Science.gov

Sample records for laser microdissected vascular

  1. Analysis of vascular gene expression in arthritic synovium by laser-mediated microdissection.

    PubMed

    Hashimoto, Atsushi; Tarner, Ingo H; Bohle, Rainer M; Gaumann, Andreas; Manetti, Mirko; Distler, Oliver; Steinmeyer, Jürgen; Ulfgren, Ann-Kristin; Schulz, Andreas; Gay, Steffen; Müller-Ladner, Ulf; Neumann, Elena

    2007-04-01

    In rheumatoid arthritis (RA), formation of new blood vessels is necessary to meet the nutritional and oxygen requirements of actively proliferating synovial tissue. The aim of this study was to analyze the specific synovial vascular expression profiles of several angiogenesis-related genes as well as CD82 in RA compared with osteoarthritis (OA), using laser-mediated microdissection (LMM). LMM and subsequent real-time polymerase chain reaction were used in combination with immunohistochemical analysis for area-specific analysis of messenger RNA (mRNA) and protein expression of vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGFR-1), VEGFR-2, hypoxia-inducible factor 1alpha (HIF-1alpha), HIF-2alpha, platelet-derived growth factor receptor alpha (PDGFRalpha), PDGFRbeta, inhibitor of DNA binding/differentiation 2 (Id2), and CD82 in RA and OA synovial microvasculature and synovial lining. Expression of Id2 mRNA was significantly lower in RA synovial vessels compared with OA synovial vessels (P=0.0011), whereas expression of VEGFR-1 was significantly higher in RA (P=0.0433). No differences were observed for the other parameters. At the protein level, no statistically significant differences were observed for any parameter, although Id2 levels were 2.5-fold lower in RA (P=0.0952). However, the number of synovial blood vessels and the number of VEGFR-2-expressing blood vessels were significantly higher in RA compared with OA. Our results underscore the importance of area-specific gene expression analysis in studying the pathogenesis of RA and support LMM as a robust tool for this purpose. Of note, our results indicate that previously described differences between RA and OA in the expression of angiogenic molecules are attributable to higher total numbers of synovial and vascular cells expressing these molecules in RA rather than higher expression levels in the individual cells.

  2. Laser Capture Microdissection

    NASA Astrophysics Data System (ADS)

    Emmert-Buck, Michael R.; Bonner, Robert F.; Smith, Paul D.; Chuaqui, Rodrigo F.; Zhuang, Zhengping; Goldstein, Seth R.; Weiss, Rhonda A.; Liotta, Lance A.

    1996-11-01

    Laser capture microdissection (LCM) under direct microscopic visualization permits rapid one-step procurement of selected human cell populations from a section of complex, heterogeneous tissue. In this technique, a transparent thermoplastic film (ethylene vinyl acetate polymer) is applied to the surface of the tissue section on a standard glass histopathology slide; a carbon dioxide laser pulse then specifically activates the film above the cells of interest. Strong focal adhesion allows selective procurement of the targeted cells. Multiple examples of LCM transfer and tissue analysis, including polymerase chain reaction amplification of DNA and RNA, and enzyme recovery from transferred tissue are demonstrated.

  3. Repopulation of vascularized bone allotransplants with recipient-derived cells: Detection by laser capture microdissection and real-time PCR

    PubMed Central

    Pelzer, Michael; Larsen, Mikko; Friedrich, Patricia F.; Aleff, Ross A.; Bishop, Allen T.

    2010-01-01

    Mechanisms underlying successful composite tissue transplantation must include an analysis of transplant chimerism, which is little studied, particularly in calcified tissue. We have developed a new method enabling determination of lineage of selected cells in our model of vascularized bone allotransplantation. Vascularized femoral allotransplantation was performed from female Dark Agouti (DA) donor rats to male Piebald Virol Glaxo (PVG) recipients, representing a major histocompatibility mismatch. 4 groups differed in use of immunosuppression (+/- 2 weeks Tacrolimus) and surgical revascularization, by implantation of either a patent or a ligated saphenous arteriovenous (AV) bundle. Results were assessed at 18 weeks. Bone blood flow was measured by the hydrogen washout technique and transverse specimens were prepared for histology. Real-time PCR was performed on DNA from laser capture microdissected cortical bone regions to determine the extent of chimerism. To do so, we analyzed the relative expression ratio of the sex-determining region Y (Sry) gene, specific only for recipient male rat DNA, to the cyclophilin housekeeper gene. Substantial transplant chimerism was seen in cortical bone of all groups (range 77-97%). Rats without immunosuppression and with a patent AV bundle revealed significantly higher chimerism than those with immunosuppression and a ligated AV bundle, which maintained transplant cell viability. We describe a new method to study the extent of chimerism in rat vascularized bone allotransplants, including a sex-mismatched transplantation model, laser capture microdissection of selected bone regions, and calculation of the relative expression ratio. PMID:19437510

  4. [Laser microdissection for biology and medicine].

    PubMed

    Podgornyĭ, O V; Lazarev, V N; Govorun, V M

    2012-01-01

    For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.

  5. An overview of laser microdissection technologies.

    PubMed

    Murray, Graeme I

    2007-01-01

    The development of laser-based tissue microdissection systems has provided the basis for the rapid acquisition of specific morphologically and/or phenotypically distinct types of cells for many types of molecular analysis. Two laser microdissection technologies based on distinct principles have been developed, namely: laser capture microdissection and laser cutting microdissection. This commentary will outline the principles of each system and indicate their main advantages and potential drawbacks. Also discussed will be methods of cell and tissue preparation with particular reference to fixation and staining, which are crucial to both successful laser-based microdissection and also downstream molecular studies. Laser microdissection techniques are powerful technologies which combine morphology and histochemistry with sophisticated molecular analysis. Through their appropriate application they have provided significant new insights into cell biology and pathology.

  6. Identification of vascular breast tumor markers by laser capture microdissection and label-free LC-MS.

    PubMed

    Hill, Jennifer J; Tremblay, Tammy-Lynn; Pen, Ally; Li, Jie; Robotham, Anna C; Lenferink, Anne E G; Wang, Edwin; O'Connor-McCourt, Maureen; Kelly, John F

    2011-05-06

    Blood vessels in tumors frequently show abnormal characteristics, such as tortuous morphology or leakiness, but very little is known about protein expression in tumor vessels. In this study, we have used laser capture microdissection (LCM) to isolate microvessels from clinical samples of invasive ductal carcinoma (IDC), the most common form of malignant breast cancer, and from patient-matched adjacent nonmalignant tissue. This approach eliminates many of the problems associated with the heterogeneity of clinical tumor tissues by controlling for differences in protein expression between both individual patients and different cell types. Proteins from the microvessels were trypsinized and the resulting peptides were quantified by a label-free nanoLC-MS method. A total of 86 proteins were identified that are overexpressed in tumor vessels relative to vessels isolated from the adjacent nonmalignant tissue. These proteins include well-known breast tumor markers such as Periostin and Tenascin C but also proteins with lesser-known or emerging roles in breast cancer and tumor angiogenesis (i.e., Serpin H1, Clic-1, and Transgelin 2). We also identified 40 proteins that were relatively under-expressed in IDC tumor vessels, including several components of the basement membrane whose lower expression could be responsible for weakening tumor vessels. Lastly, we show that a subset of 29 proteins, derived from our list of differentially expressed proteins, is able to predict survival in three publicly available clinical breast cancer microarray data sets, which suggests that this subset of proteins likely plays a functional role in cancer progression and outcome.

  7. Laser capture microdissection of mammalian tissue.

    PubMed

    Edwards, Robert A

    2007-01-01

    Laser capture microscopy, also known as laser microdissection (LMD), enables the user to isolate small numbers of cells or tissues from frozen or formalin-fixed, paraffin-embedded tissue sections. LMD techniques rely on a thermo labile membrane placed either on top of, or underneath, the tissue section. In one method, focused laser energy is used to melt the membrane onto the underlying cells, which can then be lifted out of the tissue section. In the other, the laser energy vaporizes the foil along a path "drawn" on the tissue, allowing the selected cells to fall into a collection device. Each technique allows the selection of cells with a minimum resolution of several microns. DNA, RNA, protein, and lipid samples may be isolated and analyzed from micro-dissected samples. In this video, we demonstrate the use of the Leica AS-LMD laser microdissection instrument in seven segments, including an introduction to the principles of LMD, initializing the instrument for use, general considerations for sample preparation, mounting the specimen and setting up capture tubes, aligning the microscope, adjusting the capture controls, and capturing tissue specimens. Laser-capture micro-dissection enables the investigator to isolate samples of pure cell populations as small as a few cell-equivalents. This allows the analysis of cells of interest that are free of neighboring contaminants, which may confound experimental results.

  8. [Laser capture microdissection and its practical applications].

    PubMed

    Lužná, Pavla; Ehrmann, Jiří

    2013-10-01

    Laser capture microdissection is a relatively young method used both in biomedical sciences as in other studies of animal and vegetable tissues and cells. Current human medicine and its methods of investigation are based on both current established processes, and simultaneously there are new experimental approaches from molecular biology tested. In this context it is highly desirable that the studied tissue is homogenous and representative population of cells. For this purposes at the late 80s the method of laser capture microdissection (LCM) has been developed, the first publication dealing with this method was released even in 1996. In current databases of literature we are able to find hundreds of papers focused on LCM such a method or as a part of methodic approach of experiments whose results led to the improved knowledge of genetic and proteomic nature of various diseases. This knowledge is of great promise for successful targeted therapy in the future.

  9. Laser microdissection microscopy: application to cell culture.

    PubMed

    Mustafa, Ahlam; Cenayko, Cathy; Mitry, Ragai R; Quaglia, Alberto

    2012-01-01

    Laser microdissection (LMD) microscopy allows isolation of specific cell populations to target their -molecular profile. There are several different types of LMD microscopes, but they are all based on the same principle. A laser beam is used to cut out cells or tissues of interest from a histological section, cytology preparations, or live cells from tissue cultures. Live cells can be isolated using LMD and processed for downstream molecular work. RNA, DNA, and protein isolation is possible from a small number of cells and the material is suitable for further real-time PCR, ELISA, Western Blotting, and protein microarray analysis.

  10. Live cell isolation by laser microdissection with gravity transfer

    NASA Astrophysics Data System (ADS)

    Podgorny, Oleg V.

    2013-05-01

    Laser microdissection by pulsing ultraviolet laser allows the isolation and recultivation of live cells based on morphological features or/and fluorescent labelling from adherent cell cultures. Previous investigations described only the use of the laser microdissection and pressure catapulting (LMPC) for live cell isolation. But LMPC requires complex manipulations and some skill. Furthermore, single-cell cloning using laser microdissection has not yet been demonstrated. The first evidence of successful application of laser microdissection with gravity transfer (LMDGT) for capturing and recultivation of live cells is presented. A new strategy for LMDGT is presented because of the failure to reproduce the manufacturer's protocol. Using the new strategy, successful capturing and recultivation of circle-shaped samples from confluent monolayer of HeLa cells was demonstrated. It was found that LMDGT is easier than LMPC because it doesn't require personal participation of investigator in transferring of isolated samples to final culture dishes. Moreover, for the first time, the generation of clonal colonies from single live cells isolated by laser microdissection was demonstrated. Data obtained in this study confirm that LMDGT is a reliable and high-yield method allowing isolation and expansion of both cell clusters and single cells from adherent cell cultures.

  11. Live cell isolation by laser microdissection with gravity transfer.

    PubMed

    Podgorny, Oleg V

    2013-05-01

    Laser microdissection by pulsing ultraviolet laser allows the isolation and recultivation of live cells based on morphological features or/and fluorescent labelling from adherent cell cultures. Previous investigations described only the use of the laser microdissection and pressure catapulting (LMPC) for live cell isolation. But LMPC requires complex manipulations and some skill. Furthermore, single-cell cloning using laser microdissection has not yet been demonstrated. The first evidence of successful application of laser microdissection with gravity transfer (LMDGT) for capturing and recultivation of live cells is presented. A new strategy for LMDGT is presented because of the failure to reproduce the manufacturer's protocol. Using the new strategy, successful capturing and recultivation of circle-shaped samples from confluent monolayer of HeLa cells was demonstrated. It was found that LMDGT is easier than LMPC because it doesn't require personal participation of investigator in transferring of isolated samples to final culture dishes. Moreover, for the first time, the generation of clonal colonies from single live cells isolated by laser microdissection was demonstrated. Data obtained in this study confirm that LMDGT is a reliable and high-yield method allowing isolation and expansion of both cell clusters and single cells from adherent cell cultures.

  12. Expression microdissection adapted to commercial laser dissection instruments

    PubMed Central

    Hanson, Jeffrey C; Tangrea, Michael A; Kim, Skye; Armani, Michael D; Pohida, Thomas J; Bonner, Robert F; Rodriguez-Canales, Jaime; Emmert-Buck, Michael R

    2016-01-01

    Laser-based microdissection facilitates the isolation of specific cell populations from clinical or animal model tissue specimens for molecular analysis. Expression microdissection (xMD) is a second-generation technology that offers considerable advantages in dissection capabilities; however, until recently the method has not been accessible to investigators. This protocol describes the adaptation of xMD to commonly used laser microdissection instruments and to a commercially available handheld laser device in order to make the technique widely available to the biomedical research community. The method improves dissection speed for many applications by using a targeting probe for cell procurement in place of an operator-based, cell-by-cell selection process. Moreover, xMD can provide improved dissection precision because of the unique characteristics of film activation. The time to complete the protocol is highly dependent on the target cell population and the number of cells needed for subsequent molecular analysis. PMID:21412274

  13. Laser microdissection: a sample preparation technique for plant micrometabolic profiling.

    PubMed

    Fang, Jingjing; Schneider, Bernd

    2014-01-01

    Unlike unicellular organisms, plants have evolved as complex organisms that are defined by their ability to distribute special vital functions to spatially separated organs and tissues. Current phytochemical approaches mostly ignore this fact by analysing samples that consist of different cell types and thus average the information obtained. A comprehensive metabolite analysis with high spatial resolution is essential to fully characterise the state of a certain tissue; hence, the analysis of metabolites occurring in specialised plant cells is of considerable interest in chemical ecology, plant natural product chemistry and other bioscience disciplines. Laser microdissection (LMD), including laser capture microdissection and laser microdissection and pressure catapulting, is a convenient sampling technique to harvest homogeneous cell types for the microanalysis of plant metabolites. The objective of this work is to provide an introduction to LMD methodology and a concise review of recent applications of LMD in the high-resolution analysis of metabolites in different plant materials. A step-by-step approach to LMD sampling techniques is described. How LMD can be used to sample cells or microscopic tissue pieces from different plant organs, such as leaves, stems, and seeds, is shown in detail. Finally, the future of LMD in plant metabolites analysis is discussed. This review summarises studies over the past decade not only showing technical details but also indicating the wide application of this method for high-resolution plant metabolite analysis. Laser microdissection is a powerful sampling technique for plant micrometabolic profiling and metabolomics research. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Laser Capture Microdissection Protocol for Xylem Tissues of Woody Plants

    PubMed Central

    Blokhina, Olga; Valerio, Concetta; Sokołowska, Katarzyna; Zhao, Lei; Kärkönen, Anna; Niittylä, Totte; Fagerstedt, Kurt

    2017-01-01

    Laser capture microdissection (LCM) enables precise dissection and collection of individual cell types from complex tissues. When applied to plant cells, and especially to woody tissues, LCM requires extensive optimization to overcome such factors as rigid cell walls, large central vacuoles, intercellular spaces, and technical issues with thickness and flatness of the sections. Here we present an optimized protocol for the laser-assisted microdissection of developing xylem from mature trees: a gymnosperm (Norway spruce, Picea abies) and an angiosperm (aspen, Populus tremula) tree. Different cell types of spruce and aspen wood (i.e., ray cells, tracheary elements, and fibers) were successfully microdissected from tangential, cross and radial cryosections of the current year’s growth ring. Two approaches were applied to achieve satisfactory flatness and anatomical integrity of the spruce and aspen specimens. The commonly used membrane slides were ineffective as a mounting surface for the wood cryosections. Instead, in the present protocol we use glass slides, and introduce a glass slide sandwich assembly for the preparation of aspen sections. To ascertain that not only the anatomical integrity of the plant tissue, but also the molecular features were not compromised during the whole LCM procedure, good quality total RNA could be extracted from the microdissected cells. This showed the efficiency of the protocol and established that our methodology can be integrated in transcriptome analyses to elucidate cell-specific molecular events regulating wood formation in trees. PMID:28101088

  15. Isolation of single Chlamydia-infected cells using laser microdissection.

    PubMed

    Podgorny, Oleg V; Polina, Nadezhda F; Babenko, Vladislav V; Karpova, Irina Y; Kostryukova, Elena S; Govorun, Vadim M; Lazarev, Vassili N

    2015-02-01

    Chlamydia are obligate intracellular parasites of humans and animals that cause a wide range of acute and chronic infections. To elucidate the genetic basis of chlamydial parasitism, several approaches for making genetic modifications to Chlamydia have recently been reported. However, the lack of the available methods for the fast and effective selection of genetically modified bacteria restricts the application of genetic tools. We suggest the use of laser microdissection to isolate of single live Chlamydia-infected cells for the re-cultivation and whole-genome sequencing of single inclusion-derived Chlamydia. To visualise individual infected cells, we made use of the vital labelling of inclusions with the fluorescent Golgi-specific dye BODIPY® FL C5-ceramide. We demonstrated that single Chlamydia-infected cells isolated by laser microdissection and placed onto a host cell monolayer resulted in new cycles of infection. We also demonstrated the successful use of whole-genome sequencing to study the genomic variability of Chlamydia derived from a single inclusion. Our work provides the first evidence of the successful use of laser microdissection for the isolation of single live Chlamydia-infected cells, thus demonstrating that this method can help overcome the barriers to the fast and effective selection of Chlamydia. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nucleic acids extraction from laser microdissected FFPE tissue sections.

    PubMed

    Burgemeister, Renate

    2011-01-01

    Tissue heterogeneity is a common source of unsuccessful experiments. Laser capture microdissection is a tool to prepare homogeneous tissue and cell areas as starting material for reliable and reproducible results as it allows the defined investigation of spatially different tissue areas.Nearly all samples allow the extraction of DNA. Fresh or fresh frozen samples are an ideal source for getting access to high-quality RNA. But also the large archives of formalin-fixed, paraffin-embedded (FFPE) tissue specimens are a valuable source of sample material for RNA extraction. Optimized protocols may help to make the RNA from FFPE material suitable for expression studies.

  17. Laser microdissection: A powerful tool for genomics at cell level.

    PubMed

    Bevilacqua, Claudia; Ducos, Bertrand

    2017-09-16

    Laser microdissection (LM) has become considerably democratized over the last fifteen years. Instruments have evolved to offer more powerful and efficient lasers as well as new options for sample collection and preparation. Technological evolutions have also focused on the post-microdissection analysis capabilities, opening up investigations in all disciplines of experimental and clinical biology, thanks to the advent of new high-throughput methods of genome analysis, including RNAseq and proteomics, now globally known as microgenomics, i.e. analysis of biomolecules at the cell level. In spite of the advances these rapidly developing methods have allowed, the workflow for sampling and collection by LM remains a critical step in insuring sample integrity in terms of histology (accurate cell identification) and biochemistry (reliable analyzes of biomolecules). In this review, we describe the sample processing as well as the strengths and limiting factors of LM applied to the specific selection of one or more cells of interest from a heterogeneous tissue. We will see how the latest developments in protocols and methods have made LM a powerful and sometimes essential tool for genomic and proteomic analyzes of tiny amounts of biomolecules extracted from few cells isolated from a complex tissue, in their physiological context, thus offering new opportunities for understanding fundamental physiological and/or patho-physiological processes. Copyright © 2017. Published by Elsevier Ltd.

  18. Laser capture microdissection of single cells from complex tissues.

    PubMed

    Suarez-Quian, C A; Goldstein, S R; Pohida, T; Smith, P D; Peterson, J I; Wellner, E; Ghany, M; Bonner, R F

    1999-02-01

    Laser capture microdissection (LCM) is a new method used to select and procure cell clusters from tissue sections. Once captured, the DNA, RNA or protein can be easily extracted from the isolated cells and analyzed by conventional PCR, reverse transcription (RT)-PCR or polyacrylamide gel electrophoresis, including protein zymography for specific macromolecular changes. In LCM, a thermoplastic polymer coating [ethylene vinyl acetate (EVA)] attached to a rigid support is placed in contact with a tissue section. The EVA polymer over microscopically selected cell clusters is precisely activated by a near-infrared laser pulse and then bonds to the targeted area. Removal of the EVA and its support from the tissue section procures the selected cell aggregates for molecular analysis. This initial NIH LCM approach using a flat transfer EVA film has been recently commercialized and has proven to be an effective routine microdissection technique for subsequent macromolecular analysis in many laboratories around the world. However, reliable and precise capture of individual cells from tissue sections has been difficult to perform with the current LCM instruments. In this report, we describe the capture of individual cells with a new NIH LCM microscope, which epi-irradiates the EVA polymer overlying individual cells with 1-ms laser pulses focused to 6 microns. A computer-controlled arm precisely positions a 40-micron-wide strip of a cylindrical EVA surface onto a sample with a light contact force (ca. 0.1 g). The small contact force and contact area on the film on the sample diminishes nonspecific transfer to negligible levels. By slightly rotating the cylinder to provide a renewable transfer surface, concentration of a distinct cell type on a single cylinder is possible. Using this novel adaptation, we demonstrate the rapid and practical capture of single cells from different types of tissue sections, including immunostained cells.

  19. Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection.

    PubMed

    Yao, Virginia J; Ozawa, Michael G; Trepel, Martin; Arap, Wadih; McDonald, Donald M; Pasqualini, Renata

    2005-02-01

    Heterogeneity of the microvasculature in different organs has been well documented by multiple methods including in vivo phage display. However, less is known about the diversity of blood vessels within functionally distinct regions of organs. Here, we combined in vivo phage display with laser pressure catapult microdissection to identify peptide ligands for vascular receptors in the islets of Langerhans in the murine pancreas. Protein database analyses of the peptides, CVSNPRWKC and CHVLWSTRC, showed sequence identity to two ephrin A-type ligand homologues, A2 and A4. Confocal microscopy confirmed that most immunoreactivity of CVSNPRWKC and CHVLWSTRC phage was associated with blood vessels in pancreatic islets. Antibodies recognizing EphA4, a receptor for ephrin-A ligands, were similarly associated with islet blood vessels. Importantly, binding of both islet-homing phage and anti-EphA4 antibody was strikingly increased in blood vessels of pancreatic islet tumors in RIP-Tag2 transgenic mice. These results indicate that endothelial cells of blood vessels in pancreatic islets preferentially express EphA4 receptors, and this expression is increased in tumors. Our findings show in vivo phage display and laser pressure catapult microdissection can be combined to reveal endothelial cell specialization within focal regions of the microvasculature.

  20. [Vascular lasers].

    PubMed

    Michaud, T

    2009-10-01

    After reviewing the main technical features of the lasers and flashlamps currently available, the indications for these devices are detailed, mainly port wine stains, facial telangiectasia, hemangiomas, and lower-limb varicosities. Respecting the principles of treatment (briefly reviewed herein), contributes to preventing complications, which are consequently becoming rare.

