Exhaust Plume Measurements of 15-Pound BATES (Ballistic Test and Evaluation System) Motors.
1985-06-01
laser transmissometer measurements as a plume... System 7 3 AFRPL Laser Transmission/Scattering Measurement System During Motor Firing 8 4 Laser Scattering Detector Schematic 9 5 Laser Scattering... measurement goals. The instrumentation includes a multi -wavelength, single line-of-sight IR-E/A system , a UV emission spectrometer, an exhaust
Geometric calibration of a coordinate measuring machine using a laser tracking system
NASA Astrophysics Data System (ADS)
Umetsu, Kenta; Furutnani, Ryosyu; Osawa, Sonko; Takatsuji, Toshiyuki; Kurosawa, Tomizo
2005-12-01
This paper proposes a calibration method for a coordinate measuring machine (CMM) using a laser tracking system. The laser tracking system can measure three-dimensional coordinates based on the principle of trilateration with high accuracy and is easy to set up. The accuracy of length measurement of a single laser tracking interferometer (laser tracker) is about 0.3 µm over a length of 600 mm. In this study, we first measured 3D coordinates using the laser tracking system. Secondly, 21 geometric errors, namely, parametric errors of the CMM, were estimated by the comparison of the coordinates obtained by the laser tracking system and those obtained by the CMM. As a result, the estimated parametric errors agreed with those estimated by a ball plate measurement, which demonstrates the validity of the proposed calibration system.
Method of high precision interval measurement in pulse laser ranging system
NASA Astrophysics Data System (ADS)
Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong
2013-09-01
Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.
NASA Astrophysics Data System (ADS)
Shi, Guang; Wang, Wen; Zhang, Fumin
2018-03-01
The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.
Heterodyne laser instantaneous frequency measurement system
Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.
1989-01-01
A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.
Coherent laser radar at 2 microns using solid-state lasers
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Suni, Paul J. M.; Hale, Charley P.; Hannon, Stephen M.; Magee, James R.; Bruns, Dale L.; Yuen, Eric H.
1993-01-01
Coherent laser radar systems using 2-micron Tm- and Tm, Ho-doped solid-state lasers are useful for the remote range-resolved measurement of atmospheric winds, aerosol backscatter, and DIAL measurements of atmospheric water vapor and CO2 concentrations. Recent measurements made with a 2-micron coherent laser radar system, advances in the laser technology, and atmospheric propagation effects on 2-micron coherent lidar performance are described.
Solid-state coherent laser radar wind shear measuring systems
NASA Technical Reports Server (NTRS)
Huffaker, R. Milton
1992-01-01
Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.
Multi-point laser coherent detection system and its application on vibration measurement
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, C.; Xu, Y. J.; Liu, H.; Yan, K.; Guo, M.
2015-05-01
Laser Doppler vibrometry (LDV) is a well-known interferometric technique to measure the motions, vibrations and mode shapes of machine components and structures. The drawback of commercial LDV is that it can only offer a pointwise measurement. In order to build up a vibrometric image, a scanning device is normally adopted to scan the laser point in two spatial axes. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new multiple-point laser coherent detection system based on spatial-encoding technology and fiber configuration. A simultaneous vibration measurement on multiple points is realized using a single photodetector. A prototype16-point laser coherent detection system is built and it is applied to measure the vibration of various objects, such as body of a car or a motorcycle when engine is on and under shock tests. The results show the prospect of multi-point laser coherent detection system in the area of nondestructive test and precise dynamic measurement.
Analysis of detection performance of multi band laser beam analyzer
NASA Astrophysics Data System (ADS)
Du, Baolin; Chen, Xiaomei; Hu, Leili
2017-10-01
Compared with microwave radar, Laser radar has high resolution, strong anti-interference ability and good hiding ability, so it becomes the focus of laser technology engineering application. A large scale Laser radar cross section (LRCS) measurement system is designed and experimentally tested. First, the boundary conditions are measured and the long range laser echo power is estimated according to the actual requirements. The estimation results show that the echo power is greater than the detector's response power. Secondly, a large scale LRCS measurement system is designed according to the demonstration and estimation. The system mainly consists of laser shaping, beam emitting device, laser echo receiving device and integrated control device. Finally, according to the designed lidar cross section measurement system, the scattering cross section of target is simulated and tested. The simulation results are basically the same as the test results, and the correctness of the system is proved.
Laser Doppler velocimetry for continuous flow solar-pumped iodine laser system
NASA Technical Reports Server (NTRS)
Tabibi, Bagher M.; Lee, Ja H.
1991-01-01
A laser Doppler velocimetry (LDV) system was employed to measure the flow velocity profile of iodide vapor inside laser tubes of 36 mm ID and 20 mm ID. The LDV, which was operated in the forward scatter mode used a low power (15 mW) He-Ne laser beam. Velocity ranges from 1 m/s was measured to within one percent accuracy. The flow velocity profile across the laser tube was measured and the intensity of turbulence was determined. The flow of iodide inside the laser tube demonstrated a mixture of both turbulence and laminar flow. The flowmeter used for the laser system previously was calibrated with the LDV and found to be in good agreement.
The Practical Implementation of Non-Contacting Laser Strain Measurements Systems
NASA Technical Reports Server (NTRS)
Yunis, Isam; Quinn, roger D.; Kadambi, Jaikrishnan R.
2000-01-01
Measurement of stress and strain in rotating turbomachinery is critical to many industries. The search for a non-contacting, non-interfering, non-degrading measurement system is on going and extensive. While several methods seem promising in theory, implementation has proven troublesome. This work uncovers and quantifies these implementation issues in the context of a laser measurement system. Both a Laser Doppler Velocimeter system and a displacement laser system are utilized. It is found that the key issues are signal to noise ratio, rigid body compensation, measurement location, and conversion of intermittent measurements to a continuous signal. Accounting for these factors leads to successful measurements. These results should lead to better ideas and more practical solutions to the non-contacting, non-degrading, non-interfering strain measurement system problem.
Research on the aircraft level measurement by laser tracker
NASA Astrophysics Data System (ADS)
Ye, Xiaowen; Tang, Wuzhong; Cao, Chun
2014-09-01
The measuring principle of laser tracking system was introduced. The aircraft level measurement was completed by establish the measurement datum mark, select public sites, set up the aircraft coordinate system and transfer stations. Laser tracking measurement technology improved the work efficiency and ensured the installation precision of key components.
The guidance methodology of a new automatic guided laser theodolite system
NASA Astrophysics Data System (ADS)
Zhang, Zili; Zhu, Jigui; Zhou, Hu; Ye, Shenghua
2008-12-01
Spatial coordinate measurement systems such as theodolites, laser trackers and total stations have wide application in manufacturing and certification processes. The traditional operation of theodolites is manual and time-consuming which does not meet the need of online industrial measurement, also laser trackers and total stations need reflective targets which can not realize noncontact and automatic measurement. A new automatic guided laser theodolite system is presented to achieve automatic and noncontact measurement with high precision and efficiency which is comprised of two sub-systems: the basic measurement system and the control and guidance system. The former system is formed by two laser motorized theodolites to accomplish the fundamental measurement tasks while the latter one consists of a camera and vision system unit mounted on a mechanical displacement unit to provide azimuth information of the measured points. The mechanical displacement unit can rotate horizontally and vertically to direct the camera to the desired orientation so that the camera can scan every measured point in the measuring field, then the azimuth of the corresponding point is calculated for the laser motorized theodolites to move accordingly to aim at it. In this paper the whole system composition and measuring principle are analyzed, and then the emphasis is laid on the guidance methodology for the laser points from the theodolites to move towards the measured points. The guidance process is implemented based on the coordinate transformation between the basic measurement system and the control and guidance system. With the view field angle of the vision system unit and the world coordinate of the control and guidance system through coordinate transformation, the azimuth information of the measurement area that the camera points at can be attained. The momentary horizontal and vertical changes of the mechanical displacement movement are also considered and calculated to provide real time azimuth information of the pointed measurement area by which the motorized theodolite will move accordingly. This methodology realizes the predetermined location of the laser points which is within the camera-pointed scope so that it accelerates the measuring process and implements the approximate guidance instead of manual operations. The simulation results show that the proposed method of automatic guidance is effective and feasible which provides good tracking performance of the predetermined location of laser points.
Radiation beam calorimetric power measurement system
Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.
1992-01-01
A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.
Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2007-01-01
While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.
Study on verifying the angle measurement performance of the rotary-laser system
NASA Astrophysics Data System (ADS)
Zhao, Jin; Ren, Yongjie; Lin, Jiarui; Yin, Shibin; Zhu, Jigui
2018-04-01
An angle verification method to verify the angle measurement performance of the rotary-laser system was developed. Angle measurement performance has a great impact on measuring accuracy. Although there is some previous research on the verification of angle measuring uncertainty for the rotary-laser system, there are still some limitations. High-precision reference angles are used in the study of the method, and an integrated verification platform is set up to evaluate the performance of the system. This paper also probes the error that has biggest influence on the verification system. Some errors of the verification system are avoided via the experimental method, and some are compensated through the computational formula and curve fitting. Experimental results show that the angle measurement performance meets the requirement for coordinate measurement. The verification platform can evaluate the uncertainty of angle measurement for the rotary-laser system efficiently.
Three dimensional laser Doppler velocimeter turbulence measurements in a pipe flow
NASA Technical Reports Server (NTRS)
Fuller, C. E., III; Cliff, W. C.; Huffaker, R. M.
1973-01-01
The mean and turbulent u, v, and w components of a gaseous fully developed turbulent pipe flow were measured with a laser Doppler velocimeter system. Measurements of important system parameters are presented and discussed in relation to the measurement accuracy. Simultaneous comparisons of the laser Doppler and hot wire anemometer measurements in the turbulent flow provided evidence that the two systems were responding to the same flow phenomena.
Heterodyne laser diagnostic system
Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.
1990-01-01
The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.
Design of a digital holography system for PFC erosion measurements on Proto-MPEX.
Thomas, C E Tommy; Biewer, T M; Baylor, L R; Combs, S K; Meitner, S J; Rapp, J; Hillis, D L; Granstedt, E M; Majeski, R; Kaita, R
2016-11-01
A project has been started at ORNL to develop a dual-wavelength digital holography system for plasma facing component erosion measurements on prototype material plasma exposure experiment. Such a system will allow in situ real-time measurements of component erosion. Initially the system will be developed with one laser, and first experimental laboratory measurements will be made with the single laser system. In the second year of development, a second CO 2 laser will be added and measurements with the dual wavelength system will begin. Adding the second wavelength allows measurements at a much longer synthetic wavelength.
A Structured Light Sensor System for Tree Inventory
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong; Zemek, Michael C.
2000-01-01
Tree Inventory is referred to measurement and estimation of marketable wood volume in a piece of land or forest for purposes such as investment or for loan applications. Exist techniques rely on trained surveyor conducting measurements manually using simple optical or mechanical devices, and hence are time consuming subjective and error prone. The advance of computer vision techniques makes it possible to conduct automatic measurements that are more efficient, objective and reliable. This paper describes 3D measurements of tree diameters using a uniquely designed ensemble of two line laser emitters rigidly mounted on a video camera. The proposed laser camera system relies on a fixed distance between two parallel laser planes and projections of laser lines to calculate tree diameters. Performance of the laser camera system is further enhanced by fusion of information induced from structured lighting and that contained in video images. Comparison will be made between the laser camera sensor system and a stereo vision system previously developed for measurements of tree diameters.
Evaluation of OH laser-induced fluorescence techniques for supersonic combustion diagnostics
NASA Technical Reports Server (NTRS)
Quagliaroli, T. M.; Laufer, G.; Krauss, R. H.; Mcdaniel, J. C., Jr.
1992-01-01
The limitations on application of dye laser and narrowband tunable KrF excimer laser systems to planar OH fluorescence measurements in supersonic combustion test facilities are examined. Included in the analysis are effects of collisional quenching, beam absorption, fluorescence trapping, and signal strengths on achievable measurement accuracy using several excitation and detection options for either of the two laser systems. Dye-based laser systems are found to be the method of choice for imaging OH concentrations less than 10 exp 15 per cu cm, while the KrF based systems provide significant reduction in measurement ambiguity for concentrations in excess of 10 exp 15 per cu cm.
NASA Astrophysics Data System (ADS)
Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang
2018-02-01
This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.
Imaging laser radar for high-speed monitoring of the environment
NASA Astrophysics Data System (ADS)
Froehlich, Christoph; Mettenleiter, M.; Haertl, F.
1998-01-01
In order to establish mobile robot operations and to realize survey and inspection tasks, robust and precise measurements of the geometry of the 3D environment is the basis sensor technology. For visual inspection, surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent range and reflectance images. The laser radar developed at Zoller + Froehlich (ZF) is an optical-wavelength system measuring the range between sensor and target surface as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to other range sensing devices, the ZF system is designed for high-speed and high- performance operation in real indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a single-point laser measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports details of the laser radar which is designed to cover requirements with medium range applications. It outlines the performance requirements and introduces the two-frequency phase-shift measurement principle. The hardware design of the single-point laser measurement system, including the main modulates, such as the laser head, the high frequency unit and the signal processing unit are discussed in detail. The paper focuses on performance data of the laser radar, including noise, drift over time, precision, and accuracy with measurements. It discusses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of tunnels, buildings, monuments and industrial environments are presented. The paper concludes by summarizing results and gives a short outlook to future work.
Torsional vibration measurements on rotating shaft system using laser doppler vibrometer
NASA Astrophysics Data System (ADS)
Xiang, Ling; Yang, Shixi; Gan, Chunbiao
2012-11-01
In this work, a laser torsional vibrameter was used to measure the torsion vibration of a rotating shaft system under electrical network impact. Based on the principles of laser Doppler velocimetry, the laser torsional vibrometer (LTV) are non-contact measurement of torsional oscillation of rotating shafts, offering significant advantages over conventional techniques. Furthermore, a highly complex shafting system is analyzed by a modified Riccati torsional transfer matrix. The system is modeled as a chain consisting of an elastic spring with concentrated mass points, and the multi-segments lumped mass model is established for this shafting system. By the modified Riccati torsional transfer matrix method, an accumulated calculation is effectively eliminated to obtain the natural frequencies. The electrical network impacts can activize the torsional vibration of shaft system, and the activized torsion vibration frequencies contained the natural frequencies of shaft system. The torsional vibrations of the shaft system were measured under electrical network impacts in laser Doppler torsional vibrometer. By comparisons, the natural frequencies by measurement were consistent with the values by calculation. The results verify the instrument is robust, user friendly and can be calibrated in situ. The laser torsional vibrometer represents a significant step forward in rotating machinery diagnostics.
Development of on-line laser power monitoring system
NASA Astrophysics Data System (ADS)
Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming
2016-03-01
Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Kincaid, J. S.
1980-01-01
A coaxial dual-channel laser system has been developed for the measurement of extinction coefficients of highly absorbing liquids. An empty wedge-shaped sample cell is first translated laterally through a He-Ne laser beam to measure the differential thickness using interference fringes in reflection. The wedge cell is carefully filled with the oil sample and translated through the coaxially positioned dye laser beam for the differential attenuation or extinction measurement. Optional use of the instrumentation as a single-channel extinction measurement system and also as a refractometer is detailed. The system and calibration techniques were applied to the measurement of two crude oils whose extinction values were required to complete the analysis of airborne laser data gathered over four controlled spills.
NASA Astrophysics Data System (ADS)
Yang, Bo; Wang, Dehui; Zhou, Lin; Wu, Shuang; Xiang, Rong; Zhang, Wenhua; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqing; Lu, Liang; Yu, Benli
2017-06-01
The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. Here we demonstrate a modified self-reflection-mixing angle measurement system by combine a right-angle prism to self-mixing angle measurement. In our system, the wavelength is crucial to the angle measurement resolution. For a microchip solid-state laser, the measurement resolution can reach 0.49 mrad, while the resolution for the He-Ne laser is 0.53 mrad. In addition, the ranges in the system with the microchip solid-state laser and He-Ne laser are up to 22 mrad and 24.9 mrad respectively. This modified angle measurement system effectively combines the advantage of self-mixing measurement system with a compact structure, providing interesting features such as of high requisition of resolution and precision.
Model studies of laser absorption computed tomography for remote air pollution measurement
NASA Technical Reports Server (NTRS)
Wolfe, D. C., Jr.; Byer, R. L.
1982-01-01
Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.
Optical radiation hazards of laser welding processes. Part II: CO2 laser.
Rockwell, R J; Moss, C E
1989-08-01
There has been an extensive growth within the last five years in the use of high-powered lasers in various metalworking processes. The two types of lasers used most frequently for laser welding/cutting processes are the Neodymium-yttrium-aluminum-garnet (Nd:YAG) and the carbon dioxide (CO2) systems. When such lasers are operated in an open beam configuration, they are designated as a Class IV laser system. Class IV lasers are high-powered lasers that may present an eye and skin hazard under most common exposure conditions, either directly or when the beam has been diffusely scattered. Significant control measures are required for unenclosed (open beam), Class IV laser systems since workers may be exposed to scattered or reflected beams during the operation, maintenance, and service of these lasers. In addition to ocular and/or skin exposure hazards, such lasers also may present a multitude of nonlaser beam occupational concerns. Radiant energy measurements are reported for both the scattered laser radiation and the plasma-related plume radiations released during typical high-powered CO2 laser-target interactions. In addition, the application of the nominal hazard zone (NHZ) and other control measures also are discussed with special emphasis on Class IV industrial CO2 laser systems.
Beam profile measurements for target designators
NASA Astrophysics Data System (ADS)
Frank, J. D.
1985-02-01
An American aerospace company has conducted a number of investigations with the aim to improve on the tedious slow manual methods of measuring pulsed lasers for rangefinders, giving particular attention to beam divergence which is studied by varying aperture sizes and positions in the laser beam path. Three instruments have been developed to make the involved work easier to perform. One of these, the Automatic Laser Instrumentation and Measurement System (ALIMS), consists of an optical bench, a digital computer, and three bays of associated electronic instruments. ALIMS uses the aperture method to measure laser beam alignment and divergence. The Laser Intensity Profile System (LIPS) consists of a covered optical bench and a two bay electronic equipment and control console. The Automatic Laser Test Set (ALTS) utilizes a 50 x 50 silicon photodiode array to characterize military laser systems automatically. Details regarding the conducted determinations are discussed.
Laser Sources for Generation of Ultrasound
NASA Technical Reports Server (NTRS)
Wagner, James W.
1996-01-01
Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.
A high-precision velocity measuring system design for projectiles based on S-shaped laser screen
NASA Astrophysics Data System (ADS)
Liu, Huayi; Qian, Zheng; Yu, Hao; Li, Yutao
2018-03-01
The high-precision measurement of the velocity of high-speed flying projectile is of great significance for the evaluation and development of modern weapons. The velocity of the high-speed flying projectile is usually measured by laser screen velocity measuring system. But this method cannot achieve the repeated measurements, so we cannot make an indepth evaluation of the uncertainty about the measuring system. This paper presents a design based on S-shaped laser screen velocity measuring system. This design can achieve repeated measurements. Therefore, it can effectively reduce the uncertainty of the velocity measuring system. In addition, we made a detailed analysis of the uncertainty of the measuring system. The measurement uncertainty is 0.2% when the velocity of the projectile is about 200m/s.
NASA Technical Reports Server (NTRS)
1985-01-01
Developments related to laser Doppler velocimetry are discussed, taking into account a three-component dual beam laser-Doppler-anemometer to be operated in large wind tunnels, a new optical system for three-dimensional laser-Doppler-anemometry using an argon-ion and a dye laser, and a two-component laser Doppler velocimeter by switching fringe orientation. Other topics studied are concerned with facilities, instrumentation, control, hot wire/thin film measurements, optical diagnostic techniques, signal and data processing, facilities and adaptive wall test sections, data acquisition and processing, ballistic instrument systems, dynamic testing and material deformation measurements, optical flow measurements, test techniques, force measurement systems, and holography. Attention is given to nonlinear calibration of integral wind tunnel balances, a microcomputer system for real time digitized image compression, and two phase flow diagnostics in propulsion systems.
Concepts for laser beam parameter monitoring during industrial mass production
NASA Astrophysics Data System (ADS)
Harrop, Nicholas J.; Maerten, Otto; Wolf, Stefan; Kramer, Reinhard
2017-02-01
In today's industrial mass production, lasers have become an established tool for a variety of processes. As with any other tool, mechanical or otherwise, the laser and its ancillary components are prone to wear and ageing. Monitoring of these ageing processes at full operating power of an industrial laser is challenging for a range of reasons. Not only the damage threshold of the measurement device itself, but also cycle time constraints in industrial processing are just two of these challenges. Power measurement, focus spot size or full beam caustic measurements are being implemented in industrial laser systems. The scope of the measurement and the amount of data collected is limited by the above mentioned cycle time, which in some cases can only be a few seconds. For successful integration of these measurement systems into automated production lines, the devices must be equipped with standardized communication interfaces, enabling a feedback loop from the measurement device to the laser processing systems. If necessary these measurements can be performed before each cycle. Power is determined with either static or dynamic calorimetry while camera and scanning systems are used for beam profile analysis. Power levels can be measured from 25W up to 20 kW, with focus spot sizes between 10μm and several millimeters. We will show, backed by relevant statistical data, that defects or contamination of the laser beam path can be detected with applied measurement systems, enabling a quality control chain to prevent process defects.
A Parkinson's disease measurement system using laser lines and a CMOS image sensor.
Chang, Rong-Seng; Chiu, Jen-Hwey; Chen, Fang-Pey; Chen, Jyh-Cheng; Yang, Jen-Lin
2011-01-01
This paper presents a non-invasive, non-contact system for the measurement of the arterial dorsum manus vibration waveforms of Parkinson disease patients. The laser line method is applied to detect the dorsum manus vibration in rest and postural situations. The proposed measurement system mainly consists of a laser diode and a low cost complementary metal-oxide semiconductor (CMOS) image sensor. Laser line and centroid methods are combined with the Fast Fourier Transform (FFT) in this study. The shape and frequency and relative frequency of the dorsum manus vibration waveforms can be detected rapidly using our Parkinson's disease measurement system. A laser line near the wrist joint is used as the testing line. The experimental results show an obvious increase in the amplitude and frequency of dorsum manus variation in the measured region in patients suffering from Parkinson's disease, indicating the obvious effects of the disease. Both in postural and rest state measurements, as the patient disease age increases the vibration frequency increases. The measurement system is well suited for evaluating and pre-diagnosing early stage Parkinson's disease.
Dust-concentration measurement based on Mie scattering of a laser beam
Yu, Xiaoyu; Shi, Yunbo; Wang, Tian; Sun, Xu
2017-01-01
To realize automatic measurement of the concentration of dust particles in the air, a theory for dust concentration measurement was developed, and a system was designed to implement the dust concentration measurement method based on laser scattering. In the study, the principle of dust concentration detection using laser scattering is studied, and the detection basis of Mie scattering theory is determined. Through simulation, the influence of the incident laser wavelength, dust particle diameter, and refractive index of dust particles on the scattered light intensity distribution are obtained for determining the scattered light intensity curves of single suspended dust particles under different characteristic parameters. A genetic algorithm was used to study the inverse particle size distribution, and the reliability of the measurement system design is proven theoretically. The dust concentration detection system, which includes a laser system, computer circuitry, air flow system, and control system, was then implemented according to the parameters obtained from the theoretical analysis. The performance of the designed system was evaluated. Experimental results show that the system performance was stable and reliable, resulting in high-precision automatic dust concentration measurement with strong anti-interference ability. PMID:28767662
Swept Frequency Laser Metrology System
NASA Technical Reports Server (NTRS)
Zhao, Feng (Inventor)
2010-01-01
A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon
2016-06-28
An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.
Laser pulse coded signal frequency measuring device based on DSP and CPLD
NASA Astrophysics Data System (ADS)
Zhang, Hai-bo; Cao, Li-hua; Geng, Ai-hui; Li, Yan; Guo, Ru-hai; Wang, Ting-feng
2011-06-01
Laser pulse code is an anti-jamming measures used in semi-active laser guided weapons. On account of the laser-guided signals adopting pulse coding mode and the weak signal processing, it need complex calculations in the frequency measurement process according to the laser pulse code signal time correlation to meet the request in optoelectronic countermeasures in semi-active laser guided weapons. To ensure accurately completing frequency measurement in a short time, it needed to carry out self-related process with the pulse arrival time series composed of pulse arrival time, calculate the signal repetition period, and then identify the letter type to achieve signal decoding from determining the time value, number and rank number in a signal cycle by Using CPLD and DSP for signal processing chip, designing a laser-guided signal frequency measurement in the pulse frequency measurement device, improving the signal processing capability through the appropriate software algorithms. In this article, we introduced the principle of frequency measurement of the device, described the hardware components of the device, the system works and software, analyzed the impact of some system factors on the accuracy of the measurement. The experimental results indicated that this system improve the accuracy of the measurement under the premise of volume, real-time, anti-interference, low power of the laser pulse frequency measuring device. The practicality of the design, reliability has been demonstrated from the experimental point of view.
Verification of Wind Measurement to 450-Meter Altitude with Mobile Laser Doppler System
DOT National Transportation Integrated Search
1977-12-01
The Lockheed mobile atmospheric unit is a laser Doppler velocimeter system designed for the remote sensing of winds. The capability of the laser Doppler velocimeter accurately to measure winds to 150-meter altitude has been previously demonstrated. T...
Measurement system with high accuracy for laser beam quality.
Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming
2015-05-20
Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.
Real-time depth measurement for micro-holes drilled by lasers
NASA Astrophysics Data System (ADS)
Lin, Cheng-Hsiang; Powell, Rock A.; Jiang, Lan; Xiao, Hai; Chen, Shean-Jen; Tsai, Hai-Lung
2010-02-01
An optical system based on the confocal principle has been developed for real-time precision measurements of the depth of micro-holes during the laser drilling process. The capability of the measuring system is theoretically predicted by the Gaussian lens formula and experimentally validated to achieve a sensitivity of 0.5 µm. A nanosecond laser system was used to drill holes, and the hole depths were measured by the proposed measuring system and by the cut-and-polish method. The differences between these two measurements are found to be 5.0% for hole depths on the order of tens of microns and 11.2% for hundreds of microns. The discrepancies are caused mainly by the roughness of the bottom surface of the hole and by the existence of debris in the hole. This system can be easily implemented in a laser workstation for the fabrication of 3D microstructures.
CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS
Laser power abstract
The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...
Study on the high-frequency laser measurement of slot surface difference
NASA Astrophysics Data System (ADS)
Bing, Jia; Lv, Qiongying; Cao, Guohua
2017-10-01
In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.
Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system
NASA Astrophysics Data System (ADS)
Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin
2010-09-01
Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.
Measurement of Fluorine Atom Concentrations and Reaction Rates in Chemical Laser Systems.
1981-09-01
AD-A1RA 070 AERODYNEERESEARCHUINC BEDFORDM MA F/6_20/5 MEASURE MENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATFS -ETC(U) SEP_ A A C STANT ON...0772 LEVELIg 00 ~ARI-RR-272 cO0 MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATES IN CHEMICAL LASER SYSTEMS ANNUAL TECHNICAL REPORT by...MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND Annual Report REACTION RATES IN CHEMICAL LASER SYSTEMS 23 July 1980 - 23 July 1981 S. PERFORMING ORG. REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert V. Kolarik II
2002-10-23
A system for the online, non-contact measurement of wall thickness in steel seamless mechanical tubing has been developed and demonstrated at a tubing production line at the Timken Company in Canton, Ohio. The system utilizes laser-generation of ultrasound and laser-detection of time of flight with interferometry, laser-doppler velocimetry and pyrometry, all with fiber coupling. Accuracy (<1% error) and precision (1.5%) are at targeted levels. Cost and energy savings have exceeded estimates. The system has shown good reliability in measuring over 200,000 tubes in its first six months of deployment.
Song, Hajun; Hwang, Sejin; Song, Jong-In
2017-05-15
This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Field, Christopher T.; Sun, Xiaoli
1996-01-01
We report here the design and the performance measurements of the breadboard receiver of the Geoscience Laser Altimeter System (GLAS). The measured ranging accuracy was better than 2 cm and 10 cm for 5 ns and 30 ns wide received laser pulses under the expected received signal level, which agreed well with the theoretical analysis. The measured receiver sensitivity or the link margin was also consistent with the theory. The effects of the waveform digitizer sample rate and resolution were also measured.
Laser Self-Mixing Fiber Bragg Grating Sensor for Acoustic Emission Measurement.
Liu, Bin; Ruan, Yuxi; Yu, Yanguang; Xi, Jiangtao; Guo, Qinghua; Tong, Jun; Rajan, Ginu
2018-06-16
Fiber Bragg grating (FBG) is considered a good candidate for acoustic emission (AE) measurement. The sensing and measurement in traditional FBG-based AE systems are based on the variation in laser intensity induced by the Bragg wavelength shift. This paper presents a sensing system by combining self-mixing interference (SMI) in a laser diode and FBG for AE measurement, aiming to form a new compact and cost-effective sensing system. The measurement model of the overall system was derived. The performance of the presented system was investigated from both aspects of theory and experiment. The results show that the proposed system is able to measure AE events with high resolution and over a wide dynamic frequency range.
Design of a digital holography system for PFC erosion measurements on Proto-MPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
ThomasJr., C. E.; Biewer, Theodore M; Baylor, Larry R
2016-01-01
A project has been started at ORNL to develop a dual-wavelength digital holography system for plasma facing component (PFC) erosion measurements on Proto-MPEX. Such a system will allow in-situ real-time measurements of component erosion. Initially the system will be developed with one laser, and first experimental laboratory measurements will be made with the single laser system. In the second year of development a second CO2 laser will be added and measurements with the dual wavelength system will begin. Adding the second wavelength allows measurements at a much longer synthetic wavelength equal to the average of the two wavelengths times themore » average divided by the difference of the two wavelengths.« less
Method and apparatus for controlling carrier envelope phase
Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS
2011-12-06
A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.
Liu, X-L; Liu, H-N; Tan, P-H
2017-08-01
Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.
The airborne laser ranging system, its capabilities and applications
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.
1982-01-01
The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.
Variations in laser energy outputs over a series of simulated treatments.
Lister, T S; Brewin, M P
2014-10-01
Test patches are routinely employed to determine the likely efficacy and the risk of adverse effects from cutaneous laser treatments. However, the degree to which these represent a full treatment has not been investigated in detail. This study aimed to determine the variability in pulse-to-pulse output energy from a representative selection of cutaneous laser systems in order to assess the value of laser test patches. The output energies of each pulse from seven cutaneous laser systems were measured using a pyroelectric measurement head over a 2-h period, employing a regime of 10-min simulated treatments followed by a 5-min rest period (between patients). Each laser system appeared to demonstrate a different pattern of variation in output energy per pulse over the period measured. The output energies from a range of cutaneous laser systems have been shown to vary considerably between a representative test patch and a full treatment, and over the course of an entire simulated clinic list. © 2014 British Association of Dermatologists.
Chernyak, Dimitri A; Campbell, Charles E
2003-11-01
Now that excimer laser systems can be programmed to correct complex aberrations of the eye on the basis of wave-front measurements, a method is needed to test the accuracy of the system from measurement through treatment. A closed-loop test method was developed to ensure that treatment plans generated by a wavefront measuring system were accurately transferred to and executed by the excimer laser. A surface was analytically defined, and a Shack-Hartmann-based wave-front system was used to formulate a treatment plan, which was downloaded to an excimer laser system. A plastic lens was ablated by the laser and then returned to the wave-front device, where it was measured and compared with the analytically defined wave-front surface. The two surfaces agreed up to 6th-order Zernike terms, validating the accuracy of the system.
McMahon, Christopher J; Toomey, Joshua P; Kane, Deb M
2017-01-01
We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the 'minimum gradient detection algorithm'. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Applying the new 'minimum gradient detection algorithm' CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise. These high-complexity regions are differentiated from regions where the time series are dominated by technical noise. This is the first time such differentiation has been achieved using a CD analysis approach. More can be known of the CD for a system when it is interrogated in a mapping context, than from calculations using isolated time series. This has been shown for three laser systems and the approach is expected to be useful in other areas of nonlinear science where large data sets are available and need to be semi-automatically analysed to provide real dimensional information about the complex dynamics. The CD/minimum gradient algorithm measure provides additional information that complements other measures of complexity and relative complexity, such as the permutation entropy; and conventional physical measurements.
McMahon, Christopher J.; Toomey, Joshua P.
2017-01-01
Background We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. Methods In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the ‘minimum gradient detection algorithm’. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Findings Applying the new ‘minimum gradient detection algorithm’ CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise. These high-complexity regions are differentiated from regions where the time series are dominated by technical noise. This is the first time such differentiation has been achieved using a CD analysis approach. Conclusions More can be known of the CD for a system when it is interrogated in a mapping context, than from calculations using isolated time series. This has been shown for three laser systems and the approach is expected to be useful in other areas of nonlinear science where large data sets are available and need to be semi-automatically analysed to provide real dimensional information about the complex dynamics. The CD/minimum gradient algorithm measure provides additional information that complements other measures of complexity and relative complexity, such as the permutation entropy; and conventional physical measurements. PMID:28837602
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1995-01-01
This Interim report consists of a manuscript, 'Receiver Design for Satellite to Satellite Laser Ranging Instrument,' and copies of two papers we co-authored, 'Demonstration of High Sensitivity Laser Ranging System' and 'Semiconductor Laser-Based Ranging Instrument for Earth Gravity Measurements. ' These two papers were presented at the conference Semiconductor Lasers, Advanced Devices and Applications, August 21 -23, 1995, Keystone Colorado. The manuscript is a draft in the preparation for publication, which summarizes the theory we developed on space-borne laser ranging instrument for gravity measurements.
NASA Astrophysics Data System (ADS)
Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun
2018-05-01
We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.
Laser Spot Detection Based on Reaction Diffusion.
Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J M; Dormido, Raquel; Duro, Natividad
2016-03-01
Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.
Optical System Design and Integration of the Mercury Laser Altimeter
NASA Technical Reports Server (NTRS)
Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger
2005-01-01
The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.
Active laser radar (lidar) for measurement of corresponding height and reflectance images
NASA Astrophysics Data System (ADS)
Froehlich, Christoph; Mettenleiter, M.; Haertl, F.
1997-08-01
For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments and industrial environments are presented. The paper concludes by summarizing results achieved in industrial environments and gives a short outlook to future work.
NASA Technical Reports Server (NTRS)
Garvin, James B.; Bufton, Jack L.; Cavanaugh, John F.; Krabill, William B.; Clem, Thomas D.; Frederick, Earl B.; Ward, John L.
1991-01-01
Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed.
NASA Astrophysics Data System (ADS)
Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.
2018-02-01
A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.
Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki
2011-08-15
An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.
Multiple-Diode-Laser Gas-Detection Spectrometer
NASA Technical Reports Server (NTRS)
Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.
1988-01-01
Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.
A comparison of a coaxial focused laser Doppler system in atmospheric measurements
NASA Technical Reports Server (NTRS)
Karaki, S.
1973-01-01
Measurements of atmospheric velocities and turbulence with the laser Doppler system were obtained, and the results compared with cup anemometer and hot-wire measurements in the same wind field. The laser Doppler velocimeter (LDV) is described along with the test procedures. It was found that mean values determined from the LDV data are within 5% of other anemometer data for long time periods, and the LDV measures higher velocities.
NASA Technical Reports Server (NTRS)
Pearson, J. C.; Pickett, Herbert M.; Chen, Pin; Matsuura, Shuji; Blake, Geoffry A.
1999-01-01
A three laser system based on 852nm DBR lasers has been constructed and used to generate radiation in the 750 GHz to 1600 GHz frequency region. The system works by locking two of the three lasers to modes of an ultra low expansion Fabry-Perot cavity. The third laser is offset locked to one of the cavity locked lasers with conventional microwave techniques. The signal from the offset laser and the other cavity locked laser are injected into a Master Oscillator Power Amplifier (MOPA), amplified and focused on a low temperature grown GaAs photomixer, which radiates the difference frequency. The system has been calibrated with molecular lines to better than one part in 10(exp 7). In this paper we present the application of this system to the v(sub 2) in inversion band of Ammonia and the ground and v(sub 2) states of water. A discussion of the system design, the calibration and the new spectral measurements will be presented.
Geoscience laser altimeter system-stellar reference system
NASA Astrophysics Data System (ADS)
Millar, Pamela S.; Sirota, J. Marcos
1998-01-01
GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.
NASA Technical Reports Server (NTRS)
Begley, David L. (Editor); Seery, Bernard D. (Editor)
1990-01-01
Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.
