Educational Resources Information Center

    Lytle, Jim

    1986-01-01

    Explains the three characteristics of laser light (monochromatic light, divergence, and coherence), the components of a laser, applications of the laser (alignment, distance measurement, welding/cutting, marking, medical applications), and a complete laser training system appropriate for classroom use. (CT)

  8. Enhancing the reproducibility of ocular vestibular evoked myogenic potentials by use of a visual target originating from a head-mounted laser.

    PubMed

    Jerin, Claudia; Bartl, Klaus; Schneider, Erich; Gürkov, Robert

    2015-10-01

    Ocular vestibular evoked myogenic potentials (oVEMPs) represent extraocular muscle activity in response to vestibular stimulation. oVEMP amplitudes are known to increase with increasing upward gaze angle, while the patient fixates a visual target. We investigated two different methods of presenting a visual target during oVEMP recordings. 57 healthy subjects were enrolled in this study. oVEMPs were elicited by 500 Hz air-conducted tone bursts while the subjects were looking upward at a marking which was either fixed on the wall or originated from a head-mounted laser attached to a headband, in either case corresponding to a 35° upward gaze angle. oVEMP amplitudes and latencies did not differ between the subjects looking at the fixed marking and the ones looking at the laser marking. The intra-individual standard deviation of amplitudes obtained by two separate measurements for each subject, however, as a measure of test-retest reliability, was significantly smaller for the laser headband group (0.60) in comparison to the group looking at the fixed marking (0.96; p = 0.007). The intraclass correlation coefficient revealed better test-retest reliability for oVEMP amplitudes when using the laser headband (0.957) than using the fixed marking (0.908). Hence, the use of a visual target originating from a headband enhances the reproducibility of oVEMPs. This might be due to the fact that the laser headband ensures a constant gaze angle and rules out the influence of small involuntary head movements on the gaze angle.

  9. Laser micro-etching of metal prostheses for personal identification

    PubMed Central

    Ganapathy, Dhanraj; Sivaswamy, Vinay; Sekhar, Prathap

    2017-01-01

    Denture marking techniques play a vital role in establishing personal identification in suitable clinical and forensic situations. The denture marking techniques are categorized broadly into additive and ablative methods. Additive methods involve embedding or impregnation of markers for establishing personal identity. Ablative methods involve partial removal of the denture surface thereby providing a marking for identification. Engraving and etching methods are the commonly used ablative methods. Ablative methods can be of contact and noncontact subtypes. Laser micro-etching is a precise noncontact ablative denture marking technique that could be used for prostheses-guided personal identification. PMID:28584473

  10. Laser micro-etching of metal prostheses for personal identification.

    PubMed

    Ganapathy, Dhanraj; Sivaswamy, Vinay; Sekhar, Prathap

    2017-01-01

    Denture marking techniques play a vital role in establishing personal identification in suitable clinical and forensic situations. The denture marking techniques are categorized broadly into additive and ablative methods. Additive methods involve embedding or impregnation of markers for establishing personal identity. Ablative methods involve partial removal of the denture surface thereby providing a marking for identification. Engraving and etching methods are the commonly used ablative methods. Ablative methods can be of contact and noncontact subtypes. Laser micro-etching is a precise noncontact ablative denture marking technique that could be used for prostheses-guided personal identification.

  11. Handheld lasers allow efficient detection of fluorescent marked organisms in the field.

    PubMed

    Rice, Kevin B; Fleischer, Shelby J; De Moraes, Consuelo M; Mescher, Mark C; Tooker, John F; Gish, Moshe

    2015-01-01

    Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health.

  12. Manipulation of heat-diffusion channel in laser thermal lithography.

    PubMed

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.

  13. Automatic Extraction of Road Markings from Mobile Laser-Point Cloud Using Intensity Data

    NASA Astrophysics Data System (ADS)

    Yao, L.; Chen, Q.; Qin, C.; Wu, H.; Zhang, S.

    2018-04-01

    With the development of intelligent transportation, road's high precision information data has been widely applied in many fields. This paper proposes a concise and practical way to extract road marking information from point cloud data collected by mobile mapping system (MMS). The method contains three steps. Firstly, road surface is segmented through edge detection from scan lines. Then the intensity image is generated by inverse distance weighted (IDW) interpolation and the road marking is extracted by using adaptive threshold segmentation based on integral image without intensity calibration. Moreover, the noise is reduced by removing a small number of plaque pixels from binary image. Finally, point cloud mapped from binary image is clustered into marking objects according to Euclidean distance, and using a series of algorithms including template matching and feature attribute filtering for the classification of linear markings, arrow markings and guidelines. Through processing the point cloud data collected by RIEGL VUX-1 in case area, the results show that the F-score of marking extraction is 0.83, and the average classification rate is 0.9.

  14. Use of high-power diode lasers for hardening and thermal conduction welding of metals

    NASA Astrophysics Data System (ADS)

    Klocke, Fritz; Demmer, Axel; Zaboklicki, A.

    1997-08-01

    CO2 and Nd:YAG high power lasers have become established as machining tools in industrial manufacturing over the last few years. The most important advantages compared to conventional processing techniques lie in the absence of forces introduced by the laser into the workpiece and in the simple arid highly accurate control in terms ofpositioning and timing making the laser a universally applicable, wear-free and extremely flexible tool /1,2/. The laser can be utilised costeffectively in numerous manufacturing processes but there are also further applications for the laser which produce excellent results from a technical point of view, but are not justified in terms of cost. The extensive use of lasers, particularly in small companies and workshops, is hindered by two main reasons: the complexity and size ofthe laser source and plant and the high investment costs /3/. A new generation of lasers, the high power diode lasers (HDL), combines high performance with a compact design, making the laser a cheap and easy to use tool with many applications /3,4,5,6/. In the diode laser, the laser beam is generated by a microelectronic diode which transforms electrical energy directly into laser energy. Diode lasers with low power outputs have, for some time, been making their mark in our everyday lives: they are used in CD players, laser printers and scanners at cash tills. Modern telecommunications would be impossible without these lasers which enable information to be transmitted in the form oflight impulses through optical fibres. They can also be found in compact precision measurement instrumentation - range fmders, interferometers and pollutant analysis devices /3,6/. In the field of material processing, the first applications ofthe laser, such as for soldering, inscribing, surface hardening and plastic or heat conduction welding, will exceed the limits ofthe relatively low performance output currently available. The diode laser has a shorter wavelength than the CO2 and Nd:YAG lasers making it more favourable in terms ofthe absorption behaviour ofthe laser beam - an advantage that will soon have a significant effect on the range of its applications.

  15. Part Marking and Identification Materials on MISSE

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Roxby, Donald L.

    2008-01-01

    Many different spacecraft materials were flown as part of the Materials on International Space Station Experiment (MISSE), including several materials used in part marking and identification. The experiment contained Data Matrix symbols applied using laser bonding, vacuum arc vapor deposition, gas assisted laser etch, chemical etch, mechanical dot peening, laser shot peening, and laser induced surface improvement. The effects of ultraviolet radiation on nickel acetate seal versus hot water seal on sulfuric acid anodized aluminum are discussed. These samples were exposed on the International Space Station to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was very limited for some samples. Results from the one-year exposure on MISSE-3 and MISSE-4 are compared to those from MISSE-1 and MISSE-2, which were exposed for four years. Part marking and identification materials on the current MISSE -6 experiment are also discussed.

  16. Development of laryngeal video stroboscope with laser marking module for dynamic glottis measurement.

    PubMed

    Kuo, Chung-Feng Jeffrey; Wang, Hsing-Won; Hsiao, Shang-Wun; Peng, Kai-Ching; Chou, Ying-Liang; Lai, Chun-Yu; Hsu, Chien-Tung Max

    2014-01-01

    Physicians clinically use laryngeal video stroboscope as an auxiliary instrument to test glottal diseases, and read vocal fold images and voice quality for diagnosis. As the position of vocal fold varies in each person, the proportion of the vocal fold size as presented in the vocal fold image is different, making it impossible to directly estimate relevant glottis physiological parameters, such as the length, area, perimeter, and opening angle of the glottis. Hence, this study designs an innovative laser projection marking module for the laryngeal video stroboscope to provide reference parameters for image scaling conversion. This innovative laser projection marking module to be installed on the laryngeal video stroboscope using laser beams to project onto the glottis plane, in order to provide reference parameters for scaling conversion of images of laryngeal video stroboscope. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nd:YOV4 laser surface texturing on DLC coating: Effect on morphology, adhesion, and dry wear behavior

    NASA Astrophysics Data System (ADS)

    Surfaro, Maria; Giorleo, Luca; Montesano, Lorenzo; Allegri, Gabriele; Ceretti, Elisabetta; La Vecchia, Giovina Marina

    2018-05-01

    The surface of structural components is usually subjected to higher stresses, greater wear or fatigue damage, and more direct environmental exposure than the inner parts. For this reason, the interest to improve superficial properties of items is constantly increasing in different fields as automotive, electronic, biomedical, etc. Different approaches can be used to achieve this goal: case hardening by means of superficial heat treatments like carburizing or nitriding, deposition of thin or thick coatings, roughness modification, etc. Between the available technologies to modify components surface, Laser Surface Texturing (LST) has already been recognized in the last decade as a process, which improves the tribological properties of various parts. Based on these considerations the aim of the present research work was to realize a controlled laser texture on a Diamond-like Carbon (DLC) thin coating (about 3 µm thick) without damaging both the coating itself and the substrate. In particular, the effect of laser process parameters as marking speed and loop cycle were investigated in terms of texture features modifications. Both qualitative and quantitative analyses of the texture were executed by using a scanning electron microscope and a laser probe system to select the proper laser parameters. Moreover, the effect of the selected texture on the DLC nanohardness, adhesion and wear behavior was pointed out.

  18. Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses.

    PubMed

    Liu, Zeming; Siegel, Jan; Garcia-Lechuga, Mario; Epicier, Thierry; Lefkir, Yaya; Reynaud, Stéphanie; Bugnet, Matthieu; Vocanson, Francis; Solis, Javier; Vitrant, Guy; Destouches, Nathalie

    2017-05-23

    Controlling plasmonic systems with nanometer resolution in transparent films and their colors over large nonplanar areas is a key issue for spreading their use in various industrial fields. Using light to direct self-organization mechanisms provides high-speed and flexible processes to meet this challenge. Here, we describe a route for the laser-induced self-organization of metallic nanostructures in 3D. Going beyond the production of planar nanopatterns, we demonstrate that ultrafast laser-induced excitation combined with nonlinear feedback mechanisms in a nanocomposite thin film can lead to 3D self-organized nanostructured films. The process, which can be extended to complex layered composite systems, produces highly uniform large-area nanopatterns. We show that 3D self-organization originates from the simultaneous excitation of independent optical modes at different depths in the film and is activated by the plasmon-induced charge separation and thermally induced NP growth mechanisms. This laser color marking technique enables multiplexed optical image encoding and the generated nanostructured Ag NPs:TiO 2 films offer great promise for applications in solar energy harvesting, photocatalysis, or photochromic devices.

  19. Accurate positioning based on acoustic and optical sensors

    NASA Astrophysics Data System (ADS)

    Cai, Kerong; Deng, Jiahao; Guo, Hualing

    2009-11-01

    Unattended laser target designator (ULTD) was designed to partly take the place of conventional LTDs for accurate positioning and laser marking. Analyzed the precision, accuracy and errors of acoustic sensor array, the requirements of laser generator, and the technology of image analysis and tracking, the major system modules were determined. The target's classification, velocity and position can be measured by sensors, and then coded laser beam will be emitted intelligently to mark the excellent position at the excellent time. The conclusion shows that, ULTD can not only avoid security threats, be deployed massively, and accomplish battle damage assessment (BDA), but also be fit for information-based warfare.

  20. Handheld Lasers Allow Efficient Detection of Fluorescent Marked Organisms in the Field

    PubMed Central

    Fleischer, Shelby J.; De Moraes, Consuelo M.; Mescher, Mark C.; Tooker, John F.

    2015-01-01

    Marking organisms with fluorescent dyes and powders is a common technique used in ecological field studies that monitor movement of organisms to examine life history traits, behaviors, and population dynamics. External fluorescent marking is relatively inexpensive and can be readily employed to quickly mark large numbers of individuals; however, the ability to detect marked organisms in the field at night has been hampered by the limited detection distances provided by portable fluorescent ultraviolet lamps. In recent years, significant advances in LED lamp and laser technology have led to development of powerful, low-cost ultraviolet light sources. In this study, we evaluate the potential of these new technologies to improve detection of fluorescent-marked organisms in the field and to create new possibilities for tracking marked organisms in visually challenging environments such as tree canopies and aquatic habitats. Using handheld lasers, we document a method that provides a fivefold increase in detection distance over previously available technologies. This method allows easy scouting of tree canopies (from the ground), as well as shallow aquatic systems. This novel detection method for fluorescent-marked organisms thus promises to significantly enhance the use of fluorescent marking as a non-destructive technique for tracking organisms in natural environments, facilitating field studies that aim to document otherwise inaccessible aspects of the movement, behavior, and population dynamics of study organisms, including species with significant economic impacts or relevance for ecology and human health. PMID:26035303

  1. Outbreak of diffuse lamellar keratitis caused by marking-pen toxicity.

    PubMed

    Hadden, Osmond Bruce; McGhee, Charles N J; Morris, Antony Trevor; Gray, Trevor Buchanan; Ring, Charles Peter; Watson, Adam Stewart John

    2008-07-01

    To examine the evidence that a series of cases of diffuse lamellar keratitis (DLK) after laser in situ keratomileusis (LASIK) was caused by a type of marker pen. Eye Institute, Auckland, New Zealand. During a 10-week period, 522 consecutive LASIK procedures were performed using a 60 Hz IntraLase femtosecond laser (IntraLase Corp.) to create the LASIK flap and a 217Z 100 Hz excimer laser (Bausch & Lomb) to perform the refractive ablation. As standard practice, a marking pen was used to enable accurate flap realignment. Three weeks after a sudden increase in the incidence of DLK was identified, one of the 5 surgeons performed 5 consecutive bilateral cases using the marking pen in the right eyes but not in the left eyes. Of the 522 LASIK cases (119 without marking pen, 403 with marking pen), DLK developed in 49 (9.4%). No eye treated without the marking pen developed DLK; of those in which the marking pen was used, 49 (12.2%) developed DLK (P<0.0001, Fischer exact test; odds ratio, 27). In the 5 consecutive bilateral cases in which the marking pen was used in the right eye but not the left eye, 4 right eyes and no left eye developed DLK (P=0.03). Forty-five of the 49 eyes with DLK quickly recovered. The other 4 developed central toxic keratopathy. There is strong statistical evidence that the marking pen was a factor in the occurrence of DLK.

  2. Photogrammetry Tool for Forensic Analysis

    NASA Technical Reports Server (NTRS)

    Lane, John

    2012-01-01

    A system allows crime scene and accident scene investigators the ability to acquire visual scene data using cameras for processing at a later time. This system uses a COTS digital camera, a photogrammetry calibration cube, and 3D photogrammetry processing software. In a previous instrument developed by NASA, the laser scaling device made use of parallel laser beams to provide a photogrammetry solution in 2D. This device and associated software work well under certain conditions. In order to make use of a full 3D photogrammetry system, a different approach was needed. When using multiple cubes, whose locations relative to each other are unknown, a procedure that would merge the data from each cube would be as follows: 1. One marks a reference point on cube 1, then marks points on cube 2 as unknowns. This locates cube 2 in cube 1 s coordinate system. 2. One marks reference points on cube 2, then marks points on cube 1 as unknowns. This locates cube 1 in cube 2 s coordinate system. 3. This procedure is continued for all combinations of cubes. 4. The coordinate of all of the found coordinate systems is then merged into a single global coordinate system. In order to achieve maximum accuracy, measurements are done in one of two ways, depending on scale: when measuring the size of objects, the coordinate system corresponding to the nearest cube is used, or when measuring the location of objects relative to a global coordinate system, a merged coordinate system is used. Presently, traffic accident analysis is time-consuming and not very accurate. Using cubes with differential GPS would give absolute positions of cubes in the accident area, so that individual cubes would provide local photogrammetry calibration to objects near a cube.

  3. Influence of the initial surface texture on the resulting surface roughness and waviness for micro-machining with ultra-short laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Remund, Stefan M.; Jaeggi, Beat; Kramer, Thorsten; Neuenschwander, Beat

    2017-03-01

    The resulting surface roughness and waviness after processing with ultra-short pulsed laser radiation depend on the laser parameters as well as on the machining strategy and the scanning system. However the results depend on the material and its initial surface quality and finishing as well. The improvement of surface finishing represents effort and produces additional costs. For industrial applications it is important to reduce the preparation of a workpiece for laser micro-machining to optimize quality and reduce costs. The effects of the ablation process and the influence of the machining strategy and scanning system onto the surface roughness and waviness can be differenced due to their separate manner. By using the optimal laser parameters on an initially perfect surface, the ablation process mainly increases the roughness to a certain value for most metallic materials. However, imperfections in the scanning system causing a slight variation in the scanning speed lead to a raise of the waviness on the sample surface. For a basic understanding of the influence of grinding marks, the sample surfaces were initially furnished with regular grooves of different depths and spatial frequencies to gain a homogenous and well-defined original surface. On these surfaces the effect of different beam waists and machining strategy are investigated and the results are compared with a simulation of the process. Furthermore the behaviors of common surface finishes used in industrial applications for laser micro-machining are studied and the relation onto the resulting surface roughness and waviness is presented.

  4. Reviews on laser cutting technology for industrial applications

    NASA Astrophysics Data System (ADS)

    Muangpool, T.; Pullteap, S.

    2018-03-01

    In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.

  5. Optodynamic monitoring of laser tattoo removal.

    PubMed

    Cencič, Boris; Grad, Ladislav; Možina, Janez; Jezeršek, Matija

    2012-04-01

    The goal of this research is to use the information contained in the mechanisms occurring during the laser tattoo removal process. We simultaneously employed a laser-beam deflection probe (LBDP) to measure the shock wave and a camera to detect the plasma radiation, both originating from a high-intensity laser-pulse interaction with a tattoo. The experiments were performed in vitro (skin phantoms), ex vivo (marking tattoos on pig skin), and in vivo (professional and amateur decorative tattoos). The LBDP signal includes the information about the energy released during the interaction and indicates textural changes in the skin, which are specific for different skin and tattoo conditions. Using both sensors, we evaluated a measurement of threshold for skin damage and studied the effect of multiple pulses. In vivo results show that a prepulse reduces the interaction strength and that a single strong pulse produces better removal results.

  6. Evaluating the use of high speed laser line sensors for improved rideability measurement.

    DOT National Transportation Integrated Search

    2016-09-01

    This research project compared rideability readings and repeatability for both point laser and line laser systems on the high-speed profiler. Both systems were Dynatest 5051 Mark III Road Surface Profilers, one equipped with single point lasers and t...

  7. CO2 laser versus cold steel margin analysis following endoscopic excision of glottic cancer

    PubMed Central

    2014-01-01

    Objective To compare the suitability of CO2 laser with steel instruments for margin excision in transoral laser microsurgery. Methods Prospective randomized blinded study. Patients with glottic cancer undergoing laser resection were randomized to margin excision by either steel instruments or CO2 laser. Margins were analyzed for size, interpretability and degree of artifact by a pathologist who was blinded to technique. Results 45 patients were enrolled in the study with 226 total margins taken. 39 margins taken by laser had marked artifact and 0 were uninterpretable. 20 margins taken by steel instruments had marked artifact, and 2 were uninterpretable. Controlling for margin size, the laser technique was associated with increasing degrees of margin artifact (p = 0.210), but there was no difference in crude rates of uninterpretability (p = 0.24). Conclusion Laser margin excision is associated with a greater degree of artifact than steel instrument excision, but was not associated with higher rate of uninterpretability. PMID:24502856

  8. Beam alignment based on two-dimensional power spectral density of a near-field image.

    PubMed

    Wang, Shenzhen; Yuan, Qiang; Zeng, Fa; Zhang, Xin; Zhao, Junpu; Li, Kehong; Zhang, Xiaolu; Xue, Qiao; Yang, Ying; Dai, Wanjun; Zhou, Wei; Wang, Yuanchen; Zheng, Kuixing; Su, Jingqin; Hu, Dongxia; Zhu, Qihua

    2017-10-30

    Beam alignment is crucial to high-power laser facilities and is used to adjust the laser beams quickly and accurately to meet stringent requirements of pointing and centering. In this paper, a novel alignment method is presented, which employs data processing of the two-dimensional power spectral density (2D-PSD) for a near-field image and resolves the beam pointing error relative to the spatial filter pinhole directly. Combining this with a near-field fiducial mark, the operation of beam alignment is achieved. It is experimentally demonstrated that this scheme realizes a far-field alignment precision of approximately 3% of the pinhole size. This scheme adopts only one near-field camera to construct the alignment system, which provides a simple, efficient, and low-cost way to align lasers.

  9. History of lasers.

    PubMed

    Gross, Andreas J; Herrmann, Thomas R W

    2007-06-01

    The developments of laser technology from the cradle of modern physics in 1900 by Planck to its latest medical boundaries is an exciting example of how basic physics finds its way into clinical practice. This article merits the protagonists and their contribution to the steps in this development. The competition between the different research groups finally led to the award of the Nobel Prize to Townes, Basov and Prokhorov in 1964 for the scientific basis on quantum electronics, which led to the construction of oscillators and amplifiers based on the laser-maser principle. Forty-three years after Einstein's first theories Maiman introduced the first ruby laser for commercial use. This marked the key step for the laser application and pioneered fruitful cooperations between basic and clinical science. The pioneers of lasers in clinical urology were Parsons in 1966 with studies in canine bladders and Mulvany 1968 with experiments in calculi fragmentation. The central technological component for the triumphal procession of lasers in urology is the endoscope. Therefore lasers are currently widely used, being the tool of choice in some areas, such as endoscopical lithotriptic stone treatment or endoluminal organ-preserving tumor ablation. Furthermore they show promising treatment alternatives for the treatment of benign prostate hyperplasia.

  10. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  11. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Karczewski, Jakub; Śliwiński, Gerard

    2015-12-01

    The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40-120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  12. Automatic Extraction of Road Markings from Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Ma, H.; Pei, Z.; Wei, Z.; Zhong, R.

    2017-09-01

    Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS) and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS) system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.

  13. Laser-supported diaphanoscopy: an innovative technique for locating gastric stromal tumors in gastroscopic-laparoscopic rendezvous: a case series.

    PubMed

    Patrzyk, M; Schreiber, A; Heidecke, C D; Glitsch, A

    2009-12-01

    Development of an innovative method of endoscopic laser-supported diaphanoscopy, for precise demonstration of the location of gastrointestinal stromal tumors (GISTs) at laparoscopy is described. The equipment consists of a light transmission cable with an anchoring system for the gastric mucosa, a connecting system for the light source, and the laser light source itself. During surgery, transillumination by laser is used to show the shape of the tumor. The resection margins are then marked by electric coagulation. Ten patients have been successfully treated using this technique in laparoscopic-endoscopic rendezvous procedures. Average time of surgery was 123 minutes. The time for marking the shape of the tumor averaged 16 minutes. Depending on tumor location and size, 4-7 marks were used, and resection margins were 4-15 mm. This new and effective technique facilitates precise locating of gastric GISTs leading to exact and tissue-sparing transmural laparoscopic resections. Georg Thieme Verlag KG Stuttgart New York.

  14. Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films.

    PubMed

    Chang, Chia Min; Chu, Cheng Hung; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2011-05-09

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a thin-film gold electrode, are investigated for the purpose of understanding the local electrical conductivity of recorded marks under the influence of focused laser beam. Being amorphous, the as-deposited chalcogenide films have negligible electrical conductivity. With the aid of a focused laser beam, however, we have written on these films micron-sized crystalline marks, ablated holes surrounded by crystalline rings, and other multi-ring structures containing both amorphous and crystalline zones. Within these structures, nano-scale regions of superior local conductivity have been mapped and probed using our high-resolution, high-sensitivity conductive-tip atomic force microscope (C-AFM). Scanning electron microscopy and energy-dispersive spectrometry have also been used to clarify the origins of high conductivity in and around the recorded marks. When the Ge(2)Sb(2)Te(5) layer is sufficiently thin, and when laser crystallization/ablation is used to define long isolated crystalline stripes on the samples, we find the C-AFM-based method of extracting information from the recorded marks to be superior to other forms of microscopy for this particular class of materials. Given the tremendous potential of chalcogenides as the leading media candidates for high-density memories, local electrical characterization of marks recorded on as-deposited amorphous Ge(2)Sb(2)Te(5) films provides useful information for furthering research and development efforts in this important area of modern technology. © 2011 Optical Society of America

  15. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler.

    PubMed

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E; Boudoux, Caroline

    2015-04-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett's esophagus.

  16. Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler

    PubMed Central

    Beaudette, Kathy; Baac, Hyoung Won; Madore, Wendy-Julie; Villiger, Martin; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2015-01-01

    Double-clad fiber (DCF) is herein used in conjunction with a double-clad fiber coupler (DCFC) to enable simultaneous and co-registered optical coherence tomography (OCT) and laser tissue coagulation. The DCF allows a single channel fiber-optic probe to be shared: i.e. the core propagating the OCT signal while the inner cladding delivers the coagulation laser light. We herein present a novel DCFC designed and built to combine both signals within a DCF (>90% of single-mode transmission; >65% multimode coupling). Potential OCT imaging degradation mechanisms are also investigated and solutions to mitigate them are presented. The combined DCFC-based system was used to induce coagulation of an ex vivo swine esophagus allowing a real-time assessment of thermal dynamic processes. We therefore demonstrate a DCFC-based system combining OCT imaging with laser coagulation through a single fiber, thus enabling both modalities to be performed simultaneously and in a co-registered manner. Such a system enables endoscopic image-guided laser marking of superficial epithelial tissues or laser thermal therapy of epithelial lesions in pathologies such as Barrett’s esophagus. PMID:25909013

  17. Modification of the laser triangulation method for measuring the thickness of optical layers

    NASA Astrophysics Data System (ADS)

    Khramov, V. N.; Adamov, A. A.

    2018-04-01

    The problem of determining the thickness of thin films by the method of laser triangulation is considered. An expression is derived for the film thickness and the distance between the focused beams on the photo detector. The possibility of applying the chosen method for measuring thickness is in the range [0.1; 1] mm. We could resolve 2 individual light marks for a minimum film thickness of 0.23 mm. We resolved with the help of computer processing of photos with a resolution of 0.10 mm. The obtained results can be used in ophthalmology for express diagnostics during surgical operations on the corneal layer.

  18. Correction of biochemical and functional disorders in brain ischaemia with laser therapy

    NASA Astrophysics Data System (ADS)

    Musienko, Julia I.; Nechipurenko, Natalia I.; Vasilevskaya, Ludmila A.

    2005-08-01

    Application of intravenous laser irradiation of blood (ILIB) is considered to be the most effective method of laser therapy and its application is expedient pathogenetically in the ischemic disturbances. The aim of this study is to investigate ILIB influence with red helium-neon laser (HNL) with 630 nm wavelength and different powers on blood oxygen transport (BOT), cerebral and dermal microhaemodynamics (MGD), hydro-ion balance in normal rabbits and after modeling of local ischemia of brain (LIB). Experimental cerebral ischemia is characterized by development of BOT disturbance, ionic disbalance and edema in the ischemic brain region. Microcirculation disturbances with worsening of the cerebral and dermal MHD were revealed. ILIB with HNL radiation of 2.5 and 4.5 mW powers provokes dehydratation of brain structure alone with the K+, Na+ concentration decreasing and hemoglobin-oxygen affinity increasing in intact group of animals. There was not revealed marked changes of cerebral MHD condition here. Using of ILIB in rabbits after LIB contributes for improving function of BOT, normalizing of water content in all cerebral structures compared to operated animals. Preventive ILIB provoked improvement of speckl-optical parameters and marked protective effect on microhaemodynamics processes in superficial brain structures. HNL radiation with 1.0 mW power results in worsening of oxygen transport, cerebral and skin MHD, hydro-ion homeostasis in animals with LIB modeling. Thus, laser haemotherapy contributes for improving of hydro-ion status, blood oxygen transport and cerebral microcirculation in brain ischemia, what allows considering that helium-neon radiation with the pointed regimen is substantiated pathogenetically in brain ischaemia.

  19. Laser-assisted electrochemical micromachining of mould cavity on the stainless steel surface

    NASA Astrophysics Data System (ADS)

    Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han

    2018-02-01

    In order to fabricate the micro mould cavities with complex structures on 304 stainless steel, laser-assisted electrochemical micromachining (EMM) based on surface modification by fiber laser masking was studied,and a new device of laser-assisted EMM was developed. Laser marking on the surface of 304 stainless steel can first be realized by fiber laser heating scanning. Through analysis of X ray diffraction analysis (XRD), metal oxide layer with predefined pattern can be formed by laser marking, and phase transformation can also occur on the 304 stainless steel surface, which produce the laser masking layer with corrosion resistance. The stainless steel surface with laser masking layer is subsequently etched by EMM, the laser masking layer severs as the temporary protective layer without relying on lithography mask, the fabrication of formed electrodes is also avoided, so micro pattern cavities can fast be fabricated. The impacts on machining accuracy during EMM with laser masking were discussed to optimize machining parameters, such as machining voltage, electrolyte concentration, duty cycle of pulse power supply and electrode gap size, the typical mould cavities 23μm deep were fabricated under the optimized parameters.

  20. Development of Measurement Device of Working Radius of Crane Based on Single CCD Camera and Laser Range Finder

    NASA Astrophysics Data System (ADS)

    Nara, Shunsuke; Takahashi, Satoru

    In this paper, what we want to do is to develop an observation device to measure the working radius of a crane truck. The device has a single CCD camera, a laser range finder and two AC servo motors. First, in order to measure the working radius, we need to consider algorithm of a crane hook recognition. Then, we attach the cross mark on the crane hook. Namely, instead of the crane hook, we try to recognize the cross mark. Further, for the observation device, we construct PI control system with an extended Kalman filter to track the moving cross mark. Through experiments, we show the usefulness of our device including new control system of mark tracking.

  1. Velocity visualization in gaseous flows

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    1985-01-01

    Techniques are established for visualizing velocity in gaseous flows. Two approaches are considered, both of which are capable of yielding velocity simultaneously at a large number of flowfield locations, thereby providing images of velocity. The first technique employs a laser to mark specific fluid elements and a camera to track their subsequent motion. Marking is done by laser-induced phosphorescence of biacetyl, added as a tracer species in a flow of N2, or by laser-induced formation of sulfur particulates in SF6-H2-N2 mixtures. The second technique is based on the Doppler effect, and uses an intensified photodiode array camera and a planar form of laser-induced fluorescence to detect 2-d velocities of I2 (in I2-N2 mixtures) via Doppler-shifted absorption of narrow-linewidth laser radiation at 514.5 nm.

  2. Laser micro-structuring of surfaces for applications in materials and biomedical science

    NASA Astrophysics Data System (ADS)

    Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta

    2016-12-01

    Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.

  3. Understanding Fire Through Improved Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Aztec(TradeMark) is the commercial name for Southwest Sciences laser. The laser has coarse tuning ranges of 10 nanometers (nm) to 30 nm at wavelengths ranging from 630 nm to 2,300 nm, making it the only commercially available external cavity diode laser with wavelengths beyond 1,650 nm. The laser's high-speed tuning in both coarse and fine wavelength regimes allows for increased trace gas detection. With the automated coarse tuning option, the Aztec sweeps through its wavelength range in less than 1 millisecond. While some diode lasers can only detect one type, or species, of a trace gas, the Aztec's broad wavelength tuning provides access to multiple trace gas species. The Aztec has a wide range of applications for both NASA and commercial users, from protecting astronauts in space to improving combustion processes on Earth. It may serve as a new tool for planetary exploration, as it can detect a wide range of multiple gas species in planetary atmospheres. The laser could optically detect gaseous indicators of incipient fires on the International Space Station and Space Shuttle, as well as detect low concentrations of potentially toxic gases in spacecraft crew habitats. The laser could also provide more accurate fire detection in aircraft cargo compartments. Since the Aztec can detect several gases that only evolve during an actual fire, its implementation could reduce the large number of commercial aircraft landings that currently occur due to false alarms. Other applications include environmental and industrial process monitoring.

  4. Evaluation of phototherapy in the differentiation of mesenchymal stem cells in the tissue repair of rats submitted to a hyperlipidemic diet

    NASA Astrophysics Data System (ADS)

    Oliveira, C. R. B.; Santos, L. S.; Silva, V. D. U.; Vitória, L. A.; Rodriguez, T. T.; Marques, A. M. C.; Xavier, F. C. A.; Ramalho, L.

    2018-04-01

    Obese people present a greater risk of developing other systemic diseases and comorbidities such as compromising the tissue repair process. Laser phototherapy can contribute to this repair by improving cellular functions, since stem cells may play an important role in repair due to their pluripotent potential. In this way, the influence of Laser Phototherapy (LP) was evaluated in the tissue repair of rats submitted to a hyperlipid diet through CD49 immunostaining for adipose stem cells. Forty-eight Wistar albinus rats were divided into two experimental groups: Standard Diet (SD) and Hyperlipid Diet (HD) for 20 weeks. After this period, excisional dorsal cutaneous wounds of 1 cm2 were made. The groups were subdivided into control and laser, the laser groups were irradiated (Diode Laser of Gallium and Aluminum Arsenide, λ660nm, 40mW, 6J / cm2) immediately after the surgery and every 48 hours. A group of rats were killed on day 7 and the other group on day 14 and the specimens processed by the immunohistochemical technique. The SD group presented antibodies marked with moderate to intense intensity, whereas in the HD group the weak staining for the time of 14 days prevailed. The irradiation protocol employed had no influence on the CD49 marker when compared to the control and irradiated groups over the same period. According to the methodology used and the results obtained it is concluded that laser light does not influence the recruitment of adipoderivative stem cells for the tissue repair process.

  5. High power visible diode laser for the treatment of eye diseases by laser coagulation

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  6. Manual limbal markings versus iris-registration software for correction of myopic astigmatism by laser in situ keratomileusis.

    PubMed

    Shen, Elizabeth P; Chen, Wei-Li; Hu, Fung-Rong

    2010-03-01

    To compare the efficacy and safety of manual limbal markings and wavefront-guided treatment with iris-registration software in laser in situ keratomileusis (LASIK) for myopic astigmatism. National Taiwan University Hospital, Taipei, Taiwan. Eyes with myopic astigmatism had LASIK with a Technolas 217z laser. Eyes in the limbal-marking group had conventional LASIK (PlanoScan or Zyoptix tissue-saving algorithm) with manual cyclotorsional-error adjustments according to 2 limbal marks. Eyes in the iris-registration group had wavefront-guided ablation (Zyoptix) in which cyclotorsional errors were automatically detected and adjusted. Refraction, corneal topography, and visual acuity data were compared between groups. Vector analysis was by the Alpins method. The mean preoperative spherical equivalent (SE) was -6.64 diopters (D) +/- 1.99 (SD) in the limbal-marking group and -6.72 +/- 1.86 D in the iris-registration group (P = .92). At 6 months, the mean SE was -0.42 +/- 0.63 D and -0.47 +/- 0.62 D, respectively (P = .08). There was no statistically significant difference between groups in the astigmatism correction, success, or flattening index values using 6-month postoperative refractive data. The angle of error was within +/-10 degrees in 73% of eyes in the limbal-marking group and 75% of eyes in the iris-registration group. Manual limbal markings and iris-registration software were equally effective and safe in LASIK for myopic astigmatism, showing that checking cyclotorsion by manual limbal markings is a safe alternative when automated systems are not available. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo

    2016-10-01

    Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.

  8. The anatomy of a laser label

    USDA-ARS?s Scientific Manuscript database

    Laser labeling of fruits and vegetables is an efficient alternative to adhesive tags. The advantages of this system are numerous. In general the label consists of alphanumerical characters formed by laser generated pinhole depressions that penetrate the produce’s surface creating visible markings. H...

  9. Base-Level Management of Laser Radiation Protection Program

    DTIC Science & Technology

    1992-02-01

    safety eyewear . special considerations for medical lasers and optical fibers, and summary evaluations of common Air Force laser systems... optical density of 2. Laser safety eyewear should have the optical density clearly marked for ail wavelengths for which the eyewear provides protection. c...density of protective eyewear . The optical density required for laser safety eyewear is dependent on the irradiance or radiant exposure-of the

  10. Active thermography and post-processing image enhancement for recovering of abraded and paint-covered alphanumeric identification marks

    NASA Astrophysics Data System (ADS)

    Montanini, R.; Quattrocchi, A.; Piccolo, S. A.

    2016-09-01

    Alphanumeric marking is a common technique employed in industrial applications for identification of products. However, the realised mark can undergo deterioration, either by extensive use or voluntary deletion (e.g. removal of identification numbers of weapons or vehicles). For recovery of the lost data many destructive or non-destructive techniques have been endeavoured so far, which however present several restrictions. In this paper, active infrared thermography has been exploited for the first time in order to assess its effectiveness in restoring paint covered and abraded labels made by means of different manufacturing processes (laser, dot peen, impact, cold press and scribe). Optical excitation of the target surface has been achieved using pulse (PT), lock-in (LT) and step heating (SHT) thermography. Raw infrared images were analysed with a dedicated image processing software originally developed in Matlab™, exploiting several methods, which include thermographic signal reconstruction (TSR), guided filtering (GF), block guided filtering (BGF) and logarithmic transformation (LN). Proper image processing of the raw infrared images resulted in superior contrast and enhanced readability. In particular, for deeply abraded marks, good outcomes have been obtained by application of logarithmic transformation to raw PT images and block guided filtering to raw phase LT images. With PT and LT it was relatively easy to recover labels covered by paint, with the latter one providing better thermal contrast for all the examined targets. Step heating thermography never led to adequate label identification instead.

  11. The optimisation of the laser-induced forward transfer process for fabrication of polyfluorene-based organic light-emitting diode pixels

    NASA Astrophysics Data System (ADS)

    Shaw-Stewart, James; Mattle, Thomas; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander

    2013-08-01

    Laser-induced forward transfer (LIFT) has already been used to fabricate various types of organic light-emitting diodes (OLEDs), and the process itself has been optimised and refined considerably since OLED pixels were first demonstrated. In particular, a dynamic release layer (DRL) of triazene polymer has been used, the environmental pressure has been reduced down to a medium vacuum, and the donor receiver gap has been controlled with the use of spacers. Insight into the LIFT process's effect upon OLED pixel performance is presented here, obtained through optimisation of three-colour polyfluorene-based OLEDs. A marked dependence of the pixel morphology quality on the cathode metal is observed, and the laser transfer fluence dependence is also analysed. The pixel device performances are compared to conventionally fabricated devices, and cathode effects have been looked at in detail. The silver cathode pixels show more heterogeneous pixel morphologies, and a correspondingly poorer efficiency characteristics. The aluminium cathode pixels have greater green electroluminescent emission than both the silver cathode pixels and the conventionally fabricated aluminium devices, and the green emission has a fluence dependence for silver cathode pixels.

  12. Photonic jet subwavelength etching using a shaped optical fiber tip.

    PubMed

    Zelgowski, Julien; Abdurrochman, Andri; Mermet, Frederic; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2016-05-01

    We demonstrate that photonic jets (PJs) can be obtained in the vicinity of a shaped optical fiber and that they can be used to achieve subwavelength etchings. Only 10% of the power of a 30 W, 100 ns, near-infrared (1064 nm) Nd:YAG laser, commonly used for industrial laser processing, has been required. Etchings on a silicon wafer with a lateral feature size close to half-laser wavelength have been achieved using a shaped-tip optical fiber. This breakthrough has been carried out in ambient air by using a multimode 100/140 μm silica fiber with a shaped tip that generates a concentrated beam at their vicinity, a phenomenon referred to as a PJ, obtained for the first time without using microspheres. PJ achieved with a fiber tip, easier to manipulate, opens far-reaching benefits for all PJ applications. The roles of parameters such as laser fluence, tip shape, and mode excitation are discussed. A good correlation has been observed between the computed PJ intensity distribution and the etched marks' sizes.