  1. Laser capture microdissection: Big data from small samples

    PubMed Central

    Datta, Soma; Malhotra, Lavina; Dickerson, Ryan; Chaffee, Scott; Sen, Chandan K.; Roy, Sashwati

    2015-01-01

    Any tissue is made up of a heterogeneous mix of spatially distributed cell types. In response to any (patho) physiological cue, responses of each cell type in any given tissue may be unique and cannot be homogenized across cell-types and spatial co-ordinates. For example, in response to myocardial infarction, on one hand myocytes and fibroblasts of the heart tissue respond differently. On the other hand, myocytes in the infarct core respond differently compared to those in the peri-infarct zone. Therefore, isolation of pure targeted cells is an important and essential step for the molecular analysis of cells involved say in the progression of disease. Laser capture microdissection (LCM) is powerful to obtain a pure targeted cell subgroup, or even a single cell, quickly and precisely under the microscope, successfully tackling the problem of tissue heterogeneity in molecular analysis. This review presents an overview of LCM technology, the principles, advantages and limitations and its down-stream applications in the fields of proteomics, genomics and transcriptomics. With powerful technologies and appropriate applications, this technique provides unprecedented insights into cell biology from cells grown in their natural tissue habitat as opposed to those cultured in artificial petri dish conditions. PMID:25892148

  2. Laser capture microdissection tailored to type 1 diabetes mellitus research.

    PubMed

    Szulawski, Robert; Nakazawa, Masato; McCall, Kelly D; James, Calvin B L; Schwartz, Frank L

    2016-01-01

    RNA isolation from pancreatic islets poses unique challenges. Here, we present a reproducible means of obtaining high-quality RNA from juvenile rodent islets in sufficient quantities for use in ex vivo expression studies. Tissue was extracted from female non-obese diabetic (NOD) toll-like receptor 3 (TLR3)(+/+) and (TLR3)(-/-) mice in the pre-diabetic stage. Samples were frozen in liquid nitrogen, sectioned, fixed in a highly alcoholic solution, and stained with an alcoholic cresyl violet (CV) solution. Rehydration of the fixed sections was minimized. Islets were identified visually and isolated with the Leica LMD6000 laser capture microdissection (LCM) system to yield samples highly enriched in islet RNA. Real time qPCR was performed on the islet cDNA using probes for CXC chemokine ligand 10 (CXCL10), an inflammatory marker that plays a critical role in the pathogenesis of type 1 diabetes mellitus (TIDM). This method represents an improvement over currently described LCM techniques for rodent pancreatic islets and makes feasible expression studies using small amounts of starting tissue without the need for RNA pre-amplification. This has immediate implications for ongoing TIDM studies using the NOD mouse.

  3. Lung cancer transcriptomes refined with laser capture microdissection.

    PubMed

    Lin, Juan; Marquardt, Gabrielle; Mullapudi, Nandita; Wang, Tao; Han, Weiguo; Shi, Miao; Keller, Steven; Zhu, Changcheng; Locker, Joseph; Spivack, Simon D

    2014-11-01

    We evaluated the importance of tumor cell selection for generating gene signatures in non-small cell lung cancer. Tumor and nontumor tissue from macroscopically dissected (Macro) surgical specimens (31 pairs from 32 subjects) was homogenized, extracted, amplified, and hybridized to microarrays. Adjacent scout sections were histologically mapped; sets of approximately 1000 tumor cells and nontumor cells (alveolar or bronchial) were procured by laser capture microdissection (LCM). Within histological strata, LCM and Macro specimens exhibited approximately 67% to 80% nonoverlap in differentially expressed (DE) genes. In a representative subset, LCM uniquely identified 300 DE genes in tumor versus nontumor specimens, largely attributable to cell selection; 382 DE genes were common to Macro, Macro with preamplification, and LCM platforms. RT-qPCR validation in a 33-gene subset was confirmatory (ρ = 0.789 to 0.964, P = 0.0013 to 0.0028). Pathway analysis of LCM data suggested alterations in known cancer pathways (cell growth, death, movement, cycle, and signaling components), among others (eg, immune, inflammatory). A unique nine-gene LCM signature had higher tumor-nontumor discriminatory accuracy (100%) than the corresponding Macro signature (87%). Comparison with Cancer Genome Atlas data sets (based on homogenized Macro tissue) revealed both substantial overlap and important differences from LCM specimen results. Thus, cell selection via LCM enhances expression profiling precision, and confirms both known and under-appreciated lung cancer genes and pathways.

  4. Epigenetic Analysis of Laser Capture Microdissected Fetal Epithelia1

    PubMed Central

    Seelan, Ratnam S.; Warner, Dennis R.; Mukhopadhyay, Partha M.; Andres, Sarah A.; Smolenkova, Irina A.; Wittliff, James L.; Pisano, M. Michele; Greene, Robert M.

    2013-01-01

    Laser capture microdissection (LCM) is a superior method for non-destructive collection of specific cell populations from tissue sections. While DNA, RNA and protein have been analyzed from LCM-procured samples, epigenetic analyses, particularly of fetal, highly hydrated tissue, have not been attempted. A standardized protocol with quality assurance measures was established to procure cells by LCM of the medial edge epithelia (MEE) of the fetal palatal processes for isolation of intact microRNA for expression analyses and genomic DNA for CpG methylation analyses. MicroRNA preparations, obtained using the RNAqueous® Micro kit (Life Technologies), exhibited better yields and higher quality than those obtained using the Arcturus® PicoPure® RNA Isolation kit (Life Technologies). The approach was validated using real-time PCR to determine expression of selected microRNAs (miR-99a and miR-200b) and pyrosequencing to determine CpG methylation status of selected genes (Aph1a and Dkk4) in the MEE. These studies describe an optimized approach for employing LCM of epithelial cells from fresh frozen fetal tissue that enables quantitative analyses of miRNA expression levels and CpG methylation. PMID:23911529

  5. [Fixation of cells for analysis by laser microdissection--comparative studies in forensic trace material].

    PubMed

    Fischer, Elisabeth J; Laberke, Patrick J; Kübler, Eric; Balitzki, Beate

    2012-01-01

    This paper is focused on the preparation of samples for laser microdissection (LM) in forensic casework. In forensic genetics, it is essential to preserve and separate cellular traces during sample preparation, as they are usually gathered in very small amounts and are often contaminated with undesired cells. This is made possible by laser microdissection, a technique developed to cut cells or tissue of a certain type from a microscopical specimen by UV laser and catapult them directly into a PCR reactor. This method minimizes the risk of getting inconclusive, mixed DNA profiles due to contamination by foreign DNA and also supplies information about the cellular origin of a DNA profile. A method for optimized fixation and staining of spermatozoa for laser microdissection was established. Four different fixation methods combined with two staining methods were tested on two different microscope slides. Moreover, the effect of a blocker pen to contain the specimen on the slide was investigated.

  6. Laser capture microdissection for protein and NanoString RNA analysis.

    PubMed

    Golubeva, Yelena; Salcedo, Rosalba; Mueller, Claudius; Liotta, Lance A; Espina, Virginia

    2013-01-01

    Laser capture microdissection (LCM) allows the precise procurement of enriched cell populations from a heterogeneous tissue, or live cell culture, under direct microscopic visualization. Histologically enriched cell populations can be procured by harvesting cells of interest directly or isolating specific cells by ablating unwanted cells. The basic components of laser microdissection technology are (a) visualization of cells via light microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section. The capture and cutting methods (instruments) for laser microdissection differ in the manner by which cells of interest are removed from the heterogeneous sample. Laser energy in the capture method is infrared (810 nm), while in the cutting mode the laser is ultraviolet (355 nm). Infrared lasers melt a thermolabile polymer that adheres to the cells of interest, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes LCM using an Arcturus(XT) instrument for downstream protein sample analysis and using an mmi CellCut Plus® instrument for RNA analysis via NanoString technology.

  7. Laser capture microdissection: Arcturus(XT) infrared capture and UV cutting methods.

    PubMed

    Gallagher, Rosa I; Blakely, Steven R; Liotta, Lance A; Espina, Virginia

    2012-01-01

    Laser capture microdissection (LCM) is a technique that allows the precise procurement of enriched cell populations from a heterogeneous tissue under direct microscopic visualization. LCM can be used to harvest the cells of interest directly or can be used to isolate specific cells by ablating the unwanted cells, resulting in histologically enriched cell populations. The fundamental components of laser microdissection technology are (a) visualization of the cells of interest via microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section. Laser energy supplied by LCM instruments can be infrared (810 nm) or ultraviolet (355 nm). Infrared lasers melt thermolabile polymers for cell capture, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes the unique features of the Arcturus(XT) laser capture microdissection instrument, which incorporates both infrared capture and ultraviolet cutting technology in one instrument, using a proteomic downstream assay as a model.

  8. Laser Capture Microdissection for Protein and NanoString RNA analysis

    PubMed Central

    Golubeva, Yelena; Salcedo, Rosalba; Mueller, Claudius; Liotta, Lance A.; Espina, Virginia

    2013-01-01

    Laser capture microdissection (LCM) allows the precise procurement of enriched cell populations from a heterogeneous tissue, or live cell culture, under direct microscopic visualization. Histologically enriched cell populations can be procured by harvesting cells of interest directly, or isolating specific cells by ablating unwanted cells. The basic components of laser microdissection technology are a) visualization of cells via light microscopy, b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer-cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and c) removal of cells of interest from the heterogeneous tissue section. The capture and cutting methods (instruments) for laser microdissection differ in the manner by which cells of interest are removed from the heterogeneous sample. Laser energy in the capture method is infrared (810nm), while in the cutting mode the laser is ultraviolet (355nm). Infrared lasers melt a thermolabile polymer that adheres to the cells of interest, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes laser capture microdissection using an ArcturusXT instrument for protein LCM sample analysis, and using a mmi CellCut Plus® instrument for RNA analysis via NanoString technology. PMID:23027006

  9. ADAM12 and ADAM17 gene expression in laser-capture microdissected and non-microdissected breast tumors.

    PubMed

    Narita, Diana; Seclaman, Edward; Ilina, Razvan; Cireap, Natalia; Ursoniu, Sorin; Anghel, Andrei

    2011-06-01

    ADAM (a disintegrin and metalloprotease)12 and ADAM17 are multidomain transmembrane proteins involved in ectodomain shedding of cytokines, growth factors and adhesion molecules, with pivotal activities in the tumor microenvironment. The aim of this study was to confirm the up-regulation of ADAM17 and ADAM12 gene splicing variants in breast tumors and to delineate their expression between laser-capture microdissected (LCM) and non-microdissected breast tumors. The gene expression was analyzed by quantitative-reverse transcription-PCR in a total sample of 109 breast tumors paired with corresponding non-neoplastic breast tissues. ADAM12 and 17 proteins expression for corresponding tissue samples was confirmed by immunohistochemistry. ADAM12S, 12L and 17 genes were significantly up-regulated in either malign or benign LCM samples when compared to non-tumor controls. For non-LCM samples, it was obtained also an increased expression for ADAM12 and 17 genes in cancers, while in benign tumors only ADAM12 variants were significantly up-regulated compared to controls. When benign versus malignant tumors were compared, in LCM samples all investigated genes displayed a higher expression in cancers, whereas in non-LCM, ADAM12 variants were overexpressed in benign samples. The increased expression of ADAM12 protein in the tumor cells and stroma of benign breast diseases was immunohistochemically confirmed. These differences between LCM and non-LCM samples were explained by the contribution of the stroma to the expression of this marker. This study underlines the accuracy conferred by homogenous LCM samples on gene expression profiles and confers further evidence regarding the role of ADAM12 and 17 in the breast tumorigenesis and progression.

  10. Optimizing Frozen Sample Preparation for Laser Microdissection: Assessment of CryoJane Tape-Transfer System®.

    PubMed

    Golubeva, Yelena G; Smith, Roberta M; Sternberg, Lawrence R

    2013-01-01

    Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc.) and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone) during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection) and membrane (laser cutting microdissection) slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction that facilitated

  11. Laser capture microdissection microscopy and genome sequencing of the avian malaria parasite, Plasmodium relictum.

    PubMed

    Lutz, Holly L; Marra, Nicholas J; Grewe, Felix; Carlson, Jenny S; Palinauskas, Vaidas; Valkiūnas, Gediminas; Stanhope, Michael J

    2016-12-01

    Acquiring genomic material from avian malaria parasites for genome sequencing has proven problematic due to the nucleation of avian erythrocytes, which produces a large ratio of host to parasite DNA (∼1 million to 1 bp). We tested the ability of laser capture microdissection microscopy to isolate parasite cells from individual avian erythrocytes for four avian Plasmodium species, and subsequently applied whole genome amplification and Illumina sequencing methods to Plasmodium relictum (lineage pSGS1) to produce sequence reads of the P. relictum genome. We assembled ∼335 kbp of parasite DNA from this species, but were unable to completely avoid contamination by host DNA and other sources. However, it is clear that laser capture microdissection holds promise for the isolation of genomic material from haemosporidian parasites in intracellular life stages. In particular, laser capture microdissection may prove useful for isolating individual parasite species from co-infected hosts. Although not explicitly tested in this study, laser capture microdissection may also have important applications for isolation of rare parasite lineages and museum specimens for which no fresh material exists.

  12. SIVQ-aided laser capture microdissection: A tool for high-throughput expression profiling

    PubMed Central

    Hipp, Jason; Cheng, Jerome; Hanson, Jeffrey C.; Yan, Wusheng; Taylor, Phil; Hu, Nan; Rodriguez-Canales, Jaime; Hipp, Jennifer; Tangrea, Michael A.; Emmert-Buck, Michael R.; Balis, Ulysses

    2011-01-01

    Introduction: Laser capture microdissection (LCM) facilitates procurement of defined cell populations for study in the context of histopathology. The morphologic assessment step in the LCM procedure is time consuming and tedious, thus restricting the utility of the technology for large applications. Results: Here, we describe the use of Spatially Invariant Vector Quantization (SIVQ) for histological analysis and LCM. Using SIVQ, we selected vectors as morphologic predicates that were representative of normal epithelial or cancer cells and then searched for phenotypically similar cells across entire tissue sections. The selected cells were subsequently auto-microdissected and the recovered RNA was analyzed by expression microarray. Gene expression profiles from SIVQ–LCM and standard LCM–derived samples demonstrated highly congruous signatures, confirming the equivalence of the differing microdissection methods. Conclusion: SIVQ–LCM improves the work-flow of microdissection in two significant ways. First, the process is transformative in that it shifts the pathologist's role from technical execution of the entire microdissection to a limited-contact supervisory role, enabling large-scale extraction of tissue by expediting subsequent semi-autonomous identification of target cell populations. Second, this work-flow model provides an opportunity to systematically identify highly constrained cell populations and morphologically consistent regions within tissue sections. Integrating SIVQ with LCM in a single environment provides advanced capabilities for efficient and high-throughput histological-based molecular studies. PMID:21572509

  13. Beyond laser microdissection technology: follow the yellow brick road for cancer research

    PubMed Central

    Legres, Luc G; Janin, Anne; Masselon, Christophe; Bertheau, Philippe

    2014-01-01

    Normal biological tissues harbour different populations of cells with intricate spacial distribution patterns resulting in heterogeneity of their overall cellular composition. Laser microdissection involving direct viewing and expertise by a pathologist, enables access to defined cell populations or specific region on any type of tissue sample, thus selecting near-pure populations of targeted cells. It opens the way for molecular methods directed towards well-defined populations, and provides also a powerful tool in studies focused on a limited number of cells. Laser microdissection has wide applications in oncology (diagnosis and research), cellular and molecular biology, biochemistry and forensics for tissue selection, but other areas have been gradually opened up to these new methodological approaches, such as cell cultures and cytogenetics. In clinical oncology trials, molecular profiling of microdissected samples can yield global “omics” information which, together, with the morphological analysis of cells, can provide the basis for diagnosis, prognosis and patient-tailored treatments. This remarkable technology has brought new insights in the understanding of DNA, RNA, and the biological functions and regulation of proteins to identify molecular disease signatures. We review herein the different applications of laser microdissection in a variety of fields, and we particularly focus attention on the pre-analytical steps that are crucial to successfully perform molecular-level investigations. PMID:24482735

  14. Research Techniques Made Simple: Laser Capture Microdissection in Cutaneous Research.

    PubMed

    Chen Gonzalez, Estela; McGee, Jean Suh

    2016-10-01

    In cutaneous research, we aim to study the molecular signature of a diseased tissue. However, such a study is met with obstacles due to the inherent heterogeneous nature of tissues because multiple cell types reside within a tissue. Furthermore, there is cellular communication between the tissue and the neighboring extracellular matrix. Laser capture microdissection is a powerful technique that allows researchers to isolate cells of interest from any tissue using a laser source under microscopic visualization, thereby circumventing the issue of tissue heterogeneity. Target cells from fixed preparations can be extracted and examined without disturbing the tissue structure. In live cultures, a subpopulation of cells can be extracted in real time with minimal disturbance of cellular communication and molecular signatures. Here we describe the basic principles of the technique, the different types of laser capture microdissection, and the subsequent downstream analyses. This article will also discuss how the technique has been employed in cutaneous research, as well as future directions.

  15. Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue.

    PubMed Central

    Böhm, M.; Wieland, I.; Schütze, K.; Rübben, H.

    1997-01-01

    The analysis of tissue-specific genetic alterations depends on the selective procurement of homogeneous cell populations. Microbeam microdissection of membrane-mounted native tissue (MOMeNT) permits the rapid, selective, and low-contamination procurement of tumor or other cells from histological sections by non-thermic non-contact laser microdissection. Tissue sections are mounted on a specifically designed ultrathin transparent supporter membrane. Tissue together with the membrane are then dissected with an ultraviolet (337-nm) pulsed laser microbeam coupled into a robot-stage microscope. The ultraviolet laser causes dissection by cold photolysis due to the high photon density of the microbeam rather than by local heating. The track of the laser microbeam can be preselected freely on a video screen, and the size and form of the dissectates can thus be adapted to the histological features of the section with a delineation accuracy in the micron range. Polymerase chain reaction amplification of DNA from the dissectates is not impaired, and tumor-specific loss of heterozygosity of the APC gene as well as homozygous deletion of the MTS1 gene are demonstrated in bladder carcinomas. Taken together, microbeam MOMeNT is a novel technique that utilizes membrane-based microdissection by an ultraviolet laser microbeam, thus providing a flexible, easy-to-use high-performance tool for the molecular pathologist. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9212732

  16. mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.

    PubMed

    Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-03-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.

  17. mRNA Expression Profiling of Laser Microbeam Microdissected Cells from Slender Embryonic Structures

    PubMed Central

    Scheidl, Stefan J.; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-01-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-β1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions. PMID:11891179

  18. Immuno-laser capture microdissection of rat brain neurons for real time quantitative PCR.

    PubMed

    Baskin, Denis G; Bastian, L Scot

    2010-01-01

    Laser capture microdissection (LCM) is a technical approach for obtaining microscopic samples as small as individual cells from tissues for molecular analysis. While the principles and details of the operation of LCM instruments, the technical requirements for obtaining identified cells for LCM "picking", all share the common feature of using a laser in combination with a microscope to microdissect and remove cells from tissue slices (or cultured cells) mounted on a glass slide. The use of LCM is becoming widespread in pathology laboratories and is increasingly being used for gene expression studies in cell biology. The approach is particularly powerful when used in conjunction with immunostaining techniques to obtain enriched RNA samples from cells that have been collected by picking and gathering phenotypically similar cells from anatomically complex organs such as the brain. In the present chapter, we describe an approach for combining immunocytochemistry with LCM to obtain RNA for real time quantitative PCR.

  19. Spatial differences in an integral membrane proteome detected in laser capture microdissected samples.

    PubMed

    Wang, Zhen; Han, Jun; Schey, Kevin L

    2008-07-01

    The combination of laser capture microdissection and mass spectrometry represents a powerful technology for studying spatially resolved proteomes. Moreover, the compositions of integral membrane proteomes have rarely been studied in a spatially resolved manner. In this study, ocular lens tissue was carefully dissected by laser capture microdissection and conditions for membrane protein enrichment, trypsin digestion, and mass spectrometry analysis were optimized. Proteomic analysis allowed the identification of 170 proteins, 136 of which were identified with more than one peptide match. Spatial differences in protein expression were observed between cortical and nuclear samples. In addition, the spatial distribution of post-translational modifications to lens membrane proteins, such as the lens major intrinsic protein AQP0, were investigated and regional differences were measured for AQP0 C-terminal phosphorylation and truncation.

  20. [Laser microdissection and mass spectrometry based proteomics in the diagnosis of kidney diseases].

    PubMed

    Sun, Ying; Li, Mingxi; Wen, Yubing; Li, Xuemei; Sun, Jian; Sun, Wei

    2014-07-01

    In recent years, laser microdissection followed by mass spectrometry (LMD/MS) has been successfully applied to the proteomic studies of formalin-fixed paraffin-embedded (FFPE) renal tissues. This new technique improves the diagnosis of kidney diseases and has a better potential for future clinical application. The review focuses on the use of this methodology for exploring the mechanisms, diagnosis and classification of kidney diseases including renal amyloidosis and membrane proliferative glomerulonephritis.

  1. Differentiating Proteomic Biomarkers in Breast Cancer by Laser Capture Microdissection and MALDI MS

    PubMed Central

    Sanders, Melinda E.; Dias, Eduardo C.; Xu, Baogang J.; Mobley, James A.; Billheimer, Dean; Roder, Heinrich; Grigorieva, Julia; Dowsett, Mitchell; Arteaga, Carlos L.; Caprioli, Richard M.

    2009-01-01

    We assessed proteomic patterns in breast cancer using MALDI MS and laser capture microdissected cells. Protein and peptide expression in invasive mammary carcinoma versus normal mammary epithelium and estrogen-receptor positive versus estrogen-receptor negative tumors were compared. Biomarker candidates were identified by statistical analysis and classifiers were developed and validated in blinded test sets. Several of the m/z features used in the classifiers were identified by LC–MS/MS and two were confirmed by immunohistochemistry. PMID:18386930

  2. Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues

    PubMed Central

    Frumkin, Dan; Wasserstrom, Adam; Itzkovitz, Shalev; Harmelin, Alon; Rechavi, Gideon; Shapiro, Ehud

    2008-01-01

    Background Whole genome amplification (WGA) and laser assisted micro-dissection represent two recently developed technologies that can greatly advance biological and medical research. WGA allows the analysis of multiple genomic loci from a single genome and has been performed on single cells from cell suspensions and from enzymatically-digested tissues. Laser micro-dissection makes it possible to isolate specific single cells from heterogeneous tissues. Results Here we applied for the first time WGA on laser micro-dissected single cells from stained tissue sections, and developed a protocol for sequentially performing the two procedures. The combined procedure allows correlating the cell's genome with its natural morphology and precise anatomical position. From each cell we amplified 122 genomic and mitochondrial loci. In cells obtained from fresh tissue sections, 64.5% of alleles successfully amplified to ~700000 copies each, and mitochondrial DNA was amplified successfully in all cells. Multiplex PCR amplification and analysis of cells from pre-stored sections yielded significantly poorer results. Sequencing and capillary electrophoresis of WGA products allowed detection of slippage mutations in microsatellites (MS), and point mutations in P53. Conclusion Comprehensive genomic analysis of single cells from stained tissue sections opens new research opportunities for cell lineage and depth analyses, genome-wide mutation surveys, and other single cell assays. PMID:18284708

  3. A laser microdissection-based workflow for FFPE tissue microproteomics: Important considerations for small sample processing.