NASA Astrophysics Data System (ADS)
Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.
Position and orientation tracking system
Burks, Barry L.; DePiero, Fred W.; Armstrong, Gary A.; Jansen, John F.; Muller, Richard C.; Gee, Timothy F.
1998-01-01
A position and orientation tracking system presents a laser scanning appaus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle.
Position and orientation tracking system
Burks, B.L.; DePiero, F.W.; Armstrong, G.A.; Jansen, J.F.; Muller, R.C.; Gee, T.F.
1998-05-05
A position and orientation tracking system presents a laser scanning apparatus having two measurement pods, a control station, and a detector array. The measurement pods can be mounted in the dome of a radioactive waste storage silo. Each measurement pod includes dual orthogonal laser scanner subsystems. The first laser scanner subsystem is oriented to emit a first line laser in the pan direction. The second laser scanner is oriented to emit a second line laser in the tilt direction. Both emitted line lasers scan planes across the radioactive waste surface to encounter the detector array mounted on a target robotic vehicle. The angles of incidence of the planes with the detector array are recorded by the control station. Combining measurements describing each of the four planes provides data for a closed form solution of the algebraic transform describing the position and orientation of the target robotic vehicle. 14 figs.
Gain measurements of the Ca-Xe charge exchange system. [for UV lasers
NASA Technical Reports Server (NTRS)
Michels, C. J.; Chubb, D. L.
1978-01-01
Charge-exchange-pumped Ca(+) was studied for possible positive laser gain at 370.6 and 315.9 nm using an Xe MPD arc as the Xe(+) source. The present paper describes the MPD arc, the calcium injection system, the diagnostics for gain, and spontaneous emission measurements and results. No positive gain measurements were observed. A small Xe-Ca charge exchange cross section compared to He-metal laser systems charge exchange cross sections is the most probable reason why the result was negative.
Soliton microcomb range measurement
NASA Astrophysics Data System (ADS)
Suh, Myoung-Gyun; Vahala, Kerry J.
2018-02-01
Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan
2015-10-01
Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.
NASA Astrophysics Data System (ADS)
Wu, Zhibo; Zhang, Haifeng; Zhang, Zhongping; Deng, Huarong; Li, Pu; Meng, Wendong; Cheng, Zhien; Shen, Lurun; Tang, Zhenhong
2014-11-01
Laser ranging technology can directly measure the distance between space targets and ground stations with the highest measurement precision and will play an irreplaceable role in orbit check and calibrating microwave measurement system. The precise orbit determination and accurate catalogue of space targets can also be realized by laser ranging with multi-stations. Among space targets, most of ones are inactive targets and space debris, which should be paid the great attentions for the safety of active spacecrafts. Because of laser diffuse reflection from the surface of targets, laser ranging to space debris has the characteristics of wide coverage and weak strength of laser echoes, even though the powerful laser system is applied. In order to increase the receiving ability of laser echoes, the large aperture telescope should be adopted. As well known, some disadvantages for one set of large aperture telescope, technical development difficulty and system running and maintenance complexity, will limit its flexible applications. The multi-receiving telescopes technology in laser ranging to space targets is put forward to realize the equivalent receiving ability produced by one larger aperture telescope by way of using multi-receiving telescopes, with the advantages of flexibility and maintenance. The theoretical analysis of the feasibility and key technologies of multi-receiving telescopes technology in laser ranging to space targets are presented in this paper. The experimental measurement system based on the 60cm SLR system and 1.56m astronomical telescopes with a distance of about 50m is established to provide the platform for researching on the multi-receiving telescopes technology. The laser ranging experiments to satellites equipped with retro-reflectors are successfully performed by using the above experimental system and verify the technical feasibility to increase the ability of echo detection. And the multi-receiving telescopes technology will become a novel effective way to improve the detection ability of laser ranging to space debris.
Measurement system and model for simultaneously measuring 6DOF geometric errors.
Zhao, Yuqiong; Zhang, Bin; Feng, Qibo
2017-09-04
A measurement system to simultaneously measure six degree-of-freedom (6DOF) geometric errors is proposed. The measurement method is based on a combination of mono-frequency laser interferometry and laser fiber collimation. A simpler and more integrated optical configuration is designed. To compensate for the measurement errors introduced by error crosstalk, element fabrication error, laser beam drift, and nonparallelism of two measurement beam, a unified measurement model, which can improve the measurement accuracy, is deduced and established using the ray-tracing method. A numerical simulation using the optical design software Zemax is conducted, and the results verify the correctness of the model. Several experiments are performed to demonstrate the feasibility and effectiveness of the proposed system and measurement model.
Laser Doppler technology applied to atmospheric environmental operating problems
NASA Technical Reports Server (NTRS)
Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.
1976-01-01
Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.
Coherent Doppler Laser Radar: Technology Development and Applications
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Arnold, James E. (Technical Monitor)
2000-01-01
NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through headwind minimization. In addition to the airborne and space platforms, a coherent Doppler laser radar system in an unmanned aerial vehicle (UAV) could provide battlefield weather and target identification.
Cikhardt, J; Krása, J; De Marco, M; Pfeifer, M; Velyhan, A; Krouský, E; Cikhardtová, B; Klír, D; Rezáč, K; Ullschmied, J; Skála, J; Kubeš, P; Kravárik, J
2014-10-01
Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.
Sixteenth International Laser Radar Conference, Part 1
NASA Technical Reports Server (NTRS)
Mccormick, M. Patrick (Editor)
1992-01-01
This publication contains extended abstracts of papers presented at the 16th International Laser Radar Conference. One-hundred ninety-five papers were presented in both oral and poster sessions. The topics of the conference sessions were: (1) Mt. Pinatubo Volcanic Dust Layer Observations; (2) Global Change/Ozone Measurements; (3) GLOBE/LAWS/LITE; (4) Mesospheric Measurements and Measurement Systems; (5) Middle Atmosphere; (6) Wind Measurements and Measurement Systems; (7) Imaging and Ranging; (8) Water Vapor Measurements; (9) Systems and Facilities; and (10) Laser Devices and Technology. This conference reflects the breadth of research activities being conducted in the lidar field. These abstracts address subjects from lidar-based atmospheric investigations relating to global change to the development of new lidar systems and technology.
Measurement of remote micro vibration based on laser feedback interference
NASA Astrophysics Data System (ADS)
Wu, Peng; Qin, Shuijie; Xu, Ning
2018-03-01
The method of remote micro-vibration measurement is studied and presented based on the laser feedback effect in this paper, and the key factors of remote vibration measurement are analyzed. The vibration measurement system is designed and built based on the laser feedback and the research of the remote micro vibration measurement is carried out. The system has ultrahigh measuring sensitivity and the working distance is 25 meters, which can measure the vibration of non-cooperative target. The system has the capability to realize the non-contact measurement of remote micro-vibration at different driving signals and can fulfill the complex vibration measurement and reproduction of multiple frequencies. It can identify the voice signal and the voice signal reproduced is clear to hear. The system can meet various requirements of vibration measurement and has great significance in practical application.
Novel atmospheric extinction measurement techniques for aerospace laser system applications
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Richardson, Mark
2013-01-01
Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.
2010-03-01
Characterization Solutions Enabled by Laser Doppler Vibrometer Measurements, Proc. SPIE, Fifth International Conference on Vibration Measurements by Laser ...commercial capabilities: Ring Laser Gyros, Fiber Optic Gyros, and Micro-Electro-Mechanical Systems (MEMS) gyros and accelerometers. RLGs and FOGs are now...augmentation sensors have been tied into the inertial systems; e.g., GPS, velocity meters, seekers, star trackers, magnetometers, lidar , etc. The
Laser Light: Using Laser Refractometry to Determine Concentration.
ERIC Educational Resources Information Center
Gauger, Robert
1995-01-01
Laser refractometry is a science-technology-based activity that requires students to manipulate a variety of equipment, tools, materials, and critical-thinking skills. Students use a laser to measure the percent of glucose in a solution by calibrating the system, taking measurements, and computing the concentration. (MKR)
Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.
2006-01-01
Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.
Remote sensing of atmospheric pressure and sea state using laser altimeters
NASA Technical Reports Server (NTRS)
Gardner, C. S.
1985-01-01
Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.
Evaluating the use of high speed laser line sensors for improved rideability measurement.
DOT National Transportation Integrated Search
2016-09-01
This research project compared rideability readings and repeatability for both point laser and line laser systems on the high-speed profiler. Both systems were Dynatest 5051 Mark III Road Surface Profilers, one equipped with single point lasers and t...
1982-09-30
system . Atmospheric aerosol extinction coefficients at DF laser wavelengths obtained from the long - path transmission data show a wide range of variation...described in this report, it is recommended that addi- tional long - path field measurements of laser extinction and high-resolution transmission spectra be...independent long path laser extinction measurement . Column 7 of Table 3 lists the lime of the laser
NASA Astrophysics Data System (ADS)
Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin
2016-11-01
Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.
Airborne Laser Systems Testing and Analysis (essals et analyse des systemes laser embarques)
2010-04-01
of Surface/ Paints Reflection Properties (PILASTER targets); • PILASTER Sensors Testing and Calibration; • LOAS Laser System Testing; and • Test...PILASTER targets candidate paints and materials), a Laser Scatter-meter (LSM) was built. To briefly summarise the fundamental concepts involved...Green Painted Target. 7.6.3 Laser Beam Misalignment with Respect to the Beam-Expander Support For measuring the beam misalignment, the beam expander
In-depth analysis and discussions of water absorption-typed high power laser calorimeter
NASA Astrophysics Data System (ADS)
Wei, Ji Feng
2017-02-01
In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.
A lidar system for measuring atmospheric pressure and temperature profiles
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey
1987-01-01
The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.
Laser diode technology for coherent communications
NASA Technical Reports Server (NTRS)
Channin, D. J.; Palfrey, S. L.; Toda, M.
1989-01-01
The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.
Measurement of laser power for photo-triggered drug delivery in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, R.; Zhang, X. L.; Liu, F.
Thus far, despite many investigations have been carried out for photo-triggered drug delivery systems, most of them suffer from an intrinsic drawback of without real-time monitoring mechanism. Incident intensity of light is a feasible parameter to monitor the drug release profiles. However, it is difficult to measure the incident laser power irradiated onto the photo-triggered carriers in drug delivery systems during in vivo therapy. We design an online measurement method based on the fluorescence intensity ratio (FIR) technique through upconversion nanoparticles. FIR value varies with temperature of sample due to the thermal effect induced by the incident laser, which validatesmore » the laser power measurement. Effects of rare earth doping concentration, as well as experimental conditions including laser spots and wavelengths on the measurement behavior were also investigated.« less
An auto-locked diode laser system for precision metrology
NASA Astrophysics Data System (ADS)
Beica, H. C.; Carew, A.; Vorozcovs, A.; Dowling, P.; Pouliot, A.; Barron, B.; Kumarakrishnan, A.
2017-05-01
We present a unique external cavity diode laser system that can be auto-locked with reference to atomic and molecular spectra. The vacuum-sealed laser head design uses an interchangeable base-plate comprised of a laser diode and optical elements that can be selected for desired wavelength ranges. The feedback light to the laser diode is provided by a narrow-band interference filter, which can be tuned from outside the laser cavity to fineadjust the output wavelength in vacuum. To stabilize the laser frequency, the digital laser controller relies either on a pattern-matching algorithm stored in memory, or on first or third derivative feedback. We have used the laser systems to perform spectroscopic studies in rubidium at 780 nm, and in iodine at 633 nm. The linewidth of the 780-nm laser system was measured to be ˜500 kHz, and we present Allan deviation measurements of the beat note and the lock stability. Furthermore, we show that the laser system can be the basis for a new class of lidar transmitters in which a temperature-stabilized fiber-Bragg grating is used to generate frequency references for on-line points of the transmitter. We show that the fiber-Bragg grating spectra can be calibrated with reference to atomic transitions.
High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung
2009-01-01
A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.
A Virtual Blind Cane Using a Line Laser-Based Vision System and an Inertial Measurement Unit
Dang, Quoc Khanh; Chee, Youngjoon; Pham, Duy Duong; Suh, Young Soo
2016-01-01
A virtual blind cane system for indoor application, including a camera, a line laser and an inertial measurement unit (IMU), is proposed in this paper. Working as a blind cane, the proposed system helps a blind person find the type of obstacle and the distance to it. The distance from the user to the obstacle is estimated by extracting the laser coordinate points on the obstacle, as well as tracking the system pointing angle. The paper provides a simple method to classify the obstacle’s type by analyzing the laser intersection histogram. Real experimental results are presented to show the validity and accuracy of the proposed system. PMID:26771618
NASA Astrophysics Data System (ADS)
Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.
2015-12-01
In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.
A focal-spot diagnostic for on-shot characterization of high-energy petawatt lasers.
Bromage, J; Bahk, S-W; Irwin, D; Kwiatkowski, J; Pruyne, A; Millecchia, M; Moore, M; Zuegel, J D
2008-10-13
An on-shot focal-spot diagnostic for characterizing high-energy, petawatt-class laser systems is presented. Accurate measurements at full energy are demonstrated using high-resolution wavefront sensing in combination with techniques to calibrate on-shot measurements with low-power sample beams. Results are shown for full-energy activation shots of the OMEGA EP Laser System.
The remote measurement of tornado-like flows employing a scanning laser Doppler system
NASA Technical Reports Server (NTRS)
Jeffreys, H. B.; Bilbro, J. W.; Dimarzio, C.; Sonnenschein, C.; Toomey, D.
1977-01-01
The paper deals with a scanning laser Doppler velocimeter system employed in a test program for measuring naturally occurring tornado-like phenomena, known as dust devils. A description of the system and the test program is followed by a discussion of the data processing techniques and data analysis. The system uses a stable 15-W CO2 laser with the beam expanded and focused by a 12-inch telescope. Range resolution is obtained by focusing the optical system. The velocity of each volume of air (scanned in a horizontal plane) is determined from spectral analysis of the heterodyne signal. Results derived from the measurement program and data/system analyses are examined.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady;
2010-01-01
Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.
2011-01-01
Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.
Analysis and compensation of synchronous measurement error for multi-channel laser interferometer
NASA Astrophysics Data System (ADS)
Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong
2017-05-01
Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.
Laser Doppler systems in pollution monitoring
NASA Technical Reports Server (NTRS)
Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.
1976-01-01
The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.
Development of carbon dioxide laser doppler instrumentation detection of clear air turbulence
NASA Technical Reports Server (NTRS)
Sonnenschein, C.; Jelalian, A.; Keene, W.
1970-01-01
The analytical, experimental, and developmental aspects of an airborne, pulsed, carbon dioxide laser-optical radar system are described. The laser detects clear air turbulence and performs Doppler measurements of this air-motion phenomenon. Conclusions and recommendations arising from the development of the laser system are presented.
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Richardson, Mark
2013-03-01
Novel techniques for laser beam atmospheric extinction measurements, suitable for several air and space platform applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ= 1064 nm and λ= 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.
Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities
NASA Astrophysics Data System (ADS)
Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.
2015-12-01
Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be on the cusp of demonstrating interplanetary laser ranging to bring the future of solar system geodesy and geodyamics into reality.
Application of a pulsed laser for measurements of bathymetry and algal fluorescence.
NASA Technical Reports Server (NTRS)
Hickman, G. D.; Hogg, J. E.; Friedman, E. J.; Ghovanlou, A. H.
1973-01-01
The technique of measuring water depths with an airborne pulsed dye laser is studied, with emphasis on the degrading effect of some environmental and operational parameters on the transmitted and reflected laser signals. Extrapolation of measurements of laser stimulated fluorescence, performed as a function of both the algal cell concentration and the distance between the algae and the laser/receiver, indicate that a laser system operating from a height of 500 m should be capable of detecting chlorophyll concentrations as low as 1.0 mg/cu m.-
Precision Column CO2 Measurement from Space Using Broad Band LIDAR
NASA Technical Reports Server (NTRS)
Heaps, William S.
2009-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.
Progress in Measurement of Carbon Dioxide Using a Broadband Lidar
NASA Technical Reports Server (NTRS)
Heaps, William S.
2010-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink" that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics We have been examining the possibility of making precise measurements of atmospheric carbon dioxide using broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.
A simple laser locking system based on a field-programmable gate array.
Jørgensen, N B; Birkmose, D; Trelborg, K; Wacker, L; Winter, N; Hilliard, A J; Bason, M G; Arlt, J J
2016-07-01
Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.
A simple laser locking system based on a field-programmable gate array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, N. B.; Birkmose, D.; Trelborg, K.
Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The lockingmore » system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.« less
Verification of Wind Measurement with Mobile Laser Doppler System
DOT National Transportation Integrated Search
1977-09-01
The Lockheed Mobile Atmospheric Unit is a laser Doppler velocimeter system designed for the remote measurement of the three components of atmospheric wind. The unit was tested at the National Oceanic and Atmospheric Administration Table Mountain Test...
Soliton microcomb range measurement.
Suh, Myoung-Gyun; Vahala, Kerry J
2018-02-23
Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Research on large spatial coordinate automatic measuring system based on multilateral method
NASA Astrophysics Data System (ADS)
Miao, Dongjing; Li, Jianshuan; Li, Lianfu; Jiang, Yuanlin; Kang, Yao; He, Mingzhao; Deng, Xiangrui
2015-10-01
To measure the spatial coordinate accurately and efficiently in large size range, a manipulator automatic measurement system which based on multilateral method is developed. This system is divided into two parts: The coordinate measurement subsystem is consists of four laser tracers, and the trajectory generation subsystem is composed by a manipulator and a rail. To ensure that there is no laser beam break during the measurement process, an optimization function is constructed by using the vectors between the laser tracers measuring center and the cat's eye reflector measuring center, then an orientation automatically adjust algorithm for the reflector is proposed, with this algorithm, the laser tracers are always been able to track the reflector during the entire measurement process. Finally, the proposed algorithm is validated by taking the calibration of laser tracker for instance: the actual experiment is conducted in 5m × 3m × 3.2m range, the algorithm is used to plan the orientations of the reflector corresponding to the given 24 points automatically. After improving orientations of some minority points with adverse angles, the final results are used to control the manipulator's motion. During the actual movement, there are no beam break occurs. The result shows that the proposed algorithm help the developed system to measure the spatial coordinates over a large range with efficiency.
New Laser System For Combined Monitoring And Treatment Of Neonatal Hyperbilirubinemia
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; Hamza, Mohammad
1989-09-01
Laser photoradiation therapy for neonatal hyperbilirubinemia is a breakthrough in the management of neonatal jaundice. In this paper the authors present a new laser system that provides combined monitoring and therapy for neonatal hyperbilirubinemia. The new system incorporates tunable laser sources that can be operated at selected wavelengths to achieve both transcutaneous differential absorption measurements of bilirubin concentration in addition to laser photoradiation therapy. The new laser system can allow the treating physician to avoid over or under treatment of jaundiced neonates by the control of serum bilirubin from a critically high level to a reasonably safe level.
Artificial eye for in vitro experiments of laser light interaction with aqueous media
NASA Astrophysics Data System (ADS)
Cain, Clarence P.; Noojin, Gary D.; Hammer, Daniel X.; Thomas, Robert J.; Rockwell, Benjamin A.
1997-01-01
An artificial eye has been designed and assembled that mimics the focusing geometry of the living eye. The artificial eye's focusing characteristics are measured and compared with those of the in vivo system. The artificial eye is used to measure several nonlinear optical phenomena that may have an impact on the laser damage thresholds of the retina produced by ultrashort laser pulses. We chose a focal length of 17 mm to simulate the rhesus monkey eye, with a visual cone angle of 8.4 deg for a 2.5-mm diameter laser beam input. The measured focal point image diameter was 5.6 plus or minus 1 micrometer, which was 1.5 times the calculated diffraction-limited image diameter. This focusing system had the best M2 of all the systems evaluated. We used the artificial eye to measure the threshold for laser- induced breakdown, stimulated Brillouin scattering, super- continuum generation, and pulse temporal broadening due to group velocity dispersion.
Laser rangefinders for autonomous intelligent cruise control systems
NASA Astrophysics Data System (ADS)
Journet, Bernard A.; Bazin, Gaelle
1998-01-01
THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.
Zhang, Fumin; Qu, Xinghua; Ouyang, Jianfei
2012-01-01
A novel measurement prototype based on a mobile vehicle that carries a laser scanning sensor is proposed. The prototype is intended for the automated measurement of the interior 3D geometry of large-diameter long-stepped pipes. The laser displacement sensor, which has a small measurement range, is mounted on an extended arm of known length. It is scanned to improve the measurement accuracy for large-sized pipes. A fixing mechanism based on two sections is designed to ensure that the stepped pipe is concentric with the axis of rotation of the system. Data are acquired in a cylindrical coordinate system and fitted in a circle to determine diameter. Systematic errors covering arm length, tilt, and offset errors are analyzed and calibrated. The proposed system is applied to sample parts and the results are discussed to verify its effectiveness. This technique measures a diameter of 600 mm with an uncertainty of 0.02 mm at a 95% confidence probability. A repeatability test is performed to examine precision, which is 1.1 μm. A laser tracker is used to verify the measurement accuracy of the system, which is evaluated as 9 μm within a diameter of 600 mm.
Study on profile measurement of extruding tire tread by laser
NASA Astrophysics Data System (ADS)
Wang, LiangCai; Zhang, Wanping; Zhu, Weihu
1996-10-01
This paper presents a new 2D measuring system-profile measurement of extruding tire tread by laser. It includes the thickness measurement of extruding tire tread by laser and the width measurement of extruding tire tread using Moire Fringe. The system has been applied to process line of extruding tire tread. Two measuring results have been obtained. One is a standard profile picture of extruding tire tread including seven measuring values. Another one is a series of thickness and width values. When the scanning speed < 100mm/sec and total width < 800mm. The measuring errors of width < +/- 0.5mm. While the thickness range is < 40mm. The measuring errors of thickness < +/- 0.1mm.
Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System
NASA Astrophysics Data System (ADS)
Turnbull, D.; Goyon, C.; Kemp, G. E.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Moody, J. D.; Michel, P.
2017-01-01
We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85 %- 87 % extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.
Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System.
Turnbull, D; Goyon, C; Kemp, G E; Pollock, B B; Mariscal, D; Divol, L; Ross, J S; Patankar, S; Moody, J D; Michel, P
2017-01-06
We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.
Lick sodium laser guide star: performance during the 1998 LGS observing campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, B; Friedman, H; Gavel, D T
1999-07-19
The performance of a sodium laser guide star adaptive optics system depends crucially on the characteristics of the laser guide star in the sodium layer. System performance is quite sensitive to sodium layer spot radiance, that is, return per unit sterradian on the sky, hence we have been working to improve projected beam quality via improvements to the laser and changes to the launched beam format. The laser amplifier was reconfigured to a ''bounce-beam'' geometry, which considerably improves wavefront quality and allows a larger round instead of square launch beam aperture. The smaller beacon makes it easier to block themore » unwanted Rayleigh light and improves the accuracy of Hartmann sensor wavefront measurements in the A0 system. We present measurements of the beam quality and of the resulting sodium beacon and compare to similar measurements from last year.« less
A non-contact temperature measurement system for controlling photothermal medical laser treatments
NASA Astrophysics Data System (ADS)
Kaya, Ã.-zgür; Gülsoy, Murat
2016-03-01
Photothermal medical laser treatments are extremely dependent on the generated tissue temperature. It is necessary to reach a certain temperature threshold to achieve successful results, whereas preventing to exceed an upper temperature value is required to avoid thermal damage. One method to overcome this problem is to use previously conducted dosimetry studies as a reference. Nevertheless, these results are acquired in controlled environments using uniform subjects. In the clinical environment, the optical and thermal characteristics (tissue color, composition and hydration level) vary dramatically among different patients. Therefore, the most reliable solution is to use a closed-loop feedback system that monitors the target tissue temperature to control laser exposure. In this study, we present a compact, non-contact temperature measurement system for the control of photothermal medical laser applications that is cost-efficient and simple to use. The temperature measurement is achieved using a focused, commercially available MOEMS infrared thermocouple sensor embedded in an off-axis arrangement on the laser beam delivery hand probe. The spot size of the temperature sensor is ca. 2.5 mm, reasonably smaller than the laser spot sizes used in photothermal medical laser applications. The temperature readout and laser control is realized using a microcontroller for fast operation. The utilization of the developed system may enable the adaptation of several medical laser treatments that are currently conducted only in controlled laboratory environments into the clinic. Laser tissue welding and cartilage reshaping are two of the techniques that are limited to laboratory research at the moment. This system will also ensure the safety and success of laser treatments aiming hyperthermia, coagulation and ablation, as well as LLLT and PDT.
Experiment study of bio-tissue's temperature irradiated by laser based on optical fiber F-P sensor
NASA Astrophysics Data System (ADS)
Shan, Ning; Liu, Xia
2014-08-01
Laser has several advantages, such as strong anti-interference ability, quick speed, high power, agility and precision. It is widely applied in military and medicine fields. When laser acts on human body, biological tissue of human body will appear the phenomenon of ablation and carbonization and solidification. In order to effectively defend excess damage by laser, the thermal effect research of skin tissue should be carried out. Temperature is a key parameter in the processing between laser and bio-tissue. It is the mostly foundation using analyze size of thermal damage area and forecast thermal damage degree. In this paper, the low fineness optical fiber F-P sensing system for temperature measurement is designed and established. The real-time measurement system of temperature generated by laser irradiating bio-tissue is build based on the sensing system. The temperature distributing generated by laser in the bio-tissue is studied through experiment when the spot diameter of emission laser is difference with the same energy density and the energy density is difference with the same spot diameter of emission laser. The experimental results show that the sensing system can be used to the real-time temperature measurement of bio-tissue efficiency. It has small bulk. Its outer diameter is 250μm. And the hurt for bio-tissue is small. It has high respond speed. The respond time of temperature is less than 1s. These can be satisfied with practice demand. When the energy density of laser is same, the temperature rising in the same location is low along the spot diameter of emission laser increasing. When the spot diameter of emission laser is same, the temperature rising in the same location is increasing along with the energy density of laser increasing.
NASA Astrophysics Data System (ADS)
Thorpe, S. J.; Quinlan, N.; Ainsworth, R. W.
2000-10-01
Doppler Global Velocimetry (DGV) is a whole-field measurement technique which has attracted significant interest from the fluid-flow research community since its introduction in 1991. Practical implementations of the methodology have focused on two principal laser light sources: the argon ion laser, applied to steady state or slowly varying flows; and the pulsed neodymium YAG laser for the measurement of instantaneous velocity fields. However, the emphasis in the published literature has been very much on research using the argon laser. This paper reports the application of a Q-switched, injection-seeded neodymium YAG laser to the proven Oxford DGV system, and the use of this combination in a short duration unsteady high-speed flow. The pertinent characteristics of the apparatus are described, and the impact of these on the integrity of the resulting velocity measurements is presented. Adaptations to the commercial laser system that make it suitable for application to the measurement of transient high-speed flows are described. Finally, the application of this system to a short duration unsteady flow is described. This application is based on the flow found in a new type of transdermal drug delivery device, where particles of the drug material are projected at high speed through the skin. Whole-field velocities are recorded, and values as high as 800 m/ s are evident.
Laser Technology Is Primed for the Classroom.
ERIC Educational Resources Information Center
Lytle, Jim
1986-01-01
Explains the three characteristics of laser light (monochromatic light, divergence, and coherence), the components of a laser, applications of the laser (alignment, distance measurement, welding/cutting, marking, medical applications), and a complete laser training system appropriate for classroom use. (CT)
Velocity measurement using frequency domain interferometer and chirped pulse laser
NASA Astrophysics Data System (ADS)
Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.
2017-02-01
An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.
Hydrometeor Size Distribution Measurements by Imaging the Attenuation of a Laser Spot
NASA Technical Reports Server (NTRS)
Lane, John
2013-01-01
The optical extinction of a laser due to scattering of particles is a well-known phenomenon. In a laboratory environment, this physical principle is known as the Beer-Lambert law, and is often used to measure the concentration of scattering particles in a fluid or gas. This method has been experimentally shown to be a usable means to measure the dust density from a rocket plume interaction with the lunar surface. Using the same principles and experimental arrangement, this technique can be applied to hydrometeor size distributions, and for launch-pad operations, specifically as a passive hail detection and measurement system. Calibration of a hail monitoring system is a difficult process. In the past, it has required comparison to another means of measuring hydrometeor size and density. Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through hail (or dust in the rocket case) yields an estimate of the second moment of the particle cloud, and hydrometeor size distribution in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rain and hail fall make indirect measurements of the drop-size distribution. Instruments that scatter microwaves off of hydrometeors, such as the WSR-88D (Weather Surveillance Radar 88 Doppler), vertical wind profilers, and microwave disdrometers, measure the sixth moment of the drop size distribution (DSD). By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain and hail yield a measurement of the DSD's second moment by way of the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required. Depending on the intensity of the hail fall rate for moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. For hail fall only, the laser path may be shorter because of greater scattering due to the properties of hailstones versus raindrops. A photodetector may replace the camera in automated installations. Laser-based rain and hail measurement systems are available, but they are based on measuring the interruption of a thin laser beam, thus counting individual hydrometeors. These systems are true disdrometers since they also measure size and velocity. The method reported here is a simple method, requiring far less processing, but it is not a disdrometer.
Laser angle measurement system
NASA Technical Reports Server (NTRS)
Pond, C. R.; Texeira, P. D.; Wilbert, R. E.
1980-01-01
The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.
Characterization of electrical noise limits in ultra-stable laser systems.
Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H
2016-12-01
We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-01
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Keun, E-mail: ykkim@handong.edu; Kim, Kyung-Soo
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-basedmore » sensor, the system is expected to be highly robust to sea weather conditions.« less
NASA Astrophysics Data System (ADS)
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-01
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
NASA Astrophysics Data System (ADS)
Schodl, R.
The development of the laser two focus velocimetry are reviewed. The fundamentals of this nonintrusive fluid flow velocity measurement technique are described. Emphasis is placed upon the advances of this technique. Results of measurements in a very small flow channel and in a small turbocharger compressor rotor are presented. The influence of beam diameter - beam separation ratio on the measuring accuracy and on the measuring time is treated. A multicolor two dimensional system with selectable beam separation is presented. The laser Doppler and the laser two focus techniques are compared.
Two-wavelength LIDAR Thomson scattering for ITER core plasma
NASA Astrophysics Data System (ADS)
Nielsen, P.; Gowers, C.; Salzmann, H.
2017-07-01
Our proposal for a LIDAR Thomson scattering system to measure Te and ne profiles in the ITER core plasma, is based on experience with the LIDAR system on JET, which is still operational after 30 years. The design uses currently available technology and complies with the measurement requirements given by ITER. In addition, it offers the following advantages over the conventional imaging approach currently being adopted by ITER: 1) No gas fill of the vessel required for absolute calibration. 2) Easier alignment. 3) Measurements over almost the complete plasma diameter. 4) Two mirrors only as front optics. For a given laser wavelength the dynamic range of the Te measurements is mainly limited by the collection optics' transmission roll-off in the blue and the range of spectral sensitivity of the required fast photomultipliers. With the originally proposed Ti:Sapphire laser, measurements of the envisaged maximum temperature of 40 keV are marginally possible. Here we present encouraging simulation results on the use of other laser systems and on the use of two lasers with different wavelength. Alternating two wavelengths was proposed already in 1997 as a method for calibrating the transmission of the collection system. In the present analysis, the two laser pulses are injected simultaneously. We find that the use of Nd:YAG lasers operated at fundamental and second harmonic, respectively, yields excellent results and preserves the spectral recalibration feature.
Standard measurement procedures for the characterization of fs-laser optical components
NASA Astrophysics Data System (ADS)
Starke, Kai; Ristau, Detlev; Welling, Herbert
2003-05-01
Ultra-short pulse laser systems are considered as promising tools in the fields of precise micro-machining and medicine applications. In the course of the development of reliable table top laser systems, a rapid growth of ultra-short pulse applications could be observed during the recent years. The key for improving the performance of high power laser systems is the quality of the optical components concerning spectral characteristics, optical losses and the power handling capability. In the field of ultra-short pulses, standard measurement procedures in quality management have to be validated in respect to effects induced by the extremely high peak power densities. The present work, which is embedded in the EUREKA-project CHOCLAB II, is predominantly concentrated on measuring the multiple-pulse LIDT (ISO 11254-2) in the fs-regime. A measurement facility based on a Ti:Sapphire-CPA system was developed to investigate the damage behavior of optical components. The set-up was supplied with an improved pulse energy detector discriminating the influence of pulse-to-pulse energy fluctuations on the incidence of damage. Aditionally, a laser-calorimetric measurement facility determining the absorption (ISO 11551) utilizing a fs-Ti:Sapphire laser was accomplished. The investigation for different pulse durations between 130 fs and 1 ps revealed a drastic increase of absorption in titania coatings for ultra-short pulses.
Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology
NASA Technical Reports Server (NTRS)
Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh
1998-01-01
This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.
Lidar instruments proposed for Eos
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.
1990-01-01
Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
Two Wavelength Ti:sapphire Laser for Ozone DIAL Measurements from Aircraft
NASA Technical Reports Server (NTRS)
Situ, Wen; DeYoung, Russel J.
1998-01-01
Laser remote sensing of ozone from aircraft has proven to be a valuable technique for understanding the distribution and dynamics of ozone in the atmosphere. Presently the differential absorption lidar (DIAL) technique, using dual ND:YAG lasers that are doubled to pump dye lasers which in turn are doubled into the UV for the "on" and "off' line lasers, is used on either the NASA DC-8 or P-3 aircraft. Typically, the laser output for each line is 40-mJ and this is split into two beams, one looking up and the other downward, each beam having about 20-mJ. The residual ND:YAG (1.06 micron) and dye laser energies are also transmitted to obtain information on the atmospheric aerosols. While this system has operated well, there are several system characteristics that make the system less than ideal for aircraft operations. The system, which uses separate "on" and "off" line lasers, is quite large and massive requiring valuable aircraft volume and weight. The dye slowly degrades with time requiring replacement. The laser complexity requires a number of technical people to maintain the system performance. There is also the future interest in deploying an ozone DIAL system in an Unpiloted Atmospheric Vehicle (UAV) which would require a total payload mass of less than 150 kg and power requirement of less than 1500 W. A laser technology has emerged that could potentially provide significant enhancements over the present ozone DIAL system. The flashlamp pumped Ti:sapphire laser system is an emerging technology that could reduce the mass and volume over the present system and also provide a system with fewer conversion steps, reducing system complexity. This paper will discuss preliminary results from a flashlamp-pumped Ti:sapphire laser constructed as a radiation source for a UV DIAL system to measure ozone.
NASA Technical Reports Server (NTRS)
Jumper, Judith K.
1994-01-01
The Laser Velocimeter Data Acquisition System (LVDAS) in the Langley 14- by 22-Foot Tunnel is controlled by a comprehensive software package. The software package was designed to control the data acquisition process during wind tunnel tests which employ a laser velocimeter measurement system. This report provides detailed explanations on how to configure and operate the LVDAS system to acquire laser velocimeter and static wind tunnel data.
NASA Astrophysics Data System (ADS)
Bykov, A. A.; Kutuza, I. B.; Zinin, P. V.; Machikhin, A. S.; Troyan, I. A.; Bulatov, K. M.; Batshev, V. I.; Mantrova, Y. V.; Gaponov, M. I.; Prakapenka, V. B.; Sharma, S. K.
2018-01-01
Recently it has been shown that it is possible to measure the two-dimensional distribution of the surface temperature of microscopic specimens. The main component of the system is a tandem imaging acousto-optical tunable filter synchronized with a video camera. In this report, we demonstrate that combining the laser heating system with a tandem imaging acousto-optical tunable filter allows measurement of the temperature distribution under laser heating of the platinum plates as well as a visualization of the infrared laser beam, that is widely used for laser heating in diamond anvil cells.
Dual sub-picosecond and sub-nanosecond laser system
NASA Astrophysics Data System (ADS)
Xie, Xinglong; Liu, Fengqiao; Yang, Jingxin; Yang, Xin; Li, Meirong; Xue, Zhiling; Gao, Qi; Guan, Fuyi; Zhang, Weiqing; Huang, Guanlong; Zhuang, Yifei; Han, Aimei; Lin, Zunqi
2003-11-01
A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 10^(5) : 1, filling factor ~>52.7%. Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.
Measuring the Refractive Index of a Laser-Plasma Optical System
NASA Astrophysics Data System (ADS)
Turnbull, D.; Goyon, C.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Kemp, G. E.; Moody, J. D.; Michel, P. A.