  13. Ultrafast amorphization in Ge(10)Sb(2)Te(13) thin film induced by single femtosecond laser pulse.

    PubMed

    Konishi, Mitsutaka; Santo, Hisashi; Hongo, Yuki; Tajima, Kazuyuki; Hosoi, Masaharu; Saiki, Toshiharu

    2010-06-20

    We demonstrate amorphization in a Ge(10)Sb(2)Te(13) (GST) thin film through a nonthermal process by femtosecond electronic excitation. Amorphous recording marks were formed by irradiation with a single femtosecond pulse, and were confirmed to be recrystallized by laser thermal annealing. Scanning electron microscope observations revealed that amorphization occurred below the melting temperature. We performed femtosecond pump-probe measurements to investigate the amorphization dynamics of a GST thin film. We found that the reflectivity dropped abruptly within 500fs after excitation by a single pulse and that a small change in the reflectivity occurred within 5ps of this drop.

  14. Outcome of corneal and laser astigmatic axis alignment in photoastigmatic refractive keratectomy.

    PubMed

    Farah, S G; Olafsson, E; Gwynn, D G; Azar, D T; Brightbill, F S

    2000-12-01

    To compare the refractive results of laser astigmatic treatment in eyes in which the astigmatic axes of the eye and laser are aligned by limbal marking at the 6 o'clock position and in eyes that are not marked. University Hospital and Clinics, Madison, Wisconsin, USA. This retrospective study comprised 143 eyes that had photoastigmatic refractive keratectomy with the VISX Star excimer laser. The eyes were divided into marked (G1) and unmarked (G2) groups. Based on the preoperative astigmatism, each group was subdivided into low astigmatism (/=1.25 D). Early postoperative manifest refractions (1.0 to 2.5 months) were analyzed. The Alpins vector analysis method was used to calculate the target induced astigmatism, surgically induced astigmatism, difference vector (DV), magnitude of error (ME), angle of error (AE), and index of success (IS). There was no significant difference between the groups in DV, ME, and IS. When the subgroups were analyzed, the DV and ME were comparable; the IS in the G1 high astigmatism subgroup was significantly better than that in the G2 high astigmatism subgroup (0.22 +/- 0.08 and 0.29 +/- 0.04, respectively; P <.0001). There was comparable scatter of AE values; 30% and 36% in G1 and G2, respectively, had an AE of 0. Similar scatter was observed in the subgroups. Of the eyes that had an AE of 0, 90% and 43% in the high astigmatism subgroups of G1 and G2, respectively (P <.05), had full correction of astigmatism. Limbal marking and subsequent eye and laser astigmatic axis alignment improved the refractive outcome of laser astigmatic treatment of >/=1.25 D. A preliminary report of an ongoing prospective randomized study of eyes that had laser in situ keratomileusis is included.

  15. Applications of lasers to production metrology, control, and machine 'Vision'

    NASA Astrophysics Data System (ADS)

    Pryor, T. R.; Erf, R. K.; Gara, A. D.

    1982-06-01

    General areas of laser application to production measurement and inspection are reviewed together with the associated laser measurement techniques. The topics discussed include dimensional gauging of part profiles using laser imaging or scanning techniques, laser triangulation for surface contour measurement, surface finish measurement and defect inspection, holography and speckle techniques, and strain measurement. The emerging field of robot guidance utilizing lasers and other sensing means is examined, and, finally, the use of laser marking and reading equipment is briefly discussed.

  16. 48 CFR 252.225-7039 - Contractors performing private security functions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Tagging, Labeling, and Marking of Government-Furnished Property, and physically marked in accordance with... countermeasures (other than the discharge of a weapon, including laser optical distracters, acoustic hailing...

  17. 48 CFR 252.225-7039 - Contractors performing private security functions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Tagging, Labeling, and Marking of Government-Furnished Property, and physically marked in accordance with... countermeasures (other than the discharge of a weapon, including laser optical distracters, acoustic hailing...

  18. Investigation of irradiation by different nonablative lasers on primary cultured skin fibroblasts.

    PubMed

    Weng, Y; Dang, Y; Ye, X; Liu, N; Zhang, Z; Ren, Q

    2011-08-01

    A variety of lasers with different wavelengths and biological effects are widely used for nonablative skin rejuvenation, but the underlying mechanisms have not been fully investigated. To investigate the effects of irradiation by different nonablative lasers on collagen synthesis and the antioxidant status of cultured fibroblasts to identify a possible mechanism for laser photorejuvenation. Cultured skin fibroblasts were irradiated with three different lasers: 532 nm potassium-titanyl phosphate (KTP), 1064 nm Q-switched neodymium:yttrium-aluminium-garnet (Nd:Yag) and 1064 nm long-pulse Nd:YAG, and production of collagen and changes in lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were assayed. Irradiation by all three lasers led to a marked increase in collagen production. Two major antioxidant enzymes, SOD and GSH, were significantly increased, whereas MDA was markedly reduced after laser irradiation. No change in LDH activity was found between nonirradiated and irradiated fibroblasts. This study indicates that the increased collagen synthesis by fibroblasts after laser treatment may be partly due to improved antioxidant capacity, which reduces oxidative stress and thus stimulates new collagen production. © The Author(s). CED © 2011 British Association of Dermatologists.

  19. Research on the aircraft level measurement by laser tracker

    NASA Astrophysics Data System (ADS)

    Ye, Xiaowen; Tang, Wuzhong; Cao, Chun

    2014-09-01

    The measuring principle of laser tracking system was introduced. The aircraft level measurement was completed by establish the measurement datum mark, select public sites, set up the aircraft coordinate system and transfer stations. Laser tracking measurement technology improved the work efficiency and ensured the installation precision of key components.

  20. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography.

    PubMed

    Chu, Cheng Hung; Shiue, Chiun Da; Cheng, Hsuen Wei; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2010-08-16

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.

  1. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.

    2013-06-15

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with themore » results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.« less

  2. SU-E-J-189: Credentialing of IGRT Equipment and Processes for Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Court, L; Aristophanous, M; Followill, D

    2014-06-01

    Purpose: Current dosimetry phantoms used for clinical trial credentialing do not directly assess IGRT processes. This work evaluates a custom-built IGRT phantom for credentialing of multiple IGRT modalities and processes. Methods: An IGRT phantom was built out of a low-density body with two inserts. Insert A is used for the CT simulation. Insert B is used for the actual treatment. The inserts contain identical targets in different locations. Relative positions are unknown to the user. The user simulates the phantom (with insert A) as they would a patient, including marking the phantom. A treatment plan is created and sent tomore » the treatment unit. The phantom (with insert B) is then positioned using local IGRT practice. Shifts (planned isocenter, if applicable, and final isocenter) are marked on the phantom using room lasers. The mechanical reproducibility of re-inserting the inserts within the phantom body was tested using repeat high-resolution CT scans. The phantom was tested at 7 centers, selected to include a wide variety of imaging equipment. Results: Mechanical reproducibility was measured as 0.5-0.9mm, depending on the direction. Approaches tested to mark (and transfer) simulation isocenter included lasers, fiducials and reflective markers. IGRT approaches included kV imaging (Varian Trilogy, Brainlab ExacTrac), kV CT (CT-on-rails), kV CBCT (Varian Trilogy, Varian Truebeam, Elekta Agility) and MV CT (Tomotherapy). Users were able to successfully use this phantom for all combinations of equipment and processes. IGRT-based shifts agreed with the truth within 0.8mm, 0.8mm and 1.9mm in the LR, AP, and SI directions, respectively. Conclusion: Based on these preliminary results, the IGRT phantom can be used for credentialing of clinical trials with an action level of 1mm in AP and LR directions, and 2mm in the SI direction, consistent with TG142. We are currently testing with additional institutions with different equipment and processes, including Cyberknife. This project was funded by the Cancer Prevention Research Institute of Texas.« less

  3. Treatment of erythemato-telangiectatic rosacea with brimonidine alone or combined with vascular laser based on preliminary instrumental evaluation of the vascular component.

    PubMed

    Micali, Giuseppe; Dall'Oglio, Federica; Verzì, Anna Elisa; Luppino, Ivano; Bhatt, Karishma; Lacarrubba, Francesco

    2017-09-09

    The purpose of this study is to evaluate the outcome of a series of patients with erythematotelangiectatic rosacea (ETR) affected by persistent erythema and varying degree of telangiectasias being treated with brimonidine alone or combined with a vascular laser based on the type of vascular components preliminarily evaluated by clinical and instrumental observation. Ten patients affected by ETR were enrolled in a pilot, open study. Instrumental evaluation included erythema-directed digital photography by VISIA-CR™ system and X10 dermoscopy. Those patients showing marked background erythema and minimal telangiectasias (group A) were treated with a single application of brimonidine 0.33% gel, while patients showing both marked background erythema and marked telangiectasias (group B) were treated with a session of Nd:YAG laser and reevaluated 1 month later after a single application of brimonidine. An Investigator Global Assessment (IGA) of treatment outcome was performed at the end of treatment in both groups. In group A, 6 h after brimonidine application, a marked reduction of the background erythema was observed in all patients, and IGA was rated as excellent. In group B, 6 h following the application of brimonidine, a marked reduction of the background erythema was observed in all cases, while telangiectasias remained unchanged. A further treatment with brimonidine 1 month after the Nd:YAG laser session determined complete clearing of facial erythema, and IGA was rated as excellent. In conclusion, a preliminary evaluation of the vascular component by erythema-directed digital photography and dermoscopy in ETR may be helpful to select the most appropriate therapeutic strategy.

  4. SU-E-J-32: Calypso(R) and Laser-Based Localization Systems Comparison for Left-Sided Breast Cancer Patients Using Deep Inspiration Breath Hold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, S; Kaurin, D; Sweeney, L

    2014-06-01

    Purpose: Our institution uses a manual laser-based system for primary localization and verification during radiation treatment of left-sided breast cancer patients using deep inspiration breath hold (DIBH). This primary system was compared with sternum-placed Calypso(R) beacons (Varian Medical Systems, CA). Only intact breast patients are considered for this analysis. Methods: During computed tomography (CT) simulation, patients have BB and Calypso(R) surface beacons positioned sternally and marked for free-breathing and DIBH CTs. During dosimetry planning, BB longitudinal displacement between free breathing and DIBH CT determines laser mark (BH mark) location. Calypso(R) beacon locations from the DIBH CT are entered at themore » Tracking Station. During Linac simulation and treatment, patients inhale until the cross-hair and/or lasers coincide with the BH Mark, which can be seen using our high quality cameras (Pelco, CA). Daily Calypso(R) displacement values (difference from the DIBH-CT-based plan) are recorded.The displacement mean and standard deviation was calculated for each patient (77 patients, 1845 sessions). An aggregate mean and standard deviation was calculated weighted by the number of patient fractions.Some patients were shifted based on MV ports. A second data set was calculated with Calypso(R) values corrected by these shifts. Results: Mean displacement values indicate agreement within 1±3mm, with improvement for shifted data (Table). Conclusion: Both unshifted and shifted data sets show the Calypso(R) system coincides with the laser system within 1±3mm, demonstrating either localization/verification system will Resultin similar clinical outcomes. Displacement value uncertainty unilaterally reduces when shifts are taken into account.« less

  5. Laser abrasion for cosmetic and medical treatment of facial actinic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, L.M.; Lask, G.P.; Glassberg, E.

    1989-06-01

    Previous studies have shown the carbon dioxide (CO/sub 2/) laser to be effective in the treatment of actinic cheilitis. After CO/sub 2/ laser abrasion, normal skin and marked cosmetic improvement of the lip were noted. In our study, twenty-three patients were treated with CO/sub 2/ laser abrasions for cosmetic improvement of facial lines and actinic changes. Pre- and postoperative histopathologic examinations were made on two patients. Preoperative examination of specimens from actinically damaged skin showed atypical keratinocytes in the basal layer of the epidermis, with overlying dense compact orthokeratosis and parakeratosis. Abundant solar elastosis was seen in the papillary dermis.more » Postoperative histologic specimens showed a normal-appearing epidermis with fibrosis in the papillary dermis and minimal solar elastosis (about four weeks after laser treatment). At present, various modalities are available for the regeneration of the aged skin, including chemical peels and dermabrasion. Significantly fewer complications were noted with CO/sub 2/ laser abrasion than with these methods. Thus, CO/sub 2/ laser abrasion can be useful in the cosmetic and medical treatment of the aged skin. Marked clinical and histologic improvement has been demonstrated.« less

  6. Effect Of Laser CO{sub 2} Parameters In Marking Of Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanafi-Benghalem, Nafissa; Boudoukha, Hassina; Benghalem, Kamel

    Currently many techniques of marking are exploited in a great number of sectors, on various materials (cardboard, textile, wood, leather, plastic, metal, ceramics and glass). The printing is done on supports of great or small dimension for all geometrical forms (plane, round, conical and ovalised). We can print colour as much than we wish. The marking technology for the identification of the glass parts knows a remarkable development carried by the new needs for the industrialists using transparent materials such as the optical, chemical, pharmaceutical sectors, the luxury and drink industries or publicity and decoration (neon signs, advertising mirrors). Themore » objective of our work consists particularly in engraving on glass the measurement scales forming a whole of ordered graduation which the goal is to carry out reading systems of measuring apparatus about 1/10 {mu}m of precision. We used as tool for marking the laser CO{sub 2}. Our choice is justified by the flexibility of the laser, the permanent lifespan of the graduations carried out and the guarantee of the facility of reading incidentally the precision and the accuracy of the measuring apparatus. The study parameters of the laser beam are the velocity (400, 600, 800, 1000 m/s.), the power (25, 75 and 80% of 25W) and the numbers pass (one, two and three pass). The optical observations results obtained suggest that the highest and the average power used remain the favourable parameters for the quality of the graduations carried out.« less

  7. Effect Of Laser CO2 Parameters In Marking Of Glass

    NASA Astrophysics Data System (ADS)

    Khanafi-Benghalem, Nafissa; Benghalem, Kamel; Boudoukha, Hassina

    2008-09-01

    Currently many techniques of marking are exploited in a great number of sectors, on various materials (cardboard, textile, wood, leather, plastic, metal, ceramics and glass). The printing is done on supports of great or small dimension for all geometrical forms (plane, round, conical and ovalised). We can print colour as much than we wish. The marking technology for the identification of the glass parts knows a remarkable development carried by the new needs for the industrialists using transparent materials such as the optical, chemical, pharmaceutical sectors, the luxury and drink industries or publicity and decoration (neon signs, advertising mirrors). The objective of our work consists particularly in engraving on glass the measurement scales forming a whole of ordered graduation which the goal is to carry out reading systems of measuring apparatus about 1/10 μm of precision. We used as tool for marking the laser CO2. Our choice is justified by the flexibility of the laser, the permanent lifespan of the graduations carried out and the guarantee of the facility of reading incidentally the precision and the accuracy of the measuring apparatus. The study parameters of the laser beam are the velocity (400, 600, 800, 1000 m/s.), the power (25, 75 and 80% of 25W) and the numbers pass (one, two and three pass). The optical observations results obtained suggest that the highest and the average power used remain the favourable parameters for the quality of the graduations carried out.

  8. A pilot study of laser energy transmission through bone and gingiva.

    PubMed

    Ng, Doreen Y; Chan, Ambrose K; Dalci, Oyku; Petocz, Peter; Papadopoulou, Alexandra K; Darendeliler, M Ali

    2018-06-20

    The use of low-level laser therapy is growing in the field of dentistry especially in orthodontics to speed up tooth movement and in implantology to aid osseointegration. In these dental applications, the laser energy needs to penetrate through the periodontium to the target site to stimulate photobiomodulation. The percentage of energy loss when laser is transmitted through the periodontium has not been previously studied. With the use of an 808-nanometer diode laser, the aim was to investigate the percentage loss of laser energy when transmitted through the periodontium to the extraction socket. The percentage energy loss of an 808-nm diode laser through the periodontium was measured in 27 tooth sockets by using a specifically designed photodiode ammeter. For each millimeter of increased bone thickness there was 6.81% reduction in laser energy (95% confidence interval, 5.02% to 8.60%). The gingival thickness had no statistically significant effect on energy penetration. Energy penetration depends markedly on bone thickness and is independent of gingival thickness. To the best of the authors' knowledge, this study is one of the first to investigate laser penetration through the periodontium. Evidence from this study showed that laser energy penetration through the periodontium is markedly affected by bone thickness but less so by gingival thickness. Clinicians need to be aware of the biological factors that could affect laser energy penetration to the target site and adjust their laser dosages accordingly. These findings may guide dental practitioners in selecting the appropriate laser dosage parameters for low-level laser therapy. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  9. Polydeoxyribonucleotide improves wound healing of fractional laser resurfacing in rat model.

    PubMed

    Yu, Mi; Lee, Jun Young

    2017-02-01

    Polydeoxyribonucleotide (PDRN) is an active compound that can promote wound healing. PDRN stimulates wound healing by enhancing angiogenesis and increasing fibroblast growth rates. Laser skin resurfacing is a popular cosmetic procedure for skin rejuvenation. Despite excellent improvement of photo-damaged skin and acne scarring, it is accompanied with drawbacks, such as prolonged erythema and crusting. This study was designed to assess the effect of PDRN on wounds induced by fractional laser resurfacing. Twelve male rats aged 8 weeks were randomly assigned to the PDRN treatment group and the control group. Wounds were induced using a fractional ablative CO 2 laser. The treatment group received daily injections of PDRN and the control group received injections of the vehicle. Wound healing assessed by clinical features and histopathologic findings. The process of wound healing was faster in the treatment group than in the control group. In the histopathological examination, the granulation tissue thickness score of the treatment group was significantly higher than that of the control group. Results of immunohistochemical staining showed a marked increase of VEGF-positive cells and PECAM-1/CD31-positive microvessels in the treatment group. PDRN may be a beneficial option to promote wound healing after laser treatment.

  10. Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes

    PubMed Central

    Mondia, Jessica P.; Adams, Dany S.; Orendorff, Ryan D.; Levin, Michael; Omenetto, Fiorenzo G.

    2011-01-01

    Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed. PMID:21833375

  11. Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes.

    PubMed

    Mondia, Jessica P; Adams, Dany S; Orendorff, Ryan D; Levin, Michael; Omenetto, Fiorenzo G

    2011-08-01

    Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed.

  12. Laser marking on microcrystalline silicon film.

    PubMed

    Park, Min Gyu; Choi, Se-Bum; Ruh, Hyun; Hwang, Hae-Sook; Yu, Hyunung

    2012-07-01

    We present a compact dot marker using a CW laser on a microcrystalline silicon (Si) thin film. A laser annealing shows a continuous crystallization transformation from nano to a large domain (> 200 nm) of Si nanocrystals. This microscale patterning is quite useful since we can manipulate a two-dimentional (2-D) process of Si structural forms for better and efficient thin-film transistor (TFT) devices as well as for photovoltaic application with uniform electron mobility. A Raman scattering microscope is adopted to draw a 2-D mapping of crystal Si film with the intensity of optical-phonon mode at 520 cm(-1). At a 300-nm spatial resolution, the position resolved the Raman scattering spectra measurements carried out to observe distribution of various Si species (e.g., large crystalline, polycrystalline and amorphous phase). The population of polycrystalline (poly-Si) species in the thin film can be analyzed with the frequency shift (delta omega) from the optical-phonon line since poly-Si distribution varies widely with conditions, such as an irradiated-laser power. Solid-phase crystallization with CW laser irradiation improves conductivity of poly-Si with micropatterning to develop the potential of the device application.

  13. Laser direct writing (LDW) of magnetic structures

    NASA Astrophysics Data System (ADS)

    Alasadi, Alaa; Claeyssens, F.; Allwood, D. A.

    2018-05-01

    Laser direct writing (LDW) has been used to pattern 90nm thick permalloy (Ni81Fe19) into 1-D and 2-D microstructures with strong shape anisotropy. Sub-nanosecond laser pulses were focused with a 0.75 NA lens to a 1.85μm diameter spot, to achieve a fluence of approximately 350 mJ.cm-2 and ablate the permalloy film. Computer-controlled sample scanning then allowed structures to be defined. Scan speeds were controlled to give 30% overlap between successive laser pulses and reduce the extent of width modulation in the final structures. Continuous magnetic wires that adjoined the rest of the film were fabricated with widths from 650 nm - 6.75μm and magneto-optical measurements showed coercivity reducing across this width range from 47 Oe to 11 Oe. Attempts to fabricate wires narrower than 650nm resulted in discontinuities in the wires and a marked decrease in coercivity. This approach is extremely rapid and was carried out in air, at room temperature and with no chemical processing. The 6-kHz laser pulse repetition rate allowed wire arrays across an area of 4 mm x 0.18 mm to be patterned in 85 s.

  14. Global and Local Mechanical Properties of Autogenously Laser Welded Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Cao, Xinjin; Kabir, Abu Syed H.; Wanjara, Priti; Gholipour, Javad; Birur, Anand; Cuddy, Jonathan; Medraj, Mamoun

    2014-03-01

    Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.

  15. Laser illuminator and optical system for disk patterning

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John

    2000-01-01

    Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.

  16. The efficacy of laser-assisted hair removal in the treatment of acne keloidalis nuchae; a pilot study.

    PubMed

    Esmat, Samia M; Abdel Hay, Rania M; Abu Zeid, Ola M; Hosni, Hala N

    2012-01-01

    Laser-assisted hair removal causes miniaturization of hair shafts which are the principal contributors to inflammation in acne keloidalis nuchae (AKN). To assess the efficacy of hair reduction by long pulsed Nd-YAG laser as a therapeutic modality for AKN. This interventional pilot trial included 16 patients with AKN who received 5 sessions of long pulsed Nd-YAG laser. Lesions were objectively and subjectively assessed at the third and fifth laser sessions, and 1 year after. Global response to treatment was rated using a quartile grading scale regarding the percentage improvement in the count of papules and the size of the plaques. Biopsies were taken before and 2 weeks after the fifth session to evaluate the pathological changes associated with improvement of the treated lesions. All patients showed a significant improvement. The percentage of improvement in the early caseswas significantly higher when compared to late cases.Two weeks after the fifth session, all biopsies showed a significant decrease in the inflammatory infiltrate except one case. Sclerosis was markedly decreased. Complete absence of hair follicles and adenexawas observed, apart from in 2 cases. Laser hair depilation can significantly improve this disfiguring chronic disorder. Starting treatment as early as possible achieves the best results and can stop the disease process if followed by maintenance sessions.

  17. Biological response of laser macrostructured and oxidized titanium alloy: an in vitro and in vivo study.

    PubMed

    Paz, María Dolores; Álava, J Iñaki; Goikoetxea, Leire; Chiussi, Stefano; Díaz-Güemes, Idoia; Usón, Jesus; Sánchez, Francisco; León, Betty

    2011-01-01

    To assess both the in vitro and in vivo biological response of a laser modified surface in an integrated manner. A combined innovative approach applies lasers to macrostructure as well as to oxidize the surface of titanium alloy implants. A Nd:YAG marking and ArF excimer lasers were used for macrostructuring and UV-oxidizing the surface of Ti6Al4V discs, respectively. Human fetal osteoblastic cell culture and a sheep tibia model were used to assess the cell response and the osseogeneration capability of as-machined, laser macrostructured and laser macrostructured and oxidized surfaces. In vitro: Laser macrostructuration alone did not promote cell response. Cellular proliferation was enhanced by the additional UV laser oxidation. In vivo: A greater significant percentage of bone-implant contact was obtained for both laser treated surfaces compared to machine-turned control samples, three months after implantation, in spite of the low cellular response for macrostructured samples. The use of sheep model for six months appears to be less adequate for a comparison because of the high level of bone integration in all samples. In spite of the often reported positive effect of titanium oxidation on the triggering of faster osseointegration, in this experiment the additional UV laser oxidation did not lead to a significant in vivo improvement. Laser macrostructuration of titanium alloy surfaces appears to promote bone apposition and may therefore constitute a promising surface modification strategy. In animal models, the natural process of titanium surface oxidation, because of physiologic fluids, alters properties observed in vitro with cells.

  18. Automatic detection of zebra crossings from mobile LiDAR data

    NASA Astrophysics Data System (ADS)

    Riveiro, B.; González-Jorge, H.; Martínez-Sánchez, J.; Díaz-Vilariño, L.; Arias, P.

    2015-07-01

    An algorithm for the automatic detection of zebra crossings from mobile LiDAR data is developed and tested to be applied for road management purposes. The algorithm consists of several subsequent processes starting with road segmentation by performing a curvature analysis for each laser cycle. Then, intensity images are created from the point cloud using rasterization techniques, in order to detect zebra crossing using the Standard Hough Transform and logical constrains. To optimize the results, image processing algorithms are applied to the intensity images from the point cloud. These algorithms include binarization to separate the painting area from the rest of the pavement, median filtering to avoid noisy points, and mathematical morphology to fill the gaps between the pixels in the border of white marks. Once the road marking is detected, its position is calculated. This information is valuable for inventorying purposes of road managers that use Geographic Information Systems. The performance of the algorithm has been evaluated over several mobile LiDAR strips accounting for a total of 30 zebra crossings. That test showed a completeness of 83%. Non-detected marks mainly come from painting deterioration of the zebra crossing or by occlusions in the point cloud produced by other vehicles on the road.

  19. A Novel Marking Reader for Progressive Addition Lenses Based on Gabor Holography.

    PubMed

    Perucho, Beatriz; Picazo-Bueno, José Angel; Micó, Vicente

    2016-05-01

    Progressive addition lenses (PALs) are marked with permanent engraved marks (PEMs) at standardized locations. Permanent engraved marks are very useful through the manufacturing and mounting processes, act as locator marks to re-ink the removable marks, and contain useful information about the PAL. However, PEMs are often faint and weak, obscured by scratches, partially occluded, and difficult to recognize on tinted lenses or with antireflection or scratch-resistant coatings. The aim of this article is to present a new generation of portable marking reader based on an extremely simplified concept for visualization and identification of PEMs in PALs. Permanent engraved marks on different PALs are visualized using classical Gabor holography as underlying principle. Gabor holography allows phase sample visualization with adjustable magnification and can be implemented in either classical or digital versions. Here, visual Gabor holography is used to provide a magnified defocused image of the PEMs onto a translucent visualization screen where the PEM is clearly identified. Different types of PALs (conventional, personalized, old and scratched, sunglasses, etc.) have been tested to visualize PEMs with the proposed marking reader. The PEMs are visible in every case, and variable magnification factor can be achieved simply moving up and down the PAL in the instrument. In addition, a second illumination wavelength is also tested, showing the applicability of this novel marking reader for different illuminations. A new concept of marking reader ophthalmic instrument has been presented and validated in the laboratory. The configuration involves only a commercial-grade laser diode and a visualization screen for PEM identification. The instrument is portable, economic, and easy to use, and it can be used for identifying patient's current PAL model and for marking removable PALs again or finding test points regardless of the age of the PAL, its scratches, tints, or coatings.

  20. Shocked and Stressed, Metals Get Stronger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackel, L

    2002-03-12

    People who know their way around metalworking are no doubt familiar with peening--using a ball-peen hammer to pound a piece of metal into shape and strengthen it against fatigue failure. For the past 50 years, an industrialized equivalent has been shot peening, in which metal or ceramic beads as large as marbles or as small as salt and pepper grains pneumatically bombard a metal surface. Laser peening, a process based on a superior laser technology developed at Lawrence Livermore, replaces the hammer blows and streams of beads with short blasts of laser light. The end result is a piece ofmore » metal with significantly improved performance. Lawrence Livermore and Metal Improvement Company, Inc., won a coveted R and D 100 Award for their laser-peening process in 1998 (see S and TR, October 1998, pp. 12-13). Since that time, they've been developing uses for the technology with a number of industries, including automotive, medical, and aerospace. They've also developed an offshoot technique--laser peenmarking{trademark}--which provides a way to easily and clearly identify parts with a mark that is extremely difficult to counterfeit. Another outgrowth is a new peen-forming technology that allows complex contouring of problematic thick metal components such as the thick sections of large aircraft wings. There have also been spinback applications to the Department of Energy's programs for stockpile stewardship, fuel-efficient vehicles, and long-term nuclear waste storage.« less

  1. Towards in vivo laser coagulation and concurrent optical coherence tomography through double-clad fiber devices

    NASA Astrophysics Data System (ADS)

    Beaudette, Kathy; Lo, William; Villiger, Martin; Shishkov, Milen; Godbout, Nicolas; Bouma, Brett E.; Boudoux, Caroline

    2016-03-01

    There is a strong clinical need for an optical coherence tomography (OCT) system capable of delivering concurrent coagulation light enabling image-guided dynamic laser marking for targeted collection of biopsies, as opposed to a random sampling, to reduce false-negative findings. Here, we present a system based on double-clad fiber (DCF) capable of delivering pulsed laser light through the inner cladding while performing OCT through the core. A previously clinically validated commercial OCT system (NVisionVLE, Ninepoint Medical) was adapted to enable in vivo esophageal image-guided dynamic laser marking. An optimized DCF coupler was implemented into the system to couple both modalities into the DCF. A DCF-based rotary joint was used to couple light to the spinning DCF-based catheter for helical scanning. DCF-based OCT catheters, providing a beam waist diameter of 62μm at a working distance of 9.3mm, for use with a 17-mm diameter balloon sheath, were used for ex vivo imaging of a swine esophagus. Imaging results using the DCF-based clinical system show an image quality comparable with a conventional system with minimal crosstalk-induced artifacts. To further optimize DCF catheter optical design in order to achieve single-pulse marking, a Zemax model of the DCF output and its validation are presented.

  2. [Ablation on the undersurface of a LASIK flap. Instrument and method for continuous eye tracking].

    PubMed

    Taneri, S; Azar, D T

    2007-02-01

    The risk of iatrogenic keratectasia after laser in situ keratomileusis (LASIK) increases with thinner posterior stromal beds. Ablations on the undersurface of a LASIK flap could only be performed without the guidance of an eye tracker, which may lead to decentration. A new method for laser ablation with flying spot lasers on the undersurface of a LASIK flap was developed that enables the use of an active eye tracker by utilizing a novel instrument. The first clinical results are reported. Patients wishing an enhancement procedure were eligible for a modified repeat LASIK procedure if the flaps cut in the initial procedure were thick enough to perform the intended additional ablation on the undersurface leaving at least 90 microm of flap thickness behind. (1) The horizontal axis and the center of the entrance pupil were marked on the epithelial side of the flap using gentian violet dye. (2) The flap was reflected on a newly designed flap holder which had a donut-shaped black marking. (3) The eye tracker was centered on the mark visible in transparency on the flap. (4) Ablation with a flying spot Bausch & Lomb Technolas 217z laser was performed on the undersurface of the flap with a superior hinge taking into account that in astigmatic ablations the cylinder axis had to be mirrored according to the formula: axis on the undersurface=180 degrees -axis on the stromal bed. (5) The flap was repositioned. Detection of the marking on the modified flap holder and continuous tracking instead of the real pupil was possible in all of the 12 eyes treated with this technique. It may be necessary to cover the real pupil during ablation in order not to confuse the eye tracker. Ablation could be performed without decentration or loss of best spectacle-corrected visual acuity. Refractive results in minor corrections were good without nomogram adjustment. Using this novel flap holder with a marking that is tracked instead of the real pupil, centered ablations with a flying spot laser on the undersurface of a LASIK flap are feasible. Thus, the additional risk of iatrogenic keratectasia associated with stromal enhancement ablations is avoided.

  3. Reshaping a multimode laser beam into a constructed Gaussian beam for generating a thin light sheet.

    PubMed

    Saghafi, Saiedeh; Haghi-Danaloo, Nikoo; Becker, Klaus; Sabdyusheva, Inna; Foroughipour, Massih; Hahn, Christian; Pende, Marko; Wanis, Martina; Bergmann, Michael; Stift, Judith; Hegedus, Balazs; Dome, Balazs; Dodt, Hans-Ulrich

    2018-06-01

    Based on the modal analysis method, we developed a model that describes the output beam of a diode-pumped solid state (DPSS) laser emitting a multimode beam. Measuring the output beam profile in the near field and at the constructed far field the individual modes, their respective contributions, and their optical parameters are determined. Using this information, the beam is optically reshaped into a quasi-Gaussian beam by the interference and superposition of the various modes. This process is controlled by a mode modulator unit that includes different meso-aspheric elements and a soft-aperture. The converted beam is guided into a second optical unit comprising achromatic-aspheric elements to produce a thin light sheet for ultramicroscopy. We found that this light sheet is markedly thinner and exhibits less side shoulders compared with a light sheet directly generated from the output of a DPSS multimode laser. © 2018 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Integration of Point Clouds from Terrestrial Laser Scanning and Image-Based Matching for Generating High-Resolution Orthoimages

    NASA Astrophysics Data System (ADS)

    Salach, A.; Markiewicza, J. S.; Zawieska, D.

    2016-06-01

    An orthoimage is one of the basic photogrammetric products used for architectural documentation of historical objects; recently, it has become a standard in such work. Considering the increasing popularity of photogrammetric techniques applied in the cultural heritage domain, this research examines the two most popular measuring technologies: terrestrial laser scanning, and automatic processing of digital photographs. The basic objective of the performed works presented in this paper was to optimize the quality of generated high-resolution orthoimages using integration of data acquired by a Z+F 5006 terrestrial laser scanner and a Canon EOS 5D Mark II digital camera. The subject was one of the walls of the "Blue Chamber" of the Museum of King Jan III's Palace at Wilanów (Warsaw, Poland). The high-resolution images resulting from integration of the point clouds acquired by the different methods were analysed in detail with respect to geometric and radiometric correctness.

  5. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator.

    PubMed

    Jia, Yufei; Kerner, Ross A; Grede, Alex J; Brigeman, Alyssa N; Rand, Barry P; Giebink, Noel C

    2016-07-13

    Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.

  6. Live biospeckle laser imaging of root tissues.

    PubMed

    Braga, Roberto A; Dupuy, L; Pasqual, M; Cardoso, R R

    2009-06-01

    Live imaging is now a central component for the study of plant developmental processes. Currently, most techniques are extremely constraining: they rely on the marking of specific cellular structures which generally apply to model species because they require genetic transformations. The biospeckle laser (BSL) system was evaluated as an instrument to measure biological activity in plant tissues. The system allows collecting biospeckle patterns from roots which are grown in gels. Laser illumination has been optimized to obtain the images without undesirable specular reflections from the glass tube. Data on two different plant species were obtained and the ability of three different methods to analyze the biospeckle patterns are presented. The results showed that the biospeckle could provide quantitative indicators of the molecular activity from roots which are grown in gel substrate in tissue culture. We also presented a particular experimental configuration and the optimal approach to analyze the images. This may serve as a basis to further works on live BSL in order to study root development.

  7. Reduction in number of crystal defects in a p+Si diffusion layer by germanium and boron cryogenic implantation combined with sub-melt laser spike annealing

    NASA Astrophysics Data System (ADS)

    Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke

    2017-09-01

    To reduce the number of crystal defects in a p+Si diffusion layer by a low-thermal-budget annealing process, we have examined crystal recovery in the amorphous layer formed by the cryogenic implantation of germanium and boron combined with sub-melt laser spike annealing (LSA). The cryogenic implantation at -150 °C is very effective in suppressing vacancy clustering, which is advantageous for rapid crystal recovery during annealing. The crystallinity after LSA is shown to be very high and comparable to that after rapid thermal annealing (RTA) owing to the cryogenic implantation, although LSA is a low-thermal-budget annealing process that can suppress boron diffusion effectively. It is also shown that in the p+Si diffusion layer, there is high contact resistance due to the incomplete formation of a metal silicide contact, which originates from insufficient outdiffusion of surface contaminants such as fluorine. To widely utilize the marked reduction in the number of crystal defects, sufficient removal of surface contaminants will be required in the low-thermal-budget process.

  8. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  9. Modeling light

    NASA Astrophysics Data System (ADS)

    Dawson, P.; Gage, J.; Takatsuka, M.; Goyette, S.

    2009-02-01

    To compete with other digital images, holograms must go beyond the current range of source-image types, such as sequences of photographs, laser scans, and 3D computer graphics (CG) scenes made with software designed for other applications. This project develops a set of innovative techniques for creating 3D digital content specifically for digital holograms, with virtual tools which enable the direct hand-crafting of subjects, mark by mark, analogous to Michelangelo's practice in drawing, painting and sculpture. The haptic device, the Phantom Premium 1.5 is used to draw against three-dimensional laser- scan templates of Michelangelo's sculpture placed within the holographic viewing volume.

  10. Head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha): a combination of transmission electron microscopical and immunocytochemical techniques.

    PubMed

    Liesenjohann, Thilo; Neuhaus, Birger; Schmidt-Rhaesa, Andreas

    2006-08-01

    The anterior and posterior head sensory organs of Dactylopodola baltica (Macrodasyida, Gastrotricha) were investigated by transmission electron microscopy (TEM). In addition, whole individuals were labeled with phalloidin to mark F-actin and with anti-alpha-tubulin antibodies to mark microtubuli and studied with confocal laser scanning microscopy. Immunocytochemistry reveals that the large number of ciliary processes in the anterior head sensory organ contain F-actin; no signal could be detected for alpha-tubulin. Labeling with anti-alpha-tubulin antibodies revealed that the anterior and posterior head sensory organs are innervated by a common stem of nerves from the lateral nerve cords just anterior of the dorsal brain commissure. TEM studies showed that the anterior head sensory organ is composed of one sheath cell and one sensory cell with a single branching cilium that possesses a basal inflated part and regularly arranged ciliary processes. Each ciliary process contains one central microtubule. The posterior head sensory organ consists of at least one pigmented sheath cell and several probably monociliary sensory cells. Each cilium branches into irregularly arranged ciliary processes. These characters are assumed to belong to the ground pattern of the Gastrotricha. Copyright 2006 Wiley-Liss, Inc.

  11. Photodegradation and Photophysics of Laser Dyes

    DTIC Science & Technology

    1994-06-30

    research. "The Photophysics and Photochem istry of’ Orgainic Laser Dyecs uander Conditions oit Binding to Polymethacrylic Acid in Water** thcsis...c 13. ABSTRACT (Maximum 200 wotrds) 6 The solubilization of laser dyes in water with the aid of the polyelectrolyte, poly(methacr,-- lic acid ) (PMAA...moderately acidic pH. Polymer-bound dyes in water display markedly enhanced emission yield, lifetime, and polarization. Dye materials are also less

  12. Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idris, Nasrullah; Lahna, Kurnia; Abdulmadjid, Syahrun Nur

    2015-06-14

    We report in this paper the results of an experimental study on the spectral and dynamical characteristics of plasma emission induced by 1 mJ picoseconds (ps) Nd-YAG laser using spatially resolved imaging and time resolved measurement of the emission intensities of copper sample. This study has provided the experimental evidence concerning the dynamical characteristics of the excitation mechanisms in various stages of the plasma formation, which largely consolidate the basic scenarios of excitation processes commonly accepted so far. However, it is also clearly shown that the duration of the shock wave excitation process induced by ps laser pulses is muchmore » shorter than those observed in laser induced breakdown spectroscopy employing nanosecond laser at higher output energy. This allows the detection of atomic emission due exclusively to He assisted excitation in low pressure He plasma by proper gating of the detection time. Furthermore, the triplet excited state associated with He I 587.6 nm is shown to be the one most likely involved in the process responsible for the excellent spectral quality as evidenced by its application to spectrochemical analysis of a number of samples. The use of very low energy laser pulses also leads to minimal destructive effect marked by the resulted craters of merely about 10 μm diameter and only 10 nm deep. It is especially noteworthy that the excellent emission spectrum of deuterium detected from D-doped titanium sample is free of spectral interference from the undesirable ubiquitous water molecules without a precleaning procedure as applied previously and yielding an impressive detection limit of less than 10 μg/g. Finally, the result of this study also shows a promising application to depth profiling of impurity distribution in the sample investigated.« less

  13. Extreme ionization of Xe clusters driven by ultraintense laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidenreich, Andreas; Last, Isidore; Jortner, Joshua

    We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of themore » inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length control mechanism of extreme ionization products.« less

  14. Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification.