    PubMed

    Longuespée, Rémi; Alberts, Deborah; Pottier, Charles; Smargiasso, Nicolas; Mazzucchelli, Gabriel; Baiwir, Dominique; Kriegsmann, Mark; Herfs, Michael; Kriegsmann, Jörg; Delvenne, Philippe; De Pauw, Edwin

    2016-07-15

    Proteomic methods are today widely applied to formalin-fixed paraffin-embedded (FFPE) tissue samples for several applications in research, especially in molecular pathology. To date, there is an unmet need for the analysis of small tissue samples, such as for early cancerous lesions. Indeed, no method has yet been proposed for the reproducible processing of small FFPE tissue samples to allow biomarker discovery. In this work, we tested several procedures to process laser microdissected tissue pieces bearing less than 3000 cells. Combined with appropriate settings for liquid chromatography mass spectrometry-mass spectrometry (LC-MS/MS) analysis, a citric acid antigen retrieval (CAAR)-based procedure was established, allowing to identify more than 1400 proteins from a single microdissected breast cancer tissue biopsy. This work demonstrates important considerations concerning the handling and processing of laser microdissected tissue samples of extremely limited size, in the process opening new perspectives in molecular pathology. A proof of the proposed method for biomarker discovery, with respect to these specific handling considerations, is illustrated using the differential proteomic analysis of invasive breast carcinoma of no special type and invasive lobular triple-negative breast cancer tissues. This work will be of utmost importance for early biomarker discovery or in support of matrix-assisted laser desorption/ionization (MALDI) imaging for microproteomics from small regions of interest. Copyright © 2016. Published by Elsevier Inc.

  4. Laser microdissection and its application to analyze gene expression in arbuscular mycorrhizal symbiosis.

    PubMed

    Gomez, S Karen; Harrison, Maria J

    2009-05-01

    Phosphorus is essential for plant growth, and in many soils phosphorus availability limits crop production. Most plants in natural ecosystems obtain phosphorus via a symbiotic partnership with arbuscular mycorrhizal (AM) fungi. While the significance of these associations is apparent, their molecular basis is poorly understood. Consequently, the potential to harness the mycorrhizal symbiosis to improve phosphorus nutrition in agriculture is not realized. Transcript profiling has recently been used to investigate gene expression changes that accompany development of the AM symbiosis. While these approaches have enabled the identification of AM-symbiosis-associated genes, they have generally involved the use of RNA from whole mycorrhizal roots. Laser microdissection techniques allow the dissection and capture of individual cells from a tissue. RNA can then be isolated from these samples and cell-type specific gene expression information can be obtained. This technology has been applied to obtain cells from plants and more recently to study plant-microbe interactions. The latter techniques, particularly those developed for root-microbe interactions, are of relevance to plant-parasitic weed research. Here, laser microdissection, its use in plant biology and in particular plant-microbe interactions are discussed. An overview of the AM symbiosis is then provided, with a focus on recent advances in understanding development of the arbuscule-cortical cell interface. Finally, the recent applications of laser microdissection for analyses of AM symbiosis are discussed.

  5. Principles of laser microdissection and catapulting of histologic specimens and live cells.

    PubMed

    Vogel, Alfred; Horneffer, Verena; Lorenz, Kathrin; Linz, Norbert; Hüttmann, Gereon; Gebert, Andreas

    2007-01-01

    Rapid contact- and contamination-free procurement of specific samples of histologic material for proteomic and genomic analysis as well as separation and transport of living cells can be achieved by laser microdissection (LMD) of the sample of interest followed by a laser-induced forward transport process [laser pressure "catapulting," (LPC)] of the dissected material. We investigated the dynamics of LMD and LPC with focused and defocused laser pulses by means of time-resolved photography. The working mechanism of microdissection was found to be plasma-mediated ablation. Catapulting is driven by plasma formation, when tightly focused pulses are used, and by ablation at the bottom of the sample for moderate and strong defocusing. Driving pressures of several hundred megapascals accelerate the specimen to initial velocities of 100-300 m/s before it is rapidly slowed down by air friction. With strong defocusing, driving pressure and initial flight velocity decrease considerably. On the basis of a characterization of the thermal and optical properties of the histologic specimens and supporting materials used, we calculated the temporal evolution of the heat distribution in the sample. After laser microdissection and laser pressure catapulting (LMPC), the samples were inspected by scanning electron microscopy. Catapulting with tightly focused or strongly defocused pulses results in very little collateral damage, while slight defocusing involves significant heat and UV exposure of up to about 10% of the specimen volume, especially if samples are catapulted directly from a glass slide. Time-resolved photography of live-cell catapulting revealed that in defocused catapulting strong shear forces originate from the flow of the thin layer of culture medium covering the cells. By contrast, pulses focused at the periphery of the specimen cause a fast rotational movement that makes the specimen wind its way out of the culture medium, thereby undergoing much less shear stresses

  6. Laser micro-dissection and qPCR for identifying specific HPV types responsible for malignancy in penile lesions.

    PubMed

    Lebelo, Ramokone L; Thys, Sofie; Benoy, Ina; Depuydt, Christophe E; Bogers, John-Paul; Bida, Meshack N; Mphahlele, M Jeffrey

    2015-10-01

    The aim of the study was to identify specific human papillomavirus (HPV) type responsible for malignancy in penile tissue samples using laser micro-dissection and TaqMan quantitative real-time PCR (qPCR). The study was based on two pre-malignant and seven malignant penile tissue samples and laser micro-dissection was performed on all. Genotyping was performed on whole tissue sections and laser micro-dissection samples using qPCR. Two whole tissue section samples were HPV negative while seven were HPV positive. In four samples that were single HPV infections with whole tissue section PCR, identical HPV types were confirmed with laser micro-dissection PCR. Clearly confirming that the single HPV type detected is responsible for malignancy. In two samples that had multiple HPV infections with whole tissue section PCR, only one HPV type with the highest viral load was detected with laser micro-dissection PCR, suggesting that the HPV type with the highest viral load is most likely the cause of that particular lesion. HPV 11 and/or HPV 16 were the only types detected with laser micro-dissection PCR in these cases, compared to multiple HPV types (HPV 11, HPV 16, HPV 18, HPV 31, HPV 33, HPV 35, and HPV 39) initially detected with whole tissue section PCR. HPV 11 was associated with verrucous lesions while HPV 16 was associated with squamous cell carcinoma and PIN 3 lesions. This study confirms that laser micro-dissection and qPCR are essential tools in identifying the HPV types responsible for malignancy in penile lesions, particularly in samples with multiple infections.

  7. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  8. Tissue-specific transcriptional profiling of iron-deficient and cadmium-stressed rice using laser capture microdissection

    PubMed Central

    Ogo, Yuko; Kakei, Yusuke; Itai, Reiko Nakanishi; Kobayashi, Takanori; Nakanishi, Hiromi; Nishizawa, Naoko K

    2014-01-01

    Several metals are essential nutrients for plants. However, they become toxic at high levels and deleteriously affect crop yield and quality. We recently reported the spatial gene expression profiles of iron (Fe)-deficient and cadmium (Cd)-stressed rice using laser microdissection and microarray analysis. The roots of Fe-deficient and Cd-stressed rice were separated into the vascular bundle (VB), cortex (Cor), and epidermis plus exodermis (EP). In addition, vascular bundles from new and old leaves at the lowest node, which are important for metal distribution, were analyzed separately (newDC and oldDC, respectively). Genes expressed in a tissue-specific manner in the VB, Cor, EP, newDC, and oldDC formed large clusters. The genes upregulated in all of the VB, Cor, and EP by Fe deficiency formed a substantial cluster that was smaller than the tissue-specific clusters. Significant numbers of genes expressed in newDC or oldDC were also expressed in VB in roots, suggesting that vascular bundles in the lowest nodes and roots have a partially common function. The expression patterns of transporter families involved in metal homeostasis were investigated, and members of each family were either expressed differentially in each tissue or showed different responses to Fe deficiency. One potassium transporter gene, OsHAK22, was upregulated by Fe deficiency in VB, Cor, and EP, suggesting that OsHAK22 is involved in potassium transport associated with mugineic acids secretion. PMID:25763624

  9. Laser-Capture Microdissection, a Tool for the Global Analysis of Gene Expression in Specific Plant Cell Types

    PubMed Central

    Nakazono, Mikio; Qiu, Fang; Borsuk, Lisa A.; Schnable, Patrick S.

    2003-01-01

    Laser-capture microdissection (LCM) allows for the one-step procurement of large homogeneous populations of cells from tissue sections. In mammals, LCM has been used to conduct cDNA microarray and proteomics studies on specific cell types. However, LCM has not been applied to plant cells, most likely because plant cell walls make it difficult to separate target cells from surrounding cells and because ice crystals can form in the air spaces between cells when preparing frozen sections. By fixing tissues, using a cryoprotectant before freezing, and using an adhesive-coated slide system, it was possible to capture large numbers (>10,000) of epidermal cells and vascular tissues (vascular bundles and bundle sheath cells) from ethanol:acetic acid–fixed coleoptiles of maize. RNA extracted from these cells was amplified with T7 RNA polymerase and used to hybridize a microarray containing ∼8800 maize cDNAs. Approximately 250 of these were expressed preferentially in epidermal cells or vascular tissues. These results demonstrate that the combination of LCM and microarrays makes it feasible to conduct high-resolution global gene expression analyses of plants. This approach has the potential to enhance our understanding of diverse plant cell type–specific biological processes. PMID:12615934

  10. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples.

    PubMed

    Clair, Geremy; Piehowski, Paul D; Nicola, Teodora; Kitzmiller, Joseph A; Huang, Eric L; Zink, Erika M; Sontag, Ryan L; Orton, Daniel J; Moore, Ronald J; Carson, James P; Smith, Richard D; Whitsett, Jeffrey A; Corley, Richard A; Ambalavanan, Namasivayam; Ansong, Charles

    2016-12-22

    Laser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues. Benchmarking against the current state-of-the-art in ultrasensitive global proteomics (FASP workflow), our approach demonstrated significant improvements in quantification (~2-fold lower variance) and throughput (>5 times faster). Using our approach we for the first time characterized, to a depth of >3,400 proteins, the ontogeny of protein changes during normal lung development in microdissected alveolar tissue containing only 4,000 cells. Our analysis revealed seven defined modules of coordinated transcription factor-signaling molecule expression patterns, suggesting a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes.

  11. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples

    PubMed Central

    Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora; Kitzmiller, Joseph A.; Huang, Eric L.; Zink, Erika M.; Sontag, Ryan L.; Orton, Daniel J.; Moore, Ronald J.; Carson, James P.; Smith, Richard D.; Whitsett, Jeffrey A.; Corley, Richard A.; Ambalavanan, Namasivayam; Ansong, Charles

    2016-01-01

    Laser capture microdissection (LCM)-enabled region-specific tissue analyses are critical to better understand complex multicellular processes. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, impacting measurement robustness, quantification and throughput. Here, we coupled LCM with a proteomics workflow that provides fully automated analysis of proteomes from microdissected tissues. Benchmarking against the current state-of-the-art in ultrasensitive global proteomics (FASP workflow), our approach demonstrated significant improvements in quantification (~2-fold lower variance) and throughput (>5 times faster). Using our approach we for the first time characterized, to a depth of >3,400 proteins, the ontogeny of protein changes during normal lung development in microdissected alveolar tissue containing only 4,000 cells. Our analysis revealed seven defined modules of coordinated transcription factor-signaling molecule expression patterns, suggesting a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. PMID:28004771

  12. Laser-Assisted Microdissection of Membrane-Mounted Paraffin Sections for Polymerase Chain Reaction Analysis

    PubMed Central

    Gjerdrum, Lise Mette; Lielpetere, Ilze; Rasmussen, Lars Melholt; Bendix, Knud; Hamilton-Dutoit, Stephen

    2001-01-01

    Laser microbeam microdissection (LMM) is an increasingly important method for obtaining pure cell samples for genetic and proteomic analysis. Immunohistochemistry (IHC) and in situ hybridization (ISH) are useful techniques for targeting specific cell populations for microdissection but are difficult to apply with the tissue support membranes often used during LMM. Using detection of cytokeratins and Epstein-Barr virus gene products in head and neck carcinoma as a model, we describe optimized protocols for membrane and section preparation and for low temperature antigen retrieval that allow IHC and ISH to be used reliably on membrane mounted paraffin tissue sections. Visualization of cellular targets was markedly improved by staining and this could be further improved using a variety of optical media before microdissection. Tissue fragments thus stained were suitable for subsequent polymerase chain reaction analysis of extracted DNA using standard techniques. These IHC and ISH procedures are generally applicable and will be useful for detecting a wide range of antigens and nucleic acids in paraffin sections in conjunction with LMM. PMID:11486049

  13. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    PubMed

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P < 0.01). In contrast, PGR expression was significantly down-regulated in the cancer group (P < 0.05). There were no significant differences in AR, ERalpha or PSA expression between the groups. This study represents the first to show an upregulation of ERbeta gene expression in laser microdissected prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  14. Laser Capture Microdissection of Archival Kidney Tissue for qRT-PCR.

    PubMed

    Hewitson, Tim D; Christie, Michael; Smith, Edward R

    2016-01-01

    Whole-organ molecular analysis of the kidney potentially misses important factors involved in the pathogenesis of disease in glomeruli and tubules. Organ wide analysis can however be augmented by using laser capture microdissection (LCM) to isolate morphologically similar cells and nephron structures from a heterogeneous tissue section via direct visualization of the cells. The protocol here provides a practical approach utilizing LCM in combination with RNA isolation techniques for downstream analysis. This technique is readily applicable to study mRNA expression in isolated glomeruli and tubules in both experimental animal models and human kidney biopsy material.

  15. Optimised laser microdissection of the human ocular surface epithelial regions for microarray studies

    PubMed Central

    2013-01-01

    Background The most important challenge of performing insitu transcriptional profiling of the human ocular surface epithelial regions is obtaining samples in sufficient amounts, without contamination from adjacent tissue, as the region of interest is microscopic and closely apposed to other tissues regions. We have effectively collected ocular surface (OS) epithelial tissue samples from the Limbal Epithelial Crypt (LEC), limbus, cornea and conjunctiva of post-mortem cadaver eyes with laser microdissection (LMD) technique for gene expression studies with spotted oligonucleotide microarrays and Gene 1.0 ST arrays. Methods Human donor eyes (4 pairs for spotted oligonucleotide microarrays, 3 pairs for Gene 1.0 ST arrays) consented for research were included in this study with due ethical approval of the Nottingham Research Ethics Committee. Eye retrieval was performed within 36 hours of post-mortem period. The dissected corneoscleral buttons were immersed in OCT media and frozen in liquid nitrogen and stored at −80°C till further use. Microscopic tissue sections of interest were taken on PALM slides and stained with Toluidine Blue for laser microdissection with PALM microbeam systems. Optimisation of the laser microdissection technique was crucial for efficient and cost effective sample collection. Results The starting concentration of RNA as stipulated by the protocol of microarray platforms was taken as the cut-off concentration of RNA samples in our studies. The area of LMD tissue processed for spotted oligonucleotide microarray study ranged from 86,253 μm2 in LEC to 392,887 μm2 in LEC stroma. The RNA concentration of the LMD samples ranged from 22 to 92 pg/μl. The recommended starting concentration of the RNA samples used for Gene 1.0 ST arrays was 6 ng/5 μl. To achieve the desired RNA concentration the area of ocular surface epithelial tissue sample processed for the Gene 1.0 ST array experiments was approximately 100,0000 μm2 to 130,0000 μm2. RNA

  16. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples

    SciTech Connect

    Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora; Kitzmiller, Joseph A.; Huang, Eric L.; Zink, Erika M.; Sontag, Ryan L.; Orton, Daniel J.; Moore, Ronald J.; Carson, James P.; Smith, Richard D.; Whitsett, Jeffrey A.; Corley, Richard A.; Ambalavanan, Namasivayam; Ansong, Charles

    2016-12-22

    Global proteomics approaches allow characterization of whole tissue lysates to an impressive depth. However, it is now increasingly recognized that to better understand the complexity of multicellular organisms, global protein profiling of specific spatially defined regions/substructures of tissues (i.e. spatially-resolved proteomics) is essential. Laser capture microdissection (LCM) enables microscopic isolation of defined regions of tissues preserving crucial spatial information. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, and that impact measurement robustness, quantification, and throughput. Here, we coupled LCM with a fully automated sample preparation workflow that with a single manual step allows: protein extraction, tryptic digestion, peptide cleanup and LC-MS/MS analysis of proteomes from microdissected tissues. Benchmarking against the current state of the art in ultrasensitive global proteomic analysis, our approach demonstrated significant improvements in quantification and throughput. Using our LCM-SNaPP proteomics approach, we characterized to a depth of more than 3,400 proteins, the ontogeny of protein changes during normal lung development in laser capture microdissected alveolar tissue containing ~4,000 cells per sample. Importantly, the data revealed quantitative changes for 350 low abundance transcription factors and signaling molecules, confirming earlier transcript-level observations and defining seven modules of coordinated transcription factor/signaling molecule expression patterns, suggesting that a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. Our LCM-proteomics approach facilitates efficient, spatially-resolved, ultrasensitive global proteomics analyses in high-throughput that will be enabling for several clinical and

  17. Factors affecting the yield of microRNAs from laser microdissectates of formalin-fixed tissue sections

    PubMed Central

    2012-01-01

    Background Quantification of microRNAs in specific cell populations microdissected from tissues can be used to define their biological roles, and to develop and deploy biomarker assays. In this study, a number of variables were examined for their effect on the yield of microRNAs in samples obtained from formalin-fixed paraffin-embedded tissues by laser microdissection. Results MicroRNA yield was improved by using cresyl violet instead of hematoxylin-eosin to stain tissue sections in preparation for microdissection, silicon carbide instead of glass fiber as matrix in RNA-binding columns, and overnight digestion of dissected samples with proteinase K. Storage of slides carrying stained tissue sections at room temperature for up to a week before microdissection, and storage of the microdissectates at room temperature for up to a day before RNA extraction did not adversely affect microRNA yield. Conclusions These observations should be of value for the efficient isolation of microRNAs from microdissected formalin-fixed tissues with a flexible workflow. PMID:22260539

  18. Tissue-specific laser microdissection of the Brassica napus funiculus improves gene discovery and spatial identification of biological processes

    PubMed Central

    Chan, Ainsley C.; Khan, Deirdre; Girard, Ian J.; Becker, Michael G.; Millar, Jenna L.; Sytnik, David; Belmonte, Mark F.

    2016-01-01

    The three primary tissue systems of the funiculus each undergo unique developmental programs to support the growth and development of the filial seed. To understand the underlying transcriptional mechanisms that orchestrate development of the funiculus at the globular embryonic stage of seed development, we used laser microdissection coupled with RNA-sequencing to produce a high-resolution dataset of the mRNAs present in the epidermis, cortex, and vasculature of the Brassica napus (canola) funiculus. We identified 7761 additional genes in these tissues compared with the whole funiculus organ alone using this technology. Differential expression and enrichment analyses were used to identify several biological processes associated with each tissue system. Our data show that cell wall modification and lipid metabolism are prominent in the epidermis, cell growth and modification occur in the cortex, and vascular tissue proliferation and differentiation occur in the central vascular strand. We provide further evidence that each of the three tissue systems of the globular stage funiculus are involved in specific biological processes that all co-ordinate to support seed development. The identification of genes and gene regulators responsible for tissue-specific developmental processes of the canola funiculus now serves as a valuable resource for seed improvement research. PMID:27194740

  19. Cell-Type-Specific Genome-wide Expression Profiling after Laser Capture Microdissection of Living Tissue

    SciTech Connect

    Marchetti, F; Manohar, C F

    2005-02-09

    The purpose of this technical feasibility study was to develop and evaluate robust microgenomic tools for investigations of genome-wide expression of very small numbers of cells isolated from whole tissue sections. Tissues contain large numbers of cell-types that play varied roles in organ function and responses to endogenous and exogenous toxicants whether bacterial, viral, chemical or radiation. Expression studies of whole tissue biopsy are severely limited because heterogeneous cell-types result in an averaging of molecular signals masking subtle but important changes in gene expression in any one cell type(s) or group of cells. Accurate gene expression analysis requires the study of specific cell types in their tissue environment but without contamination from surrounding cells. Laser capture microdissection (LCM) is a new technology to isolate morphologically distinct cells from tissue sections. Alternative methods are available for isolating single cells but not yet for their reliable genome-wide expression analyses. The tasks of this feasibility project were to: (1) Develop efficient protocols for laser capture microdissection of cells from tissues identified by antibody label, or morphological stain. (2) Develop reproducible gene-transcript analyses techniques for single cell-types and determine the numbers of cells needed for reliable genome-wide analyses. (3) Validate the technology for epithelial and endothelial cells isolated from the gastrointestinal tract of mice.

  20. IgD heavy-chain deposition disease: detection by laser microdissection and mass spectrometry.

    PubMed

    Royal, Virginie; Quint, Patrick; Leblanc, Martine; LeBlanc, Richard; Duncanson, Garrett F; Perrizo, Robert L; Fervenza, Fernando C; Kurtin, Paul; Sethi, Sanjeev

    2015-04-01

    Monoclonal Ig deposition disease (MIDD) is a rare complication of monoclonal gammopathy characterized by deposition of monoclonal Ig light chains and/or heavy chains along the glomerular and tubular basement membranes. Here, we describe a unique case of IgD deposition disease. IgD deposition is difficult to diagnose, because routine immunofluorescence does not detect IgD. A 77-year-old man presented with proteinuria and renal failure, and kidney biopsy analysis showed a nodular sclerosing GN with extensive focal global glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Immunofluorescence was negative for Ig deposits, although electron microscopy showed deposits in the glomeruli and along tubular basement membranes. Laser microdissection of glomeruli and mass spectrometry of extracted peptides showed a large spectra number for IgD, and immunohistochemistry showed intense glomerular and tubular staining for IgD. Together, these findings are consistent with IgD deposition disease. Bone marrow biopsy analysis showed 5% plasma cells, which stained for IgD. The patient was treated with bortezomib and dexamethasone, which resulted in improvement of hematologic parameters but no improvement of renal function. The diagnosis of IgD deposition disease underscores the value of laser microdissection and mass spectrometry in further evaluating renal biopsies when routine assessment fails to reach an accurate diagnosis.

  1. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae.

    PubMed

    Saint-Marcoux, Denis; Billoud, Bernard; Langdale, Jane A; Charrier, Bénédicte

    2015-01-01

    Laser capture microdissection (LCM) facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

  2. Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem.

    PubMed

    Zhang, Xiaolan; Madi, Shahinez; Borsuk, Lisa; Nettleton, Dan; Elshire, Robert J; Buckner, Brent; Janick-Buckner, Diane; Beck, Jon; Timmermans, Marja; Schnable, Patrick S; Scanlon, Michael J

    2007-06-01

    Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-microm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development.

  3. Laser Microdissection of Narrow Sheath Mutant Maize Uncovers Novel Gene Expression in the Shoot Apical Meristem

    PubMed Central

    Zhang, Xiaolan; Madi, Shahinez; Borsuk, Lisa; Nettleton, Dan; Elshire, Robert J; Buckner, Brent; Janick-Buckner, Diane; Beck, Jon; Timmermans, Marja; Schnable, Patrick S; Scanlon, Michael J

    2007-01-01

    Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-μm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development. PMID:17571927

  4. Compartment-specific quantitative gene expression analysis after laser microdissection from archival renal allograft biopsies.