2016-10-01
We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by an independent probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive-index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for cross-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85% to 87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Water depth measurement using an airborne pulsed neon laser system
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.; Frederick, E. B.
1980-01-01
The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.
Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P
2009-06-08
We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.
Measurement of Carbon Dioxide Column via Space Borne Laser Absorption
NASA Technical Reports Server (NTRS)
Heaps, WIlliam S.
2007-01-01
In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.
Extrinsic Calibration of a Laser Galvanometric Setup and a Range Camera.
Sels, Seppe; Bogaerts, Boris; Vanlanduit, Steve; Penne, Rudi
2018-05-08
Currently, galvanometric scanning systems (like the one used in a scanning laser Doppler vibrometer) rely on a planar calibration procedure between a two-dimensional (2D) camera and the laser galvanometric scanning system to automatically aim a laser beam at a particular point on an object. In the case of nonplanar or moving objects, this calibration is not sufficiently accurate anymore. In this work, a three-dimensional (3D) calibration procedure that uses a 3D range sensor is proposed. The 3D calibration is valid for all types of objects and retains its accuracy when objects are moved between subsequent measurement campaigns. The proposed 3D calibration uses a Non-Perspective-n-Point (NPnP) problem solution. The 3D range sensor is used to calculate the position of the object under test relative to the laser galvanometric system. With this extrinsic calibration, the laser galvanometric scanning system can automatically aim a laser beam to this object. In experiments, the mean accuracy of aiming the laser beam on an object is below 10 mm for 95% of the measurements. This achieved accuracy is mainly determined by the accuracy and resolution of the 3D range sensor. The new calibration method is significantly better than the original 2D calibration method, which in our setup achieves errors below 68 mm for 95% of the measurements.
Pulsed multiwavelength laser ranging system. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Abshire, J. B.
1982-01-01
A pulsed multiwavelength laser ranging system for measuring atmospheric delay was built and tested, and its theoretical performance limits were calculated. The system uses a dye modelocked ND:YAG laser, which transmits 70 psec wide pulses simultaneously at 1064, 532, and 355 nm. The differential delay of the 1064 and 355 nm pulses is measured by a specially calibrated waveform digitizer to estimate the dry atmospheric delay. The delay time of the 532 nm pulse is used to measure the target distance. Static crossed field photomultipliers are used as detectors for all wavelengths. Theoretical analysis shows that path curvature and atmospheric turbulence are fundamental limits to the ranging accuracy of both single and multicolor systems operating over horizontal paths. For two color systems, an additional error is caused by the uncertainty in the path averaged water vapor. The standard deviation of the multicolor instrument's timing measurements is directly proportional to the laser pulse width plus photomultiplier jitter divided by the square root of the received photoelectron number. The prototype system's maximum range is km, which is limited by atmospheric and system transmission losses at 355 nm. System signal detection and false alarm calculations are also presented.
Laser interferometric system for six-axis motion measurement.
Zhang, Zhipeng; Menq, Chia-Hsiang
2007-08-01
This article presents the development of a precision laser interferometric system, which is designed to achieve six-axis motion measurement for real-time applications. By combining the advantage of the interferometer with a retroreflector and that of the interferometer with a plane mirror reflector, the system is capable of simultaneously measuring large transverse motions along and large rotational motions about three orthogonal axes. Based on optical path analysis along with the designed kinematics of the system, a closed form relationship between the six-axis motion parameters of the object being measured and the readings of the six laser interferometers is established. It can be employed as a real-time motion sensor for various six-axis motion control stages. A prototype is implemented and integrated with a six-axis magnetic levitation stage to illustrate its resolution and measurement range.
Smart spectroscopy sensors: II. Narrow-band laser systems
NASA Astrophysics Data System (ADS)
Matharoo, Inderdeep; Peshko, Igor
2013-03-01
This paper describes the principles of operation of a miniature multifunctional optical sensory system based on laser technology and spectroscopic principles of analysis. The operation of the system as a remote oxygen sensor has been demonstrated. The multi-component alarm sensor has been designed to recognise gases and to measure gas concentration (O2, CO2, CO, CH4, N2O, C2H2, HI, OH radicals and H2O vapour, including semi-heavy water), temperature, pressure, humidity, and background radiation from the environment. Besides gas sensing, the same diode lasers are used for range-finding and to provide sensor self-calibration. The complete system operates as an inhomogeneous sensory network: the laser sensors are capable of using information received from environmental sensors for improving accuracy and reliability of gas concentration measurement. The sources of measurement errors associated with hardware and algorithms of operation and data processing have been analysed in detail.
Instantaneous Doppler Global Velocimetry Measurements of a Rotor Wake: Lessons Learned
NASA Technical Reports Server (NTRS)
Meyers, James; Fleming, Gary A.; Gorton, Susan Althoff; Berry, John D.
1998-01-01
A combined Doppler Global Velocimetry (DGV) and Projection Moir Interferometry (PMI) investigation of a helicopter rotor wake flow field and rotor blade deformation is presented. The three-component DGV system uses a single-frequency, frequency-doubled Nd:YAG laser to obtain instantaneous velocity measurements in the flow. The PMI system uses a pulsed laser-diode bar to obtain blade bending and twist measurements at the same instant that DGV measured the flow. The application of pulse lasers to DGV and PMI in large-scale wind tunnel applications represents a major step forward in the development of these technologies. As such, a great deal was learned about the difficulties of using these instruments to obtain instantaneous measurements in large facilities. Laser speckle and other image noise in the DGV data images were found to be traceable to the Nd:YAG laser. Although image processing techniques were used to virtually eliminate laser speckle noise, the source of low-frequency image noise is still under investigation. The PMI results agreed well with theoretical predictions of blade bending and twist.
Three-component laser anemometer measurement systems
NASA Technical Reports Server (NTRS)
Goldman, Louis J.
1991-01-01
A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.
Review on recent research progress on laser power measurement based on light pressure
NASA Astrophysics Data System (ADS)
Lai, WenChang; Zhou, Pu
2018-03-01
Accurate measuring the laser power is one of the most important issue to evaluate the performance of high power laser. For the time being, most of the demonstrated technique could be attributed to direct measuring route. Indirect measuring laser power based on light pressure, which has been under intensive investigation, has the advantages such as fast response, real-time measuring and high accuracy, compared with direct measuring route. In this paper, we will review several non-traditional methods based on light pressure to precisely measure the laser power proposed recently. The system setup, measuring principle and scaling methods would be introduced and analyzed in detail. We also compare the benefit and the drawback of these methods and analyze the uncertainties of the measurements.
Pedrini, Giancarlo; Alexeenko, Igor; Osten, Wolfgang; Schnars, Ulf
2006-02-10
A method based on pulsed digital holographic interferometry for the measurement of dynamic deformations of a surface by using a moving system is presented. The measuring system may move with a speed of several meters per minute and can measure deformation of the surface with an accuracy of better than 50 nm. The deformation is obtained by comparison of the wavefronts recorded at different times with different laser pulses produced by a Nd:YAG laser. The effect due to the movement of the measuring system is compensated for by digital processing of the different holograms. The system is well suited for on-line surveillance of a dynamic process such as laser welding and friction stir welding. Experimental results are presented, and the advantages of the method are discussed.
Laser Ultrasonic System for On-Line Steel Tube Gauging
NASA Astrophysics Data System (ADS)
Monchalin, Jean-Pierre; Choquet, Marc; Padioleau, Christian; Néron, Christian; Lévesque, Daniel; Blouin, Alain; Corbeil, Christian; Talbot, Richard; Bendada, Abdelhakim; Lamontagne, Mario; Kolarik, Robert V.; Jeskey, Gerald V.; Dominik, Erich D.; Duly, Larry J.; Samblanet, Kenneth J.; Agger, Steven E.; Roush, Kenneth J.; Mester, Michael L.
2003-03-01
A laser-ultrasonic system has been installed on a seamless tubing production line of The Timken Company and is being used to measure on-line the wall thickness of tubes during processing. The seamless process consists essentially in forcing a mandrel through a hot cylindrical billet in rotation and typically results in fairly large wall thickness variations that should be minimized and controlled to respect specifications. The system includes a Q-switched Nd-YAG laser for generation of ultrasound by ablation, a long pulse very stable Nd-YAG laser for detection coupled to a confocal Fabry-Perot interferometer, a pyrometer to measure tube temperature and two laser Doppler velocimeters to measure the coordinates of the probing location at the tube surface. The laser, data acquisition and processing units are housed in a cabin off line and connected to a front coupling head located over the passing tube by optical fibers. The system has been integrated into the plant computer network and provides in real time thickness data to the plant operators. It allow much faster mill setups, has been used since its deployment for inspecting more than 100,000 tubes and has demonstrated very significant savings.
NASA Technical Reports Server (NTRS)
Ahmed, S. A.; Gergely, J. S.
1973-01-01
This paper presents the results of an analytical study of a lidar system which uses tunable organic dye lasers to accurately determine spatial distribution of molecular air pollutants. Also described will be experimental work to date on simultaneous multiwavelength output dye laser sources for this system. Basically the scheme determines the concentration of air pollutants by measuring the differential absorption of an (at least) two wavelength lidar signal elastically backscattered by the atmosphere. Only relative measurements of the backscattered intensity at each of the two wavelengths, one on and one off the resonance absorption of the pollutant in question, are required. The various parameters of the scheme are examined and the component elements required for a system of this type discussed, with emphasis on the dye laser source. Potential advantages of simultaneous multiwavelength outputs are described. The use of correlation spectroscopy in this context is examined. Comparisons are also made for the use of infrared probing wavelengths and sources instead of dye lasers. Estimates of the sensitivity and accuracy of a practical dye laser system of this type, made for specific pollutants, snow it to have inherent advantages over other schemes for determining pollutant spatial distribution.
Free-flying experiment to measure the Schawlow-Townes linewidth limit of a 300 THz laser oscillator
NASA Technical Reports Server (NTRS)
Byer, R. L.; Byvik, C. E.
1988-01-01
Recent advances in laser diode-pumped solid state laser sources permit the design and testing of laser sources with linewidths that approach the Schawlow-Townes limit of 1 Hz/mW of output power. Laser diode pumped solid state ring oscillators have been operated with CW output power levels of 25 mW at electrical efficiencies that exceed 6 percent. These oscillators are expected to operate for lifetimes that approach those of the laser diode sources which is now approaching 20,000 hours. The efficiency and lifetime of these narrow linewidth laser sources will enable space measurements of gravity waves, remote sensing applications (including local range rate and measurements), and laser sources for frequency and time standards. A free-flight experiment, 'SUNLITE', is being designed to measure the linewidth of this all-solid-state laser system.
Laser focal profiler based on forward scattering of a nanoparticle
NASA Astrophysics Data System (ADS)
Ota, Taisuke
2018-03-01
A laser focal intensity profiling method based on the forward scattering from a nanoparticle is demonstrated for in situ measurements using a laser focusing system with six microscope objective lenses with different numerical apertures ranging from 0.15 to 1.4. The measured profiles showed Airy disc patterns although their rings showed some imperfections due to aberrations and misalignment of the test system. The dipole radiation model revealed that the artefact of this method was much smaller than the influence of the deterioration in the experimental system; a condition where no artefact appears was predicted based on proper selection of measurement angles.
Proceedings of Workshop on Laser Diagnostics in Fluid Mechanics and Combustion
NASA Astrophysics Data System (ADS)
1993-10-01
Proceedings of the Workshop on Laser Diagnostics in Fluid Mechanics and Combustion are presented. Topics included are: Accuracy of Laser Doppler Anemometry; Applications of Raman-Rayleigh-LIF Diagnostics in Combustion Research; Phase Doppler Anemometer Technique Concepts and Applications; CARS; Particle Image Velocimetry; Practical Consideration in the Use and Design of Laser Velocimetry Systems in Turbomachinery Applications; Phase Doppler Measurements of Gas-Particle Flow Through a Tube Bank; Degenerate Four Wave Mixing for Shock Tunnel Studies of Supersonic Combustion; Laser Induced Photodissociation and Fluorescence (LIPF) of Sodium Species Present in Coal Combustion; 3D Holographic Measurements Inside a Spark Ignition Engine; Laser Doppler Velocimeter Measurements in Compressible Flow; Bursting in a Tornado Vortex; Quantitative Imaging of OH and Temperature Using a Single Laser Source and Single Intensified Camera; and Laser Doppler Measurements Inside an Artificial Heart Valve.
Zhang, Fumin; Qu, Xinghua; Ouyang, Jianfei
2012-01-01
A novel measurement prototype based on a mobile vehicle that carries a laser scanning sensor is proposed. The prototype is intended for the automated measurement of the interior 3D geometry of large-diameter long-stepped pipes. The laser displacement sensor, which has a small measurement range, is mounted on an extended arm of known length. It is scanned to improve the measurement accuracy for large-sized pipes. A fixing mechanism based on two sections is designed to ensure that the stepped pipe is concentric with the axis of rotation of the system. Data are acquired in a cylindrical coordinate system and fitted in a circle to determine diameter. Systematic errors covering arm length, tilt, and offset errors are analyzed and calibrated. The proposed system is applied to sample parts and the results are discussed to verify its effectiveness. This technique measures a diameter of 600 mm with an uncertainty of 0.02 mm at a 95% confidence probability. A repeatability test is performed to examine precision, which is 1.1 μm. A laser tracker is used to verify the measurement accuracy of the system, which is evaluated as 9 μm within a diameter of 600 mm. PMID:22778615
Evaluation of an optoacoustic based gas analysing device
NASA Astrophysics Data System (ADS)
Markmann, Janine; Lange, Birgit; Theisen-Kunde, Dirk; Danicke, Veit; Mayorov, Fedor; Eckert, Sebastian; Kettmann, Pascal; Brinkmann, Ralf
2017-07-01
The relative occurrence of volatile organic compounds in the human respiratory gas is disease-specific (ppb range). A prototype of a gas analysing device using two tuneable laser systems, an OPO-laser (2.5 to 10 μm) and a CO2-laser (9 to 11 μm), and an optoacoustic measurement cell was developed to detect concentrations in the ppb range. The sensitivity and resolution of the system was determined by test gas measurements, measuring ethylene and sulfur hexafluoride with the CO2-laser and butane with the OPO-laser. System sensitivity found to be 13 ppb for sulfur hexafluoride, 17 ppb for ethylene and <10 ppb for butane, with a resolution of 50 ppb at minimum for sulfur hexafluoride. Respiratory gas samples of 8 healthy volunteers were investigated by irradiation with 17 laser lines of the CO2-laser. Several of those lines overlap with strong absorption bands of ammonia. As it is known that ammonia concentration increases by age a separation of people <35 und >35 was striven for. To evaluate the data the first seven gas samples were used to train a discriminant analysis algorithm. The eighth subject was then assigned correctly to the group >35 years with the age of 49 years.
NASA Astrophysics Data System (ADS)
Xia, Huihui; Kan, Ruifeng; Xu, Zhenyu; He, Yabai; Liu, Jianguo; Chen, Bing; Yang, Chenguang; Yao, Lu; Wei, Min; Zhang, Guangle
2017-03-01
We present a system for accurate tomographic reconstruction of the combustion temperature and H2O vapor concentration of a flame based on laser absorption measurements, in combination with an innovative two-step algebraic reconstruction technique. A total of 11 collimated laser beams generated from outputs of fiber-coupled diode lasers formed a two-dimensional 5 × 6 orthogonal beam grids and measured at two H2O absorption transitions (7154.354/7154.353 cm-1 and 7467.769 cm-1). The measurement system was designed on a rotation platform to achieve a two-folder improvement in spatial resolution. Numerical simulation showed that the proposed two-step algebraic reconstruction technique for temperature and concentration, respectively, greatly improved the reconstruction accuracy of species concentration when compared with a traditional calculation. Experimental results demonstrated the good performances of the measurement system and the two-step reconstruction technique for applications such as flame monitoring and combustion diagnosis.
2010-01-01
Background Due to controversially discussed results in scientific literature concerning changes of electrical skin impedance before and during acupuncture a new measurement system has been developed. Methods The prototype measures and analyzes the electrical skin impedance computer-based and simultaneously in 48 channels within a 2.5×3.5 cm matrix. Preliminary measurements in one person were performed using metal needle and violet laser (405 nm) acupuncture at the acupoint Kongzui (LU6). The new system is an improvement on devices previously developed by other researchers for this purpose. Results Skin impedance in the immediate surroundings of the acupoint was lowered reproducibly following needle stimulation and also violet laser stimulation. Conclusions A new instrumentation for skin impedance measurements is presented. The following hypotheses suggested by our results will have to be tested in further studies: Needle acupuncture causes significant, specific local changes of electrical skin impedance parameters. Optical stimulation (violet laser) at an acupoint causes direct electrical biosignal changes. PMID:21092296
Laser And Nonlinear Optical Materials For Laser Remote Sensing
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel
NASA Technical Reports Server (NTRS)
Quagliaroli, T. M.; Laufer, G.; Hollo, S. D.; Krauss, R. H.; Whitehurst, R. B., III; Mcdaniel, J. C., Jr.
1992-01-01
Planar fluorescence images of OH in a continuous-flow, electrical-resistively heated, high enthalpy, hydrogen-air combustion tunnel, induced by a tunable KrF laser, were recorded. These images were compared to previously recorded fluorescence images induced by a doubled-dye laser under similar conditions. Images induced by the doubled-dye laser system demonstrated a severe distortion caused by absorption and fluorescence trapping. By contrast, images of the fluorescence induced by the tunable KrF laser retained the symmetry properties of the flow. Based on signal-to-noise ratio measurements the yield of the fluorescence induced by the doubled-dye laser is larger than the fluorescence yield induced by the KrF laser. The measurements in the present facility of OH fluorescence induced by the KrF laser were limited by the photon-statistical noise. Based 2 on this result, doubled-dye laser systems are recommended for OH imaging in small and OH lean (less than 10 exp 15/cu cm) facilities. KrF lasers should be selected otherwise.
New laser system for highly sensitive clinical pulse oximetry
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; Hamza, Mohammad
1996-04-01
This paper describes the theory and design of a new pulse oximeter in which laser diodes and other compact laser sources are used for the measurement of oxygen saturation in patients who are at risk of developing hypoxemia. The technique depends upon illuminating special sites of the skin of the patient with radiation from modulated laser sources at selected wavelengths. The specific laser wavelengths are chosen based on the absorption characteristics of oxyhemoglobin, reduced hemoglobin and other interfering sources for obtaining more accurate measurements. The laser radiation transmitted through the tissue is detected and signal processing based on differential absorption laser spectroscopy is done in such a way to overcome the primary performance limitations of the conventionally used pulse oximetry. The new laser pulse oximeter can detect weak signals and is not affected by other light sources such as surgical lamps, phototherapy units, etc. The detailed description and operating characteristics of this system are presented.
Optical radiation hazards of laser welding processes. Part 1: Neodymium-YAG laser.
Rockwell, R J; Moss, C E
1983-08-01
High power laser devices are being used for numerous metalworking processes such as welding, cutting and heat treating. Such laser devices are totally enclosed either by the manufacturer or the end-user. When this is done, the total laser system is usually certified by the manufacturer following the federal requirements of the Code of Federal Regulations (CFR) 1040.10 and 10.40.11 as a Class I laser system. Similarly, the end-user may also reclassify an enclosed high-power laser into the Class I category following the requirements of the American National Standards Institute (ANSI) Z-136.1 (1980) standard. There are, however, numerous industrial laser applications where Class IV systems are required to be used in an unenclosed manner. In such applications, there is concern for both ocular and skin hazards caused by direct and scattered laser radiation, as well as potential hazards caused by the optical radiation created by the laser beam's interaction with the metal (i.e. the plume radiation). Radiant energy measurements are reported for both the scattered laser radiation and the resultant plume radiations which were produced during typical unenclosed Class IV Neodymium-YAG laser welding processes. Evaluation of the plume radiation was done with both radiometric and spectroradiometric measurement equipment. The data obtained were compared to applicable safety standards.
Laser-ranging scanning system to observe topographical deformations of volcanoes.
Aoki, T; Takabe, M; Mizutani, K; Itabe, T
1997-02-20
We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.
NASA Astrophysics Data System (ADS)
Kelly, R. F.; Meaney, K. D.; Gilmore, M.; Desjardins, T. R.; Zhang, Y.
2016-11-01
In order to investigate the role of both neutral and ion dynamics in large-scale helicon discharges, a laser induced fluorescence (LIF) system capable of measuring both ArI and ArII fluorescence using a single tunable laser is being developed. The system is based on a >250 mW solid state laser. For ArI measurements, the laser pumps the metastable (2P03/2)4s level to the (2P01/2)4p level using 696.7352 nm light, and fluorescence radiation from decay to the (2P01/2)4s level at 772.6333 nm is observed. For ArII, currently in development, the metastable (3P)3d 4F7/2 level will be pumped to the (3P)4p 4D07/2 level using 688.8511 nm, and decay fluorescence to the (3P)4s 4P5/2 level at 434.9285 nm measured. Here all wavelengths are in a vacuum.
Kelly, R F; Meaney, K D; Gilmore, M; Desjardins, T R; Zhang, Y
2016-11-01
In order to investigate the role of both neutral and ion dynamics in large-scale helicon discharges, a laser induced fluorescence (LIF) system capable of measuring both ArI and ArII fluorescence using a single tunable laser is being developed. The system is based on a >250 mW solid state laser. For ArI measurements, the laser pumps the metastable ( 2 P 0 3/2 )4s level to the ( 2 P 0 1/2 )4p level using 696.7352 nm light, and fluorescence radiation from decay to the ( 2 P 0 1/2 )4s level at 772.6333 nm is observed. For ArII, currently in development, the metastable ( 3 P)3d 4 F 7/2 level will be pumped to the ( 3 P)4p 4 D 0 7/2 level using 688.8511 nm, and decay fluorescence to the ( 3 P)4s 4 P 5/2 level at 434.9285 nm measured. Here all wavelengths are in a vacuum.
Laser Altimeter for Flight Simulator
NASA Technical Reports Server (NTRS)
Webster, L. D.
1986-01-01
Height of flight-simulator probe above model of terrain measured by automatic laser triangulation system. Airplane simulated by probe that moves over model of terrain. Altitude of airplane scaled from height of probe above model. Height measured by triangulation of laser beam aimed at intersection of model surface with plumb line of probe.
CO2 DIAL system: construction, measurements, and future development
NASA Astrophysics Data System (ADS)
Vicenik, Jiri
1999-07-01
A miniature CO2 DIAL system has been constructed. Dimension of the system are 500 X 450 X 240 mm, its mass is only 28 kg. The system consists of two tunable TEA CO2 lasers, receiving optics, IR detector, signal processing electronics and single chip microcomputer with display. The lasers are tuned manually by means of micrometric screw and are capable to generate pulses on more than 50 CO2 laser lines. The output energy is 50 mJ. The system was tested using various toxic gases and simulants, mostly at range 300 m, most of the measurements were done using pyrodetector in the receiver. The system shows good sensitivity, but it exhibits substantial instability of zero concentration. In the next stage the work will be concentrated on use of high-sensitivity MCT detector in the receiver and implementation of automatic tuning of lasers to the system.
Evaluation of confocal microscopy system performance.
Zucker, R M; Price, O
2001-08-01
The confocal laser scanning microscope (CLSM) has been used by scientists to visualize three-dimensional (3D) biological samples. Although this system involves lasers, electronics, optics, and microscopes, there are few published tests that can be used to assess the performance of this equipment. Usually the CLSM is assessed by subjectively evaluating a biological/histological test slide for image quality. Although there is a use for the test slide, there are many other components in the CLSM that need to be assessed. It would be useful if tests existed that produced reference values for machine performance. The aim of this research was to develop quality assurance tests to ensure that the CLSM was stable while delivering reproducible intensity measurements with excellent image quality. Our ultimate research objective was to quantify fluorescence using a CLSM. To achieve this goal, it is essential that the CLSM be stable while delivering known parameters of performance. Using Leica TCS-SP1 and TCS-4D systems, a number of tests have been devised to evaluate equipment performance. Tests measuring dichroic reflectivity, field illumination, lens performance, laser power output, spectral registration, axial resolution, laser stability, photomultiplier tube (PMT) reliability, and system noise were either incorporated from the literature or derived in our laboratory to measure performance. These tests are also applicable to other manufacturer's systems with minor modifications. A preliminary report from our laboratory has addressed a number of the QA issues necessary to achieve CLSM performance. This report extends our initial work on the evaluation of CLSM system performance. Tests that were described previously have been modified and new tests involved in laser stability and sensitivity are described. The QA tests on the CLSM measured laser power, PMT function, dichroic reflection, spectral registration, axial registration, system noise and sensitivity, lens performance, and laser stability. Laser power stability varied between 3% and 30% due to various factors, which may include incompatibility of the fiber-optic polarization with laser polarization, thermal instability of the acoustical optical transmission filter (AOTF), and laser noise. The sensitivity of the system was measured using a 10-microm Spherotech bead and the PMTs were assessed with the CV concept (image noise). The maximum sensitivity obtainable on our TCS-SP1 system measured on the 10-microm Spherotech beads was approximately 4% for 488 nm, 2.5% for 568 nm, 20% for 647 nm, and 19% for 365 nm laser light. The values serve as a comparison to test machine sensitivity from the same or different manufacturers. QA tests are described on the CLSM to assess performance and ensure that reproducing data are obtained. It is suggested strongly that these tests be used in place of a biological/histological sample to evaluate system performance. The tests are more specific and can recognize instrument functionality and problems better than a biological/histological sample. Utilization of this testing approach will eliminate the subjective assessment of the CLSM and may allow the data from different machines to be compared. These tests are essential if one is interested in making intensity measurements on experimental samples as well as obtaining the best signal detection and image resolution from a CLSM. Published 2001 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zhu, Jingguo; Li, Menglin; Jiang, Yan; Xie, Tianpeng; Li, Feng; Jiang, Chenghao; Liu, Ruqing; Meng, Zhe
2017-10-01
Online 3-D laser-scanner is a non-contact measurement system with high speed, high precision and easy operation, which can be used to measure heavy and high-temperature forgings. But the current online laser measurement system is mainly a mobile light indicator, which can only be used in the limited environment and lacks the capability of 3-D accurate measurement. This paper mainly introduces the structure of the online high-speed real-time 3-D measurement for heavy high-temperature forgings of Academy of Opto-Electronics (AOE), Chinese Academy of Sciences. Combining TOF pulse distance measurement with hybrid scan mode, the system can scan and acquire point cloud data of an area of 20m×10m with a 75°×40° field of view at the distance of 20m. The entire scanning time is less than 5 seconds with an accuracy of 8mm, which can meet the online dimensional measurement requirements of heavy high-temperature forgings.
Differential correction system of laser beam directional dithering based on symmetrical beamsplitter
NASA Astrophysics Data System (ADS)
Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao
2018-02-01
This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-07-27
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s-2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy.
Atmospheric Effects upon Laser Beam Propagation: An Annotated Bibliography
1979-02-14
pp. 2711-2720, September 1978. [ Measurements in long path white cell and spietro- phone using a tunable DF laser on normal and deuterium depleted...34Backscatter in Clouds at 0.9 pm and Its Effect on Optical Fuzing Systems ," Proc. 7th Laser Conf., Vol. I1, p. 15, June 1976. [ Measured extinction and...relative transmission measurements during March at the White Sands HELSTF (High Energy Laser Standard Test 12 Facility) 6.5 km path . In May they are
NASA Technical Reports Server (NTRS)
Mazumder, M. K.
1970-01-01
Laser Doppler heterodyning system for velocity measurements without directional ambiguity, employing incident beams of different frequencies through rotating diffraction grating or Bragg cell application
Application of coordinate transform on ball plate calibration
NASA Astrophysics Data System (ADS)
Wei, Hengzheng; Wang, Weinong; Ren, Guoying; Pei, Limei
2015-02-01
For the ball plate calibration method with coordinate measurement machine (CMM) equipped with laser interferometer, it is essential to adjust the ball plate parallel to the direction of laser beam. It is very time-consuming. To solve this problem, a method based on coordinate transformation between machine system and object system is presented. With the fixed points' coordinates of the ball plate measured in the object system and machine system, the transformation matrix between the coordinate systems is calculated. The laser interferometer measurement data error due to the placement of ball plate can be corrected with this transformation matrix. Experimental results indicate that this method is consistent with the handy adjustment method. It avoids the complexity of ball plate adjustment. It also can be applied to the ball beam calibration.
Self-contained eye-safe laser radar using an erbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Driscoll, Thomas A.; Radecki, Dan J.; Tindal, Nan E.; Corriveau, John P.; Denman, Richard
2003-07-01
An Eye-safe Laser Radar has been developed under White Sands Missile Range sponsorship. The SEAL system, the Self-contained Eyesafe Autonomous Laser system, is designed to measure target position within a 0.5 meter box. Targets are augmented with Scotchlite for ranging out to 6 km and augmented with a retroreflector for targets out to 20 km. The data latency is less than 1.5 ms, and the position update rate is 1 kHz. The system is air-cooled, contained in a single 200-lb, 6-cubic-foot box, and uses less than 600 watts of prime power. The angle-angle-range data will be used to measure target dynamics and to control a tracking mount. The optical system is built around a diode-pumped, erbium-doped fiber laser rated at 1.5 watts average power at 10 kHz repetition rate with 25 nsec pulse duration. An 8 inch-diameter, F/2.84 telescope is relayed to a quadrant detector at F/0.85 giving a 5 mrad field of view. Two detectors have been evaluated, a Germanium PIN diode and an Intevac TE-IPD. The receiver electronics uses a DSP network of 6 SHARC processors to implement ranging and angle error algorithms along with an Optical AGC, including beam divergence/FOV control loops.Laboratory measurements of the laser characteristics, and system range and angle accuracies will be compared to simulations. Field measurements against actual targets will be presented.
Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli
2016-09-01
A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.
Analysis of measurements for solid state laser remote lidar system
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1995-01-01
The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.
Laser-excited fluorescence for measuring atmospheric pollution
NASA Technical Reports Server (NTRS)
Menzies, R. T.
1975-01-01
System measures amount of given pollutant at specific location. Infrared laser aimed at location has wavelength that will cause molecules of pollutant to fluoresce. Detector separates fluorescence from other radiation and measures its intensity to indicate concentration of pollutant.
NASA Astrophysics Data System (ADS)
Song, Huixu; Shi, Zhaoyao; Chen, Hongfang; Sun, Yanqiang
2018-01-01
This paper presents a novel experimental approach and a simple model for verifying that spherical mirror of laser tracking system could lessen the effect of rotation errors of gimbal mount axes based on relative motion thinking. Enough material and evidence are provided to support that this simple model could replace complex optical system in laser tracking system. This experimental approach and model interchange the kinematic relationship between spherical mirror and gimbal mount axes in laser tracking system. Being fixed stably, gimbal mount axes' rotation error motions are replaced by spatial micro-displacements of spherical mirror. These motions are simulated by driving spherical mirror along the optical axis and vertical direction with the use of precision positioning platform. The effect on the laser ranging measurement accuracy of displacement caused by the rotation errors of gimbal mount axes could be recorded according to the outcome of laser interferometer. The experimental results show that laser ranging measurement error caused by the rotation errors is less than 0.1 μm if radial error motion and axial error motion are under 10 μm. The method based on relative motion thinking not only simplifies the experimental procedure but also achieves that spherical mirror owns the ability to reduce the effect of rotation errors of gimbal mount axes in laser tracking system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.
2013-06-15
An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with themore » results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, Brian E.; Park, Jesung; Carbajal, Esteban
Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex usermore » developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.« less
Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.
A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.
Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok
2014-01-01
A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803
Digital detection and processing of laser beacon signals for aircraft collision hazard warning
NASA Technical Reports Server (NTRS)
Sweet, L. M.; Miles, R. B.; Russell, G. F.; Tomeh, M. G.; Webb, S. G.; Wong, E. Y.
1981-01-01
A low-cost collision hazard warning system suitable for implementation in both general and commercial aviation is presented. Laser beacon systems are used as sources of accurate relative position information that are not dependent on communication between aircraft or with the ground. The beacon system consists of a rotating low-power laser beacon, detector arrays with special optics for wide angle acceptance and filtering of solar background light, microprocessors for proximity and relative trajectory computation, and pilot displays of potential hazards. The laser beacon system provides direct measurements of relative aircraft positions; using optimal nonlinear estimation theory, the measurements resulting from the current beacon sweep are combined with previous data to provide the best estimate of aircraft proximity, heading, minimium passing distance, and time to closest approach.
Laser Radar Study Using Resonance Absorption for Remote Detection Of Air Pollutants
NASA Technical Reports Server (NTRS)
Igarashi, Takashi
1973-01-01
A laser radar using resonance absorption has an advantage of increased detection range and sensitivity compared with that achieved by Raman or resonance back scattering. In this paper, new laser radar system using resonance absorption is proposed and results obtained from this laser radar system are discussed. NO2, SO2 gas has an absorption spectrum at 4500 A and 3000 A respectively as shown in Fig. 1. A laser light including at least a set of an absorption peak (lambda)1 and a valley (lambda)2 is emitted into a pollutant atmosphere. The light reflected with a topographical reflector or an atmospheric Mie scattering as distributed reflectors is received and divided into two wavelength components (lambda)1 and (lambda)2. The laser radar system used in the investigation is shown in Fig', 2 and consists of a dye laser transmitter, an optical receiver with a special monochrometer and a digital processer. Table 1 shows the molecular constants of NO2, and SO2 and the dye laser used in this experiment. In this system, the absolute concentration of the pollutant gas can be measured in comparison with a standard gas cell. The concentration of NO2, SO2 as low as 0.1 ppm have been measured at 100 m depth resolution. For a 1 mJ laser output, the observable range of this system achieved up to 300 m using the distributed Mie reflector. The capability and technical limitation of the system will be discussed in detail.
Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals
NASA Astrophysics Data System (ADS)
Ochiai, M.; Miura, T.; Yamamoto, S.
2008-02-01
A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.
An intelligent maximum permissible exposure meter for safety assessments of laser radiation
NASA Astrophysics Data System (ADS)
Corder, D. A.; Evans, D. R.; Tyrer, J. R.
1996-09-01
There is frequently a need to make laser power or energy density measurements when determining whether radiation from a laser system exceeds the Maximum Permissible Exposure (MPE) as defined in BS EN 60825. This can be achieved using standard commercially available laser power or energy measurement equipment, but some of these have shortcomings when used in this application. Calculations must be performed by the user to compare the measured value to the MPE. The measurement and calculation procedure appears complex to the nonexpert who may be performing the assessment. A novel approach is described which uses purpose designed hardware and software to simplify the process. The hardware is optimized for measuring the relatively low powers associated with MPEs. The software runs on a Psion Series 3a palmtop computer. This reduces the cost and size of the system yet allows graphical and numerical presentation of data. Data output to other software running on PCs is also possible, enabling the instrument to be used as part of a quality system. Throughout the measurement process the opportunity for user error has been minimized by the hardware and software design.
Heterodyne interferometer with angstrom-level periodic nonlinearity
Schmitz, Tony L.; Beckwith, John F.
2005-01-25
Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acousto-optic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.
Multi-pose system for geometric measurement of large-scale assembled rotational parts
NASA Astrophysics Data System (ADS)
Deng, Bowen; Wang, Zhaoba; Jin, Yong; Chen, Youxing
2017-05-01
To achieve virtual assembly of large-scale assembled rotational parts based on in-field geometric data, we develop a multi-pose rotative arm measurement system with a gantry and 2D laser sensor (RAMSGL) to measure and provide the geometry of these parts. We mount a 2D laser sensor onto the end of a six-jointed rotative arm to guarantee the accuracy and efficiency, combine the rotative arm with a gantry to measure pairs of assembled rotational parts. By establishing and using the D-H model of the system, the 2D laser data is turned into point clouds and finally geometry is calculated. In addition, we design three experiments to evaluate the performance of the system. Experimental results show that the system’s max length measuring deviation using gauge blocks is 35 µm, max length measuring deviation using ball plates is 50 µm, max single-point repeatability error is 25 µm, and measurement scope is from a radius of 0 mm to 500 mm.
Analysis of Technology for Compact Coherent Lidar
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1997-01-01
In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.
Fiber Lasers and Amplifiers for Space-based Science and Exploration
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.;
2012-01-01
We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.