    PubMed

    Ageev, E I; Veiko, V P; Vlasova, E A; Karlagina, Y Y; Krivonosov, A; Moskvin, M K; Odintsova, G V; Pshenichnov, V E; Romanov, V V; Yatsuk, R M

    2018-01-22

    The coloration of stainless steel surface due to the formation of spatially periodic structures induced by laser pulses of nanosecond duration is demonstrated. The period of microstructures corresponds to the laser wavelength, and their orientation angle depends on the adjustment of laser polarization. The marking algorithm for the development of authentication patterns is presented. Such patterns provide several levels of protection against falsification (visual, colorimetric and structural) along with high recording speed and capability of automated reading.

  15. Formation of nanoparticles from thin silver films irradiated by laser pulses in air

    NASA Astrophysics Data System (ADS)

    Nastulyavichus, A. A.; Smirnov, N. A.; Kudryashov, S. I.; Ionin, A. A.; Saraeva, I. N.; Busleev, N. I.; Rudenko, A. A.; Khmel'nitskii, R. A.; Zayarnyi, D. A.

    2018-03-01

    Some specific features of the transport of silver nanoparticles onto a SiO2 substrate under focused nanosecond IR laser pulses is experimentally investigated. A possibility of obtaining silver coatings is demonstrated. The formation of silver nanostructures as a result of pulsed laser ablation in air is studied. Nanoparticles are formed by exposing a silver film to radiation of an HTF MARK (Bulat) laser marker (λ = 1064 nm). The thus prepared nanoparticles are analysed using scanning electron microscopy and optical spectroscopy.

  16. Laser Diode Pumped Solid State Lasers

    DTIC Science & Technology

    1987-01-01

    Report N66001-83-C-0071, 17 April 1986, prepared for NOSC. 4.6 W.T. Welford, R. Winston , "The Option of Nonimaging Concentrators ," Academic Press, 1978...by non-imac optics such as reflective or refractive flux concentrators . Simple considerations regarding the optimum pumping configuration, high marks...reduced if the arrays can stand-off from the Nd:YAG laser. As mentioned before, compound parabolic concentrators or refractive optics cat employed to

  17. [Light, laser and PDT therapy for acne].

    PubMed

    Borelli, C; Merk, K; Plewig, G; Degitz, K

    2005-11-01

    In recent years, a number of studies have evaluated the treatment of acne using electromagnetic waves, such as lasers, photodynamic therapy, visible light or radio waves. While the efficacy of laser treatment is still uncertain, photodynamic therapy shows promising results, but with marked side-effects, as destruction of sebaceous glands. Treatment with blue light (405-420 nm wavelength) also appears effective and can be regarded as an treatment option for inflammatory acne.

  18. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    NASA Astrophysics Data System (ADS)

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  19. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    PubMed Central

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  20. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.

    PubMed

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-17

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  1. Mark-forming simulations of phase-change land/groove disks

    NASA Astrophysics Data System (ADS)

    Nishi, Yoshiko; Shimano, Takeshi; Kando, Hidehiko

    2000-09-01

    The track pitches of optical discs have become so narrow that it is comparable to the wavelength of laser beam. Finite-difference time-domain (FDTD) simulation, based on vector diffraction analysis, can predict the propagation of light more accurately than scalar analysis, when the size of media texture becomes sub-micron order. The authors applied FDTD simulation to land-and-groove optical disc models, and found out that the effects of 3D geometry is not negligible in analyzing the energy absorption of light inside the land- and-groove multi-layered media. The electromagnetic field in the media does not have the same intensity distribution as the incident beam. Furthermore, the heat conduction inside the media depends on the disc geometry, so the beam spots centered on land and groove makes different effects in heating the recording layers. That is, the spatial and historical profile of temperature requires 3D analysis for both incident light absorption and heat conduction. The difference in temperature profiles is applied to the phase change simulator to see the writing process of the marks in land and groove. We have integrated three simulators: FDTD analysis, heat conduction and phase change simulation. These simulators enabled to evaluate the differences in mark forming process between land and groove.

  2. Microgravity

    NASA Image and Video Library

    1998-02-27

    NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  3. Microgravity

    NASA Image and Video Library

    1999-05-26

    NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  4. Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding

    2018-01-01

    In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by femtosecond laser were realized effectively.

  5. Methodology for the Elimination of Reflection and System Vibration Effects in Particle Image Velocimetry Data Processing

    NASA Technical Reports Server (NTRS)

    Bremmer, David M.; Hutcheson, Florence V.; Stead, Daniel J.

    2005-01-01

    A methodology to eliminate model reflection and system vibration effects from post processed particle image velocimetry data is presented. Reflection and vibration lead to loss of data, and biased velocity calculations in PIV processing. A series of algorithms were developed to alleviate these problems. Reflections emanating from the model surface caused by the laser light sheet are removed from the PIV images by subtracting an image in which only the reflections are visible from all of the images within a data acquisition set. The result is a set of PIV images where only the seeded particles are apparent. Fiduciary marks painted on the surface of the test model were used as reference points in the images. By locating the centroids of these marks it was possible to shift all of the images to a common reference frame. This image alignment procedure as well as the subtraction of model reflection are performed in a first algorithm. Once the images have been shifted, they are compared with a background image that was recorded under no flow conditions. The second and third algorithms find the coordinates of fiduciary marks in the acquisition set images and the background image and calculate the displacement between these images. The final algorithm shifts all of the images so that fiduciary mark centroids lie in the same location as the background image centroids. This methodology effectively eliminated the effects of vibration so that unbiased data could be used for PIV processing. The PIV data used for this work was generated at the NASA Langley Research Center Quiet Flow Facility. The experiment entailed flow visualization near the flap side edge region of an airfoil model. Commercial PIV software was used for data acquisition and processing. In this paper, the experiment and the PIV acquisition of the data are described. The methodology used to develop the algorithms for reflection and system vibration removal is stated, and the implementation, testing and validation of these algorithms are presented.

  6. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  7. Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials

    DTIC Science & Technology

    2015-05-01

    Technical Report ARWSB-TR-15003 Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials Mark E. Todaro...SUBTITLE Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...thermomechanical effects that occur at the bore of large and medium caliber guns during firing. Hence, PLH has been used not only to gain insight into the erosion

  8. New Therapeutic Modalities of Retinal Laser Injury.

    DTIC Science & Technology

    1992-03-31

    Clawticarroni New Therapeutic Modalities for Retinal Laser Injury 1 2 . PERSONAL AUTHOR(S) Tim T.Lar. Ph.D., .and Mark Q.M. Tso. M.D. 13a. TYPE OF...Experimental treatment of retinal laser Injury 4 1.3: Clinical therapy 4 1.4: Our hypothesis and approaches 4 Chapter 2 : Accidental laser Injury to the...human retina 7 2.1: Introduction 7 2.2: Case 1 7 2.3: Case 2 8 2.4: General comments 9 2.5: Clinical course 10 2.6: Implications 10 Chapter 3: Sub

  9. Applications and requirements for MEMS scanner mirrors

    NASA Astrophysics Data System (ADS)

    Wolter, Alexander; Hsu, Shu-Ting; Schenk, Harald; Lakner, Hubert K.

    2005-01-01

    Micro scanning mirrors are quite versatile MEMS devices for the deflection of a laser beam or a shaped beam from another light source. The most exciting application is certainly in laser-scanned displays. Laser television, home cinema and data projectors will display the most brilliant colors exceeding even plasma, OLED and CRT. Devices for front and rear projection will have advantages in size, weight and price. These advantages will be even more important in near-eye virtual displays like head-mounted displays or viewfinders in digital cameras and potentially in UMTS handsets. Optical pattern generation by scanning a modulated beam over an area can be used also in a number of other applications: laser printers, direct writing of photo resist for printed circuit boards or laser marking and with higher laser power laser ablation or material processing. Scanning a continuous laser beam over a printed pattern and analyzing the scattered reflection is the principle of barcode reading in 1D and 2D. This principle works also for identification of signatures, coins, bank notes, vehicles and other objects. With a focused white-light or RGB beam even full color imaging with high resolution is possible from an amazingly small device. The form factor is also very interesting for the application in endoscopes. Further applications are light curtains for intrusion control and the generation of arbitrary line patterns for triangulation. Scanning a measurement beam extends point measurements to 1D or 2D scans. Automotive LIDAR (laser RADAR) or scanning confocal microscopy are just two examples. Last but not least there is the field of beam steering. E.g. for all-optical fiber switches or positioning of read-/write heads in optical storage devices. The variety of possible applications also brings a variety of specifications. This publication discusses various applications and their requirements.

  10. Accuracy and Repeatability of Trajectory Rod Measurement Using Laser Scanners.

    PubMed

    Liscio, Eugene; Guryn, Helen; Stoewner, Daniella

    2017-12-22

    Three-dimensional (3D) technologies contribute greatly to bullet trajectory analysis and shooting reconstruction. There are few papers which address the errors associated with utilizing laser scanning for bullet trajectory documentation. This study examined the accuracy and precision of laser scanning for documenting trajectory rods in drywall for angles between 25° and 90°. The inherent error range of 0.02°-2.10° was noted while the overall error for laser scanning ranged between 0.04° and 1.98°. The inter- and intraobserver errors for trajectory rod placement and virtual trajectory marking showed that the range of variation for rod placement was between 0.1°-1° in drywall and 0.05°-0.5° in plywood. Virtual trajectory marking accuracy tests showed that 75% of data values were below 0.91° and 0.61° on azimuth and vertical angles, respectively. In conclusion, many contributing factors affect bullet trajectory analysis, and the use of 3D technologies can aid in reduction of errors associated with documentation. © 2017 American Academy of Forensic Sciences.

  11. Incremental yield of dysplasia detection in Barrett's esophagus using volumetric laser endomicroscopy with and without laser marking compared with a standardized random biopsy protocol.

    PubMed

    Alshelleh, Mohammad; Inamdar, Sumant; McKinley, Matthew; Stewart, Molly; Novak, Jeffrey S; Greenberg, Ronald E; Sultan, Keith; Devito, Bethany; Cheung, Mary; Cerulli, Maurice A; Miller, Larry S; Sejpal, Divyesh V; Vegesna, Anil K; Trindade, Arvind J

    2018-02-02

    Volumetric laser endomicroscopy (VLE) is a new wide-field advanced imaging technology for Barrett's esophagus (BE). No data exist on incremental yield of dysplasia detection. Our aim is to report the incremental yield of dysplasia detection in BE using VLE. This is a retrospective study from a prospectively maintained database from 2011 to 2017 comparing the dysplasia yield of 4 different surveillance strategies in an academic BE tertiary care referral center. The groups were (1) random biopsies (RB), (2) Seattle protocol random biopsies (SP), (3) VLE without laser marking (VLE), and (4) VLE with laser marking (VLEL). A total of 448 consecutive patients (79 RB, 95 SP, 168 VLE, and 106 VLEL) met the inclusion criteria. After adjusting for visible lesions, the total dysplasia yield was 5.7%, 19.6%, 24.8%, and 33.7%, respectively. When compared with just the SP group, the VLEL group had statistically higher rates of overall dysplasia yield (19.6% vs 33.7%, P = .03; odds ratio, 2.1, P = .03). Both the VLEL and VLE groups had statistically significant differences in neoplasia (high-grade dysplasia and intramucosal cancer) detection compared with the SP group (14% vs 1%, P = .001 and 11% vs 1%, P = .003). A surveillance strategy involving VLEL led to a statistically significant higher yield of dysplasia and neoplasia detection compared with a standard random biopsy protocol. These results support the use of VLEL for surveillance in BE in academic centers. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  12. Integration of Point Clouds Dataset from Different Sensors

    NASA Astrophysics Data System (ADS)

    Abdullah, C. K. A. F. Che Ku; Baharuddin, N. Z. S.; Ariff, M. F. M.; Majid, Z.; Lau, C. L.; Yusoff, A. R.; Idris, K. M.; Aspuri, A.

    2017-02-01

    Laser Scanner technology become an option in the process of collecting data nowadays. It is composed of Airborne Laser Scanner (ALS) and Terrestrial Laser Scanner (TLS). ALS like Phoenix AL3-32 can provide accurate information from the viewpoint of rooftop while TLS as Leica C10 can provide complete data for building facade. However if both are integrated, it is able to produce more accurate data. The focus of this study is to integrate both types of data acquisition of ALS and TLS and determine the accuracy of the data obtained. The final results acquired will be used to generate models of three-dimensional (3D) buildings. The scope of this study is focusing on data acquisition of UTM Eco-home through laser scanning methods such as ALS which scanning on the roof and the TLS which scanning on building façade. Both device is used to ensure that no part of the building that are not scanned. In data integration process, both are registered by the selected points among the manmade features which are clearly visible in Cyclone 7.3 software. The accuracy of integrated data is determined based on the accuracy assessment which is carried out using man-made registration methods. The result of integration process can achieve below 0.04m. This integrated data then are used to generate a 3D model of UTM Eco-home building using SketchUp software. In conclusion, the combination of the data acquisition integration between ALS and TLS would produce the accurate integrated data and able to use for generate a 3D model of UTM eco-home. For visualization purposes, the 3D building model which generated is prepared in Level of Detail 3 (LOD3) which recommended by City Geographic Mark-Up Language (CityGML).

  13. Prospects for Practical Applications of a Discharge Chemical HF Laser as a Coherent Source for IR Holography

    NASA Astrophysics Data System (ADS)

    Fedotov, O. G.; Fomin, V. M.

    2018-02-01

    Preliminary experimental results on recording of phase and amplitude holograms using the radiation of electric-discharge HF lasers are presented, and prospects for applications of such lasers in diagnostics of various objects are discussed. It is shown that lasers with homogeneous working medium may generate coherent radiation with a coherence length of greater than 6 m in the absence of mode selection. Methods for control of spatial distribution of electron concentration in excimer and discharge chemical HF (DF) lasers and distributions of the main combustible components are considered. Deposition of holographic identification marks on artworks is studied.

  14. Simple steep-axis marking technique using a corneal analyzer.

    PubMed

    Ng, Alex L K; Chan, Tommy C Y; Jhanji, Vishal; Cheng, George P M

    2017-02-01

    We describe a simple steep-axis marking technique that uses a corneal analyzer (OPD III scan) during arcuate keratotomy in femtosecond laser-assisted cataract surgery. The technique requires a single reference mark at the limbus, which does not have to be on the horizontal axis. Using the corneal analyzer, the angle between the steep axis and the reference line between the reference mark and the center of the cornea can be determined. The angle from the reference mark is used intraoperatively to locate the steep axis. This eliminates the potential error from different head positions during keratometry measurement and during traditional marking under the slitlamp. The marking technique can also be applied to toric intraocular lens implantation during cataract surgery. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Effects of erbium-and chromium-doped yttrium scandium gallium garnet and diode lasers on the surfaces of restorative dental materials: a scanning electron microscope study.

    PubMed

    Hatipoglu, M; Barutcigil, C

    2015-01-01

    The aim of this study is to evaluate the potential effects of laser irradiation, which is commonly performed in periodontal surgery, on the surfaces of restorative materials. Five different restorative dental materials were used in this study, as follows: (1) Resin composite, (2) poly acid-modified resin composite (compomer), (3) conventional glass ionomer cement (GIC), (4) resin-modified glass ionomer cement (RMGIC), and (5) amalgam. Four cylindrical samples (8 mm diameter, 2 mm height) were prepared for each restorative material. In addition, four freshly extracted, sound human incisors teeth were selected. Two different laser systems commonly used in periodontal surgery were examined in this study: A 810 nm diode laser at a setting of 1 W with continuous-phase laser irradiation for 10 s, and an erbium-and chromium-doped yttrium scandium gallium garnet (Er, Cr: YSGG) laser at settings of 2.5 W, 3.25 W, and 4 W with 25 Hz laser irradiation for 10 s. Scanning electron microscopy (SEM) analysis was performed to evaluate the morphology and surface deformation of the restorative materials and tooth surfaces. According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples. High-magnification SEM images of GIC samples showed the melting and combustion effects of the Er, Cr: YSGG laser, which increased as the laser power was increased. In amalgam samples, neither laser left significant harmful effects at the lowest power setting. The diode laser did cause irradiation markings, but they were insignificant compared with those left by the Er, Cr: YSGG laser on the surfaces of the different materials and teeth. Within the limitations of this study, it can be concluded that Er, Cr: YSGG laser irradiation could cause distortions of the surfaces of restorative materials. Diode lasers can be preferred for periodontal surgery.

  16. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Donald Frazier,NASA researcher, uses a blue laser shining through a quarts window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center.

  17. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  18. NASA Scientists Push the Limits of Computer Technology

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  19. Photonic jet: key role of injection for etchings with a shaped optical fiber tip.

    PubMed

    Pierron, Robin; Zelgowski, Julien; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2017-07-15

    We demonstrate the key role of the laser injection into a multimode fiber to obtain a photonic jet (PJ). PJ, a high concentrated propagating beam with a full width at half-maximum smaller than the diffraction limit, is here generated with a shaped optical fiber tip using a pulsed laser source (1064 nm, 100 ns, 35 kHz). Three optical injection systems of light are compared. For similar etched marks on silicon with diameters around 1 μm, we show that the required ablation energy is minimum when the injected light beam is close to the fundamental mode diameter of the fiber. Thus, we confirm experimentally that to obtain a PJ out of an optical fiber, light injection plays a role as important as that of the tip shape and, therefore, the role of the fundamental mode in the process.

  20. Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Lechuga, Mario; Solis, Javier; Siegel, Jan

    2018-03-01

    The physical origin of material removal in dielectrics upon femtosecond laser pulse irradiation (800 nm, 120 fs pulse duration) has been investigated at fluences slightly above ablation threshold. Making use of a versatile pump-probe microscopy setup, the dynamics and different key stages of the ablation process in lithium niobate have been monitored. The use of two different illumination wavelengths, 400 and 800 nm, and a rigorous image analysis combined with theoretical modelling, enables drawing a clear picture of the material excitation and expansion stages. Immediately after excitation, a dense electron plasma is generated. Few picoseconds later, direct evidence of a rarefaction wave propagating into the bulk is obtained, with an estimated speed of 3650 m/s. This process marks the onset of material expansion, which is confirmed by the appearance of transient Newton rings, which dynamically change during the expansion up to approximately 1 ns. Exploring delays up to 15 ns, a second dynamic Newton ring pattern is observed, consistent with the formation of a second ablation front propagating five times slower than the first one.

  1. Identification System

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA Space Act Agreement with Marshall Space Flight Center, Symbology Research Center commercialized a new method of identifying products with invisible and virtually indestructible markings. This digital data matrix technology was developed at Marshall Space Flight Center to identify the millions of parts that comprise space shuttles. The laser-etched markings are seen as the next generation of product "bar codes."

  2. Blue two-photon fluorescence metal cluster probe precisely marking cell nuclei of two cell lines.

    PubMed

    Wang, Yaling; Cui, Yanyan; Liu, Ru; Wei, Yueteng; Jiang, Xinglu; Zhu, Huarui; Gao, Liang; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun

    2013-11-25

    A bifunctional peptide was designed to in situ reduce Cu ions and anchor a Cu cluster. The peptide-Cu cluster probe, mainly composed of Cu14, emitted blue two-photon fluorescence under femtosecond laser excitation. Most important, the probe can specifically mark the nuclei of HeLa and A549 cells, respectively.

  3. The role of lasers in dentistry: present and future.

    PubMed

    Pearson, G J; Schuckert, K H

    2003-03-01

    Lasers have been used for hard tissue cutting in dentistry for a number of years. The quality of the cavity preparation and the surface finish achievable is variable and is dependent on operating wavelength. The collateral damage, which may be produced at differing wavelengths, is quite marked. Lasers in current form are now able to remove tissue in bulk at a similar rate to conventional methods such as bur and turbine handpiece. Some lasers may, however, provide precision cutting, which may be developed further in the future. Alternative uses of laser light are potentially more beneficial in the shorter term. The use of diode lasers as a means of activating a photosensitizer to carry out photo-activated disinfection appears to be beneficial.

  4. Topical Meeting on Lasers in Material Diagnostics Held in Albuquerque, New Mexico on 11-12 February 1987. Technical Digest Series. Volume 7

    DTIC Science & Technology

    1987-10-31

    measurement. A cube beam splitter divided incident laser light, I, into two beams , IR and I0, of approximately equal intensity. The reference laser...scattered molecules were found to be strongly dependent on beam kinetic energy. These distributions are markedly non -Boltzmann and indicate that the...satisfy these requirements has been developed. The system, named OBIR for optical beam induced reflectance, is non -destructive and operates at 20C in

  5. Electrical and Optical Characterization System for IR Photodetectors

    DTIC Science & Technology

    2015-10-12

    is marked using the red circles. The newly purchased equipment includes a fast HgCdTe ( MCT ) detector and a 1064 nm pulse laser. The new fast MCT ...signal-to- noise ratio. Figure 1. The block diagram of the upgraded TRPL system. The detector and laser are newly purchased. The chopper and lock...type-II superlattices (T2SL) based infrared photodetectors. Ga-free InAs/InAsSb T2SLs offer great advantages for MWIR and LWIR laser and detector

  6. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  7. Laser Scattering from the Dense Plasma Focus.

    DTIC Science & Technology

    plasma focus (DPF) illuminated by a pulse of laser light. Scattering was observable from 10 nanoseconds prior to arrival of the collapse on axis and for an additional 50 nanoseconds. The frequency spectrum is markedly asymmetric about the laser frequency, a feature which is inconsistent with spectral expectations based on thermal particle distributions even if particle drifts or waves excitations are included. A model is postulated which attributes the asymmetry to lateral displacement of scattering region from the axis of the focus. Analysis based on this model yields

  8. Laser polishing of 3D printed mesoscale components

    NASA Astrophysics Data System (ADS)

    Bhaduri, Debajyoti; Penchev, Pavel; Batal, Afif; Dimov, Stefan; Soo, Sein Leung; Sten, Stella; Harrysson, Urban; Zhang, Zhenxue; Dong, Hanshan

    2017-05-01

    Laser polishing of various engineered materials such as glass, silica, steel, nickel and titanium alloys, has attracted considerable interest in the last 20 years due to its superior flexibility, operating speed and capability for localised surface treatment compared to conventional mechanical based methods. The paper initially reports results from process optimisation experiments aimed at investigating the influence of laser fluence and pulse overlap parameters on resulting workpiece surface roughness following laser polishing of planar 3D printed stainless steel (SS316L) specimens. A maximum reduction in roughness of over 94% (from ∼3.8 to ∼0.2 μm Sa) was achieved at the optimised settings (fluence of 9 J/cm2 and overlap factors of 95% and 88-91% along beam scanning and step-over directions respectively). Subsequent analysis using both X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES) confirmed the presence of surface oxide layers (predominantly consisting of Fe and Cr phases) up to a depth of ∼0.5 μm when laser polishing was performed under normal atmospheric conditions. Conversely, formation of oxide layers was negligible when operating in an inert argon gas environment. The microhardness of the polished specimens was primarily influenced by the input thermal energy, with greater sub-surface hardness (up to ∼60%) recorded in the samples processed with higher energy density. Additionally, all of the polished surfaces were free of the scratch marks, pits, holes, lumps and irregularities that were prevalent on the as-received stainless steel samples. The optimised laser polishing technology was consequently implemented for serial finishing of structured 3D printed mesoscale SS316L components. This led to substantial reductions in areal Sa and St parameters by 75% (0.489-0.126 μm) and 90% (17.71-1.21 μm) respectively, without compromising the geometrical accuracy of the native 3D printed samples.

  9. Beneficial Effect of Low Fluence 1,064 nm Q-Switched Neodymium:Yttrium-Aluminum-Garnet Laser in the Treatment of Senile Lentigo

    PubMed Central

    Nam, Jae-Hui; Kim, Han-Saem; Lee, Ga-Young

    2017-01-01

    Background Low fluence 1,064 nm Q-switched (QS) Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser treatment, also known as laser toning, is widely used for pigmentary disorders. There has been no reliable evaluation of the effect of low fluence 1,064 nm QS Nd:YAG laser for senile lentigo. Objective To investigate the beneficial effect of low fluence 1,064 nm QS Nd:YAG laser in the treatment of senile lentigo on the face. Methods A retrospective review was conducted on patients treated only with repetitive low fluence 1,064 nm QS Nd:YAG laser. Among them, 12 patients with multiple senile lentigines before treatment were included. All side effects were recorded to assess the safety of the modality. Results Mean age was 56.1±7.8 years old and male-to-female ratio was 1:11. Mean treatment fluence was 1.62±0.16 J/cm2 and mean total treatment session was 8.8±2.6. Mean interval period between each session was 28.0±11.4 days and mean treatment session to reach marked and near total improvement was 8.7±2.8. At the final visit, seven of 12 (58.3%) patients reached marked and near total improvement, and three of 12 (25.0%) reached moderate improvement. No side effects occurred. Conclusion Repetitive low fluence 1,064 nm QS Nd:YAG laser treatment may be an effective and safe optional modality for senile lentigo. PMID:28761290

  10. On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers.

    PubMed

    Treuer, H; Hoevels, M; Luyken, K; Gierich, A; Kocher, M; Müller, R P; Sturm, V

    2000-08-01

    We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.

  11. Neodymium:YAG laser cutting of intraocular lens haptics.

    PubMed

    Gorn, R A; Steinert, R F

    1985-11-01

    Neodymium:YAG laser cutting of polymethylmethacrylate and polypropylene anterior chamber and posterior chamber intraocular lens haptics was studied in terms of ease of transection and physical structure of the cut areas as seen by scanning electron microscopy. A marked difference was discovered, with the polymethylmethacrylate cutting easily along transverse planes, whereas the polypropylene resisted cutting along longitudinal fibers. Clinical guidelines are presented.

  12. Applications of the Infrared Free Electron Laser in Nonlinear and Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, Wunshain

    1990-01-01

    Free Electron Lasers (FEL) have been envisioned as novel radiation sources tunable over a wide spectral range. In this dissertation I report two types of experiments that used the infrared FEL, Mark III, to study nonlinear optical properties of conjugated polymers and the possibility of long lived vibrational excitations in acetanilide, a hydrogen-bonded molecular crystal.

  13. Innovative ceramic slab lasers for high power laser applications

    NASA Astrophysics Data System (ADS)

    Lapucci, Antonio; Ciofini, Marco

    2005-09-01

    Diode Pumped Solid State Lasers (DPSSL) are gaining increasing interest for high power industrial application, given the continuous improvement in high power diode laser technology reliability and affordability. These sources open new windows in the parameter space for traditional applications such as cutting , welding, marking and engraving for high reflectance metallic materials. Other interesting applications for this kind of sources include high speed thermal printing, precision drilling, selective soldering and thin film etching. In this paper we examine the most important DPSS laser source types for industrial applications and we describe in details the performances of some slab laser configurations investigated at our facilities. The different architectures' advantages and draw-backs are briefly compared in terms of performances, system complexity and ease of scalability to the multi-kW level.

  14. [The optimization of an early rehabilitation program for cerebral stroke patients: the use of different methods of magneto- and laser therapy].

    PubMed

    Kochetkov, A V; Gorbunov, F E; Minenkov, A A; Strel'tsova, E N; Filina, T F; Krupennikov, A I

    2000-01-01

    Magnetotherapy and laser therapy were used in complex and complex-combined regimens in 75 patients after cerebral ischemic or hemorrhagic stroke starting on the poststroke week 4-5. Clinico-neurologic, neurophysiological and cerebrohemodynamic findings evidence for the highest effectiveness of neurorehabilitation including complex magneto-laser therapy in hemispheric ischemic and hemorrhagic stroke of subcortical location in the absence of marked clinico-tomographic signs of dyscirculatory encephalopathy. Complex-combined magneto-laser therapy is more effective for correction of spastic dystonia. Mutual potentiation of magnetotherapy and laser therapy results in maximal development of collateral circulation and cerebral hemodynamic reserve (84% of the patients). Complex effects manifest in arteriodilating and venotonic effects. Complex magneto-laser therapy is accompanied by reduction of hyperthrombocythemia and hyperfibrinogenemia.

  15. Influence of beam shape on in-vitro cellular transformations in human skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Mthunzi, Patience; Forbes, Andrew; Hawkins, Denise; Abrahamse, Heidi; Karsten, Aletta E.

    2005-08-01

    A variety of strategies have been utilised for prevention and treatment of chronic wounds such as leg ulcers, diabetic foot ulcers and pressure sores1. Low Level Laser Therapy (LLLT) has been reported to be an invaluable tool in the enhancement of wound healing through stimulating cell proliferation, accelerating collagen synthesis and increasing ATP synthesis in mitochondria to name but a few2. This study focused on an in-vitro analysis of the cellular responses induced by treatment with three different laser beam profiles namely, the Gaussian (G), Super Gaussian (SG) and Truncated Gaussian (TG), on normal wounded irradiated (WI) and wounded non-irradiated (WNI) human skin fibroblast cells (WS1), to test their influence in wound healing at 632.8 nm using a helium neon (HeNe) laser. For each beam profile, measurements were made using average energy densities over the sample ranging from 0.2 to 1 J, with single exposures on normal wounded cells. The cells were subjected to different post irradiation incubation periods, ranging from 0 to 24 hours to evaluate the duration (time) dependent effects resulting from laser irradiation. The promoted cellular alterations were measured by increase in cell viability, cell proliferation and cytotoxicity. The results obtained showed that treatment with the G compared to the SG and TG beams resulted in a marked increase in cell viability and proliferation. The data also showed that when cells undergo laser irradiation some cellular processes are driven by the peak energy density rather than the energy of the laser beam. We show that there exist threshold values for damage, and suggest optimal operating regimes for laser based wound healing.

  16. Quantitative comparison of inflammatory infiltrate and linear contraction in human skin treated with 90-microsecond pulsed and 900-microsecond dwell time carbon dioxide lasers.

    PubMed

    Bucalo, B D; Moy, R L

    1998-12-01

    Skin resurfacing with 90-microsecond pulse duration carbon dioxide (CO2) resurfacing lasers has been reported to have shorter duration of erythema compared with skin resurfacing with 900-microsecond dwell time lasers. The presence of inflammatory infiltrate following resurfacing may correlate with the persistence of this erythema. Furthermore, skin treated with the 90-microsecond pulse duration laser and the 900-microsecond dwell time lasers both result in equivalent improvement of rhytids in the treated skin. To quantitative the inflammatory cell infiltrate and linear contraction of skin treated with the 90-microsecond pulsed and 900-microsecond dwell time CO2 lasers at intervals of 2 and 4 weeks after treatment. Volunteers were recruited from patients who were planning to undergo full face laser resurfacing under general anesthesia. Informed consent was obtained from all volunteers. In the posterior auricular areas of all volunteers, four separate rectangular areas were marked using a skin marking pen and a template. Two rectangular areas behind the right ear were treated with 6 passes of the 90-microsecond laser and two rectangular areas behind the left ear were treated with the 900-microsecond dwell time laser. The resurfaced areas were wiped with a moist cotton swab and then patted dry with dry gauze between passes. Contraction measurements of the resurfaced areas were taken before and immediately after laser treatment and again at 2 and 4 weeks following treatment. Punch biopsies were also performed at 2 and 4 weeks after treatment in an area of skin different from where contraction measurements were taken. The number of inflammatory cells present in the skin at 2 and 4 weeks after laser resurfacing are greater for skin resurfaced with a 900-microsecond dwell time laser than a 90-microsecond pulse time laser. Linear contraction of skin immediately after treatment was 18% greater with the 900-microsecond dwell time laser than with the 90-microsecond pulsed laser. The difference in the amount of contraction produced by the lasers tended to decrease over time. At 4 weeks there was a 10% difference in mean linear contraction between the two laser types. Increased numbers of inflammatory cells in skin resurfaced with the 900-microsecond dwell time laser may explain the observed persistence of erythema associated with the 900-microsecond dwell time laser. Measurable linear contraction produced by the 900-microsecond dwell time laser was initially 18% greater than the 90-microsecond pulse laser. This difference tends to decrease over time.

  17. Zero-lag synchronization and bubbling in delay-coupled lasers.

    PubMed

    Tiana-Alsina, J; Hicke, K; Porte, X; Soriano, M C; Torrent, M C; Garcia-Ojalvo, J; Fischer, I

    2012-02-01

    We show experimentally that two semiconductor lasers mutually coupled via a passive relay fiber loop exhibit chaos synchronization at zero lag, and study how this synchronized regime is lost as the lasers' pump currents are increased. We characterize the synchronization properties of the system with high temporal resolution in two different chaotic regimes, namely, low-frequency fluctuations and coherence collapse, identifying significant differences between them. In particular, a marked decrease in synchronization quality develops as the lasers enter the coherence collapse regime. Our high-resolution measurements allow us to establish that synchronization loss is associated with bubbling events, the frequency of which increases with increasing pump current.

  18. Radially and azimuthally polarized laser induced shape transformation of embedded metallic nanoparticles in glass.

    PubMed

    Tyrk, Mateusz A; Zolotovskaya, Svetlana A; Gillespie, W Allan; Abdolvand, Amin

    2015-09-07

    Radially and azimuthally polarized picosecond (~10 ps) pulsed laser irradiation at 532 nm wavelength led to the permanent reshaping of spherical silver nanoparticles (~30 - 40 nm in diameter) embedded in a thin layer of soda-lime glass. The observed peculiar shape modifications consist of a number of different orientations of nano-ellipsoids in the cross-section of each written line by laser. A Second Harmonic Generation cross-sectional scan method from silver nanoparticles in transmission geometry was adopted for characterization of the samples after laser modification. The presented approach may lead to sophisticated marking of information in metal-glass nanocomposites.

  19. Controlled oxide films formation by nanosecond laser pulses for color marking.

    PubMed

    Veiko, Vadim; Odintsova, Galina; Ageev, Eduard; Karlagina, Yulia; Loginov, Anatoliy; Skuratova, Alexandra; Gorbunova, Elena

    2014-10-06

    A technology of laser-induced coloration of metals by surface oxidation is demonstrated. Each color of the oxide film corresponds to a technologic chromacity coefficient, which takes into account the temperature of the sample after exposure by sequence of laser pulses with nanosecond duration and effective time of action. The coefficient can be used for the calculation of laser exposure regimes for the development of a specific color on the metal. A correlation between the composition of the films obtained on the surface of stainless steel AISI 304 and commercial titanium Grade 2 and its color and chromacity coordinates is shown.

  20. Histological Study of Induced Incisions on Rabbits' Tongues with Three Diode Lasers with Different Wavelengths in Continuous Mode

    PubMed Central

    Yammine, Salwa; Jabbour, Edgard

    2018-01-01

    Objective Diode lasers have multiple indications in everyday dental practice. They allow carrying out incisions, coagulation of soft tissue, and Low-Level Laser Therapy. The goal of this study is to compare histologically the tissue interaction zones and edges of an induced laser incision on rabbits' tongues with three different wavelengths of 810, 940, and 980 nm in continuous mode. Methods Fourteen male rabbits were divided into six groups. Each animal underwent three incisions of 10 mm length on the right ventral face of the tongue, carried out in continuous mode with three diode lasers with different wavelengths of 810, 940, and 980 nm. Rabbits were sacrificed at 0, 1, 2, 6, and 15 hours and 14 days. Five rabbits were sacrificed at 0 hours and 2 hours and one rabbit was sacrificed at 1, 6, and 15 hours and at 14 days. The appearance of neutrophils marked the onset time of the inflammatory reaction. Histological study of the incisions was chosen to evaluate the edges and to measure the depth and width of carbonization and necrotic and inflammatory zones. Healing was evaluated at 14 days. Friedman test was used to assess statistical differences between groups. Results In the experimental adopted conditions, the carbonization zone was marked by degradation of vacuoles and an elongation of nuclei and was observed on the edges of incisions. Carbonization and necrotic and inflammatory zones were measured for rabbits sacrificed at 0, 1, 2, 6, and 15 hours but the onset of inflammation zone marked by the infiltration of neutrophils did not appear before 6 hours. The neutrophils infiltration was higher at 15 hours than at 6 hours. Complete healing was shown at 14 days. According to the time for the regularity of the edges, the interpretation was qualitative without a statistical test. The statistical analysis of the three different diode lasers in this study showed nonsignificant difference between the different groups for the depth (p = 0.121) and width (p = 0.376) of the incisions, the carbonization zone (p = 0.692), and the necrotic zone (p = 0.223). For the inflammation zone at 6 and 15 hours, statistical analysis was not carried out; only one rabbit was enough to evaluate onset of neutrophils infiltration and to compare its density for 6 and 15 hours. Conclusion These results indicate that diode laser used in the continuous mode is predictable for induced incision. The use of three diode lasers with different wavelengths of 810, 940, and 980 nm did not reveal a significant statistical difference according to depth and width of the incision and for carbonization and necrotic zone. The appearance of neutrophils was marked between 4 and 6 hours and was higher at 15 hours. PMID:29854565

  1. Collisional Processes Probed by using Resonant Four-Wave Mixing Spectroscopy

    NASA Astrophysics Data System (ADS)

    McCormack, E. F.; Stampanoni, A.; Hemmerling, B.

    2000-06-01

    Collisionally-induced decay processes in excited-state nitric oxide (NO) have been measured by using time-resolved two-color, resonant four-wave mixing (TC-RFWM) spectroscopy and polarization spectroscopy (PS). Markedly different time dependencies were observed in the data obtained by using TC-RFWM when compared to PS. Oscillations in the PS signal as a function of delay between the pump and probe laser pulses were observed and it was determined that their characteristics depend very sensitively on laser polarization. Analysis reveals that the oscillations in the decay curves are due to coherent excitation of unresolved hyperfine structure in the A state of NO. A comparison of beat frequencies obtained by taking Fourier transforms of the time data to the predicted hyperfine structure of the A state support this explanation. Further, based on a time-dependent model of PS as a FWM process, the signal’s dependence as a function of time on polarization configuration and excitation scheme can be predicted. By using the beat frequency values, fits of the model results to experimental decay curves for different pressures allows a study of the quenching rate in the A state due to collisional processes. A comparison of the PS data to laser-induced fluorescence decay measurements reveals different decay rates which suggests that the PS signal decay depends on the orientation and alignment of the excited molecules. The different behavior of the decay curves obtained by using TC-RFWM and PS can be understood in terms of the various contributions to the decay as described by the model and this has a direct bearing on which technique is preferable for a given set of experimental parameters.

  2. Design of voice coil motor dynamic focusing unit for a laser scanner

    NASA Astrophysics Data System (ADS)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  3. Design of voice coil motor dynamic focusing unit for a laser scanner.

    PubMed

    Lee, Moon G; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho

    2014-04-01

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden-Fletcher-Goldfarb-Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  4. A silicon Brillouin laser

    NASA Astrophysics Data System (ADS)

    Otterstrom, Nils T.; Behunin, Ryan O.; Kittlaus, Eric A.; Wang, Zheng; Rakich, Peter T.

    2018-06-01

    Brillouin laser oscillators offer powerful and flexible dynamics as the basis for mode-locked lasers, microwave oscillators, and optical gyroscopes in a variety of optical systems. However, Brillouin interactions are markedly weak in conventional silicon photonic waveguides, stifling progress toward silicon-based Brillouin lasers. The recent advent of hybrid photonic-phononic waveguides has revealed Brillouin interactions to be one of the strongest and most tailorable nonlinearities in silicon. In this study, we have harnessed these engineered nonlinearities to demonstrate Brillouin lasing in silicon. Moreover, we show that this silicon-based Brillouin laser enters a regime of dynamics in which optical self-oscillation produces phonon linewidth narrowing. Our results provide a platform to develop a range of applications for monolithic integration within silicon photonic circuits.

  5. Laser marking of contrast images for optical read-out systems

    NASA Astrophysics Data System (ADS)

    Yulmetova, O. S.; Tumanova, M. A.

    2017-11-01

    In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.