    PubMed

    Serinsöz, E; Bock, O; Kirsch, T; Haller, H; Lehmann, U; Kreipe, H; Mengel, M

    2005-03-01

    Various immunological and non-immunological pathomechanisms are responsible for the cellular damage in renal allografts. Since the kidney is an anatomically complex organ with functional and morphological heterogeneous compartments (interstitium, tubuli, vessels, glomeruli), the local response to injury maybe variable, therefore, the identification of local pathomechanisms is important. To elucidate any discrepancies in quantitative mRNA expression profiles between a total specimen analysis and a cell-specific evaluation after laser microdissection. Real-time RT-PCR was performed for complement component C3 and heme oxygenase-1 (HO-1) genes compared to the housekeeping gene beta-actin using whole section RNA extracted from formalin-fixed and paraffin-embedded archival material of 16 explanted, rejected renal allografts. Ten non-transplant nephrectomies served as controls. For five cases from each group, five different compartments of the organs (interstitium, proximal tubuli, distal tubuli, vessels, glomeruli) were microdissected and quantitative analysis for C3 and HO-1 was performed identically. Whole section mRNA expression analysis: the data showed a constant expression of the housekeeping gene beta-actin, a 7-fold increased expression of C3 and a 3-fold decreased expression of HO-1 in the allograft group as compared to the control group. mRNA expression results from microdissected compartments: in the control group, C3 and HO-1 expression could only be detected in the proximal tubuli of all cases whereas all five compartments analyzed from the rejecting kidneys showed expression of the two genes. In the allografts, expression levels of the investigated genes varied considerably not only among the different compartments but between individual cases as well. Laser microdissection combined with real-time RT-PCR is a feasible approach for retrospective quantitative gene expression analysis in formalin-fixed and paraffin-embedded renal allograft specimens. As shown

  5. Construction of a micro-library enriched with genomic replication origins of carrot somatic embryos by laser microdissection.

    PubMed

    Murata, Natsuko; Masuda, Kiyoshi; Nishiyama, Ryutaro; Nomura, Koji

    2005-06-01

    In this paper, we describe an effective method for constructing a micro-library enriched with chromosomal DNA replication origins. Carrot (Daucus carota L.) somatic embryos at early globular stage were incubated for 15 min in the presence of bromodeoxyuridine (BrdU) to pulse label newly synthesized DNA strands. Nuclei were isolated from the cells, and the DNA was extracted on microscopic slides. DNA fibers spread on slides were visualized using anti-BrdU and FITC-conjugated secondary antibodies. DNA regions where BrdU was incorporated were clearly visualized under a fluorescent microscope as dots on DNA fibers. Regions of DNA fiber containing many fluorescent dots should contain replicons in them. DNA fibers showing many fluorescence dots, or replicons were easily cut and collected using a laser microdissection system equipped with a pulse laser beam. DNA fragments containing many replicons were able to be collected with an efficiency of 20-30 DNA fragments per 1 h. Using degenerate oligonucleotide primed PCR, fragments were randomly amplified from the microdissected fragments, and subcloned to construct a micro-library. This is the first report of the application of a laser microdissection technique for constructing a micro-library enriched with replication origins of chromosomal DNA, although there were some reports on laser microdissection of chromosomes. The simple procedure established here should open up a new application of laser optics.

  6. Genomic profiling by DNA amplification of laser capture microdissected tissues and array CGH

    PubMed Central

    Cardoso, Joana; Molenaar, Lia; de Menezes, Renée X.; Rosenberg, Carla; Morreau, Hans; Möslein, Gabriela; Fodde, Riccardo; Boer, Judith M.

    2004-01-01

    Comparative genomic hybridization by means of BAC microarrays (array CGH) allows high-resolution profiling of copy-number aberrations in tumor DNA. However, specific genetic lesions associated with small but clinically relevant tumor areas may pass undetected due to intra-tumor heterogeneity and/or the presence of contaminating normal cells. Here, we show that the combination of laser capture microdissection, φ29 DNA polymerase-mediated isothermal genomic DNA amplification, and array CGH allows genomic profiling of very limited numbers of cells. Moreover, by means of simple statistical models, we were able to bypass the exclusion of amplification distortions and variability prone areas, and to detect tumor-specific chromosomal gains and losses. We applied this new combined experimental and analytical approach to the genomic profiling of colorectal adenomatous polyps and demonstrated our ability to accurately detect single copy gains and losses affecting either whole chromosomes or small genomic regions from as little as 2 ng of DNA or 1000 microdissected cells. PMID:15514107

  7. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis.

    PubMed

    Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A

    2015-01-01

    The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  8. Application of laser-assisted microdissection for gene expression analysis of mammalian germ cells.

    PubMed

    Kenngott, R; Al-Banaw, A; Vermehren, M; Wendl, J; Sinowatz, F

    2010-06-01

    Laser-assisted microdissection (LAM) is an important method to provide new significant insights into many embryological processes. To understand these processes, it is important to obtain specific populations of cells from complex tissue in an efficient and precise manner and to combine with many different molecular biological methods. During the last few years, the sophistication of the techniques of LAM has increased significantly and made the procedure easy to use. New micro-extraction protocols for DNA, RNA and proteins now allow broad downstream applications in the fields of genomics, transcriptomics and proteomics. In this review, we give a short overview of the application of LAM in combination with quantitative qPCR for the analysis of gene expression in mammalian germ cells.

  9. Detection of deleted mitochondrial DNA in Kearns-Sayre syndrome using laser capture microdissection.

    PubMed

    Pistilli, Daniela; di Gioia, Cira R T; D'Amati, Giulia; Sciacchitano, Salvatore; Quaglione, Raffaele; Quitadamo, Raffaella; Casali, Carlo; Gallo, Pietro; Santorelli, Filippo M

    2003-10-01

    A novel 4949-base pair mitochondrial DNA (mtDNA) deletion was detected in various tissues in a postmortem study of a patient with Kearns-Sayre syndrome (KSS). Deleted mtDNA levels were higher in skeletal muscle and brain and lower in kidney, working myocardium, and endocrine tissues (thyroid, parathyroids, pancreas, and adrenal glands). The distribution of the deletion in skeletal muscle and conducting myocardium was analyzed by means of laser capture microdissection (LCM). In skeletal muscle, the abundance of deleted mtDNA was slightly higher in cytochrome c oxidase (COX)-negative fibers (70%) than in COX-positive fibers (64%), whereas in the conducting myocardium it was lower in the atrioventricular node (9%) than in the sinus node and bundle of His (30% and 32%, respectively). In this study, LCM proved to be a reliable technique for a more accurate assessment of genotype/phenotype correlation when investigating mtDNA-related disorders.

  10. Age-related gene expression analysis in enteric ganglia of human colon after laser microdissection

    PubMed Central

    Hetz, Susan; Acikgoez, Ali; Moll, Corinna; Jahnke, Heinz-Georg; Robitzki, Andrea A.; Metzger, Roman; Metzger, Marco

    2014-01-01

    The enteric nervous system (ENS) poses the intrinsic innervation of the gastrointestinal tract and plays a critical role for all stages of postnatal life. There is increasing scientific and clinical interest in acquired or age-related gastrointestinal dysfunctions that can be manifested in diseases such as gut constipation or fecal incontinence. In this study, we sought to analyze age-dependent changes in the gene expression profile of the human ENS, particularly in the myenteric plexus. Therefore, we used the laser microdissection technique which has been proven as a feasible tool to analyze distinct cell populations within heterogeneously composed tissues. Full biopsy gut samples were prepared from children (4–12 months), middle aged (48–58 years) and aged donors (70–95 years). Cryosections were histologically stained with H&E, the ganglia of the myenteric plexus identified and RNA isolated using laser microdissection technique. Quantitative PCR was performed for selected neural genes, neurotransmitters and receptors. Data were confirmed on protein level using NADPH-diaphorase staining and immunohistochemistry. As result, we demonstrate age-associated alterations in site-specific gene expression pattern of the ENS. Thus, in the adult and aged distal parts of the colon a marked decrease in relative gene expression of neural key genes like NGFR, RET, NOS1 and a concurrent increase of CHAT were observed. Further, we detected notable regional differences of RET, CHAT, TH, and S100B comparing gene expression in aged proximal and distal colon. Interestingly, markers indicating cellular senescence or oxidative stress (SNCA, CASP3, CAT, SOD2, and TERT) were largely unchanged within the ENS. For the first time, our study also describes the age-dependent expression pattern of all major sodium channels within the ENS. Our results are in line with previous studies showing spatio-temporal differences within the mammalian ENS. PMID:25360110

  11. Tissue-specific metabolite profiling of alkaloids in Sinomenii Caulis using laser microdissection and liquid chromatography-quadrupole/time of flight-mass spectrometry.

    PubMed

    Yi, Ling; Liang, Zhi-Tao; Peng, Yong; Yao, Xia; Chen, Hu-Biao; Zhao, Zhong-Zhen

    2012-07-27

    Secondary metabolites accumulated in different tissues and cells of herbs are usually bioactive components of herbal medicines. Thus, tissue- and cell-specific phytochemical profiling should be useful for indicating relationship between herbal tissues and chemicals, and evaluating the quality of a medicinal herb. Here, a method that combining laser microdissection and ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (LMD with UPLC-Q/TOF-MS) was established to achieve simultaneous localization and determination of bioactive components in herbal medicines. Sinomenii Caulis, sourced from the stems of Sinomenium acutum (Thunb.) Rehd. et Wils., was set as an illustrative case, and its phytochemicals were profiled by the present method through analyses of different microdissected tissues and cells, involving epidermis, cortex, stone cells, pericycle, vascular bundles and pith. Results revealed that different tissues and cells contained varied alkaloids, among which six alkaloids, i.e. 6-Me-ether-12-O-β-D-glucopyranoside-laudanosoline (peak 4), sinomenine (peak 6), N-norsinoacutine (peak 7), magnoflorine (peak 11), laurifoline (peak 16) and menisperine (peak 17) were detected in all microdissected parts, and sinomenine and magnoflorine were the two most abundant components. By further quantitative determination, alkaloids were generally demonstrated to distribute in the outer part of the cortex, phloem and xylem. According to the relationship between alkaloids and tissues revealed in our study, Sinomenii Caulis of larger diameter has proportionately more bioactive components, and is therefore of higher quality for medicinal use. The method of LMD with UPLC-Q/TOF-MS developed in this study was initially applied to the research of medicinal herbs, and proved to be high sensitive, low cost, convenient and practical.

  12. Laser Capture Microdissection Assisted Identification of Epithelial MicroRNA Expression Signatures for Prognosis of Stage I NSCLC

    DTIC Science & Technology

    2014-12-01

    Buffalo , NY 14263 REPORT DATE: December 2014 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland...Streets Buffalo , NY 14263 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and... Buffalo Grove, IL) LMD6000 laser capture microdissection system in the Department of Pathology at Roswell Park Cancer Institute. The dissection was

  13. The Use of Laser Microdissection in Forensic Sexual Assault Casework: Pros and Cons Compared to Standard Methods.

    PubMed

    Costa, Sergio; Correia-de-Sá, Paulo; Porto, Maria J; Cainé, Laura

    2017-01-30

    Sexual assault samples are among the most frequently analyzed in a forensic laboratory. These account for almost half of all samples processed routinely, and a large portion of these cases remain unsolved. These samples often pose problems to traditional analytic methods of identification because they consist most frequently of cell mixtures from at least two contributors: the victim (usually female) and the perpetrator (usually male). In this study, we propose the use of current preliminary testing for sperm detection in order to determine the chances of success when faced with samples which can be good candidates to undergo analysis with the laser microdissection technology. Also, we used laser microdissection technology to capture fluorescently stained cells of interest differentiated by gender. Collected materials were then used for DNA genotyping with commercially available amplification kits such as Minifiler, Identifiler Plus, NGM, and Y-Filer. Both the methodology and the quality of the results were evaluated to assess the pros and cons of laser microdissection compared with standard methods. Overall, the combination of fluorescent staining combined with the Minifiler amplification kit provided the best results for autosomal markers, whereas the Y-Filer kit returned the expected results regardless of the used method.

  14. Endothelial cell high-enrichment from endovascular biopsy sample by laser capture microdissection and fluorescence activated cell sorting.

    PubMed

    Sun, Zhengda; Su, Hua; Long, Brian; Sinclair, Elizabeth; Hetts, Steven W; Higashida, Randall T; Dowd, Christopher F; Halbach, Van V; Cooke, Daniel L

    2014-12-20

    Endovascular sampling and characterization from patients can provide very useful information about the pathogenesis of different vascular diseases, but it has been limited by the lack of an effective method of endothelial cell (EC) enrichment. We optimized the EC yield and enrichment from conventional guide wires by laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) technique, and addressed the feasibility of using these enriched ECs for downstream gene expression detection. Iliac artery endovascular samples from 10 patients undergoing routine catheter angiography were collected using conventional 0.038 in. J-shape guide wires. Each of these samples was equally divided into two parts, which were respectively used for EC enrichment by immunocytochemistry-coupled LCM or multiple color FACS. After RNA extraction and reverse transcription, the amplified cDNA was used for quantitative polymerase chain reaction (qPCR). Fixed ECs, with positive CD31 or vWF fluorescent signal and endothelial like nucleus, were successfully separated by LCM and live single ECs were sorted on FACS by a seven color staining panel. EC yields by LCM and FACS were 51 ± 22 and 149 ± 56 respectively (P < 0.001). The minimum number of fixed ECs from ICC-coupled LCM for acceptable qPCR results of endothelial marker genes was 30, while acceptable qPCR results as enriched by FACS were attainable from a single live EC. Both LCM and FACS can be used to enrich ECs from conventional guide wires and the enriched ECs can be used for downstream gene expression detection. FACS generated a higher EC yield and the sorted live ECs may be used for single cell gene expression detection.

  15. Endothelial cell high-enrichment from endovascular biopsy sample by laser capture microdissection and fluorescence activated cell sorting

    PubMed Central

    Sun, Zhengda; Su, Hua; Long, Brian; Sinclair, Elizabeth; Hetts, Steven W.; Higashida, Randall T.; Dowd, Christopher F.; Halbach, Van V.; Cooke, Daniel L.

    2015-01-01

    Background and purpose Endovascular sampling and characterization from patients can provide very useful information about the pathogenesis of different vascular diseases, but it has been limited by the lack of an effective method of endothelial cell (EC) enrichment. We optimized the EC yield and enrichment from conventional guide wires by laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) technique, and addressed the feasibility of using these enriched ECs for downstream gene expression detection. Methods Iliac artery endovascular samples from 10 patients undergoing routine catheter angiography were collected using conventional 0.038 in. J-shape guide wires. Each of these samples was equally divided into two parts, which were respectively used for EC enrichment by immunocytochemistry-coupled LCM or multiple color FACS. After RNA extraction and reverse transcription, the amplified cDNA was used for quantitative polymerase chain reaction (qPCR). Results Fixed ECs, with positive CD31 or vWF fluorescent signal and endothelial like nucleus, were successfully separated by LCM and live single ECs were sorted on FACS by a seven color staining panel. EC yields by LCM and FACS were 51 ± 22 and 149 ± 56 respectively (P < 0.001). The minimum number of fixed ECs from ICC-coupled LCM for acceptable qPCR results of endothelial marker genes was 30, while acceptable qPCR results as enriched by FACS were attainable from a single live EC. Conclusion Both LCM and FACS can be used to enrich ECs from conventional guide wires and the enriched ECs can be used for downstream gene expression detection. FACS generated a higher EC yield and the sorted live ECs may be used for single cell gene expression detection. PMID:25450638

  16. Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures

    PubMed Central

    Hood, Brian L.; Grahovac, Jelena; Flint, Melanie S.; Sun, Mai; Charro, Nuno; Becker, Dorothea; Wells, Alan; Conrads, Thomas P

    2010-01-01

    Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma, and understanding how the local microenvironment at the melanoma site influences this progression, are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment. PMID:20459140

  17. Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling.

    PubMed

    Wilson, Kate E; Marouga, Rita; Prime, John E; Pashby, D Paul; Orange, Paul R; Crosier, Steven; Keith, Alexander B; Lathe, Richard; Mullins, John; Estibeiro, Peter; Bergling, Helene; Hawkins, Edward; Morris, Christopher M

    2005-10-01

    Comparative proteomic methods are rapidly being applied to many different biological systems including complex tissues. One pitfall of these methods is that in some cases, such as oncology and neuroscience, tissue complexity requires isolation of specific cell types and sample is limited. Laser microdissection (LMD) is commonly used for obtaining such samples for proteomic studies. We have combined LMD with sensitive thiol-reactive saturation dye labelling of protein samples and 2-D DIGE to identify protein changes in a test system, the isolated CA1 pyramidal neurone layer of a transgenic (Tg) rat carrying a human amyloid precursor protein transgene. Saturation dye labelling proved to be extremely sensitive with a spot map of over 5,000 proteins being readily produced from 5 mug total protein, with over 100 proteins being significantly altered at p < 0.0005. Of the proteins identified, all showed coherent changes associated with transgene expression. It was, however, difficult to identify significantly different proteins using PMF and MALDI-TOF on gels containing less than 500 mug total protein. The use of saturation dye labelling of limiting samples will therefore require the use of highly sensitive MS techniques to identify the significantly altered proteins isolated using methods such as LMD.

  18. Laser-capture microdissection and transcriptional profiling of the dorsomedial nucleus of the hypothalamus.

    PubMed

    Lee, Syann; Bookout, Angie L; Lee, Charlotte E; Gautron, Laurent; Harper, Matthew J; Elias, Carol F; Lowell, Bradford B; Elmquist, Joel K

    2012-11-01

    Identifying neuronal molecular markers with restricted patterns of expression is a crucial step in dissecting the numerous pathways and functions of the brain. While the dorsomedial nucleus of the hypothalamus (DMH) has been implicated in a host of physiological processes, current functional studies have been limited by the lack of molecular markers specific for DMH. Identification of such markers would facilitate the development of mouse models with DMH-specific genetic manipulations. Here we used a combination of laser-capture microdissection (LCM) and gene expression profiling to identify genes that are highly expressed within the DMH relative to adjacent hypothalamic regions. Six of the most highly expressed of these genes, Gpr50, 4930511J11Rik, Pcsk5, Grp, Sulf1, and Rorβ, were further characterized by real-time polymerase chain reaction (PCR) analysis and in situ hybridization histochemistry. The genes identified in this article will provide the basis for future gene-targeted approaches for studying DMH function. Copyright © 2012 Wiley Periodicals, Inc.

  19. Optimization of laser capture microdissection and RNA amplification for gene expression profiling of prostate cancer

    PubMed Central

    Kube, Dagmar M; Savci-Heijink, Cemile D; Lamblin, Anne-Françoise; Kosari, Farhad; Vasmatzis, George; Cheville, John C; Connelly, Donald P; Klee, George G

    2007-01-01

    Background To discover prostate cancer biomarkers, we profiled gene expression in benign and malignant cells laser capture microdissected (LCM) from prostate tissues and metastatic prostatic adenocarcinomas. Here we present methods developed, optimized, and validated to obtain high quality gene expression data. Results RNase inhibitor was included in solutions used to stain frozen tissue sections for LCM, which improved RNA quality significantly. Quantitative PCR assays, requiring minimal amounts of LCM RNA, were developed to determine RNA quality and concentration. SuperScript II™ reverse transcriptase was replaced with SuperScript III™, and SpeedVac concentration was eliminated to optimize linear amplification. The GeneChip® IVT labeling kit was used rather than the Enzo BioArray™ HighYield™ RNA transcript labeling kit since side-by-side comparisons indicated high-end signal saturation with the latter. We obtained 72 μg of labeled complementary RNA on average after linear amplification of about 2 ng of total RNA. Conclusion Unsupervised clustering placed 5/5 normal and 2/2 benign prostatic hyperplasia cases in one group, 5/7 Gleason pattern 3 cases in another group, and the remaining 2/7 pattern 3 cases in a third group with 8/8 Gleason pattern 5 cases and 3/3 metastatic prostatic adenocarcinomas. Differential expression of alpha-methylacyl coenzyme A racemase (AMACR) and hepsin was confirmed using quantitative PCR. PMID:17376245

  20. Contribution of laser microdissection-based technology to proteomic analysis in hepatocellular carcinoma developing on cirrhosis

    PubMed Central

    Dos Santos, Alexandre; Thiers, Valérie; Sar, Sokhavuth; Nicolas, Derian; Bensalem, Noura; Yilmaz, Funda; Bralet, Marie-Pierre; Ducot, Béatrice; Bréchot, Christian; Demaugre, France

    2007-01-01

    Hepatocellular carcinoma (HCC) is a major cause of cancer worldwide. Proteomic studies provide opportunities to uncover targets for the diagnosis and treatment of this disease. However, in HCC developing in a setting of cirrhosis, the detection of proteome alterations may be hampered by the increased cellular heterogeneity of tissue when analyzing global liver homogenates. The aim of this study was to evaluate whether the identification of proteome alterations in these HCC cases was improved when the differential protein profile between tumour and non-tumour areas of liver was determined using hepatocytes isolated by laser microdissection (LM). Differential profiles established with LM-hepatocytes and liver section homogenates using 2-DE and mass spectrometry exhibited noticeable differences: 30% of the protein spots with deregulated expression in tumorous LM-samples did not display any modification in homogenates; conversely 15% of proteins altered in tumorous homogenates were not impaired in LM-hepatocytes. These alterations resulted from the presence in cirrhotic liver of fibrotic stroma which displayed a protein pattern different from that determined in LM-hepatocytes. In conclusion, our data demonstrate the interest of LM in distinguishing between fibrotic and hepatocyte proteome alterations and thus the benefit of LM to proteome studies of HCC developing in a context of cirrhosis. PMID:21136705

  1. Proteomic characterization of neuromelanin granules isolated from human substantia nigra by laser-microdissection.

    PubMed

    Plum, Sarah; Steinbach, Simone; Attems, Johannes; Keers, Sharon; Riederer, Peter; Gerlach, Manfred; May, Caroline; Marcus, Katrin

    2016-11-14

    Neuromelanin is a complex polymer pigment found primarily in the dopaminergic neurons of human substantia nigra. Neuromelanin pigment is stored in granules including a protein matrix and lipid droplets. Neuromelanin granules are yet only partially characterised regarding their structure and function. To clarify the exact function of neuromelanin granules in humans, their enrichment and in-depth characterization from human substantia nigra is necessary. Previously published global proteome studies of neuromelanin granules in human substantia nigra required high tissue amounts. Due to the limited availability of human brain tissue we established a new method based on laser microdissection combined with mass spectrometry for the isolation and analysis of neuromelanin granules. With this method it is possible for the first time to isolate a sufficient amount of neuromelanin granules for global proteomics analysis from ten 10 μm tissue sections. In total 1,000 proteins were identified associated with neuromelanin granules. More than 68% of those proteins were also identified in previously performed studies. Our results confirm and further extend previously described findings, supporting the connection of neuromelanin granules to iron homeostasis and lysosomes or endosomes. Hence, this method is suitable for the donor specific enrichment and proteomic analysis of neuromelanin granules.