NASA Technical Reports Server (NTRS)
Sun, Xiaoli
2012-01-01
An overview of space-based lidar systems is presented. from the first laser altimeter on APOLLO 15 mission in 1971 to the Mercury Laser Altimeter on MESSENGER mission currently in orbit, and those currently under development. Lidar, which stands for Light Detection And Ranging, is a powerful tool in remote sensing from space. Compared to radars, lidars operate at a much shorter wavelength with a much narrower beam and much smaller transmitter and receiver. Compared to passive remote sensing instruments. lidars carry their own light sources and can continue measuring day and night. and over polar regions. There are mainly two types of lidars depending on the types of measurements. lidars that are designed to measure the distance and properties of hard targets are often called laser rangers or laser altimeters. They are used to obtain the surface elevation and global shape of a planet from the laser pulse time-of-night and the spacecraft orbit position. lidars that are designed to measure the backscattering and absorption of a volume scatter, such as clouds and aerosols, are often just called lidars and categorized by their measurements. such as cloud and aerosol lidar, wind lidar, CO2 lidar, and so on. The advantages of space-based lidar systems over ground based lidars are the abilities of global coverage and continuous measurements.
2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Bai, Yingxin; Yu, Jirong
2009-01-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.
Laser system for measuring small changes in plasma tracer concentrations.
Klaesner, J W; Pou, N A; Parker, R E; Galloway, R L; Roselli, R J
1996-01-01
The authors developed a laser-diode system that can be used for on-line optical concentration measurements in physiologic systems. Previous optical systems applied to whole blood have been hampered by artifacts introduced by red blood cells (RBCs). The system introduced here uses a commercially available filter cartridge to separate RBCs from plasma before plasma concentration measurements are made at a single wavelength. The filtering characteristics of the Cellco filter cartridge (#4007-10, German-town, MD) were adequate for use in the on-line measurement system. The response time of the filter cartridge was less than 40 seconds, and the sieving characteristics of the filter for macromolecules were excellent, with filtrate-to-plasma albumin ratios of 0.98 +/- 0.11 for studies in sheep and 0.94 +/- 0.15 for studies in dogs. The 635-nm laser diode system developed was shown to be more sensitive than the spectrophotometer used in previous studies (Klaesner et al., Annals of Biomedical Engineering, 1994; 22, 660-73). The new system was used to measure the product of filtration coefficient (Kfc) and reflection coefficient for albumin (delta f) in an isolated canine lung preparation. The delta fKfc values [mL/(cmH2O.min.100 g dry lung weight)] measured with the laser diode system (0.33 +/- 0.22) compared favorably with the delta fKfc obtained using a spectrophotometer (0.27 +/- 0.20) and with the Kfc obtained using the blood-corrected gravimetric method (0.32 +/- 0.23). Thus, this new optical system was shown to accurately measure plasma concentration changes in whole blood for physiologic levels of Kfc. The same system can be used with different optical tracers and different source wavelengths to make optical plasma concentration measurements for other physiologic applications.
The fast and accurate 3D-face scanning technology based on laser triangle sensors
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Chang, Tianyu; Ge, Baozhen; Tian, Qingguo; Chen, Yang; Kong, Bin
2013-08-01
A laser triangle scanning method and the structure of 3D-face measurement system were introduced. In presented system, a liner laser source was selected as an optical indicated signal in order to scanning a line one times. The CCD image sensor was used to capture image of the laser line modulated by human face. The system parameters were obtained by system calibrated calculated. The lens parameters of image part of were calibrated with machine visual image method and the triangle structure parameters were calibrated with fine wire paralleled arranged. The CCD image part and line laser indicator were set with a linear motor carry which can achieve the line laser scanning form top of the head to neck. For the nose is ledge part and the eyes are sunk part, one CCD image sensor can not obtain the completed image of laser line. In this system, two CCD image sensors were set symmetric at two sides of the laser indicator. In fact, this structure includes two laser triangle measure units. Another novel design is there laser indicators were arranged in order to reduce the scanning time for it is difficult for human to keep static for longer time. The 3D data were calculated after scanning. And further data processing include 3D coordinate refine, mesh calculate and surface show. Experiments show that this system has simply structure, high scanning speed and accurate. The scanning range covers the whole head of adult, the typical resolution is 0.5mm.
NASA Astrophysics Data System (ADS)
Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.
2018-04-01
The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.
Video Guidance Sensor System With Integrated Rangefinding
NASA Technical Reports Server (NTRS)
Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Howard, Richard T. (Inventor); Roe, Fred Davis, Jr. (Inventor); Bell, Joseph L. (Inventor)
2006-01-01
A video guidance sensor system for use, p.g., in automated docking of a chase vehicle with a target vehicle. The system includes an integrated rangefinder sub-system that uses time of flight measurements to measure range. The rangefinder sub-system includes a pair of matched photodetectors for respectively detecting an output laser beam and return laser beam, a buffer memory for storing the photodetector outputs, and a digitizer connected to the buffer memory and including dual amplifiers and analog-to-digital converters. A digital signal processor processes the digitized output to produce a range measurement.
Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2015-11-01
The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.
Non-contact photoacoustic tomography with a laser Doppler vibrometer
NASA Astrophysics Data System (ADS)
Xu, Guan; Wang, Cheng; Feng, Ting; Oliver, David E.; Wang, Xueding
2014-03-01
Most concurrent photoacoustic tomography systems are based on traditional ultrasound measurement regime, which requires the contact or acoustic coupling material between the biological tissue and the ultrasound transducer. This study investigates the feasibility of non-contact measurement of photacoustic signals generated inside biomedical tissues by observing the vibrations at the surface of the tissues with a commercial laser Doppler vibrometer. The vibrometer with 0- 2MHz measurement bandwidth and 5 MHz sampling frequency was integrated to a conventional rotational PAT data acquisition system. The data acquisition of the vibrometer was synchronized to the laser illumination from an Nd:YAG laser with output at 532nm. The laser energy was tuned to 17.5mJ per square centimeter. The PA signals were acquired at 120 angular locations uniformly distributed around the scanned objects. The frequency response of the measurement system was first calibrated. 2-inch-diamater cylindrical phantoms containing small rubber plates and biological tissues were afterwards imaged. The phantoms were made from 5% intralipid solution in 10% porcine gelatin to simulate the light scattering in biological tissue and to backscatter the measurement laser from the vibrometer. Time-domain backprojection method was used for the image reconstruction. Experiments with real-tissue phantoms show that with laser illumination of 17.5 mJ/cm2 at 532 nm, the non-contact photoacoustic (PA) imaging system with 15dB detection bandwidth of 2.5 MHz can resolve spherical optical inclusions with dimension of 500μm and multi-layered structure with optical contrast in strongly scattering medium. The experiment results prompt the potential implementation of the non-contact PAT to achieve "photoacoustic camera".
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Kavaya, Michael J.; Koch, Grady; Yu, Jirong; Ismail, Syed
2008-01-01
NASA Langley Research Center has been developing 2-micron lidar technologies over a decade for wind measurements, utilizing coherent Doppler wind lidar technique and carbon dioxide measurements, utilizing Differential Absorption Lidar (DIAL) technique. Significant advancements have been made towards developing state-of-the-art technologies towards laser transmitters, detectors, and receiver systems. These efforts have led to the development of solid-state lasers with high pulse energy, tunablility, wavelength-stability, and double-pulsed operation. This paper will present a review of these technological developments along with examples of high resolution wind and high precision CO2 DIAL measurements in the atmosphere. Plans for the development of compact high power lasers for applications in airborne and future space platforms for wind and regional to global scale measurement of atmospheric CO2 will also be discussed.
New method for measuring the laser-induced damage threshold of optical thin film
NASA Astrophysics Data System (ADS)
Su, Jun-hong; Wang, Hong; Xi, Ying-xue
2012-10-01
The laser-induced damage threshold (LIDT) of thin film means that the thin film can withstand a maximum intensity of laser radiation. The film will be damaged when the irradiation under high laser intensity is greater than the value of LIDT. In this paper, an experimental platform with measurement operator interfaces and control procedures in the VB circumstance is built according to ISO11254-1. In order to obtain more accurate results than that with manual measurement, in the software system, a hardware device can be controlled by control widget on the operator interfaces. According to the sample characteristic, critical parameters of the LIDT measurement system such as spot diameter, damage threshold region, and critical damage pixel number are set up on the man-machine conversation interface, which could realize intelligent measurements of the LIDT. According to experimental data, the LIDT is obtained by fitting damage curve automatically.
Polarization Effects Aboard the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard
2006-01-01
For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.
Active retroreflector to measure the rotational orientation in conjunction with a laser tracker
NASA Astrophysics Data System (ADS)
Hofherr, O.; Wachten, C.; Müller, C.; Reinecke, H.
2012-10-01
High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) can determine accurately x-y-z coordinates of passive retroreflectors. Next-generation systems answer the additional need to measure an object's rotational orientation (pitch, yaw, roll). These devices are based on photogrammetry or on enhanced retroreflectors. However, photogrammetry relies on camera systems and time-consuming image processing. Enhanced retroreflectors analyze the LT's beam but are restricted in roll angle measurements. Here we present an integrated laser based method to evaluate all six degrees of freedom. An active retroreflector directly analyzes its orientation to the LT's beam path by outcoupling laser light on detectors. A proof of concept prototype has been designed with a specified measuring range of 360° for roll angle measurements and +/-15° for pitch and yaw angle respectively. The prototype's optical design is inspired by a cat's eye retroreflector. First results are promising and further improvements are under development. We anticipate our method to facilitate simple and cost-effective six degrees of freedom measurements. Furthermore, for industrial applications wide customizations are possible, e.g. adaptation of measuring range, optimization of accuracy, and further system miniaturization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ediger, M.N.
The laser-induced fluorescence spectrum of rabbit cornea irradiated at ablative intensities was measured. This system directly measured the radiant exposure of fluorescence transmitted through the cornea when the anterior surface of the cornea was irradiated by an ArF excimer laser. Evidence of changing spectral characteristics as a function of total laser dose suggests photochemical changes in the cornea may be occurring. Results are compared with previous data of laser-induced fluorescence in other models and detection schemes.
NASA Astrophysics Data System (ADS)
Lees, R. M.; Jackson, M.; Moruzzi, G.; Predoi-Cross, Adriana; Billinghurst, B. E.
2015-09-01
Analysis of synchrotron FTIR spectra has revealed new assignments for a number of optically pumped far-infrared laser lines from the CH317OH isotopologue of methanol, with definitive confirmation provided by recent accurate measurements of the laser frequencies. In this Note the lasing energy level systems are discussed, and the spectroscopic evidence for the assignments is presented.
Veligdan, James T.
1993-01-01
Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.
NASA Astrophysics Data System (ADS)
Mitryk, Shawn; Mueller, Guido
The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.
A laser measurement system with multi-degree-of-freedom
NASA Astrophysics Data System (ADS)
Long, Lingli; Yang, Liangen; Wang, Xuanze; Zhai, Zhongsheng
2008-10-01
A new five-degree-of-freedom measuring system was developed as a linear guide. According to the principle of autocollimation, the system consisted of two semiconductor lasers, two right angle prisms, two lenses, two polarization spectroscopes and four quadrant Si-photoelectric detectors(QPD). Two axial displacements and three angular rotation degrees are measured by comparing the position of the spot center on the QPD. Repetitive simulations show that the accuracy of the system is 3" for measurement of angle, which proves the feasibility of this system. The advantages of the system include simple structure, easy operation, high accuracy, low cost and real-time work.
Tunable diode-laser absorption measurements of methane at elevated temperatures
NASA Astrophysics Data System (ADS)
Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.
1996-07-01
A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.
Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm
NASA Astrophysics Data System (ADS)
Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel
2000-03-01
The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.
Development and Application of Laser Peening System for PWR Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masaki Yoda; Itaru Chida; Satoshi Okada
2006-07-01
Laser peening is a process to improve residual stress from tensile to compressive in surface layer of materials by irradiating high-power laser pulses on the material in water. Toshiba has developed a laser peening system composed of Q-switched Nd:YAG laser oscillators, laser delivery equipment and underwater remote handling equipment. We have applied the system for Japanese operating BWR power plants as a preventive maintenance measure for stress corrosion cracking (SCC) on reactor internals like core shrouds or control rod drive (CRD) penetrations since 1999. As for PWRs, alloy 600 or 182 can be susceptible to primary water stress corrosion crackingmore » (PWSCC), and some cracks or leakages caused by the PWSCC have been discovered on penetrations of reactor vessel heads (RVHs), reactor bottom-mounted instrumentation (BMI) nozzles, and others. Taking measures to meet the unconformity of the RVH penetrations, RVHs themselves have been replaced in many PWRs. On the other hand, it's too time-consuming and expensive to replace BMI nozzles, therefore, any other convenient and less expensive measures are required instead of the replacement. In Toshiba, we carried out various tests for laser-peened nickel base alloys and confirmed the effectiveness of laser peening as a preventive maintenance measure for PWSCC. We have developed a laser peening system for PWRs as well after the one for BWRs, and applied it for BMI nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. In this system, laser oscillators and control devices were packed into two containers placed on the operating floor inside the reactor containment vessel. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described. (authors)« less
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej
2017-04-01
We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.
Laser sensor system documentation.
DOT National Transportation Integrated Search
2017-03-01
Phase 1 of TxDOT Project 0-6873, True Road Surface Deflection Measuring Device, developed a : laser sensor system based on several sensors mounted on a rigid beam. : This sensor system remains with CTR currently, as the project is moving into Phase 2...
Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile.
Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan
2017-11-01
Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research.
Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile
Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan
2017-01-01
Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research. PMID:29188093
Visibility and aerosol measurement by diode-laser random-modulation CW lidar
NASA Technical Reports Server (NTRS)
Takeuchi, N.; Baba, H.; Sakurai, K.; Ueno, T.; Ishikawa, N.
1986-01-01
Examples of diode laser (DL) random-modulation continuous wave (RM-CW) lidar measurements are reported. The ability of the measurement of the visibility, vertical aerosol profile, and the cloud ceiling height is demonstrated. Although the data shown here were all measured at night time, the daytime measurement is, of course, possible. For that purpose, accurate control of the laser frequency to the center frequency of a narrow band filter is required. Now a new system with a frequency control is under construction.
Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement
Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; ...
2014-01-01
A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less
432- μm laser's beam-waist measurement for the polarimeter/interferometer on the EAST tokamak
NASA Astrophysics Data System (ADS)
Wang, Z. X.; Liu, H. Q.; Jie, Y. X.; Wu, M. Q.; Lan, T.; Zhu, X.; Zou, Z. Y.; Yang, Y.; Wei, X. C.; Zeng, L.; Li, G. S.; Gao, X.
2014-10-01
A far-infrared (FIR) polarimeter/interferometer (PI) system is under development for measurements of the current-density and the electron-density profiles in the EAST tokamak. The system will utilize three identical 432- μm CHCOOH lasers pumped by a CO2 laser. Measurements of the laser beam's waist size and position are basic works. This paper will introduce three methods with a beam profiler and several focusing optical elements. The beam profiler can be used to show the spatial energy distribution of the laser beam. The active area of the profiler is 12.4 × 12.4 mm2. Some focusing optical elements are needed to focus the beam in order for the beam profiler to receive the entire laser beam. Two principles and three methods are used in the measurement. The first and the third methods are based on the same principle, and the second method adopts an other principle. Due to the fast and convenient measurement, although the first method is a special form of the third and it can only give the size of beam waist, it is essential to the development of the experiment and it can provide guidance for the choices of the sizes of the optical elements in the next step. A concave mirror, a high-density polyethylene (HDPE) lens and a polymethylpentene (TPX) lens are each used in the measurement process. The results of these methods are close enough for the design of PI system's optical path.
Hu, Chenghuan; Huang, Feizhou; Zhang, Rui; Zhu, Shaihong; Nie, Wanpin; Liu, Xunyang; Liu, Yinglong; Li, Peng
2015-01-01
Using optics combined with automatic control and computer real-time image detection technology, a novel noninvasive method of noncontact pressure manometry was developed based on the airflow and laser detection technology in this study. The new esophageal venous pressure measurement system was tested in-vitro experiments. A stable and adjustable pulse stream was produced from a self-developed pump and a laser emitting apparatus could generate optical signals which can be captured by image acquisition and analysis system program. A synchronization system simultaneous measured the changes of air pressure and the deformation of the vein wall to capture the vascular deformation while simultaneously record the current pressure value. The results of this study indicated that the pressure values tested by the new method have good correlation with the actual pressure value in animal experiments. The new method of noninvasive pressure measurement based on the airflow and laser detection technology is accurate, feasible, repeatable and has a good application prospects.
High-speed measurements of steel-plate deformations during laser surface processing.
Jezersek, Matija; Gruden, Valter; Mozina, Janez
2004-10-04
In this paper we present a novel approach to monitoring the deformations of a steel plate's surface during various types of laser processing, e.g., engraving, marking, cutting, bending, and welding. The measuring system is based on a laser triangulation principle, where the laser projector generates multiple lines simultaneously. This enables us to measure the shape of the surface with a high sampling rate (80 Hz with our camera) and high accuracy (+/-7 microm). The measurements of steel-plate deformations for plates of different thickness and with different illumination patterns are presented graphically and in an animation.
Wu, Shuang; Wang, Dehui; Xiang, Rong; Zhou, Junfeng; Ma, Yangcheng; Gui, Huaqiao; Liu, Jianguo; Wang, Huanqin; Lu, Liang; Yu, Benli
2016-01-01
In this paper, a novel velocimeter based on laser self-mixing Doppler technology has been developed for speed measurement. The laser employed in our experiment is a distributed feedback (DFB) fiber laser, which is an all-fiber structure using only one Fiber Bragg Grating to realize optical feedback and wavelength selection. Self-mixing interference for optical velocity sensing is experimentally investigated in this novel system, and the experimental results show that the Doppler frequency is linearly proportional to the velocity of a moving target, which agrees with the theoretical analysis commendably. In our experimental system, the velocity measurement can be achieved in the range of 3.58 mm/s–2216 mm/s with a relative error under one percent, demonstrating that our novel all-fiber configuration velocimeter can implement wide-range velocity measurements with high accuracy. PMID:27472342
Automatic brightness control of laser spot vision inspection system
NASA Astrophysics Data System (ADS)
Han, Yang; Zhang, Zhaoxia; Chen, Xiaodong; Yu, Daoyin
2009-10-01
The laser spot detection system aims to locate the center of the laser spot after long-distance transmission. The accuracy of positioning laser spot center depends very much on the system's ability to control brightness. In this paper, an automatic brightness control system with high-performance is designed using the device of FPGA. The brightness is controlled by combination of auto aperture (video driver) and adaptive exposure algorithm, and clear images with proper exposure are obtained under different conditions of illumination. Automatic brightness control system creates favorable conditions for positioning of the laser spot center later, and experiment results illuminate the measurement accuracy of the system has been effectively guaranteed. The average error of the spot center is within 0.5mm.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andrew James
2016-05-03
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
Method and system for homogenizing diode laser pump arrays
Bayramian, Andy J
2013-10-01
An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.
The generation of amplified spontaneous emission in high-power CPA laser systems.
Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph
2016-03-01
An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.
Geoscience Laser Ranging System design and performance predictions
NASA Technical Reports Server (NTRS)
Anderson, Kent L.
1991-01-01
The Geoscience Laser System (GLRS) will be a high-precision distance-measuring instrument planned for deployment on the EOS-B platform. Its primary objectives are to perform ranging measurements to ground targets to monitor crustal deformation and tectonic plate motions, and nadir-looking altimetry to determine ice sheet thicknesses, surface topography, and vertical profiles of clouds and aerosols. The system uses a mode-locked, 3-color Nd:YAG laser source, a Microchannel Plate-PMT for absolute time-of-flight (TOF) measurement (at 532 nm), a streak camera for TOF 2-color dispersion measurement (532 nm and 355 nm), and a Si avalanche photodiode for altimeter waveform detection (1064 nm). The performance goals are to make ranging measurements to ground targets with about 1 cm accuracy, and altimetry height measurements over ice with 10 cm accuracy. This paper presents an overview of the design concept developed during a phase B study. System engineering issues and trade studies are discussed, with particular attention to error budgets and performance predictions.
NASA Astrophysics Data System (ADS)
Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.
2013-09-01
A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.
Synchronization of pulses from mode-locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, G.T.
A study of the synchronization of mode-locked lasers is presented. In particular, we investigate the timing of the laser output pulses with respect to the radio frequency (RF) signal driving the mode-locking elements in the laser cavity. Two types of mode-locked lasers are considered: a cw loss-modulated mode-locked argon ion laser; and a q-switched active-passive mode-locked Nd:YAG laser. We develop theoretical models for the treatment of laser pulse synchronization in both types of lasers. Experimental results are presented on a combined laser system that synchronizes pulses from both an argon ion and a Nd:YAG laser by using a common RFmore » signal to drive independent mode-lockers in both laser cavities. Shot to shot jitter as low as 18 ps (RMS) was measured between the output pulses from the two lasers. The theory of pulse synchronization for the cw loss-modulated mode-locked argon ion laser is based on the relationship between the timing of the mode-locked laser pulse (with respect to the peak of the RF signal) and the length of the laser cavity. Experiments on the argon laser include the measurement of the phase shift of the mode-locked pulse as a function of cavity length and intracavity intensity. The theory of synchronization of the active-passive mode-locked Nd:YAG laser is an extension of the pulse selection model of the active-passive laser. Experiments on the active-passive Nd:YAG laser include: measurement of the early noise fluctuations; measurement of the duration of the linear build-up stage (time between laser threshold and saturation of the absorber); measurement of jitter as a function of the mode-locker modulation depth; and measurement of the output pulse phase shift as a function of cavity length.« less
Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin
2017-01-01
A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508
Laser Doppler Measurement of Atmopsheric Wind Velocity
NASA Technical Reports Server (NTRS)
Schwiesow, R. L.; Abshire, N. L.; Derr, V. E.
1973-01-01
Our presentation consists of two parts: (1) a summary review of laser Doppler principles and applications, and (2) operational design and preliminary laboratory tests of a CO2 laser system for NOAA applications.
Laser Doppler detection systems for gas velocity measurement.
Huffaker, R M
1970-05-01
The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 micro. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 micro, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.
NASA Astrophysics Data System (ADS)
Greeley, A.; Neumann, T.; Markus, T.; Kurtz, N. T.; Cook, W. B.
2015-12-01
Existing visible light laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographic Laser Altimeter System) on NASA's upcoming ICESat-2 mission - and ATM (Airborne Topographic Mapper) on NASA's Operation IceBridge mission provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters like sea ice freeboard and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons travelling into snow, ice, or water before scattering back to the altimeter receiving system (subsurface photons) travel farther and longer than photons scattering off the surface only, causing a bias in the measured elevation. We seek to identify subsurface photons in a laboratory setting using a flight-tested laser altimeter (MABEL) and to quantify their effect on surface elevation estimates for laser altimeter systems. We also compare these estimates with previous laboratory measurements of green laser light transmission through snow, as well as Monte Carlo simulations of backscattered photons from snow.
Heat pump processes induced by laser radiation
NASA Technical Reports Server (NTRS)
Garbuny, M.; Henningsen, T.
1980-01-01
A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.
Thermally induced distortion of a high-average-power laser system by an optical transport system
NASA Astrophysics Data System (ADS)
Chow, Robert; Ault, Linda E.; Taylor, John R.; Jedlovec, Don
1999-11-01
The atomic vapor laser isotope separation process uses high- average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural- optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions will be reported on optics made from fused silica and Zerodur substrate materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, T; Elmer, J; Pong, R
This report summarizes the results of a series of laser welds made between 2003 and 2005 at Lawrence Livermore National Laboratory (LLNL). The results are a compilation of several, previously unpublished, internal LLNL reports covering the laser welding of vanadium, tantalum, 304L stainless steel, 21-6-9 (Nitronic 40) steel, and Ti-6Al-4V. All the welds were made using a Rofin Sinar DY-022 diode pumped continuous wave Nd:YAG laser. Welds are made at sharp focus on each material at various power levels and travel speeds in order to provide a baseline characterization of the performance of the laser welder. These power levels aremore » based on measurements of the output power of the laser system, as measured by a power meter placed at the end of the optics train. Based on these measurements, it appears that the system displays a loss of approximately 10% as the beam passes through the fiber optic cable and laser optics. Since the beam is delivered to the fixed laser optics through a fiber optic cable, the effects of fiber diameter are also briefly investigated. Because the system utilizes 1:1 focusing optics, the laser spot size at sharp focus generally corresponds to the diameter of the fiber with which the laser is delivered. Differences in the resulting weld penetration in the different materials system are prevalent, with the welds produced on the Nitronic 40 material displaying the highest depths (> 5 mm) and minimal porosity. A Primes focusing diagnostic has also been installed on this laser system and used to characterize the size and power density distribution of the beams as a function of both power and focus position. Further work is planned in which this focusing diagnostic will be used to better understand the effects of changes in beam properties on the resulting weld dimensions in these and other materials systems.« less
He-Ne and CW CO2 laser long-path systems for gas detection
NASA Technical Reports Server (NTRS)
Grant, W. B.
1986-01-01
This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.
Measurements of laser generated soft X-ray emission from irradiated gold foils
Davis, J. S.; Frank, Y.; Raicher, E.; ...
2016-08-22
We measured soft x-ray emission from laser irradiated gold foils at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.
Measurements of laser generated soft X-ray emission from irradiated gold foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. S.; Keiter, P. A.; Klein, S. R.
Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.
Measurements of laser generated soft X-ray emission from irradiated gold foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. S.; Frank, Y.; Raicher, E.
We measured soft x-ray emission from laser irradiated gold foils at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.
Efficient Third Harmonic Generation for Wind Lidar Applications
NASA Technical Reports Server (NTRS)
Mordaunt, David W.; Cheung, Eric C.; Ho, James G.; Palese, Stephen P.
1998-01-01
The characterization of atmospheric winds on a global basis is a key parameter required for accurate weather prediction. The use of a space based lidar system for remote measurement of wind speed would provide detailed and highly accurate data for future weather prediction models. This paper reports the demonstration of efficient third harmonic conversion of a 1 micrometer laser to provide an ultraviolet (UV) source suitable for a wind lidar system based on atmospheric molecular scattering. Although infrared based lidars using aerosol scattering have been demonstrated to provide accurate wind measurement, a UV based system using molecular or Rayleigh scattering will provide accurate global wind measurements, even in those areas of the atmosphere where the aerosol density is too low to yield good infrared backscatter signals. The overall objective of this work is to demonstrate the maturity of the laser technology and its suitability for a near term flight aboard the space shuttle. The laser source is based on diode-pumped solid-state laser technology which has been extensively demonstrated at TRW in a variety of programs and internal development efforts. The pump laser used for the third harmonic demonstration is a breadboard system, designated the Laser for Risk Reduction Experiments (LARRE), which has been operating regularly for over 5 years. The laser technology has been further refined in an engineering model designated as the Compact Advanced Pulsed Solid-State Laser (CAPSSL), in which the laser head was packaged into an 8 x 8 x 18 inch volume with a weight of approximately 61 pounds. The CAPSSL system is a ruggedized configuration suitable for typical military applications. The LARRE and CAPSSL systems are based on Nd:YAG with an output wavelength of 1064 nm. The current work proves the viability of converting the Nd:YAG fundamental to the third harmonic wavelength at 355 nm for use in a direct detection wind lidar based on atmospheric Rayleigh scattering.
In situ measurement of the rheological properties and agglomeration on cementitious pastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae Hong; Yim, Hong Jae, E-mail: yimhj@knu.ac.kr; Ferron, Raissa Douglas
2016-07-15
Various factors influence the rheology of cementitious pastes, with the most important being the mixing protocol, mixture proportions, and mixture composition. This study investigated the influence of ground-granulated blast-furnace slag, on the rheological behavior of cementitious pastes. In tandem with the rheological measurements, fresh state microstructural measurements were conducted using three different techniques: A coupled stroboscope-rheometer, a coupled laser backscattering-rheometer, and a conventional laser diffraction technique. Laser diffraction and the coupled stroboscope-rheometer were not good measures of the in situ state of flocculation of a sample. Rather, only the laser backscattering technique allowed for in situ measurement on a highlymore » concentrated suspension (cementitious paste). Using the coupled laser backscattering-rheometer technique, a link between the particle system and rheological behavior was determined through a modeling approach that takes into account agglomeration properties. A higher degree of agglomeration was seen in the ordinary Portland cement paste than pastes containing the slag and this was related to the degree of capillary pressure in the paste systems.« less
Laser velocimetry: A state-of-the-art overview
NASA Technical Reports Server (NTRS)
Stevenson, W. H.
1982-01-01
General systems design and optical and signal processing requirements for laser velocimetric measurement of flows are reviewed. Bias errors which occur in measurements using burst (counter) processors are discussed and particle seeding requirements are suggested.
Fried, D; Ragadio, J; Champion, A
2001-01-01
The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (< 20 micros) CO(2) laser pulses at 9.6 microm and for Q-switched erbium laser pulses at 2.79 and 2.94 microm. Droplets of water applied to the surface before ablation significantly reduced the residual heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.
A Comparison of Laser and Video Techniques for Determining Displacement and Velocity during Running
ERIC Educational Resources Information Center
Harrison, Andrew J.; Jensen, Randall L.; Donoghue, Orna
2005-01-01
The reliability of a laser system was compared with the reliability of a video-based kinematic analysis in measuring displacement and velocity during running. Validity and reliability of the laser on static measures was also assessed at distances between 10 m and 70 m by evaluating the coefficient of variation and intraclass correlation…
Broadband Laser Ranging for Position Measurements in Shock Physics Experiments
NASA Astrophysics Data System (ADS)
Rhodes, Michelle; Bennett, Corey; Daykin, Edward; Younk, Patrick; Lalone, Brandon; Kostinski, Natalie
2017-06-01
Broadband laser ranging (BLR) is a recently developed measurement system that provides an attractive option for determining the position of shock-driven surfaces. This system uses broadband, picosecond (or femtosecond) laser pulses and a fiber interferometer to measure relative travel time to a target and to a reference mirror. The difference in travel time produces a delay difference between pulse replicas that creates a spectral beat frequency. The spectral beating is recorded in real time using a dispersive Fourier transform and an oscilloscope. BLR systems have been designed that measure position at 12.5-40 MHz with better than 100 micron accuracy over ranges greater than 10 cm. We will give an overview of the basic operating principles of these systems. Prepared by LLNL under Contract DE-AC52-07NA27344, by LANL under Contract DE-AC52-06NA25396, and by NSTec Contract DE-AC52-06NA25946.
Opto-mechanical system design of test system for near-infrared and visible target
NASA Astrophysics Data System (ADS)
Wang, Chunyan; Zhu, Guodong; Wang, Yuchao
2014-12-01
Guidance precision is the key indexes of the guided weapon shooting. The factors of guidance precision including: information processing precision, control system accuracy, laser irradiation accuracy and so on. The laser irradiation precision is an important factor. This paper aimed at the demand of the precision test of laser irradiator,and developed the laser precision test system. The system consists of modified cassegrain system, the wide range CCD camera, tracking turntable and industrial PC, and makes visible light and near infrared target imaging at the same time with a Near IR camera. Through the analysis of the design results, when it exposures the target of 1000 meters that the system measurement precision is43mm, fully meet the needs of the laser precision test.
Pulsed spatial phase-shifting digital shearography based on a micropolarizer camera
NASA Astrophysics Data System (ADS)
Aranchuk, Vyacheslav; Lal, Amit K.; Hess, Cecil F.; Trolinger, James Davis; Scott, Eddie
2018-02-01
We developed a pulsed digital shearography system that utilizes the spatial phase-shifting technique. The system employs a commercial micropolarizer camera and a double pulse laser, which allows for instantaneous phase measurements. The system can measure dynamic deformation of objects as large as 1 m at a 2-m distance during the time between two laser pulses that range from 30 μs to 30 ms. The ability of the system to measure dynamic deformation was demonstrated by obtaining phase wrapped and unwrapped shearograms of a vibrating object.
Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D
2011-03-15
The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.
Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements
NASA Technical Reports Server (NTRS)
Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel
2008-01-01
An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.
The Geoscience Laser Altimetry/Ranging System (GLARS)
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.
1986-01-01
The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung
Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position ofmore » the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than {+-}0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between {+-}0.02% and {+-}0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.« less
Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung
2011-03-01
Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than ±0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between ±0.02% and ±0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.
NASA Astrophysics Data System (ADS)
Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung
2011-03-01
Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than ±0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between ±0.02% and ±0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.
Application of laser differential confocal technique in back vertex power measurement for phoropters
NASA Astrophysics Data System (ADS)
Li, Fei; Li, Lin; Ding, Xiang; Liu, Wenli
2012-10-01
A phoropter is one of the most popular ophthalmic instruments used in optometry and the back vertex power (BVP) is one of the most important parameters to evaluate the refraction characteristics of a phoropter. In this paper, a new laser differential confocal vertex-power measurement method which takes advantage of outstanding focusing ability of laser differential confocal (LDC) system is proposed for measuring the BVP of phoropters. A vertex power measurement system is built up. Experimental results are presented and some influence factor is analyzed. It is demonstrated that the method based on LDC technique has higher measurement precision and stronger environmental anti-interference capability compared to existing methods. Theoretical analysis and experimental results indicate that the measurement error of the method is about 0.02m-1.
Laser Technology in Interplanetary Exploration: The Past and the Future
NASA Technical Reports Server (NTRS)
Smith, David E.
2000-01-01
Laser technology has been used in planetary exploration for many years but it has only been in the last decade that laser altimeters and ranging systems have been selected as flight instruments alongside cameras, spectrometers, magnetometers, etc. Today we have an active laser system operating at Mars and another destined for the asteroid Eros. A few years ago a laser ranging system on the Clementine mission changed much of our thinking about the moon and in a few years laser altimeters will be on their way to Mercury, and also to Europa. Along with the increased capabilities and reliability of laser systems has came the realization that precision ranging to the surface of planetary bodies from orbiting spacecraft enables more scientific problems to be addressed, including many associated with planetary rotation, librations, and tides. In addition, new Earth-based laser ranging systems working with similar systems on other planetary bodies in an asynchronous transponder mode will be able to make interplanetary ranging measurements at the few cm level and will advance our understanding of solar system dynamics and relativistic physics.
NASA Astrophysics Data System (ADS)
Yang, Guotao; Xia, Yuan; Cheng, Xuewu; Du, Lifang; Wang, Jihong; Xun, Yuchang
2017-04-01
We present a solid-state sodium (Na) Doppler lidar developed at YanQing Station, Beijing, China (40°N, 116°E) to achieve simultaneous wind and temperature measurements of mesopause region. The 589nm pulse laser is produced by two injection seeded 1064nm and 1319nm Nd:YAG pulse lasers using the sum-frequency generation (SFG) technique. An all-fiber-coupled seeding laser unit was designed to enable absolute laser frequency locking and cycling the measurements among three different operating frequencies. Experimental observations were carried out using this Na lidar system and the preliminary results were described and compared with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the horizontal wind of the meteor Radar, demonstrating the reliability and good performance of this lidar system. The all-fiber-coupled injection seeding configuration together with the solid-state Nd:YAG lasers make the Na Doppler lidar more compact and greatly reduce the system maintenance, which is conducive to transportable and unattended operation.
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.
2001-06-01
The high efficacy of laser phototherapy combined with transcutaneous monitoring of serum bilirubin provides optimum safety for jaundiced infants from the risk of bilirubin encephalopathy. In this paper the authors introduce the design and operating principles of a new laser system that can provide simultaneous monitoring and treatment of several jaundiced babies at one time. The new system incorporates diode-based laser sources oscillating at selected wavelengths to achieve both transcutaneous differential absorption measurements of bilirubin concentration in addition to the computer controlled intermittent laser therapy through a network of optical fibers. The detailed description and operating characteristics of this system are presented.
Critical issues encountered in experiments and measurements involving optical turbulence
NASA Astrophysics Data System (ADS)
Eaton, Frank D.
2007-02-01
The successful design and operation of high energy laser (HEL) and laser communication systems require a comprehensive and thorough knowledge of the real turbulent atmosphere coupled with high-fidelity realistic laser beam propagation models. To date, modeling and simulation of laser beam propagation through atmospheric turbulence have relied upon a traditional theoretical basis that assumes the existence of homogeneous, isotropic, stationary, and Kolmogorov turbulence. The real impact of the refractive index structure parameter ( C2 n ) on laser beam propagation including effects of non-classical turbulence as well as inner (l °) and outer scale (L °) effects will be examined. Observations clearly show turbulence is often layered and is produced by wave activity and episodic events such as Kelvin-Helmholtz instabilities. Other critical turbulence issues involve the relationship between mechanical and optical turbulence and the effect of path variability of turbulence and inner scale on optical turbulence parameters over long paths. These issues will be examined from data obtained from five systems: a) a new measurement platform using a free-flying balloon that lifts a ring with a boom upon which are mounted several fine wire (1-μm diameter) sensors to measure high-speed temperature and velocity fluctuations, b) a new system using a kite/tethered blimp platform that obtains both profile and measurements at a fixed altitude over time, c) a 50 MHz radar at Vandenberg Air Force Base that senses at high temporal and spatial resolution to 20 km ASL, d) an instrumented aircraft system, and e) a suite of optical systems. The first four systems all provide estimates of C2 n , the eddy dissipation rate (\\Vegr), l ° and L °. Methods of calibration and problems of interpreting results from the measurement systems are discussed.
Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy
Rhodes, Mark
2013-12-17
A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.
Measurement of Laser Weld Temperatures for 3D Model Input
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagel, Daryl; Grossetete, Grant; Maccallum, Danny O.
Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defectsmore » and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.« less
Frequency Stabilization of DFB Laser Diodes at 1572 nm for Spaceborne Lidar Measurements of CO2
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.; Abshire, James B.; Krainak, Michael A.
2010-01-01
We report a fiber-based, pulsed laser seeder system that rapidly switches among 6 wavelengths across atmospheric carbon dioxide (CO2) absorption line near 1572.3 nm for measurements of global CO2 mixing ratios to 1-ppmv precision. One master DFB laser diode has been frequency-locked to the CO2 line center using a frequency modulation technique, suppressing its peak-to-peak frequency drifts to 0.3 MHz at 0.8 sec averaging time over 72 hours. Four online DFB laser diodes have been offset-locked to the master laser using phase locked loops, with virtually the same sub-MHz absolute accuracy. The 6 lasers were externally modulated and then combined to produce the measurement pulse train.
Laser radar measurements of the aerosol content of the atmosphere
NASA Technical Reports Server (NTRS)
Grams, G. W.
1969-01-01
A summary of the results of laser radar observations of atmospheric aerosols is presented along with a description of the laser radar system devised during the study and of the data handling techniques utilized for the analysis of the data of the temporal and spatial distribution of atmospheric aerosols. Current research conducted by the group is directed toward the analysis of the frequency spectrum of laser radar echoes to obtain absolute measurements of the dust content of the atmosphere by resolving the molecular and aerosol contributions to the laser radar echoes.
Fatadin, Irshaad; Ives, David; Savory, Seb J
2013-04-22
The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.
Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter
2015-12-01
A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.
Laser-fluorescence measurement of marine algae
NASA Technical Reports Server (NTRS)
Browell, E. V.
1980-01-01
Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.
Cerebral blood oxygenation measurements in neonates with optoacoustic technique
NASA Astrophysics Data System (ADS)
Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Richardson, C. Joan; Fonseca, Rafael A.; Prough, Donald S.; Esenaliev, Rinat O.
2017-03-01
Cerebral hypoxia is a major contributor to neonatal/infant mortality and morbidity including severe neurological complications such as mental retardation, cerebral palsy, motor impairment, and epilepsy. Currently, no technology is capable of accurate monitoring of neonatal cerebral oxygenation. We proposed to use optoacoustics for this application by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, optical parametric oscillator (OPO) and laser diode optoacoustic systems for measurement of SSS blood oxygenation in the reflection mode through open anterior or posterior fontanelles and in the transmission mode through the skull in the occipital area. In this paper we present results of initial tests of the laser diode system for neonatal cerebral oxygenation measurements. First, the system was tested in phantoms simulating neonatal SSS. Then, using the data obtained in the phantoms, we optimized the system's hardware and software and tested it in neonates admitted in the Neonatal Intensive Care Unit. The laser diode system was capable of detecting SSS signals in the reflection mode through the open anterior and posterior fontanelles as well as in the transmission mode through the skull with high signal-to-noise ratio. Using the signals measured at different wavelengths and algorithms developed for oxygenation measurements, the laser diode system provided real-time, continuous oxygenation monitoring with high precision at all these locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming
An U.S. DOE Cooperative Research and Development Agreement (CRADA) between ANL and Optodyne, Inc. has been established to develop a prototype laser Doppler displacement encoder system with ultra-low noise level for linear measurements to sub-nanometer resolution for synchrotron radiation applications. We have improved the heterodyne efficiency and reduced the detector shot noises by proper shielding and adding a low-pass filter. The laser Doppler displacement encoder system prototype demonstrated a ~ 1 nm system output noise floor with single reflection optics. With multiple-pass optical arrangement, 0.1 nm scale closed-loop feedback control is achieved.
Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers
NASA Technical Reports Server (NTRS)
Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.
1986-01-01
The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.
CW Laser radar for combustion diagnostics
NASA Astrophysics Data System (ADS)
Malmqvist, Elin; Brydegaard, Mikkel; Aldén, Marcus; Bood, Joakim
2018-04-01
A CW-laser radar system developed for combustion diagnostics is described. The system is based on triangulation to attain range information. A portable system has been constructed and here we show some result from measurements in various flames, for example Rayleigh scattering thermometry and monitoring of particle distributions with high temporal and spatial resolution. The concept can equally well be based on pulsed lasers, allowing suppression of background emission through gated detection.
Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan
2013-04-01
Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.
OEM fiber laser rangefinder for long-distance measurement
NASA Astrophysics Data System (ADS)
Corman, Alexandre; Chiquet, Frédéric; Avisse, Thomas; Le Flohic, Marc
2015-05-01
SensUp designs and manufactures electro-optical systems based on laser technology, in particular from fiber lasers. Indeed, that kind of source enables us to get a significant peak power with huge repetition rates at the same time, thus combining some characteristics of the two main technologies on the telemetry field today: laser diodes and solid-state lasers. The OEM (Original Equipment Manufacturer) fiber Laser RangeFinder (LRF) set out below, aims to fit the SWaP (Size Weight and Power) requirements of military markets, and might turn out to be a real alternative to other technologies usually used in range finding systems.
Active solution of homography for pavement crack recovery with four laser lines.
Xu, Guan; Chen, Fang; Wu, Guangwei; Li, Xiaotao
2018-05-08
An active solution method of the homography, which is derived from four laser lines, is proposed to recover the pavement cracks captured by the camera to the real-dimension cracks in the pavement plane. The measurement system, including a camera and four laser projectors, captures the projection laser points on the 2D reference in different positions. The projection laser points are reconstructed in the camera coordinate system. Then, the laser lines are initialized and optimized by the projection laser points. Moreover, the plane-indicated Plücker matrices of the optimized laser lines are employed to model the laser projection points of the laser lines on the pavement. The image-pavement homography is actively determined by the solutions of the perpendicular feet of the projection laser points. The pavement cracks are recovered by the active solution of homography in the experiments. The recovery accuracy of the active solution method is verified by the 2D dimension-known reference. The test case with the measurement distance of 700 mm and the relative angle of 8° achieves the smallest recovery error of 0.78 mm in the experimental investigations, which indicates the application potentials in the vision-based pavement inspection.
Strongly aligned gas-phase molecules at free-electron lasers
Kierspel, Thomas; Wiese, Joss; Mullins, Terry; ...
2015-09-16
Here, we demonstrate a novel experimental implementation to strongly align molecules at full repetition rates of free-electron lasers. We utilized the available in-house laser system at the coherent x-ray imaging beamline at the linac coherent light source. Chirped laser pulses, i.e., the direct output from the regenerative amplifier of the Ti:Sa chirped pulse amplification laser system, were used to strongly align 2, 5-diiodothiophene molecules in a molecular beam. The alignment laser pulses had pulse energies of a few mJ and a pulse duration of 94 ps. A degree of alignment ofmore » $$\\langle {\\mathrm{cos}}^{2}{\\theta }_{2{\\rm{D}}}\\rangle =0.85$$ was measured, limited by the intrinsic temperature of the molecular beam rather than by the available laser system. With the general availability of synchronized chirped-pulse-amplified near-infrared laser systems at short-wavelength laser facilities, our approach allows for the universal preparation of molecules tightly fixed in space for experiments with x-ray pulses.« less
Sensor-based laser ablation for tissue specific cutting: an experimental study.
Rupprecht, Stephan; Tangermann-Gerk, Katja; Wiltfang, Joerg; Neukam, Friedrich Wilhelm; Schlegel, Andreas
2004-01-01
The interaction of laser light and tissue causes measurable phenomenons. These phenomenons can be quantified and used to control the laser drilling within a feedback system. Ten halves of dissected minipig jaws were treated with an Er:YAG laser system controlled via a feedback system. Sensor outputs were recorded and analyzed while osteotomy was done. The relative depth of laser ablation was calculated by 3D computed tomography and evaluated histologically. The detected signals caused by the laser-tissue interaction changed their character in a dramatic way after passing the cortical bone layer. The radiological evaluation of 98 laser-ablated holes in the ten halves showed no deeper ablation beyond the cortical layer (mean values: 97.8%). Histologically, no physical damage to the alveolar nerve bundle was proved. The feedback system to control the laser drilling was working exactly for cortical ablation of the bone based on the evaluation of detected and quantified phenomenon related to the laser-tissue interaction.
Direct measurements of temperature-dependent laser absorptivity of metal powders
Rubenchik, A.; Wu, S.; Mitchell, S.; ...
2015-08-12
Here, a compact system is developed to measure laser absorptivity for a variety of powder materials (metals, ceramics, etc.) with different powder size distributions and thicknesses. The measured results for several metal powders are presented. The results are consistent with those from ray tracing calculations.
Direct measurements of temperature-dependent laser absorptivity of metal powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubenchik, A.; Wu, S.; Mitchell, S.
Here, a compact system is developed to measure laser absorptivity for a variety of powder materials (metals, ceramics, etc.) with different powder size distributions and thicknesses. The measured results for several metal powders are presented. The results are consistent with those from ray tracing calculations.
Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam.
Davies, A; Haberberger, D; Boni, R; Ivancic, S; Brown, R; Froula, D H
2014-11-01
A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.
Development of Sensor-Based Measures of Rifle Marksmanship Skill and Performance. CRESST Report 756
ERIC Educational Resources Information Center
Espinosa, Paul D.; Nagashima, Sam O.; Chung, Gregory K. W. K.; Parks, Daniel; Baker, Eva L.
2009-01-01
Measures of rifle marksmanship skill and performance were developed using a prototype instrumented laser-based training system. Measures of performance were derived from laser strikes on a video-projected target. Measures of rifle marksmanship skill--breath control, trigger control, and muzzle wobble--were developed from shooters' breathing and…
Flow Visualization and Laser Velocimetry for Wind Tunnels
NASA Technical Reports Server (NTRS)
Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)
1982-01-01
The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.
Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying
NASA Astrophysics Data System (ADS)
Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok
2015-12-01
This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.
Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil
NASA Astrophysics Data System (ADS)
de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.
2011-11-01
Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.
Studies of new media radiation induced laser
NASA Technical Reports Server (NTRS)
Han, K. S.; Shiu, Y. J.; Raju, S. R.; Hwang, I. H.; Tabibi, B.
1984-01-01
Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed.
Optical characterization in wide spectral range by a coherent spectrophotometer
NASA Astrophysics Data System (ADS)
Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.
2003-11-01
We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.
Digital-holographic analysis of femtosecond laser-induced photodisruption in ocular tissue
NASA Astrophysics Data System (ADS)
Saerchen, Emanuel; Biessy, Kevin; Kemper, Björn; Lubatschowski, Holger
2014-02-01
High repetition rated femtosecond laser oscillator systems with low pulse energy are more often applied for precise and safer eye surgery. Especially, the cutting procedure in the crystalline lens is of high important for presbyopia treatment. Nevertheless, the fundamental laser tissue interaction process is not completely understood, because apparently a self-induced process takes place, were one modified region changes the focusing behavior of following laser pulses. We used a MHz repetition rate femtosecond laser system with nJ-pulse energy which were focused inside an ocular-tissue-phantom (Hydroxy-ethylmethacrylat - HEMA) to induce photodisruption. The material change, caused by the fs-pulses was measured simultaneously with a compact digital-holographic microscope. To investigate the material manipulation at different time scales, we used a continuously illuminating light source. The holographic images provide quantitative values for optical path length difference (OPL), which is equivalent to a refractive index change. This change of the optical properties may cause following pulses to obtain different focusing conditions. Time lapse measurements during the laser application were performed, which show the temporal evolution of OPL. An increase of OPL during the laser application was measured, which was followed by a decrease in OPL after laser processing. Furthermore, similar experiments were performed in distilled water and in native porcine crystalline lenses. The fs-laser cutting effects in HEMA and crystalline lens were transferable. Simultaneous measurements of the material modification during the cutting process give rise to better knowledge of treatment modalities during ocular tissue processing.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Hwang, In Heon; Stock, Larry V.
1989-01-01
This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.
The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission
NASA Technical Reports Server (NTRS)
Abshire, James B.; Sun, Xia-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.; Smith, David E. (Technical Monitor)
2000-01-01
The Laser In space Technology Experiment, Shuttle Laser Altimeter and the Mars Observer Laser Altimeter have demonstrated accurate measurements of atmospheric backscatter and Surface heights from space. The recent MOLA measurements of the Mars surface have 40 cm vertical resolution and have reduced the global uncertainty in Mars topography from a few km to about 5 m. The Geoscience Laser Altimeter System (GLAS) is a next generation lidar for Earth orbit being developed as part of NASA's Icesat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS is being developed to fly on a small dedicated spacecraft in a polar orbit with a 590 630 km altitude at inclination of 94 degrees. GLAS is scheduled to launch in the summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will continuously measure the vertical distance from orbit to the Earth's surface with 1064 nm pulses from a ND:YAG laser at a 40 Hz rate. Each 5 nsec wide laser pulse is used to produce a single range measurement, and the laser spots have 66 m diameter and about 170 m center-center spacings. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a 1 m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser. Accurate knowledge of the laser beam's pointing angle is needed to prevent height biases when over sloped surfaces. For surfaces with 2 deg. slopes, knowledge of pointing angle of the beam's centroid to about 8 urad is needed to achieve 10 cm height accuracy. GLAS uses a stellar reference system (SRS) to determine the pointing angle of each laser firing relative to inertial space. The SRS uses a high precision star camera oriented toward local zenith and a gyroscope to determine the inertial orientation of the SRS optical bench. The far field pattern of each laser is measured pulse relative to the star camera with a laser reference system (LRS). Optically measuring each laser far field pattern relative to the orientation of the star camera and gyroscope permits the precise pointing angle of each laser pulse to be determined. GLAS will also determine the vertical distributions of clouds and aerosols by measuring the vertical profile of laser energy backscattered by the atmosphere at both 1064 and 532 nm. The 1064 nm measurements use the Si APD detector and profile the height and vertical structure of thicker clouds. The measurements at 532 nm use new highly sensitive photon counting, detectors, and measure the height distributions of very thin Clouds and aerosol layers. With averaging these can be used to determine the height of the planetary boundary layer. The instrument design and expected performance will be discussed.
Measurement and analysis of aircraft and vehicle LRCS in outfield test
NASA Astrophysics Data System (ADS)
Cao, Chang-Qing; Zeng, Xiao-dong; Fan, Zhao-jin; Feng, Zhe-jun; Lai, Zhi
2015-04-01
The measurement of aircraft and vehicle Laser Radar Cross Section (LRCS) is of crucial importance for the detection system evaluation and the characteristic research of the laser scattering. A brief introduction of the measuring theory of the laser scattering from the full-scale aircraft and vehicle targets is presented in this paper. By analyzing the measuring condition in outfield test, the laser systems and test steps are designed for full-scale aircraft and vehicle LRCS and verified by the experiment in laboratory. The processing data error 7% below is obtained of the laser radar cross section by using Gaussian compensation and elimination of sky background for original test data. The study of measurement and analysis proves that the proposed method is effective and correct to get laser radar cross section data in outfield test. The objectives of this study were: (1) to develop structural concepts for different LRCS fuselage configurations constructed of conventional materials; (2) to compare these findings with those of aircrafts or vehicles; (3) to assess the application of advanced materials for each configuration; (4) to conduct an analytical investigation of the aerodynamic loads, vertical drag and mission performance of different LRCS configurations; and (5) to compare these findings with those of the aircrafts or vehicles.
Design considerations for a space-borne ocean surface laser altimeter
NASA Technical Reports Server (NTRS)
Plotkin, H. H.
1972-01-01
Design procedures for using laser ranging systems in spacecraft to reflect ocean surface pulses vertically and measure spacecraft altitude with high precision are examined. Operating principles and performance experience of a prototype system are given.
Laser Doppler Radar System Calibration and Rainfall Attenuation Measurements
DOT National Transportation Integrated Search
1978-10-01
The atmospheric attenuation and backscatter coefficients have been measured at the 10.6-micrometers wavelength of the CO2 laser in rainstorms. Data are presented to show the increase in attenuation coefficient with rainfall rate. Backscatter coeffici...
Airborne laser systems for atmospheric sounding in the near infrared
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David
2012-06-01
This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.
Method for Ground-to-Satellite Laser Calibration System
NASA Technical Reports Server (NTRS)
Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)
2015-01-01
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.
Method for Ground-to-Space Laser Calibration System
NASA Technical Reports Server (NTRS)
Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)
2014-01-01
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.
NASA Astrophysics Data System (ADS)
Zhao, Kaiguang
LiDAR (Light Detection and Ranging) directly measures canopy vertical structures, and provides an effective remote sensing solution to accurate and spatially-explicit mapping of forest characteristics, such as canopy height and Leaf Area Index. However, many factors, such as large data volume and high costs for data acquisition, precludes the operational and practical use of most currently available LiDARs for frequent and large-scale mapping. At the same time, a growing need is arising for real-time remote sensing platforms, e.g., to provide timely information for urgent applications. This study aims to develop an airborne profiling LiDAR system, featured with on-the-fly data processing, for near real- or real-time forest inventory. The development of such a system involves implementing the on-board data processing and analysis as well as building useful regression-based models to relate LiDAR measurements with forest biophysical parameters. This work established a paradigm for an on-the-fly airborne profiling LiDAR system to inventory regional forest resources in real- or near real-time. The system was developed based on an existing portable airborne laser system (PALS) that has been previously assembled at NASA by Dr. Ross Nelson. Key issues in automating PALS as an on-the-fly system were addressed, including the design of an archetype for the system workflow, the development of efficient and robust algorithms for automatic data processing and analysis, the development of effective regression models to predict forest biophysical parameters from LiDAR measurements, and the implementation of an integrated software package to incorporate all the above development. This work exploited the untouched potential of airborne laser profilers for real-time forest inventory, and therefore, documented an initial step toward developing airborne-laser-based, on-the-fly, real-time, forest inventory systems. Results from this work demonstrated the utility and effectiveness of airborne scanning or profiling laser systems for remotely measuring various forest structural attributes at a range of scales, i.e., from individual tree, plot, stand and up to regional levels. The system not only provides a regional assessment tool, one that can be used to repeatedly, remotely measure hundreds or thousands of square kilometers with little/no analyst interaction or interpretation, but also serves as a paradigm for future efforts in building more advanced airborne laser systems such as real-time laser scanners.
Structural alignment sensor. [laser applications and interferometry
NASA Technical Reports Server (NTRS)
Davis, L.; Buholz, N. E.; Gillard, C. W.; Huang, C. C.; Wells, W. M., III
1978-01-01
Comparative Michelson interferometers are discussed as well as the operating range potential of a structural alignment sensor (SAS) which requires only one laser mode. Schematics are presented for the distance measurement logic, the basic SAS system, the SAS optical layout, the coarse measurement signal processor, and the measured range resolution.
[Dynamic Wavelength Characteristics of Semiconductor Laser in Electric Current Tuning Process].
Liu, Jing-wang; Li, Zhong-yang; Zhang, Wei-zhong; Wang, Qing-chuan; An, Ying; Li, Yong-hui
2015-11-01
In order to measure the dynamic wavelength of semiconductor lasers under current tuning, an improved method of fi- ber delay self-heterodyne interferometer was proposed. The measurement principle, as well the beat frequency and dynamic wavelength of recursive relations are theoretically analyzed. The application of the experimental system measured the dynamic wavelength characteristics of distributed feedback semiconductor laser and the static wavelength characteristics measurement by the spectrometer. The comparison between the two values indicates that both dynamic and static wavelength characteristic with the current tuning are the similar non-linear curve. In 20-100 mA current tuning range, the difference of them is less than 0.002 nm. At the same time, according to the absorption lines of CO2 gas, and HITRAN spectrum library, we can identify the dynamic wavelength of the laser. Comparing it with dynamic wavelength calculated by the beat signal, the difference is only 0.001 nm, which verifies the reliability of the experimental system to measure the dynamic wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna
In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less
Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna; ...
2017-10-23
In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less
2016-02-01
Maximum 200 words) LiTbF4 has the potential to replace traditional magneto-optic (MO) garnet materials as a Faraday rotator in high power laser systems...TERMS LiTbF4; magneto-optic (MO) garnet materials; Faraday rotator; high power laser; Verdet constant; Sellmeier; optical isolator 16. SECURITY... Faraday rotator in high power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor- dinary
Error Analysis of Wind Measurements for the University of Illinois Sodium Doppler Temperature System
NASA Technical Reports Server (NTRS)
Pfenninger, W. Matthew; Papen, George C.
1992-01-01
Four-frequency lidar measurements of temperature and wind velocity require accurate frequency tuning to an absolute reference and long term frequency stability. We quantify frequency tuning errors for the Illinois sodium system, to measure absolute frequencies and a reference interferometer to measure relative frequencies. To determine laser tuning errors, we monitor the vapor cell and interferometer during lidar data acquisition and analyze the two signals for variations as functions of time. Both sodium cell and interferometer are the same as those used to frequency tune the laser. By quantifying the frequency variations of the laser during data acquisition, an error analysis of temperature and wind measurements can be calculated. These error bounds determine the confidence in the calculated temperatures and wind velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saakyan, S A; Vilshanskaya, E V; Zelener, B B
2015-09-30
A new technique is proposed and applied to study the frequency drift of an external-cavity semiconductor laser, locked to the transmission resonances of a thermally stabilised Fabry–Perot interferometer. The interferometer frequency drift is measured to be less than 2 MHz h{sup -1}. The laser frequency is measured using an Angstrom wavemeter, calibrated using an additional stabilised laser. It is shown that this system of laser frequency control can be used to identify Rydberg transitions in ultracold {sup 7}Li atoms. (control of laser radiation parameters)
NASA Astrophysics Data System (ADS)
Xiong, Xingting; Qu, Xinghua; Zhang, Fumin
2018-01-01
We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.
Diode-pumped Cr-doped ZnMnSe and ZnMgSe lasers
NASA Astrophysics Data System (ADS)
Říha, A.; Němec, M.; Jelínková, H.; Čech, M.; Vyhlídal, D.; Doroshenko, M. E.; Komar, V. K.; Gerasimenko, A. S.
2017-12-01
Chromium ions Cr2+ are known to have good fluorescence properties in the mid-infrared spectral region around the wavelength of 2.5 μm. The aim of this study was the investigation of new laser crystal materials - Zn0.95Mn0.05Se, Zn0.70Mn 0.30Se, and Zn0.75Mg0.25Se doped by Cr2+ ions and comparison of their spectral and laser characteristics. The spectroscopic parameters as absorption and fluorescence spectra as well as lifetimes were measured. As optical pumping the laser diode generating radiation at the wavelength of 1.69 μm (pulse repetition rate 10 Hz, pulse width 2 ms) was used. The longitudinal-pumped resonator was hemispherical with an output coupler radius of curvature 150 mm. The laser emission spectra were investigated and the highest intensity of emitted radiation was achieved at wavelengths 2451 nm, 2469 nm, and 2470 nm from the Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se laser systems, respectively. The input-output characteristics of laser systems were measured; the maximum output peak power 177 mW was obtained for Cr:Zn0.95Mn0.05Se laser system with slope efficiency of 6.3 % with respect to absorbed peak power. The output peak power as well as output beam spatial structure were stable during measurements. For the selection of the lasing wavelength, the single 1.5 mm thick quartz plate was placed at the Brewster angle inside the optical resonator between the output coupler and laser active medium. This element provided the tuning in the wavelength range 2290-2578 nm, 2353-2543 nm, and 2420-2551 nm for Cr:Zn0.95Mn0.05Se, Cr:Zn0.70Mn0.30Se, and Cr:Zn0.75Mg0.25Se, respectively. The obtained spectral FWHM linewidth of the individual output radiation was 10 nm. A comparison with previously measured Cr:ZnSe laser system was added in the end
Resolution performance of a 0.60-NA, 364-nm laser direct writer
NASA Astrophysics Data System (ADS)
Allen, Paul C.; Buck, Peter D.
1990-06-01
ATEQ has developed a high resolution laser scanning printing engine based on the 8 beam architecture of the CORE- 2000. This printing engine has been incorporated into two systems: the CORE-2500 for the production of advanced masks and reticles and a prototype system for direct write on wafers. The laser direct writer incorporates a through-the-lens alignment system and a rotary chuck for theta alignment. Its resolution performance is delivered by a 0. 60 NA laser scan lens and a novel air-jet focus system. The short focal length high resolution lens also reduces beam position errors thereby improving overall pattern accuracy. In order to take advantage of the high NA optics a high performance focus servo was developed capable of dynamic focus with a maximum error of 0. 15 tm. The focus system uses a hot wire anemometer to measure air flow through an orifice abutting the wafer providing a direct measurement to the top surface of resist independent of substrate properties. Lens specifications are presented and compared with the previous design. Bench data of spot size vs. entrance pupil filling show spot size performance down to 0. 35 m FWHM. The lens has a linearity specification of 0. 05 m system measurements of lens linearity indicate system performance substantially below this. The aerial image of the scanned beams is measured using resist as a threshold detector. An effective spot size is
Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.
Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B
2005-11-01
A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.
An improved maximum permissible exposure meter for safety assessments of laser radiation
NASA Astrophysics Data System (ADS)
Corder, D. A.; Evans, D. R.; Tyrer, J. R.
1997-12-01
Current interest in laser radiation safety requires demonstration that a laser system has been designed to prevent exposure to levels of laser radiation exceeding the Maximum Permissible Exposure. In some simple systems it is possible to prove this by calculation, but in most cases it is preferable to confirm calculated results with a measurement. This measurement may be made with commercially available equipment, but there are limitations with this approach. A custom designed instrument is presented in which the full range of measurement issues have been addressed. Important features of the instrument are the design and optimisation of detector heads for the measurement task, and consideration of user interface requirements. Three designs for detector head are presented, these cover the majority of common laser types. Detector heads are designed to optimise the performance of relatively low cost detector elements for this measurement task. The three detector head designs are suitable for interfacing to photodiodes, low power thermopiles and pyroelectric detectors. Design of the user interface was an important aspect of the work. A user interface which is designed for the specific application minimises the risk of user error or misinterpretation of the measurement results. A palmtop computer was used to provide an advanced user interface. User requirements were considered in order that the final implement was well matched to the task of laser radiation hazard audits.
A Completely Solid-State Tunable Ti:Sapphire Laser System
NASA Technical Reports Server (NTRS)
Guerra, David V.; Coyle, D. Barry; Krebs, Danny J.
1994-01-01
Compact, completely solid-state tunable pulsed laser system passively cooled developed for potential employment in aircraft and sounding-rocket lidar experiments. Ti:sapphire based laser system pumped with frequency-doubled diode-pumped Nd:YAG. Rugged, self-contained system extremely flexible and provides pulsed output at specific frequencies with low input-power requirements. In-situ measurements enables scientists to study upper-atmosphere dynamics. Tuning range easily extended to bands between 650-950 nm in order to study other atmospheric constituents.
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, F.; Bohler, D.; Ding, Y.
2015-12-07
Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Lightmore » Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.« less
An automatic system to study sperm motility and energetics
Nascimento, Jaclyn M.; Chandsawangbhuwana, Charlie; Botvinick, Elliot L.; Berns, Michael W.
2012-01-01
An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm’s mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry. PMID:18299996
An automatic system to study sperm motility and energetics.
Shi, Linda Z; Nascimento, Jaclyn M; Chandsawangbhuwana, Charlie; Botvinick, Elliot L; Berns, Michael W
2008-08-01
An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm's mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry.
Enhancements to the timing of the OMEGA laser system to improve illumination uniformity
NASA Astrophysics Data System (ADS)
Donaldson, W. R.; Katz, J.; Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Bahr, R. E.
2016-09-01
Two diagnostics have been developed to improve the uniformity on the OMEGA Laser System, which is used for inertial confinement fusion (ICF) research. The first diagnostic measures the phase of an optical modulator (used for the spectral dispersion technique employed on OMEGA to enhance spatial smoothing), which adds bandwidth to the optical pulse. Setting this phase precisely is required to reduce pointing errors. The second diagnostic ensures that the arrival times of all the beams are synchronized. The arrival of each of the 60 OMEGA beams is measured by placing a 1-mm diffusing sphere at target chamber center. By comparing the arrival time of each beam with respect to a reference pulse, the measured timing spread of the OMEGA Laser System is now 3.8 ps.
Lockheed design of a wind satellite (WINDSAT) experiment
NASA Technical Reports Server (NTRS)
Osmundson, John S.; Martin, Stephen C.
1985-01-01
WINDSAT is a proposed space based global wind measuring system. A Shuttleborne experiment is proposed as a proof of principle demonstration before development of a full operational system. WINDSAT goals are to measure wind speed and direction to + or - 1 m/s and 10 deg accuracy over the entire earth from 0 to 20 km altitude with 1 km altitude resolution. The wind measuring instrument is a coherent lidar incorporating a pulsed CO2 TEA laser transmitter and a continuously scanning 1.25 m diameter optical system. The wind speed is measured by heterodyne detecting the backscattered return laser radiation and measuring this frequency shift.
Application of laser Doppler velocimeter to chemical vapor laser system
NASA Technical Reports Server (NTRS)
Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.
1993-01-01
A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.
Shipboard Visibility Measurement System Definition Study.
1982-01-01
Aerosol Extinction (AAE) Coef- ficients Derived from NRL Long - Path Transmission Measurements at CCAFS...determined. Occasionally long - path extinction measurements for many laser lines were collected (as many as 80 CO2 laser lines on some days and repeated...EXPERIMENT DAY FIGURE 22. PLOT OF APPARENT AEROSOL EXTINCTION (AAE) COEFFICIENTS DERIVED FROM NRL LONG - PATH TRANSMISSION MEASUREMENTS AT CCAFS MINUS
A fast high-precision six-degree-of-freedom relative position sensor
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan
2016-03-01
Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.
Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance
NASA Astrophysics Data System (ADS)
Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald
2008-11-01
As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.
NASA Astrophysics Data System (ADS)
Yang, J.; Lee, H.; Sohn, H.
2012-05-01
This study presents an embedded laser ultrasonic system for pipeline monitoring under high temperature environment. Recently, laser ultrasonics is becoming popular because of their advantageous characteristics such as (a) noncontact inspection, (b) immunity against electromagnetic interference (EMI), and (c) applicability under high temperature. However, the performance of conventional laser ultrasonic techniques for pipeline monitoring has been limited because many pipelines are covered by insulating materials and target surfaces are inaccessible. To overcome the problem, this study designs an embeddable optical fibers and fixing devices that deliver laser beams from laser sources to a target pipe using embedded optical fibers. For guided wave generation, an optical fiber is furnished with a beam collimator for irradiating a laser beam onto a target structure. The corresponding response is measured based on the principle of laser interferometry. Light from a monochromatic source is colliminated and delivered to a target surface by another optical with a focusing module, and reflected light is transmitted back to the interferometer through the same fiber. The feasibility of the proposed system for embedded ultrasonic measurement has been experimentally verified using a pipe specimen under high temperature.
Thermally induced distortion of high average power laser system by an optical transport system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ault, L; Chow, R; Taylor, Jedlovec, D
1999-03-31
The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics.more » The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.« less
Multiwave low-laser therapy in the pain treatment
NASA Astrophysics Data System (ADS)
Moldovan, Corneliu I.; Antipa, Ciprian; Bratila, Florin; Brukner, Ion; Vasiliu, Virgil V.
1995-03-01
Sixteen patients with knee pain, 17 patients with low back pain and 23 patients with vertebral pain were randomly allocated to multiwave laser therapy (MWL). The MWL was performed through an original method by a special designed laser system. The stimulation parameters adaptably optimized in a closed loop by measuring the reflected laser radiation. A control group of 11 patients was conventionally treated with a single infrared laser system. All patients were assessed by single observer using a visual analogue scale in a controlled trial. Our results indicate that the treatment with different laser wavelengths, different output power and frequencies, simultaneously applied through optic-fibers, has significant effects on the pain when compared with the common low laser therapy.
Automated beam monitoring and diagnosis for CO2 lasers
NASA Astrophysics Data System (ADS)
Mann, Stefan; Boeske, Lars; Kaierle, Stefan; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart
2002-06-01
The usage of a quality management, in combination with a standard certification, is nearly inevitable for today's industrial manufacturing. In laser materials processing, a periodical beam diagnosis is to be executed as a quality-maintaining measure with any change of the workpiece geometry to guarantee an unambiguous allocation of the beam quality factors. Otherwise changes in the beam quality, caused by pollution, aging or defect of the optical components, remain unidentified for a long time, leading to impairments of the treatment quality or even costly down-times. As a solution a diagnosis system is integrated into a laser system. Data sources like measuring instruments, sensors and laser control transmit the diagnosis data to a diagnosis PC. A user-friendly software, based on Fuzzy algorithms, enables the operator to retrace changes in the beam quality to failures of the laser system. All diagnosis data are getting archived in a databank. The access to the archived data through the World Wide Web allows remote diagnoses. With the help of the beam diagnosis system failures can be discovered in advance, and losses of production can be avoided. The gained transparency of the beam characteristic values facilitates the integration of the laser system in the quality management. A prototype installation has been realized and latest results will be demonstrated.
Xu, Guan; Yuan, Jing; Li, Xiaotao; Su, Jian
2017-08-01
Vision measurement on the basis of structured light plays a significant role in the optical inspection research. The 2D target fixed with a line laser projector is designed to realize the transformations among the world coordinate system, the camera coordinate system and the image coordinate system. The laser projective point and five non-collinear points that are randomly selected from the target are adopted to construct a projection invariant. The closed form solutions of the 3D laser points are solved by the homogeneous linear equations generated from the projection invariants. The optimization function is created by the parameterized re-projection errors of the laser points and the target points in the image coordinate system. Furthermore, the nonlinear optimization solutions of the world coordinates of the projection points, the camera parameters and the lens distortion coefficients are contributed by minimizing the optimization function. The accuracy of the 3D reconstruction is evaluated by comparing the displacements of the reconstructed laser points with the actual displacements. The effects of the image quantity, the lens distortion and the noises are investigated in the experiments, which demonstrate that the reconstruction approach is effective to contribute the accurate test in the measurement system.
Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua
2015-06-15
We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by rubymore » fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)« less
NASA Astrophysics Data System (ADS)
den Hartog, D. J.
2005-10-01
Initial measurements with the new Thomson scattering diagnostic on MST show a flattening of the Te profile during a sawtooth crash. These measurements were made in standard sawtoothing reversed-field pinch discharges, and show the core temperature dropping from 400 to approximately 150 eV, while the edge rises several-fold. Measurement of Te time dynamics in MST will be advanced by further development of the Thomson scattering diagnostic. In the near term, two independently triggerable lasers will be used to make two Te profile measurements separated by greater than or equal to 100 ns. By varying this separation time over the course of a data ensemble, an initial Te fluctuation spectrum will be produced. In the longer term, a third ``pulse-burst'' laser will be added to the diagnostic system. This laser will produce a burst of 10-30 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. The planned laser system will operate at 1064 nm and is based on existing Nd:YAG systems used to study fluid dynamics [Brian Thurow et al., Appl. Opt. 43, 5064 (2004)]. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot, and with ensembling, will enable correlation of Te and ne fluctuations with other fluctuating quantities.
Dual wavelength laser diode excitation source for 2D photoacoustic imaging.
NASA Astrophysics Data System (ADS)
Allen, Thomas J.; Beard, Paul C.
2007-02-01
Photoacoustic methods can be used to make spatially resolved spectroscopic measurements of blood oxygenation when using a multiwavelength excitation source, such as an OPO system. Since these excitation sources are usually expensive and bulky, an alternative is to use laser diodes. A fibre coupled laser diode excitation system has been developed, providing two wavelengths, 850 and 905nm, each composed of 6 high peak power pulsed laser diodes. The system provided variable pulse durations (65-500ns) and repetition rates of up to 5KHz. The pulse energies delivered by the excitation system at 905nm and 850nm were measured to be 120μJ and 80μJ respectively for a 200ns pulse duration. To demonstrate the utility of the system, the excitation source was combined with an ultrasound detector to form a probe for in vivo single point measurements of superficial blood vessels. Changes in blood oxygenation and volume in the finger tip were monitored while making venous and arterial occlusions. To demonstrate the imaging capability of the excitation system, 2D photoacoustic images of a physiologically realistic phantom were obtained for a range of pulse durations using a cylindrical scanning system. The phantom was composed of cylindrical absorbing elements (μa=1mm^{-1}) of 2.7mm diameter, immersed in a 1% intralipid solution (μs=1mm^{-1}). This study demonstrated the potential use of laser diodes as an excitation source for photoacoustic imaging of superficial vascular structures.