  6. IEEE Nonlinear Optics 1994: Materials, Fundamentals, and Applications. Conference Held in Waikoloa, Hawaii on July 25-29, 1994

    DTIC Science & Technology

    1994-07-29

    SLtmwary THz radiation from various material excited by ultrashort pulse lasers have been intensively studied in the respect of its mechanism and potential...schqmatically shown in Fig. 1. We illuminate the chiral sur- face with the intense (-100 MW/cm") beam of an injection seeded Nd:YAG laser (1064 nm, -10 ns pulse ...the 3 At marked by the arrows. Right, dynamics of the phase (relative to the Laser ) within the ultrashort pulse emission fur the same 3 At. 144

  7. Measuring the circular motion of small objects using laser stroboscopic images.

    PubMed

    Wang, Hairong; Fu, Y; Du, R

    2008-01-01

    Measuring the circular motion of a small object, including its displacement, speed, and acceleration, is a challenging task. This paper presents a new method for measuring repetitive and/or nonrepetitive, constant speed and/or variable speed circular motion using laser stroboscopic images. Under stroboscopic illumination, each image taken by an ordinary camera records multioutlines of an object in motion; hence, processing the stroboscopic image will be able to extract the motion information. We built an experiment apparatus consisting of a laser as the light source, a stereomicroscope to magnify the image, and a normal complementary metal oxide semiconductor camera to record the image. As the object is in motion, the stroboscopic illumination generates a speckle pattern on the object that can be recorded by the camera and analyzed by a computer. Experimental results indicate that the stroboscopic imaging is stable under various conditions. Moreover, the characteristics of the motion, including the displacement, the velocity, and the acceleration can be calculated based on the width of speckle marks, the illumination intensity, the duty cycle, and the sampling frequency. Compared with the popular high-speed camera method, the presented method may achieve the same measuring accuracy, but with much reduced cost and complexity.

  8. Fabrication of long linear arrays of plastic optical fibers with squared ends for the use of code mark printing lithography

    NASA Astrophysics Data System (ADS)

    Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya

    2017-05-01

    Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.

  9. Video-assisted thoracoscopic surgery for pulmonary nodules after computed tomography-guided marking with a spiral wire.

    PubMed

    Eichfeld, Uwe; Dietrich, Arne; Ott, Rudolph; Kloeppel, Rainer

    2005-01-01

    Peripheral pulmonary nodules are preferably removed by minimally invasive techniques, such as video-assisted thoracoscopic (VATS) surgery. These nodules should be marked preoperatively for better intraoperative detection and removal. Twenty-two cases with a single pulmonary nodule requiring surgical removal for histologic examination were included in a prospective study. Guided by computed tomography, nodules were marked preoperatively using a laser marker system and fixed with a spiral wire. The marked nodules were removed by VATS surgery immediately after the marking. The marking wire was placed in all 22 patients without any complications. The marked nodule was completely removed by VATS surgery in 19 patients. Conversion to thoracotomy was necessary in 3 patients, twice because of thoracoscopy-related problems and once because of a marking failure. The average times for the marking procedure and operation were 24 minutes and 32 minutes, respectively. This new method of computed tomography-guided nodule marking with a spiral wire and subsequent VATS surgery is very efficient in terms of localization and stable fixation of subpleural pulmonary nodules.

  10. Observation of cooperative Mie scattering from an ultracold atomic cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, H.; Stehle, C.; Slama, S.

    Scattering of light at a distribution of scatterers is an intrinsically cooperative process, which means that the scattering rate and the angular distribution of the scattered light are essentially governed by bulk properties of the distribution, such as its size, shape, and density, although local disorder and density fluctuations may have an important impact on the cooperativity. Via measurements of the radiation pressure force exerted by a far-detuned laser beam on a very small and dense cloud of ultracold atoms, we are able to identify the respective roles of superradiant acceleration of the scattering rate and of Mie scattering inmore » the cooperative process. They lead, respectively, to a suppression or an enhancement of the radiation pressure force. We observe a maximum in the radiation pressure force as a function of the phase shift induced in the incident laser beam by the cloud's refractive index. The maximum marks the borderline of the validity of the Rayleigh-Debye-Gans approximation from a regime, where Mie scattering is more complex. Our observations thus help to clarify the intricate relationship between Rayleigh scattering of light at a coarse-grained ensemble of individual scatterers and Mie scattering at the bulk density distribution.« less

  11. Automatic drawing for traffic marking with MMS LIDAR intensity

    NASA Astrophysics Data System (ADS)

    Takahashi, G.; Takeda, H.; Shimano, Y.

    2014-05-01

    Upgrading the database of CYBER JAPAN has been strategically promoted because the "Basic Act on Promotion of Utilization of Geographical Information", was enacted in May 2007. In particular, there is a high demand for road information that comprises a framework in this database. Therefore, road inventory mapping work has to be accurate and eliminate variation caused by individual human operators. Further, the large number of traffic markings that are periodically maintained and possibly changed require an efficient method for updating spatial data. Currently, we apply manual photogrammetry drawing for mapping traffic markings. However, this method is not sufficiently efficient in terms of the required productivity, and data variation can arise from individual operators. In contrast, Mobile Mapping Systems (MMS) and high-density Laser Imaging Detection and Ranging (LIDAR) scanners are rapidly gaining popularity. The aim in this study is to build an efficient method for automatically drawing traffic markings using MMS LIDAR data. The key idea in this method is extracting lines using a Hough transform strategically focused on changes in local reflection intensity along scan lines. However, also note that this method processes every traffic marking. In this paper, we discuss a highly accurate and non-human-operator-dependent method that applies the following steps: (1) Binarizing LIDAR points by intensity and extracting higher intensity points; (2) Generating a Triangulated Irregular Network (TIN) from higher intensity points; (3) Deleting arcs by length and generating outline polygons on the TIN; (4) Generating buffers from the outline polygons; (5) Extracting points from the buffers using the original LIDAR points; (6) Extracting local-intensity-changing points along scan lines using the extracted points; (7) Extracting lines from intensity-changing points through a Hough transform; and (8) Connecting lines to generate automated traffic marking mapping data.

  12. Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Y.; Morita, T.; Morimoto, Y.

    A self-organized fringe pattern in a single amorphous mark of a GeTe thin film was formed by multiple femtosecond pulse amorphization. Micro Raman measurement indicates that the fringe is a periodic alternation between crystalline and amorphous phases. The period of the fringe is smaller than the irradiation wavelength and the direction is parallel to the polarization direction. Snapshot observation revealed that the fringe pattern manifests itself via a complex but coherent process, which is attributed to crystallization properties unique to a nonthermally amorphized phase and the distinct optical contrast between crystalline and amorphous phases.

  13. Beyond the ridge pattern: multi-informative analysis of latent fingermarks by MALDI mass spectrometry.

    PubMed

    Francese, S; Bradshaw, R; Ferguson, L S; Wolstenholme, R; Clench, M R; Bleay, S

    2013-08-07

    After over a century, fingerprints are still one of the most powerful means of biometric identification. The conventional forensic workflow for suspect identification consists of (i) recovering latent marks from crime scenes using the appropriate enhancement technique and (ii) obtaining an image of the mark to compare either against known suspect prints and/or to search in a Fingerprint Database. The suspect is identified through matching the ridge pattern and local characteristics of the ridge pattern (minutiae). However successful, there are a number of scenarios in which this process may fail; they include the recovery of partial, distorted or smudged marks, poor quality of the image resulting from inadequacy of the enhancement technique applied, extensive scarring/abrasion of the fingertips or absence of suspect's fingerprint records in the database. In all of these instances it would be very desirable to have a technology able to provide additional information from a fingermark exploiting its endogenous and exogenous chemical content. This opportunity could potentially provide new investigative leads, especially when the fingermark comparison and match process fails. We have demonstrated that Matrix Assisted Laser Desorption Ionisation Mass Spectrometry and Mass Spectrometry Imaging (MALDI MSI) can provide multiple images of the same fingermark in one analysis simultaneous with additional intelligence. Here, a review on the pioneering use and development of MALDI MSI for the analysis of latent fingermarks is presented along with the latest achievements on the forensic intelligence retrievable.

  14. In vivo marking of single cells in chick embryos using photoactivation of GFP.

    PubMed

    Stark, D A; Kulesa, P M

    2005-10-01

    Selective marking of a single cell within a living embryo is often difficult due to the inaccuracy and invasiveness of standard techniques. This unit describes a minimally invasive optical protocol that uses 405-nm laser light to photoactivate a variant of green fluorescent protein (PAGFP). This method takes advantage of the accessibility of the chick embryo to inject PAGFP into a region of interest and uses electroporation to deliver the construct into cells. This unit describes in detail how single and small groups of cells (n<10) that express PAGFP can be made visually distinguishable from the host population using the photoactivation process. Included is a means to maximize the fluorescence increase due to photoactivated GFP signal and to reduce photobleaching. Briefly outlined are previously developed chick culture and time-lapse imaging techniques to allow for the subsequent monitoring of photoactivated cell migratory behaviors. The technique has the potential to be a less-invasive, accurate tool for in vivo studies that involve following cell lineage and cell migration.

  15. Theory of intrinsic linewidth based on fluctuation-dissipation balance for thermal photons in THz quantum-cascade lasers.

    PubMed

    Yamanishi, Masamichi

    2012-12-17

    Intrinsic linewidth formula modified by taking account of fluctuation-dissipation balance for thermal photons in a THz quantum-cascade laser (QCL) is exhibited. The linewidth formula based on the model that counts explicitly the influence of noisy stimulated emissions due to thermal photons existing inside the laser cavity interprets experimental results on intrinsic linewidth, ~91.1 Hz reported recently with a 2.5 THz bound-to-continuum QCL. The line-broadening induced by thermal photons is estimated to be ~22.4 Hz, i.e., 34% broadening. The modified linewidth formula is utilized as a bench mark in engineering of THz thermal photons inside laser cavities.

  16. [Using combined magnetotherapy in patients with acne].

    PubMed

    Kul'chitskaia, D B; Orekhova, E M; Vasil'eva, E S

    2004-01-01

    Laser Doppler flowmetry discovered microcirculatory disorders in acne patients. Affected are arterioles as well as capillaries and venules. Combination of magnetotherapy with medication improves microcirculation in acne patients. More marked positive changes occurred in the microcirculatory system due to combined treatment compared to medication therapy only. Thus, laser Doppler flowmetry is a new, noninvasive method of assessing microcirculation in acne patients and can serve an objective criterion of treatment efficacy.

  17. Nd:YAG-laser-Q-switching with a photo-elastic modulator and applications

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Petkovšek, R.; Dominguez, H.; Liedl, G.

    2010-05-01

    We present a rod-Nd:YAG-Laser, side-pumped with eight 50W-laser diode bars at 808nm, and Q-switched with a Single Crystal Photo-Elastic Modulator at 95.1 kHz. The latter is made of a z-cut LiNbO3-crystal, which is electrically y-excited on the mechanical resonance frequency of the x-longitudinal oscillation. With a voltage amplitude of 3 V the crystal shows a strong oscillation such that due to the photo-elastic effect a high polarization modulation is achieved, which, together with a polarizer, can be used as a simple optical switch. With this inside the laser resonator the average power is 47.8W in cw-mode and 45.5W in pulsed mode, with pulse peak powers of 4 kW and pulse widths of 100ns. This kind of operation is similar to cw-operation but offers due to the high peak powers different interaction physics with matter. The source is therefore suited for micro-welding of metals, LIDAR, rapid prototyping of plastics, marking/engraving/cutting of plastics, marking of glasses. In cases where high precision and a small heat affected zone are necessary this simple kind of pulsed operation may be advantageous, when compared to cw-operation.

  18. Targeting doxorubicin encapsulated in stealth liposomes to solid tumors by non thermal diode laser.

    PubMed

    Ghannam, Magdy M; El Gebaly, Reem; Fadel, Maha

    2016-04-05

    The use of liposomes as drug delivery systems is the most promising technique for targeting drug especially for anticancer therapy. In this study sterically stabilized liposomes was prepared from DPPC/Cholesterol/PEG-PE encapsulated doxorubicin. The effect of lyophilization on liposomal stability and hence expiration date were studied. Moreover, the effect of diode laser on the drug released from liposomesin vitro and in vivo in mice carrying implanted solid tumor were also studied. The results indicated that lyophilization of the prepared liposomes encapsulating doxorubicin led to marked stability when stored at 5 °C and it is possible to use the re-hydrated lyophilized liposomes within 12 days post reconstitution. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells is a promising method in cancer therapy. We can conclude that lyophilization of the liposomes encapsulating doxorubicin lead to marked stability for the liposomes when stored at 5 °C. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells through the use of photosensitive sterically stabilized liposomes loaded with doxorubicin is a promising method. It proved to be applicable and successful for treatment of Ehrlich solid tumors implanted in mice and eliminated toxic side effects of doxorubicin.

  19. Monitoring the inhibition of erosion by a CO2 laser with OCT

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Fried, Daniel

    2014-02-01

    Since optical coherence tomography (OCT) is well suited for measuring small dimensional changes on tooth surfaces, OCT has great potential for monitoring tooth erosion. Previous studies have shown that enamel areas ablated by a carbon dioxide laser manifested lower rates of erosion compared to the nonablated areas. The purpose of this study was to develop a model to monitor erosion in vitro that could potentially be used in vivo. Teeth surfaces were irradiated with a carbon dioxide laser at low sub-ablative fluence to create an acid-resistant reference layer without damaging the enamel. The laser treated areas were compared with the unprotected areas using OCT during exposure to a pH cycling model for up to 6 days. The laser treated areas markedly reduced the rate of erosion.

  20. Laser eye injuries.

    PubMed

    Barkana, Y; Belkin, M

    2000-01-01

    Laser instruments are used in many spheres of human activity, including medicine, industry, laboratory research, entertainment, and, notably, the military. This widespread use of lasers has resulted in many accidental injuries. Injuries are almost always retinal, because of the concentration of visible and near-infrared radiation on the retina. The retina is therefore the body tissue most vulnerable to laser radiation. The nature and severity of this type of retinal injury is determined by multiple laser-related and eye-related factors, the most important being the duration and amount of energy delivered and the retinal location of the lesion. The clinical course of significant retinal laser injuries is characterized by sudden loss of vision, often followed by marked improvement over a few weeks, and occasionally severe late complications. Medical and surgical treatment is limited. Laser devices hazardous to the human eye are currently in widespread use by armed forces. Furthermore, lasers may be employed specifically for visual incapacitation on future battlefields. Adherence to safety practices effectively prevents accidental laser-induced ocular injuries. However, there is no practical way to prevent injuries that are maliciously inflicted, as expected from laser weapons.

  1. A histopathologic evaluation of the Plasma Skin Regeneration System (PSR) versus a standard carbon dioxide resurfacing laser in an animal model.

    PubMed

    Fitzpatrick, R; Bernstein, E; Iyer, S; Brown, D; Andrews, P; Penny, K

    2008-02-01

    A variety of high energy, pulsed, and scanned carbon dioxide lasers are available to perform cutaneous resurfacing. Rhytec has developed a device for skin regeneration that utilizes energy delivered via a burst of nitrogen plasma. This study was undertaken to benchmark the energy outputs of the plasma skin regeneration device as compared to an ultra-short pulsed carbon dioxide laser (the control device). The two systems were compared for time to complete healing, and the healing response post-treatment. Three Yucatan mini-pigs were utilized for this study. Following anesthesia, five experimental sites were marked along the skin atop the psoas muscle on each side of the spine. Treatment was applied using either the plasma skin regeneration system or the carbon dioxide laser, with one site remaining untreated as a control. Biopsies were taken from all treatment sites 0, 2, 7, 14, 30, and 60 days following treatment and processed to hematoxylin-eosin staining. Histopathologic examination was performed by observers blinded as to the treatment conditions. Skin treated with the plasma skin regeneration device showed a wider range of tissue effects across the energy settings used as compared to the laser treatment. All treatment sites had clinically regenerated epidermis by 7 days after treatment, with active cellular response below the D/E junction noted at the day 30 time-point at energies ranging from 2 to 4 J. The Rhytec PSR system provides an attractive alternative to standard CO2 laser with good remodeling of tissue architecture. Epidermis regenerated after PSR treatment shows a smoother surface profile than adjacent untreated tissue.

  2. Selective Removal of Natural Occlusal Caries by Coupling Near-infrared Imaging with a CO2 Laser

    PubMed Central

    Tao, You-Chen; Fried, Daniel

    2011-01-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO2 laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO2 laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO2 laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO2 laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure. PMID:21909225

  3. Selective removal of natural occlusal caries by coupling near-infrared imaging with a CO II laser

    NASA Astrophysics Data System (ADS)

    Tao, You-Chen; Fried, Daniel

    2008-02-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO2 laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO2 laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO2 laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO2 laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure.

  4. Selective Removal of Natural Occlusal Caries by Coupling Near-infrared Imaging with a CO(2) Laser.

    PubMed

    Tao, You-Chen; Fried, Daniel

    2008-03-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. Last year we successfully demonstrated that near-IR images can be used to guide a CO(2) laser ablation system for the selective removal of artificial caries lesions on smooth surfaces. The objective of this study was to test the hypothesis that two-dimensional near-infrared images of natural occlusal caries can be used to guide a CO(2) laser for selective removal. Two-dimensional NIR images were acquired at 1310-nm of extracted human molar teeth with occlusal caries. Polarization sensitive optical coherence tomography (PS-OCT) was also used to acquire depth-resolved images of the lesion areas. An imaging processing module was developed to analyze the NIR imaging output and generate optical maps that were used to guide a CO(2) laser to selectively remove the lesions at a uniform depth. Post-ablation NIR images were acquired to verify caries removal. Based on the analysis of the NIR images, caries lesions were selectively removed with a CO(2) laser while sound tissues were conserved. However, the removal rate varied markedly with the severity of decay and multiple passes were required for caries removal. These initial results are promising but indicate that the selective removal of natural caries is more challenging than the selective removal of artificial lesions due to varying tooth geometry, the highly variable organic/mineral ratio in natural lesions and more complicated lesion structure.

  5. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface

    NASA Astrophysics Data System (ADS)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.

    1986-05-01

    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  6. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  7. Melasma treatment using an erbium:YAG laser: a clinical, immunohistochemical, and ultrastructural study.

    PubMed

    Attwa, Enayat; Khater, Mohamed; Assaf, Magda; Haleem, Manal Abdel

    2015-02-01

    Melasma is a common pigmentary disorder that remains resistant to available therapies. The aim of the present study was to evaluate the efficacy of erbium:YAG lasers in the treatment of refractory melasma and investigate the histopathological and ultrastructural changes between melasma skin and adjacent control skin before and after surgery. Fifteen Egyptian female patients with melasma unresponsive to previous therapy of bleaching creams and chemical peels were included in this study. Full-face skin resurfacing using an erbium:YAG laser was performed. Clinical parameters included physician and patient assessment, and melasma area and severity index score were done. Adverse effects after laser resurfacing were recorded. Biopsies of lesions and adjacent healthy skin were stained using hematoxylin-eosin, immunohistochemically marked for Melan-A, and evaluated by electron microscopy. The amount of melanin, staining intensity, and number of epidermal melanocytes are increased in melasma lesions as compared to normal skin. Electron microscopic analysis revealed an increased number of mature melanosomes in keratinocytes and melanocytes, with more marked cytoplasmic organelles in melasma skin than in biopsy specimens from normal skin, suggesting increased cell activity. After surgery, the number of melanocytes and concentration of melanin decreased in melasma skin, and the mean melasma area and severity index score decreased dramatically. Erbium:YAG laser resurfacing effectively improves melasma; however, the almost universal appearance of transient postinflammatory hyperpigmentation necessitates prompt and persistent intervention. © 2014 The International Society of Dermatology.

  8. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  9. Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip

    PubMed Central

    Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei

    2010-01-01

    This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too. PMID:21079695

  10. Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip.

    PubMed

    Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei

    2010-10-18

    This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too.

  11. Carbon dioxide laser effects on caries-like lesions of dental enamel

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Zhang, S. H.; Shariati, M.; McCormack, Sandra M.

    1991-05-01

    Previous studies by the authors have shown that carbon dioxide (CO2) laser light has marked effects on dental hard tissues and that these effects are wavelength-dependent. The aim of the present study was to determine whether treatment by CO2 laser of caries-like lesions in human enamel would inhibit subsequent lesion progression. Nine groups of 10 teeth each with preformed caries-like lesions were treated with/without CO2 laser (9.32 micrometers , 15 mJ or 25 mJ per pulse) by a pulsed laser (100-200 nsec) for either 200 or 400 pulses. Preformed lesions were then treated with acidulated phosphate fluoride for 5 minutes with control groups with no fluoride treatment. Teeth were subjected to a subsequent pH cycling challenge to determine the protection against lesion progression. Low energy laser treatment coupled with fluoride treatment entirely inhibited subsequent lesion progression in this model system.

  12. Design and Development of Anthropometrically Correct Head Forms for Joint Strike Fighter Ejection Seat Testing

    DTIC Science & Technology

    2005-02-01

    Testing John A. Plaga Air Force Research Laboratory Chris Albery Mark Boehmer Chuck Goodyear Glenn Thomas Advanced...PROJECT NUMBER 7184 5e. TASK NUMBER 02 6. AUTHOR(S) John A. Plaga *Chris Albery *Mark Boehmer *Chuck Goodyear *Glenn Thomas 5f. WORKUNIT...laser scan 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON: John A. Plaga a. REPORT U b. ABSTRACT U c. THIS PAGE U 17

  13. Near-infrared branding efficiently correlates light and electron microscopy.

    PubMed

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  14. A 3D Laser Profiling System for Rail Surface Defect Detection

    PubMed Central

    Li, Qingquan; Mao, Qingzhou; Zou, Qin

    2017-01-01

    Rail surface defects such as the abrasion, scratch and peeling often cause damages to the train wheels and rail bearings. An efficient and accurate detection of rail defects is of vital importance for the safety of railway transportation. In the past few decades, automatic rail defect detection has been studied; however, most developed methods use optic-imaging techniques to collect the rail surface data and are still suffering from a high false recognition rate. In this paper, a novel 3D laser profiling system (3D-LPS) is proposed, which integrates a laser scanner, odometer, inertial measurement unit (IMU) and global position system (GPS) to capture the rail surface profile data. For automatic defect detection, first, the deviation between the measured profile and a standard rail model profile is computed for each laser-imaging profile, and the points with large deviations are marked as candidate defect points. Specifically, an adaptive iterative closest point (AICP) algorithm is proposed to register the point sets of the measured profile with the standard rail model profile, and the registration precision is improved to the sub-millimeter level. Second, all of the measured profiles are combined together to form the rail surface through a high-precision positioning process with the IMU, odometer and GPS data. Third, the candidate defect points are merged into candidate defect regions using the K-means clustering. At last, the candidate defect regions are classified by a decision tree classifier. Experimental results demonstrate the effectiveness of the proposed laser-profiling system in rail surface defect detection and classification. PMID:28777323

  15. Roadmap on ultrafast optics

    NASA Astrophysics Data System (ADS)

    Reid, Derryck T.; Heyl, Christoph M.; Thomson, Robert R.; Trebino, Rick; Steinmeyer, Günter; Fielding, Helen H.; Holzwarth, Ronald; Zhang, Zhigang; Del'Haye, Pascal; Südmeyer, Thomas; Mourou, Gérard; Tajima, Toshiki; Faccio, Daniele; Harren, Frans J. M.; Cerullo, Giulio

    2016-09-01

    The year 2015 marked the 25th anniversary of modern ultrafast optics, since the demonstration of the first Kerr lens modelocked Ti:sapphire laser in 1990 (Spence et al 1990 Conf. on Lasers and Electro-Optics, CLEO, pp 619-20) heralded an explosion of scientific and engineering innovation. The impact of this disruptive technology extended well beyond the previous discipline boundaries of lasers, reaching into biology labs, manufacturing facilities, and even consumer healthcare and electronics. In recognition of such a milestone, this roadmap on Ultrafast Optics draws together articles from some of the key opinion leaders in the field to provide a freeze-frame of the state-of-the-art, while also attempting to forecast the technical and scientific paradigms which will define the field over the next 25 years. While no roadmap can be fully comprehensive, the thirteen articles here reflect the most exciting technical opportunities presented at the current time in Ultrafast Optics. Several articles examine the future landscape for ultrafast light sources, from practical solid-state/fiber lasers and Raman microresonators to exotic attosecond extreme ultraviolet and possibly even zeptosecond x-ray pulses. Others address the control and measurement challenges, requiring radical approaches to harness nonlinear effects such as filamentation and parametric generation, coupled with the question of how to most accurately characterise the field of ultrafast pulses simultaneously in space and time. Applications of ultrafast sources in materials processing, spectroscopy and time-resolved chemistry are also discussed, highlighting the improvements in performance possible by using lasers of higher peak power and repetition rate, or by exploiting the phase stability of emerging new frequency comb sources.

  16. Design of voice coil motor dynamic focusing unit for a laser scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo

    2014-04-15

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motorsmore » and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden–Fletcher–Goldfarb–Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.« less

  17. Marking and Feedback Provision on Essay-Based Coursework: A Process Perspective

    ERIC Educational Resources Information Center

    Tomas, Carmen

    2014-01-01

    Research on the marking process has focused mainly on judgement and strategy use. Previous studies have depicted the marking process as a monolithic sequence of marking single scripts, and primarily in examination marking contexts. The present study investigated the marking process encompassing aspects relatively neglected in previous research:…

  18. ICALEO '91 - Laser materials processing; Proceedings of the Meeting, San Jose, CA, Nov. 3-8, 1991

    NASA Astrophysics Data System (ADS)

    Metzbower, Edward A.; Beyer, Eckhard; Matsunawa, Akira

    Consideration is given to new developments in LASERCAV technology, modeling of deep penetration laser welding, the theory of radiative transfer in the plasma of the keyhole in penetration laser welding, a synchronized laser-video camera system study of high power laser material interactions, laser process monitoring with dual wavelength optical sensors, new devices for on-line process diagnostics during laser machining, and the process development for a portable Nd:YAG laser materials processing system. Attention is also given to laser welding of alumina-reinforced 6061 aluminum alloy composite, the new trend of laser materials processing, optimization of the laser cutting process for thin section stainless steels, a new nozzle concept for cutting with high power lasers, rapid solidification effects during laser welding, laser surface modification of a low carbon steel with tungsten carbide and carbon, absorptivity of a polarized beam during laser hardening, and laser surface melting of 440 C tool steel. (No individual items are abstracted in this volume)

  19. Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images.

    PubMed

    Heath, Daniel J; Mills, Ben; Feinaeugle, Matthias; Eason, Robert W

    2015-06-01

    A digital micromirror device has been used to project variable-period grating patterns at high values of demagnification for direct laser ablation on planar surfaces. Femtosecond laser pulses of ∼1  mJ pulse energy at 800 nm wavelength from a Ti:sapphire laser were used to machine complex patterns with areas of up to ∼1  cm2 on thin films of bismuth telluride by dynamically modifying the grating period as the sample was translated beneath the imaged laser pulses. Individual ∼30 by 30 μm gratings were stitched together to form contiguous structures, which had diffractive effects clearly visible to the naked eye. This technique may have applications in marking, coding, and security features.

  20. Transient changes in electric fields induced by interaction of ultraintense laser pulses with insulator and metal foils: Sustainable fields spanning several millimeters

    NASA Astrophysics Data System (ADS)

    Inoue, Shunsuke; Tokita, Shigeki; Hashida, Masaki; Sakabe, Shuji

    2015-04-01

    The temporal evolutions of electromagnetic fields generated by the interaction between ultraintense lasers (1.3 ×1018 and 8.2 ×1018W /c m2 ) and solid targets at a distance of several millimeters from the laser-irradiated region have been investigated by electron deflectometry. For three types of foil targets (insulating foil, conductive foil, and insulating foil onto which a metal disk was deposited), transient changes in the fields were observed. We found that the direction, strength, and temporal evolution of the generated fields differ markedly for these three types of targets. The results provide an insight for studying the emission dynamics of laser-accelerated fast electrons.

  1. Modal gain characteristics of a 2 μm InGaSb/AlGaAsSb passively mode-locked quantum well laser

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Ng, Geok Ing; Zhang, Yu; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang

    2017-12-01

    Passive mode locking with a fundamental repetition rate at ˜18.46 GHz is demonstrated in a two-section InGaSb/AlGaAsSb quantum well laser emitting at 2 μm. Modal gain characteristics of the laser are investigated by performing the Hakki-Paoli method to gain better insight into the impact of the absorber bias voltage (Va) on the light output. The lasing action moves to longer wavelengths markedly with increasing negative Va. The light output contains more longitudinal modes in the mode locking regime if the gain bandwidth is larger at a certain Va. Our findings provide guidelines for output characteristics of the mode-locked laser.

  2. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  3. 76 FR 13192 - Mark E. Van Wormer: Debarment Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ...: The Food and Drug Administration (FDA) is issuing an order under the Federal Food, Drug, and Cosmetic... Medical Center, also known as the Union County Medical, Diagnostic Imaging and Laser Surgery Center, PC...

  4. CT perfusion for determination of pharmacologically mediated blood flow changes in an animal tumor model.

    PubMed

    Hakimé, Antoine; Peddi, Himaja; Hines-Peralta, Andrew U; Wilcox, Carol J; Kruskal, Jonathan; Lin, Shezhang; de Baere, Thierry; Raptopoulos, Vassilios D; Goldberg, S Nahum

    2007-06-01

    To prospectively compare single- and multisection computed tomographic (CT) perfusion for tumor blood flow determination in an animal model. All animal protocols and experiments were approved by the institutional animal care and use committee before the study was initiated. R3230 mammary adenocarcinoma was implanted in 11 rats. Tumors (18-20 mm) were scanned with dynamic 16-section CT at baseline and after administration of arsenic trioxide, which is known to cause acute reduction in blood flow. The concentration of arsenic was titrated (0-6 mg of arsenic per kilogram of body weight) to achieve a defined blood flow reduction (0%-75%) from baseline levels at 60 minutes, as determined with correlative laser Doppler flowmetry. The mean blood flow was calculated for each of four 5-mm sections that covered the entire tumor, as well as for the entire tumor after multiple sections were processed. Measurements obtained with both methods were correlated with laser Doppler flowmetry measurements. Interobserver agreement was determined for two blinded radiologists, who calculated the percentage of blood flow reduction for the "most representative" single sections at baseline and after arsenic administration. These results were compared with the interobserver variability of the same radiologists obtained by summing blood flow changes for the entire tumor volume. Overall correlations for acute blood flow reduction were demonstrated between laser Doppler flowmetry and the two CT perfusion approaches (single-section CT, r=0.85 and r(2)=0.73; multisection CT, r=0.93 and r(2)=0.87; pooled data, P=.01). CT perfusion disclosed marked heterogeneity of blood flow, with variations of 36% +/- 13 between adjacent 5-mm sections. Given these marked differences, interobserver agreement was much lower for single-section CT (standard deviation, 0.22) than for multisection CT (standard deviation, 0.10; P=.01). Multisection CT perfusion techniques may provide an accurate and more reproducible method of tumor perfusion surveillance than comparison of single representative tumor sections. (c) RSNA, 2007.

  5. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK.

    PubMed

    Xia, Li-Kun; Yu, Jie; Chai, Guang-Rui; Wang, Dang; Li, Yang

    2015-01-01

    To compare refractive results, higher-order aberrations (HOAs), contrast sensitivity and dry eye after laser in situ keratomileusis (LASIK) performed with a femtosecond laser versus a mechanical microkeratome for myopia and astigmatism. In this prospective, non-randomized study, 120 eyes with myopia received a LASIK surgery with the VisuMax femtosecond laser for flap cutting, and 120 eyes received a conventional LASIK surgery with a mechanical microkeratome. Flap thickness, visual acuity, manifest refraction, contrast sensitivity function (CSF) curves, HOAs and dry-eye were measured at 1wk; 1, 3, 6mo after surgery. At 6mo postoperatively, the mean central flap thickness in femtosecond laser procedure was 113.05±5.89 µm (attempted thickness 110 µm), and 148.36±21.24 µm (attempted thickness 140 µm) in mechanical microkeratome procedure. An uncorrected distance visual acuity (UDVA) of 4.9 or better was obtained in more than 98% of eyes treated by both methods, a gain in logMAR lines of corrected distance visual acuity (CDVA) occurred in more than 70% of eyes treated by both methods, and no eye lost ≥1 lines of CDVA in both groups. The difference of the mean UDVA and CDVA between two groups at any time post-surgery were not statistically significant (P>0.05). The postoperative changes of spherical equivalent occurred markedly during the first month in both groups. The total root mean square values of HOAs and spherical aberrations in the femtosecond treated eyes were markedly less than those in the microkeratome treated eyes during 6mo visit after surgery (P<0.01). The CSF values of the femtosecond treated eyes were also higher than those of the microkeratome treated eyes at all space frequency (P<0.01). The mean ocular surface disease index scores in both groups were increased at 1wk, and recovered to preoperative level at 1mo after surgery. The mean tear breakup time (TBUT) of the femtosecond treated eyes were markedly longer than those of the microkeratome treated eyes at postoperative 1, 3mo (P<0.01). Both the femtosecond laser and the mechanical microkeratome for LASIK flap cutting are safe and effective to correct myopia, with no statistically significant difference in the UDVA, CDVA during 6mo follow-up. Refractive results remained stable after 1mo post-operation for both groups. The femtosecond laser may have advantages over the microkeratome in the flap thickness predictability, fewer induced HOAs, better CSF, and longer TBUT.

  6. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK

    PubMed Central

    Xia, Li-Kun; Yu, Jie; Chai, Guang-Rui; Wang, Dang; Li, Yang

    2015-01-01

    AIM To compare refractive results, higher-order aberrations (HOAs), contrast sensitivity and dry eye after laser in situ keratomileusis (LASIK) performed with a femtosecond laser versus a mechanical microkeratome for myopia and astigmatism. METHODS In this prospective, non-randomized study, 120 eyes with myopia received a LASIK surgery with the VisuMax femtosecond laser for flap cutting, and 120 eyes received a conventional LASIK surgery with a mechanical microkeratome. Flap thickness, visual acuity, manifest refraction, contrast sensitivity function (CSF) curves, HOAs and dry-eye were measured at 1wk; 1, 3, 6mo after surgery. RESULTS At 6mo postoperatively, the mean central flap thickness in femtosecond laser procedure was 113.05±5.89 µm (attempted thickness 110 µm), and 148.36±21.24 µm (attempted thickness 140 µm) in mechanical microkeratome procedure. An uncorrected distance visual acuity (UDVA) of 4.9 or better was obtained in more than 98% of eyes treated by both methods, a gain in logMAR lines of corrected distance visual acuity (CDVA) occurred in more than 70% of eyes treated by both methods, and no eye lost ≥1 lines of CDVA in both groups. The difference of the mean UDVA and CDVA between two groups at any time post-surgery were not statistically significant (P>0.05). The postoperative changes of spherical equivalent occurred markedly during the first month in both groups. The total root mean square values of HOAs and spherical aberrations in the femtosecond treated eyes were markedly less than those in the microkeratome treated eyes during 6mo visit after surgery (P<0.01). The CSF values of the femtosecond treated eyes were also higher than those of the microkeratome treated eyes at all space frequency (P<0.01). The mean ocular surface disease index scores in both groups were increased at 1wk, and recovered to preoperative level at 1mo after surgery. The mean tear breakup time (TBUT) of the femtosecond treated eyes were markedly longer than those of the microkeratome treated eyes at postoperative 1, 3mo (P<0.01). CONCLUSION Both the femtosecond laser and the mechanical microkeratome for LASIK flap cutting are safe and effective to correct myopia, with no statistically significant difference in the UDVA, CDVA during 6mo follow-up. Refractive results remained stable after 1mo post-operation for both groups. The femtosecond laser may have advantages over the microkeratome in the flap thickness predictability, fewer induced HOAs, better CSF, and longer TBUT. PMID:26309880

  7. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

    NASA Astrophysics Data System (ADS)

    Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.

    2018-02-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

  8. Ultra-realistic imaging: a new beginning for display holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Brotherton-Ratcliffe, David

    2014-02-01

    Recent improvements in key foundation technologies are set to potentially transform the field of Display Holography. In particular new recording systems, based on recent DPSS and semiconductor lasers combined with novel recording materials and processing, have now demonstrated full-color analogue holograms of both lower noise and higher spectral accuracy. Progress in illumination technology is leading to a further major reduction in display noise and to a significant increase of the clear image depth and brightness of such holograms. So too, recent progress in 1-step Direct-Write Digital Holography (DWDH) now opens the way to the creation of High Virtual Volume Displays (HVV) - large format full-parallax DWDH reflection holograms having fundamentally larger clear image depths. In a certain fashion HVV displays can be thought of as providing a high quality full-color digital equivalent to the large-format laser-illuminated transmission holograms of the sixties and seventies. Back then, the advent of such holograms led to much optimism for display holography in the market. However, problems with laser illumination, their monochromatic analogue nature and image noise are well cited as being responsible for their failure in reality. Is there reason for believing that the latest technology improvements will make the mark this time around? This paper argues that indeed there is.

  9. Optimal parameters for marking upper blepharoplasty incisions: a 10-year experience.

    PubMed

    Halvorson, Eric G; Husni, Nicholas R; Pandya, Sonal N; Seckel, Brooke R

    2006-05-01

    Although a variety of techniques for upper blepharoplasty have been described, few studies illustrate and clinically evaluate a system for marking incisions. Presented is a 10-year experience using a specific method for marking upper blepharoplasty incisions that consistently yielded excellent esthetic results. All upper blepharoplasties performed by the senior author between April, 1994 and April, 2004 were reviewed. Markings were designed to end the medial incision 6 mm from the angular vein, end the lateral incision 12 mm from the palpebral fissure, and to extend the incisions superiorly at 45 degrees. Over 10 years, 476 patients underwent cosmetic upper blepharoplasty. There were 22 (4.6%) revisions. Eighteen (3.8%) were performed in clinic using CO2 laser, and 4 (0.8%) patients required surgical revision. Patient satisfaction was high, and no scars were visible outside the brow. Excellent outcomes can be expected using this simple, reproducible, and widely applicable system for marking upper blepharoplasty incisions.

  10. Update on the use of diode laser in the management of benign prostate obstruction in 2014.

    PubMed

    Lusuardi, Lukas; Mitterberger, Michael; Hruby, Stephan; Kunit, Thomas; Kloss, Birgit; Engelhardt, Paul F; Sieberer, Manuela; Janetschek, Günter

    2015-04-01

    To determine the status quo in respect of various diode lasers and present the techniques in use, their results and complications. We assess how these compare with transurethral resection of the prostate and other types of laser in randomized controlled trials (RCTs). When adequate RCTs were not available, case studies and reports were evaluated. Laser for the treatment of benign prostatic hyperplasia (BPH) has aroused the interest and curiosity of urologists as well as patients. The patient associates the term laser with a successful and modern procedure. The journey that started with coagulative necrosis of prostatic adenoma based on neodymium: yttrium-aluminum-garnet (Nd:YAG) laser has culminated in endoscopic "enucleation" with holmium laser. Diode laser is being used in urology for about 10 years now. Various techniques have been employed to relieve bladder outlet obstruction due to BPH. The diode laser scenario is marked by a diversity of surgical techniques and wavelengths. We summarize the current published literature in respect of functional results and complications. More randomized controlled studies are needed to determine the position and the ideal technique of diode laser treatment for BPH.

  11. Lincoln's craniofacial microsomia: three-dimensional laser scanning of 2 Lincoln life masks.

    PubMed

    Fishman, Ronald S; Da Silveira, Adriana

    2007-08-01

    Examination of 2 life masks of Abraham Lincoln's face was performed by means of 3-dimensional laser surface scanning. This technique enabled documentation and analysis of Lincoln's facial contours and demonstrated his marked facial asymmetry, particularly evident in the smaller left superior orbital rim. This may have led to retroplacement of the trochlea on the left side, leading, in turn, to the mild superior oblique paresis that was manifested intermittently during adulthood.