  2. Phage-display selection on tumor histological specimens with laser capture microdissection

    PubMed Central

    Sun, Yujing; Shukla, Girja S.; Weaver, Donald; Pero, Stephanie C.; Krag, David N.

    2010-01-01

    A method was developed to obtain phage-display ligands that bind to a select population of cells in histological specimens of freshly harvested solid human cancers. It combines phage-display panning with laser capture microdissection (LCM). This method allows selection of phage ligands bound to subpopulations of specific cells contained in tumor tissue on histological sections. Naïve phage scFv library was incubated directly on a histological section of human breast cancer that was snap frozen immediately after surgical resection. Tumor and stromal cells were captured by LCM and bound phages were recovered by bacterial infection. Individual phage clones selected after panning were evaluated for their binding ability by immunofluorescence staining on tumor tissue from the same patient. One phage-display antibody clone selected on tumor stroma showed selective binding on tumor stroma but did not bind to malignant cell population. The expressed scFv of this clone showed no significant binding to normal tissue, or 13 other breast cancers, or 4 colon cancer samples. Using the same method, phage display antibody clones were selected on tumor cells which showed binding to tumor cells and normal tissue. This method is applicable for selection of ligands to virtually any portion of a histological specimen amenable to LCM. This may speed the process of generating ligands to any subset of cells or noncellular feature present on histological specimens. PMID:19538966

  3. Laser capture microdissection enables cellular and molecular studies of tooth root development

    PubMed Central

    Sun, Jian-Xun; Horst, Orapin V; Bumgarner, Roger; Lakely, Bryce; Somerman, Martha J; Zhang, Hai

    2012-01-01

    Epithelial–mesenchymal interactions (EMIs) are critical for tooth development. Molecular mechanisms mediating these interactions in root formation is not well understood. Laser capture microdissection (LCM) and subsequent microarray analyses enable large scale in situ molecular and cellular studies of root formation but to date have been hindered by technical challenges of gaining intact histological sections of non-decalcified mineralized teeth or jaws with well-preserved RNA. Here,we describe a new method to overcome this obstacle that permits LCM of dental epithelia,adjacent mesenchyme,odontoblasts and cementoblasts from mouse incisors and molars during root development. Using this method,we obtained RNA samples of high quality and successfully performed microarray analyses. Robust differences in gene expression,as well as genes not previously associated with root formation,were identified. Comparison of gene expression data from microarray with real-time reverse transcriptase polymerase chain reaction (RT-PCR) supported our findings. These genes include known markers of dental epithelia,mesenchyme,cementoblasts and odontoblasts,as well as novel genes such as those in the fibulin family. In conclusion,our new approach in tissue preparation enables LCM collection of intact cells with well-preserved RNA allowing subsequent gene expression analyses using microarray and RT-PCR to define key regulators of tooth root development. PMID:22422086

  4. Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection.

    PubMed

    Harrop, Thomas W R; Ud Din, Israr; Gregis, Veronica; Osnato, Michela; Jouannic, Stefan; Adam, Hélène; Kater, Martin M

    2016-04-01

    In rice, inflorescence architecture is established at early stages of reproductive development and contributes directly to grain yield potential. After induction of flowering, the complexity of branching, and therefore the number of seeds on the panicle, is determined by the activity of different meristem types and the timing of transitions between them. Although some of the genes involved in these transitions have been identified, an understanding of the network of transcriptional regulators controlling this process is lacking. To address this we used a precise laser microdissection and RNA-sequencing approach in Oryza sativa ssp. japonica cv. Nipponbare to produce quantitative data that describe the landscape of gene expression in four different meristem types: the rachis meristem, the primary branch meristem, the elongating primary branch meristem (including axillary meristems), and the spikelet meristem. A switch in expression profile between apical and axillary meristem types followed by more gradual changes during transitions in axillary meristem identity was observed, and several genes potentially involved in branching were identified. This resource will be vital for a mechanistic understanding of the link between inflorescence development and grain yield. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Proteomic characterization of neuromelanin granules isolated from human substantia nigra by laser-microdissection

    PubMed Central

    Plum, Sarah; Steinbach, Simone; Attems, Johannes; Keers, Sharon; Riederer, Peter; Gerlach, Manfred; May, Caroline; Marcus, Katrin

    2016-01-01

    Neuromelanin is a complex polymer pigment found primarily in the dopaminergic neurons of human substantia nigra. Neuromelanin pigment is stored in granules including a protein matrix and lipid droplets. Neuromelanin granules are yet only partially characterised regarding their structure and function. To clarify the exact function of neuromelanin granules in humans, their enrichment and in-depth characterization from human substantia nigra is necessary. Previously published global proteome studies of neuromelanin granules in human substantia nigra required high tissue amounts. Due to the limited availability of human brain tissue we established a new method based on laser microdissection combined with mass spectrometry for the isolation and analysis of neuromelanin granules. With this method it is possible for the first time to isolate a sufficient amount of neuromelanin granules for global proteomics analysis from ten 10 μm tissue sections. In total 1,000 proteins were identified associated with neuromelanin granules. More than 68% of those proteins were also identified in previously performed studies. Our results confirm and further extend previously described findings, supporting the connection of neuromelanin granules to iron homeostasis and lysosomes or endosomes. Hence, this method is suitable for the donor specific enrichment and proteomic analysis of neuromelanin granules. PMID:27841354

  6. Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells

    PubMed Central

    Berruti, Andrea; Borriello, Roberto; Lumini, Erica; Scariot, Valentina; Bianciotto, Valeria; Balestrini, Raffaella

    2013-01-01

    Obligate symbiotic fungi that form arbuscular mycorrhizae (AMF; belonging to the Glomeromycota phylum) are some of the most important soil microorganisms. AMFs facilitate mineral nutrient uptake from the soil, in exchange for plant-assimilated carbon, and promote water-stress tolerance and resistance to certain diseases. AMFs colonize the root by producing inter- and intra-cellular hyphae. When the fungus penetrates the inner cortical cells, it produces a complex ramified structure called arbuscule, which is considered the preferential site for nutrient exchange. Direct DNA extraction from the whole root and sequencing of ribosomal gene regions are commonly carried out to investigate intraradical AMF communities. Nevertheless, this protocol cannot discriminate between the AMFs that actively produce arbuscules and those that do not. To solve this issue, the authors have characterized the AMF community of arbusculated cells (AC) through a laser microdissection (LMD) approach, combined with sequencing-based taxa identification. The results were then compared with the AMF community that was found from whole root DNA extraction. The AMF communities originating from the LMD samples and the whole root samples differed remarkably. Five taxa were involved in the production of arbuscules, while two taxa were retrieved inside the root but not in the AC. Unexpectedly, one taxon was found in the AC, but its detection was not possible when extracting from the whole root. Thus, the LMD technique can be considered a powerful tool to obtain more precise knowledge on the symbiotically active intraradical AMF community. PMID:23675380

  7. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue.

    PubMed

    Liu, Ning Qing; Braakman, René B H; Stingl, Christoph; Luider, Theo M; Martens, John W M; Foekens, John A; Umar, Arzu

    2012-06-01

    Mass spectrometry (MS)-based label-free proteomics offers an unbiased approach to screen biomarkers related to disease progression and therapy-resistance of breast cancer on the global scale. However, multi-step sample preparation can introduce large variation in generated data, while inappropriate statistical methods will lead to false positive hits. All these issues have hampered the identification of reliable protein markers. A workflow, which integrates reproducible and robust sample preparation and data handling methods, is highly desirable in clinical proteomics investigations. Here we describe a label-free tissue proteomics pipeline, which encompasses laser capture microdissection (LCM) followed by nanoscale liquid chromatography and high resolution MS. This pipeline routinely identifies on average ∼10,000 peptides corresponding to ∼1,800 proteins from sub-microgram amounts of protein extracted from ∼4,000 LCM breast cancer epithelial cells. Highly reproducible abundance data were generated from different technical and biological replicates. As a proof-of-principle, comparative proteome analysis was performed on estrogen receptor α positive or negative (ER+/-) samples, and commonly known differentially expressed proteins related to ER expression in breast cancer were identified. Therefore, we show that our tissue proteomics pipeline is robust and applicable for the identification of breast cancer specific protein markers.

  8. RNA Isolation from Cell Specific Subpopulations Using Laser-capture Microdissection Combined with Rapid Immunolabeling

    PubMed Central

    Lévesque, Martin

    2015-01-01

    Laser capture microdissection (LCM) allows the isolation of specific cells from thin tissue sections with high spatial resolution. Effective LCM requires precise identification of cells subpopulations from a heterogeneous tissue. Identification of cells of interest for LCM is usually based on morphological criteria or on fluorescent protein reporters. The combination of LCM and rapid immunolabeling offers an alternative and efficient means to visualize specific cell types and to isolate them from surrounding tissue. High-quality RNA can then be extracted from a pure cell population and further processed for downstream applications, including RNA-sequencing, microarray or qRT-PCR. This approach has been previously performed and briefly described in few publications. The goal of this article is to illustrate how to perform rapid immunolabeling of a cell population while keeping RNA integrity, and how to isolate these specific cells using LCM. Herein, we illustrated this multi-step procedure by immunolabeling and capturing dopaminergic cells in brain tissue from one-day-old mice. We highlight key critical steps that deserve special consideration. This protocol can be adapted to a variety of tissues and cells of interest. Researchers from different fields will likely benefit from the demonstration of this approach. PMID:25939046

  9. Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection.

    PubMed

    Kinnecom, Katie; Pachter, Joel S

    2005-12-01

    Laser capture microdissection (LCM) of the major cell types comprising brain microvessels offers a powerful technology to explore the molecular basis of the blood-brain barrier in health and disease. However, the ability to selectively retrieve endothelial or perivascular cells, without cross-contamination from the other, has proven difficult. Additionally, histochemical methods previously described for use with LCM have not allowed for identification of all the different size branches of the microvascular tree. Here, we describe a double immunostaining method, combining bright-field and fluorescence microscopy, and using an extensive dehydration with xylene, to clearly identify and spatially resolve endothelial from perivascular cells within all size microvascular branches in frozen brain sections. LCM of these sections, coupled with RNA analysis by reverse-transcription polymerase chain reaction, revealed that captured endothelial cells show endothelial markers but no detectable markers for astrocytes or smooth muscle cells/pericytes. Conversely, captured astrocytes or smooth muscle cells/pericytes demonstrate their respective markers, but not those of endothelial cells. This approach has applicability to microarray analysis, thereby enabling global gene profiling of the different cell types along the entirety of the brain microvascular tree.

  10. Laser Capture Microdissection of Feline Streptomyces spp Pyogranulomatous Dermatitis and Cellulitis.

    PubMed

    Traslavina, R P; Reilly, C M; Vasireddy, R; Samitz, E M; Stepnik, C T; Outerbridge, C; Affolter, V K; Byrne, B A; Lowenstine, L J; White, S D; Murphy, B

    2015-11-01

    Suspected Streptomyces spp infections were identified in 4 cats at UC Davis Veterinary Medical Teaching Hospital between 1982 and 2011. Three had ulcerated, dark red mycetomas involving the dermis, subcutis, and fascia with fistulous tracts and/or regional lymphadenopathy. One cat had pyogranulomatous mesenteric lymphadenitis. Granulomatous inflammation in all cats contained colonies of Gram-positive, non-acid-fast organisms. All 4 cats failed to respond to aggressive medical and surgical treatment and were euthanized. Laser capture microdissection (LCM) was used to selectively harvest DNA from the affected formalin-fixed, paraffin-embedded (FFPE) tissues. Cloned amplicons from LCM-derived tissue confirmed the presence of Streptomyces spp in the dermatitis cases. Amplicons from the remaining cat with peritoneal involvement aligned with the 16S ribosomal RNA gene for Actinomycetales. Usually considered a contaminant, Streptomyces spp can be associated with refractory pyogranulomatous dermatitis and cellulitis in cats with outdoor access. LCM is useful in the diagnosis of bacterial diseases where contamination may be an issue. © The Author(s) 2014.

  11. Laser capture microdissection of embryonic cells and preparation of RNA for microarray assays.

    PubMed

    Redmond, Latasha C; Pang, Christopher J; Dumur, Catherine; Haar, Jack L; Lloyd, Joyce A

    2014-01-01

    In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities. The first step in the protocol is to obtain embryonic tissue, and immediately cryoprotect and freeze it in a cryomold containing Optimal Cutting Temperature freezing media (Sakura Finetek), using a dry ice-isopentane bath. The tissue is then cryosectioned, and the microscope slides are processed to fix, stain, and dehydrate the cells. LCM is employed to isolate specific cell types from the slides, identified under the microscope by virtue of their morphology. Detailed protocols are provided for using the currently available ArcturusXT LCM instrument and CapSure(®) LCM Caps, to which the selected cells adhere upon laser capture. To maintain RNA integrity, upon removing a slide from the final processing step, or attaching the first cells on the LCM cap, LCM is completed within 20 min. The cells are then immediately recovered from the LCM cap using a denaturing solution that stabilizes RNA integrity. RNA is prepared using standard methods, modified for working with small samples. To ensure the validity of the microarray data, the quality of the RNA is assessed using the Agilent bioanalyzer. Only RNA that is of sufficient integrity and quantity is used to perform microarray assays. This chapter provides guidance regarding troubleshooting and optimization to obtain high-quality RNA from cells of limited availability, obtained from embryo samples by LCM.

  12. DNA profiling of spermatozoa by laser capture microdissection and low volume-PCR.

    PubMed

    Li, Cai-xia; Han, Jun-ping; Ren, Wen-yan; Ji, An-quan; Xu, Xiu-lan; Hu, Lan

    2011-01-01

    Genetic profiling of sperm from complex biological mixtures such as sexual assault casework samples requires isolation of a pure sperm population and the ability to analyze low abundant samples. Current standard procedure for sperm isolation includes preferential lysis of epithelial contaminants followed by collection of intact sperm by centrifugation. While effective for samples where sperm are abundant, this method is less effective when samples contain few spermatozoa. Laser capture microdissection (LCM) is a proven method for the isolation of cells biological mixtures, even when found in low abundance. Here, we demonstrate the efficacy of LCM coupled with on-chip low volume PCR (LV-PCR) for the isolation and genotyping of low abundance sperm samples. Our results indicate that this method can obtain complete profiles (13-16 loci) from as few as 15 sperm cells with 80% reproducibility, whereas at least 40 sperm cells are required to profile 13-16 loci by standard 'in-tube' PCR. Further, LCM and LV-PCR of a sexual assault casework sample generated a DNA genotype that was consistent with that of the suspect. This method was unable, however, to analyze a casework sample from a gang rape case in which two or more sperm contributors were in a mixed population. The results indicate that LCM and LV-PCR is sensitive and effective for genotyping sperm from sperm/epithelial cell mixtures when epithelial lysis may be insufficient due to low abundance of sperm; LCM and LV-PCR, however, failed in a casework sample when spermatozoa from multiple donors was present, indicating that further study is necessitated.

  13. Laser capture microdissection reveals dose-response of gene expression in situ consequent to asbestos exposure.

    PubMed

    Yin, Qi; Brody, Arnold R; Sullivan, Deborah E

    2007-12-01

    The genes that mediate fibroproliferative lung disease remain to be defined. Prior studies from our laboratory showed by in situ hybridization and immunohistochemistry that the genes coding for tumour necrosis factor alpha, transforming growth factor beta, the platelet-derived growth factor A and B isoforms, and alpha-1 pro-collagen are expressed in fibroproliferative lesions that develop quickly after asbestos inhalation. These five genes, along with matrix metalloproteinase 9, a collagenase found to be increased in several lung diseases, are known to control matrix production and cell proliferation in humans and animals. Here we show by laser capture microdissection that (i) The six genes are expressed at significantly higher levels in the asbestos-exposed mice when comparing the same anatomic regions 'captured' in unexposed mice. (ii) The bronchiolar-alveolar duct (BAD) junctions, where the greatest number of fibres initially deposit, were always significantly higher than the other anatomic regions for each gene. The first alveolar duct bifurcation (ADB) generally was higher than the second ADB, the ADBs were always significantly higher than the airway walls and pleura, and the airway walls and pleura were generally higher than the unexposed tissues. (iii) Animals exposed for 3 days always exhibited significantly higher levels of gene expression at the BAD junctions and ADBs than animals exposed for 2 days. To our knowledge, this is the first demonstration of a dose-response to a toxic particle in situ, and this response appears to be dependent on the number of fibres that deposits at the individual anatomic site.

  14. Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection.

    PubMed

    Teixeira, Rita Teresa; Fortes, Ana Margarida; Bai, Hua; Pinheiro, Carla; Pereira, Helena

    2017-10-07

    The phenylpropanoid pathway impacts the cork quality development. In cork of bad quality, the flavonoid route is favored, whereas in good quality, cork lignin and suberin production prevails. Cork oaks develop a thick cork tissue as a protective shield that results of the continuous activity of a secondary meristem, the cork cambium, or phellogen. Most studies applied to developmental processes do not consider the cell types from which the samples were extracted. Here, laser microdissection (LM) coupled with transcript profiling using RNA sequencing (454 pyrosequencing) was applied to phellogen cells of trees producing low- and good quality cork. Functional annotation and functional enrichment analyses showed that stress-related genes are enriched in samples extracted from trees producing good quality cork (GQC). This process is under tight transcriptional (transcription factors, kinases) regulation and also hormonal control involving ABA, ethylene, and auxins. The phellogen cells collected from trees producing bad quality cork (BQC) show a consistent up-regulation of genes belonging to the flavonoid pathway as a response to stress. They also display a different modulation of cell wall genes resulting into a thinner cork layer, i.e., less meristematic activity. Based on the analysis of the phenylpropanoid pathway regulating genes, in GQC, the synthesis of lignin and suberin is promoted, whereas in BQC, the same pathway favors the biosynthesis of free phenolic compounds. This study provided new insights of how cell-specific gene expression can determine tissue and organ morphology and physiology and identified robust candidate genes that can be used in breeding programs aiming at improving cork quality.

  15. Laser capture microdissection reveals dose–response of gene expression in situ consequent to asbestos exposure

    PubMed Central

    Yin, Qi; Brody, Arnold R; Sullivan, Deborah E

    2007-01-01

    The genes that mediate fibroproliferative lung disease remain to be defined. Prior studies from our laboratory showed by in situ hybridization and immunohistochemistry that the genes coding for tumour necrosis factor alpha, transforming growth factor beta, the platelet-derived growth factor A and B isoforms, and alpha-1 pro-collagen are expressed in fibroproliferative lesions that develop quickly after asbestos inhalation. These five genes, along with matrix metalloproteinase 9, a collagenase found to be increased in several lung diseases, are known to control matrix production and cell proliferation in humans and animals. Here we show by laser capture microdissection that (i) The six genes are expressed at significantly higher levels in the asbestos-exposed mice when comparing the same anatomic regions ‘captured’ in unexposed mice. (ii) The bronchiolar-alveolar duct (BAD) junctions, where the greatest number of fibres initially deposit, were always significantly higher than the other anatomic regions for each gene. The first alveolar duct bifurcation (ADB) generally was higher than the second ADB, the ADBs were always significantly higher than the airway walls and pleura, and the airway walls and pleura were generally higher than the unexposed tissues. (iii) Animals exposed for 3 days always exhibited significantly higher levels of gene expression at the BAD junctions and ADBs than animals exposed for 2 days. To our knowledge, this is the first demonstration of a dose–response to a toxic particle in situ, and this response appears to be dependent on the number of fibres that deposits at the individual anatomic site. PMID:18039278

  16. DNA Profiling of Spermatozoa by Laser Capture Microdissection and Low Volume-PCR

    PubMed Central

    Li, Cai-xia; Han, Jun-ping; Ren, Wen-yan; Ji, An-quan; Xu, Xiu-lan; Hu, Lan

    2011-01-01

    Genetic profiling of sperm from complex biological mixtures such as sexual assault casework samples requires isolation of a pure sperm population and the ability to analyze low abundant samples. Current standard procedure for sperm isolation includes preferential lysis of epithelial contaminants followed by collection of intact sperm by centrifugation. While effective for samples where sperm are abundant, this method is less effective when samples contain few spermatozoa. Laser capture microdissection (LCM) is a proven method for the isolation of cells biological mixtures, even when found in low abundance. Here, we demonstrate the efficacy of LCM coupled with on-chip low volume PCR (LV-PCR) for the isolation and genotyping of low abundance sperm samples. Our results indicate that this method can obtain complete profiles (13–16 loci) from as few as 15 sperm cells with 80% reproducibility, whereas at least 40 sperm cells are required to profile 13–16 loci by standard ‘in-tube’ PCR. Further, LCM and LV-PCR of a sexual assault casework sample generated a DNA genotype that was consistent with that of the suspect. This method was unable, however, to analyze a casework sample from a gang rape case in which two or more sperm contributors were in a mixed population. The results indicate that LCM and LV-PCR is sensitive and effective for genotyping sperm from sperm/epithelial cell mixtures when epithelial lysis may be insufficient due to low abundance of sperm; LCM and LV-PCR, however, failed in a casework sample when spermatozoa from multiple donors was present, indicating that further study is necessitated. PMID:21853031

  17. Myosin content of individual human muscle fibers isolated by laser capture microdissection

    PubMed Central

    Stone, William L.; Howell, Mary E. A.; Brannon, Marianne F.; Hall, H. Kenton; Gibson, Andrew L.; Stone, Michael H.

    2015-01-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. PMID:26676053

  18. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    PubMed

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  19. Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection

    PubMed Central

    Matas, Antonio J.; Agustí, Javier; Tadeo, Francisco R.; Talón, Manuel; Rose, Jocelyn K. C.

    2010-01-01

    Most studies of the biochemical and regulatory pathways that are associated with, and control, fruit expansion and ripening are based on homogenized bulk tissues, and do not take into consideration the multiplicity of different cell types from which the analytes, be they transcripts, proteins or metabolites, are extracted. Consequently, potentially valuable spatial information is lost and the lower abundance cellular components that are expressed only in certain cell types can be diluted below the level of detection. In this study, laser microdissection (LMD) was used to isolate epidermal and subepidermal cells from green, expanding Citrus clementina fruit and their transcriptomes were compared using a 20k citrus cDNA microarray and quantitative real-time PCR. The results show striking differences in gene expression profiles between the two cell types, revealing specific metabolic pathways that can be related to their respective organelle composition and cell wall specialization. Microscopy provided additional evidence of tissue specialization that could be associated with the transcript profiles with distinct differences in organelle and metabolite accumulation. Subepidermis predominant genes are primarily involved in photosynthesis- and energy-related processes, as well as cell wall biosynthesis and restructuring. By contrast, the most epidermis predominant genes are related to the biosynthesis of the cuticle, flavonoids, and defence responses. Furthermore, the epidermis transcript profile showed a high proportion of genes with no known function, supporting the original hypothesis that analysis at the tissue/cell specific levels can promote gene discovery and lead to a better understanding of the specialized contribution of each tissue to fruit physiology. PMID:20519339

  20. Smoking-Related Gene Expression in Laser Capture Microdissected Human Lung

    PubMed Central

    Tan, Xiang-Lin; Wang, Tao; Xiong, Shengli; Kumar, Shalini V.; Han, Weiguo; Spivack, Simon D.