NASA Astrophysics Data System (ADS)
Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.
2017-05-01
We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.
NASA Astrophysics Data System (ADS)
Liu, Shuhuan; Du, Xuecheng; Du, Xiaozhi; Zhang, Yao; Mubashiru, Lawal Olarewaju; Luo, Dongyang; yuan, Yuan; Deng, Tianxiang; Li, Zhuoqi; Zang, Hang; Li, Yonghong; He, Chaohui; Ma, Yingqi; Shangguan, Shipeng
2017-09-01
The impacts of the external dynamic memory (DDR3) failures on the performance of 28 nm Xilinx Zynq-7010 SoC based system (MicroZed) were investigated with two sets of 1064 nm laser platforms. The failure sensitive area distributionsons on the back surface of the test DDR3 were primarily localized with a CW laser irradiation platform. During the CW laser scanning on the back surface of the DDR3 of the test board system, various failure modes except SEU and SEL (MBU, SEFI, data storage address error, rebooting, etc) were found in the testing embedded modules (ALU, PL, Register, Cache and DMA, etc) of SoC. Moreover, the experimental results demonstrated that there were 16 failure sensitive blocks symmetrically distributed on the back surface of the DDR3 with every sensitive block area measured was about 1 mm × 0.5 mm. The influence factors on the failure modes of the embedded modules were primarily analyzed and the SEE characteristics of DDR3 induced by the picoseconds pulsed laser were tested. The failure modes of DDR3 found were SEU, SEFI, SEL, test board rebooting by itself, unknown data, etc. Furthermore, the time interval distributions of failure occurrence in DDR3 changes with the pulsed laser irradiation energy and the CPU operating frequency were measured and compared. Meanwhile, the failure characteristics of DDR3 induced by pulsed laser irradiation were primarily explored. The measured results and the testing techniques designed in this paper provide some reference information for evaluating the reliability of the test system or other similar electronic system in harsh environment.
NASA Astrophysics Data System (ADS)
Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang
2017-02-01
A wind measurement Doppler Lidar system was developed, in which injection seeded laser was used to generate narrow linewidth laser pulse. Frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range,with long-time (>4 h) frequency-locking accuracy being ≤0.5 MHz and long-time frequency stability being 3.55×10-9. Design the continuous light velocity measuring system, which concluded the cure about doppler frequency shift and actual speed of chopped wave plate, the velocity error is less than 0.4 m/s. The experiment showed that the stabilized frequency of the seed laser was different from the transmission frequency of the Lidar. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10 MHz, long-time stability deviation was around 5 MHz. When the temporal and spatial resolutions were respectively set to 100 s and 96 m, the wind velocity measurement error of the horizontal wind field at the attitude of 15-35 km was within ±5 m/s, the results showed that the wind measurement Doppler Lidar implemented in Yanqing, Beijing was capable of continuously detecting in the middle and low atmospheric wind field at nighttime. With further development of this technique, system measurement error could be lowered, and long-run routine observations are promising.
Studies of new media radiation induced laser. Final Report, 1 February 1979-30 April 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, K.S.; Shiu, Y.J.; Raju, S.R.
Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed.
Progress in coherent laser radar
NASA Technical Reports Server (NTRS)
Vaughan, J. M.
1986-01-01
Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.
NASA Astrophysics Data System (ADS)
Shao, Rongjun; Qiu, Lirong; Yang, Jiamiao; Zhao, Weiqian; Zhang, Xin
2013-12-01
We have proposed the component parameters measuring method based on the differential confocal focusing theory. In order to improve the positioning precision of the laser differential confocal component parameters measurement system (LDDCPMS), the paper provides a data processing method based on tracking light spot. To reduce the error caused by the light point moving in collecting the axial intensity signal, the image centroiding algorithm is used to find and track the center of Airy disk of the images collected by the laser differential confocal system. For weakening the influence of higher harmonic noises during the measurement, Gaussian filter is used to process the axial intensity signal. Ultimately the zero point corresponding to the focus of the objective in a differential confocal system is achieved by linear fitting for the differential confocal axial intensity data. Preliminary experiments indicate that the method based on tracking light spot can accurately collect the axial intensity response signal of the virtual pinhole, and improve the anti-interference ability of system. Thus it improves the system positioning accuracy.
Apparatus for controlling the scan width of a scanning laser beam
Johnson, Gary W.
1996-01-01
Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.
Apparatus for controlling the scan width of a scanning laser beam
Johnson, G.W.
1996-10-22
Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.
Precision CW laser automatic tracking system investigated
NASA Technical Reports Server (NTRS)
Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.
1966-01-01
Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.
Optical measurement of propeller blade deflections in a spin facility
NASA Technical Reports Server (NTRS)
Ramsey, John K.; Meyn, Erwin H.; Mehmed, Oral; Kurkov, Anatole P.
1990-01-01
A nonintrusive optical system for measuring propeller blade deflections has been used in the NASA Lewis dynamic spin facility. Deflection of points at the leading and trailing edges of a blade section can be obtained with a narrow light beam from a low power helium-neon laser. A system used to measure these deflections at three spanwise locations is described. Modifications required to operate the lasers in a near-vacuum environment are also discussed.
Backscattering measuring system for optimization of intravenous laser irradiation dose
NASA Astrophysics Data System (ADS)
Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.
1996-11-01
Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.
Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch
NASA Astrophysics Data System (ADS)
König, Jens; Bauer, Thorsten
2011-03-01
Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.
Pulsed 2-micron Laser Transmitter For Carbon Dioxide Sensing From Space
NASA Astrophysics Data System (ADS)
Singh, U. N.; Yu, J.; Bai, Y.; Petros, M.
2011-12-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. Studies of the carbon cycle are limited by the tools available to precisely measure CO2 concentrations by remote sensing. Active sensing, using the Integrated Path Differential Absorption (IPDA) approach, permits measurements day and night, at all latitudes and seasons. The development of a high pulse energy 2-μm laser transmitter for high-precision CO2 measurements from space leverages years of NASA investment in solid-state laser technology. Under NASA Laser Risk Reduction Program, funded by Earth Science Technology Office, researchers at NASA Langley Research Center developed an injection seeded, high repetition rate, Q-switched Ho:YLF laser transmitter for CO2 Differential Absorption Lidar/IPDA (profile/column) measurements from ground and airborne platforms. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. NASA LaRC's 2-micron pulsed laser transmitter possesses advantages over current passive and CW active sensors. First, the pulsed format provides a built-in means for determining range to the scattering target and effectively filtering out the scattering from thin clouds and aerosols, thus eliminating a source of measurement bias. Second, by concentrating the laser energy into a pulse, sufficient backscatter signal strength can be obtained from aerosol scattering rather than relying on a hard target at a known distance. Third, the absorption line at the 2.05 μm band is ideally suited for the CO2 concentration measurement. In particular, the weighting function of 2 μm is optimum for measurement in the lower troposphere where the sources and sinks of CO2 are located. The planned laser transmitter development will lead to a Tm:Fiber pumped Ho:YLF laser transmitter capable of delivering 65 mJ at 50 Hz at on-line wavelength and 50 mJ at 50 Hz at off-line wavelength. The planned laser technology development and performance capabilities are a major step forward in the laser transmitter requirements called out in recent comprehensive system studies, e.g., the European Space Agency (ESA) exploration mission studies, A-SCOPE, for future CO2 column density measurements from space. The planned laser technology development is relevant to NASA's earth science priorities, such as NASA ASCENDS mission for space-based CO2 column density measurements. This presentation will provide an overview of the current status of laser transmitter development and describe future technology development to meet the transmitter requirement for a space-based column averaged measurement of CO2 concentration.
NASA Astrophysics Data System (ADS)
Zhao, Ziyue; Zhu, Jigui; Yang, Linghui; Lin, Jiarui
2015-10-01
The present scanning system consists of an industrial robot and a line-structured laser sensor which uses the industrial robot as a position instrument to guarantee the accuracy. However, the absolute accuracy of an industrial robot is relatively poor compared with the good repeatability in the manufacturing industry. This paper proposes a novel method using the workspace measurement and positioning system (wMPS) to remedy the lack of accuracy of the industrial robot. In order to guarantee the positioning accuracy of the system, the wMPS which is a laser-based measurement technology designed for large-volume metrology applications is brought in. Benefitting from the wMPS, this system can measure different cell-areas by the line-structured laser sensor and fuse the measurement data of different cell-areas by using the wMPS accurately. The system calibration which is the procedure to acquire and optimize the structure parameters of the scanning system is also stated in detail in this paper. In order to verify the feasibility of the system for scanning the large free-form surface, an experiment is designed to scan the internal surface of the door of a car-body in white. The final results show that the measurement data of the whole measuring areas have been jointed perfectly and there is no mismatch in the figure especially in the hole measuring areas. This experiment has verified the rationality of the system scheme, the correctness and effectiveness of the relevant methods.
Moody, J D; Clancy, T J; Frieders, G; Celliers, P M; Ralph, J; Turnbull, D P
2014-11-01
Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniyappan, S.; Johnson, R.; Shimada, T.
2010-10-15
Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, {approx}600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Islam, Mohammed N.; Peterson, Lauren M.; Ke, Kevin; Freeman, Michael J.; Ifaraguerri, Agustin I.
2014-06-01
Hyperspectral imaging systems are currently used for numerous activities related to spectral identification of materials. These passive imaging systems rely on naturally reflected/emitted radiation as the source of the signal. Thermal infrared systems measure radiation emitted from objects in the scene. As such, they can operate at both day and night. However, visible through shortwave infrared systems measure solar illumination reflected from objects. As a result, their use is limited to daytime applications. Omni Sciences has produced high powered broadband shortwave infrared super-continuum laser illuminators. A 64-watt breadboard system was recently packaged and tested at Wright-Patterson Air Force Base to gauge beam quality and to serve as a proof-of-concept for potential use as an illuminator for a hyperspectral receiver. The laser illuminator was placed in a tower and directed along a 1.4km slant path to various target materials with reflected radiation measured with both a broadband camera and a hyperspectral imaging system to gauge performance.
Analysis of laser fluorosensor systems for remote algae detection and quantification
NASA Technical Reports Server (NTRS)
Browell, E. V.
1977-01-01
The development and performance of single- and multiple-wavelength laser fluorosensor systems for use in the remote detection and quantification of algae are discussed. The appropriate equation for the fluorescence power received by a laser fluorosensor system is derived in detail. Experimental development of a single wavelength system and a four wavelength system, which selectively excites the algae contained in the four primary algal color groups, is reviewed, and test results are presented. A comprehensive error analysis is reported which evaluates the uncertainty in the remote determination of the chlorophyll a concentration contained in algae by single- and multiple-wavelength laser fluorosensor systems. Results of the error analysis indicate that the remote quantification of chlorophyll a by a laser fluorosensor system requires optimum excitation wavelength(s), remote measurement of marine attenuation coefficients, and supplemental instrumentation to reduce uncertainties in the algal fluorescence cross sections.
NASA Astrophysics Data System (ADS)
O'Gorman, T.; Mc Carthy, P. J.; Prunty, S.; Walsh, M. J.; Dunstan, M. R.; Huxford, R. B.; Naylor, G.; Maguet, Emmanuel; Scannell, R.; Shibaev, S.
2010-12-01
A major upgrade to the ruby Thomson scattering (TS) system has been designed and implemented on the Mega-ampere spherical tokamak (MAST). MAST is equipped with two TS systems, a Nd:YAG laser system and a ruby laser system. Apart from common collection optics each system provides independent measurements of the electron temperature and density profile. This paper focuses on the recent upgrades to the ruby TS system. The upgraded ruby TS system measures 512 points across the major radius of the MAST vessel. The ruby laser can deliver one 10 J 40 ns pulse at 1 Hz or two 5 J pulses separated by 100-800 μs. The Thomson scattered light is collected at F/15 over 1.4 m. This system can resolve small (7 mm) structures at 200 points in both the electron temperature and density channels at high optical contrast; ˜50% modulated transfer function. The system is fully automated for each MAST discharge and requires little adjustment. The estimated measurement error for a 7 mm radial point is <4% of T_e and <3% of n_e in the range of 40 eV to 2 keV, for a density of n_e=2 × 10^{19} m ^{-3}. The photon statistics at lower density can be increased by binning in the radial direction as desired. A new intensified CCD camera design allows the ruby TS system to take two snapshots separated with a minimum time of 230 μs. This is exploited to measure two density and temperature profiles or to measure the plasma background light.
NASA Technical Reports Server (NTRS)
Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram
2012-01-01
A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.
Single shot laser speckle based 3D acquisition system for medical applications
NASA Astrophysics Data System (ADS)
Khan, Danish; Shirazi, Muhammad Ayaz; Kim, Min Young
2018-06-01
The state of the art techniques used by medical practitioners to extract the three-dimensional (3D) geometry of different body parts requires a series of images/frames such as laser line profiling or structured light scanning. Movement of the patients during scanning process often leads to inaccurate measurements due to sequential image acquisition. Single shot structured techniques are robust to motion but the prevalent challenges in single shot structured light methods are the low density and algorithm complexity. In this research, a single shot 3D measurement system is presented that extracts the 3D point cloud of human skin by projecting a laser speckle pattern using a single pair of images captured by two synchronized cameras. In contrast to conventional laser speckle 3D measurement systems that realize stereo correspondence by digital correlation of projected speckle patterns, the proposed system employs KLT tracking method to locate the corresponding points. The 3D point cloud contains no outliers and sufficient quality of 3D reconstruction is achieved. The 3D shape acquisition of human body parts validates the potential application of the proposed system in the medical industry.
NASA Technical Reports Server (NTRS)
Silverberg, E. C.
1977-01-01
Range measurements to an accuracy of 5 cm were achieved following improvements in the laser oscillator configuration and the photomultiplier system. Modifications to the laser include a redesigned pockel cell mount to eliminate stressing of the cell crystal; an improved electrically triggered spark gap for sharpening the electrical pulse; the use of a brewster plate in the cavity to eliminate pre-pulsing; improved alignment for the oscillator system; and increased cavity lifetime through thin film polarizer technology. Laser calibration data are presented along with the lunar laser operations log for June to October 1977.
Trilogy, a Planetary Geodesy Mission Concept for Measuring the Expansion of the Solar System.
Smith, David E; Zuber, Maria T; Mazarico, Erwan; Genova, Antonio; Neumann, Gregory A; Sun, Xiaoli; Torrence, Mark H; Mao, Dan-Dan
2018-04-01
The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, G . The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year -1 AU -1 , which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system -- Earth's Moon, Mars and Venus -- and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.
Trilogy, a planetary geodesy mission concept for measuring the expansion of the solar system
NASA Astrophysics Data System (ADS)
Smith, David E.; Zuber, Maria T.; Mazarico, Erwan; Genova, Antonio; Neumann, Gregory A.; Sun, Xiaoli; Torrence, Mark H.; Mao, Dan-dan
2018-04-01
The scale of the solar system is slowly changing, likely increasing as a result of solar mass loss, with additional change possible if there is a secular variation of the gravitational constant, G. The measurement of the change of scale could provide insight into the past and the future of the solar system, and in addition a better understanding of planetary motion and fundamental physics. Estimates for the expansion of the scale of the solar system are of order 1.5 cm year-1 AU-1, which over several years is an observable quantity with present-day laser ranging systems. This estimate suggests that laser measurements between planets could provide an accurate estimate of the solar system expansion rate. We examine distance measurements between three bodies in the inner solar system - Earth's Moon, Mars and Venus - and outline a mission concept for making the measurements. The concept involves placing spacecraft that carry laser ranging transponders in orbit around each body and measuring the distances between the three spacecraft over a period of several years. The analysis of these range measurements would allow the co-estimation of the spacecraft orbit, planetary ephemerides, other geophysical parameters related to the constitution and dynamics of the central bodies, and key geodetic parameters related to the solar system expansion, the Sun, and theoretical physics.
NASA Technical Reports Server (NTRS)
Komine, Hiroshi; Brosnan, Stephen J.; Long, William H.; Stappaerts, Eddy A.
1994-01-01
Doppler Global Velocimetry (DGV) is a new diagnostic tool that offers potential for flow field measurements in flight by acquiring three-component velocity data in near real-time during flight maneuvers. The feasibility of implementation of a flight DGV system aboard NASA's High-Angle-of-Attack Research Vehicle (HARV) was addressed in this work by identifying the essential characteristics of a flight measurement system and by performing calibration and error tests. Results from this work were: an outline that establishes a preliminary basis for system configurations by analyzing measurement errors, installation issues, and operating requirements; measurement of the accuracy of the DGV technique using a laboratory breadboard DGV system based on a frequency-doubled Nd: YAG laser and iodine Absorption Line Filter (ALF), which showed excellent agreement between the DGV data and pilot measurements on a laminar flow jet with velocities of up to 150 m/sec; a survey of DGV system components and technologies that are relevant to the design of a flight measurement system, including a survey of cameras for the next generation DGV receivers; an assessment of the candidate lasers and absorption line filters for the flight system, resulting in a near-term recommendation of Nd: host lasers and an iodine ALF for both flight and wind tunnel applications.
11-kW direct diode laser system with homogenized 55 × 20 mm2 Top-Hat intensity distribution
NASA Astrophysics Data System (ADS)
Köhler, Bernd; Noeske, Axel; Kindervater, Tobias; Wessollek, Armin; Brand, Thomas; Biesenbach, Jens
2007-02-01
In comparison with other laser systems diode lasers are characterized by a unique overall efficiency, a small footprint and high reliability. However, one major drawback of direct diode laser systems is the inhomogeneous intensity distribution in the far field. Furthermore the output power of current commercially available systems is limited to about 6 kW. We report on a diode laser system with 11 kW output power at a single wavelength of 940 nm aiming for customer specific large area treatment. To the best of our knowledge this is the highest output power reported so far for a direct diode laser system. In addition to the high output power the intensity distribution of the laser beam is homogenized in both axes leading to a 55 x 20 mm2 Top-Hat intensity profile at a working distance of 400 mm. Homogeneity of the intensity distribution is better than 90%. The intensity in the focal plane is 1 kW/cm2. We will present a detailed characterization of the laser system, including measurements of power, power stability and intensity distribution of the homogenized laser beam. In addition we will compare the experimental data with the results of non-sequential raytracing simulations.
Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki
2011-03-01
A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.
NASA Technical Reports Server (NTRS)
Opower, Hans (Editor)
1990-01-01
Recent advances in CO2 laser technology and its applications are examined. Topics discussed include the excitation of CO2 lasers by microwave discharge, a compact RF-excited 12-kW CO2 laser, a robotic laser for three-dimensional cutting and welding, three-dimensional CO2-laser material processing with gantry machine systems, and a comparison of hollow metallic waveguides and optical fibers for transmitting CO2-laser radiation. Consideration is given to an aerodynamic window with a pump cavity and a supersonic jet, cutting and welding Al using a high-repetition-rate pulsed CO2 laser, speckle reduction in CO2 heterodyne laser radar systems, high-power-laser float-zone crystal growth, melt dynamics in surface processing with laser radiation, laser hardfacing, surface melting of AlSi10Mg with CO2 laser radiation, material processing with Cu-vapor lasers, light-induced flow at a metal surface, and absorption measurements in high-power CW CO2-laser processing of materials.
Research and development of the laser tracker measurement system
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Zhou, W. H.; Lao, D. B.; Yuan, J.; Dong, D. F. F.; Ji, R. Y. Y.
2013-01-01
The working principle and system design of the laser tracker measurement system are introduced, as well as the key technologies and solutions in the implementation of the system. The design and implementation of the hardware and configuration of the software are mainly researched. The components of the hardware include distance measuring unit, angle measuring unit, tracking and servo control unit and electronic control unit. The distance measuring devices include the relative distance measuring device (IFM) and the absolute distance measuring device (ADM). The main component of the angle measuring device, the precision rotating stage, is mainly comprised of the precision axis and the encoders which are both set in the tracking head. The data processing unit, tracking and control unit and power supply unit are all set in the control box. The software module is comprised of the communication module, calibration and error compensation module, data analysis module, database management module, 3D display module and the man-machine interface module. The prototype of the laser tracker system has been accomplished and experiments have been carried out to verify the proposed strategies of the hardware and software modules. The experiments showed that the IFM distance measuring error is within 0.15mm, the ADM distance measuring error is within 3.5mm and the angle measuring error is within 3" which demonstrates that the preliminary prototype can realize fundamental measurement tasks.
Laser-self-mixing interferometry for mechatronics applications.
Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano
2009-01-01
We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems.
Down-bore two-laser heterodyne velocimetry of an implosion-driven hypervelocity launcher
NASA Astrophysics Data System (ADS)
Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.
2017-01-01
The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 15 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photon Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single laser system sampled at 40 GS/s with a 13 GHz detector/scope bandwidth is limited to 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s with the same bandwidth and sampling rate. The two-laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These internal ballistics trajectories are used to compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.
Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt
2002-08-20
High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.
NASA Technical Reports Server (NTRS)
Praddaude, H. C.; Woskoboinikow, P.
1978-01-01
A thorough discussion of submillimeter laser Thomson scattering for the measurement of ion temperature in plasmas is presented. This technique is very promising and work is being actively pursued on the high power lasers and receivers necessary for its implementation. In this report we perform an overall system analysis of the Thomson scattering technique aimed to: (1) identify problem areas; (2) establish specifications for the main components of the apparatus; (3) study signal processing alternatives and identify the optimum signal handling procedure. Because of its importance for the successful implementation of this technique, we also review the work presently being carried out on the optically pumped submillimeter CH3F and D2O lasers.
Tissue temperature distribution measurement by MRI and laser immunology for cancer treatment
NASA Astrophysics Data System (ADS)
Chen, Yichao; Gnyawali, Surya C.; Wu, Feng; Liu, Hong; Tesiram, Yasvir A.; Abbott, Andrew; Towner, Rheal A.; Chen, Wei R.
2007-02-01
In cancer treatment and immune response enhancement research, Magnetic Resonance Imaging (MRI) is an ideal method for non-invasive, three-dimensional temperature measurement. We used a 7.1-Tesla magnetic resonance imager for ex vivo tissues and small animal to determine temperature distribution of target tissue during laser irradiation. The feasibility of imaging is approved with high spatial resolution and high signal-noise- ratio. Tissue-simulating gel phantom gel, biological tissues, and tumor-bearing animals were used in the experiments for laser treatment and MR imaging. Thermal couple measurement of temperature in target samples was used for system calibration. An 805-nm laser was used to irradiate the samples with a laser power in the range of 1 to 2.5 watts. Using the MRI system and a specially developed processing algorithm, a clear temperature distribution matrix in the target tissue and surrounding tissue was obtained. The temperature profiles show that the selective laser photothermal effect could result in tissue temperature elevation in a range of 10 to 45 °C. The temperature resolution of the measurement was about 0.37°C including the total system error. The spatial resolution was 0.4 mm (128x128 pixels with field of view of 5.5x5.5 cm). The temperature distribution provided in vivo thermal information and future reference for optimizing dye concentration and irradiation parameters to achieve optimal thermal effects in cancer treatment.
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.
2016-06-01
For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Shuman, T.; Chuang, T.; Hair, J. W.; Refaat, T. F.; Ismail, S.; Kooi, S. A.; Notari, A.
2014-12-01
Atmospheric methane (CH4) has the second largest radiative forcing of the long-lived greenhouse gasses (GHG) after carbon dioxide. However, methane's much shorter atmospheric lifetime and much stronger warming potential make its radiative forcing equivalent to that for CO2 over a 20-year time horizon which makes CH4 a particularly attractive target for mitigation strategies. Similar to CH4, water vapor (H2O) is the most dominant of the short-lived GHG in the atmosphere and plays a key role in many atmospheric processes. Atmospheric H2O concentrations span over four orders of magnitude from the planetary boundary layer where high impact weather initiates to lower levels in the upper troposphere and lower stratosphere (UTLS) where water vapor has significant and long term impacts on the Earth's radiation budget. NASA Langley has fostered the technology development with Fibertek, Inc. to develop frequency agile and high power (> 3 W) pulsed lasers using similar architectures in the 1645 nm and 935 nm spectral bands for DIAL measurements of CH4 and H2O, respectively. Both systems utilize high power 1 kHz pulse repetition frequency Nd:YAG lasers to generate high power laser emission at the desired wavelength via optical parametric oscillators (OPO). The CH4 OPO, currently in its final build stage in a SBIR Phase II program has demonstrated >2 W average power with injection seeding from a distributed feedback (DFB) laser during risk reduction experiments. The H2O OPO has demonstrated high power operation (>2 W) during the SBIR Phase I program while being injection seeded with a DFB laser, and is currently funded via an SBIR Phase II to build a robust system for future integration into an airborne water vapor DIAL system capable of profiling from the boundary layer up to the UTLS. Both systems have demonstrated operation with active OPO wavelength control to allow for optimization of the DIAL measurements for operation at different altitudes and geographic regions. An update on the progress of the CH4 and H2O laser development will be presented which will focus on key laser characteristics such as pulse energy, frequency agility and spectral purity. DIAL simulations will also be presented based on the expected and measured laser characteristics and system parameters in anticipation of future system(s) development.
Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar
NASA Technical Reports Server (NTRS)
Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James
1995-01-01
The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test objectives for the STS-72 mission center on the acquisition of sample data sets for land topography and vegetation height, waveform digitizer performance, and verification of data acquisition algorithms. The operational concept of SLA is illustrated in Fig. 1 where a series of 100 m footprints stretch in a profile of Earth surface topography along the nadir track of the Space Shuttle. The location of SLA as a dual canister payload on the Hitchhiker Bridge Assembly in Bay 12 of the Space Shuttle Endeavor can also be noted in this figure. Full interpretation of the SLA range measurement data set requires a 1 m knowledge of the Orbiter trajectory and better than 0.1 deg knowledge of Orbiter pointing angle. These ancillary data sets will be acquired during the STS-72 mission with an on-board Global Positioning System (GPS) receiver, K-band range and range-rate tracking of the Orbiter through TDRSS, and use of on-board inertial measurement units and star trackers. Integration and interpretation of all these different data sets as a pathfinder investigation for accurate determination of Earth surface elevation is the overall science of the SLA investigation.
NASA Technical Reports Server (NTRS)
Goldman, Louis J.; Seasholtz, Richard G.
1988-01-01
The three mean velocity components were measured in a full-scale annular turbine stator cascade with contoured hub end wall using a newly developed laser anemometer system. The anemometer consists of a standard fringe configuration using fluorescent seed particles to measure the axial and tangential components. The radial component is measured with a scanning confocal Fabry-Perot interferometer. These two configurations are combined in a single optical system that can operate simultaneously in a backscatter mode through a single optical access port. Experimental measurements were obtained both within and downstream of the stator vane row and compared with calculations from a three-dimensional inviscid computer program. In addition, detailed calibration procedures are described that were used, prior to the experiment, to accurately determine the laser beam probe volume location relative to the cascade hardware.
Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications
NASA Astrophysics Data System (ADS)
Opalevs, D.; Scholz, M.; Stuhler, J.; Gilfert, C.; Liu, L. J.; Wang, X. Y.; Vetter, A.; Kirner, R.; Scharf, T.; Noell, W.; Rockstuhl, C.; Li, R. K.; Chen, C. T.; Voelkel, R.; Leisching, P.
2018-02-01
We present a novel industrial-grade prototype version of a continuous-wave 193 nm laser system entirely based on solid state pump laser technology. Deep-ultraviolet emission is realized by frequency-quadrupling an amplified diode laser and up to 20 mW of optical power were generated using the nonlinear crystal KBBF. We demonstrate the lifetime of the laser system for different output power levels and environmental conditions. The high stability of our setup was proven in > 500 h measurements on a single spot, a crystal shifter multiplies the lifetime to match industrial requirements. This laser improves the relative intensity noise, brilliance, wall-plug efficiency and maintenance cost significantly. We discuss first lithographic experiments making use of this improvement in photon efficiency.
NASA Astrophysics Data System (ADS)
Castro Alves, D.; Abreu, Manuel; Cabral, A.; Jost, Michael; Rebordão, J. M.
2017-11-01
In this work we present a technique to perform long and absolute distance measurements based on mode-locked diode lasers. Using a Michelson interferometer, it is possible to produce an optical cross-correlation between laser pulses of the reference arm with the pulses from the measurement arm, adjusting externally their degree of overlap either changing the pulse repetition frequency (PRF) or the position of the reference arm mirror for two (or more) fixed frequencies. The correlation of the travelling pulses for precision distance measurements relies on ultra-short pulse durations, as the uncertainty associated to the method is dependent on the laser pulse width as well as on a highly stable PRF. Mode-locked Diode lasers are a very appealing technology for its inherent characteristics, associated to compactness, size and efficiency, constituting a positive trade-off with regard to other mode-locked laser sources. Nevertheless, main current drawback is the non-availability of frequency-stable laser diodes. The laser used is a monolithic mode-locked semiconductor quantum-dot (QD) laser. The laser PRF is locked to an external stabilized RF reference. In this work we will present some of the preliminary results and discuss the importance of the requirements related to laser PRF stability in the final metrology system accuracy.
NASA Astrophysics Data System (ADS)
Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.
2011-12-01
Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are anticipated to reduce the required samples size to a 100-200 femtomoles of carbon. We report the application of the CAS system to a Laser Ablation-Catalytic-Combustion (LA-CC) micro-sampler system for selectively harvesting detailed sections of a solid surface for 13C analysis. This technique results in a three order of magnitude sensitivity improvement reported for our isotope measurement system compared to typical IRMS, providing new opportunities for making detailed investigations into wide ranges of microbial, physical, and chemical systems. The CAS is interfaced directly to the LA CC system currently operating at a 50 μm spatial resolution. We demonstrate that particulates produced by a Nd:YAG laser (λ=266nm) are isotopically homogenous with the parent material as measured by both IRMS and the CAS system. An improved laser ablation system operating at 193 nm with a spatial resolution of 2 microns or better is under development which will demonstrate the utility of the CAS system for sample sizes too low for IRMS. The improved sensitivities and optimized spatial targeting of such a system could interrogate targets as detailed as small cell clusters or intergrain organic deposits and could enhance ability to track biogeochemical carbon cycling.
Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system
NASA Astrophysics Data System (ADS)
Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping
2015-05-01
Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.
NASA Technical Reports Server (NTRS)
2001-01-01
A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes
Yang, Qianlong; Zhang, Zhenyu; Liu, Xiaoqian; Ma, Shuqi
2017-01-01
The deformation of underground gateroads tends to be asymmetric and complex. Traditional instrumentation fails to accurately and conveniently monitor the full cross-sectional deformation of underground gateroads. Here, a full cross-sectional laser scanner was developed, together with a visualization software package. The developed system used a polar coordinate measuring method and the full cross-sectional measurement was shown by 360° rotation of a laser sensor driven by an electrical motor. Later on, the potential impact of gateroad wall flatness, roughness, and geometrical profile, as well as coal dust environment on the performance of the developed laser scanner will be evaluated. The study shows that high-level flatness is favorable in the application of the developed full cross-sectional deformation monitoring system. For a smooth surface of gateroad, the sensor cannot receive reflected light when the incidence angle of laser beam is large, causing data loss. Conversely, the roughness surface shows its nature as the diffuse reflection light can be received by the sensor. With regards to coal dust in the measurement environment, fine particles of floating coal dust in the air can lead to the loss of measurement data to some extent, due to scattering of the laser beam. PMID:28590449
NASA Astrophysics Data System (ADS)
Chang, Yu Min; Lu, Nien Hua; Wu, Tsung Chiang
2005-06-01
This study applies 3D Laser scanning technology to develop a high-precision measuring system for digital survey of historical building. It outperformed other methods in obtaining abundant high-precision measuring points and computing data instantly. In this study, the Pei-tien Temple, a Chinese Taoism temple in southern Taiwan famous for its highly intricate architecture and more than 300-year history, was adopted as the target to proof the high accuracy and efficiency of this system. By using French made MENSI GS-100 Laser Scanner, numerous measuring points were precisely plotted to present the plane map, vertical map and 3D map of the property. Accuracies of 0.1-1 mm in the digital data have consistently been achieved for the historical heritage measurement.
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Marinov, Daniil; Guaitella, Olivier; Drag, Cyril; Engeln, Richard; Golda, Judith; Schultz-von der Gathern, Volker
2016-09-01
Two-photon Absorption Laser-Induced Fluorescence (TALIF) is a well-established technique to measure relative (and with appropriate calibration techniques, absolute) densities of atoms in plasmas and flames. The excitation line profiles can provide additional information, but this is usually overlooked due to the mediocre spectral resolution of commercial pulsed dye laser systems. We have investigated O-atom TALIF excitation line profiles using a house-built narrow line-width pulsed UV laser system, based on pulsed Ti:Sa ring laser seeded by a cw infrared diode laser. The observed Doppler profiles allow unambiguous measurement of gas temperature with high precision in O2 and CO2 DC glow discharges. Sub-Doppler measurements, performed by reflecting the laser beam back through excitation zone, allow the pressure-broadened line shapes to be observed, both in a pure O2 DC discharge (up to 10 Torr pressure) and in an atmospheric pressure RF plasma jet in He/O2. Pressure broadening coefficients of the 3p3PJ state of O were determined for O2 and He bath gases, and were found to be an order of magnitude bigger than that predicted from the measured quenching rate. Work performed in the LABEX Plas@par project, with financial state aid (ANR-11-IDEX-0004-02 and ANR-13-BS09-0019).
Standardized Emission Quantification and Control of Costs for Environmental Measures
NASA Astrophysics Data System (ADS)
Walter, J.; Hustedt, M.; Wesling, V.; Barcikowski, S.
Laser welding and soldering are important industrial joining processes. As is known, LGACs (Laser Generated Air Contaminants) cause costs for environmental measures during production of complex metallic components (steel, aluminium, magnesium, alloys). The hazardous potential of such processes has been assessed by analyzing the specific emissions with respect to relevant threshold limit values (TLVs). Avoiding and controlling emissions caused by laser processing of metals or metal composites is an important task. Using the experimental results, the planning of appropriate exhaust systems for laser processing is facilitated significantly. The costs quantified for environmental measures account for significant percentages of the total manufacturing costs.
Toward the development of a low-cost laser Doppler module for ophthalmic microscopes
NASA Astrophysics Data System (ADS)
Cattini, Stefano; Rovati, Luigi
2012-03-01
A laser Doppler module easily integrated into a commercial ophthalmic microscope is proposed. Such setup adds flow measurement capability to standard visual inspection of the fundus. The proposed instrument may provide important clinical information such as the detection of vessel occlusion provided by surgical treatments (i.e. photocoagulation). The measuring system is based on a self-mixing laser diode Doppler flowmeter (SM-DF). Reduced costs, easy implementation and small size represent the main features of SM-DF. Moreover, this technique offers the advantage to have the excitation and measurement beams spatially overlapped, thus both overcoming the alignment difficulty of traditional laser Doppler flowmeter and, well fitting with to limited optical aperture of the pupil. Thanks to an on-board DSP-microcontroller, the optoelectronic module directly estimates the blood flow; USB connection and an ad-hoc developed user-friendly software interface allow displaying the result on a personal computer. Preliminary test demonstrates the applicability of the proposed measuring system.
NASA Astrophysics Data System (ADS)
Ortiz-Rivera, William; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.