  12. Combination of fractional erbium-glass laser and topical therapy in melasma resistant to triple-combination cream.

    PubMed

    Tourlaki, Athanasia; Galimberti, Michela Gianna; Pellacani, Giovanni; Bencini, Pier Luca

    2014-06-01

    Melasma is a common melanosis often difficult to treat. The aim of this paper was to report on the safety and efficacy of non-ablative fractional photothermolysis combined with the use of triple-combination cream (TCC) on a large population with melasma resistant (i.e., with no complete/near-complete clearing) to TCC alone. Seventy-six patients with resistant melasma underwent a combined treatment protocol. The protocol consisted of a TCC (hydroquinone 4%, retinoic acid 0.03%, hydrocortisone butyrate 0.1%) applied daily for 10 days followed by four laser treatments performed in 3-week intervals with a fractional 1540-nm erbium-glass laser. During these intervals, and for 3 months after the last laser session, TCC was also applied daily following a "pulse-therapy" scheme. Improvement was assessed by the melasma-area-and-severity-index (MASI) score. At 1 month, marked (>75%) and moderate (51-75%) clearing of melasma were observed in 46 of 76 (67.1%) and 12 of 76 (21%) cases, respectively. At 6 months, we noticed a marked improvement in 16 of 76 (21.1%) and no improvement in 33 of 76 (43.4%) patients. Our study proposes the combination of NFP/TCC as a useful therapy for patients with melasma resistant to TCC alone, but it shows that its long-term efficacy is limited.

  13. Laser utilizing a gaseous lasing medium and method for operating the same

    DOEpatents

    Zerr, Bruce A.

    1986-01-01

    The invention relates to an improvement in gas lasers and a method of operating the same. In one aspect, the invention is an improved method for operating a high-power gas laser. The improvement comprises introducing the gas lasing medium tangentially to the laser tube at a pressure establishing a forced vortex in the tube. The vortex defines an axially extending core region characterized by a low pressure and temperature relative to the gas inlet and the exterior of the vortex. An electrical discharge is established in the core region to initiate lasing of the gas. The gas discharge from the tube is passed through a diffuser. As in conventional gas lasers, firing results in a very abrupt increase in gas temperature and in severe disruption of the gas. However, the gas vortex almost immediately restores the gas to its pre-firing condition. That is, almost all of the waste heat is transferred radially to the laser wall, and the original gas-flow pattern is restored. As a result, the power output of the laser is increased significantly, and the laser firing repetition rate is markedly increased.

  14. Laser utilizing a gaseous lasing medium and method for operating the same

    DOEpatents

    Zerr, B.A.

    1983-10-18

    The invention relates to an improvement in gas lasers and a method of operating the same. In one aspect, the invention is an improved method for operating a high-power gas laser. The improvement comprises introducing the gas lasing medium tangentially to the laser tube at a pressure establishing a forced vortex in the tube. The vortex defines an axially extending core region characterized by a low pressure and temperature relative to the gas inlet and the exterior of the vortex. An electrical discharge is established in the core region to initiate lasing of the gas. The gas discharge from the tube is passed through a diffuser. As in conventional gas lasers, firing results in a very abrupt increase in gas temperature and in severe disruption of the gas. However, the gas vortex, almost immediately restores the gas to its prefiring condition. That is, almost all of the waste heat is transferred radially to the laser wall, and the original gas-flow pattern is restored. As a result, the power output of the laser is increased significantly, and the laser firing repetition rate is markedly increased.

  15. Segmentation and classification of road markings using MLS data

    NASA Astrophysics Data System (ADS)

    Soilán, Mario; Riveiro, Belén; Martínez-Sánchez, Joaquín; Arias, Pedro

    2017-01-01

    Traffic signs are one of the most important safety elements in a road network. Particularly, road markings provide information about the limits and direction of each road lane, or warn the drivers about potential danger. The optimal condition of road markings contributes to a better road safety. Mobile Laser Scanning technology can be used for infrastructure inspection and specifically for traffic sign detection and inventory. This paper presents a methodology for the detection and semantic characterization of the most common road markings, namely pedestrian crossings and arrows. The 3D point cloud data acquired by a LYNX Mobile Mapper system is filtered in order to isolate reflective points in the road, and each single element is hierarchically classified using Neural Networks. State of the art results are obtained for the extraction and classification of the markings, with F-scores of 94% and 96% respectively. Finally, data from classified markings are exported to a GIS layer and maintenance criteria based on the aforementioned data are proposed.

  16. Experimental Retrieval of Target Structure Information from Laser-Induced Rescattered Photoelectron Momentum Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okunishi, M.; Pruemper, G.; Shimada, K.

    We have measured two-dimensional photoelectron momentum spectra of Ne, Ar, and Xe generated by 800-nm, 100-fs laser pulses and succeeded in identifying the spectral ridge region (back-rescattered ridges) which marks the location of the returning electrons that have been backscattered at their maximum kinetic energies. We demonstrate that the structural information, in particular the differential elastic scattering cross sections of the target ion by free electrons, can be accurately extracted from the intensity distributions of photoelectrons on the ridges, thus effecting a first step toward laser-induced self-imaging of the target, with unprecedented spatial and temporal resolutions.

  17. Thermoplastic microchannel fabrication using carbon dioxide laser ablation.

    PubMed

    Wang, Shau-Chun; Lee, Chia-Yu; Chen, Hsiao-Ping

    2006-04-14

    We report the procedures of machining microchannels on Vivak co-polyester thermoplastic substrates using a simple industrial CO(2) laser marker. To avoid overheating the substrates, we develop low-power marking techniques in nearly anaerobic environment. These procedures are able to machine microchannels at various aspect ratios. Either straight or serpent channel can be easily marked. Like the wire-embossed channel walls, the ablated channel surfaces become charged after alkaline hydrolysis treatment. Stable electroosmotic flow in the charged conduit is observed to be of the same order of magnitude as that in fused silica capillary. Typical dynamic coating protocols to alter the conduit surface properties are transferable to the ablated channels. The effects of buffer acidity on electroosmotic mobility in both bare and coated channels are similar to those in fused silica capillaries. Using video microscopy we also demonstrate that this device is useful in distinguishing the electrophoretic mobility of bare and latex particles from that of functionalized ones.

  18. Optical system for object detection and delineation in space

    NASA Astrophysics Data System (ADS)

    Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran

    2018-01-01

    Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.

  19. Time required for navigated macular laser photocoagulation treatment with the Navilas.

    PubMed

    Ober, Michael D; Kernt, Marcus; Cortes, Marco A; Kozak, Igor

    2013-04-01

    Navilas laser is a novel technology combining photocoagulation with imaging, including fluorescein angiographic (FA) images which are annotated and aligned to a live fundus view. We determine the time necessary for planning and treatment of macular edema utilizing the Navilas. The screen recordings during treatments were retrospectively analyzed for treatment type, number of laser shots, the duration of planning (measured from the time the planning image was selected to time of marking the last planned treatment spot), and total time of laser application. A total of 93 treatments (30 grid, 30 focal and 33 combined treatments) by four physicians from three sites were included. An average of 125 spots were applied to each eye. The total time spent for each focal treatment - including the planning was 7 min 47 s (±3 min and 32 s). Navilas is a novel device providing a time efficient platform for evaluating FA images and performing threshold macular laser photocoagulation.

  20. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea.

    PubMed

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-07-01

    Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.

  1. Effect of anterior capsule contraction on visual function after cataract surgery.

    PubMed

    Hayashi, Ken; Hayashi, Hideyuki

    2007-11-01

    To examine the effect of contraction of the anterior capsule opening after cataract surgery on visual acuity and contrast sensitivity. Hayashi Eye Hospital, Fukuoka, Japan. Thirty-two eyes of 32 consecutive patients who showed marked contraction of the anterior capsule opening after implantation of an intraocular lens were recruited. The area of the anterior capsule opening was measured by Scheimpflug videophotography before and after neodymium:YAG (Nd:YAG) laser anterior capsulotomy and was correlated with visual acuity and contrast sensitivity. After Nd:YAG laser anterior capsulotomy, the mean area of the anterior capsule opening increased significantly from 8.2 mm(2) to 18.0 mm(2) (P<.0001). Contrast sensitivity at most visual angles also improved significantly after Nd:YAG anterior capsulotomy, although visual acuity did not. The area of the anterior capsule opening before anterior capsulotomy was correlated significantly with contrast sensitivity but not with visual acuity, whereas there was no correlation between the opening area after anterior capsulotomy and visual acuity or contrast sensitivity. Contraction of the anterior capsule opening after cataract surgery significantly diminished contrast sensitivity in proportion to the opening area but did not markedly worsen visual acuity. Neodymium:YAG laser anterior capsulotomy improved contrast sensitivity.

  2. Scalp marking for a craniotomy using a laser pointer during preoperative computed tomographic imaging: technical note.

    PubMed

    Kubo, S; Nakata, H; Sugauchi, Y; Yokota, N; Yoshimine, T

    2000-05-01

    The preoperative localization of superficial intracranial lesions is often necessary for accurate burr hole placement or craniotomy siting. It is not always easy, however, to localize the lesions over the scalp working only from computed tomographic images. We developed a simple method for such localization using a laser pointer during the preoperative computed tomographic examination. The angle of incidence, extending from a point on the scalp to the center of the computed tomographic image, is measured by the software included with the scanner. In the gantry, at the same angle as on the image, a laser is beamed from a handmade projector onto the patient's scalp toward the center of the gantry. The point illuminated on the patient's head corresponds to that on the image. The device and the method are described in detail herein. We applied this technique to mark the area for the craniotomy before surgery in five patients with superficial brain tumors. At the time of surgery, it was confirmed that the tumors were circumscribed precisely. The technique is easy to perform and useful in the preoperative planning for a craniotomy. In addition, the device is easily constructed and inexpensive.

  3. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  4. Concurrent-scene/alternate-pattern analysis for robust video-based docking systems

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, Suraphol

    1991-01-01

    A typical docking target employs a three-point design of retroreflective tape, one at each endpoint of the center-line, and one on the tip of the central post. Scenes, sensed via laser diode illumination, produce pictures with spots corresponding to desired reflection from the retroreflectors and other reflections. Control corrections for each axis of the vehicle can then be properly applied if the desired spots are accurately tracked. However, initial acquisition of these three spots (detection and identification problem) are non-trivial under a severe noise environment. Signal-to-noise enhancement, accomplished by subtracting the non-illuminated scene from the target scene illuminated by laser diodes, can not eliminate every false spot. Hence, minimization of docking failures due to target mistracking would suggest needed inclusion of added processing features pertaining to target locations. In this paper, we present a concurrent processing scheme for a modified docking target scene which could lead to a perfect docking system. Since the non-illuminated target scene is already available, adding another feature to the three-point design by marking two non-reflective lines, one between the two end-points and one from the tip of the central post to the center-line, would allow this line feature to be picked-up only when capturing the background scene (sensor data without laser illumination). Therefore, instead of performing the image subtraction to generate a picture with a high signal-to-noise ratio, a processed line-image based on the robust line detection technique (Hough transform) can be used to fuse with the actively sensed three-point target image to deduce the true locations of the docking target. This dual-channel confirmation scheme is necessary if a fail-safe system is to be realized from both the sensing and processing point-of-views. Detailed algorithms and preliminary results are presented.

  5. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone.

    PubMed

    Bärsch, Niko; Jakobi, Jurij; Weiler, Sascha; Barcikowski, Stephan

    2009-11-04

    The generation of colloids by laser ablation of solids in a liquid offers a nearly unlimited material variety and a high purity as no chemical precursors are required. The use of novel high-power ultra-short-pulsed laser systems significantly increases the production rates even in inflammable organic solvents. By applying an average laser power of 50 W and pulse durations below 10 ps, up to 5 mg min(-1) of nanoparticles have been generated directly in acetone, marking a breakthrough in productivity of ultra-short-pulsed laser ablation in liquids. The produced colloids remain stable for more than six months. In the case of yttria-stabilized zirconia ceramic, the nanoparticles retain the tetragonal crystal structure of the ablated target. Laser beam self-focusing plays an important role, as a beam radius change of 2% on the liquid surface can lead to a decrease of nanoparticle production rates of 90% if the target position is not re-adjusted.

  6. Fenethylline as a possible etiology for retinal vein occlusion.

    PubMed

    Al-Ghadyan, A; Rushood, A A; Alhumeidan, A A

    2009-01-01

    We are report 3 cases of hemorrhagic central retina vein occlusion following continuous use of fenethylline hydrochloride. The hemorrhage, the edema and the engorged veins showed marked improvement after discontinuing the drug and laser supplement in one case.

  7. Near-field marking of gold nanostars by ultrashort pulsed laser irradiation: experiment and simulations

    NASA Astrophysics Data System (ADS)

    Møller, Søren H.; Vester-Petersen, Joakim; Nazir, Adnan; Eriksen, Emil H.; Julsgaard, Brian; Madsen, Søren P.; Balling, Peter

    2018-02-01

    Quantitative measurements of the electric near-field distribution of star-shaped gold nanoparticles have been performed by femtosecond laser ablation. Measurements were carried out on and off the plasmon resonance. A detailed comparison with numerical simulations of the electric fields is presented. Semi-quantitative agreement is found, with slight systematic differences between experimentally observed and simulated near-field patterns close to strong electric-field gradients. The deviations are attributed to carrier transport preceding ablation.

  8. NASA Tech Briefs, January 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Optoelectronic Tool Adds Scale Marks to Photographic Images; Compact Interconnection Networks Based on Quantum Dots; Laterally Coupled Quantum-Dot Distributed-Feedback Lasers; Bit-Serial Adder Based on Quantum Dots; Stabilized Fiber-Optic Distribution of Reference Frequency; Delay/Doppler-Mapping GPS-Reflection Remote-Sensing System; Ladar System Identifies Obstacles Partly Hidden by Grass; Survivable Failure Data Recorders for Spacecraft; Fiber-Optic Ammonia Sensors; Silicon Membrane Mirrors with Electrostatic Shape Actuators; Nanoscale Hot-Wire Probes for Boundary-Layer Flows; Theodolite with CCD Camera for Safe Measurement of Laser-Beam Pointing; Efficient Coupling of Lasers to Telescopes with Obscuration; Aligning Three Off-Axis Mirrors with Help of a DOE; Calibrating Laser Gas Measurements by Use of Natural CO2; Laser Ranging Simulation Program; Micro-Ball-Lens Optical Switch Driven by SMA Actuator; Evaluation of Charge Storage and Decay in Spacecraft Insulators; Alkaline Capacitors Based on Nitride Nanoparticles; Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells; Software for a GPS-Reflection Remote-Sensing System; Software for Building Models of 3D Objects via the Internet; "Virtual Cockpit Window" for a Windowless Aerospacecraft; CLARAty Functional-Layer Software; Java Library for Input and Output of Image Data and Metadata; Software for Estimating Costs of Testing Rocket Engines; Energy-Absorbing, Lightweight Wheels; Viscoelastic Vibration Dampers for Turbomachine Blades; Soft Landing of Spacecraft on Energy-Absorbing Self-Deployable Cushions; Pneumatically Actuated Miniature Peristaltic Vacuum Pumps; Miniature Gas-Turbine Power Generator; Pressure-Sensor Assembly Technique; Wafer-Level Membrane-Transfer Process for Fabricating MEMS; A Reactive-Ion Etch for Patterning Piezoelectric Thin Film; Wavelet-Based Real-Time Diagnosis of Complex Systems; Quantum Search in Hilbert Space; Analytic Method for Computing Instrument Pointing Jitter; and Semiselective Optoelectronic Sensors for Monitoring Microbes.

  9. Thoracoscopic laser pneumoplasty in the treatment of diffuse bullous emphysema.

    PubMed

    Wakabayashi, A

    1995-10-01

    Thoracoscopic laser pneumoplasty in the treatment of diffuse bullous emphysema by means of a contact neodymium:yttrium-aluminum garnet laser was evaluated by a retrospective analysis of the first consecutive 500 procedures in 443 patients. The indication for thoracoscopic laser pneumoplasty was intractable dyspnea. Advanced age (mean age, 67 years), high oxygen dependency (70%), steroid use (46%), and markedly diminished physical capacity (2% bedridden and 27% wheelchair-bound) were noted. Thoracoscopic laser pneumoplasty was carried out under general anesthesia and one-lung ventilation. Type 3 bullae (381 procedures) were contracted by contact neodymium:yttrium-aluminum garnet laser and type 4 bullae (199 procedures) excised. The operative mortality rate was 4.8%. Subjective improvement was reported by 87% of the patients. Follow-up functional evaluation was available in 229 patients, which showed highly significant improvement. A comparison of preoperative and postoperative functional tests between type 3 and 4 bullae patients showed no significant difference, except the latter had higher decrease in airway resistance, residual volume, and total lung capacity. Thoracoscopic laser pneumoplasty is an effective treatment for both type 3 and 4 bullous emphysema with an acceptable risk.

  10. Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes.

    PubMed

    Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Bele, Constantin; Orza, Anamaria Ioana; Lucan, Ciprian; Stiufiuc, Rares; Manaila, Ioana; Iulia, Ferencz; Dana, Iancu; Zaharie, Florin; Osian, Gelu; Vlad, Liviu; Iancu, Cornel

    2011-01-01

    The process of laser-mediated ablation of cancer cells marked with biofunctionalized carbon nanotubes is frequently called "nanophotothermolysis". We herein present a method of selective nanophotothermolisys of pancreatic cancer (PC) using multiwalled carbon nanotubes (MWCNTs) functionalized with human serum albumin (HSA). With the purpose of testing the therapeutic value of these nanobioconjugates, we have developed an ex-vivo experimental platform. Surgically resected specimens from patients with PC were preserved in a cold medium and kept alive via intra-arterial perfusion. Additionally, the HSA-MWCNTs have been intra-arterially administered in the greater pancreatic artery under ultrasound guidance. Confocal and transmission electron microscopy combined with immunohistochemical staining have confirmed the selective accumulation of HSA-MWCNTs inside the human PC tissue. The external laser irradiation of the specimen has significantly produced extensive necrosis of the malign tissue after the intra-arterial administration of HSA-MWCNTs, without any harmful effects on the surrounding healthy parenchyma. We have obtained a selective photothermal ablation of the malign tissue based on the selective internalization of MWCNTs with HSA cargo inside the pancreatic adenocarcinoma after the ex-vivo intra-arterial perfusion.

  11. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  12. Evaluating the effects of a 532-nm fiber-based KTP laser on transoral laser surgery supplies.

    PubMed

    Coughlan, Carolyn A; Verma, Sunil P

    2013-11-01

    The KTP laser has become commonplace in transoral head and neck surgery. The interactions of this laser with commonly used supplies in transoral surgery have not been formally examined. This study evaluates the effects of the KTP laser on surgical supplies. Experimental study. The study was conducted in an empty operating room at a university-affiliated medical center. An Aura XP 532-nm KTP laser with a 600-nm fiber was used in pulsed and continuous modes. The beam was focused at the shaft and balloon of 3 "laser-safe" endotracheal tubes (ETTs), a polyvinyl chloride (PVC) ETT, and a Codman surgical patty. Time to penetrate was recorded. Results The KTP laser beam was unable to penetrate any of the laser-resistant ETTs. It did react with the black number markings on the PVC ETT by producing sparks but was unable to penetrate the shaft of the ETT. The KTP laser was nonreactive with all ETT cuffs except in 1 of 3 trials with the outer balloon cuff of a Rusch Lasertubus ETT when the laser was used in a continuous mode. The KTP laser caused the production of a flame upon contact with the blue radiopaque strip of the surgical patty, even when the patty was wet. This study demonstrates that a number of safe ETT options may be used during transoral laser microsurgery with a KTP laser. In addition, Codman surgical patties are shown to be a significant fire risk in KTP laser surgery.

  13. Self-localized structures in vertical-cavity surface-emitting lasers with external feedback.

    PubMed

    Paulau, P V; Gomila, D; Ackemann, T; Loiko, N A; Firth, W J

    2008-07-01

    In this paper, we analyze a model of broad area vertical-cavity surface-emitting lasers subjected to frequency-selective optical feedback. In particular, we analyze the spatio-temporal regimes arising above threshold and the existence and dynamical properties of cavity solitons. We build the bifurcation diagram of stationary self-localized states, finding that branches of cavity solitons emerge from the degenerate Hopf bifurcations marking the homogeneous solutions with maximal and minimal gain. These branches collide in a saddle-node bifurcation, defining a maximum pump current for soliton existence that lies below the threshold of the laser without feedback. The properties of these cavity solitons are in good agreement with those observed in recent experiments.

  14. Titanium nitride formation by a dual-stage femtosecond laser process

    NASA Astrophysics Data System (ADS)

    Hammouti, S.; Holybee, B.; Zhu, W.; Allain, J. P.; Jurczyk, B.; Ruzic, D. N.

    2018-06-01

    Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti2O3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm-2 under argon and 5 W/1.6 J cm-2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.

  15. Sub-surface mechanical damage distributions during grinding of fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala, T I; Wong, L L; Miller, P E

    2005-11-28

    The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) formed during standard grinding processes has been investigated on fused silica glass. The SSD distributions of the ground surfaces were determined by: (1) creating a shallow (18-108 {micro}m) wedge/taper on the surface by magneto-rheological finishing; (2) exposing the SSD by HF acid etching; and (3) performing image analysis of the observed cracks from optical micrographs taken along the surface taper. The observed surface cracks are characterized as near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD depth distributions are typically described by a singlemore » exponential distribution followed by an asymptotic cutoff in depth (c{sub max}). The length of the trailing indent is strongly correlated with a given process. Using established fracture indentation relationships, it is shown that only a small fraction of the abrasive particles are being mechanically loaded and causing fracture, and it is likely the larger particles in the abrasive particle size distribution that bear the higher loads. The SSD depth was observed to increase with load and with a small amount of larger contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth distribution has been related to the SSD length distribution to gain insight into ''effective'' size distribution of particles participating in the fracture. Both the average crack length and the surface roughness were found to scale linearly with the maximum SSD depth (c{sub max}). These relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth and to identify the process that caused the SSD. In certain applications such as high intensity lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that absorb the high intensity laser light and lead to subsequent laser-induced surface damage. Hence a more scientific understanding of SSD formation can provide a means to establish recipes to fabricate SSD-free, laser damage resistant optical surfaces.« less

  16. Laser Micro and Nano Processing of Metals , Ceramics , and Polymers

    NASA Astrophysics Data System (ADS)

    Pfleging, Wilhelm; Kohler, Robert; Südmeyer, Isabelle; Rohde, Magnus

    Laser -based material processing is well investigated for structuring , modification , and bonding of metals , ceramics , glasses, and polymers . Especially for material processing on micrometer, and nanometer scale laser-assisted processes will very likely become more prevalent as lasers offer more cost-effective solutions for advanced material research, and application. Laser ablation , and surface modification are suitable for direct patterning of materials and their surface properties. Lasers allow rapid prototyping and small-batch manufacturing . They can also be used to pattern moving substrates, permitting fly-processing of large areas at reasonable speed. Different types of laser processes such as ablation, modification, and welding can be successfully combined in order to enable a high grade of bulk and surface functionality. Ultraviolet lasers favored for precise and debris-free patterns can be generated without the need for masks, resist materials, or chemicals. Machining of materials, for faster operation, thermally driven laser processes using NIR and IR laser radiation, could be increasingly attractive for a real rapid manufacturing.

  17. Morphology of tracheal scar after resection with CO2-laser and high-frequency cutting loop. A study in normal pigs.

    PubMed

    Vorre, P; Illum, P; Oster, S; Reske-Nielsen, E; Larsen, K B

    1989-01-01

    In 6 pigs a bronchoscopical resection of the tracheal mucosa was performed using CO2-laser on one side, and an electric high-frequency cutting loop (ECL) on the other. The pigs were sacrificed 3 months later. On macroscopic examination the tracheal mucosa appeared almost normal on the laser-resected side, while severe deformation was seen after ECL treatment. Microscopically the respiratory epithelium had regenerated irrespective of the instrument used. After laser resection the subepithelial tissue had a normal width and consisted of collagen fibrils with few vessels and sparse fragmented elastic tissue. The cartilage showed necrosis and pericellular fibrosis. The scar tissue after ECL was a broad cellular and richly vascularized connective tissue. The content of elastic fibres was markedly greater than after laser resection. The cartilage showed small irregular necroses lined by pyknotic nuclei. In neither case had the gland regenerated. Both CO2-laser and ECL caused severe (but not identical) damage to the tissue, clearly visible after 3 months. However, the deformation caused by ECL was not seen at the laser-resected sites, which makes the laser technique seem preferable--where economy permits.

  18. Probe-based confocal laser endomicroscopy in the margin delineation of early gastric cancer for endoscopic submucosal dissection.

    PubMed

    Park, Jun Chul; Park, Yehyun; Kim, Hyun Ki; Jo, Jeong-Hyeon; Park, Chan Hyuk; Kim, Eun Hye; Jung, Da Hyun; Chung, Hyunsoo; Shin, Sung Kwan; Lee, Sang Kil; Lee, Yong Chan

    2017-05-01

    We evaluated probe-based confocal laser endomicroscopy (pCLE) in the margin delineation of early gastric cancer (EGC) for endoscopic submucosal dissection in comparison with white-light imaging with chromoendoscopy (CE). We conducted a prospective, randomized controlled study from November 2013 to October 2014 in a tertiary referral hospital. A total of 101 patients scheduled for endoscopic submucosal dissection due to differentiated EGC were randomized into pCLE and CE groups (pCLE 51, CE 50). Markings were made by electrocautery at the proximal and distal tumor margins, as determined by either pCLE or CE. The distance from the marking to the tumor margin was measured in the resected specimen histopathologically and was compared between the two groups by a linear mixed model. Among 104 lesions, 80 lesions with 149 markings (pCLE 68, CE 81) were analyzed after excluding undifferentiated EGCs (n = 8) and unidentifiable markings (n = 13). Although the complete resection rate showed no difference between the groups (94.6% vs 93.2%, P = 1.000), the median distance from the marking to the margin was shorter in the pCLE group (1.3 vs 1.8 mm, P = 0.525) and the proportion of the distance <1 mm was higher (43.9% vs 27.6%, P = 0.023) in the pCLE group. Finally, subgroup analysis with superficial flat lesions (18 lesions, 31 marking dots) showed a significantly decreased distance in the pCLE group (0.5 vs 3.1 mm, P = 0.007). Among EGCs with superficial flat morphology, in which the accurate evaluation of lateral extent is difficult with CE, pCLE would be useful for more precise margin delineation. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. A first approach for digital representation and automated classification of toolmarks on locking cylinders using confocal laser microscopy

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Kraetzer, Christian; Dittmann, Jana; Vielhauer, Claus

    2012-10-01

    An important part of criminalistic forensics is the analysis of toolmarks. Such toolmarks often consist of plenty of single striations, scratches and dents which can allow for conclusions in regards to the sequence of events or used tools. To receive qualified results with an automated analysis and contactless acquisition of such toolmarks, a detailed digital representation of these and their orientation as well as placing to each other is required. For marks of firearms and tools the desired result of an analysis is a conclusion whether or not a mark has been generated by a tool under suspicion. For toolmark analysis on locking cylinders, the aim is not an identification of the used tool but rather an identification of the opening method. The challenge of such an identification is that a one-to-one comparison of two images is not sufficient - although two marked objects look completely different in regards to the specific location and shape of found marks they still can represent a sample for the identical opening method. This paper provides the first approach for modelling toolmarks on lock pins and takes into consideration the different requirements necessary to generate a detailed and interpretable digital representation of these traces. These requirements are 'detail', i.e. adequate features which allow for a suitable representation and interpretation of single marks, 'meta detail', i.e. adequate representation of the context and connection between all marks and 'distinctiveness', i.e. the possibility to reliably distinguish different sample types by the according model. The model is evaluated with a set of 15 physical samples (resulting in 675 digital scans) of lock pins from cylinders opened with different opening methods, contactlessly scanned with a confocal laser microscope. The presented results suggest a high suitability for the aspired purpose of opening method determination.

  20. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    NASA Astrophysics Data System (ADS)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  1. Effect of heat treatment on ethylene and CO2 emissions rates during papaya (Carica papaya L.) fruit ripening

    NASA Astrophysics Data System (ADS)

    da Silva, M. G.; Santos, E. O.; Sthel, M. S.; Cardoso, S. L.; Cavalli, A.; Monteiro, A. R.; de Oliveira, J. G.; Pereira, M. G.; Vargas, H.

    2003-01-01

    Ripening studies of nontreated and treated papaya (papaya L) are accomplished by monitoring the ethylene and CO2 emission rates of that climacteric fruit, to evaluate its shelf life. The treatments simulate the commercial Phitosanitarian process used to avoid the fly infestation. Ethylene emission was measured using a commercial CO2 laser driven photoacoustic setup and CO2, using a commercial gas analysis also based on the photothermal effect. The results show a marked change in ethylene and CO2 emission rate pattern for treated fruits when compared to the ones obtained for nontreated fruits and a displacement of the climacteric pick shown that the treatment causes a decrease of shelf life of fruit.

  2. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  3. Effect of the temporal laser pulse asymmetry on pair production processes during intense laser-electron scattering

    NASA Astrophysics Data System (ADS)

    Hojbota, C. I.; Kim, Hyung Taek; Kim, Chul Min; Pathak, V. B.; Nam, Chang Hee

    2018-06-01

    We investigate the effects of laser pulse shape on strong-field quantum electrodynamics (QED) processes during the collision between a relativistic electron beam and an intense laser pulse. The interplay between high-energy photon emission and two pair production processes, i.e. nonlinear Breit–Wheeler (BW) and Trident, was investigated using particle-in-cell simulations. We found that the temporal evolution of these two processes could be controlled by using laser pulses with different degrees of asymmetry. The temporal envelope of the laser pulse can significantly affect the number of pairs coming from the Trident process, while the nonlinear BW process is less sensitive to it. This study shows that the two QED processes can be examined with state-of-the-art petawatt lasers and the discrimination of the two pair creation processes is feasible by adjusting the temporal asymmetry of the colliding laser pulse.

  4. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darvin, M E; Richter, H; Zhu, Y J

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed bymore » using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)« less

  5. Time-optimized laser micro machining by using a new high dynamic and high precision galvo scanner

    NASA Astrophysics Data System (ADS)

    Jaeggi, Beat; Neuenschwander, Beat; Zimmermann, Markus; Zecherle, Markus; Boeckler, Ernst W.

    2016-03-01

    High accuracy, quality and throughput are key factors in laser micro machining. To obtain these goals the ablation process, the machining strategy and the scanning device have to be optimized. The precision is influenced by the accuracy of the galvo scanner and can further be enhanced by synchronizing the movement of the mirrors with the laser pulse train. To maintain a high machining quality i.e. minimum surface roughness, the pulse-to-pulse distance has also to be optimized. Highest ablation efficiency is obtained by choosing the proper laser peak fluence together with highest specific removal rate. The throughput can now be enhanced by simultaneously increasing the average power, the repetition rate as well as the scanning speed to preserve the fluence and the pulse-to-pulse distance. Therefore a high scanning speed is of essential importance. To guarantee the required excellent accuracy even at high scanning speeds a new interferometry based encoder technology was used, that provides a high quality signal for closed-loop control of the galvo scanner position. Low inertia encoder design enables a very dynamic scanner system, which can be driven to very high line speeds by a specially adapted control solution. We will present results with marking speeds up to 25 m/s using a f = 100 mm objective obtained with a new scanning system and scanner tuning maintaining a precision of about 5 μm. Further it will be shown that, especially for short line lengths, the machining time can be minimized by choosing the proper speed which has not to be the maximum one.

  6. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang

    2018-02-01

    Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.

  7. Monitoring of laser material processing using machine integrated low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  8. Simplification of the laser absorption process in the particle simulation for the laser-induced shockwave processing

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei

    2016-09-01

    To reduce the computational cost in the particle method for the numerical simulation of the laser plasma, we examined the simplification of the laser absorption process. Because the laser frequency is sufficiently larger than the collision frequency between the electron and heavy particles, we assumed that the electron obtained the constant value from the laser irradiation. First of all, the simplification of the laser absorption process was verified by the comparison of the EEDF and the laser-absorptivity with PIC-FDTD method. Secondary, the laser plasma induced by TEA CO2 laser in Argon atmosphere was modeled using the 1D3V DSMC method with the simplification of the laser-absorption. As a result, the LSDW was observed with the typical electron and neutral density distribution.

  9. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel.

    PubMed

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-08-05

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α'-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α' → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α'N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance.

  10. Influence of low-temperature nitriding on the strain-induced martensite and laser-quenched austenite in a magnetic encoder made from 304L stainless steel

    PubMed Central

    Leskovšek, Vojteh; Godec, Matjaž; Kogej, Peter

    2016-01-01

    We have investigated the possibility of producing a magnetic encoder by an innovative process. Instead of turning grooves in the encoder bar for precise positioning, we incorporated the information in 304L stainless steel by transforming the austenite to martensite after bar extrusion in liquid nitrogen and marking it with a laser, which caused a local transformation of martensite back into austenite. 304L has an excellent corrosion resistance, but a low hardness and poor wear resistance, which limits its range of applications. However, nitriding is a very promising way to enhance the mechanical and magnetic properties. After low-temperature nitriding at 400 °C it is clear that both ε- and α′-martensite are present in the deformed microstructure, indicating the simultaneous stress-induced and strain-induced transformations of the austenite. The effects of a laser surface treatment and the consequent appearance of a non-magnetic phase due to the α′ → γ transformation were investigated. The EDS maps show a high concentration of nitrogen in the alternating hard surface layers of γN and α′N (expanded austenite and martensite), but no significantly higher concentration of chromium or iron was detected. The high surface hardness of this nitride layer will lead to steels and encoders with better wear and corrosion resistance. PMID:27492862

  11. CO2 lasers and applications II; Proceedings of the Third European Congress on Optics, The Hague, Netherlands, Mar. 12-14, 1990

    NASA Technical Reports Server (NTRS)

    Opower, Hans (Editor)

    1990-01-01

    Recent advances in CO2 laser technology and its applications are examined. Topics discussed include the excitation of CO2 lasers by microwave discharge, a compact RF-excited 12-kW CO2 laser, a robotic laser for three-dimensional cutting and welding, three-dimensional CO2-laser material processing with gantry machine systems, and a comparison of hollow metallic waveguides and optical fibers for transmitting CO2-laser radiation. Consideration is given to an aerodynamic window with a pump cavity and a supersonic jet, cutting and welding Al using a high-repetition-rate pulsed CO2 laser, speckle reduction in CO2 heterodyne laser radar systems, high-power-laser float-zone crystal growth, melt dynamics in surface processing with laser radiation, laser hardfacing, surface melting of AlSi10Mg with CO2 laser radiation, material processing with Cu-vapor lasers, light-induced flow at a metal surface, and absorption measurements in high-power CW CO2-laser processing of materials.

  12. Laser assisted processing; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19, 20, 1988

    NASA Astrophysics Data System (ADS)

    Laude, Lucien D.; Rauscher, Gerhard

    The use of lasers in industrial material processing is discussed in reviews and reports. Sections are devoted to high-precision laser machining, deposition methods, ablation and polymers, and synthesis and oxidation. Particular attention is given to laser cutting of steel sheets, laser micromachining of material surfaces, process control in laser soldering, laser-induced CVD of doped Si stripes on SOS and their characterization by piezoresistivity measurements, laser CVD of Pt spots on glass, laser deposition of GaAs, UV-laser photoablation of polymers, ArF excimer-laser ablation of HgCdTe semiconductor, pulsed laser synthesis of Ti silicides and nitrides, the kinetics of laser-assisted oxidation of metallic films, and excimer-laser-assisted etching of solids for microelectronics.

  13. Marking Tests to Certify Part Identification Processes for Use in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Roxby, D. L.

    2015-01-01

    The primary purpose for the MISSE marking tests was to define Data Matrix symbol marking processes that will remain readable after exposure to Low Earth Orbit environments. A wide range of different Data Matrix symbol marking processes and materials, including some still under development, were evaluated. The samples flown on MISSE 1 and 2 were in orbit for 3 years and 348 days, MISSE 3 and 4 were in orbit for 1 year and 15 days, MISSE 6 was in orbit for 1 year and 130 days, and MISSE 8 was in orbit for 2 years and 55 days. The initial MISSE marking tests clearly reflected that intrusive marking processes can be successfully used for this purpose. All of the intrusive marking processes tested exceeded program expectations and met 100 percent of the principle investigators objectives. However, subsequent tests demonstrated that some additive marking processes will also satisfy the requirements. This was an unexpected result.

  14. Skin friction measurements by laser interferometry in swept shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Kim, Kwang-Soo; Settles, Gary S.

    1988-01-01

    The laser interferometric skin friction meter was used to measure wall shear stress distributions in two interactions of fin-generated swept shock waves with turbulent boundary layers. The basic research configuration was an unswept sharp-leading-edge fin of variable angle mounted on a flatplate. The results indicate that such measurements are practical in high-speed interacting flows, and that a repeatability of + or - 6 percent or better is possible. Marked increases in wall shear were observed in both swept interactions tested.

  15. A study comparing three different laser-assisted hatching techniques.

    PubMed

    Ma, B; Wang, Y; Zhang, H; Zhang, X

    2014-01-01

    Laser-assisted hatching (LAH) is recognized as a useful technology to improve clinical pregnancy rates and implantation rates. This study reports the differences between a new LAH method and two conventional LAH techniques. The authors studied 151 patients with repeated implantation failure, who were divided into three groups. In group 1, the zona pellucida (ZP) was opened using LAH (n = 52). In group 2, laser-assisted thinning was performed to dissolve the outer layer of the ZP (n = 49). In group 3, laser-assisted thinning was performed to dissolve the inner layer of the ZP (n = 50). The clinical pregnancy rates and implantation rates among the groups were compared. The results demonstrate that there are significant differences in the clinical pregnancy rates and implantation rates between group 3 and the other two groups. Performing laser-assisted thinning to dissolve the inner layer of the ZP markedly increases the pregnancy rates and implantation rates of patients with repeated implantation failure.

  16. Palliative treatment of patients with malignant structures of esophagus

    NASA Astrophysics Data System (ADS)

    Zavodnov, Victor Y.; Kuzin, M. I.; Kharnas, Sergey S.; Linkov, Kirill G.; Loschenov, Victor B.; Stratonnikov, Alexander A.; Posypanova, Anna M.

    1996-01-01

    Photodynamic therapy with the use of laser endoscopic spectrum analyzer (LESA-5), spectral- analyzing video-imaging system, Kr laser and various types of catheters for different localizations and different geometry of tumor, and phthalocyanine aluminum photosensitizers in patients with malignant strictures of esophagus is discussed. Photodynamic therapy was carried out to four patients: with esophageal cancer (3 patients) and gastric cancer with infiltration of lower esophagus (1 patient). All patients suffered from severe dysphagia. Photosensitizer was used in a dose 1-1.5 mg/kg of weight. Usually we used 3-4 seances of laser treatment 10-30 minutes long. The accumulation of photosensitizer was controlled by LESA-5. Laser induced fluorescent image was monitored by the video-imaging system in order to control laser treatment. There were no side-effects. The results show high efficiency of photodynamic therapy. There was marked reduction of dysphagia symptoms in all cases. It seems that photodynamic therapy is a good alternative to palliative surgical treatment of patients with malignant strictures of esophagus.

  17. Production and Characterization of Femtosecond-Laser-Induced Air Plasma

    DTIC Science & Technology

    2008-03-01

    thereby eliminating the acoustic reflections. As advertised , the plasma spark was now visible to the goggled eye with the room lights on, marking a...focusing mirrors instead of achromatic lenses. This change would eliminate chromatic aberrations, although curved mirrors do introduce astigmatism into the

  18. Progress in ultrafast laser processing and future prospects

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  19. Signal Characteristics of Super-Resolution Near-Field Structure Disks with 100 GB Capacity

    NASA Astrophysics Data System (ADS)

    Kim, Jooho; Hwang, Inoh; Kim, Hyunki; Park, Insik; Tominaga, Junji

    2005-05-01

    We report the basic characteristics of super resolution near-field structure (Super-RENS) media at a blue laser optical system (laser wavelength 405 nm, numerical aperture 0.85). Using a novel write once read many (WORM) structure for a blue laser system, we obtained a carrier-to-noise ratio (CNR) above 33 dB from the signal of the 37.5 nm mark length, which is equivalent to a 100 GB capacity with a 0.32 micrometer track pitch, and an eye pattern for 50 GB (2T: 75 nm) capacity using a patterned signal. Using a novel super-resolution material (tellurium, Te) with low super-resolution readout power, we also improved the read stability.