    2014-01-01

    Purpose Inter-individual differences in quantitative expression could underlie a propensity for lung cancer. To determine precise individual gene expression signatures on a lung compartment-specific basis, we investigated the expression of carcinogen metabolism genes encoding cytochromes P450 (CYP) 1B1, 2A13, glutathione S-transferase (GST) P1, and a tumor suppressor gene p16 in laser capture microdissected samples of human alveolar compartment (AC) and bronchial epithelial compartment (BEC) lung tissue from 62 smokers and non-smokers. Experimental Design Tobacco exposure was determined by plasma nicotine, cotinine, and smoking history. Precise mRNA expression was determined using our RNA-specific qRT-PCR strategy, and correlated with detailed demographic and clinical characteristics. Results Several correlations of mRNA expression included: (a) CYP1B1 in AC (positively with plasma nicotine level, P = 0.008; plasma cotinine level, P = 0.001); (b) GSTP1 in AC (positively with plasma cotinine level, P = 0.003); (c) GSTP1 in BEC (negatively with smoke dose, P = 0.043; occupational risk, P = 0.019). CYP2A13 was rarely expressed in AC, and not expressed in BEC. p16 expression was not correlated with any measured factor. For each gene, subjects showed expression that was individually concordant between these compartments. No clear association of mRNA expression with lung cancer risk was observed in this pilot analysis. Conclusions The association between lung mRNA expression and tobacco exposure implies that gene-tobacco interaction is a measurable quantitative trait, albeit with wide inter-individual variation. Gene expression tends to be concordant for alveolar and bronchial compartments for these genes in an individual, controlling for proximate tobacco exposure. PMID:19996203

  1. Smoking-Related Gene Expression in Laser Capture-Microdissected Human Lung.

    PubMed

    Tan, Xiang-Lin; Wang, Tao; Xiong, Shengli; Kumar, Shalini V; Han, Weiguo; Spivack, Simon D

    2009-12-15

    PURPOSE: Interindividual differences in quantitative expression could underlie a propensity for lung cancer. To determine precise individual gene expression signatures on a lung compartment-specific basis, we investigated the expression of carcinogen metabolism genes encoding cytochromes P450 (CYP) 1B1, 2A13, GSTP1, and a tumor suppressor gene p16 in laser capture-microdissected samples of human alveolar compartment (AC) and bronchial epithelial compartment (BEC) lung tissue from 62 smokers and nonsmokers. EXPERIMENTAL DESIGN: Tobacco exposure was determined by plasma nicotine, cotinine, and smoking history. Precise mRNA expression was determined using our RNA-specific qRT-PCR strategy, and correlated with detailed demographic and clinical characteristics. RESULTS: Several correlations of mRNA expression included (a) CYP1B1 in AC (positively with plasma nicotine level, P = 0.008; plasma cotinine level, P = 0.001), (b) GSTP1 in AC (positively with plasma cotinine level, P = 0.003), and (c) GSTP1 in BEC (negatively with smoke dose, P = 0.043; occupational risk, P = 0.019). CYP2A13 was rarely expressed in AC and not expressed in BEC. p16 expression was not correlated with any measured factor. For each gene, subjects showed expression that was individually concordant between these compartments. No clear association of mRNA expression with lung cancer risk was observed in this pilot analysis. CONCLUSIONS: The association between lung mRNA expression and tobacco exposure implies that gene-tobacco interaction is a measurable quantitative trait, albeit with wide interindividual variation. Gene expression tends to be concordant for alveolar and bronchial compartments for these genes in an individual, controlling for proximate tobacco exposure. (Clin Cancer Res 2009;15(24):7562-70).

  2. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development

    PubMed Central

    2012-01-01

    Background During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the protection and dispersal of sexual spores. Fruiting bodies contain a number of cell types not found in vegetative mycelium, and these morphological differences are thought to be mediated by changes in gene expression. However, little is known about the spatial distribution of gene expression in fungal development. Here, we used laser microdissection (LM) and RNA-seq to determine gene expression patterns in young fruiting bodies (protoperithecia) and non-reproductive mycelia of the ascomycete Sordaria macrospora. Results Quantitative analysis showed major differences in the gene expression patterns between protoperithecia and total mycelium. Among the genes strongly up-regulated in protoperithecia were the pheromone precursor genes ppg1 and ppg2. The up-regulation was confirmed by fluorescence microscopy of egfp expression under the control of ppg1 regulatory sequences. RNA-seq analysis of protoperithecia from the sterile mutant pro1 showed that many genes that are differentially regulated in these structures are under the genetic control of transcription factor PRO1. Conclusions We have generated transcriptional profiles of young fungal sexual structures using a combination of LM and RNA-seq. This allowed a high spatial resolution and sensitivity, and yielded a detailed picture of gene expression during development. Our data revealed significant differences in gene expression between protoperithecia and non-reproductive mycelia, and showed that the transcription factor PRO1 is involved in the regulation of many genes expressed specifically in sexual structures. The LM/RNA-seq approach will also be relevant to other eukaryotic systems in which multicellular development is investigated. PMID:23016559

  3. Microarray Cluster Analysis of Irradiated Growth Plate Zones Following Laser Microdissection

    SciTech Connect

    Damron, Timothy A. Zhang Mingliang; Pritchard, Meredith R.; Middleton, Frank A.; Horton, Jason A.; Margulies, Bryan M.; Strauss, Judith A.; Farnum, Cornelia E.; Spadaro, Joseph A.

    2009-07-01

    Purpose: Genes and pathways involved in early growth plate chondrocyte recovery after fractionated irradiation were sought as potential targets for selective radiorecovery modulation. Materials and Methods: Three groups of six 5-week male Sprague-Dawley rats underwent fractionated irradiation to the right tibiae over 5 days, totaling 17.5 Gy, and then were killed at 7, 11, and 16 days after the first radiotherapy fraction. The growth plates were collected from the proximal tibiae bilaterally and subsequently underwent laser microdissection to separate reserve, perichondral, proliferative, and hypertrophic zones. Differential gene expression was analyzed between irradiated right and nonirradiated left tibia using RAE230 2.0 GeneChip microarray, compared between zones and time points and subjected to functional pathway cluster analysis with real-time polymerase chain reaction to confirm selected results. Results: Each zone had a number of pathways showing enrichment after the pattern of hypothesized importance to growth plate recovery, yet few met the strictest criteria. The proliferative and hypertrophic zones showed both the greatest number of genes with a 10-fold right/left change at 7 days after initiation of irradiation and enrichment of the most functional pathways involved in bone, cartilage, matrix, or skeletal development. Six genes confirmed by real-time polymerase chain reaction to have early upregulation included insulin-like growth factor 2, procollagen type I alpha 2, matrix metallopeptidase 9, parathyroid hormone receptor 1, fibromodulin, and aggrecan 1. Conclusions: Nine overlapping pathways in the proliferative and hypertrophic zones (skeletal development, ossification, bone remodeling, cartilage development, extracellular matrix structural constituent, proteinaceous extracellular matrix, collagen, extracellular matrix, and extracellular matrix part) may play key roles in early growth plate radiorecovery.

  4. Biopanning Phage-Display Libraries on Small Tissue Sections Captured by Laser Capture Microdissection

    PubMed Central

    Sun, Yujing; Shukla, Girja S; Kennedy, Guy G; Warshaw, David M; Weaver, Donald L; Pero, Stephanie C; Floyd, Lisa; Krag, David N

    2010-01-01

    Phage-display technology has been widely used for developing tumor-targeting agents. Laser capture microdissection (LCM) has proven to be an accurate method to select specific cells from histological sections. Our goal was to develop a method to combine phage-display with LCM to obtain phage-displayed ligands that bind to selected cells in human solid tumors. Two panning strategies were evaluated and optimized. The first strategy was to pan on patient tissue mounted to LCM slides before LCM occurred. The poor panning output showed that phage did not tolerate the drying conditions during LCM. The second strategy was to pan on tumor cells from the patient tumor tissue that were isolated by LCM. The catapulted tumor cells were transferred to a filter unit which retained cells but allowed rinsing of unbound phage. Six commercially available filter units were evaluated and the one with the lowest nonspecific binding to phage was selected for the panning steps. The smallest number of cells (500) in which panning could be successfully accomplished was also determined. A micropipette system was developed to further decrease background by removing catapulted cells from the filter unit after panning was complete. This left behind nearly all background binding phage in the filter unit. This strategy led to the selection of individual phage antibody clones (5 out of 79 tested) specific for tumor cells of the patient’s cancer tissue. Immunofluorescence staining on tumor tissues from the same patient showed that these clones have selective signals on tumor island cells, while the scFv library only showed low nonspecific signals on tumor tissues. We established a method of panning on a small number of LCM-captured solid tumor specimens. The quick identification of specific phage-displayed antibodies in the cancer tissue of human patients will greatly enhance the therapy and diagnosis of cancer. PMID:21822461

  5. Optimizing staining protocols for laser microdissection of specific cell types from the testis including carcinoma in situ.

    PubMed

    Sonne, Si Brask; Dalgaard, Marlene D; Nielsen, John Erik; Hoei-Hansen, Christina E; Rajpert-De Meyts, Ewa; Gjerdrum, Lise Mette; Leffers, Henrik

    2009-01-01

    Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining method for the target cells. In this study we have tested different fixatives, storage conditions for frozen sections and staining protocols, and present two staining protocols for frozen sections, one for fast and specific staining of fetal germ cells, testicular carcinoma in situ cells, and other cells with embryonic stem cell-like properties that express the alkaline phosphatase, and one for specific staining of lipid droplet-containing cells, which is useful for isolation of the androgen-producing Leydig cells. Both protocols retain a morphology that is compatible with laser microdissection and yield RNA of a quality suitable for PCR and microarray analysis.

  6. Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    PubMed Central

    Nielsen, John Erik; Hoei-Hansen, Christina E.; Rajpert-De Meyts, Ewa; Gjerdrum, Lise Mette; Leffers, Henrik

    2009-01-01

    Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdissection technology allows for enrichment of specific cell types. However, when the cells are not morphologically distinguishable, it is necessary to use a specific staining method for the target cells. In this study we have tested different fixatives, storage conditions for frozen sections and staining protocols, and present two staining protocols for frozen sections, one for fast and specific staining of fetal germ cells, testicular carcinoma in situ cells, and other cells with embryonic stem cell-like properties that express the alkaline phosphatase, and one for specific staining of lipid droplet-containing cells, which is useful for isolation of the androgen-producing Leydig cells. Both protocols retain a morphology that is compatible with laser microdissection and yield RNA of a quality suitable for PCR and microarray analysis. PMID:19436754

  7. Unambiguous Detection of Multiple TP53 Gene Mutations in AAN-Associated Urothelial Cancer in Belgium Using Laser Capture Microdissection

    PubMed Central

    Aydin, Selda; Dekairelle, Anne-France; Ambroise, Jérôme; Durant, Jean-François; Heusterspreute, Michel; Guiot, Yves

    2014-01-01

    In the Balkan and Taiwan, the relationship between exposure to aristolochic acid and risk of urothelial neoplasms was inferred from the A>T genetic hallmark in TP53 gene from malignant cells. This study aimed to characterize the TP53 mutational spectrum in urothelial cancers consecutive to Aristolochic Acid Nephropathy in Belgium. Serial frozen tumor sections from female patients (n = 5) exposed to aristolochic acid during weight-loss regimen were alternatively used either for p53 immunostaining or laser microdissection. Tissue areas with at least 60% p53-positive nuclei were selected for microdissecting sections according to p53-positive matching areas. All areas appeared to be carcinoma in situ. After DNA extraction, mutations in the TP53 hot spot region (exons 5–8) were identified using nested-PCR and sequencing. False-negative controls consisted in microdissecting fresh-frozen tumor tissues both from a patient with a Li-Fraumeni syndrome who carried a p53 constitutional mutation, and from KRas mutated adenocarcinomas. To rule out false-positive results potentially generated by microdissection and nested-PCR, a phenacetin-associated urothelial carcinoma and normal fresh ureteral tissues (n = 4) were processed with high laser power. No unexpected results being identified, molecular analysis was pursued on malignant tissues, showing at least one mutation in all (six different mutations in two) patients, with 13/16 exonic (nonsense, 2; missense, 11) and 3/16 intronic (one splice site) mutations. They were distributed as transitions (n = 7) or transversions (n = 9), with an equal prevalence of A>T and G>T (3/16 each). While current results are in line with A>T prevalence previously reported in Balkan and Taiwan studies, they also demonstrate that multiple mutations in the TP53 hot spot region and a high frequency of G>T transversion appear as a complementary signature reflecting the toxicity of a cumulative dose of aristolochic acid ingested over a

  8. Evaluation of two-dimensional electrophoresis and liquid chromatography – tandem mass spectrometry for tissue-specific protein profiling of laser-microdissected plant samples

    SciTech Connect

    Schad, Martina; Lipton, Mary S.; Giavalisco, Patrick; Smith, Richard D.; Kehr, Julia

    2005-07-14

    Laser microdissection (LM) allows the collection of homogeneous tissue- and cell specific plant samples. The employment of this technique with subsequent protein analysis has thus far not been reported for plant tissues, probably due to the difficulties associated with defining a reasonable cellular morphology and, in parallel, allowing efficient protein extraction from tissue samples. The relatively large sample amount needed for successful proteome analysis is an additional issue that complicates protein profiling on a tissue- or even cell-specific level. In contrast to transcript profiling that can be performed from very small sample amounts due to efficient amplification strategies, there is as yet no amplification procedure for proteins available. In the current study, we compared different tissue preparation techniques prior to LM/laser pressure catapulting (LMPC) with respect to their suitability for protein retrieval. Cryosectioning was identified as the best compromise between tissue morphology and effective protein extraction. After collection of vascular bundles from Arabidopsis thaliana stem tissue by LMPC, proteins were extracted and subjected to protein analysis, either by classical two-dimensional gel electrophoresis (2-DE), or by high-efficiency liquid chromatography (LC) in conjunction with tandem mass spectrometry (MS/MS). Our results demonstrate that both methods can be used with LMPC collected plant material. But because of the significantly lower sample amount required for LC-MS/MS than for 2-DE, the combination of LMPC and LC-MS/MS has a higher potential to promote comprehensive proteome analysis of specific plant tissues.

  9. Laser-assisted vascular anastomosis

    NASA Astrophysics Data System (ADS)

    Kao, Race L.; Tsao-Wu, George; Magovern, George J.

    1990-06-01

    The milliwatt CO2 laser and a thermal activated binding compound (20% serum albumin) were used for microvascular anastomoses. Under general anesthesia, the femoral arteries (0.7 to 1.0 mm diameter) of 6 rats were isolated. After the left femoral artery in each rat was clamped and transected, the vessel was held together with 3 equidistant 10-0 Xomed sutures. The cut edges were coated 3 to 4 times with the albumin solution and sealed with the CO2 laser (power density = 120 W/cm2). The binding compound solidified to a translucent tensile substance which supported the anastomosis until self healing and repair were achieved. The right femoral artery was used as sham operated control. Complete hemostasis and patency were observed in every case immediately and at 1, 3, and 6 months following surgery. The binding compound absorbed most of the laser energy thus minimizing thermal injury to the underlying tissue. Mongrel dogs weighing 28 to 33 kg were anesthetized and prepared for sterile surgical procedures. In 5 dogs, the femoral and jugular veins were exposed, transected, and anastomosed using a CO2 laser (Sharplan 1040) with the binding compound. In another 12 dogs, cephalic veins were isolated and used for aortocoronary artery bypass procedures. The Sharplan 1040 CO2 laser and 20% albumin solution were utilized to complete the coronary anastomoses in 6 dogs, and 6 dogs were used as controls by suturing the vessels. Again, hemostasis, patency, and minimal tissue damage were observed immediately and 6 weeks after the procedures. Improved surgical results, reduced operating time, minimized tissue damage, and enhanced anastomotic integrity are the advantages of laser assisted vascular anastomosis with a thermal activated binding compound.

  10. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples

    PubMed Central

    Erickson, Heidi S.; Albert, Paul S.; Gillespie, John W.; Rodriguez-Canales, Jaime; Linehan, W. Marston; Pinto, Peter A.; Chuaqui, Rodrigo F.; Emmert-Buck, Michael R.

    2009-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a valuable tool for measuring gene expression in biological samples. However, unique challenges are encountered when studies are performed on cells microdissected from tissues derived from animal models or the clinic, including specimen related issues, variability of RNA template quality and quantity, and normalization. qRT-PCR using small amounts of mRNA derived from dissected cell populations requires adaptation of standard methods to allow meaningful comparisons across sample sets. The protocol described here presents the rationale, technical steps, normalization strategy, and data analysis necessary to generate reliable gene expression measurements of transcripts from dissected samples. The entire protocol from tissue microdissection through qRT-PCR analysis requires approximately 16 hours. PMID:19478806

  11. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  12. Direct polymerase chain reaction amplification of formalin-fixed, paraffin-wax-embedded tissue after automated sequential laser microdissection and pressure catapulting.

    PubMed

    O'Kane, S L; Garimella, V; Sivarajasingham, N; Drew, P J; Cawkwell, L

    2007-02-01

    A robust method to facilitate rapid laser microdissection and pressure catapulting (LMPC) coupled with direct polymerase chain reaction (dPCR) to eliminate the need for extraction of DNA before a PCR-based assay is described. This sequential LMPC-dPCR method is rapid and decreases the number of processing steps, reducing the chance of tissue loss and contamination.

  13. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  14. Stabilization of RNA during laser capture microdissection by performing experiments under argon atmosphere or using ethanol as a solvent in staining solutions

    PubMed Central

    Clément-Ziza, Mathieu; Munnich, Arnold; Lyonnet, Stanislas; Jaubert, Francis; Besmond, Claude

    2008-01-01

    The combination of laser capture microdissection (LCM) and gene expression experiments allows cell specific expression profiling, which is decisive in cellular transcriptomic exploration. LCM makes possible the isolation of unique cells or group of cells, but maintaining RNA quality during this process is challenging. Several protocols are available for section preparation, but none of those guarantees the integrity of the RNA during microdissection, and operators are recommended to perform LCM during a limited time. We hypothesized that the cause of RNA degradation during the microdissection time is the presence of water rendering endogenous RNase activity possible. We thus developed two methods that stabilize RNA during microdissection time for up to 90 min. The first one consists of performing LCM under an argon atmosphere, thus preventing tissue rehydration; it is compliant with all existing microdissection protocols. The second one is a new fixation and staining method using ethanol as solvent in all preparatory steps to LCM that enhances fixation and dehydration of samples. We assessed several stains in regard of their effect on tissue morphology and RNA integrity and adjusted an ethanolic staining solution of cresyl violet and eosin Y. PMID:18945804

  15. Dlx1 and Rgs5 in the Ductus Arteriosus: Vessel-Specific Genes Identified by Transcriptional Profiling of Laser-Capture Microdissected Endothelial and Smooth Muscle Cells

    PubMed Central

    Bökenkamp, Regina; van Brempt, Ronald; van Munsteren, Jacoba Cornelia; van den Wijngaert, Ilse; de Hoogt, Ronald; Finos, Livio; Goeman, Jelle; Groot, Adriana Cornelia Gittenberger-de; Poelmann, Robert Eugen; Blom, Nicolaas Andreas; DeRuiter, Marcus Cornelis

    2014-01-01

    Closure of the ductus arteriosus (DA) is a crucial step in the transition from fetal to postnatal life. Patent DA is one of the most common cardiovascular anomalies in children with significant clinical consequences especially in premature infants. We aimed to identify genes that specify the DA in the fetus and differentiate it from the aorta. Comparative microarray analysis of laser-captured microdissected endothelial (ECs) and vascular smooth muscle cells (SMCs) from the DA and aorta of fetal rats (embryonic day 18 and 21) identified vessel-specific transcriptional profiles. We found a strong age-dependency of gene expression. Among the genes that were upregulated in the DA the regulator of the G-protein coupled receptor 5 (Rgs5) and the transcription factor distal-less homeobox 1 (Dlx1) exhibited the highest and most significant level of differential expression. The aorta showed a significant preferential expression of the Purkinje cell protein 4 (Pcp4) gene. The results of the microarray analysis were validated by real-time quantitative PCR and immunohistochemistry. Our study confirms vessel-specific transcriptional profiles in ECs and SMCs of rat DA and aorta. Rgs5 and Dlx1 represent novel molecular targets for the regulation of DA maturation and closure. PMID:24489801

  16. Synchronous development of Eimeria tenella in chicken caeca and utility of laser microdissection for purification of single stage schizont RNA.

    PubMed

    Matsubayashi, M; Hatta, T; Miyoshi, T; Anisuzzaman; Alim, M A; Yamaji, K; Shimura, K; Isobe, T; Tsuji, N

    2012-10-01

    Eimeria tenella is recognized worldwide as a significant pathogen in the poultry industry. However, a lack of methods for isolating developing schizonts has hindered the use of transcriptome analyses to discover novel and developmentally regulated genes. In the present study, we characterized the long-term successive development of E. tenella in infected chicken caeca and assessed the utility of laser microdissection (LMD) for the isolation of schizont RNA. Developmental stages, including those of the first, second, and third-generation schizonts and gametocytes, were synchronous. Using LMD, only the mature second-generation schizonts were successfully excised from the lamina propria, and non-degraded RNA was purified from the schizonts. E. tenella-specific genes were amplified by reverse transcription polymerase chain reaction (RT-PCR). These results augment our understanding of the E. tenella life cycle, and reveal LMD as a potentially useful tool for gene expression analyses of the intracellular stages of E. tenella.

  17. Light Chain Deposition Disease Diagnosed with Laser Micro-dissection, Liquid Chromatography, and Tandem Mass Spectrometry of Nodular Glomerular Lesions

    PubMed Central

    Kasagi, Tomomichi; Nobata, Hironobu; Suzuki, Keisuke; Miura, Naoto; Banno, Shogo; Takami, Akiyoshi; Yamashita, Taro; Ando, Yukio; Imai, Hirokazu

    2017-01-01

    A 42-year-old man developed nephrotic syndrome and rapidly progressive renal failure. Kidney biopsy demonstrated nodular glomerulosclerosis, negative Congo red staining, and no deposition of light or heavy chains. Laser micro-dissection and liquid chromatography with tandem mass spectrometry of nodular lesions revealed the presence of a kappa chain constant region and kappa III variable region, which signified light chain deposition disease. Dexamethasone and thalidomide were effective in decreasing the serum levels of free kappa light chain from 147.0 to 38.0 mg/L, eliminating proteinuria, and halting the worsening of the kidney dysfunction, with serum creatinine levels stable around 4.0 mg/dL for 3 years. PMID:28050001

  18. Transcriptomic Analysis of Trout Gill Ionocytes in Fresh Water and Sea Water Using Laser Capture Microdissection Combined with Microarray Analysis.