2010-09-01
This study describes the design, assembly, testing and comparison of two Remote Raman Spectroscopy (RRS) systems intended for standoff detection of hazardous chemical liquids. Raman spectra of Chemical Warfare Agents Simulants (CWAS) and Toxic Industrial Compounds (TIC) were measured in the laboratory at a 6.6 m source-target distance using continuous wave (CW) laser detection. Standoff distances for pulsed measurements were 35 m for dimethyl methylphosphonate (DMMP) detection and 60, 90 and 140 m for cyclohexane detection. The prototype systems consisted of a Raman spectrometer equipped with a CCD detector (for CW measurements) and an I-CCD camera with time-gated electronics (for pulsed laser measurements), a reflecting telescope, a fiber optic assembly, a single-line CW laser source (514.5, 488.0, 351.1 and 363.8 nm) and a frequency-doubled single frequency Nd:YAG 532 nm laser (5 ns pulses at 10 Hz). The telescope was coupled to the spectrograph using an optical fiber, and filters were used to reject laser radiation and Rayleigh scattering. Two quartz convex lenses were used to collimate the light from the telescope from which the telescope-focusing eyepiece was removed, and direct it to the fiber optic assembly. To test the standoff sensing system, the Raman Telescope was used in the detection of liquid TIC: benzene, chlorobenzene, toluene, carbon tetrachloride, cyclohexane and carbon disulfide. Other compounds studied were CWAS: dimethylmethyl phosphonate, 2-chloroethyl ethyl sulfide and 2-(butylamino)-ethanethiol. Relative Raman scattering cross sections of liquid CWAS were measured using single-line sources at 532.0, 488.0, 363.8 and 351.1 nm. Samples were placed in glass and quartz vials at the standoff distances from the telescope for the Remote Raman measurements. The mass of DMMP present in water solutions was also quantified as part of the system performance tests.
Improvements In A Laser-Speckle Surface-Strain Gauge
NASA Technical Reports Server (NTRS)
Lant, Christian T.
1996-01-01
Compact optical subsystem incorporates several improvements over optical subsystems of previous versions of laser-speckle surface-strain gauge: faster acquisition of data, faster response to transients, reduced size and weight, lower cost, and less complexity. Principle of operation described previously in "Laser System Measures Two-Dimensional Strain" (LEW-15046), and "Two-Dimensional Laser-Speckle Surface-Strain Gauge" (LEW-15337).
NASA Astrophysics Data System (ADS)
Kuusela, Tom A.
2017-09-01
A He-Ne laser is an example of a class A laser, which can be described by a single nonlinear differential equation of the complex electric field. This laser system has only one degree of freedom and is thus inherently stable. A He-Ne laser can be driven to the chaotic condition when a large fraction of the output beam is injected back to the laser. In practice, this can be done simply by adding an external mirror. In this situation, the laser system has infinite degrees of freedom and therefore it can have a chaotic attractor. We show the fundamental laser equations and perform elementary stability analysis. In experiments, the laser intensity variations are measured by a simple photodiode circuit. The laser output intensity time series is studied using nonlinear analysis tools which can be found freely on the internet. The results show that the laser system with feedback has an attractor of a reasonably high dimension and that the maximal Lyapunov exponent is positive, which is clear evidence of chaotic behaviour. The experimental setup and analysis steps are so simple that the studies can even be implemented in the undergraduate physics laboratory.
A Laser-Based Measuring System for Online Quality Control of Car Engine Block.
Li, Xing-Qiang; Wang, Zhong; Fu, Lu-Hua
2016-11-08
For online quality control of car engine production, pneumatic measurement instrument plays an unshakeable role in measuring diameters inside engine block because of its portability and high-accuracy. To the limitation of its measuring principle, however, the working space between the pneumatic device and measured surface is too small to require manual operation. This lowers the measuring efficiency and becomes an obstacle to perform automatic measurement. In this article, a high-speed, automatic measuring system is proposed to take the place of pneumatic devices by using a laser-based measuring unit. The measuring unit is considered as a set of several measuring modules, where each of them acts like a single bore gauge and is made of four laser triangulation sensors (LTSs), which are installed on different positions and in opposite directions. The spatial relationship among these LTSs was calibrated before measurements. Sampling points from measured shaft holes can be collected by the measuring unit. A unified mathematical model was established for both calibration and measurement. Based on the established model, the relative pose between the measuring unit and measured workpiece does not impact the measuring accuracy. This frees the measuring unit from accurate positioning or adjustment, and makes it possible to realize fast and automatic measurement. The proposed system and method were finally validated by experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iijima, Hokuto; Nagai, Ryoji; Nishimori, Nobuyuki
2009-12-15
A second-harmonic generation frequency-resolved optical gating (SHG-FROG) system has been developed for the complete characterization of laser pulses in the wavelength range of 10-30 {mu}m. A tellurium crystal is used so that spectrally resolved autocorrelation signals with a good signal-to-noise ratio are obtained. Pulses (wavelength {approx}22 {mu}m) generated from a free-electron laser are measured by the SHG-FROG system. The SHG intensity profile and the spectrum obtained by FROG measurements are well consistent with those of independent measurements of the pulse length and spectrum. The pulse duration and spectral width determined from the FROG trace are 0.6 ps and 5.2 THzmore » at full width half maximum, respectively.« less
Progress In Developing Laser Based Post Irradiation Examination Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James A.; Scott, Clark L.; Benefiel, Brad C.
To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiatedmore » materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an irradiated fuel element and obtain fission gas samples for analysis. The study of pressure and volume in the plenum of an irradiated fuel element and the analysis of fission gases released from the fuel is important to understanding the performance of reactor fuels and materials. This system may also be used to measure the pressure/volume of other components (such as control blades) and obtain gas samples from these components for analysis. The main function of the laser in this application is to puncture the fuel element to allow the fission gas to escape and if necessary to weld the spot close. The GASR station will have the inherent capability to perform cutting welding and joining functions within a hot-cell.« less
Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR)
NASA Astrophysics Data System (ADS)
Laksono, F. D.; Supardianningsih; Arifin, M.; Abraha, K.
2018-04-01
In this paper, we developed homemade and computerized sensor system based on Surface Plasmon Resonance (SPR). The developed systems consist of mechanical system instrument, laser power sensor, and user interface. The mechanical system development that uses anti-backlash gear design was successfully able to enhance the angular resolution angle of incidence laser up to 0.01°. In this system, the laser detector acquisition system and stepper motor controller utilizing Arduino Uno which is easy to program, flexible, and low cost, was used. Furthermore, we employed LabView’s user interface as the virtual instrument for facilitating the sample measurement and for transforming the data recording directly into the digital form. The test results using gold-deposited half-cylinder prism showed the Total Internal Reflection (TIR) angle of 41,34°± 0,01° and SPR angle of 44,20°± 0,01°, respectively. The result demonstrated that the developed system managed to reduce the measurement duration and data recording errors caused by human error. Also, the test results also concluded that the system’s measurement is repeatable and accurate.
NASA Astrophysics Data System (ADS)
Kang, I. J.; Lee, K. Y.; Lee, K. I.; Choi, Y.-S.; Cho, S. G.; Bae, M. K.; Lee, D.-H.; Hong, S. H.; Lho, T.; Chung, K.-S.
2015-12-01
A laser induced fluorescence (LIF) system has been developed for the plasma material interaction system (PLAMIS-II) device, which is equipped with a unique plasma gun composed of a LaB6 cathode and two anodes with electromagnets to generate a focused dense plasma. PLAMIS-II simulates the interactions of plasma with different materials and is to be used for the test of plasma facing components of fusion devices. The LIF system is composed of a seed laser with Littmann/Metcalf cavity and a master oscillator power amplifier to pump 3d4F7/2 metastable argon ion to 4p4D5/2 level at the wavelength of 668.61 nm, which has the following input parameters: laser power = 20 mW, line width < 100 kHz, and a mode-hop free tuning range > 70 GHz. For in-situ measurement of laser wavelength, the wavelength spectrum of an iodine cell was measured by a photo-transistor during LIF measurement. To measure argon ion temperature (Ti) and drift velocity (vd) in PLAMIS-II, the fluorescence light with the wavelength of 442.72 nm, emitted from 4p4D5/2 level to 4s4P3/2 level and passing through 1 nm band-width filter, was collected by the photomultiplier tube combined with a lock-in amplifier and a chopper with frequency of 3 kHz. Initial data of Ti and vd were analysed in terms of gas flow rate and applied power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milewski, John O; Bernal, John E
2009-01-01
Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts inmore » testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.« less
Vibration control for the ARGOS laser launch path
NASA Astrophysics Data System (ADS)
Peter, Diethard; Gässler, Wolfgang; Borelli, Jose; Barl, Lothar; Rabien, S.
2012-07-01
Present and future adaptive optics systems aim for the correction of the atmospheric turbulence over a large field of view combined with large sky coverage. To achieve this goal the telescope is equipped with multiple laser beacons. Still, to measure tip-tilt aberrations a natural guide star is used. For some fields such a tilt-star is not available and a correction on the laser beacons alone is applied. For this method to work well the laser beacons must not be affected by telescope vibrations on their up-link path. For the ARGOS system the jitter of the beacons is specified to be below 0.05. To achieve this goal a vibration compensation system is necessary to mitigate the mechanical disturbances. The ARGOS vibration compensation system is an accelerometer based feed forward system. The accelerometer measurements are fed into a real time controller. To achieve high performance the controller of the system is model based. The output is applied to a fast steering mirror. This paper presents the concept of the ARGOS vibration compensation, the hardware, and laboratory results.
NASA Technical Reports Server (NTRS)
Davis, D. D.; Philen, D.
1978-01-01
The laser-induced fluorescence technique for obtaining direct measurements of atmospheric OH and other gases is described. A narrow-band UV laser is tuned to one or more of the electronic absorption bands of a specified molecule so as to cause fluorescence from a bonding excited electronic state. The monitored wavelength is longer than the laser wavelength. Equipment, specifics for OH detection, data processing, and interference are discussed, and application of the technique to the detection of NO, SO2, and CH2O is considered.
Application of Mobile Laser Scanning for Lean and Rapid Highway Maintenance and Construction
DOT National Transportation Integrated Search
2015-08-28
Mobile Terrestrial Laser Scanning (MTLS) is an emerging technology that combines the use of a laser scanner(s), the Global Navigation Satellite System (GNSS), and an Inertial Measurement Unit (IMU) on a vehicle to collect geo-spatial data. The overal...
Infrared Laser System for Extended Area Monitoring of Air Pollution
NASA Technical Reports Server (NTRS)
Snowman, L. R.; Gillmeister, R. J.
1971-01-01
An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.
Extinction of CO2 Laser Radiation Under Adverse Weather Conditions
1982-06-01
System Design 60 a, Gaussian Optics 60 b, Laser Transmissometer 61 4. Measurement Errors 68 VI DISCUSSION OF RESULTS 69 1, Introduction...water soluble aerosols (a 1 106 AFWAL-TR-81 -.1280 TABLE 17 EXTINCTION OF CO2 LASER LINES FOR A CONSTANI RAIN RATE OF 1.82 mm/HR, 22 APRIL, 1935 HOURS...number) Laser Propagation Rain Laser Extinction CO2 Lasers Adverse Weather Aerosol s - 20 RACT (Continue on reverse side If necessary
Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System
NASA Technical Reports Server (NTRS)
Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra
2008-01-01
A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.
Microcomponents manufacturing for precise devices by copper vapor laser
NASA Astrophysics Data System (ADS)
Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.
2001-06-01
This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.
Laser-Self-Mixing Interferometry for Mechatronics Applications
Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano
2009-01-01
We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems. PMID:22412324
NASA Astrophysics Data System (ADS)
Goodis, Harold E.; White, Joel M.; Neev, Joseph
1993-07-01
The use of laser energy to clean, shape, and sterilize a root canal system space involves the generation of heat due to the thermal effect of the laser on the organic tissue contents and dentin walls of that space. If heat generation is above physiologic levels, irreparable damage may occur to the periodontal ligament and surrounding bone. This study measured temperature rise on the outer root surfaces of extracted teeth during intracanal laser exposure. Thirty single rooted, recently extracted teeth free of caries and restorations were accessed pulps extirpated and divided into three groups. Each root canal system was treated with a 1.06 micrometers pulsed Nd:YAG laser with quartz contact probes. Temperatures were recorded for all surfaces (mesial distal, buccal, lingual, apical) with infrared thermography utilizing a detector response time of 1 (mu) sec, sensitivity range (infrared) of 8 to 12 micrometers and a scan rate of 30 frames/sec.
NASA Astrophysics Data System (ADS)
Sims-Waterhouse, D.; Bointon, P.; Piano, S.; Leach, R. K.
2017-06-01
In this paper we show that, by using a photogrammetry system with and without laser speckle, a large range of additive manufacturing (AM) parts with different geometries, materials and post-processing textures can be measured to high accuracy. AM test artefacts have been produced in three materials: polymer powder bed fusion (nylon-12), metal powder bed fusion (Ti-6Al-4V) and polymer material extrusion (ABS plastic). Each test artefact was then measured with the photogrammetry system in both normal and laser speckle projection modes and the resulting point clouds compared with the artefact CAD model. The results show that laser speckle projection can result in a reduction of the point cloud standard deviation from the CAD data of up to 101 μm. A complex relationship with surface texture, artefact geometry and the laser speckle projection is also observed and discussed.
A 3-component laser-Doppler velocimeter data acquisition and reduction system
NASA Technical Reports Server (NTRS)
Rodman, L. C.; Bell, J. H.; Mehta, R. D.
1985-01-01
A laser doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows is described. All the mean velocities, Reynolds stresses, and higher-order products can be evaluated. The approach followed is to split one of the two colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. The laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and ASSEMBLY languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.
14- by 22-Foot Subsonic Tunnel Laser Velocimeter Upgrade
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.; Fletcher, Mark T.
2012-01-01
A long-focal length laser velocimeter constructed in the early 1980's was upgraded using current technology to improve usability, reliability and future serviceability. The original, free-space optics were replaced with a state-of-the-art fiber-optic subsystem which allowed most of the optics, including the laser, to be remote from the harsh tunnel environment. General purpose high-speed digitizers were incorporated in a standard modular data acquisition system, along with custom signal processing software executed on a desktop computer, served as the replacement for the signal processors. The resulting system increased optical sensitivity with real-time signal/data processing that produced measurement precisions exceeding those of the original system. Monte Carlo simulations, along with laboratory and wind tunnel investigations were used to determine system characteristics and measurement precision.
The Modernization of a Long-Focal Length Fringe-Type Laser Velocimeter
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.; Fletcher, Mark T.
2012-01-01
A long-focal length laser velocimeter constructed in the early 1980's was upgraded using current technology to improve usability, reliability and future serviceability. The original, free-space optics were replaced with a state-of-the-art fiber-optic subsystem which allowed most of the optics, including the laser, to be remote from the harsh tunnel environment. General purpose high-speed digitizers were incorporated in a standard modular data acquisition system, along with custom signal processing software executed on a desktop computer, served as the replacement for the signal processors. The resulting system increased optical sensitivity with real-time signal/data processing that produced measurement precisions exceeding those of the original system. Monte Carlo simulations, along with laboratory and wind tunnel investigations were used to determine system characteristics and measurement precision.
Piezoresistive method for a laser induced shock wave detection on solids
NASA Astrophysics Data System (ADS)
Gonzalez-Romero, R.; Garcia-Torales, G.; Gomez Rosas, G.; Strojnik, M.
2017-08-01
A laser shock wave is a mechanical high-pressure impulse with a duration of a few nanoseconds induced by a high power laser pulse. We performed wave pressure measurements in order to build and check mathematical models. They are used for wave applications in material science, health, and defense, to list a few. Piezoresistive methods have been shown to be highly sensitive, linear, and highly appropriate for practical implementation, compared with piezoelectric methods employed in shock wave pressure measurements. In this work, we develop a novel method to obtain the sensitivity of a piezoresistive measurement system. The results shows that it is possible to use a mechanical method to measure pressure of a laser induced shock wave in nanosecond range. Experimental pressure measurements are presented.
A novel design measuring method based on linearly polarized laser interference
NASA Astrophysics Data System (ADS)
Cao, Yanbo; Ai, Hua; Zhao, Nan
2013-09-01
The interferometric method is widely used in the precision measurement, including the surface quality of the large-aperture mirror. The laser interference technology has been developing rapidly as the laser sources become more and more mature and reliable. We adopted the laser diode as the source for the sake of the short coherent wavelength of it for the optical path difference of the system is quite shorter as several wavelengths, and the power of laser diode is sufficient for measurement and safe to human eye. The 673nm linearly laser was selected and we construct a novel form of interferometric system as we called `Closed Loop', comprised of polarizing optical components, such as polarizing prism and quartz wave plate, the light from the source split by which into measuring beam and referencing beam, they've both reflected by the measuring mirror, after the two beams transforming into circular polarization and spinning in the opposite directions we induced the polarized light synchronous phase shift interference technology to get the detecting fringes, which transfers the phase shifting in time domain to space, so that we did not need to consider the precise-controlled shift of optical path difference, which will introduce the disturbance of the air current and vibration. We got the interference fringes from four different CCD cameras well-alignment, and the fringes are shifted into four different phases of 0, π/2, π, and 3π/2 in time. After obtaining the images from the CCD cameras, we need to align the interference fringes pixel to pixel from different CCD cameras, and synthesis the rough morphology, after getting rid of systematic error, we could calculate the surface accuracy of the measuring mirror. This novel design detecting method could be applied into measuring the optical system aberration, and it would develop into the setup of the portable structural interferometer and widely used in different measuring circumstances.
NASA Technical Reports Server (NTRS)
French, R. A.; Cohen, B. A.; Miller, J. S.
2014-01-01
KArLE (Potassium--Argon Laser Experiment) has been developed for in situ planetary geochronology using the K - Ar (potassium--argon) isotope system, where material ablated by LIBS (Laser--Induced Breakdown Spectroscopy) is used to calculate isotope abundances. We are determining the accuracy and precision of volume measurements of these pits using stereo and laser microscope data to better understand the ablation process for isotope abundance calculations. If a characteristic volume can be determined with sufficient accuracy and precision for specific rock types, KArLE will prove to be a useful instrument for future planetary rover missions.
NASA Technical Reports Server (NTRS)
Stimpfle, R. M.; Anderson, J. G.
1988-01-01
Midday stratospheric OH density measurements have been carried out within the altitude interval of 31 to 24 km using the laser-induced fluorescence technique deployed on a balloon-borne gondola launched from Palestine, Texas on July 15, 1987. Laser output at 282 nm is produced with a pulsed, 17 kHz repetition rate, copper vapor laser pumped tunable dye laser. The OH mixing ratio ranged from 16 + or - 5 ppt at 31 km to 4 + or - 3 ppt in the 27 to 24 km region. Simultaneous ozone and water vapor measurements were also obtained with separate instruments.
VSF Measurements and Inversion for RaDyO
2012-09-30
near-surface waters, including the surf zone. APPROACH MASCOT (Multi-Angle SCattering Optical Tool) has a 30 mW 658 nm laser diode source...in Santa Barbara Channel are provided in Fig. 1. Despite the widespread use of polarized laser sources across a diversity of Navy applications, this...operations that rely on divers, cameras, laser imaging systems, and active and passive remote sensing systems. These include mine countermeasures, harbor
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Koch, Grady J.; Kavaya, Michael J.; Yu, Jirong; Beyon, Jeffrey Y.; Demoz, B.; Veneable, D.
2009-01-01
NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. This lidar system was recently deployed at Howard University facility in Beltsville, Maryland, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other lidars and other sensors will be presented.
Iodine absorption cells quality evaluation methods
NASA Astrophysics Data System (ADS)
Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej
2016-12-01
The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.
EGR distribution and fluctuation probe based on CO2 measurements
Parks, II, James E.; Partridge, Jr., William P.; Yoo, Ji Hyung
2015-06-30
A diagnostic system having a laser, an EGR probe, a detector and a processor. The laser may be a swept-.lamda. laser having a sweep range including a significant CO.sub.2 feature and substantially zero absorption regions. The sweep range may extend from about 2.708 .mu.m to about 2.7085 .mu.m. The processor may determine CO.sub.2 concentration as a function of the detector output signal. The processor may normalize the output signal as a function of the zero absorption regions. The system may include a plurality of EGR probes receiving light from a single laser. The system may include a separate detector for each probe. Alternatively, the system may combine the light returning from the different probes into a composite beam that is measured by a single detector. A unique modulation characteristic may be introduced into each light beam before combination so that the processor can discriminate between them in the composite beam.
NASA Astrophysics Data System (ADS)
Adamek, A.
2015-12-01
Mobile laser scanning technology is developing rapidly also in mining. For several years research and tests are conducted on the use of that type of measurement in the inventory of the mine shafts. The company SKALA 3D in the project 1.4 POIG by PARP undertook to create Mobile automatic steering system of spatial geometry measurements mine shafts using laser scanning technology. Its main advantage is a faithful reflection of the object being measured in just a few hours. It is based on the data flowing from laser scanners and precision inertial unit. The main problem of the research was to determine the trajectory of the passing Mobile Platforms Mining (MPG) in the shaft as accurately as possible. Unable to receive signals from satellites in the pipe shaft prevented the use of solutions known for measuring terrestrial mobile systems. The company SKALA 3D has developed a methodology for determine the trajectory of the system, based on geometrical data coming from laser scanners and readings of accelerometers and gyroscopes of inertial unit. To improve the quality and accuracy of measurements MPG is also equipped with a set of anti-vibration parts prevent the transmission of vibrations ascending while cage is moving in the shaft on the measuring system. The whole forms a calibrated system, which in a short time is able to provide spatial measurement data from the measuring shaft. The accuracy of 2-3 mm in a single measurement horizon and a few centimeters determine the position of a point on the thousandth meter below ground make the system very accurate. During the project there have been numerous research problems, including the need to define the physical references, drift of IMU whether harsh weather conditions in the shaft. However, the company SKALA 3D solved these problems and making MPG unique in the world.
NASA Astrophysics Data System (ADS)
Brittelle, Mack S.; Simms, Jean M.; Sanders, Scott T.; Gord, James R.; Roy, Sukesh
2016-03-01
We describe a system designed to perform fixed-wavelength absorption spectroscopy of H2O vapor in practical combustion devices. The system includes seven wavelength-stabilized distributed feedback (WSDFB) lasers, each with a spectral accuracy of ±1 MHz. An on-board external cavity diode laser (ECDL) that tunes 1320-1365 nm extends the capabilities of the system. Five system operation modes are described. In one mode, a sweep of the ECDL is used to monitor each WSDFB laser wavelength with an accuracy of ±30 MHz. Demonstrations of fixed-wavelength thermometry at 10 kHz bandwidth in near-room-temperature gases are presented; one test reveals a temperature measurement error of ~0.43%.
NASA Astrophysics Data System (ADS)
Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.
2017-11-01
In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.
Very-Long-Distance Remote Hearing and Vibrometry
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan; Matsko, Andrey; Savchenkov, Anatoliy
2009-01-01
A proposed development of laser-based instrumentation systems would extend the art of laser Doppler vibrometry beyond the prior limits of laser-assisted remote hearing and industrial vibrometry for detecting defects in operating mechanisms. A system according to the proposal could covertly measure vibrations of objects at distances as large as thousands of kilometers and could process the measurement data to enable recognition of vibrations characteristic of specific objects of interest, thereby enabling recognition of the objects themselves. A typical system as envisioned would be placed in orbit around the Earth for use as a means of determining whether certain objects on or under the ground are of interest as potential military targets. Terrestrial versions of these instruments designed for airborne or land- or sea-based operation could be similarly useful for military or law-enforcement purposes. Prior laser-based remote-hearing systems are not capable of either covert operation or detecting signals beyond modest distances when operated at realistic laser power levels. The performances of prior systems for recognition of objects by remote vibrometry are limited by low signal-to-noise ratios and lack of filtering of optical signals returned from targets. The proposed development would overcome these limitations. A system as proposed would include a narrow-band laser as its target illuminator, a lock-in-detection receiver subsystem, and a laser-power-control subsystem that would utilize feedback of the intensity of background illumination of the target to adjust the laser power. The laser power would be set at a level high enough to enable the desired measurements but below the threshold of detectability by an imaginary typical modern photodetector located at the target and there exposed to the background illumination. The laser beam would be focused tightly on the distant target, such that the receiving optics would be exposed to only one speckle. The return signal would be extremely-narrow-band filtered (to sub-kilohertz bandwidth) in the optical domain by a whispering-gallery- mode filter so as to remove most of the background illumination. The filtered optical signal would be optically amplified. This combination of optical filtering and optical amplification would provide an optical signal that would be strong enough to be detectable but not so strong as to saturate the detector in the lock-in detection subsystem.
New fiber laser for lidar developments in disaster management
NASA Astrophysics Data System (ADS)
Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.
2014-10-01
Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.
Frequency-modulated laser ranging sensor with closed-loop control
NASA Astrophysics Data System (ADS)
Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin
2018-02-01
Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.
NASA Astrophysics Data System (ADS)
Foley, E. L.; Levinton, F. M.
2013-04-01
The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.
Portable remote laser sensor for methane leak detection
NASA Technical Reports Server (NTRS)
Grant, W. B.; Hinkley, E. D., Jr. (Inventor)
1984-01-01
A portable laser system for remote detection of methane gas leaks and concentrations is disclosed. The system transmitter includes first and second lasers, tuned respectively to a wavelength coincident with a strong absorption line of methane and a reference wavelength which is weakly absorbed by methane gas. The system receiver includes a spherical mirror for collecting the reflected laser radiation and focusing the collected radiation through a narrowband optical filter onto an optial detector. The filter is tuned to the wavelength of the two lasers, and rejects background noise. The output of the optical detector is processed by a lock-in detector synchronized to the chopper, and which measures the difference between the first wavelength signal and the reference wavelength signal.
Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement
NASA Astrophysics Data System (ADS)
Mo, Di; Wang, Ran; Li, Guang-zuo; Wang, Ning; Zhang, Ke-shu; Wu, Yi-rong
2017-11-01
Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach-Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.
Airborne water vapor DIAL system and measurements of water and aerosol profiles
NASA Technical Reports Server (NTRS)
Higdon, Noah S.; Browell, Edward V.
1991-01-01
The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.
Micro- and macroscopic photonic control of matter
NASA Astrophysics Data System (ADS)
Ryabtsev, Anton
This dissertation outlines the development of several methods and techniques that enable comprehensive control of laser-matter interactions and nonlinear optical processes using shaped femtosecond pulses. Manipulation of the spectral phases and amplitudes of femtosecond laser pulses provides an effective way to adjust laser parameters, both those intrinsic to pulse generation within a laser and those induced by laser-matter interactions. When coupled with a fundamental understanding of the interactions between a laser's electric field and the molecules in the propagation media, these methods make the behavior of laser pulses predictable and allow the experimental information they carry to be extracted accurately. The ultimate motivation is to enhance the accuracy and reproducibility of spectroscopic measurements and to control nonlinear processes during light-matter interaction using shaped femtosecond pulses. Ultrafast laser systems have become one of the most important scientific tools in femtochemistry, nanoscale material science, chemical detection and sensing, and many other applications where processes occur at femtosecond (fs, 10-15 of a second) timescales or when broad laser bandwidths are required. As with any measuring instrument, it is very important to know system's exact parameters in order to make meaningful, accurate and reproducible measurements. For ultrafast lasers, these parameters are the intensities of the spectral components, the spectral phase, the temporal profile, the pulse energy, and the spatial laser beam profile. Due to broadband nature of ultrafast laser sources, they are very sensitive to propagation media: gaseous, liquid or solid matter along the paths of laser pulses to the sample, including the material of the sample itself. Optical parameters describing the propagation media, such as linear and nonlinear dispersion, and birefringence, as well as physical parameters, such as temperature and pressure, all affect laser pulse parameters. In order for measurements not to be skewed, these interactions need to be taken into account and mitigated at the time of the experiment or handled later in data analysis and simulations. Experimental results are presented in four chapters. Chapter 2 describes two topics: (1) single-shot real-time monitoring and correction of spectral phase drifts, which commonly originate from temperature and pointing fluctuations inside the laser cavity when the pulses are generated; (2) an all-optical method for controlling the dispersion of femtosecond pulses using other pulses. Chapter 3 focuses on the effects of the propagation media--how intense laser pulses modify media and how, in turn, the media modifies them back--and how these effects can be counteracted. Self-action effects in fused silica are discussed, along with some interesting and unexpected results. A method is then proposed for mitigating self-action processes using binary modulation of the spectral phases of laser pulses. Chapter 4 outlines the design of two laser systems, which are specifically tailored for particular spectroscopic applications and incorporate the comprehensive pulse control described in previous chapters. Chapter 5 shows how control of spatial beam characteristics can be applied to measurements of the mechanical motion of microscale particles and how it can potentially be applied to molecular motion. It also describes an experiment on laser-induced flow in air in which attempts were made to control the macroscopic molecular rotation of gases. My research, with a pulse shaper as the enabling tool, provides important insights into ultrafast scientific studies by making femtosecond laser research more predictable, reliable and practical for measurement and control. In the long term, some of the research methods in this thesis may help the transition of femtosecond lasers from the laboratory environment into clinics, factories, airports, and other everyday settings.
Sreemany, Arpita; Bera, Melinda Kumar; Sarkar, Anindya
2017-12-30
The elaborate sampling and analytical protocol associated with conventional dual-inlet isotope ratio mass spectrometry has long hindered high-resolution climate studies from biogenic accretionary carbonates. Laser-based on-line systems, in comparison, produce rapid data, but suffer from unresolvable matrix effects. It is, therefore, necessary to resolve these matrix effects to take advantage of the automated laser-based method. Two marine bivalve shells (one aragonite and one calcite) and one fish otolith (aragonite) were first analysed using a CO 2 laser ablation system attached to a continuous flow isotope ratio mass spectrometer under different experimental conditions (different laser power, sample untreated vs vacuum roasted). The shells and the otolith were then micro-drilled and the isotopic compositions of the powders were measured in a dual-inlet isotope ratio mass spectrometer following the conventional acid digestion method. The vacuum-roasted samples (both aragonite and calcite) produced mean isotopic ratios (with a reproducibility of ±0.2 ‰ for both δ 18 O and δ 13 C values) almost identical to the values obtained using the conventional acid digestion method. As the isotopic ratio of the acid digested samples fall within the analytical precision (±0.2 ‰) of the laser ablation system, this suggests the usefulness of the method for studying the biogenic accretionary carbonate matrix. When using laser-based continuous flow isotope ratio mass spectrometry for the high-resolution isotopic measurements of biogenic carbonates, the employment of a vacuum-roasting step will reduce the matrix effect. This method will be of immense help to geologists and sclerochronologists in exploring short-term changes in climatic parameters (e.g. seasonality) in geological times. Copyright © 2017 John Wiley & Sons, Ltd.
Investigation into the Use of the Concept Laser QM System as an In-Situ Research and Evaluation Tool
NASA Technical Reports Server (NTRS)
Bagg, Stacey
2014-01-01
The NASA Marshall Space Flight Center (MSFC) is using a Concept Laser Fusing (Cusing) M2 powder bed additive manufacturing system for the build of space flight prototypes and hardware. NASA MSFC is collecting and analyzing data from the M2 QM Meltpool and QM Coating systems for builds. This data is intended to aide in understanding of the powder-bed additive manufacturing process, and in the development of a thermal model for the process. The QM systems are marketed by Concept Laser GmbH as in-situ quality management modules. The QM Meltpool system uses both a high-speed near-IR camera and a photodiode to monitor the melt pool generated by the laser. The software determines from the camera images the size of the melt pool. The camera also measures the integrated intensity of the IR radiation, and the photodiode gives an intensity value based on the brightness of the melt pool. The QM coating system uses a high resolution optical camera to image the surface after each layer has been formed. The objective of this investigation was to determine the adequacy of the QM Meltpool system as a research instrument for in-situ measurement of melt pool size and temperature and its applicability to NASA's objectives in (1) Developing a process thermal model and (2) Quantifying feedback measurements with the intent of meeting quality requirements or specifications. Note that Concept Laser markets the system only as capable of giving an indication of changes between builds, not as an in-situ research and evaluation tool. A secondary objective of the investigation is to determine the adequacy of the QM Coating system as an in-situ layer-wise geometry and layer quality evaluation tool.
AlGaInN laser diode technology for free-space and plastic optical fibre telecom applications
NASA Astrophysics Data System (ADS)
Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bóckowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.
2016-03-01
Gallium Nitride laser diodes fabricated from the AlGaInN material system is an emerging technology for laser sources from the UV to visible and is a potential key enabler for new system applications such as free-space (underwater & air bourne links) and plastic optical fibre telecommunications. We measure visible light (free-space and underwater) communications at high frequency (up to 2.5 Gbit/s) and in plastic optical fibre (POF) using a directly modulated GaN laser diode.
TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod
NASA Astrophysics Data System (ADS)
Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel
2016-05-01
A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
2016-02-01
Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.
Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less
Laser-Interferometric Broadband Seismometer for Epicenter Location Estimation
Lee, Kyunghyun; Kwon, Hyungkwan; You, Kwanho
2017-01-01
In this paper, we suggest a seismic signal measurement system that uses a laser interferometer. The heterodyne laser interferometer is used as a seismometer due to its high accuracy and robustness. Seismic data measured by the laser interferometer is used to analyze crucial earthquake characteristics. To measure P-S time more precisely, the short time Fourier transform and instantaneous frequency estimation methods are applied to the intensity signal (Iy) of the laser interferometer. To estimate the epicenter location, the range difference of arrival algorithm is applied with the P-S time result. The linear matrix equation of the epicenter localization can be derived using P-S time data obtained from more than three observatories. We prove the performance of the proposed algorithm through simulation and experimental results. PMID:29065515
Hsu, Paul S; Kulatilaka, Waruna D; Roy, Sukesh; Gord, James R
2013-05-01
We investigate the fundamental transmission characteristics of nanosecond-duration, 10 kHz repetition rate, ultraviolet (UV) laser pulses through state-of-the-art, UV-grade fused-silica fibers being used for hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging. Studied in particular are laser-induced damage thresholds (LIDTs), nonlinear absorption, and optical transmission stability during long-term UV irradiation. Solarization (photodegradation) effects are significantly enhanced when the fiber is exposed to high-repetition-rate, 283 nm UV irradiation. For 10 kHz laser pulses, two-photon absorption is strong and LIDTs are low, as compared to those of laser pulses propagating at 10 Hz. The fiber characterization results are utilized to perform single-laser-shot, OH-PLIF imaging in pulsating turbulent flames with a laser that operates at 10 kHz. The nearly spatially uniform output beam that exits a long multimode fiber becomes ideal for PLIF measurements. The proof-of-concept measurements show significant promise for extending the application of a fiber-coupled, high-speed OH-PLIF system to harsh environments such as combustor test beds, and potential system improvements are suggested.
NASA Astrophysics Data System (ADS)
Wang, Yang; Wang, Qianqian
2008-12-01
When laser ranger is transported or used in field operations, the transmitting axis, receiving axis and aiming axis may be not parallel. The nonparallelism of the three-light-axis will affect the range-measuring ability or make laser ranger not be operated exactly. So testing and adjusting the three-light-axis parallelity in the production and maintenance of laser ranger is important to ensure using laser ranger reliably. The paper proposes a new measurement method using digital image processing based on the comparison of some common measurement methods for the three-light-axis parallelity. It uses large aperture off-axis paraboloid reflector to get the images of laser spot and white light cross line, and then process the images on LabVIEW platform. The center of white light cross line can be achieved by the matching arithmetic in LABVIEW DLL. And the center of laser spot can be achieved by gradation transformation, binarization and area filter in turn. The software system can set CCD, detect the off-axis paraboloid reflector, measure the parallelity of transmitting axis and aiming axis and control the attenuation device. The hardware system selects SAA7111A, a programmable vedio decoding chip, to perform A/D conversion. FIFO (first-in first-out) is selected as buffer.USB bus is used to transmit data to PC. The three-light-axis parallelity can be achieved according to the position bias between them. The device based on this method has been already used. The application proves this method has high precision, speediness and automatization.
Consistency analysis on laser signal in laser guided weapon simulation
NASA Astrophysics Data System (ADS)
Yin, Ruiguang; Zhang, Wenpan; Guo, Hao; Gan, Lin
2015-10-01
The hardware-in-the-loop simulation is widely used in laser semi-active guidance weapon experiments, the authenticity of the laser guidance signal is the key problem of reliability. In order to evaluate the consistency of the laser guidance signal, this paper analyzes the angle of sight, laser energy density, laser spot size, atmospheric back scattering, sun radiation and SNR by comparing the different working state between actual condition and hardware-in-the-loop simulation. Based on measured data, mathematical simulation and optical simulation result, laser guidance signal effects on laser seeker are determined. By using Monte Carlo method, the laser guided weapon trajectory and impact point distribution are obtained, the influence of the systematic error are analyzed. In conclusion it is pointed out that the difference between simulation system and actual system has little influence in normal guidance, has great effect on laser jamming. The research is helpful to design and evaluation of laser guided weapon simulation.
Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning
2016-12-09
Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.
Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning
2016-01-01
Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705
Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Yu, Haixia; Xu, Kexin
2013-01-01
Because mid-infrared (mid-IR) spectroscopy is not a promising method to noninvasively measure glucose in vivo, a method for minimally invasive high-precision glucose determination in vivo by mid-IR laser spectroscopy combined with a tunable laser source and small fiber-optic attenuated total reflection (ATR) sensor is introduced. The potential of this method was evaluated in vitro. This research presents a mid-infrared tunable laser with a broad emission spectrum band of 9.19 to 9.77μm(1024~1088 cm−1) and proposes a method to control and stabilize the laser emission wavelength and power. Moreover, several fiber-optic ATR sensors were fabricated and investigated to determine glucose in combination with the tunable laser source, and the effective sensing optical length of these sensors was determined for the first time. In addition, the sensitivity of this system was four times that of a Fourier transform infrared (FT-IR) spectrometer. The noise-equivalent concentration (NEC) of this laser measurement system was as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. Furthermore, a partial least-squares regression and Clarke error grid were used to quantify the predictability and evaluate the prediction accuracy of glucose concentration in the range of 5 to 500 mg/dL (physiologically relevant range: 30~400 mg/dL). The experimental results were clinically acceptable. The high sensitivity, tunable laser source, low NEC and small fiber-optic ATR sensor demonstrate an encouraging step in the work towards precisely monitoring glucose levels in vivo. PMID:24466493
NASA Astrophysics Data System (ADS)
Ozbek, Muammer; Rixen, Daniel J.
Non-contact optical measurement systems photogrammetry and laser interferometry are introduced as cost efficient alternatives to the conventional wind turbine/farm monitoring systems that are currently in use. The proposed techniques are proven to provide an accurate measurement of the dynamic behavior of a 2.5 MW—80 m diameter—wind turbine. Several measurements are taken on the test turbine by using 4 CCD cameras and 1 laser vibrometer and the response of the turbine is monitored from a distance of 220 m. The results of the infield tests and the corresponding analyses show that photogrammetry (also can be called as videogrammetry or computer vision technique) enable the 3D deformations of the rotor to be measured at 33 different points simultaneously with an average accuracy of ±25 mm, while the turbine is rotating. Several important turbine modes can also be extracted from the recorded data. Similarly, laser interferometry (used for the parked turbine only) provides very valuable information on the dynamic properties of the turbine structure. Twelve different turbine modes can be identified from the obtained response data.
Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System
Turnbull, D.; Goyon, C.; Kemp, G. E.; ...
2017-01-05
Here, we report the first complete set of measurements of a laser-plasma optical system’s refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstrationmore » of a laser-plasma polarizer with 85$-$87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.« less
Down-Bore Two-Laser Heterodyne Velocimetry of an Implosion-Driven Hypervelocity Launcher
NASA Astrophysics Data System (ADS)
Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.
2015-06-01
The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 10 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photonic Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single-laser PDV is limited to approximately 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s. The two laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These continuous velocity data are used to validate models of the launcher cycle and compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.
Report of secondary flows, boundary layers, turbulence and wave team, report 1
NASA Technical Reports Server (NTRS)
Scoggins, J. R.; Fitzjarrald, D.; Doviak, R.; Cliff, W.
1980-01-01
General criteria for a flight test option are that: (1) there be a good opportunity for comparison with other measurement techniques; (2) the flow to be measured is of considerable scientific or practical interest; and (3) the airborne laser Doppler system is well suited to measure the required quantities. The requirement for comparison, i.e., ground truth, is particularly important because this is the first year of operation for the system. It is necessary to demonstrate that the system does actually measure the winds and compare the results with other methods to provide a check on the system error analysis. The uniqueness of the laser Doppler system precludes any direct comparison, but point measurements from tower mounted wind sensors and two dimensional fields obtained from radars with substantially different sampling volumes are quite useful.
Use of a novel tunable solid state disk laser as a diagnostic system for laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Paa, Wolfgang; Triebel, Wolfgang
2004-09-01
An all solid state disk laser system-named "Advanced Disk Laser (ADL)" -particularly tailored for laser induced fluorescence (LIF) in combustion processes is presented. The system currently under development comprises an Yb:YAG-seedlaser and a regenerative amplifier. Both are based on the disk laser concept as a new laser architecture. This allows a tunable, compact, efficient diode pumped solid state laser (DPSSL) system with repetition rates in the kHz region. After frequency conversion to the UV-spectral region via third and fourth harmonics generation, this laser-due to its unique properties such as single-frequency operation, wavelength tuneability and excellent beam profile-is well suited for excitation of small molecules such as formaldehyde, OH, NO or O2, which are characteristic for combustion processes. Using the method of planar laser induced fluorescence (PLIF) we observed concentration distributions of formaldehyde in cool and hot flames of a specially designed diethyl-ether burner. The images recorded with 1 kHz repetition rate allow visualizing the distribution of formaldehyde on a 1 ms time scale. This demonstrates for the first time the usability of this novel laser for LIF measurements and is the first step towards integration of the ADL into capsules for drop towers and the international space station.
Remote defect imaging for plate-like structures based on the scanning laser source technique
NASA Astrophysics Data System (ADS)
Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo
2018-04-01
In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.
NASA Astrophysics Data System (ADS)
Yang, Jinyeol; Lee, Hyeonseok; Lim, Hyung Jin; Kim, Nakhyeon; Yeo, Hwasoo; Sohn, Hoon
2013-08-01
This study develops an embeddable optical fiber-guided laser ultrasonic system for structural health monitoring (SHM) of pipelines exposed to high temperature and gamma radiation inside nuclear power plants (NPPs). Recently, noncontact laser ultrasonics is gaining popularity among the SHM community because of its advantageous characteristics such as (a) scanning capability, (b) immunity against electromagnetic interference (EMI) and (c) applicability to high-temperature surfaces. However, its application to NPP pipelines has been hampered because pipes inside NPPs are often covered by insulators and/or target surfaces are not easily accessible. To overcome this problem, this study designs embeddable optical fibers and fixtures so that laser beams used for ultrasonic inspection can be transmitted between the laser sources and the target pipe. For guided-wave generation, an Nd:Yag pulsed laser coupled with an optical fiber is used. A high-power pulsed laser beam is guided through the optical fiber onto a target structure. Based on the principle of laser interferometry, the corresponding response is measured using a different type of laser beam guided by another optical fiber. All devices are especially designed to sustain high temperature and gamma radiation. The robustness/resilience of the proposed measurement system installed on a stainless steel pipe specimen has been experimentally verified by exposing the specimen to high temperature of up to 350 °C and optical fibers to gamma radiation of up to 125 kGy (20 kGy h-1).
Object-oriented wavefront correction in an asymmetric amplifying high-power laser system
NASA Astrophysics Data System (ADS)
Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo
2018-05-01
An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.
Laser based structural health monitoring for civil, mechanical, and aerospace systems
NASA Astrophysics Data System (ADS)
Sohn, Hoon
2012-04-01
This paper provides an overview of ongoing laser ultrasonics based structural health monitoring (SHM) activities being performed by the author. Particular focus is given to (1) the development of a fully noncontact laser ultrasonic system that can easily visualize defects with high spatial resolution, (2) laser based wireless power and data transmission schemes for remote guided waves and impedance measurements, (3) minimization of false alarms due to varying operational and environmental conditions, and (4) extension to embedded laser ultrasonic excitation and sensing. SHM examples ranging from bridges to airplanes, as well as nuclear power plants, high-speed rails and wind turbines are also presented.
Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro
2013-01-01
We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599
NASA Astrophysics Data System (ADS)
Xiong, C. Y.; Chen, J.; Li, Q.; Liu, Y.; Gao, L.
2014-12-01
A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (˜100-˜500 kHz/10 min) and decay of laser power (˜10%-˜20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.
Xiong, C Y; Chen, J; Li, Q; Liu, Y; Gao, L
2014-12-01
A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100-∼500 kHz/10 min) and decay of laser power (∼10%-∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.
Femtosecond Laser Eyewear Protection: Measurements and Precautions
Stromberg, Christopher J.; Hadler, Joshua A.; Alberding, Brian G.; Heilweil, Edwin J.
2018-01-01
Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti+3:Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications. PMID:29353984
Femtosecond Laser Eyewear Protection: Measurements and Precautions.
Stromberg, Christopher J; Hadler, Joshua A; Alberding, Brian G; Heilweil, Edwin J
2017-11-01
Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti +3 :Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications.
NASA Technical Reports Server (NTRS)
Browell, E. V.; Carter, A. F.; Shipley, S. T.; Siviter, J. H., Jr.; Hall, W. M.; Allen, R. J.; Butler, C. F.; Mayo, M. N.
1983-01-01
The hardware, operational characteristics, data processing system, and applications of the NASA airborne differential absorption lidar (DIAL) system are described. DIAL functions by assessing the average gas concentration over a specified range interval by analyzing the difference in lidar backscatter signals for laser wavelengths tuned on and off of the molecular absorption line of a gas under investigation. The system comprises two frequency-doubled Nd:YAG lasers pumping two high conversion efficiency tunable dye lasers emitting pulses separated by 100 microsec or less. The return signals are digitized and stored on magnetic tape. The signal collector consists of photomultiplier tubes implanted in a cassegrain telescope. Flight tests of the system involved on-measurements at 285.95 nm and off-measurements at 299.40 nm, which yielded a differential cross section of 1.74 x 10 to the -16th sq cm. In situ measurements with another plane at a nominal altitude of 3.2 km for comparison purposes showed accuracy to within 10% in and above the boundary layer. The system is considered as a test apparatus for more developed versions to be flown on the Shuttle
Boresight alignment method for mobile laser scanning systems
NASA Astrophysics Data System (ADS)
Rieger, P.; Studnicka, N.; Pfennigbauer, M.; Zach, G.
2010-06-01
Mobile laser scanning (MLS) is the latest approach towards fast and cost-efficient acquisition of 3-dimensional spatial data. Accurately evaluating the boresight alignment in MLS systems is an obvious necessity. However, recent systems available on the market may lack of suitable and efficient practical workflows on how to perform this calibration. This paper discusses an innovative method for accurately determining the boresight alignment of MLS systems by employing 3D laser scanners. Scanning objects using a 3D laser scanner operating in a 2D line-scan mode from various different runs and scan directions provides valuable scan data for determining the angular alignment between inertial measurement unit and laser scanner. Field data is presented demonstrating the final accuracy of the calibration and the high quality of the point cloud acquired during an MLS campaign.
A wireless laser displacement sensor node for structural health monitoring.
Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok
2013-09-30
This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.
Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects
2014-09-01
based laser systems can be limited by the effects of tumbling, extremely accurate Doppler measurement is possible using a doublet coherent laser ...Doublet pulse coherent laser radar for tracking of resident space objects Narasimha S. Prasad *1 , Van Rudd 2 , Scott Shald 2 , Stephan...Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Solid state laser technology - A NASA perspective
NASA Technical Reports Server (NTRS)
Allario, F.
1985-01-01
NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.
Real-time laser cladding control with variable spot size
NASA Astrophysics Data System (ADS)
Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.
2014-03-01
Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.
On the possibility of measuring atmospheric OH using intracavity laser spectroscopy
NASA Technical Reports Server (NTRS)
Mcmanus, J. Barry; Kolb, C. E.
1994-01-01
Intracavity laser spectroscopy (ILS) has been demonstrated to be useful for measuring extremely weak absorption produced by gases in air. ILS is based on the observation that when there are spectrally narrow losses within the cavity of a broadband laser, the laser output has corresponding spectral holes where the laser oscillation is partially quenched. The depth of the laser output dips can be enhanced by a factor of 10(exp 5) over the depth of the initial cavity loss, and absorptivities of 10(exp -8) cm(exp -1) have been measured in lasers only one meter long. With ILS, one can achieve in a compact space a spectral contrast that would otherwise require kilometers of pathlength. ILS systems typically use quasi-continuous wave dye lasers operating close to threshold. The pump laser is modulated from just below to just above the threshold level for the dye laser, and the dye laser output is spectroscopically observed during a well defined time interval after the onset of lasing (the generation time). The spectral contrast of an intracavity absorber is equivalent to that produced by absorption through a path length equal to the generation time multiplied by the speed of light (assuming the cavity is completely filed with the absorber) up to some limiting time. Thus, if one measures the spectrum after 33 microseconds, the effective path length is 10,000 meters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polulyakh, Valeriy; Poutivski, Iouri
Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t∼30psec) and low energy (E∼200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P∼30mW). Both lasers perform on the eye-safe wavelength 1.5 μm. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and amore » scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.« less
NASA Astrophysics Data System (ADS)
Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold
2016-12-01
In this work, a new measurement system is presented for studying temperature of micro-droplets by pulsed 2-color laser-induced fluorescence. Pulsed fluorescence excitation allows motion blur suppression and thus simultaneous measurements of droplet size, velocity and temperature. However, high excitation intensities of pulsed lasers lead to morphology-dependent resonances inside micro-droplets, which are accompanied by disruptive stimulated emission. Investigations showed that stimulated emission can be avoided by enhanced energy transfer via an additional dye. The suitability and accuracy of the new pulsed method are verified on the basis of a spectroscopic analysis and comparison to continuously excited 2-color laser-induced fluorescence.
Dynamic Airblast Simulator (DABS) Instrumentation Development. Phase 1
1978-08-01
the laser system employing two beams . This theory will be expanded to provide insight to the design of a suitable velocity measure- ment system for...Laser Beam Crossover Region 91 B3 Cross Section of Ellipsoidal Interference Region 95 B4 Doppler Difference Measurement Geometry 96 B5 Scattering...Volume Assumptions 116 B6 Microwave Veloclmeter, Tunnel Floor Installation Layout, Typical for 120° Beam Intersection at 10.525 GHz 119 B7 Ku-Band
Simulation of laser radar tooling ball measurements: focus dependence
NASA Astrophysics Data System (ADS)
Smith, Daniel G.; Slotwinski, Anthony; Hedges, Thomas
2015-10-01
The Nikon Metrology Laser Radar system focuses a beam from a fiber to a target object and receives the light scattered from the target through the same fiber. The system can, among other things, make highly accurate measurements of the position of a tooling ball by locating the angular position of peak signal quality, which is related to the fiber coupling efficiency. This article explores the relationship between fiber coupling efficiency and focus condition.
Atmospheric remote sensing of water vapor, HCl and CH4 using a continuously tunable Co:MgF2 laser
NASA Technical Reports Server (NTRS)
Menyuk, Norman; Killinger, Dennis K.
1987-01-01
A differential-absorption lidar system has been developed which uses a continuously tunable (1.5-2.3 micron) cobalt-doped magnesium fluoride laser as the radiation source. Preliminary atmospheric measurements of water vapor, HCl, and CH4 have been made with this system, including both path-averaged and ranged-resolved DIAL measurements at ranges up to 6 and 3 km, respectively.
NASA Astrophysics Data System (ADS)
Wang, Pengyao; Chen, Xiangguang; Yang, Kai; Liu, Xuejiao
2017-01-01
To improve the measuring efficiency of width and thickness of tire tread in the process of automobile tire production, the actual condition for the tire production process is analyzed, and a fast online measurement system based on moving tire tread of tire specifications is established in this paper. The coordinate data of tire tread profile is acquired by 3D laser sensor, and we use C# language for programming which is an object-oriented programming language to complete the development of client program. The system with laser sensor can provide real-time display of tire tread profile and the data to require in the process of tire production. Experimental results demonstrate that the measuring precision of the system is <= 1mm, it can meet the measurement requirements of the production process, and the system has the characteristics of convenient installation and testing, system stable operation.
Laser Development for Gravitational-Wave Interferometry in Space
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.
NASA Astrophysics Data System (ADS)
Quest, D.; Gayer, C.; Hering, P.
2012-01-01
Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.
Schelle, Florian; Polz, Sebastian; Haloui, Hatim; Braun, Andreas; Dehn, Claudia; Frentzen, Matthias; Meister, Jörg
2014-11-01
Modern ultrashort pulse lasers with scanning systems provide a huge set of parameters affecting the suitability for dental applications. The present study investigates thresholds and ablation rates of oral hard tissues and restorative materials with a view towards a clinical application system. The functional system consists of a 10 W Nd:YVO4 laser emitting pulses with a duration of 8 ps at 1,064 nm. Measurements were performed on dentin, enamel, ceramic, composite, and mammoth ivory at a repetition rate of 500 kHz. By employing a scanning system, square-shaped cavities with an edge length of 1 mm were created. Ablation threshold and rate measurements were assessed by variation of the applied fluence. Examinations were carried out employing a scanning electron microscope and optical profilometer. Irradiation time was recorded by the scanner software in order to calculate the overall ablated volume per time. First high power ablation rate measurements were performed employing a laser source with up to 50 W. Threshold values in the range of 0.45 J/cm(2) (composite) to 1.54 J/cm(2) (enamel) were observed. Differences between any two materials are statistically significant (p < 0.05). Preparation speeds up to 37.53 mm(3)/min (composite) were achieved with the 10 W laser source and differed statistically significant for any two materials (p < 0.05) with the exception of dentin and mammoth ivory (p > 0.05). By employing the 50 W laser source, increased rates up to ∼50 mm(3)/min for dentin were obtained. The results indicate that modern USPL systems provide sufficient ablation rates to be seen as a promising technology for dental applications.
Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav
2012-01-01
A high pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on measured motion of the microbubble, the Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using indentation test. Measured values of Young’s moduli of 4 bovine lenses ranged from 2.6±0.1 to 26±1.4 kPa and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. PMID:22797709
Tomographical process monitoring of laser transmission welding with OCT
NASA Astrophysics Data System (ADS)
Ackermann, Philippe; Schmitt, Robert
2017-06-01
Process control of laser processes still encounters many obstacles. Although these processes are stable, a narrow process parameter window during the process or process deviations have led to an increase on the requirements for the process itself and on monitoring devices. Laser transmission welding as a contactless and locally limited joining technique is well-established in a variety of demanding production areas. For example, sensitive parts demand a particle-free joining technique which does not affect the inner components. Inline integrated non-destructive optical measurement systems capable of providing non-invasive tomographical images of the transparent material, the weld seam and its surrounding areas with micron resolution would improve the overall process. Obtained measurement data enable qualitative feedback into the system to adapt parameters for a more robust process. Within this paper we present the inline monitoring device based on Fourier-domain optical coherence tomography developed within the European-funded research project "Manunet Weldable". This device, after adaptation to the laser transmission welding process is optically and mechanically integrated into the existing laser system. The main target lies within the inline process control destined to extract tomographical geometrical measurement data from the weld seam forming process. Usage of this technology makes offline destructive testing of produced parts obsolete. 1,2,3,4
Dhallu, Sandeep K; Maurino, Vincenzo; Wilkins, Mark R
2016-01-01
Objectives To describe the initial outcomes following installation of a cataract surgery laser system. Setting National Health Service cataract surgery day care unit in North London, UK. Participants 158 eyes of 150 patients undergoing laser-assisted cataract surgery. Interventions Laser cataract surgery using the AMO Catalys femtosecond laser platform. Primary and secondary outcome measures Primary outcome measure: intraoperative complications including anterior and posterior capsule tears. Secondary outcome measures: docking to the laser platform, successful treatment delivery, postoperative visual acuities. Results Mean case age was 67.7±10.8 years (range 29–88 years). Docking was successful in 94% (148/158 cases), and in 4% (6/148 cases) of these, the laser delivery was aborted part way during delivery due to patient movement. A total of 32 surgeons, of grades from junior trainee to consultant, performed the surgeries. Median case number per surgeon was 3 (range from 1–20). The anterior capsulotomy was complete in 99.3% of cases, there were no anterior capsule tears (0%). There were 3 cases with posterior capsule rupture requiring anterior vitrectomy, and 1 with zonular dialysis requiring anterior vitrectomy (4/148 eyes, 2.7%). These 4 cases were performed by trainee surgeons, and were either their first laser cataract surgery (2 surgeons) or their first and second laser cataract surgeries (1 surgeon). Conclusions Despite the learning curve, docking and laser delivery were successfully performed in almost all cases, and surgical complication rates and visual outcomes were similar to those expected based on national data. Complications were predominately confined to trainee surgeons, and with the exception of intraoperative pupil constriction appeared unrelated to the laser-performed steps. PMID:27466243
NASA Astrophysics Data System (ADS)
Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2014-03-01
Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Buggele, Alvin E.
2002-01-01
A laser light scattering diagnostic for measurement of dynamic flow velocity at a point is described. The instrument is being developed for use in the study of propagating shock waves and detonation waves in pulse detonation engines under development at the NASA Glenn Research Center (GRC). The approach uses a Fabry-Perot interferometer to measure the Doppler shift of laser light scattered from small (submicron) particles in the flow. The high-speed detection system required to resolve the transient response as a shock wave crosses the probe volume uses fast response photodetectors, and a PC based data acquisition system. Preliminary results of measurements made in the GRC Mach 4, 10 by 25 cm supersonic wind tunnel are presented. Spontaneous condensation of water vapor in the flow is used as seed. The tunnel is supplied with continuous air flow at up to 45 psia and the flow is exhausted into the GRC laboratory-wide altitude exhaust system at pressures down to 0.3 psia.
NASA Astrophysics Data System (ADS)
Schollmeier, M.; Sefkow, A. B.; Geissel, M.; Arefiev, A. V.; Flippo, K. A.; Gaillard, S. A.; Johnson, R. P.; Kimmel, M. W.; Offermann, D. T.; Rambo, P. K.; Schwarz, J.; Shimada, T.
2015-04-01
High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results show that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.
Laser production and heating of plasma for MHD application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1988-01-01
Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.
NRF Based Nondestructive Inspection System for SNM by Using Laser-Compton-Backscattering Gamma-Rays
NASA Astrophysics Data System (ADS)
Ohgaki, H.; Omer, M.; Negm, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Hori, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.
2015-10-01
A non-destructive inspection system for special nuclear materials (SNMs) hidden in a sea cargo has been developed. The system consists of a fast screening system using neutron generated by inertial electrostatic confinement (IEC) device and an isotope identification system using nuclear resonance fluorescence (NRF) measurements with laser Compton backscattering (LCS) gamma-rays has been developed. The neutron flux of 108 n/sec has been achieved by the IEC in static mode. We have developed a modified neutron reactor noise analysis method to detect fission neutron in a short time. The LCS gamma-rays has been generated by using a small racetrack microtoron accelerator and an intense sub-nano second laser colliding head-on to the electron beam. The gamma-ray flux has been achieved more than 105 photons/s. The NRF gamma-rays will be measured using LaBr3(Ce) scintillation detector array whose performance has been measured by NRF experiment of U-235 in HIGS facility. The whole inspection system has been designed to satisfy a demand from the sea port.
Electro-optical equivalent calibration technology for high-energy laser energy meters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088
Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less
Laser confocal measurement system for curvature radius of lenses based on grating ruler
NASA Astrophysics Data System (ADS)
Tian, Jiwei; Wang, Yun; Zhou, Nan; Zhao, Weirui; Zhao, Weiqian
2015-02-01
In the modern optical measurement field, the radius of curvature (ROC) is one of the fundamental parameters of optical lens. Its measurement accuracy directly affects the other optical parameters, such as focal length, aberration and so on, which significantly affect the overall performance of the optical system. To meet the demand of measurement instruments for radius of curvature (ROC) with high accuracy in the market, we develop a laser confocal radius measurement system with grating ruler. The system uses the peak point of the confocal intensity curve to precisely identify the cat-eye and confocal positions and then measure the distance between these two positions by using the grating ruler, thereby achieving the high-precision measurement for the ROC. The system has advantages of high focusing sensitivity and anti-environment disturbance ability. And the preliminary theoretical analysis and experiments show that the measuring repeatability can be up to 0.8 um, which can provide an effective way for the accurate measurement of ROC.
Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P
2015-02-10
A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well as the first documented application of diode-laser absorption for high-speed gas dynamics measurements in the turbocharger inlet and EGR cooler exit of a diesel engine.
Multi-aperture laser transmissometer system for long-path aerosol extinction rate measurement.
Wu, Chensheng; Rzasa, John R; Ko, Jonathan; Paulson, Daniel A; Coffaro, Joseph; Spychalsky, Jonathan; Crabbs, Robert F; Davis, Christopher C
2018-01-20
We present the theory, design, simulation, and experimental evaluations of a new laser transmissometer system for aerosol extinction rate measurement over long paths. The transmitter emits an ON/OFF modulated Gaussian beam that does not require strict collimation. The receiver uses multiple point detectors to sample the sub-aperture irradiance of the arriving beam. The sparse detector arrangement makes our transmissometer system immune to turbulence-induced beam distortion and beam wander caused by the atmospheric channel. Turbulence effects often cause spatial discrepancies in beam propagation and lead to miscalculation of true power loss when using the conventional approach of measuring the total beam power directly with a large-aperture optical concentrator. Our transmissometer system, on the other hand, combines the readouts from distributed detectors to rule out turbulence-induced temporal power fluctuations. As a result, we show through both simulation and field experiments that our transmissometer system works accurately with turbulence strength Cn2 up to 10 -12 m -2/3 over a typical 1-km atmospheric channel. In application, our turbulence- and weather-resistant laser transmissometer system has significant advantages for the measurement and study of aerosol concentration, absorption, and scattering properties, which are crucial for directed energy systems, ground-level free-space optical communication systems, environmental monitoring, and weather forecasting.
Pulpal thermal responses to an erbium,chromium: YSGG pulsed laser hydrokinetic system.
Rizoiu, I; Kohanghadosh, F; Kimmel, A I; Eversole, L R
1998-08-01
Laser systems are known to raise pulpal temperatures when applied to tooth surfaces. Dental biocalcified tissues can be cut with an erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system. This device is effective for caries removal and cavity preparation in vitro. Pulpal monitoring of temperature changes during hard tissue cutting by a hydrokinetic system have not been reported. This study compared the effects of hydrokinetic system, dry bur, and wet bur tooth cutting on pulpal temperature. In vivo thermocouple intrapulpal measurements were made on cuspid teeth in anesthetized beagle dogs. In vitro measurements were made on extracted human molar teeth preserved in high-salt solution and later rinsed in phosphate-buffered saline (pH 7.4) to simulate in vivo conditions. The hydrokinetic system was compared with conventional air-turbine-powered bur cutting. The hydrokinetic system cuts and bur preparations were randomly made on the buccal surfaces at the cervical one third of the crown and extended until exposure of the pulp was confirmed clinically. Pulpal temperatures associated with the hydrokinetic system either showed no change or decreased by up to 2 degrees C. Wet bur preparations resulted in a 3 degrees to 4 degrees C rise. With dry bur preparations, a 14 degrees C rise in temperature was recorded. Under the conditions of this study, the erbium,chromium:yttrium-scandium-gallium-garnet laser-powered hydrokinetic system, when used for cavity preparation, had no apparent adverse thermal effect as measured in the pulp space.
Three-dimensional dynamic deformation monitoring using a laser-scanning system
NASA Astrophysics Data System (ADS)
Al-Hanbali, Nedal N.; Teskey, William F.
1994-10-01
Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.
A laser-powered hydrokinetic system for caries removal and cavity preparation.
Hadley, J; Young, D A; Eversole, L R; Gornbein, J A
2000-06-01
Laser systems have been developed for the cutting of dental hard tissues. The erbium, chromium:yttrium-scandium-gallium-garnet, or Er,Cr:YSGG, laser system used in conjunction with an air-water spray has been shown to be efficacious in vitro for cavity preparation. The authors randomly selected subjects for cavity preparation with conventional air turbine/bur dental surgery or an Er,Cr:YSGG laser-powered system using a split-mouth design. They prepared Class I, III and V cavities, placed resin restorations and evaluated subjects on the day of the procedure and 30 days and six months postoperatively for pulp vitality, recurrent caries, pain and discomfort, and restoration retention. Sixty-seven subjects completed the study. There were no statistical differences between the two treatment groups for the parameters measured with one exception; there was a statistically significant decrease in discomfort levels for the laser system at the time of cavity preparation for subjects who declined to receive local anesthetic. The Er,Cr:YSGG laser system is effective for preparation of Class I, III and V cavities and resin restorations are retained by lased tooth surfaces. Hard-tissue cutting lasers are being introduced for use in operative dentistry. In this study, an Er,Cr:YSGG laser has been shown to be effective for cavity preparation and restoration replacement.
A 3-component laser-Doppler velocimeter data acquisition and reduction system
NASA Technical Reports Server (NTRS)
Rodman, L. C.; Bell, J. H.; Mehta, R. D.
1986-01-01
This report describes a laser Doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows. All the mean velocities, Reynolds stresses, and higher-order products can then be evaluated. The approach followed is to split one of the colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. In this report, the laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and assembly languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.
NASA Astrophysics Data System (ADS)
Buschinelli, Pedro D. V.; Melo, João. Ricardo C.; Albertazzi, Armando; Santos, João. M. C.; Camerini, Claudio S.
2013-04-01
An axis-symmetrical optical laser triangulation system was developed by the authors to measure the inner geometry of long pipes used in the oil industry. It has a special optical configuration able to acquire shape information of the inner geometry of a section of a pipe from a single image frame. A collimated laser beam is pointed to the tip of a 45° conical mirror. The laser light is reflected in such a way that a radial light sheet is formed and intercepts the inner geometry and forms a bright laser line on a section of the inspected pipe. A camera acquires the image of the laser line through a wide angle lens. An odometer-based triggering system is used to shot the camera to acquire a set of equally spaced images at high speed while the device is moved along the pipe's axis. Image processing is done in real-time (between images acquisitions) thanks to the use of parallel computing technology. The measured geometry is analyzed to identify corrosion damages. The measured geometry and results are graphically presented using virtual reality techniques and devices as 3D glasses and head-mounted displays. The paper describes the measurement principles, calibration strategies, laboratory evaluation of the developed device, as well as, a practical example of a corroded pipe used in an industrial gas production plant.
Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology
Zhao, Xuefeng; Liu, Hao; Yu, Yan; Xu, Xiaodong; Hu, Weitong; Li, Mingchu; Ou, Jingping
2015-01-01
Bridge displacement is the most basic evaluation index of the health status of a bridge structure. The existing measurement methods for bridge displacement basically fail to realize long-term and real-time dynamic monitoring of bridge structures, because of the low degree of automation and the insufficient precision, causing bottlenecks and restriction. To solve this problem, we proposed a bridge displacement monitoring system based on laser projection-sensing technology. First, the laser spot recognition method was studied. Second, the software for the displacement monitoring system was developed. Finally, a series of experiments using this system were conducted, and the results show that such a system has high measurement accuracy and speed. We aim to develop a low-cost, high-accuracy and long-term monitoring method for bridge displacement based on these preliminary efforts. PMID:25871716
High temperature measurement of water vapor absorption
NASA Technical Reports Server (NTRS)
Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard
1985-01-01
An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.
Development of multi-touch panel backlight system
NASA Astrophysics Data System (ADS)
Chomiczewski, J.; Długosz, M.; Godlewski, G.; Kochanowicz, M.
2013-10-01
The paper presents design, simulation analysis, and measurements of parameters of optical multi touch panel backlight system. Comparison of optical technology with commercially available solutions was also performed. The numerical simulation of laser based backlight system was made. The influence of the laser power, beam divergence, and placing reflective surfaces on the uniformity of illumination were examined. Optimal illumination system was used for further studies.
A Laser-Based Measuring System for Online Quality Control of Car Engine Block
Li, Xing-Qiang; Wang, Zhong; Fu, Lu-Hua
2016-01-01
For online quality control of car engine production, pneumatic measurement instrument plays an unshakeable role in measuring diameters inside engine block because of its portability and high-accuracy. To the limitation of its measuring principle, however, the working space between the pneumatic device and measured surface is too small to require manual operation. This lowers the measuring efficiency and becomes an obstacle to perform automatic measurement. In this article, a high-speed, automatic measuring system is proposed to take the place of pneumatic devices by using a laser-based measuring unit. The measuring unit is considered as a set of several measuring modules, where each of them acts like a single bore gauge and is made of four laser triangulation sensors (LTSs), which are installed on different positions and in opposite directions. The spatial relationship among these LTSs was calibrated before measurements. Sampling points from measured shaft holes can be collected by the measuring unit. A unified mathematical model was established for both calibration and measurement. Based on the established model, the relative pose between the measuring unit and measured workpiece does not impact the measuring accuracy. This frees the measuring unit from accurate positioning or adjustment, and makes it possible to realize fast and automatic measurement. The proposed system and method were finally validated by experiments. PMID:27834839
NASA Astrophysics Data System (ADS)
Michalska, M.; Brojek, W.; Rybak, Z.; Sznelewski, P.; Mamajek, M.; Gogler, S.; Swiderski, J.
2016-12-01
An all-fiber, diode-pumped, continuous-wave Tm3+-doped fiber laser operated at a wavelength of 1.94 μm was developed. 37.4 W of output power with a slope efficiency as high as 57% with respect to absorbed pump power at 790 nm was demonstrated. The laser output beam quality factor M2 was measured to be 1.2. The output beam was very stable with power fluctuations <1% measured over 1 hour. The laser system is to be implemented as a scalpel for surgery of soft biological tissues.
Comparison of the bidirectional reflectance distribution function of various surfaces
NASA Astrophysics Data System (ADS)
Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.
1989-04-01
This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests.
A 3D Laser Profiling System for Rail Surface Defect Detection
Li, Qingquan; Mao, Qingzhou; Zou, Qin
2017-01-01
Rail surface defects such as the abrasion, scratch and peeling often cause damages to the train wheels and rail bearings. An efficient and accurate detection of rail defects is of vital importance for the safety of railway transportation. In the past few decades, automatic rail defect detection has been studied; however, most developed methods use optic-imaging techniques to collect the rail surface data and are still suffering from a high false recognition rate. In this paper, a novel 3D laser profiling system (3D-LPS) is proposed, which integrates a laser scanner, odometer, inertial measurement unit (IMU) and global position system (GPS) to capture the rail surface profile data. For automatic defect detection, first, the deviation between the measured profile and a standard rail model profile is computed for each laser-imaging profile, and the points with large deviations are marked as candidate defect points. Specifically, an adaptive iterative closest point (AICP) algorithm is proposed to register the point sets of the measured profile with the standard rail model profile, and the registration precision is improved to the sub-millimeter level. Second, all of the measured profiles are combined together to form the rail surface through a high-precision positioning process with the IMU, odometer and GPS data. Third, the candidate defect points are merged into candidate defect regions using the K-means clustering. At last, the candidate defect regions are classified by a decision tree classifier. Experimental results demonstrate the effectiveness of the proposed laser-profiling system in rail surface defect detection and classification. PMID:28777323
Measurement of whole tire profile
NASA Astrophysics Data System (ADS)
Yang, Yongyue; Jiao, Wenguang
2010-08-01
In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.
Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD.
Yasuhara, R; Sakamoto, R; Yamada, I; Motojima, G; Hayashi, H
2014-11-01
Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition.
Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuhara, R., E-mail: yasuhara@nifs.ac.jp; Sakamoto, R.; Yamada, I.
2014-11-15
Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition.
Target Assembly to Check Boresight Alignment of Active Sensors
NASA Technical Reports Server (NTRS)
Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael
2011-01-01
A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.
NASA Astrophysics Data System (ADS)
Omel'chenko, A. I.; Sobol', E. N.
2009-03-01
The thermomechanical effect of 1.56-μm fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs.
Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce
2018-03-19
To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Kim, K. H.; Stock, L. V.
1986-01-01
In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.
In Vivo Measurement of Pediatric Vocal Fold Motion Using Structured Light Laser Projection
Patel, Rita R.; Donohue, Kevin D.; Lau, Daniel; Unnikrishnan, Harikrishnan
2013-01-01
Summary Objective The aim of the study was to present the development of a miniature structured light laser projection endoscope and to quantify vocal fold length and vibratory features related to impact stress of the pediatric glottis using high-speed imaging. Study Design The custom-developed laser projection system consists of a green laser with a 4-mm diameter optics module at the tip of the endoscope, projecting 20 vertical laser lines on the glottis. Measurements of absolute phonatory vocal fold length, membranous vocal fold length, peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity were obtained in five children (6–9 years), two adult male and three adult female participants without voice disorders, and one child (10 years) with bilateral vocal fold nodules during modal phonation. Results Independent measurements made on the glottal length of a vocal fold phantom demonstrated a 0.13 mm bias error with a standard deviation of 0.23 mm, indicating adequate precision and accuracy for measuring vocal fold structures and displacement. First, in vivo measurements of amplitude-to-length ratio, peak closing velocity, and impact velocity during phonation in pediatric population and a child with vocal fold nodules are reported. Conclusion The proposed laser projection system can be used to obtain in vivo measurements of absolute length and vibratory features in children and adults. Children have large amplitude-to-length ratio compared with typically developing adults, whereas nodules result in larger peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity compared with typically developing children. PMID:23809569
NASA Astrophysics Data System (ADS)
Legg, Thomas; Farries, Mark
2017-02-01
Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.