  20. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi

    2015-03-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.

  1. Method of high precision interval measurement in pulse laser ranging system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  2. Fractional CO2 lasers contribute to the treatment of stable non-segmental vitiligo.

    PubMed

    Yuan, Jinping; Chen, Hongqiang; Yan, Ru; Cui, Shaoshan; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2016-12-01

    Stable non-segmental vitiligo is often resistant to conventional therapies. The purpose of this study was to investigate the effect of three types of fractional lasers in the treatment of stable non-segmental vitiligo. Twenty patients were enrolled in the study. The vitiligo lesions of each patient were divided into four treatment parts, and all parts were treated with narrowband ultraviolet-B (NB-UVB). Three of the four parts were respectively treated with three types of fractional lasers (two ablative 10,600-nm CO 2 lasers and one non-ablative 1,565-nm laser), followed by topical betamethasone solution application. The treatment period lasted six months. Efficacy and satisfaction were respectively assessed by dermatologists and patients. The ablative CO 2 lasers, in combination with topical betamethasone solution and NB-UVB, achieved marked to excellent improvement on white patches assessed by dermatologists. Patients showed high satisfaction scores for the treatments. The non-ablative 1,565-nm fractional laser did not provide any further benefit in the treatment of vitiligo. No severe adverse events developed for any of the treatments. The treatment protocol with ablative CO 2 lasers, in combination with topical betamethasone solution and NB-UVB, was suitable for stable non-segmental vitiligo. For vitiligo, the ablative fractional CO 2 laser is more effective than the non-ablative fractional laser.

  3. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    NASA Astrophysics Data System (ADS)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  4. Interstitial laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Johnson, Douglas E.; Cromeens, Douglas M.; Price, Roger E.

    1994-05-01

    Interstitial laser coagulation of the canine prostate using the Sharplan interstitial thermal therapy fiber (Model 25432) was performed in 9 adult dogs and the subsequent gross and histopathologic changes occurring in the prostate were studied at intervals ranging from 1 hour to 5 weeks. A large well-demarcated area of acute coagulative necrosis developed around each fiber tract which in turn was surrounded by a prominent narrow zone of marked tissue disruption and an outer zone of hemorrhage. Liquefaction developed within the coagulative areas within 24 hours and by 4 days, each prostatic lobe contained an irregular cavity which became lined by normal-appearing transitional epithelium and that by 5 weeks, communicated with the prostatic urethra. These changes, similar to those reported following transurethral visual laser ablation of the prostate, suggest that interstitial laser thermal therapy may provide an alternative means for treating selected patients suffering from prostatic enlargement.

  5. Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser.

    PubMed

    Kunwar, Puskal; Hassinen, Jukka; Bautista, Godofredo; Ras, Robin H A; Toivonen, Juha

    2016-04-05

    Noble metal nanoclusters are ultrasmall nanomaterials with tunable properties and huge application potential; however, retaining their enhanced functionality is difficult as they readily lose their properties without stabilization. Here, we demonstrate a facile synthesis of highly photostable silver nanoclusters in a polymer thin film using visible light photoreduction. Furthermore, the different stages of the nanocluster formation are investigated in detail using absorption and fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. A cost-effective fabrication of photostable micron-sized fluorescent silver nanocluster barcode is demonstrated in silver-impregnated polymer films using a low-power continuous-wave laser diode. It is shown that a laser power of as low as 0.75 mW is enough to write fluorescent structures, corresponding to the specifications of a commercially available laser pointer. The as-formed nanocluster-containing microstructures can be useful in direct labeling applications such as authenticity marking and fluorescent labeling.

  6. Laser-induced free-free transitions in elastic electron scattering from CO2

    NASA Astrophysics Data System (ADS)

    Musa, Mohamed; MacDonald, Amy; Tidswell, Lisa; Holmes, Jim; St. Francis Xavier Laser Scattering Lab Team

    2011-03-01

    This report presents measurements of laser-induced free-free transitions of electrons scattered from CO2 molecules in the ground electronic state at incident electron energies of 3.8 and 5.8 eV under pulsed CO2 laser field. The differential cross section of free-free transitions involving absorption and emission of up to two photons were measured at various scattering angles with the polarization of the laser either parallel with or perpendicular to the the momentum change vector of the scattered electrons. The results of the parallel geometry are found to be in qualitative agreement with the predictions of the Kroll-Watson approximation within the experimental uncertainty whereas those of the perpendicular geometry show marked discrepancy with the Kroll-Watson predictions. This work was supported by the Natural Sciences and Engineering Research Council of Canada and the St. Francis Xavier University Council for Research.

  7. Histological study of subcutaneous fat at NIR laser treatment of the rat skin in vivo

    NASA Astrophysics Data System (ADS)

    Yanina, I. Y.; Svenskaya, Yu. I.; Navolokin, N. A.; Matveeva, O. V.; Bucharskaya, A. B.; Maslyakova, G. N.; Gorin, D. A.; Sukhorukov, G. B.; Tuchin, V. V.

    2015-07-01

    The goal of this work is to quantify impact of in vivo photochemical treatment using indocyanine green (ICG) or encapsulated ICG and NIR laser irradiation through skin of rat with obesity by the follow up tissue sampling and histochemistry. After 1 hour elapsed since 1-min light exposure samples of rat skin with subcutaneous tissue of thickness of 1.5-2.5 mm were taken by surgery from rats within marked 4-zones of the skin site. For hematoxylin-eosin histological examination of excised tissue samples, fixation was carried out by 10%-formaldehyde solution. For ICG and encapsulated ICG subcutaneous injection and subsequent 1-min diode laser irradiation with power density of 8 W/cm2, different necrotic regions with lipolysis of subcutaneous fat were observed. The obtained data can be used for safe layer-by-layer laser treatment of obesity and cellulite.

  8. Development of high-power CO2 lasers and laser material processing

    NASA Astrophysics Data System (ADS)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  9. Kinetic processes determining attainable pulse repetition rate in pulsed metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Petrash, Gueorgii G.

    1998-06-01

    A review of the investigations of the main processes determining the attainable pulse repetition rate of elemental metal vapor pulsed gas discharge self-terminating lasers, such as copper vapor laser, gold vapor laser, lead vapor laser, is given. Kinetic processes during an excitation pulse and interpulse period are considered as well as experiments with lasers operating at high repetition rate.

  10. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    DOEpatents

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  11. Fractional versus ablative erbium:yttrium-aluminum-garnet laser resurfacing for facial rejuvenation: an objective evaluation.

    PubMed

    El-Domyati, Moetaz; Abd-El-Raheem, Talal; Abdel-Wahab, Hossam; Medhat, Walid; Hosam, Wael; El-Fakahany, Hasan; Al Anwer, Mustafa

    2013-01-01

    Laser is one of the main tools for skin resurfacing. Erbium:yttrium-aluminum-garnet (Er:YAG) was the second ablative laser, after carbon dioxide, emitting wavelength of 2940 nm. Fractional laser resurfacing has been developed to overcome the drawbacks of ablative lasers. We aimed to objectively evaluate the histopathological and immunohistochemical effects of Er:YAG 2940-nm laser for facial rejuvenation (multiple sessions of fractional vs single session of ablative Er:YAG laser). Facial resurfacing with single-session ablative Er:YAG laser was performed on 6 volunteers. Another 6 were resurfaced using fractional Er:YAG laser (4 sessions). Histopathological (hematoxylin-eosin, orcein, Masson trichrome, and picrosirius red stains) and immunohistochemical assessment for skin biopsy specimens were done before laser resurfacing and after 1 and 6 months. Histometry for epidermal thickness and quantitative assessment for neocollagen formation; collagen I, III, and VII; elastin; and tropoelastin were done for all skin biopsy specimens. Both lasers resulted in increased epidermal thickness. Dermal collagen showed increased neocollagen formation with increased concentration of collagen types I, III, and VII. Dermal elastic tissue studies revealed decreased elastin whereas tropoelastin concentration increased after laser resurfacing. Neither laser showed significant difference between their effects clinically and on dermal collagen. Changes in epidermal thickness, elastin, and tropoelastin were significantly more marked after ablative laser. The small number of patients is a limitation, yet the results show significant improvement. Multiple sessions of fractional laser have comparable effects to a single session of ablative Er:YAG laser on dermal collagen but ablative laser has more effect on elastic tissue and epidermis. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  12. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  13. Nonablative laser treatment of facial rhytides

    NASA Astrophysics Data System (ADS)

    Lask, Gary P.; Lee, Patrick K.; Seyfzadeh, Manouchehr; Nelson, J. Stuart; Milner, Thomas E.; Anvari, Bahman; Dave, Digant P.; Geronemus, Roy G.; Bernstein, Leonard J.; Mittelman, Harry; Ridener, Laurie A.; Coulson, Walter F.; Sand, Bruce; Baumgarder, Jon; Hennings, David R.; Menefee, Richard F.; Berry, Michael J.

    1997-05-01

    The purpose of this study is to evaluate the safety and effectiveness of the New Star Model 130 neodymium:yttrium aluminum garnet (Nd:YAG) laser system for nonablative laser treatment of facial rhytides (e.g., periorbital wrinkles). Facial rhytides are treated with 1.32 micrometer wavelength laser light delivered through a fiberoptic handpiece into a 5 mm diameter spot using three 300 microsecond duration pulses at 100 Hz pulse repetition frequency and pulse radiant exposures extending up to 12 J/cm2. Dynamic cooling is used to cool the epidermis selectively prior to laser treatment; animal histology experiments confirm that dynamic cooling combined with nonablative laser heating protects the epidermis and selectively injures the dermis. In the human clinical study, immediately post-treatment, treated sites exhibit mild erythema and, in a few cases, edema or small blisters. There are no long-term complications such as marked dyspigmentation and persistent erythema that are commonly observed following ablative laser skin resurfacing. Preliminary results indicate that the severity of facial rhytides has been reduced, but long-term follow-up examinations are needed to quantify the reduction. The mechanism of action of this nonablative laser treatment modality may involve dermal wound healing that leads to long- term synthesis of new collagen and extracellular matrix material.

  14. Guidelines in the Choice of Parameters for Hybrid Laser Arc Welding with Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Eriksson, I.; Powell, J.; Kaplan, A.

    Laser arc hybrid welding has been a promising technology for three decades and laser welding in combination with gas metal arc welding (GMAW) has shown that it is an extremely promising technique. On the other hand the process is often considered complicated and difficult to set up correctly. An important factor in setting up the hybrid welding process is an understanding of the GMAW process. It is especially important to understand how the wire feed rate and the arc voltage (the two main parameters) affect the process. In this paper the authors show that laser hybrid welding with a 1 μm laser is similar to ordinary GMAW, and several guidelines are therefore inherited by the laser hybrid process.

  15. The choice: Welding with CO2 or Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Leong, Keng H.

    The recent commercial availability of multi-kilowatt Nd:YAG lasers has opened new avenues for rapid laser processing as well as intensified the competition (cost effectiveness) between CO2 and Nd:YAG laser systems. Vendors offering Nd:YAG laser systems may claim lower operating costs (than CO2) and fiberoptic beam delivery flexibility while CO2 systems vendors may emphasize lower capital cost and well established processing requirements and experience. The capital and operating costs of a laser system are impacted by demand and supply economics and technological advances. Frequently the total cost of a workcell using a laser for processing has to be considered rather than the laser system alone. Consequently it is not very practical to approach the selection of a laser system based on its capital cost and estimated operating cost only. This presentation describes a more pragmatic approach to aid the user in the selection of the optimal multi-kilowatt laser system for a particular processing requirement with emphasis on welding. CO2 laser systems are well established on the factory floor. Consequently, emphasis is given to the comparative application of Nd:YAG lasers, process requirements and performance. Requirements for the laser welding of different metals are examined in the context of hardware (laser system and beam delivery) selection and examples of welding speeds that can be achieved using CO2 and Nd:YAG lasers are examined.

  16. A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application.

    PubMed

    Vivacqua, Rafael; Vassallo, Raquel; Martins, Felipe

    2017-10-16

    Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.

  17. A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application

    PubMed Central

    Vassallo, Raquel

    2017-01-01

    Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle’s backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation. PMID:29035334

  18. Distinct gene expression profiles characterize the histopathological stages of disease in Helicobacter-induced mucosa-associated lymphoid tissue lymphoma

    PubMed Central

    Mueller, Anne; O'Rourke, Jani; Grimm, Jan; Guillemin, Karen; Dixon, Michael F.; Lee, Adrian; Falkow, Stanley

    2003-01-01

    Long-term colonization of humans with Helicobacter pylori can cause the development of gastric B cell mucosa-associated lymphoid tissue lymphoma, yet little is known about the sequence of molecular steps that accompany disease progression. We used microarray analysis and laser microdissection to identify gene expression profiles characteristic and predictive of the various histopathological stages in a mouse model of the disease. The initial step in lymphoma development is marked by infiltration of reactive lymphocytes into the stomach and the launching of a mucosal immune response. Our analysis uncovered molecular markers of both of these processes, including genes coding for the immunoglobulins and the small proline-rich protein Sprr 2A. The subsequent step is characterized histologically by the antigen-driven proliferation and aggregation of B cells and the gradual appearance of lymphoepithelial lesions. In tissues of this stage, we observed increased expression of genes previously associated with malignancy, including the laminin receptor-1 and the multidrug-resistance channel MDR-1. Finally, we found that the transition to destructive lymphoepithelial lesions and malignant lymphoma is marked by an increase in transcription of a single gene encoding calgranulin A/Mrp-8. PMID:12552104

  19. Laser cutting: industrial relevance, process optimization, and laser safety

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Goede, Martin; von Busse, Alexander; Thuerk, Oliver

    1998-09-01

    Compared to other technological relevant laser machining processes, up to now laser cutting is the application most frequently used. With respect to the large amount of possible fields of application and the variety of different materials that can be machined, this technology has reached a stable position within the world market of material processing. Reachable machining quality for laser beam cutting is influenced by various laser and process parameters. Process integrated quality techniques have to be applied to ensure high-quality products and a cost effective use of the laser manufacturing plant. Therefore, rugged and versatile online process monitoring techniques at an affordable price would be desirable. Methods for the characterization of single plant components (e.g. laser source and optical path) have to be substituted by an omnivalent control system, capable of process data acquisition and analysis as well as the automatic adaptation of machining and laser parameters to changes in process and ambient conditions. At the Laser Zentrum Hannover eV, locally highly resolved thermographic measurements of the temperature distribution within the processing zone using cost effective measuring devices are performed. Characteristic values for cutting quality and plunge control as well as for the optimization of the surface roughness at the cutting edges can be deducted from the spatial distribution of the temperature field and the measured temperature gradients. Main influencing parameters on the temperature characteristic within the cutting zone are the laser beam intensity and pulse duration in pulse operation mode. For continuous operation mode, the temperature distribution is mainly determined by the laser output power related to the cutting velocity. With higher cutting velocities temperatures at the cutting front increase, reaching their maximum at the optimum cutting velocity. Here absorption of the incident laser radiation is drastically increased due to the angle between the normal of the cutting front and the laser beam axis. Beneath process optimization and control further work is focused on the characterization of particulate and gaseous laser generated air contaminants and adequate safety precautions like exhaust and filter systems.

  20. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  1. Lasers '81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.B.

    1982-01-01

    Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less

  2. Material processing with fiber based ultrafast pulse delivery

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Stockburger, R.; Führa, B.; Zoller, S.; Thum, S.; Moosmann, J.; Maier, D.; Kanal, F.; Russ, S.; Kaiser, E.; Budnicki, A.; Sutter, D. H.; Pricking, S.; Killi, A.

    2018-02-01

    We report on TRUMPF's ultrafast laser systems equipped with industrialized hollow core fiber laser light cables. Beam guidance in general by means of optical fibers, e.g. for multi kilowatt cw laser systems, has become an integral part of laser-based material processing. One advantage of fiber delivery, among others, is the mechanical separation between laser and processing head. An equally important benefit is given by the fact that the fiber end acts as an opto-mechanical fix-point close to successive optical elements in the processing head. Components like lenses, diffractive optical elements etc. can thus be designed towards higher efficiency which results in better material processing. These aspects gain increasing significance when the laser system operates in fundamental mode which is usually the case for ultrafast lasers. Through the last years beam guidance of ultrafast laser pulses by means of hollow core fiber technology established very rapidly. The combination of TRUMPF's long-term stable ultrafast laser sources, passive fiber coupling, connector and packaging forms a flexible and powerful system for laser based material processing well suited for an industrial environment. In this article we demonstrate common material processing applications with ultrafast lasers realized with TRUMPF's hollow core fiber delivery. The experimental results are contrasted and evaluated against conventional free space propagation in order to illustrate the performance of flexible ultrafast beam delivery.

  3. Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing

    NASA Astrophysics Data System (ADS)

    Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.

    Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.

  4. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    NASA Astrophysics Data System (ADS)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  5. Item Unique Identification (IUID) Marking for a Littoral Combat Ship (LCS) Class Mission Module (MM) at the Mission Package Support Facility (MPSF): Implementation Analysis and Development of Optimal Marking Procedures

    DTIC Science & Technology

    2010-06-01

    scanners, readers, or imagers. These types of ADCS devices use two slightly different technologies. Laser scanners use a photodiode to measure the...structure of a ship, but the LCS utilizes modular mission packages that can be removed and replaced when the threat , environment, or mission changes...would need to support a wide array of business applications and users (Clarion, 2009). The DoD’s solution to this deficiency is called IUID. IUID is a

  6. High power lasers: Sources, laser-material interactions, high excitations, and fast dynamics in laser processing and industrial applications; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 3, 1987

    NASA Technical Reports Server (NTRS)

    Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)

    1987-01-01

    The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.

  7. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Ella; Bellum, John; Kletecka, Damon

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  8. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE PAGES

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  9. Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes

    PubMed Central

    Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Bele, Constantin; Orza, Anamaria Ioana; Lucan, Ciprian; Stiufiuc, Rares; Manaila, Ioana; Iulia, Ferencz; Dana, Iancu; Zaharie, Florin; Osian, Gelu; Vlad, Liviu; Iancu, Cornel

    2011-01-01

    The process of laser-mediated ablation of cancer cells marked with biofunctionalized carbon nanotubes is frequently called “nanophotothermolysis”. We herein present a method of selective nanophotothermolisys of pancreatic cancer (PC) using multiwalled carbon nanotubes (MWCNTs) functionalized with human serum albumin (HSA). With the purpose of testing the therapeutic value of these nanobioconjugates, we have developed an ex-vivo experimental platform. Surgically resected specimens from patients with PC were preserved in a cold medium and kept alive via intra-arterial perfusion. Additionally, the HSA-MWCNTs have been intra-arterially administered in the greater pancreatic artery under ultrasound guidance. Confocal and transmission electron microscopy combined with immunohistochemical staining have confirmed the selective accumulation of HSA-MWCNTs inside the human PC tissue. The external laser irradiation of the specimen has significantly produced extensive necrosis of the malign tissue after the intra-arterial administration of HSA-MWCNTs, without any harmful effects on the surrounding healthy parenchyma. We have obtained a selective photothermal ablation of the malign tissue based on the selective internalization of MWCNTs with HSA cargo inside the pancreatic adenocarcinoma after the ex-vivo intra-arterial perfusion. PMID:21720504

  10. Aerometrics' laser-based lane-tracker sensor: engineering and on-the-road evaluation of advanced prototypes

    NASA Astrophysics Data System (ADS)

    Schuler, Carlos A.; Tapos, Francis M.; Alayleh, Mehyeddine M.; Bachalo, William D.

    1997-02-01

    Aerometrics initiated and continues on the development an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. The principles of operation of the sensor, and the results of Aerometrics' early testing were presented last year in this forum. This paper presents Aerometrics' continuing efforts in bringing the technology to market. New prototypes have been developed and tested. Aerometrics' engineering efforts and the use of latest technologies have resulted in a 24-fold reduction in sensor volume when compared to their predecessors and similar reductions in weight. The current prototype measures less than 9 cm X 8 cm X 7 cm, and can be easily fit within the cavity of rear-view mirror holders used in most present-day vehicles. Also, advances in signal conditioning and processing have improved the reliability of the sensor. Results of continuing testing of the sensor will be presented.

  11. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to produce GNRs. Therefore the developed laser scanning method optimally exploited the thermal laser-CNT interaction, successfully transforming CNTs into 2D GNRs. The solid-state laser unzipping process effectively addressed the issues of contamination and scalability encountered by the current unzipping methods. Additionally, the produced GNRs were uniquely featured with the freestanding structure and the smooth surfaces. If the scanning process was performed in an inert environment without the appearance of oxygen, the oxidation of CNTs would not happen. Instead, the greatly mobile carbon atoms of the heated CNTs would reorganize the crystal structure, inducing the graphitization process to improve the crystallinity. Many observations showing the structural improvement of CNTs under laser irradiation has been reported, confirming the capability of laser to heal graphitic defects. Laser methods were more time-efficient and energy-efficient than other annealing methods because laser can quickly heat CNTs to generate graphitization in less than one second. This subsecond heating process of laser irradiation was more effective than other heating methods because it avoided the undesired coalescence of CNTs. In my research, the laser scanning method was applied to generate the graphitization, healing the structural defects of CNTs. Different from the reported laser methods, the laser scanning directed the locally annealed areas to move along the CNT axes, migrating and coalescencing the graphitic defects to achieve better healing results. The critical information describing the CNT structural transformation caused by the moving laser irradiation was explored from the successful applications of the developed laser method. This knowledge inspires an important method to modifiy the general graphitic structure for important applications, such as carbon fiber production, CNT self-assembly process and CNT welding. This method will be effective, facile, versatile, and adaptable for laboratory and industrial facilities.

  12. Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling

    PubMed Central

    Liang, Katharine J.; Lee, Jung Eun; Wang, Yunqing D.; Ma, Wenxin; Fontainhas, Aurora M.; Fariss, Robert N.; Wong, Wai T.

    2009-01-01

    PURPOSE Microglia in the central nervous system display a marked structural dynamism in their processes in the resting state. This dynamic behavior, which may play a constitutive surveying role in the uninjured neural parenchyma, is also highly responsive to tissue injury. The role of CX3CR1, a chemokine receptor expressed in microglia, in regulating microglia morphology and dynamic behavior in the resting state and after laser-induced focal injury was examined. METHODS Time-lapse confocal imaging of retinal explants was used to evaluate the dynamic behavior of retinal microglia labeled with green fluorescent protein (GFP). Transgenic mice in which CX3CR1 signaling was ablated (CX3CR1GFP/GFP/CX3CR1−/−) and preserved (CX3CR1+/GFP/CX3CR1+/−) were used. RESULTS Retinal microglial density, distribution, cellular morphology, and overall retinal tissue anatomy were not altered in young CX3CR1−/− animals. In the absence of CX3CR1, retinal microglia continued to exhibit dynamic motility in their processes. However, rates of process movement were significantly decreased, both under resting conditions and in response to tissue injury. In addition, microglia migration occurring in response to focal laser injury was also significantly slowed in microglia lacking CX3CR1. CONCLUSIONS CX3CR1 signaling in retinal microglia, though not absolutely required for the presence of microglial dynamism, plays a role in potentiating the rate of retinal microglial process dynamism and cellular migration. CX3CL1 signaling from retinal neurons and endothelial cells likely modulates dynamic microglia behavior so as to influence the level of microglial surveillance under basal conditions and the rate of dynamic behavior in response to tissue injury. PMID:19443728

  13. Laser surface texturing of cast iron steel: dramatic edge burr reduction and high speed process optimisation for industrial production using DPSS picosecond lasers

    NASA Astrophysics Data System (ADS)

    Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris

    2015-07-01

    In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.

  14. Technology Assessment of Laser-Assisted Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  15. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  16. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  17. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  18. Long-period fibre grating writing with a slit-apertured femtosecond laser beam (λ = 1026 nm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dostovalov, A V; Wolf, A A; Babin, S A

    We report on long-period grating (LPG) writing in a standard telecom fibre, SMF-28e+, via refractive index modification by femtosecond pulses. A method is proposed for grating writing with a slit-apertured beam, which enables one to produce LPGs with reduced background losses and a resonance peak markedly stronger than that in the case of grating writing with a Gaussian beam. The method can be used to fabricate LPGs for use as spectral filters of fibre lasers and sensing elements of sensor systems. (fibre and integrated-optical structures)

  19. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  20. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized to see the effects on melt-quenching, cladding/alloying (using the pre-placed powder technique), and cutting. Key parameters such laser power, pulse repetition frequency, process speed, and shield gas flow and the observed process characteristics such as plasma formation during laser/material interaction, have been reported for all experimental runs. Preliminary materials characterization of select samples was carried out using various microscopy, diffraction, spectroscopy and microhardness test methods, and reported. Select nitridation results of Ti-6AI-4V using nitrogen assist gas indicated the successful formation of hard titanium nitrides with much higher hardness (2180 kg/sq mm). A cost-effective and simple powder delivery system has been successfully fabricated for the further experimentation in Phase H.

  1. A Comparison Study of the Nonablative Fractional 1565-nm Er: glass and the Picosecond Fractional 1064/532-nm Nd: YAG Lasers in the Treatment of Striae Alba: A Split Body Double-Blinded Trial.

    PubMed

    Zaleski-Larsen, Lisa A; Jones, Isabela T; Guiha, Isabella; Wu, Douglas C; Goldman, Mitchel P

    2018-05-09

    Few effective treatments exist for striae alba, which are the mature stage of stretch marks. To evaluate the efficacy of the nonablative fractional 1,565-nm Er:glass and the picosecond fractional 1,064/532-nm Nd:YAG lasers in the treatment of striae alba. Twenty subjects with striae alba on the bilateral abdomen were treated with either the nonablative fractional 1565-nm Er:glass or the picosecond fractional 1,064/532-nm Nd:YAG laser, with a total of 3 treatments 3 weeks apart. A 31% (1.25/4) texture improvement was noted for both the fractional 1,565-nm Er:glass laser and the picosecond fractional 1,064/532-nm Nd:YAG laser. The degree of atrophy was improved by 30% (1.19/4) with the 1,565-nm Er:glass laser and 35% (1.38/4) with the picosecond 1,064/532-nm Nd:YAG laser. A 48% (1.9/4) subject overall assessment of improvement was noted with the fractional 1565-nm Er:glass laser and 45% (1.8/4) improvement with the picosecond fractional 1,064/532-nm Nd:YAG laser. There was no significant change in striae density with either laser. The picosecond laser was rated as less painful during all 3 sessions (p = .002) and had a shorter healing time (p = .035). The nonablative fractional 1,565-nm Er:glass and the picosecond fractional 1,064/532-nm Nd:YAG lasers were equally efficacious in improving striae alba.

  2. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process.

    PubMed

    Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei

    2018-05-10

    A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.

  3. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  4. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  5. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  6. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  7. 9 CFR 355.25 - Canning with heat processing and hermetically sealed containers; closures; code marking; heat...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hermetically sealed containers; closures; code marking; heat processing; incubation. 355.25 Section 355.25... processing and hermetically sealed containers; closures; code marking; heat processing; incubation. (a... storage and transportation as evidenced by the incubation test. (h) Lots of canned products shall be...

  8. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    NASA Astrophysics Data System (ADS)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  9. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  10. Predictive modeling, simulation, and optimization of laser processing techniques: UV nanosecond-pulsed laser micromachining of polymers and selective laser melting of powder metals

    NASA Astrophysics Data System (ADS)

    Criales Escobar, Luis Ernesto

    One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National Institute for Standards & Technology via response surface methodology techniques. The main goal of this research is to develop a comprehensive predictive model with which the effect of powder material properties and laser process parameters on the built quality and integrity of SLM-produced parts can be better understood. By optimizing process parameters, SLM as an additive manufacturing technique is not only possible, but also practical and reproducible.

  11. Correlation of histological findings of single session Er:YAG skin fractional resurfacing with various passes and energies and the possible clinical implications.

    PubMed

    Trelles, Mario A; Vélez, Mariano; Mordon, Serge

    2008-03-01

    Ablative fractional resurfacing shows promise for skin resurfacing and tightening and also to improve treatment of epidermal and dermal pigmentary disorders. This study aimed at determining any correlation between epidermal ablation and effects on the dermis when using an Er:YAG laser in ablative fractional resurfacing mode. Ten female subjects participated in the study, mean age 52 years, Skin phototypes: 1 Fitzpatrick type II; 8 type III and 1 type IV. The degree of wrinkles (Glogau scale II or III) was similar in all cases. The laser used was the Pixel Er:YAG system (Alma Lasertrade mark, Israel) which delivers the laser beam via a hand-piece equipped with a beam splitter to divide the 2,940 nm beam into various microbeams of 850 microm in diameter in an 11 mmx11 mm treatment area. Using a constant energy of 1,400 mJ/cm(2), on a test area of 4 cmx2 cm. Two, 4, 6, and 8 passes on the preauricular area of the face were evaluated immediately after treatment. In all cases, the handpiece was kept in the same position, and rotated slightly around its perpendicular axis between passes, then moved on to the next spot. Biopsies were performed and tissue samples were routinely processed and stained with hematoxylin and eosin (H&E). No patient reported any noticeable discomfort, even at 8 passes. The histological findings revealed that, independent of the degree of the wrinkles, more laser passes produced more ablative removal of the epidermis. Residual thermal damage (RTD) with 2 laser passes was not observed but with 4 and 6 passes increased thermal effects and vacuole formation in the epidermal cells were noticed. With 8 laser passes, total epidermal removal was seen together with frank RTD-related changes in the upper part of the papillary dermis. In this study, we have demonstrated that high density fractional Er:YAG laser energy in a single session with multiple passes targeted not only the skin surface with elimination of the epidermis, but could also achieve heat deposition in the upper dermis. When performing ablative fractional resurfacing with an Er:YAG laser, treatment of varying degrees of damage could be achieved by varying the number of passes. (c) 2008 Wiley-Liss, Inc.

  12. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    NASA Astrophysics Data System (ADS)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  13. Material Processing with High Power CO2-Lasers

    NASA Astrophysics Data System (ADS)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  14. Axonal loss from acute optic neuropathy documented by scanning laser polarimetry

    PubMed Central

    Meier, F M; Bernasconi, P; Stürmer, J; Caubergh, M-J; Landau, K

    2002-01-01

    Background/aims: Retinal nerve fibre layer analysis by scanning laser polarimetry has been shown to facilitate diagnosis of glaucoma while its role in glaucoma follow up is still unclear. A major difficulty is the slow reduction of retinal nerve fibre layer thickness in glaucomatous optic neuropathy. Eyes of patients were studied after acute retrobulbar optic nerve lesion in order to evaluate the usefulness of scanning laser polarimetry in documenting retinal nerve fibre layer loss over time. Methods: Five patients who suffered severe retrobulbar optic neuropathy have had repeated measurements of the retinal nerve fibre layer using scanning laser polarimetry at various intervals, the first examination being within 1 week of injury. Results: All eyes showed a marked decrease in peripapillary retinal nerve fibre layer thickness, which followed an exponential curve and occurred predominantly within 8 weeks of injury. Compared to a previous study using red-free photographs, scanning laser polarimetry showed retinal nerve fibre layer loss earlier in the course of descending atrophy. Conclusion: Scanning laser polarimetry is useful for early detection and documentation of retinal nerve fibre layer loss following acute injury to the retrobulbar optic nerve. It seems to be a promising tool for follow up of individual glaucoma patients. PMID:11864884

  15. Mapping mitochondrial heteroplasmy in a Leydig tumor by laser capture micro-dissection and cycling temperature capillary electrophoresis.

    PubMed

    Refinetti, Paulo; Arstad, Christian; Thilly, William G; Morgenthaler, Stephan; Ekstrøm, Per Olaf

    2017-01-01

    The growth of tumor cells is accompanied by mutations in nuclear and mitochondrial genomes creating marked genetic heterogeneity. Tumors also contain non-tumor cells of various origins. An observed somatic mitochondrial mutation would have occurred in a founding cell and spread through cell division. Micro-anatomical dissection of a tumor coupled with assays for mitochondrial point mutations permits new insights into this growth process. More generally, the ability to detect and trace, at a histological level, somatic mitochondrial mutations in human tissues and tumors, makes these mutations into markers for lineage tracing. A tumor was first sampled by a large punch biopsy and scanned for any significant degree of heteroplasmy in a set of sequences containing known mutational hotspots of the mitochondrial genome. A heteroplasmic tumor was sliced at a 12 μm thickness and placed on membranes. Laser capture micro-dissection was used to take 25000 μm 2 subsamples or spots. After DNA amplification, cycling temperature capillary electrophoresis (CTCE) was used on the laser captured samples to quantify mitochondrial mutant fractions. Of six testicular tumors studied, one, a Leydig tumor, was discovered to carry a detectable degree of heteroplasmy for two separate point mutations: a C → T mutation at bp 64 and a T → C mutation found at bp 152. From this tumor, 381 spots were sampled with laser capture micro-dissection. The ordered distribution of spots exhibited a wide range of fractions of the mutant sequences from 0 to 100% mutant copies. The two mutations co-distributed in the growing tumor indicating they were present on the same genome copies in the founding cell. Laser capture microdissection of sliced tumor samples coupled with CTCE-based point mutation assays provides an effective and practical means to obtain maps of mitochondrial mutational heteroplasmy within human tumors.

  16. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  17. Practical soil analysis by laser induced breakdown spectroscopy employing subtarget supported micro mesh as a powder sample holder

    NASA Astrophysics Data System (ADS)

    Suyanto, Hery; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2017-11-01

    A practical alternative of sample preparation technique is proposed for direct powder analysis using laser-induced breakdown spectroscopy (LIBS) instead of the commonly adopted treatment of pelletizing the powder. The resulted pellet is known to suffer from reduced sensitivity of emission. Besides, it may also give rise to interfering effect from the binder emission. We introduce in this report a more practical technique of using a subtarget supported micro mesh (SSMM) powder sample holder. The LIBS spectrum of standard soil powder measured with 13 mJ 1064 nm Nd:YAG laser in 0.65 kPa ambient air is shown to exhibit the sharp emission lines of all the major elements in the sample. A comparison with the emission spectra measured from the pelletized powder, the spectrum obtained using the SSMM sample holder shows distinctly superior spectral quality marked by the absence of matrix effect found in pelletized powder samples, and the much stronger intensity due to the more effective shock wave plasma induced thermal excitation process produced by the hard subtarget in the sample holder. Repeating the measurement on a number of the standard soil samples of various Pb contents is shown to yield a linear calibration line with practically zero intercept and a detection limit of less than 10 ppm. We have thus demonstrated the viability of the proposed powder sample holder for the development of practical and quantitative powder analysis in the field.

  18. Laser Material Processing for Microengineering Applications

    NASA Technical Reports Server (NTRS)

    Helvajian, H.

    1995-01-01

    The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.

  19. Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes.

    PubMed

    Zacharatos, Filimon; Karvounis, Panagiotis; Theodorakos, Ioannis; Hatziapostolou, Antonios; Zergioti, Ioanna

    2018-06-19

    Ag nanowire (NW) networks have exquisite optical and electrical properties which make them ideal candidate materials for flexible transparent conductive electrodes. Despite the compatibility of Ag NW networks with laser processing, few demonstrations of laser fabricated Ag NW based components currently exist. In this work, we report on a novel single step laser transferring and laser curing process of micrometer sized pixels of Ag NW networks on flexible substrates. This process relies on the selective laser heating of the Ag NWs induced by the laser pulse energy and the subsequent localized melting of the polymeric substrate. We demonstrate that a single laser pulse can induce both transfer and curing of the Ag NW network. The feasibility of the process is confirmed experimentally and validated by Finite Element Analysis simulations, which indicate that selective heating is carried out within a submicron-sized heat affected zone. The resulting structures can be utilized as fully functional flexible transparent electrodes with figures of merit even higher than 100. Low sheet resistance (<50 Ohm/sq) and high visible light transparency (>90%) make the reported process highly desirable for a variety of applications, including selective heating or annealing of nanocomposite materials and laser processing of nanostructured materials on a large variety of optically transparent substrates, such as Polydimethylsiloxane (PDMS).

  20. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  1. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.; Skoulas, Evangelos; Papadopoulos, Antonis; Stratakis, Emmanuel

    2016-08-01

    The significance of the magnitude of the Prandtl number of a fluid in the propagation direction of induced convection rolls is elucidated. Specifically, we report on the physical mechanism to account for the formation and orientation of previously unexplored supra-wavelength periodic surface structures in dielectrics, following melting and subsequent capillary effects induced upon irradiation with ultrashort laser pulses. Counterintuitively, it is found that such structures exhibit periodicities, which are markedly, even multiple times, higher than the laser excitation wavelength. It turns out that the extent to which the hydrothermal waves relax depends upon the laser beam energy, produced electron densities upon excitation with femtosecond pulsed lasers, the magnitude of the induced initial local roll disturbances, and the magnitude of the Prandtl number with direct consequences on the orientation and size of the induced structures. It is envisaged that this elucidation may be useful for the interpretation of similar, albeit large-scale periodic or quasiperiodic structures formed in other natural systems due to thermal gradients, while it can also be of great importance for potential applications in biomimetics.

  2. Laser velocimetry with fluorescent dye-doped polystyrene microspheres.

    PubMed

    Lowe, K Todd; Maisto, Pietro; Byun, Gwibo; Simpson, Roger L; Verkamp, Max; Danehy, Paul M; Tiemsin, Pacita I; Wohl, Christopher J

    2013-04-15

    Simultaneous Mie scattering and laser-induced fluorescence (LIF) signals are obtained from individual polystyrene latex microspheres dispersed in an air flow. Microspheres less than 1 μm mean diameter were doped with two organic fluorescent dyes, Rhodamine B (RhB) and dichlorofluorescein (DCF), intended either to provide improved particle-based flow velocimetry in the vicinity of surfaces or to provide scalar flow information (e.g., marking one of two fluid streams). Both dyes exhibit measureable fluorescence signals that are on the order of 10(-3) to 10(-4) times weaker than the simultaneously measured Mie signals. It is determined that at the conditions measured, 95.5% of RhB LIF signals and 32.2% of DCF signals provide valid laser-Doppler velocimetry measurements compared with the Mie scattering validation rate with 6.5 W of 532 nm excitation, while RhB excited with 1.0 W incident laser power still exhibits 95.4% valid velocimetry signals from the LIF channel. The results suggest that the method is applicable to wind tunnel measurements near walls where laser flare can be a limiting factor and monodisperse particles are essential.

  3. Laser-induced forward transfer for printed electronics applications

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Sopeña, P.; González-Torres, S.; Arrese, J.; Cirera, A.; Serra, P.

    2018-02-01

    Laser-induced forward transfer (LIFT) is a printing technique based on the action of a laser pulse that is focused on a thin film of a precursor ink for getting the transfer of a droplet onto a receiver substrate. The experiments presented in this article aim to demonstrate the ability of LIFT to produce electronic circuits on paper, a substrate that is flexible, cheap and recyclable. Tests were conducted to study the printing of conductive tracks with an Ag ink. The printing of a suspension of carbon nanofibers was also studied to demonstrate the ability of LIFT for printing inks with particles with some microns in size that provoke inkjet nozzles to clog. As a proof-of-concept of the LIFT possibilities, both inks were used to print entirely by LIFT a functional humidity sensor on a piece of paper. All the LIFT experiments were performed with a Nd:YAG laser that delivers pulses of a few hundreds of ns in an attempt to approach the technique to laser systems that are already introduced in many production lines for marking and labeling.

  4. SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Agarwal, N. R.; Tommasini, M.; Fazio, E.; Neri, F.; Ponterio, R. C.; Trusso, S.; Ossi, P. M.