    PubMed

    Leguen, Isabelle; Le Cam, Aurélie; Montfort, Jérôme; Peron, Sandrine; Fautrel, Alain

    2015-01-01

    Fish gills represent a complex organ composed of several cell types that perform multiple physiological functions. Among these cells, ionocytes are implicated in the maintenance of ion homeostasis. However, because the ionocyte represents only a small percent of whole gill tissue, its specific transcriptome can be overlooked among the numerous cell types included in the gill. The objective of this study is to better understand ionocyte functions by comparing the RNA expression of this cell type in freshwater and seawater acclimated rainbow trout. To realize this objective, ionocytes were captured from gill cryosections using laser capture microdissection after immunohistochemistry. Then, transcriptome analyses were performed on an Agilent trout oligonucleotide microarray. Gene expression analysis identified 108 unique annotated genes differentially expressed between freshwater and seawater ionocytes, with a fold change higher than 3. Most of these genes were up-regulated in freshwater cells. Interestingly, several genes implicated in ion transport, extracellular matrix and structural cellular proteins appeared up-regulated in freshwater ionocytes. Among them, several ion transporters, such as CIC2, SLC26A6, and NBC, were validated by qPCR and/or in situ hybridization. The latter technique allowed us to localize the transcripts of these ion transporters in only ionocytes and more particularly in the freshwater cells. Genes involved in metabolism and also several genes implicated in transcriptional regulation, cell signaling and the cell cycle were also enhanced in freshwater ionocytes. In conclusion, laser capture microdissection combined with microarray analysis allowed for the determination of the transcriptional signature of scarce cells in fish gills, such as ionocytes, and aided characterization of the transcriptome of these cells in freshwater and seawater acclimated trout.

  19. Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus.

    PubMed

    Segal, Jeremy P; Stallings, Nancy R; Lee, Charlotte E; Zhao, Liping; Socci, Nicholas; Viale, Agnes; Harris, Thomas M; Soares, Marcelo B; Childs, Geoffrey; Elmquist, Joel K; Parker, Keith L; Friedman, Jeffrey M

    2005-04-20

    The ventromedial hypothalamic nucleus (VMH) plays an important role in the control of feeding and energy homeostasis. In contrast to other hypothalamic nuclei that are also known to regulate energy balance, there is a paucity of nucleus-specific marker genes for the VMH, limiting the application of molecular approaches for analyzing VMH information processing, function, and circuitry. Here, we report the use of laser-capture microdissection to isolate a set of cDNAs that are enriched in the VMH relative to two adjacent hypothalamic nuclei, the arcuate and dorsomedial hypothalamus. The relative expression levels of nine of the 12 most robustly expressed VMH-enriched genes were confirmed by real-time PCR analysis using separate RNAs from these three nuclei. Three of these VMH-enriched genes were further characterized by in situ hybridization histochemistry, including pituitary adenylate cyclase activating polypeptide, cerebellin 1, and an expressed sequence tag named LBH2. Finally, to test whether some of these genes were coordinately regulated, we monitored their expression in steroidogenic factor 1 (SF-1) knock-out mice. SF-1 is a transcription factor that controls the development of the VMH. The RNA levels for four of these genes were reduced in these knock-out animals, further suggesting that they are direct or indirect targets of this orphan nuclear receptor. The VMH-enriched genes identified here provide a basis for a functional analysis of VMH neuronal subpopulations via the use of bacterial artificial chromosome transgenics and related technologies. These results also demonstrate the utility of laser-capture microdissection coupled with microarray technology to identify nucleus-specific transcriptional networks.

  20. Pathway-Focused PCR Array Profiling of Enriched Populations of Laser Capture Microdissected Hippocampal Cells after Traumatic Brain Injury

    PubMed Central

    Boone, Deborah R.; Micci, Maria-Adelaide; Taglialatela, Isabella G.; Hellmich, Judy L.; Weisz, Harris A.; Bi, Min; Prough, Donald S.; DeWitt, Douglas S.; Hellmich, Helen L.

    2015-01-01

    Cognitive deficits in survivors of traumatic brain injury (TBI) are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays) to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive) or surviving (Fluoro-Jade- negative) pyramidal neurons obtained by laser capture microdissection (LCM). In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER) stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration. PMID:26016641

  1. Application of laser microdissection ICP-MS for high resolution elemental mapping in mouse brain tissue: a comparative study with laser ablation ICP-MS.

    PubMed

    Sussulini, Alessandra; Becker, J Sabine

    2015-01-01

    Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Oral vascular malformations: laser treatment and management

    NASA Astrophysics Data System (ADS)

    Romeo, U.; Rocchetti, F.; Gaimari, G.; Tenore, G.; Palaia, G.; Lo Giudice, G.

    2016-03-01

    Vascular malformations are a very heterogeneous group of circulatory system's diseases that can involve different kind of vessels: arterial, venous or lymphatic ones. Many treatments, such as conventional surgery, embolization, steroid therapy and laser therapy, are available for vascular lesions. The laser approach relies more therapeutic techniques: the transmucosal thermophotocoagulation, intralesional photocoagulation, the excisional biopsy. Today laser is demonstrated to be the gold standard technique to treat vascular lesions that allows a safe and efficient treatment and a lower post-operative healing time. The only disadvantage is the risk of carbonization that could be avoided by using the multiple-spot single pulsed wave technique.

  3. Hepatitis C virus RNA and core protein in kidney glomerular and tubular structures isolated with laser capture microdissection.

    PubMed

    Sansonno, D; Lauletta, G; Montrone, M; Grandaliano, G; Schena, F P; Dammacco, F

    2005-06-01

    The role of hepatitis C virus (HCV) in the production of renal injury has been extensively investigated, though with conflicting results. Laser capture microdissection (LCM) was performed to isolate and collect glomeruli and tubules from 20 consecutive chronically HCV-infected patients, namely 6 with membranoproliferative glomerulonephritis, 4 with membranous glomerulonephritis, 7 with focal segmental glomerulosclerosis and 3 with IgA-nephropathy. RNA for amplification of specific viral sequences was provided by terminal continuation methodology and compared with the expression profile of HCV core protein. For each case two glomeruli and two tubular structures were microdissected and processed. HCV RNA sequences were demonstrated in 26 (65%) of 40 glomeruli, but in only 4 (10%) of the tubules (P < 0.05). HCV core protein was concomitant with viral sequences in the glomeruli and present in 31 of the 40 tubules. HCV RNA and/or HCV core protein was found in all four disease types. The immunohistochemical picture of HCV core protein was compared with the LCM-based immunoassays of the adjacent tissue sections. Immune deposits were detected in 7 (44%) of 16 biopsy samples shown to be positive by extraction methods. The present study indicates that LCM is a reliable method for measuring both HCV RNA genomic sequences and HCV core protein in kidney functional structures from chronically HCV-infected patients with different glomerulopathies and provides a useful baseline estimate to define the role of HCV in the production of renal injury. The different distribution of HCV RNA and HCV-related proteins may reflect a peculiar 'affinity' of kidney microenvironments for HCV and point to distinct pathways of HCV-related damage in glomeruli and tubules.

  4. Hepatitis C virus RNA and core protein in kidney glomerular and tubular structures isolated with laser capture microdissection

    PubMed Central

    Sansonno, D; Lauletta, G; Montrone, M; Grandaliano, G; Schena, F P; Dammacco, F

    2005-01-01

    The role of hepatits C virus (HCV) in the production of renal injury has been extensively investigated, though with conflicting results. Laser capture microdissection (LCM) was performed to isolate and collect glomeruli and tubules from 20 consecutive chronically HCV-infected patients, namely 6 with membranoproliferative glomerulonephritis, 4 with membranous glomerulonephritis, 7 with focal segmental glomerulosclerosis and 3 with IgA-nephropathy. RNA for amplification of specific viral sequences was provided by terminal continuation methodology and compared with the expression profile of HCV core protein. For each case two glomeruli and two tubular structures were microdissected and processed. HCV RNA sequences were demonstrated in 26 (65%) of 40 glomeruli, but in only 4 (10%) of the tubules (P < 0·05). HCV core protein was concomitant with viral sequences in the glomeruli and present in 31 of the 40 tubules. HCV RNA and/or HCV core protein was found in all four disease types. The immunohistochemical picture of HCV core protein was compared with the LCM-based immunoassays of the adjacent tissue sections. Immune deposits were detected in 7 (44%) of 16 biopsy samples shown to be positive by extraction methods. The present study indicates that LCM is a reliable method for measuring both HCV RNA genomic sequences and HCV core protein in kidney functional structures from chronically HCV-infected patients with different glomerulopathies and provides a useful baseline estimate to define the role of HCV in the production of renal injury. The different distribution of HCV RNA and HCV-related proteins may reflect a peculiar ‘affinity’ of kidney microenvironments for HCV and point to distinct pathways of HCV-related damage in glomeruli and tubules. PMID:15932511

  5. Microdissection of mouse and human zona pellucida using a 1.48-microns diode laser beam: efficacy and safety of the procedure.

    PubMed

    Germond, M; Nocera, D; Senn, A; Rink, K; Delacrétaz, G; Fakan, S

    1995-09-01

    To investigate the efficacy and safety of a small and affordable 1.48-microns continuous wave diode laser for zona pellucida (ZP) microdissection. Mouse and human oocytes and zygotes were submitted to ZP drilling. The hole characteristics and possible laser-induced structural alterations of the neighboring cytoplasm were investigated with scanning and transmission electron microscopy. The safety of the procedure was checked on control and drilled zygotes by determining their ability to develop in vitro and in vivo. Collaborative study between three Swiss academic centers. The collimated diode laser beam was delivered through a 45x objective of an inverted microscope and focused through the culture dish and culture medium in 1- to 3-microns spots. Safety assessment of the laser drilling procedure. The 1.48-microns radiation achieves a rapid, precise, and easily controlled lysis of the ZP without any micromanipulative handling of the eggs. Different shapes of holes can be produced by varying the laser beam intersection site on the ZP, laser power, and irradiation time. The energy needed to drill holes of a given diameter is greater for zygotes than for oocytes. Safety of the drilling procedure is confirmed by the lack of damage at the ultrastructural and biologic levels. The low-cost 1.48-microns diode laser allows an easy, objective-driven, nontouch microdissection of the ZP. The procedure is safe, as drilled embryos give rise to normal and fertile offspring.

  6. Towards the finer mapping of facioscapulohumeral muscular dystrophy at 4q35: Construction of a laser microdissection library

    SciTech Connect

    Upadhyaya, M.; Osborn, M.; Maynard, J.

    1995-06-19

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder which has been mapped to the 4q35 region. In order to saturate this distal 4q region with DNA markers, a laser-based chromosomal microdissection and microcloning procedure was used to construct a genomic library from the distal 20% of chromosome 4, derived from a single human metaphase spread. Of the 100 microclones analyzed from this library, 94 clones contained inserts sized from 80-800 bp, with an average size of 340 bp. Less than 20% of these clones hybridized to human repeat sequences. Seventy-two single-copy clones were further characterized by Southern blot hybridization against a DNA panel of somatic cell hybrids, containing various regions of chromosome 4. Forty-two clones mapped to chromosome 4, of which 8 clones mapped into the relevant 4q35 region. Twenty of these chromosome 4-specific clones were screened against {open_quotes}zoo-blots{close_quotes}; 11 clones, of which 3 mapped to 4q35, identified conserved sequences. This is the first report to describe the isolation of potential expressed sequences derived from the FSHD region. These chromosome region-specific microclones will be useful in the construction of the physical map of the region, the positional cloning of potential disease-associated genes, and the identification of additional polymorphic markers from within the distal 4q region. 47 refs., 6 figs., 1 tab.

  7. Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants.

    PubMed

    Gautam, Vibhav; Sarkar, Ananda K

    2015-04-01

    Laser assisted microdissection (LAM) is an advanced technology used to perform tissue or cell-specific expression profiling of genes and proteins, owing to its ability to isolate the desired tissue or cell type from a heterogeneous population. Due to the specificity and high efficiency acquired during its pioneering use in medical science, the LAM technique has quickly been adopted for use in many biological researches. Today, it has become a potent tool to address a wide range of questions in diverse field of plant biology. Beginning with comparative transcriptome analysis of different tissues such as reproductive parts, meristems, lateral organs, roots etc., LAM has also been extensively used in plant-pathogen interaction studies, proteomics, and metabolomics. In combination with next generation sequencing and proteomics analysis, LAM has opened up promising opportunities in the area of large scale functional studies in plants. Ever since the advent of this technique, significant improvements have been achieved in term of its instrumentation and method, which has made LAM a more efficient tool applicable in wider research areas. Here, we discuss the advancement of LAM technique with special emphasis on its methodology and highlight its scope in modern research areas of plant biology. Although we put emphasis on use of LAM in transcriptome studies, which is mostly used, we also discuss its recent application and scope in proteome and metabolome studies.

  8. Laser capture microdissection of intestinal tissue from sea bass larvae using an optimized RNA integrity assay and validated reference genes.

    PubMed

    Schaeck, M; De Spiegelaere, W; De Craene, J; Van den Broeck, W; De Spiegeleer, B; Burvenich, C; Haesebrouck, F; Decostere, A

    2016-02-17

    The increasing demand for a sustainable larviculture has promoted research regarding environmental parameters, diseases and nutrition, intersecting at the mucosal surface of the gastrointestinal tract of fish larvae. The combination of laser capture microdissection (LCM) and gene expression experiments allows cell specific expression profiling. This study aimed at optimizing an LCM protocol for intestinal tissue of sea bass larvae. Furthermore, a 3'/5' integrity assay was developed for LCM samples of fish tissue, comprising low RNA concentrations. Furthermore, reliable reference genes for performing qPCR in larval sea bass gene expression studies were identified, as data normalization is critical in gene expression experiments using RT-qPCR. We demonstrate that a careful optimization of the LCM procedure allows recovery of high quality mRNA from defined cell populations in complex intestinal tissues. According to the geNorm and Normfinder algorithms, ef1a, rpl13a, rps18 and faua were the most stable genes to be implemented as reference genes for an appropriate normalization of intestinal tissue from sea bass across a range of experimental settings. The methodology developed here, offers a rapid and valuable approach to characterize cells/tissues in the intestinal tissue of fish larvae and their changes following pathogen exposure, nutritional/environmental changes, probiotic supplementation or a combination thereof.

  9. A Quantitative Proteomic Workflow for Characterization of Frozen Clinical Biopsies: Laser Capture Microdissection Coupled with Label-Free Mass Spectrometry

    PubMed Central

    Shapiro, John P.; Biswas, Sabyasachi; Merchant, Anand S.; Satoskar, Anjali; Taslim, Cenny; Lin, Shili; Rovin, Brad H.; Sen, Chandan K.; Roy, Sashwati; Freitas, Michael A.

    2013-01-01

    This paper describes a simple, highly efficient and robust proteomic workflow for routine liquid-chromatography tandem mass spectrometry analysis of Laser Microdissection Pressure Catapulting (LMPC) isolates. Highly efficient protein recovery was achieved by optimization of a “one-pot” protein extraction and digestion allowing for reproducible proteomic analysis on as few as 500 LMPC isolated cells. The method was combined with label-free spectral count quantitation to characterize proteomic differences from 3,000–10,000 LMPC isolated cells. Significance analysis of spectral count data was accomplished using the edgeR tag-count R package combined with hierarchical cluster analysis. To illustrate the capability of this robust workflow, two examples are presented: 1) analysis of keratinocytes from human punch biopsies of normal skin and a chronic diabetic wound and 2) comparison of glomeruli from needle biopsies of patients with kidney disease. Differentially expressed proteins were validated by use of immunohistochemistry. These examples illustrate that tissue proteomics carried out on limited clinical material can obtain informative proteomic signatures for disease pathogenesis and demonstrate the suitability of this approach for biomarker discovery. PMID:23022584

  10. A quantitative proteomic workflow for characterization of frozen clinical biopsies: laser capture microdissection coupled with label-free mass spectrometry.

    PubMed

    Shapiro, John P; Biswas, Sabyasachi; Merchant, Anand S; Satoskar, Anjali; Taslim, Cenny; Lin, Shili; Rovin, Brad H; Sen, Chandan K; Roy, Sashwati; Freitas, Michael A

    2012-12-21

    This paper describes a simple, highly efficient and robust proteomic workflow for routine liquid-chromatography tandem mass spectrometry analysis of Laser Microdissection Pressure Catapulting (LMPC) isolates. Highly efficient protein recovery was achieved by optimization of a "one-pot" protein extraction and digestion allowing for reproducible proteomic analysis on as few as 500 LMPC isolated cells. The method was combined with label-free spectral count quantitation to characterize proteomic differences from 3000-10,000 LMPC isolated cells. Significance analysis of spectral count data was accomplished using the edgeR tag-count R package combined with hierarchical cluster analysis. To illustrate the capability of this robust workflow, two examples are presented: 1) analysis of keratinocytes from human punch biopsies of normal skin and a chronic diabetic wound and 2) comparison of glomeruli from needle biopsies of patients with kidney disease. Differentially expressed proteins were validated by use of immunohistochemistry. These examples illustrate that tissue proteomics carried out on limited clinical material can obtain informative proteomic signatures for disease pathogenesis and demonstrate the suitability of this approach for biomarker discovery.

  11. Identification of Cellular Targets in Human Intrahepatic Cholangiocarcinoma Using Laser Microdissection and Accurate Mass and Time Tag Proteomics*

    PubMed Central

    Dos Santos, Alexandre; Court, Magali; Thiers, Valérie; Sar, Sokhavuth; Guettier, Catherine; Samuel, Didier; Bréchot, Christian; Garin, Jérôme; Demaugre, France; Masselon, Christophe D.

    2010-01-01

    Obtaining accurate protein profiles from homogeneous cell populations in heterogeneous tissues can enhance the capability to discover protein biomarkers. In this context, methodologies to access specific cellular populations and analyze their proteome with exquisite sensitivity have to be selected. We report here the results of an investigation using a combination of laser microdissection and accurate mass and time tag proteomics. The study was aimed at the precise determination of proteome alterations in intrahepatic cholangiocarcinoma ICC, a markedly heterogeneous tumor. This cancer, which is difficult to diagnose and carries a very poor prognosis, has shown an unexplained increase in incidence over the last few years. Among a pool of 574 identified proteins, we were able to report on altered abundance patterns affecting 39 proteins conforming to a variety of potential tumorigenic pathways. The reliability of the proteomics results was confirmed by Western blot and immunohistochemistry on matched samples. Most of the proteins displaying perturbed abundances had not yet been described in the setting of ICC. These include proteins involved in cell mobility and actin cytoskeleton remodeling, which may participate in the epithelial to mesenchymal transition, a process invoked in migration and invasion of cancer cells. The biological relevance of these findings was explored using a tissue microarray. An increased abundance of vimentin was thus detected in 70% of ICC and none of the controls. These results suggest that vimentin could play a role in the aggressiveness of ICC and provide a basis for the serious outcome of this cancer. PMID:20513801

  12. Approaching Solid Tumor Heterogeneity on a Cellular Basis by Tissue Proteomics Using Laser Capture Microdissection and Biological Mass Spectrometry

    PubMed Central

    Johann, Donald J.; Rodriguez-Canales, Jaime; Mukherjee, Sumana; Prieto, DaRue A.; Hanson, Jeffrey C.; Emmert-Buck, Michael; Blonder, Josip

    2010-01-01

    The purpose of this study was to examine solid tumor heterogeneity on a cellular basis using tissue proteomics that relies on a functional relationship between Laser Capture Microdissection (LCM) and biological mass spectrometry (MS). With the use of LCM, homogeneous regions of cells exhibiting uniform histology were isolated and captured from fresh frozen tissue specimens, which were obtained from a human lymph node containing breast carcinoma metastasis. Six specimens ∼50 000 cell each (three from tumor proper and three from tumor stroma) were collected by LCM. Specimens were processed directly on LCM caps, using sonication in buffered methanol to lyse captured cells, solubilize, and digest extracted proteins. Prepared samples were analyzed by LC/MS/MS resulting in more than 500 unique protein identifications. Decoy database searching revealed a false-positive rate between 5 and 10%. Subcellular localization analysis for stromal cells revealed plasma membrane 14%, cytoplasm 39%, nucleus 11%, extracellular space 27%, and unknown 9%; and tumor cell results were 5%, 58%, 26%, 4%, and 7%, respectively. Western blot analysis confirmed specific linkage of validated proteins to underlying pathology and their potential role in solid tumor heterogeneity. With continued research and optimization of this method including analysis of additional clinical specimens, this approach may lead to an improved understanding of tumor heterogeneity, and serve as a platform for solid tumor biomarker discovery. PMID:19284784

  13. Laser capture microdissection of intestinal tissue from sea bass larvae using an optimized RNA integrity assay and validated reference genes

    PubMed Central

    Schaeck, M.; De Spiegelaere, W.; De Craene, J.; Van den Broeck, W.; De Spiegeleer, B.; Burvenich, C.; Haesebrouck, F.; Decostere, A.

    2016-01-01

    The increasing demand for a sustainable larviculture has promoted research regarding environmental parameters, diseases and nutrition, intersecting at the mucosal surface of the gastrointestinal tract of fish larvae. The combination of laser capture microdissection (LCM) and gene expression experiments allows cell specific expression profiling. This study aimed at optimizing an LCM protocol for intestinal tissue of sea bass larvae. Furthermore, a 3′/5′ integrity assay was developed for LCM samples of fish tissue, comprising low RNA concentrations. Furthermore, reliable reference genes for performing qPCR in larval sea bass gene expression studies were identified, as data normalization is critical in gene expression experiments using RT-qPCR. We demonstrate that a careful optimization of the LCM procedure allows recovery of high quality mRNA from defined cell populations in complex intestinal tissues. According to the geNorm and Normfinder algorithms, ef1a, rpl13a, rps18 and faua were the most stable genes to be implemented as reference genes for an appropriate normalization of intestinal tissue from sea bass across a range of experimental settings. The methodology developed here, offers a rapid and valuable approach to characterize cells/tissues in the intestinal tissue of fish larvae and their changes following pathogen exposure, nutritional/environmental changes, probiotic supplementation or a combination thereof. PMID:26883391

  14. NanoLC-FT-ICR MS improves proteome coverage attainable for ~3000 laser microdissected breast carcinoma cells

    SciTech Connect

    Umar, Arzu; Luider, Theo N.; Foekens, J. A.; Pasa-Tolic, Liljiana

    2007-01-29

    Genomics and proteomics assays hold great promise for unrevealing molecular events that underlie human disease. Essential to this quest is the ability to effectively analyze clinical samples, but this task is considerably complicated by tissue heterogeneity. Laser capture microdissection (LCM) can be used to selectively isolate targeted cell populations (such as tumor cells) from their native tissue environment. However, the small number of cells that are typically procured by LCM severely limits the proteome coverage and biomarker discovery potential achievable by conventional proteomics platforms. Herein, we report on the use of a nano liquid chromatography-Fourier transform ion clyclotron resonance mass spectrometry (nLC-FTICR MS) platform for analyzing protein digests of approximately 3,000 LCM-derived tumor cells from breast carcinoma tissue, which corresponds to approximately 300 ng of total protein. A total of 2,836 peptides were identified by matching LC-MS data to accurate mass and time (AMT) tag databases that were previously established for the human mammary epithelium and several breast cancer cell lines. The peptide identifications correspond to 1,139 unique proteins confidently identified with 2 or more peptides. Based on categorization by Gene Ontology, identified proteins appear to cover a wide variety of biological functions and cellular compartments. This work demonstrates that a substantial number of proteins can be identified from a limited number of cells using the AMT tag approach and opens a door for high throughput in-depth proteomics analysis of clinical samples.