    2014-10-01

    Nanostructured Au and Ag thin films were obtained by nanosecond pulsed laser ablation in presence of a controlled Ar atmosphere. Keeping constant other deposition parameters such as target-to-substrate distance, incidence angle, laser wavelength and laser fluence, the film morphology, revealed by SEM, ranges from isolated NPs to island structures and sensibly depends on gas pressure (10-100 Pa) and on the laser pulse number (500-3 × 10). The control of these two parameters allows tailoring the morphology and correspondingly the optical properties of the films. The position and width of the surface plasmon resonance peak, in fact, can be varied with continuity. The films showed remarkable surface-enhanced Raman activity (SERS) that depends on the adopted deposition conditions. Raman maps were acquired on micrometer-sized areas of both silver and gold substrates selected among those with the strongest SERS activity. Organic dyes of interest in cultural heritage studies (alizarin, purpurin) have been also considered for bench marking the substrates produced in this work. Also the ability to detect the presence of biomolecules was tested using lysozyme in a label free configuration.

  5. Pump and probe spectroscopy with continuous wave quantum cascade lasers.

    PubMed

    Kirkbride, James M R; Causier, Sarah K; Dalton, Andrew R; Weidmann, Damien; Ritchie, Grant A D

    2014-02-07

    This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.

  6. Process Parameter Optimization for Wobbling Laser Spot Welding of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Vakili-Farahani, F.; Lungershausen, J.; Wasmer, K.

    Laser beam welding (LBW) coupled with "wobble effect" (fast oscillation of the laser beam) is very promising for high precision micro-joining industry. For this process, similarly to the conventional LBW, the laser welding process parameters play a very significant role in determining the quality of a weld joint. Consequently, four process parameters (laser power, wobble frequency, number of rotations within a single laser pulse and focused position) and 5 responses (penetration, width, heat affected zone (HAZ), area of the fusion zone, area of HAZ and hardness) were investigated for spot welding of Ti6Al4V alloy (grade 5) using a design of experiments (DoE) approach. This paper presents experimental results showing the effects of variating the considered most important process parameters on the spot weld quality of Ti6Al4V alloy. Semi-empirical mathematical models were developed to correlate laser welding parameters to each of the measured weld responses. Adequacies of the models were then examined by various methods such as ANOVA. These models not only allows a better understanding of the wobble laser welding process and predict the process performance but also determines optimal process parameters. Therefore, optimal combination of process parameters was determined considering certain quality criteria set.

  7. The effect of optical system design for laser micro-hole drilling process

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lan, Yin-Te; Chien, Yu-Lun; Young, Hong-Tsu

    2017-08-01

    Lasers are a promising high accuracy tool to make small holes in composite or hard material. They offer advantages over the conventional machining process, which is time consuming and has scaling limitations. However, the major downfall in laser material processing is the relatively large heat affect zone or number of molten burrs it generates, even when using nanosecond lasers over high-cost ultrafast lasers. In this paper, we constructed a nanosecond laser processing system with a 532 nm wavelength laser source. In order to enhance precision and minimize the effect of heat generation with the laser drilling process, we investigated the geometric shape of optical elements and analyzed the images using the modulation transfer function (MTF) and encircled energy (EE) by using optical software Zemax. We discuss commercial spherical lenses, including plano-convex lenses, bi-convex lenses, plano-concave lenses, bi-concave lenses, best-form lenses, and meniscus lenses. Furthermore, we determined the best lens configuration by image evaluation, and then verified the results experimentally by carrying out the laser drilling process on multilayer flexible copper clad laminate (FCCL). The paper presents the drilling results obtained with different lens configurations and found the best configuration had a small heat affect zone and a clean edge along laser-drilled holes.

  8. Patterning of organic photovoltaic on R2R processed thin film barriers using IR laser sources

    NASA Astrophysics Data System (ADS)

    Fledderus, H.; Akkerman, H. B.; Salem, A.; Friedrich Schilling, N.; Klotzbach, U.

    2017-02-01

    We present the development of laser processes for flexible OPV on roll-to-roll (RR2R) produced thin film barrier with indium tin oxide (ITO) as transparent conductive (TC) bottom electrode. Direct laser structuring of ITO on such barrier films (so-called P1 process) is very challenging since the layers are all transparent, a complete electrical isolation is required, and the laser process should not influence the barrier performance underneath the scribes. Based on the optical properties off the SiN and ITTO, ultra-short pulse lasers inn picosecond and femtosecond regime with standard infrared (IR) wavelength as well as lasers with new a wavelength (22 μm regime) are tested for this purpose. To determine a process window for a specific laser a fixed methodology is adopted. Single pulse ablation tests were followed by scribing experiments where the pulse overlap was tuned by varying laser pulse fluence, writing speed and frequency. To verify that the laser scribing does not result inn barrier damage underneath, a new test method was developed based on the optical Ca-test. This method shows a clear improvement in damage analysis underneath laser scribes over normal optical inspection methods (e.g. microscope, optical profiler, SEM). This way clear process windows can be obtained for IR TC patterning.

  9. Evaluation of laser cutting process with auxiliary gas pressure by soft computing approach

    NASA Astrophysics Data System (ADS)

    Lazov, Lyubomir; Nikolić, Vlastimir; Jovic, Srdjan; Milovančević, Miloš; Deneva, Heristina; Teirumenieka, Erika; Arsic, Nebojsa

    2018-06-01

    Evaluation of the optimal laser cutting parameters is very important for the high cut quality. This is highly nonlinear process with different parameters which is the main challenge in the optimization process. Data mining methodology is one of most versatile method which can be used laser cutting process optimization. Support vector regression (SVR) procedure is implemented since it is a versatile and robust technique for very nonlinear data regression. The goal in this study was to determine the optimal laser cutting parameters to ensure robust condition for minimization of average surface roughness. Three cutting parameters, the cutting speed, the laser power, and the assist gas pressure, were used in the investigation. As a laser type TruLaser 1030 technological system was used. Nitrogen as an assisted gas was used in the laser cutting process. As the data mining method, support vector regression procedure was used. Data mining prediction accuracy was very high according the coefficient (R2) of determination and root mean square error (RMSE): R2 = 0.9975 and RMSE = 0.0337. Therefore the data mining approach could be used effectively for determination of the optimal conditions of the laser cutting process.

  10. Laser 3D micro-manufacturing

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.

    2016-06-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.

  11. Multi-Mission Laser Altimeter Data Processing and Co-Registration of Image and Laser Data at DLR

    NASA Astrophysics Data System (ADS)

    Stark, A.; Matz, K.-D.; Roatsch, T.

    2018-04-01

    We designed a system for the processing and storage of large laser altimeter data sets for various past and operating laser altimeter instruments. Furthermore, we developed a technique to accurately co-register multi-mission laser and image data.

  12. Study on the high-frequency laser measurement of slot surface difference

    NASA Astrophysics Data System (ADS)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  13. Lasers for industrial production processing: tailored tools with increasing flexibility

    NASA Astrophysics Data System (ADS)

    Rath, Wolfram

    2012-03-01

    High-power fiber lasers are the newest generation of diode-pumped solid-state lasers. Due to their all-fiber design they are compact, efficient and robust. Rofin's Fiber lasers are available with highest beam qualities but the use of different process fiber core sizes enables the user additionally to adapt the beam quality, focus size and Rayleigh length to his requirements for best processing results. Multi-mode fibers from 50μm to 600μm with corresponding beam qualities of 2.5 mm.mrad to 25 mm.mrad are typically used. The integrated beam switching modules can make the laser power available to 4 different manufacturing systems or can share the power to two processing heads for parallel processing. Also CO2 Slab lasers combine high power with either "single-mode" beam quality or higher order modes. The wellestablished technique is in use for a large number of industrial applications, processing either metals or non-metallic materials. For many of these applications CO2 lasers remain the best choice of possible laser sources either driven by the specific requirements of the application or because of the cost structure of the application. The actual technical properties of these lasers will be presented including an overview over the wavelength driven differences of application results, examples of current industrial practice as cutting, welding, surface processing including the flexible use of scanners and classical optics processing heads.

  14. Laser materials processing facility

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.

    1982-01-01

    The laser materials processing facility and its capabilities are described. A CO2 laser with continuous wave, repetitive pulse, and shaped power-time cycles is employed. The laser heated crystal growth station was used to produce metal and metal oxide single crystals and for cutting and shaping experiments using Si3N4 to displace diamond shaping processes.

  15. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    PubMed

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (< 20 micros) CO(2) laser pulses at 9.6 microm and for Q-switched erbium laser pulses at 2.79 and 2.94 microm. Droplets of water applied to the surface before ablation significantly reduced the residual heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  16. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  17. The Mixed Processing Models Development Of Thermal Fracture And Laser Ablation On Glass Substrate

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Cheng; Wu, Wen-Hong; Tseng, Shih-Feng; Hwang, Chi-Hung

    2011-01-01

    As the industries of cell phone and LCD TV were vigorously flourishing and the manufacturing requirements for LCD glass substrate were getting higher, the thermal fracture cutting technology (TFCT) has progressively become the main technology for LCD glass substrate cutting. Due to using laser as the heat source, the TFCT has many advantages, such as uniform heating, small heat effect zone, and high cutting speed, smooth cutting surface and low residual stress, etc. Moreover, a general laser ablation processing or traditional diamond wheel cutting does not have the last two advantages. The article presents a mixed processing of glass substrate, which consists of TFCT and laser ablation mechanisms, and how to enhance the cutting speed with little ablation laser energy. In this study, a 10W Nd:YAG laser and a 40W CO2 laser are used as the heat source of TFCT and laser ablation processing, respectively. The result indicates that the speed of the mixed processing is more than twice the speed of TFCT. Furthermore, after the mixed processing, the residual stresses in the glass substrates are also smaller.

  18. Development of a water-jet assisted laser paint removal process

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2013-12-01

    The laser paint removal process usually leaves behind traces of combustion product i.e. ashes on the surface. An additional post-processing such as light-brushing or wiping by some mechanical means is required to remove the residual ash. In order to strip out the paint completely from the surface in a single step, a water-jet assisted laser paint removal process has been investigated. The 1.07 μm wavelength of Yb-fiber laser radiation has low absorption in water; therefore a high power fiber laser was used in the experiment. The laser beam was delivered on the paint-surface along with a water jet to remove the paint and residual ashes effectively. The specific energy, defined as the laser energy required removing a unit volume of paint was found to be marginally more than that for the gas-jet assisted laser paint removal process. However, complete paint removal was achieved with the water-jet assist only. The relatively higher specific energy in case of water-jet assist is mainly due to the scattering of laser beam in the turbulent flow of water-jet.

  19. Random-modulation differential absorption lidar based on semiconductor lasers and single photon counting for atmospheric CO2 sensing

    NASA Astrophysics Data System (ADS)

    Quatrevalet, M.; Ai, X.; Pérez-Serrano, A.; Adamiec, P.; Barbero, J.; Fix, A.; Rarity, J. G.; Ehret, G.; Esquivias, I.

    2017-09-01

    Carbon dioxide (CO2) is the major anthropogenic greenhouse gas contributing to global warming and climate change. Its concentration has recently reached the 400-ppm mark, representing a more than 40 % increase with respect to its level prior to the industrial revolution.

  20. Travel in Adverse Weather Using Electronic Mobility Guidance Devices

    ERIC Educational Resources Information Center

    Farmer, Leicester W.

    1975-01-01

    After a discussion of the required characteristics of an ideal aid for blind individuals traveling in adverse weather, four electronic mobility guidance devices- the Mowat Sonar Sensor, the Russell E Model Pathsounder, the Bionic C-5 Laser Cane, and the Mark II Binaural Sensory Aid-are described in detail. (Author/SB)

  1. Modelling and control for laser based welding processes: modern methods of process control to improve quality of laser-based joining methods

    NASA Astrophysics Data System (ADS)

    Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt

    2017-02-01

    To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.

  2. 3D local feature BKD to extract road information from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Liu, Yuan; Dong, Zhen; Liang, Fuxun; Li, Bijun; Peng, Xiangyang

    2017-08-01

    Extracting road information from point clouds obtained through mobile laser scanning (MLS) is essential for autonomous vehicle navigation, and has hence garnered a growing amount of research interest in recent years. However, the performance of such systems is seriously affected due to varying point density and noise. This paper proposes a novel three-dimensional (3D) local feature called the binary kernel descriptor (BKD) to extract road information from MLS point clouds. The BKD consists of Gaussian kernel density estimation and binarization components to encode the shape and intensity information of the 3D point clouds that are fed to a random forest classifier to extract curbs and markings on the road. These are then used to derive road information, such as the number of lanes, the lane width, and intersections. In experiments, the precision and recall of the proposed feature for the detection of curbs and road markings on an urban dataset and a highway dataset were as high as 90%, thus showing that the BKD is accurate and robust against varying point density and noise.

  3. Simple Preoperative Ink Test as a Novel Adjunct to Intrastromal Keratopigmentation for Post-laser Peripheral Iridotomy Dysphotopsias.

    PubMed

    Ong Tone, Stephan; Li, Daniel Q; Ashkenazy, Zach; Borovik, Armand; Slomovic, Allan R; Rootman, David S; Chan, Clara C

    2017-10-01

    To describe a simple preoperative ink test as a novel adjunct to intrastromal keratopigmentation for post-laser peripheral iridotomy (LPI) dysphotopsias. A surgical marking pen is applied to the area over a peripheral iridotomy before intrastromal keratopigmentation. The patient can then assess whether there is any improvement in their symptoms of dysphotopsias. Manual intrastromal keratopigmentation can then be performed using a crescent blade into the clear cornea at 50% depth and tunneled centrally to create a pocket ensuring that the peripheral iridotomy is fully occluded. The crescent blade is coated with an alcohol-based commercially available black tattoo pigment, and the pocket is filled. We have used the preoperative ink marker test on 5 eyes in patients with post-LPI (4 temporal and 1 superior) dysphotopsias before performing intrastromal keratopigmentation, with good patient satisfaction. Patients report immediate symptomatic relief after the procedure. This ink marking technique can also be extended to help identify which iris defect is symptomatic in patients with multiple iris defects. The preoperative ink test before intrastromal keratopigmentation is a novel adjunct to the treatment of post-LPI dysphotopsias.

  4. Copper vapour laser ID labelling on metal dentures and restorations.

    PubMed

    Ling, B C; Nambiar, P; Low, K S; Lee, C K

    2003-06-01

    Denture marking is accepted as a means of identifying dentures and persons in geriatric institutions, or post-mortem during war, crimes, civil unrest, natural and mass disasters. Labelling on the acrylic resin component of the denture can easily be damaged or destroyed by fire but on cobalt-chromium components it would be more resistant. A copper vapour laser (CVL) can be used to label the cobalt-chromium components of dentures and metal restorations easily, and legibly, and miniaturised for the incorporation of more personal particulars necessary for the identification of the deceased person. The CVL beam is focussed by its optics and delivered to the material surface by the two-axis scanner mounted with mirrors. A personal computer controls the movement of the scanner and the firing of the CVL. The high peak power of the pulsed CVL is focussed to very high energy density producing plasma ablation of the alloy surface. Very fine markings of a few microns width can be produced enabling the storage of detailed information of the deceased person on a metal surface for the purpose of rapid identification.

  5. IMPROVEMENT OF EFFICIENCY OF CUT AND OVERLAY ASPHALT WORKS BY USING MOBILE MAPPING SYSTEM

    NASA Astrophysics Data System (ADS)

    Yabuki, Nobuyoshi; Nakaniwa, Kazuhide; Kidera, Hiroki; Nishi, Daisuke

    When the cut-and-overlay asphalt work is done for improving road pavement, conventional road surface elevation survey with levels often requires traffic regulation and takes much time and effort. Recently, although new surveying methods using non-prismatic total stations or fixed 3D laser scanners have been proposed in industry, they have not been adopted much due to their high cost. In this research, we propose a new method using Mobile Mapping Systems (MMS) in order to increase the efficiency and to reduce the cost. In this method, small white marks are painted at the intervals of 10m along the road to identify cross sections and to modify the elevations of the white marks with accurate survey data. To verify this proposed method, we executed an experiment and compared this method with the conventional level survey method and the fixed 3D laser scanning method at a road of Osaka University. The result showed that the proposed method had a similar accuracy with other methods and it was more efficient.

  6. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2017-11-01

    Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.

  7. Component-Level Selection and Qualification for the Global Ecosystem Dynamics Investigation (GEDI) Laser Altimeter Transmitter

    NASA Technical Reports Server (NTRS)

    Frese, Erich A.; Chiragh, Furqan L.; Switzer, Robert; Vasilyev, Aleksey A.; Thomes, Joe; Coyle, D. Barry; Stysley, Paul R.

    2018-01-01

    Flight quality solid-state lasers require a unique and extensive set of testing and qualification processes, both at the system and component levels to insure the laser's promised performance. As important as the overall laser transmitter design is, the quality and performance of individual subassemblies, optics, and electro-optics dictate the final laser unit's quality. The Global Ecosystem Dynamics Investigation (GEDI) laser transmitters employ all the usual components typical for a diode-pumped, solid-state laser, yet must each go through their own individual process of specification, modeling, performance demonstration, inspection, and destructive testing. These qualification processes and results for the laser crystals, laser diode arrays, electro-optics, and optics, will be reviewed as well as the relevant critical issues encountered, prior to their installation in the GEDI flight laser units.

  8. Nano-optical information storage induced by the nonlinear saturable absorption effect

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong; Liu, Shuang; Geng, Yongyou; Wang, Yang; Li, Xiaoyi; Wu, Yiqun; Dun, Aihuan

    2011-08-01

    Nano-optical information storage is very important in meeting information technology requirements. However, obtaining nanometric optical information recording marks by the traditional optical method is difficult due to diffraction limit restrictions. In the current work, the nonlinear saturable absorption effect is used to generate a subwavelength optical spot and to induce nano-optical information recording and readout. Experimental results indicate that information marks below 100 nm are successfully recorded and read out by a high-density digital versatile disk dynamic testing system with a laser wavelength of 405 nm and a numerical aperture of 0.65. The minimum marks of 60 nm are realized, which is only about 1/12 of the diffraction-limited theoretical focusing spot. This physical scheme is very useful in promoting the development of optical information storage in the nanoscale field.

  9. Lasers in Materials Processing

    NASA Astrophysics Data System (ADS)

    Kukreja, L. M.; Paul, C. P.; Kumar, Atul; Kaul, R.; Ganesh, P.; Rao, B. T.

    Laser is undoubtedly one of the most important inventions of the twentieth century. Today, it is widely deployed for a cornucopia of applications including materials processing. Different lasers such as CO2, Nd:YAG, excimer, copper vapor, diode, fiber lasers, etc., are being used extensively for various materials processing applications like cutting, welding, brazing, surface treatment, peening, and rapid manufacturing by adopting conventional and unconventional routes with unprecedented precision. In view of its potential for providing solution to the emerging problems of the industrial materials processing and manufacturing technologies, a comprehensive program on laser materials processing and allied technologies was initiated at our laboratory. A novel feature-based design and additive manufacturing technologies facilitated the laser rapid manufacturing of complex engineering components with superior performance. This technology is being extended for the fabrication of anatomically shaped prosthetics with internal heterogeneous architectures. Laser peening of spring steels brought significant improvement in its fatigue life. Laser surface treatments resulted in enhanced intergranular corrosion resistance of AISI 316(N) and 304 stainless steel. Parametric dependence of laser welding of dissimilar materials, AISI 316M stainless steel with alloy D9, was established for avoiding cracks under optimum processing conditions. In the domain of laser cutting and piercing, the development of a power ramped pulsed mode with high pulse repetition frequency and low duty cycle scheme could produce highly circular, narrow holes with minimum spattered pierced holes. A review of these experimental and some theoretical studies is presented and discussed in this chapter. These studies have provided deeper insight of fascinating laser-based materials processing application for industrial manufacturing technologies.

  10. A Comparison Between Mechanical And Electrochemical Tests on Ti6Al4V Welded By LBW

    NASA Astrophysics Data System (ADS)

    Serroni, G.; Bitondo, C.; Astarita, A.; Scala, A.; Gloria, A.; Prisco, U.; Squillace, A.; Bellucci, F.

    2011-05-01

    Titanium and its alloys are nowadays widely used in many sectors: in the medical field (orthopedic and dental ones), in the architectural field, in the chemical plants field and in aeronautic. In this last field it is more and more used both for its contribution to make lightweight and time durable structures and for its compatibility with new materials, first of all Carbon Fiber Reinforced Plastics (CFRP). To this aim, lots of researches are now focusing on new and emerging technologies capable to make titanium objects and, at the same time, reducing the scrap, since titanium alloys for aeronautic application are very expensive. This paper examines Grade 5 Titanium Alloy (Ti6Al4V) welded by Laser Beam (LBW) in butt-joint configuration. The source was Nd:YAG laser, moreover two inert gases were used, in order to provide a shield both on the top and on the bottom of the weld bead. The joints were studied by varying two process parameters: welding speed and power of the laser beam. It was not possible to realize a full experimental plan, due to technological limits in making titanium laser beam welds. The joints were tested to measure their mechanical properties and the corrosion resistance. The process parameters do not significantly affect the maximum static strength of the joints. Microscopic analysis showed that welds made with high power and low welding speed have a uniform weld bead, and no macroscopic defect occurs. Fatigue test results, instead, show a marked influence of the morphology of the weld bead: the occurrence of some defects, such as the undercut, both on the top and on the bottom of the weld bead, dramatically reduced fatigue resistance of the joints. Corrosion resistance was studied using the electrochemical micro cell technique, which allows to distinguish electrochemical properties of each zone of the weld bead, even when, as in this case, they are very narrow. By a general point of view, it has been demonstrated that the joints showing the best mechanical performances also possess better electrochemical properties. What's more, in these cases, the weld bead shows a cathodic behavior with respect to the parent material.

  11. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Berzak Hopkins, L. F.; Ma, T.; Ralph, J. E.; Albert, F.; Benedetti, L. R.; Celliers, P. M.; Döppner, T.; Goyon, C. S.; Izumi, N.; Jarrott, L. C.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Kyrala, G. A.; Nagel, S. R.; Pak, A. E.; Patel, P.; Rosen, M. D.; Rygg, J. R.; Schneider, M. B.; Turnbull, D. P.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2016-11-01

    Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 ×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

  12. Line spread instrumentation for propagation measurements

    NASA Technical Reports Server (NTRS)

    Bailey, W. H., Jr.

    1980-01-01

    A line spread device capable of yielding direct measure of a laser beam's line spread function (LSF) was developed and employed in propagation tests conducted in a wind tunnel to examine optimal acoustical suppression techniques for laser cavities exposed to simulated aircraft aerodynamic environments. Measurements were made on various aerodynamic fences and cavity air injection techniques that effect the LSF of a propagating laser. Using the quiescent tunnel as a control, the relative effect of each technique on laser beam quality was determined. The optical instrument employed enabled the comparison of relative beam intensity for each fence or mass injection. It was found that fence height had little effect on beam quality but fence porosity had a marked effect, i.e., 58% porosity alleviated cavity resonance and degraded the beam the least. Mass injection had little effect on the beam LSF. The use of a direct LSF measuring device proved to be a viable means of determining aerodynamic seeing qualities of flow fields.

  13. Preface: LCS 2014

    NASA Astrophysics Data System (ADS)

    Kaminskii, Alexander; Hreniak, Dariusz; Ueda, Ken-ichi; Strek, Wieslaw

    2015-12-01

    The beginning of this century was marked by achievements of ceramists in obtaining high-clarity garnet oxide ceramics. Designed by this time new power semiconductor pumping sources helped demonstrate their laser potential. It became really obvious that originated a new and promising research field in material science and laser physics, which we now call the laser ceramics. Ten years ago, clearly understanding of its scientific value and practical appeal of this complex scientific direction, we as witnesses and active participants in its development, we found it necessary to organize an international symposium where all the concerned scientists, PhD students and students assemble to discuss current aspects of this problem. The first Laser Ceramic Symposium was successfully held in Poland at the end of 2005 in Warsaw. After 10 years and organizing the Symposium in turn, in Japan, France, P.R. China, Spain, Germany, Singapore, Russia, and South Korea, the anniversary, 10th Symposium has been organized again in Poland, in the city of Wroclaw.

  14. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility.

    PubMed

    Hinkel, D E; Berzak Hopkins, L F; Ma, T; Ralph, J E; Albert, F; Benedetti, L R; Celliers, P M; Döppner, T; Goyon, C S; Izumi, N; Jarrott, L C; Khan, S F; Kline, J L; Kritcher, A L; Kyrala, G A; Nagel, S R; Pak, A E; Patel, P; Rosen, M D; Rygg, J R; Schneider, M B; Turnbull, D P; Yeamans, C B; Callahan, D A; Hurricane, O A

    2016-11-25

    Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

  15. S100a8/NF-κB signal pathway is involved in the 800-nm diode laser-induced skin collagen remodeling.

    PubMed

    Ren, Xiaolin; Ge, Minggai; Qin, Xiaofeng; Xu, Peng; Zhu, Pingya; Dang, Yongyan; Gu, Jun; Ye, Xiyun

    2016-05-01

    The 800-nm diode laser is widely used for hair removal and also promotes collagen synthesis, but the molecular mechanism by which dermis responses to the thermal damage induced by the 800-nm diode laser is still unclear. Ten 2-month-old mice were irradiated with the 800-nm diode laser at 20, 40, and 60 J/cm(2), respectively. Skin samples were taken for PCR, Western blot analysis, and histological study at day 3 or 30 after laser irradiation. The expression of S100a8 and its two receptors (advanced glycosylation end product-specific receptor, RAGE and toll-like receptor 4, TRL4) was upregulated at day 3 after laser treatments. P-p65 levels were also elevated, causing the increase of cytokine (tumor necrosis factor, TNF-α and interleukin 6, IL-6) and MMPs (MMP1a, MMP9). At day 30, PCR and Western blot analysis showed significant increase of type I and III procollagen in the dermis treated with laser. Importantly, skin structure was markedly improved in the laser-irradiated skin compared with the control. Thus, it seemed that S100a8 upregulation triggered NF-κB signal pathway through RAGE and TLR4, responding to laser-induced dermis wound healing. The involvement of the NF-κB pathway in MMP gene transcription promoted the turnover of collagen in the skin, accelerating new collagen synthesis.

  16. Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at lambda=9.6 and 10.6 um

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Ragadio, Jerome N.; Akrivou, Maria; Featherstone, John D.; Murray, Michael W.; Dickenson, Kevin M.

    2001-04-01

    Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed transverse excited atmospheric pressure (TEA) laser systems optimally tuned to the highly absorbed 9.6 micrometers wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce an initial high energy spike at the beginning of the laser pulse of submicrosecond duration followed by a long tail of about 1 - 4 microsecond(s) . The pulse duration is well matched to the 1 - 2 microsecond(s) thermal relaxation time of the deposited laser energy at 9.6 micrometers and effectively heats the enamel to the temperatures required for surface modification at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk of pulpal necrosis from excessive heat accumulation is minimized. At higher fluences, the high peak power of the laser pulse rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By lengthening the laser pulse to reduce the energy distributed in the initial high energy spike, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.

  17. Controllable laser thermal cleavage of sapphire wafers

    NASA Astrophysics Data System (ADS)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  18. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  19. Laser-shock damage of iron-based materials

    NASA Astrophysics Data System (ADS)

    Chu, Jinn P.; Banas, Grzegorz; Lawrence, Frederick V.; Rigsbee, James M.; Elsayed-Ali, Hani E.

    1993-05-01

    The effects of laser shock processing on the microstructure and mechanical properties of the manganese (1 percent C and 14 percent Mn) steels have been low carbon (0.04 wt. percent C) and Hadfield studied. Laser shock processing was performed with a 1.054 micrometers wavelength Nd-phosphate laser operating in a pulse mode (600 ps pulse length and up to 200 J energy) with power densities above 10 to the 11th power W/cm2. Shock waves were generated by volume expansion of the plasma formed when the material was laser irradiated. Maximum shock wave intensities were obtained using an energy-absorbing black paint coating without a plasma-confining overlay. Maximum modification of compressive residual stresses were achieved when laser shock processing induced deformation occurred without melting. Mechanical properties were improved through modifying the microstructure by laser shock processing. High density arrays of dislocations (greater than 10 to the 11th power/cm2) were generated in low carbon steel by high strain-rate deformation of laser shock processing, resulting in surface hardness increases of 30 to 80 percent. In austenitic Hadfield steel, laser shock processing caused extensive formation of Epsilon-hcp martensite (35 vol. percent), producing increases of 50 to 130 percent in surface hardness. The laser shock processing strengthening effect in Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to presence of the Epsilon-hcp martensite.

  20. Managing the replacement cycle of laser inventory.

    PubMed

    Davis, C E

    1992-01-01

    Medical lasers are quickly moving into the replacement phase of technology management. Barnes Hospital (St. Louis, MO) is using its laser team to define a process of planned laser replacement using the experience gained from traditional medical equipment replacement cycles, quality improvement principles and tools, and other formalized interdisciplinary teams. The process described in this paper has six basic steps: (1) A decision is made to request a replacement laser. (2) An appropriation request form is completed and submitted with the clinical and/or technical justifications. (3) Those requests initiated outside of the Clinical Engineering Department are reviewed by the Clinical Engineer/Medical Laser Safety Officer (CE/MLSO). (4) The CE/MLSO presents the requests to the hospital Laser Committee, and (5) then to the Laser Users' Group. (6) Finally, an Expenditure Authorization Committee reviews all capital expense requests, including those for replacement lasers, and allocates funds for the next fiscal year. This paper illustrates and evaluates the process, using an example from the review process for 1993 equipment purchases at Barnes Hospital.

  1. Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction.

    PubMed

    Ichikawa, Tetsuo; Hayasaki, Yoshio; Fujita, Keiji; Nagao, Kan; Murata, Masayo; Kawano, Takanori; Chen, JianRong

    2006-12-01

    The purpose of this study was to evaluate the feasibility of using a femtosecond pulse laser processing technique to store information on a dental prosthesis. Commercially pure titanium plates were processed by a femtosecond pulse laser system. The processed surface structure was observed with a reflective illumination microscope, scanning electron microscope, and atomic force microscope. Processed area was an almost conical pit with a clear boundary. When laser pulse energy was 2 microJ, the diameter and depth were approximately 10microm and 0.2 microm respectively--whereby both increased with laser pulse energy. Further, depth of pit increased with laser pulse number without any thermal effect. This study showed that the femtosecond pulse processing system was capable of recording personal identification and optional additional information on a dental prosthesis.

  2. Fabricating solar cells with silicon nanoparticles

    DOEpatents

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  3. Process observation in fiber laser-based selective laser melting

    NASA Astrophysics Data System (ADS)

    Thombansen, Ulrich; Gatej, Alexander; Pereira, Milton

    2015-01-01

    The process observation in selective laser melting (SLM) focuses on observing the interaction point where the powder is processed. To provide process relevant information, signals have to be acquired that are resolved in both time and space. Especially in high-power SLM, where more than 1 kW of laser power is used, processing speeds of several meters per second are required for a high-quality processing results. Therefore, an implementation of a suitable process observation system has to acquire a large amount of spatially resolved data at low sampling speeds or it has to restrict the acquisition to a predefined area at a high sampling speed. In any case, it is vitally important to synchronously record the laser beam position and the acquired signal. This is a prerequisite that allows the recorded data become information. Today, most SLM systems employ f-theta lenses to focus the processing laser beam onto the powder bed. This report describes the drawbacks that result for process observation and suggests a variable retro-focus system which solves these issues. The beam quality of fiber lasers delivers the processing laser beam to the powder bed at relevant focus diameters, which is a key prerequisite for this solution to be viable. The optical train we present here couples the processing laser beam and the process observation coaxially, ensuring consistent alignment of interaction zone and observed area. With respect to signal processing, we have developed a solution that synchronously acquires signals from a pyrometer and the position of the laser beam by sampling the data with a field programmable gate array. The relevance of the acquired signals has been validated by the scanning of a sample filament. Experiments with grooved samples show a correlation between different powder thicknesses and the acquired signals at relevant processing parameters. This basic work takes a first step toward self-optimization of the manufacturing process in SLM. It enables the addition of cognitive functions to the manufacturing system to the extent that the system could track its own process. The results are based on analyzing and redesigning the optical train, in combination with a real-time signal acquisition system which provides a solution to certain technological barriers.

  4. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Mahamood, Rasheedat M.

    2018-03-01

    Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.

  5. Impurity and defect interactions during laser thermal annealing in Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milazzo, R., E-mail: ruggero.milazzo@unipd.it; De Salvador, D.; Carnera, A.

    2016-01-28

    The microscopic mechanisms involving dopants, contaminants, and defects in Ge during pulsed melting laser thermal annealing (LTA) are investigated in detail. Samples both un-implanted and implanted with As or B are processed by LTA as well as characterized in terms of chemical (1D and 3D), electrical, and strain profiling. The clustering of As is directly measured by 3D chemical profiling and correlated with its partial electrical activation along with a reduction of the lattice strain induced by As atoms. A semi-quantitative microscopic model involving the interaction with mobile As-vacancy (AsV) complexes is proposed to describe the clustering mechanism. Boron ismore » shown to follow different clustering behavior that changes with depth and marked by completely different strain levels. Oxygen penetrates from the surface into all the samples as a result of LTA and, only in un-implanted Ge, it occupies an interstitial position inducing also positive strain in the lattice. On the contrary, data suggest that the presence of As or B forces O to assume different configurations with negligible strain, through O-V or O-B interactions for the two dopant species, respectively. These data suggest that LTA does not inject a significant amount of vacancies in Ge, at variance with Si, unless As atoms or possibly other n-type dopants are present. These results have to be carefully considered for modeling the LTA process in Ge and its implementation in technology.« less

  6. Laser-induced transfer of gel microdroplets for cell printing

    NASA Astrophysics Data System (ADS)

    Yusupov, V. I.; Zhigar'kov, V. S.; Churbanova, E. S.; Chutko, E. A.; Evlashin, S. A.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Bagratashvili, V. N.

    2017-12-01

    We study thermal and transport processes involved in the transfer of gel microdroplets under the conditions of laser cell microprinting. The specific features of the interaction of pulsed laser radiation ( λ = 1.064 µm, pulse duration 4 - 200 ns, energy 2 µJ - 1 mJ) with the absorbing gold film deposited on the glass donor substrate are determined. The investigation of the dynamics of transport processes by means of fast optical video recording and optoacoustic methods makes it possible to determine the characteristics of the produced gel jets as functions of the laser operation regimes. The hydrodynamic process of interaction between the laser radiation and the gold coating with the hydrogel layer on it is considered and the temperature in the region of the laser pulse action is estimated. It is shown that in the mechanism of laser-induced transfer a significant role is played by the processes of explosive boiling of water (in gel) and gold. The amount of gold nanoparticles arriving at the acceptor plate in the process of the laser transfer is determined. For the laser pulse duration 8 ns and small energies (less than 10 µJ), the fraction of gold nanoparticles in the gel microdroplets is negligibly small, and their quantity linearly grows with increasing pulse energy. The performed studies offer a base for optimising the processes of laser transfer of gel microdroplets in the rapidly developing technologies of cell microprinting.

  7. Experimental investigation of the laser ablation process on wood surfaces

    NASA Astrophysics Data System (ADS)

    Panzner, M.; Wiedemann, G.; Henneberg, K.; Fischer, R.; Wittke, Th.; Dietsch, R.

    1998-05-01

    Processing of wood by conventional mechanical tools like saws or planes leaves behind a layer of squeezed wood only slightly adhering to the solid wood surface. Laser ablation of this layer could improve the durability of coatings and glued joints. For technical applications, thorough knowledge about the laser ablation process is necessary. Results of ablation experiments by excimer lasers, Nd:YAG lasers, and TEA-CO 2 lasers on surfaces of different wood types and cut orientations are shown. The process of ablation was observed by a high-speed camera system and optical spectroscopy. The influence of the experimental parameters are demonstrated by SEM images and measurement of the ablation rate depending on energy density. Thermal effects like melting and also carbonizing of cellulose were found for IR- and also UV-laser wavelengths. Damage of the wood surface after laser ablation was weaker for excimer lasers and CO 2-TEA lasers. This can be explained by the high absorption of wood in the ultraviolet and middle infrared spectral range. As an additional result, this technique provides an easy way for preparing wood surfaces with excellently conserved cellular structure.

  8. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    NASA Astrophysics Data System (ADS)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization and multi-level quad-loop stabilization of the output power of the laser.2 In addition to the well-established platform latest developments addressed single-pulse energies up to 50 μJ and made femtosecond pulse durations available for the TruMicro Series 2000. Beyond these stabilization aspects this laser architecture together with other optical modules and combined with smart laser control software enables process-driven adjustments of the parameters (e. g. repetition rate, multi-pulse functionalities, pulse energy, pulse duration) by external signals, which will be presented in this work.

  9. Transparency of the strong shock-compressed diamond for 532 nm laser light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyu; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhao, Yang

    2016-04-15

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probemore » laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.« less

  10. Influence of low-level laser radiation on kidney functions

    NASA Astrophysics Data System (ADS)

    Koultchavenia, Ekaterina V.

    1998-12-01

    Most of all renal diseases are accompanied by lowering of kidney functions. That makes the quality of the treatment worse. On an example 69 patients receiving Low-Level Laser Therapy (LLLT), the influence of the laser radiation on a contracting system of blood, on current of an active and inactive tubercular inflammation and on partial functions of kidneys were investigated. Is established, that LLLT does not render influence to a contracting system; promotes stopping of unspecific and moderate peaking of a specific inflammation of kidneys. Is proved, that after a rate of laserotherapy the improving of a blood micricirculation in kidney occurs in 57.9% of patients; a secretion - in 63.1% of the patients; a stimulation of urodynamic is fixed in 79% of cases. Magnification of diuresis, improving filtration and concentration functions of kidneys also is marked.

  11. [Astigmatism correction with Excimer laser].

    PubMed

    Gauthier, L

    2012-03-01

    Excimer laser is the best and the more used technique for Astigmatism correction. Lasik is generally preferred to PRK and must be the choice for hyperopic and mix astigmatisms. Myopic astigmatisms are the easier cases to treat: the length of the photoablation is placed on the flat meridian. Hyperopic and mix astigmatisms are more difficult to correct because they are more technically demanding and because the optical zone of the photoablation must be large. Flying spots lasers are the best for these cases. The most important point is to trace the photoablation very precisely on the astigmatism axis. The use of eye trackers with iris recognition or a preoperative marking of the reference axis avoid cyclotorsion or a wrong position of the head. Irregular astigmatism are better corrected with topoguided or wavefront guided photoablations. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Random laser in biological tissues impregnated with a fluorescent anticancer drug

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Urgellés, M.; Marrero-Alonso, J.; Marín, R.; Saavedra, C. J.; Boto, A.; Díaz, M.

    2015-04-01

    We have demonstrated that chemically modified anticancer drugs can provide random laser (RL) when infiltrated in a biological tissue. A fluorescent biomarker has been covalently bound to tamoxifen, which is one of the most frequently used drugs for breast cancer therapy. The light emitted by the drug-dye composite is scattered in tissue, which acts as a gain medium. Both non-coherent and coherent RL regimes have been observed. Moreover, the analysis of power Fourier transforms of coherent RL spectra indicates that the tissues show a dominant random laser cavity length of about 18 µm, similar to the average size of single cells. These results show that RL could be obtained from other drugs, if properly marked with a fluorescent tag, which could be appealing for new forms of combined opto-chemical therapies.

  13. Laser Brazing of High Temperature Braze Alloy

    NASA Technical Reports Server (NTRS)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of the braze materials and tube substrate. Metallography of the laser braze joint was compared to the furnace braze. SEM Energy Disperse X-Ray Spectra (EDX) and back scattered imaging were used to analyze braze alloy segregation. Although all of the laser systems, CO2, ND:YAG, and direct diode laser produced good braze joint, the direct diode laser was selected for its system simplicity, compactness and portability. Excellent laser and braze alloy coupling is observed with powder alloy compared to braze alloy wire. Good wetting is found with different gold based braze alloys. The laser brazing process can be optimized so that the adverse affect on the parent materials can be eliminated. Metallography of the laser braze joint has shown that quality braze joint was produced with laser brazing process. Penetration of the laser braze to the substrate is at neglectable level. Zero penetration is observed. Microstructure examinations shown that no observable changes of the microstructure (grain structure and precipitation) in the HAZ area between laser braze and furnace braze. Wide gaps can be laser brazed with single pass for up to 0.024 inches. Finer dendritic structure is observed in laser brazing compared with equiaxial and coarser grain of the furnace brazing microstructure. Greater segregation is also found in the furnace braze. Higher hardness of the laser braze joint comparing to furnace braze is observed due to the fast cooling rate and Finer microstructure in the laser brazing. Laser braze joint properties meet or exceed the furnace joint properties. Direct diode laser for thin section tube brazing with high temperature braze alloys have been successfully demonstrated. The laser's high energy density and precise control has shown significant advantages in reducing process heat input to the substrates and provide high quality braze joints comparing to other localized braze process such as torch, TIG, and MPTA processes. Significant cost savings can be realized particularly with localized braze comparing to a full furnace braze cycle.

  14. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  15. Laser welding of polymers: phenomenological model for a quick and reliable process quality estimation considering beam shape influences

    NASA Astrophysics Data System (ADS)

    Timpe, Nathalie F.; Stuch, Julia; Scholl, Marcus; Russek, Ulrich A.

    2016-03-01

    This contribution presents a phenomenological, analytical model for laser welding of polymers which is suited for a quick process quality estimation for the practitioner. Besides material properties of the polymer and processing parameters like welding pressure, feed rate and laser power the model is based on a simple few parameter description of the size and shape of the laser power density distribution (PDD) in the processing zone. The model allows an estimation of the weld seam tensile strength. It is based on energy balance considerations within a thin sheet with the thickness of the optical penetration depth on the surface of the absorbing welding partner. The joining process itself is modelled by a phenomenological approach. The model reproduces the experimentally known process windows for the main process parameters correctly. Using the parameters describing the shape of the laser PDD the critical dependence of the process windows on the PDD shape will be predicted and compared with experiments. The adaption of the model to other laser manufacturing processes where the PDD influence can be modelled comparably will be discussed.

  16. Spike processing with a graphene excitable laser

    PubMed Central

    Shastri, Bhavin J.; Nahmias, Mitchell A.; Tait, Alexander N.; Rodriguez, Alejandro W.; Wu, Ben; Prucnal, Paul R.

    2016-01-01

    Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved “spiking” of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate a unified platform for spike processing with a graphene-coupled laser system. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation—fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system and also propose and simulate an analogous integrated device. The addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms. PMID:26753897

  17. Laser patterning of laminated structures for electroplating

    DOEpatents

    Mayer, Steven T.; Evans, Leland B.

    1993-01-01

    A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale.

  18. Laser patterning of laminated structures for electroplating

    DOEpatents

    Mayer, S.T.; Evans, L.B.

    1993-11-23

    A process for laser patterning of a substrate so that it can be subsequently electroplated or electrolessly plated. The process utilizes a laser to treat an inactive (inert) layer formed over an active layer to either combine or remove the inactive layer to produce a patterned active layer on which electrodeposition can occur. The process is carried out by utilizing laser alloying and laser etching, and involves only a few relatively high yield steps and can be performed on a very small scale. 9 figures.

  19. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  20. Silver-free solar cell interconnection by laser spot welding of thin aluminum layers: analysis of process limits for ns- and μs-lasers

    NASA Astrophysics Data System (ADS)

    Schulte-Huxel, H.; Blankemeyer, S.; Kajari-Schröder, S.; Brendel, R.

    2014-03-01

    We investigate a laser welding process for contacting aluminum metallized crystalline silicon solar cells to a 10-μm-thick aluminum layers on a glass substrate. The reduction of the solar cell metallization thickness is analyzed with respect to laser induced damage using SiNx passivated silicon wafers. Additionally, we measure the mechanical stress of the laser welds by perpendicular tear-off as well as the electrical contact resistance. We apply two types of laser processes; one uses one to eight 20-ns-laser pulses at 355 nm with fluences between 12 and 40 J/cm2 and the other single 1.2-μs-laser pulses at 1064 nm with 33 to 73 J/cm2. Ns laser pulses can contact down to 1-μm-thick aluminum layers on silicon without inducing laser damage to the silicon and lead to sufficient strong mechanical contact. In case of μs laser pulses the limiting thickness is 2 μm.

  1. Observing laser ablation dynamics with sub-picosecond temporal resolution

    NASA Astrophysics Data System (ADS)

    Tani, Shuntaro; Kobayashi, Yohei

    2017-04-01

    Laser ablation is one of the most fundamental processes in laser processing, and the understanding of its dynamics is of key importance for controlling and manipulating the outcome. In this study, we propose a novel way of observing the dynamics in the time domain using an electro-optic sampling technique. We found that an electromagnetic field was emitted during the laser ablation process and that the amplitude of the emission was closely correlated with the ablated volume. From the temporal profile of the electromagnetic field, we analyzed the motion of charged particles with subpicosecond temporal resolution. The proposed method can provide new access to observing laser ablation dynamics and thus open a new way to optimize the laser processing.

  2. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    NASA Astrophysics Data System (ADS)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohimer, J.P.

    The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified.

  4. Thermal effect of laser ablation on the surface of carbon fiber reinforced plastic during laser processing

    NASA Astrophysics Data System (ADS)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2018-02-01

    Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.

  5. Laser Cladding of TiAl Intermetallic Alloy on Ti6Al4V -Process Optimization and Properties

    NASA Astrophysics Data System (ADS)

    Cárcel, B.; Serrano, A.; Zambrano, J.; Amigó, V.; Cárcel, A. C.

    In order to improve Ti6Al4V high-temperature resistance and its tribological properties, the deposition of TiAl intermetallic (Ti-48Al-2Cr-2Nb) coating on a Ti6Al4V substrate by coaxial laser cladding has been investigated. Laser cladding by powder injection is an emerging laser material processing technique that allows the deposition of thick protective coatings on substrates,using a high power laser beam as heat source. Laser cladding is a multiple-parameter-dependent process. The main process parameters involved (laser power, powder feeding rate, scanning speed and preheating temperature) has been optimized. The microstructure and geometrical quantities (clad area and dilution) of the coating was characterized by optical microscopy and scanning electron microscopy (SEM). In addition the cooling rate of the clad during the process was measured by a dual-color pyrometer. This result has been related to defectology and mechanical coating properties.

  6. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  7. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

    NASA Astrophysics Data System (ADS)

    Famodimu, Omotoyosi H.; Stanford, Mark; Oduoza, Chike F.; Zhang, Lijuan

    2018-06-01

    Laser melting of aluminium alloy—AlSi10Mg has increasingly been used to create specialised products in various industrial applications, however, research on utilising laser melting of aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus, an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of aluminium metal matrix composites. The effects of several parameters of the laser melting process on the mechanical blended composite were thus investigated in this research. This included single track formations of the matrix alloy and the composite alloyed with 5% and 10% respectively for their reaction to laser melting and the fabrication of density blocks to investigate the relative density and porosity over different scan speeds. The results from these experiments were utilised in determining a process window in fabricating near-fully dense parts.

  8. The Impact on Stakeholder Confidence of Increased Transparency in the Examination Assessment Process

    ERIC Educational Resources Information Center

    Bamber, Matthew

    2015-01-01

    A group of postgraduate accounting and finance students were asked to participate in a three-phase exercise: sit an unseen past examination question; mark a fully anonymised previous student solution (exemplar); and then mark their own work. The marking process was facilitated by explaining and discussing the marking guide, assessment systems and…

  9. Building Composite Characters on a Postscript Printer.

    ERIC Educational Resources Information Center

    Gothard, James E.

    Procedures enabling the placement of diacritical markings over a character for printing in PostScript fonts on an Apple LaserWriter printer are described. The procedures involve some programming in the PostScript Language and manipulation of Adobe PostScript fonts. It is assumed that Microsoft Word will be used to create the text to be printed.…

  10. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOEpatents

    Malba, Vincent; Bernhardt, Anthony F.

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  11. Real-time laser cladding control with variable spot size

    NASA Astrophysics Data System (ADS)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  12. Laser microprocessing and nanoengineering of large-area functional micro/nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, M.; Xie, X. Z.; Yang, J.; Chen, Z. C.; Xu, L.; Choo, Y. S.; Hong, M. H.

    2011-12-01

    Laser microprocessing and nanoengineering are of great interest to both scientists and engineers, since the inspired properties of functional micro/nanostructures over large areas can lead to numerous unique applications. Currently laser processing systems combined with high speed automation ensure the focused laser beam to process various materials at a high throughput and a high accuracy over large working areas. UV lasers are widely used in both laser microprocessing and nanoengineering. However by improving the processing methods, green pulsed laser is capable of replacing UV lasers to make high aspect ratio micro-grooves on fragile and transparent sapphire substrates. Laser micro-texturing can also tune the wetting property of metal surfaces from hydrophilic to super-hydrophobic at a contact angle of 161° without chemical coating. Laser microlens array (MLA) can split a laser beam into multiple laser beams and reduce the laser spot size down to sub-microns. It can be applied to fabricate split ring resonator (SRR) meta-materials for THz sensing, surface plasmonic resonance (SPR) structures for NIR and molding tools for soft lithography. Furthermore, laser interference lithography combined with thermal annealing can obtain a large area of sub-50nm nano-dot clusters used for SPR applications.

  13. Laser beam temporal and spatial tailoring for laser shock processing

    DOEpatents

    Hackel, Lloyd; Dane, C. Brent

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  14. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    NASA Astrophysics Data System (ADS)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  15. Prediction of the spectral reflectance of laser-generated color prints by combination of an optical model and learning methods.

    PubMed

    Nébouy, David; Hébert, Mathieu; Fournel, Thierry; Larina, Nina; Lesur, Jean-Luc

    2015-09-01

    Recent color printing technologies based on the principle of revealing colors on pre-functionalized achromatic supports by laser irradiation offer advanced functionalities, especially for security applications. However, for such technologies, the color prediction is challenging, compared to classic ink-transfer printing systems. The spectral properties of the coloring materials modified by the lasers are not precisely known and may strongly vary, depending on the laser settings, in a nonlinear manner. We show in this study, through the example of the color laser marking (CLM) technology, based on laser bleaching of a mixture of pigments, that the combination of an adapted optical reflectance model and learning methods to get the model's parameters enables prediction of the spectral reflectance of any printable color with rather good accuracy. Even though the pigment mixture is formulated from three colored pigments, an analysis of the dimensionality of the spectral space generated by CLM printing, thanks to a principal component analysis decomposition, shows that at least four spectral primaries are needed for accurate spectral reflectance predictions. A polynomial interpolation is then used to relate RGB laser intensities with virtual coordinates of new basis vectors. By studying the influence of the number of calibration patches on the prediction accuracy, we can conclude that a reasonable number of 130 patches are enough to achieve good accuracy in this application.

  16. Improve the material absorption of light and enhance the laser tube bending process utilizing laser softening heat treatment

    NASA Astrophysics Data System (ADS)

    Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal

    2018-02-01

    Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.

  17. Effect of Cut Quality on Hybrid Laser Arc Welding of Thick Section Steels

    NASA Astrophysics Data System (ADS)

    Farrokhi, F.; Nielsen, S. E.; Schmidt, R. H.; Pedersen, S. S.; Kristiansen, M.

    From an industrial point of view, in a laser cutting-welding production chain, it is of great importance to know the influence of the attainable laser cut quality on the subsequent hybrid laser arc welding process. Many studies have been carried out in the literature to obtain lower surface roughness values on the laser cut edge. However, in practice, the cost and reliability of the cutting process is crucial and it does not always comply with obtaining the highest surface quality. In this study, a number of experiments on 25 mm steel plates were carried out to evaluate the influence of cut surface quality on the final quality of the subsequent hybrid laser welded joints. The different cut surfaces were obtained by different industrial cutting methods including laser cutting, abrasive water cutting, plasma cutting, and milling. It was found that the mentioned cutting methods could be used as preparation processes for the subsequent hybrid laser arc welding. However, cut quality could determine the choice of process parameters of the following hybrid laser arc welding.

  18. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    NASA Astrophysics Data System (ADS)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  19. Detection-gap-independent optical sensor design using divergence-beam-controlled slit lasers for wearable devices

    NASA Astrophysics Data System (ADS)

    Yoon, Young Zoon; Kim, Hyochul; Park, Yeonsang; Kim, Jineun; Lee, Min Kyung; Kim, Un Jeong; Roh, Young-Geun; Hwang, Sung Woo

    2016-09-01

    Wearable devices often employ optical sensors, such as photoplethysmography sensors, for detecting heart rates or other biochemical factors. Pulse waveforms, rather than simply detecting heartbeats, can clarify arterial conditions. However, most optical sensor designs require close skin contact to reduce power consumption while obtaining good quality signals without distortion. We have designed a detection-gap-independent optical sensor array using divergence-beam-controlled slit lasers and distributed photodiodes in a pulse-detection device wearable over the wrist's radial artery. It achieves high biosignal quality and low power consumption. The top surface of a vertical-cavity surface-emitting laser of 850 nm wavelength was covered by Au film with an open slit of width between 500 nm and 1500 nm, which generated laser emissions across a large divergence angle along an axis orthogonal to the slit direction. The sensing coverage of the slit laser diode (LD) marks a 50% improvement over nonslit LD sensor coverage. The slit LD sensor consumes 100% more input power than the nonslit LD sensor to obtain similar optical output power. The slit laser sensor showed intermediate performance between LD and light-emitting diode sensors. Thus, designing sensors with multiple-slit LD arrays can provide useful and convenient ways for incorporating optical sensors in wrist-wearable devices.

  20. Evaluation of primary tooth enamel surface morphology and microhardness after Nd:YAG laser irradiation and APF gel treatment--an in vitro study.

    PubMed

    Banda, Naveen Reddy; Vanaja Reddy, G; Shashikiran, N D

    2011-01-01

    Laser irradiation and fluoride has been used as a preventive tool to combat dental caries in permanent teeth, but little has been done for primary teeth which are more prone to caries. The purpose of this study was to evaluate microhardness alterations in the primary tooth enamel after Nd-YAG laser irradiation alone and combined with topical fluoride treatment either before or after Nd-YAG laser irradiation. Ten primary molars were sectioned and assigned randomly to: control group, Nd-YAG laser irradiation, Nd-YAG lasing before APF and APF followed by Nd-YAG lasing. The groups were evaluated for microhardness. Surface morphological changes were observed using SEM. Statistical comparisons were performed. The control group's SEM showed a relatively smooth enamel surface and lasing group had fine cracks and porosities. In the lasing + fluoride group a homogenous confluent surface was seen. In the fluoride + lasing group an irregular contour with marked crack propagation was noted. There was a significant increase in the microhardness of the treatment groups. Nd-YAG laser irradiation and combined APF treatment of the primary tooth enamel gave morphologically hardened enamel surface which can be a protective barrier against a cariogenic attack.

  1. Laser tissue melding: use of 1.32-μm computerized Nd:YAG laser, results of leak/burst strength studies in microsurgical procedures

    NASA Astrophysics Data System (ADS)

    Anderson, Dallas W.; Hsu, Tung M.; Halpern, Steven J.; Honaker, Arnold

    1993-07-01

    The ProClosureTM System (PCS) consists of a low power 1.32micrometers Nd:YAG laser coupled to a handheld disposable fiber optic device. The system has been designed to perform a wide range of tissue welding applications such as cosmetic skin closure,vascular surgery, and minimally invasive surgical procedures normally performed with sutures and staples. Utilizing a wavelength for tissue fusion that is least distracted by medium in the surgical field coupled with a computerized delivery system allows for a more precise application (+/- 5%) of laser energy to the tissue. The study design involved the micro-surgical anastomosis of twenty Sprague-Dawley rats (vas deferens) and twenty-one Sprague-Dawley rats (femoral arteries). Each rat is its own contralateral control. Laser repair time is approximately one-third that of conventional suturing. Postoperative dissection and burst strength testing was conducted at day 0, 1, 7, and 14. At each postoperative interval, the mean leak/burst strength for laser-assisted closure v. control, was markedly higher. The precise application of energy fluence resulting from ProClosure's computerized system yields an initial strength and a fluid static seal that is superior to conventional suture closure.

  2. Delivery of Methotrexate and Characterization of Skin Treated by Fabricated PLGA Microneedles and Fractional Ablative Laser.

    PubMed

    Nguyen, Hiep X; Banga, Ajay K

    2018-02-21

    This study investigated in vitro transdermal delivery of methotrexate through dermatomed porcine ear and cadaver human skin treated with poly (D,L-lactide-co-glycolide) acid microneedles or fractional ablative laser. PLGA microneedles were fabricated and characterized using scanning electron microscopy and mechanical assessment techniques. The integrity of treated skin was evaluated by rheometer, transepidermal water loss, and skin electrical resistance measurements. Successful skin microporation was demonstrated by dye binding, histology, pore uniformity, confocal laser microscopy, and DermaScan studies. In vitro permeation experiment was performed on Franz diffusion cells to determine drug delivery into and across the skin. Both physical treatments resulted in a considerable decrease in skin resistance and an increase in transepidermal water loss value. The laser-created microchannels were significantly larger than those formed by microneedles (p < 0.05). An effective force of 41.04 ± 18.33 N was required to achieve 100% penetration efficiency of the microneedles. For both porcine ear and human skin, laser ablation provided a significantly higher methotrexate permeability into the receptor chamber and skin layers compared to microneedle poration and untreated skin (p < 0.05). Both fractional ablative laser and polymeric microneedles markedly enhanced in vitro transdermal delivery of methotrexate into and across skin. Graphical Abstract ᅟ.

  3. COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.

    PubMed

    Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R

    2018-03-16

    To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.

  4. Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.

    2005-01-01

    Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.

  5. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Pierścińska, D.

    2018-01-01

    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  6. Computer Processing Of Tunable-Diode-Laser Spectra

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  7. Management of laser welding based on analysis informative signals

    NASA Astrophysics Data System (ADS)

    Zvezdin, V. V.; Rakhimov, R. R.; Saubanov, Ruz R.; Israfilov, I. H.; Akhtiamov, R. F.

    2017-09-01

    Features of formation precision weld of metal were presented. It has been shown that the quality of the welding process depends not only on the energy characteristics of the laser processing facility, the temperature of the surface layer, but also on the accuracy of positioning laser focus relative to seam and the workpiece surface. So the laser focus positioning accuracy is an estimate of the quality of the welding process. This approach allows to build a system automated control of the laser technological complex with the stabilization of the setpoint accuracy of of positioning of the laser beam relative to the workpiece surface.

  8. Parametric Study and Multi-Criteria Optimization in Laser Cladding by a High Power Direct Diode Laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.

  9. Dental hard tissue modification and removal using sealed TEA lasers operating at λ=9.6 and 10.6 μm

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Murray, Michael W.; Featherstone, John D. B.; Akrivou, Maria; Dickenson, Kevin M.; Duhn, Clifford W.; Ojeda, Orlando P.

    1999-05-01

    Pulsed CO2 lasers have been shown to be effective for both removal and modification of dental hard tissue for the treatment of dental caries. In this study, sealed TEA laser systems optimally tuned to the highly absorbed 9.6 μm wavelength were investigated for application on dental hard tissue. Conventional TEA lasers produce a laser pulse wit a 100-200 ns gain switched spike followed by a long tail of about 1-4 μs in duration. the pulse duration is well matched to the 1-2 μs thermal relaxation time of the deposited laser energy at 9.6 μm and effectively heats the enamel to temperatures required for surface modification for caries prevention at absorbed fluences of less than 0.5 J/cm2. Thus, the heat deposition in the tooth and the corresponding risk, of pulpal necrosis form excessive heat accumulation is minimized. At higher fluences the high peak power of the gain-switched spike rapidly initiates a plasma that markedly reduces the ablation rate and efficiency, severely limiting applicability for hard tissue ablation. By slightly stretching the pulse to reduce the energy distributed in the initial 100-200 ns of the laser pulse, the plasma threshold can be raised sufficiently to increase the ablation rate by an order of magnitude. This results in a practical and efficient CO2 laser system for caries ablation and surface modification.

  10. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan

    2016-05-11

    Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.

  11. Role of laser beam radiance in different ceramic processing: A two wavelengths comparison

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Lawrence, Jonathan

    2013-12-01

    Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.

  12. Dimensional processing of composite materials by picosecond pulsed ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Kotov, S. A.

    2017-12-01

    In this paper, an experimental study of laser dimensional processing of thermoset carbon fiber reinforced plastics with a thickness of 2 and 3 mm was performed. In the process of work test rig setup based on picosecond pulsed fiber laser with 1.06 microns wavelength and 30 W average power was developed. Experimental tests were carried out at the maximum average power, with laser beam moved by a galvanometric mirrors system. Cutting tests were executed with different scanning velocity, using different laser modes, number of repetitions, hatching distance and focal plane position without process gas. As a result of the research recommendations for the selection processing mode parameters, providing minimal heat affected zone, good kerf geometry and high cutting speed were produced.

  13. Precision and resolution in laser direct microstructuring with bursts of picosecond pulses

    NASA Astrophysics Data System (ADS)

    Mur, Jaka; Petkovšek, Rok

    2018-01-01

    Pulsed laser sources facilitate various applications, including efficient material removal in different scientific and industrial applications. Commercially available laser systems in the field typically use a focused laser beam of 10-20 μm in diameter. In line with the ongoing trends of miniaturization, we have developed a picosecond fiber laser-based system combining fast beam deflection and tight focusing for material processing and optical applications. We have predicted and verified the system's precision, resolution, and minimum achievable feature size for material processing applications. The analysis of the laser's performance requirements for the specific applications of high-precision laser processing is an important aspect for further development of the technique. We have predicted and experimentally verified that maximal edge roughness of single-micrometer-sized features was below 200 nm, including the laser's energy and positioning stability, beam deflection, the effect of spot spacing, and efficient isolation of mechanical vibrations. We have demonstrated that a novel fiber laser operating regime in bursts of pulses increases the laser energy stability. The results of our research improve the potential of fiber laser sources for material processing applications and facilitate their use through enabling the operation at lower pulse energies in bursts as opposed to single pulse regimes.

  14. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    PubMed

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  15. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    PubMed Central

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-01-01

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable. PMID:28772639

  16. Nanosecond pulse lasers for retinal applications.

    PubMed

    Wood, John P M; Plunkett, Malcolm; Previn, Victor; Chidlow, Glyn; Casson, Robert J

    2011-08-01

    Thermal lasers are routinely used to treat certain retinal disorders although they cause collateral damage to photoreceptors. The current study evaluated a confined, non-conductive thermal, 3-nanosecond pulse laser in order to determine how to produce the greatest therapeutic range without causing collateral damage. Data were compared with that obtained from a standard thermal laser. Porcine ocular explants were used; apposed neuroretina was also in place for actual laser treatment. After treatment, the retina was removed and a calcein-AM assay was used to assess retinal pigmented epithelium (RPE) cell viability in the explants. Histological methods were also employed to examine lased transverse explant sections. Three nanoseconds pulse lasers with either speckle- or gaussian-beam profile were employed in the study. Comparisons were made with a 100 milliseconds continuous wave (CW) 532 nm laser. The therapeutic energy range ratio was defined as the minimum visible effect threshold (VET) versus the minimum detectable RPE kill threshold. The 3-nanosecond lasers produced markedly lower minimum RPE kill threshold levels than the CW laser (e.g., 36 mJ/cm(2) for speckle-beam and 89 mJ/cm(2) for gaussian-beam profile nanosecond lasers vs. 7,958 mJ/cm(2) for CW laser). VET values were also correspondingly lower for the nanosecond lasers (130 mJ/cm(2) for 3 nanoseconds speckle-beam and 219 mJ/cm(2) for gaussian-beam profile vs. 1,0346 mJ/cm(2) for CW laser). Thus, the therapeutic range ratios obtained with the nanosecond lasers were much more favorable than that obtained by the CW laser: 3.6:1 for the speckle-beam and 2.5:1 for the gaussian-beam profile 3-nanosecond lasers versus 1.3:1 for the CW laser. Nanosecond lasers, particularly with a speckle-beam profile, provide a much wider therapeutic range of energies over which RPE treatment can be performed, without damage to the apposed retina, as compared with conventional CW lasers. These results may have important implications for the treatment of retinal disease. Copyright © 2011 Wiley-Liss, Inc.

  17. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, <=50um with ps laser, and <=20um with sub-ps laser, respectively was observed as a criteria of selecting the laser pulse width. The effects of laser processing parameters on speed and efficiency were also investigated. This is to explore how to provide industry users the best laser solution for device micro-fabrication with best price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.

  18. High-powered CO2 -lasers and noise control

    NASA Astrophysics Data System (ADS)

    Honkasalo, Antero; Kuronen, Juhani

    High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.

  19. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly,more » however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.« less

  20. A novel technique using high energy synchronous double-wave laser in endoscopic submucosal dissection of patients with superficial esophageal neoplasm.

    PubMed

    Yao, Jun; Li, Jun; Wang, Peng; Liu, Feng; Li, Zhaoshen

    2018-06-08

    BACKGROUND : Endoscopic submucosal dissection (ESD) has been widely used to treat superficial esophageal neoplasms (SENs). Intraoperative bleeding is one of the main concerns that makes ESD in the esophagus more difficult and time consuming with higher complication rates. We introduced a novel laser endoknife system that enabled better intraoperative hemostasis, and preliminarily investigated its feasibility in ESD for patients with SENs.  17 consecutive patients with SENs were prospectively enrolled. The laser endoknife system was used in marking and submucosal dissection. Data on therapeutic outcomes were collected and analyzed.  The median diameter of the lesions was 2.5 cm and of the resected specimens was 3.0 cm. The median procedure time was 48 minutes. Histologic evaluation revealed 15 high grade intraepithelial neoplasias and two squamous cell carcinomas. No intraoperative bleeding occurred during laser cutting and no significant complications occurred postoperatively. Curative R0 resection was achieved in all patients.  Our new laser endoknife system was feasible in the submucosal dissection of SENs and showed great prospects for future application. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Integrated calibration between digital camera and laser scanner from mobile mapping system for land vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Guihua; Chen, Hong; Li, Xingquan; Zou, Xiaoliang

    The paper presents the concept of lever arm and boresight angle, the design requirements of calibration sites and the integrated calibration method of boresight angles of digital camera or laser scanner. Taking test data collected by Applanix's LandMark system as an example, the camera calibration method is introduced to be piling three consecutive stereo images and OTF-Calibration method using ground control points. The laser calibration of boresight angle is proposed to use a manual and automatic method with ground control points. Integrated calibration between digital camera and laser scanner is introduced to improve the systemic precision of two sensors. By analyzing the measurement value between ground control points and its corresponding image points in sequence images, a conclusion is that position objects between camera and images are within about 15cm in relative errors and 20cm in absolute errors. By comparing the difference value between ground control points and its corresponding laser point clouds, the errors is less than 20cm. From achieved results of these experiments in analysis, mobile mapping system is efficient and reliable system for generating high-accuracy and high-density road spatial data more rapidly.

  2. Quality assurance for a six degrees-of-freedom table using a 3D printed phantom.

    PubMed

    Woods, Kyle; Ayan, Ahmet S; Woollard, Jeffrey; Gupta, Nilendu

    2018-01-01

    To establish a streamlined end-to-end test of a 6 degrees-of-freedom (6DoF) robotic table using a 3D printed phantom for periodic quality assurance. A 3D printed phantom was fabricated with translational and rotational offsets and an imbedded central ball-bearing (BB). The phantom underwent each step of the radiation therapy process: CT simulation in a straight orientation, plan generation using the treatment planning software, setup to offset marks at the linac, registration and corrected 6DoF table adjustments via hidden target test, delivery of a Winston-Lutz test to the BB, and verification of table positioning via field and laser lights. The registration values, maximum total displacement of the combined Winston-Lutz fields, and a pass or fail criterion of the laser and field lights were recorded. The quality assurance process for each of the three linacs were performed for the first 30 days. Within a 95% confidence interval, the overall uncertainty values for both translation and rotation were below 1.0 mm and 0.5° for each linac respectively. When combining the registration values and other uncertainties for all three linacs, the average deviations were within 2.0 mm and 1.0° of the designed translation and rotation offsets of the 3D print respectively. For all three linacs, the maximum total deviation for the Winston-Lutz test did not exceed 1.0 mm. Laser and light field verification was within tolerance every day for all three linacs given the latest guidance documentation for table repositioning. The 3D printer is capable of accurately fabricating a quality assurance phantom for 6DoF positioning verification. The end-to-end workflow allows for a more efficient test of the 6DoF mechanics while including other important tests needed for routine quality assurance. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. Optical radiation hazards of laser welding processes. Part II: CO2 laser.

    PubMed

    Rockwell, R J; Moss, C E

    1989-08-01

    There has been an extensive growth within the last five years in the use of high-powered lasers in various metalworking processes. The two types of lasers used most frequently for laser welding/cutting processes are the Neodymium-yttrium-aluminum-garnet (Nd:YAG) and the carbon dioxide (CO2) systems. When such lasers are operated in an open beam configuration, they are designated as a Class IV laser system. Class IV lasers are high-powered lasers that may present an eye and skin hazard under most common exposure conditions, either directly or when the beam has been diffusely scattered. Significant control measures are required for unenclosed (open beam), Class IV laser systems since workers may be exposed to scattered or reflected beams during the operation, maintenance, and service of these lasers. In addition to ocular and/or skin exposure hazards, such lasers also may present a multitude of nonlaser beam occupational concerns. Radiant energy measurements are reported for both the scattered laser radiation and the plasma-related plume radiations released during typical high-powered CO2 laser-target interactions. In addition, the application of the nominal hazard zone (NHZ) and other control measures also are discussed with special emphasis on Class IV industrial CO2 laser systems.

  4. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  5. Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in Direct Metal Laser Sintering Process

    NASA Astrophysics Data System (ADS)

    Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev

    2018-03-01

    Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.

  6. τ mapping of the autofluorescence of the human ocular fundus

    NASA Astrophysics Data System (ADS)

    Schweitzer, Dietrich; Kolb, Achim; Hammer, Martin; Thamm, Eike

    2000-12-01

    Changes in the autofluorescence at the living eye-ground are assumed as important mark in discovering of the pathomechanism in age-related macular degeneration. The discrimination of fluorophores is required and also the presentation of their 2D distribution. Caused by transmission of ocular media, a differentiation between fluorophores by the spectral excitation and emission range is limited. Using the laser scanner principle, the fluorescence lifetime can be measured in 2D. Keeping the maximal permissible exposure, only a very weak signal is detectable, which is optimal for application of the time- correlated single photon counting (TCSPC). In an experimental set-up, pulses of an active model locked Ar+ laser (FWHM = 300 ps, reptition rate = 77.3 MHz, selectable wavelengths: 457.9, 465.8, 472.7, 496.5, 501.7, 514.5 nm)excite the eye-ground during the scanning process. A routing module realizes the synchronization between scanning and TCSPC. Investigation of structured samples of Rhodamin 6G and of Coumarin 522 showed that a mono-exponential decay can be calculated with an error of less than 10 percent using only a few hundred photons. The maximum likelihood algorithm delivers the most correct results. A first in vivo tau-image, exhibit a lifetime of 1.5 ns in the nasal part and 5 ns at large retinal vessels.

  7. Study of time reversibility/irreversibility of cardiovascular data: theoretical results and application to laser Doppler flowmetry and heart rate variability signals

    NASA Astrophysics Data System (ADS)

    Humeau-Heurtier, Anne; Mahé, Guillaume; Chapeau-Blondeau, François; Rousseau, David; Abraham, Pierre

    2012-07-01

    Time irreversibility can be qualitatively defined as the degree of a signal for temporal asymmetry. Recently, a time irreversibility characterization method based on entropies of positive and negative increments has been proposed for experimental signals and applied to heart rate variability (HRV) data (central cardiovascular system (CVS)). The results led to interesting information as a time asymmetry index was found different for young subjects and elderly people or heart disease patients. Nevertheless, similar analyses have not yet been conducted on laser Doppler flowmetry (LDF) signals (peripheral CVS). We first propose to further investigate the above-mentioned characterization method. Then, LDF signals, LDF signals reduced to samples acquired during ECG R peaks (LDF_RECG signals) and HRV recorded simultaneously in healthy subjects are processed. Entropies of positive and negative increments for LDF signals show a nonmonotonic pattern: oscillations—more or less pronounced, depending on subjects—are found with a period matching the one of cardiac activity. However, such oscillations are not found with LDF_RECG nor with HRV. Moreover, the asymmetry index for LDF is markedly different from the ones of LDF_RECG and HRV. The cardiac activity may therefore play a dominant role in the time irreversibility properties of LDF signals.

  8. Light-driven liquid metal nanotransformers for biomedical theranostics

    NASA Astrophysics Data System (ADS)

    Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro

    2017-05-01

    Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging.

  9. Optical SETI: Moving Toward the Light

    NASA Astrophysics Data System (ADS)

    Ross, Monte; Kingsley, Stuart

    In 2009, the SETI community celebrated a half-century since the classic paper by Giuseppe Cocconi and Philip Morrison in Nature, that described how we might look for radio transmissions from extraterrestrial civilizations. It is propitious that the publication of this book in 2010 marks both the 50th anniversary of Frank Drake's Project Ozma, and the 50th anniversary of the demonstration of the first (ruby) laser by Theodore Maiman. The invention of the laser was based on the maser work by Arthur Schawlow and Charles Townes and the simultaneous work of Gordon Gould. During this first half-century of SETI, most observing has been carried out in the radio spectrum, during which time there have been enormous developments in laser technology. Only during the past two decades has the optical approach to SETI, otherwise known as optical SETI, been given the attention it deserves.

  10. Light-driven liquid metal nanotransformers for biomedical theranostics

    PubMed Central

    Chechetka, Svetlana A.; Yu, Yue; Zhen, Xu; Pramanik, Manojit; Pu, Kanyi; Miyako, Eijiro

    2017-01-01

    Room temperature liquid metals (LMs) represent a class of emerging multifunctional materials with attractive novel properties. Here, we show that photopolymerized LMs present a unique nanoscale capsule structure characterized by high water dispersibility and low toxicity. We also demonstrate that the LM nanocapsule generates heat and reactive oxygen species under biologically neutral near-infrared (NIR) laser irradiation. Concomitantly, NIR laser exposure induces a transformation in LM shape, destruction of the nanocapsules, contactless controlled release of the loaded drugs, optical manipulations of a microfluidic blood vessel model and spatiotemporal targeted marking for X-ray-enhanced imaging in biological organs and a living mouse. By exploiting the physicochemical properties of LMs, we achieve effective cancer cell elimination and control of intercellular calcium ion flux. In addition, LMs display a photoacoustic effect in living animals during NIR laser treatment, making this system a powerful tool for bioimaging. PMID:28561016

  11. On the dynamic readout characteristic of nonlinear super-resolution optical storage

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong

    2013-03-01

    Researchers have developed nonlinear super-resolution optical storage for the past twenty years. However, several concerns remain, including (1) the presence of readout threshold power; (2) the increase of threshold power with the reduction of the mark size, and (3) the increase of the carrier-to-noise ratio (CNR) at the initial stage and then decrease with the increase of readout laser power or laser irradiation time. The present work calculates and analyzes the super-resolution spot formed by the thin film masks and the readout threshold power characteristic according to the derived formula and based on the nonlinear saturable absorption characteristic and threshold of structural change. The obtained theoretical calculation and experimental data answer the concerns regarding the dynamic readout threshold characteristic and CNR dependence on laser power and irradiation time. The near-field optical spot scanning experiment further verifies the super-resolution spot formation produced through the nonlinear thin film masks.

  12. Precise Control of Vertical-Cavity Surface-Emitting Laser Structural Growth Using Molecular Beam Epitaxy In Situ Reflectance Monitor

    NASA Astrophysics Data System (ADS)

    Mizutani, Mitsuhiro; Teramae, Fumiharu; Takeuchi, Kazutaka; Murase, Tatsunori; Naritsuka, Shigeya; Maruyama, Takahiro

    2006-04-01

    A vertical-cavity surface-emitting laser (VCSEL) was fabricated using a in situ reflectance monitor by molecular beam epitaxy (MBE). Both the center wavelength of the stop band of the distributed Bragg reflector (DBR) and the resonant wavelength of the optical cavity were successfully controlled using the monitor. However, these wavelengths shifted with decreasing substrate temperature after the growth, which could be reasonably explained by the temperature dependence of refractive index. Therefore, it is necessary to set a target wavelength at a growth temperature, considering the change. The desirable laser performance of the VCSEL fabricated from the wafer indicates marked increases in the controllability and reproducibility of growth with the aid of the in situ reflectance monitor. Since it can directly measure the optical properties of the grown layers, the reflectance monitor greatly helps in the fabrication of a structure with the designed optical performance.

  13. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry.

    PubMed

    Pye, Kenneth; Blott, Simon J

    2004-08-11

    Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion.

  14. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.

    2014-07-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.

  15. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    NASA Astrophysics Data System (ADS)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  16. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    NASA Astrophysics Data System (ADS)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  17. Marking cell lineages in living tissues.

    PubMed

    Kurup, Smita; Runions, John; Köhler, Uwe; Laplaze, Laurent; Hodge, Sarah; Haseloff, Jim

    2005-05-01

    We have generated a novel genetic system to visualize cell lineages in living tissues at high resolution. Heat shock was used to trigger the excision of a specific transposon and activation of a fluorescent marker gene. A histone-YFP marker was used to allow identification of cell lineages and easy counting of cells. Constitutive expression of a green fluorescent membrane protein was used to provide a precise outline of all surrounding cells. Marked lineages can be induced from specific cells within the organism by targeted laser irradiation, and the fate of the marked cells can be followed non-invasively. We have used the system to map cell lineages originating from the initials of primary and lateral roots in Arabidopsis. The lineage marking technique enabled us to measure the differential contribution of primary root pericycle cell files to developing lateral root primordia. The majority of cells in an emerging lateral root primordium derive from the central file of pericycle founder cells while off-centre founder cells contribute only a minor proliferation of tissue near the base of the root. The system shows great promise for the detailed study of cell division during morphogenesis.

  18. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  19. Fractional Er:YAG laser assisting topical betamethasone solution in combination with NB-UVB for resistant non-segmental vitiligo.

    PubMed

    Yan, Ru; Yuan, Jinping; Chen, Hongqiang; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2017-09-01

    Resistant non-segmental vitiligo is difficult to be treated. Ablative erbium-YAG (Er:YAG) laser has been used in the treatment of vitiligo, but the ablation of entire epidermis frustrated the compliance of patients. The purpose of this study is to investigate the effects of fractional Er:YAG laser followed by topical betamethasone and narrow band ultraviolet B (NB-UVB) therapy in the treatment of resistant non-segmental vitiligo. The vitiligo lesions of each enrolled patient were divided into four treatment parts, which were all irradiated with NB-UVB. Three parts were, respectively, treated with low, medium, or high energy of Er:YAG laser, followed by topical betamethasone solution application. A control part was spared with laser treatment and topical betamethasone. The treatment period lasted 6 months. The efficacy was assessed by two blinded dermatologists. Treatment protocol with high energy of 1800 mJ/P of fractional Er:YAG laser followed by topical betamethasone solution and in combination with NB-UVB made 60% patients achieve marked to excellent improvement in white patches. The protocol with medium energy of 1200 mJ/P of laser assisted approximate 36% patients achieve such improvement. The two protocols, respectively, showed better efficacies than NB-UVB only protocol. However, fractional Er:YAG laser at low energy of 600 mJ/P did not provide such contributions to the treatment of vitiligo. The fractional Er:YAG laser in combination with topical betamethasone solution and NB-UVB was suitable for resistant non-segmental vitiligo. The energy of laser was preferred to be set at relatively high level.

  20. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

Top