  15. In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection

    PubMed Central

    Marotta, Diane; Karar, Jayashree; Jenkins, W. Timothy; Kumanova, Monika; Jenkins, Kevin W.; Tobias, John W.; Baldwin, Donald; Hatzigeorgiou, Artemis; Alexiou, Panagiotis; Evans, Sydney M.; Alarcon, Rodolfo; Maity, Amit; Koch, Cameron; Koumenis, Constantinos

    2010-01-01

    Hypoxia is a key determinant of tumor aggressiveness, yet little is known regarding hypoxic global gene regulation in vivo. We have employed the hypoxia marker EF5 coupled with laser capture microdissection to isolate RNA from viable hypoxic and normoxic regions of 9L experimental gliomas. Through microarray analysis, we have identified several mRNAs (including the HIF targets Vegf, Glut-1 and Hsp27) with increased levels under hypoxia compared to normoxia both in vitro and in vivo. However, we also found striking differences between the global in vitro and in vivo hypoxic mRNA profiles. Intriguingly, the mRNA levels of a substantial number of immunomodulatory and DNA repair proteins including CXCL9, CD3D and RAD51 were found to be downregulated in hypoxic areas in vivo, consistent with a pro-tumorigenic role of hypoxia in solid tumors. Immunohistochemical staining verified increased HSP27 and decreased RAD51 protein levels in hypoxic vs. normoxic tumor regions. Moreover, CD8+ T cells which are recruited to tumors upon stimulation by CXCL9 and CXCL10, were largely excluded from viable hypoxic areas in vivo. This is the first study to analyze the influence of hypoxia on mRNA levels in vivo and can be readily adapted to obtain a comprehensive picture of hypoxic regulation of gene expression and its influence on biological functions in solid tumors. PMID:21266355

  16. Laser capture microdissection of uredinia formed by Melampsora larici-populina revealed a transcriptional switch between biotrophy and sporulation.

    PubMed

    Hacquard, Stéphane; Delaruelle, Christine; Legué, Valérie; Tisserant, Emilie; Kohler, Annegret; Frey, Pascal; Martin, Francis; Duplessis, Sébastien

    2010-10-01

    The foliar rust caused by the basidiomycete Melampsora larici-populina is the main disease affecting poplar plantations in Europe. The biotrophic status of rust fungi is a major limitation to study gene expression of cell or tissue types during host infection. At the uredinial stage, infected poplar leaves contain distinct rust tissues such as haustoria, infection hyphae, and uredinia with sporogenous hyphae and newly formed asexual urediniospores. Laser capture microdissection (LCM) was used to isolate three areas corresponding to uredinia and subjacent zones in the host mesophyll for expression analysis with M. larici-populina whole-genome exon oligoarrays. Optimization of tissue preparation prior to LCM allowed isolation of RNA of good integrity for genome-wide expression profiling. Our results indicate that the poplar rust uredinial stage is marked by distinct genetic programs related to biotrophy in the host palisade mesophyll and to sporulation in the uredinium. A strong induction of transcripts encoding small secreted proteins, likely containing rust effectors, is observed in the mesophyll, suggesting a late maintenance of suppression of host defense in the tissue containing haustoria and infection hyphae. On the other hand, cell cycle and cell defense rescue transcripts are strongly accumulated in the sporulation area. This combined LCM-transcriptomic approach brings new insights on the molecular mechanisms underlying urediniospore formation in rust fungi.

  17. Laser Capture Microdissection of Pancreatic Acinar Cells to Identify Proteomic Alterations in a Murine Model of Caerulein-Induced Pancreatitis.

    PubMed

    Shapiro, John P; Komar, Hannah M; Hancioglu, Baris; Yu, Lianbo; Jin, Ming; Ogata, Yuko; Hart, Phil A; Cruz-Monserrate, Zobeida; Lesinski, Gregory B; Conwell, Darwin L

    2017-04-13

    Chronic pancreatitis (CP) is characterized by inflammation and fibrosis of the pancreas, leading to pain, parenchymal damage, and loss of exocrine and endocrine function. There are currently no curative therapies; diagnosis remains difficult and aspects of pathogenesis remain unclear. Thus, there is a need to identify novel biomarkers to improve diagnosis and understand pathophysiology. We hypothesize that pancreatic acinar regions contain proteomic signatures relevant to disease processes, including secreted proteins that could be detected in biofluids. Acini from pancreata of mice injected with or without caerulein were collected using laser capture microdissection followed by mass spectrometry analysis. This protocol enabled high-throughput analysis that captured altered protein expression throughout the stages of CP. Over 2,900 proteins were identified, whereas 331 were significantly changed ≥2-fold by mass spectrometry spectral count analysis. Consistent with pathogenesis, we observed increases in proteins related to fibrosis (e.g., collagen, P<0.001), several proteases (e.g., trypsin 1, P<0.001), and altered expression of proteins associated with diminished pancreas function (e.g., lipase, amylase, P<0.05). In comparison with proteomic data from a public data set of CP patients, a significant correlation was observed between proteomic changes in tissue from both the caerulein model and CP patients (r=0.725, P<0.001). This study illustrates the ability to characterize proteome changes of acinar cells isolated from pancreata of caerulein-treated mice and demonstrates a relationship between signatures from murine and human CP.

  18. Expression Analysis of Barrett’s Esophagus Associated High Grade Dysplasia in Laser Capture Microdissected Archival Tissue

    PubMed Central

    Sabo, Edmond; Meitner, Patricia A; Tavares, Rosemarie; Corless, Christopher L; Lauwers, Gregory Y; Moss, Steven F; Resnick, Murray B

    2009-01-01

    Purpose Identifying genes differentially expressed in non-dysplastic Barrett’s esophagus (BE) from those expressed in high grade dysplasia (HGD) should be of value in improving our understanding of this transition and may yield new diagnostic and/or prognostic markers. The aim of this study was to determine the differential transcriptome of HGD compared with non-dysplastic BE through gene microarray analysis of epithelial cells microdissected from archival tissue specimens. Experimental Design Laser capture microdissection (LCM) was used to isolate epithelial cells from adjacent inflammatory and stromal cells. Epithelial mRNA was extracted from areas of non-dysplastic BE and HGD in matched biopsies from 11 patients. mRNA was reverse transcribed and applied on Affymetrix cDNA microarray chips customized for formalin-exposed tissue. For a subset of these genes, differential gene expression was confirmed by RT-PCR and immunohistochemistry. Results There were 131 genes over-expressed by at least 2.5-fold in HGD versus non-dysplastic BE and 16 genes that were under-expressed by at least 2.5-fold. Among the over-expressed genes are several previously demonstrated to be increased in the neoplastic progression of BE, as well as novel genes such as lipocalin-2, S100A9, matrix metallopeptidase 12, secernin 1 and topoisomerase IIα. Genes decreased in dysplastic epithelium include MUC5AC, trefoil factor1 (TFF1), meprin A and CD13. RT-PCR validated the changes in expression in 24 of 28 selected genes. Immunohistochemistry confirmed increased protein expression for topoisomerase IIα, S100A9 and lipocalin-2 and decreased expression of TFF1 across the spectrum of BE associated dysplasia from non-dysplastic BE through adenocarcinoma. Conclusions This is the first study to identify epithelial genes differentially expressed in HGD versus non-dysplastic BE in matched patient samples. The genes identified include several previously implicated in the pathogenesis of Barrett

  19. Cell type-specific qualitative and quantitative analysis of saikosaponins in three Bupleurum species using laser microdissection and liquid chromatography-quadrupole/time of flight-mass spectrometry.

    PubMed

    Liang, Zhitao; Oh, Kayan; Wang, Yuqing; Yi, Tao; Chen, Hubiao; Zhao, Zhongzhen

    2014-08-01

    Cell type-specific metabolite analysis is a promising method for understanding plant metabolite production, function, transport and storage. In the present study, laser microdissection (LMD) and ultra-high performance liquid chromatography quadrupole/time of flight-mass spectrometry are combined to determine where secondary metabolites are accumulated in the roots of Bupleurum scorzonerifolium Willd, Bupleurum chinense DC. and Bupleurum falcatum L. Four tissues, namely cork, cortex, phloem and xylem, were microdissected by laser microdissection, and their chemical profiles were analyzed. The main metabolites are saikosaponins. Different tissues contained different saikosaponins. Generally, the cork and cortex from all three species contained more types of saikosaponins and higher contents of saikosaponins a, c and d than did the phloem and xylem. Interestingly, in the roots of Bupleurum scorzonerifolium and B. falcatum, the cork contained much higher contents of saikosaponins a, c and d than did the cortex; while in the root of B. chinense, the cortex contained higher contents of saikosaponins a, c and d than the cork. Explanation and application of the results are discussed. The present findings yield valuable insights into the quality evaluation of Bupleuri Radix by morphological features. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Laser microdissection and genetic manipulation technologies to probe lignin heterogeneity and configuration in plant cell walls.

    PubMed

    Corea, Oliver R A; Ki, Chanyoung; Cardenas, Claudia L; Davin, Laurence B; Lewis, Norman G

    2012-01-01

    Single and multiple T-DNA knockouts of genes encoding arogenate dehydratases (ADTs) in Arabidopsis were obtained in homozygous form. These were analyzed for potential differences in lignin contents and compositions, as well as for distinct phenotypes over growth and development. Of these different lines, distinct reductions in lignin contents were obtained, with those having different G:S ratios depending upon the combination of ADT genes being knocked out. Results from pyrolysis GC/MS analyses indicated that differential carbon flux occurred into the vascular bundles (vb) and interfascicular fibers (if). These results provide additional new insight into factors controlling lignin heterogeneity and configuration.

  1. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation.

    PubMed

    Guillot, Flora; Garcia, Alexandra; Salou, Marion; Brouard, Sophie; Laplaud, David A; Nicot, Arnaud B

    2015-07-04

    Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35-55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was

  2. Gene Expression Analysis of Neurons and Astrocytes Isolated by Laser Capture Microdissection from Frozen Human Brain Tissues

    PubMed Central

    Tagliafierro, Lidia; Bonawitz, Kirsten; Glenn, Omolara C.; Chiba-Falek, Ornit

    2016-01-01

    Different cell types and multiple cellular connections characterize the human brain. Gene expression analysis using a specific population of cells is more accurate than conducting analysis of the whole tissue homogenate, particularly in the context of neurodegenerative diseases, where a specific subset of cells is affected by the different pathology. Due to the difficulty of obtaining homogenous cell populations, gene expression in specific cell-types (neurons, astrocytes, etc.) has been understudied. To leverage the use of archive resources of frozen human brains in studies of neurodegenerative diseases, we developed and calibrated a method to quantify cell-type specific—neuronal, astrocytes—expression profiles of genes implicated in neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. Archive human frozen brain tissues were used to prepare slides for rapid immunostaining using cell-specific antibodies. The immunoreactive-cells were isolated by Laser Capture Microdissection (LCM). The enrichment for a particular cell-type of interest was validated in post-analysis stage by the expression of cell-specific markers. We optimized the technique to preserve the RNA integrity, so that the RNA was suitable for downstream expression analyses. Following RNA extraction, the expression levels were determined digitally using nCounter Single Cell Gene Expression assay (NanoString Technologies®). The results demonstrated that using our optimized technique we successfully isolated single neurons and astrocytes from human frozen brain tissues and obtained RNA of a good quality that was suitable for mRNA expression analysis. We present here new advancements compared to previous reported methods, which improve the method's feasibility and its applicability for a variety of downstream molecular analyses. Our new developed method can be implemented in genetic and functional genomic research of neurodegenerative diseases and has the potential to

  3. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells.

    PubMed

    Balestrini, Raffaella; Gómez-Ariza, Jorge; Lanfranco, Luisa; Bonfante, Paola

    2007-09-01

    The establishment of a symbiotic interaction between plant roots and arbuscular mycorrhizal (AM) fungi requires both partners to undergo significant morphological and physiological modifications which eventually lead to reciprocal beneficial effects. Extensive changes in gene expression profiles recently have been described in transcriptomic studies that have analyzed the whole mycorrhizal root. However, because root colonization by AM fungi involves different cell types, a cell-specific gene expression pattern is likely to occur. We have applied the laser microdissection (LMD) technology to investigate expression profiles of both plant and fungal genes in Lycopersicon esculentum roots colonized by Glomus mosseae. A protocol to harvest arbuscule-containing cells from paraffin sections of mycorrhizal roots has been developed using a Leica AS LMD system. RNA of satisfactory quantity and quality has been extracted for molecular analysis. Transcripts for plant phosphate transporters (LePTs), selected as molecular markers for a functional symbiosis, have been detected by reverse-transcriptase polymerase chain reaction assays and associated to distinct cell types, leading to novel insights into the distribution of LePT mRNAs. In fact, the transcripts of the five phosphate transporters (PTs) have been detected contemporaneously in the same arbusculated cell population, unlike from the neighboring noncolonized cells. In addition, fungal H(+)ATPase (GmHA5) and phosphate transporter (GmosPT) mRNAs were found exclusively in arbusculated cells. The discovery that five plant and one fungal PT genes are consistently expressed inside the arbusculated cells provides a new scenario for plant-fungus nutrient exchanges.

  4. Cell Type-Specific Transcriptome of Brassicaceae Stigmatic Papilla Cells From a Combination of Laser Microdissection and RNA Sequencing

    PubMed Central

    Osaka, Masaaki; Matsuda, Tomoki; Sakazono, Satomi; Masuko-Suzuki, Hiromi; Maeda, Shunsuke; Sewaki, Misato; Sone, Mikako; Takahashi, Hirokazu; Nakazono, Mikio; Iwano, Megumi; Takayama, Seiji; Shimizu, Kentaro K.; Yano, Kentaro; Lim, Yong Pyo; Suzuki, Go; Suwabe, Keita; Watanabe, Masao

    2013-01-01

    Pollination is an early and critical step in plant reproduction, leading to successful fertilization. It consists of many sequential processes, including adhesion of pollen grains onto the surface of stigmatic papilla cells, foot formation to strengthen pollen–stigma interaction, pollen hydration and germination, and pollen tube elongation and penetration. We have focused on an examination of the expressed genes in papilla cells, to increase understanding of the molecular systems of pollination. From three representative species of Brassicaceae (Arabidopsis thaliana, A. halleri and Brassica rapa), stigmatic papilla cells were isolated precisely by laser microdissection, and cell type-specific gene expression in papilla cells was determined by RNA sequencing. As a result, 17,240, 19,260 and 21,026 unigenes were defined in papilla cells of A. thaliana, A. halleri and B. rapa, respectively, and, among these, 12,311 genes were common to all three species. Among the17,240 genes predicted in A. thaliana, one-third were papilla specific while approximately half of the genes were detected in all tissues examined. Bioinformatics analysis revealed that genes related to a wide range of reproduction and development functions are expressed in papilla cells, particularly metabolism, transcription and membrane-mediated information exchange. These results reflect the conserved features of general cellular function and also the specific reproductive role of papilla cells, highlighting a complex cellular system regulated by a diverse range of molecules in these cells. This study provides fundamental biological knowledge to dissect the molecular mechanisms of pollination in papilla cells and will shed light on our understanding of plant reproduction mechanisms. PMID:24058146

  5. The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola.

    PubMed

    Tang, Weihua; Coughlan, Sean; Crane, Edmund; Beatty, Mary; Duvick, Jon

    2006-11-01

    Laser microdissection (LM) offers a potential means for deep sampling of a fungal plant-pathogen transcriptome during the infection process using whole-genome DNA microarrays. The use of a fluorescent protein-expressing fungus can greatly facilitate the identification of fungal structures for LM sampling. However, fixation methods that preserve both tissue histology and protein fluorescence, and that also yield RNA of suitable quality for microarray applications, have not been reported. We developed a microwave-accelerated acetone fixation, paraffin-embedding method that fulfills these requirements and used it to prepare mature maize stalk tissues infected with an Anemonia majano cyan fluorescent protein-expressing isolate of the anthracnose stalk rot fungus Colletotrichum graminicola. We successfully used LM to isolate individual maize cells associated with C. graminicola hyphae at an early stage of infection. The LM-derived RNA, after two-round linear amplification, was of sufficient quality and quantity for global expression profiling using a fungal microarray. Comparing replicated LM samples representing an early stage of stalk cell infection with samples from in vitro-germinated conidia, we identified 437 and 370 C. graminicola genes showing significant up- or downregulation, respectively. We confirmed the differential expression of several representative transcripts by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and documented extensive overlap of this dataset with a PCR-subtraction library enriched for C. graminicola transcripts in planta. Our results demonstrate that LM is feasible for in planta pathogen expression profiling and can reveal clues about fungal genes involved in pathogenesis. The method in this report may be advantageous for visualizing a variety of cellular features that depend on a high degree of histochemical preservation and RNA integrity prior to LM.

  6. Isolating RNA from precursor and mature melanocytes from human vitiligo and normal skin using laser capture microdissection.

    PubMed

    Goldstein, Nathaniel B; Koster, Maranke I; Hoaglin, Laura G; Wright, Michael J; Robinson, Steven E; Robinson, William A; Roop, Dennis R; Norris, David A; Birlea, Stanca A

    2016-10-01

    To characterize the gene expression profile of regenerated melanocytes in the narrow band UVB (NBUVB)-treated vitiligo epidermis and their precursors in the hair follicle, we present here a strategy of RNA isolation from in situ melanocytes using human frozen skin. We developed a rapid immunostaining protocol using the NKI-beteb antibody, which labels differentiated and precursor melanocytes, followed by fluorescent laser capture microdissection. This technique enabled the direct isolation, from melanocyte and adjacent keratinocyte populations, of satisfactory quality RNA that was successfully amplified and analysed by qRT-PCR. The melanocyte-specific gene transcripts TYR, DCT, TYRP1 and PMEL were significantly upregulated in our NBUVB-treated melanocyte samples as compared with the keratinocyte samples, while keratinocyte-specific genes (KRT5 and KRT14) were expressed significantly higher in the keratinocyte samples as compared with the melanocyte samples. Furthermore, in both NBUVB-treated vitiligo skin and normal skin, when bulge melanocytes were compared with epidermal melanocytes, we found significantly lower expression of melanocyte-specific genes and significantly higher expression of three melanocytic stem cell genes (SOX9, WIF1 and SFRP1), while ALCAM and ALDH1A1 transcripts did not show significant variation. We found significantly higher expression of melanocyte-specific genes in the epidermis of NBUVB-treated vitiligo, as compared to the normal skin. When comparing bulge melanocyte samples from untreated vitiligo, NBUVB-treated vitiligo and normal skin, we did not find significant differences in the expression of melanocyte-specific genes or melanocytic stem cell genes. These techniques offer valuable opportunities to study melanocytes and their precursors in vitiligo and other pigmentation disorders. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR.

    PubMed

    Happyana, Nizar; Agnolet, Sara; Muntendam, Remco; Van Dam, Annie; Schneider, Bernd; Kayser, Oliver

    2013-03-01

    Trichomes, especially the capitate-stalked glandular hairs, are well known as the main sites of cannabinoid and essential oil production of Cannabis sativa. In this study the distribution and density of various types of Cannabis sativa L. trichomes, have been investigated by scanning electron microscopy (SEM). Furthermore, glandular trichomes were isolated over the flowering period (8 weeks) by laser microdissection (LMD) and the cannabinoid profile analyzed by LCMS. Cannabinoids were detected in extracts of 25-143 collected cells of capitate-sessile and capitate stalked trichomes and separately in the gland (head) and the stem of the latter. Δ(9)-Tetrahydrocannabinolic acid [THCA (1)], cannabidiolic acid [CBDA (2)], and cannabigerolic acid [CBGA (3)] were identified as most-abundant compounds in all analyzed samples while their decarboxylated derivatives, Δ(9)-tetrahydrocannabinol [THC (4)], cannabidiol [CBD (5)], and cannabigerol [CBG (6)], co-detected in all samples, were present at significantly lower levels. Cannabichromene [CBC (8)] along with cannabinol (CBN (9)) were identified as minor compounds only in the samples of intact capitate-stalked trichomes and their heads harvested from 8-week old plants. Cryogenic nuclear magnetic resonance spectroscopy (NMR) was used to confirm the occurrence of major cannabinoids, THCA (1) and CBDA (2), in capitate-stalked and capitate-sessile trichomes. Cryogenic NMR enabled the additional identification of cannabichromenic acid [CBCA (7)] in the dissected trichomes, which was not possible by LCMS as standard was not available. The hereby documented detection of metabolites in the stems of capitate-stalked trichomes indicates a complex biosynthesis and localization over the trichome cells forming the glandular secretion unit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization.

    PubMed

    Serova, Tatiana A; Tikhonovich, Igor A; Tsyganov, Viktor E

    2017-05-01

    mutant line E135F (sym13) by laser capture microdissection analysis. Finally, we analyzed ACC by immunolocalization in the nodules of both wild-type pea and their mutants. Together, the results indicate that nodule senescence is a general plant response to nodule ineffectiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Monocular visual deprivation in Macaque monkeys: A profile in the gene expression of lateral geniculate nucleus by laser capture microdissection

    PubMed Central

    Kaminski, Henry J.; Gong, Bendi; Zhou, Lan; Hatala, Denise; Howell, Scott J.; Zhou, Xiaohua; Mustari, Michael J.

    2008-01-01

    Purpose Amblyopia is the most common cause of visual impairment in children. Early detection of amblyopia and subsequent intervention are vital in preventing visual loss. Understanding the molecular pathogenesis of amblyopia would greatly facilitate development of therapeutic interventions. An animal model of amblyopia induced by monocular vision deprivation has been extensively studied in terms of anatomic and physiologic alterations that affect visual pathways. However, the molecular events underlying these changes are poorly understood. This study aimed to characterize changes of gene expression profiles in the lateral geniculate nucleus (LGN) associated with amblyopia induced by monocular visual deprivation. Methods Monocular vision deprivation was generated by either opaque dark contact lens or tarsorrhaphy of newborn rhesus monkeys. LGN was harvested at two or four months following induction of vision deprivation. Laser capture microdissection was used to obtain individual LGN layers for total RNA isolation. Linear T7-based in vitro RNA amplification was used to obtain sufficient RNA to conduct DNA microarray studies. The resulting Affymetrix GeneChip Expression data were analyzed using Affymetrix GeneChip Operating Software. Real-time quantitative polymerase chain reaction and in situ hybridization were used to further analyze expression of selected genes. Results Using 52,699 microarray probe sets from a Rhesus array, we identified 116 transcripts differentially expressed between deprived and nondeprived parvocellular layers: 45 genes were downregulated and 71 genes were upregulated in deprived parvocellular layers. We also observed substantial changes in deprived magnocellular laminae: 74 transcripts exhibited altered expression, 42 genes were downregulated, and 32 genes were upregulated. The genes identified in this study are involved in many diverse processes, including binding (calcium ion binding, nucleic acid binding, and nucleotide binding

  10. Cytogenetic Characterization of the TM4 Mouse Sertoli Cell Line. II. Chromosome Microdissection, FISH, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy.

    PubMed

    Schmid, Michael; Guttenbach, Martina; Steinlein, Claus; Wanner, Gerhard; Houben, Andreas

    2015-01-01

    The chromosomes and interphase cell nuclei of the permanent mouse Sertoli cell line TM4 were examined by chromosome microdissection, FISH, scanning electron microscopy, and confocal laser scanning microscopy. The already known marker chromosomes m1-m5 were confirmed, and 2 new large marker chromosomes m6 and m7 were characterized. The minute heterochromatic marker chromosomes m4 and m5 were microdissected and their DNA amplified by DOP-PCR. FISH of this DNA probe on TM4 metaphase chromosomes demonstrated that the m4 and m5 marker chromosomes have derived from the centromeric regions of normal telocentric mouse chromosomes. Ectopic pairing of the m4 and m5 marker chromosomes with the centromeric region of any of the other chromosomes (centromeric associations) was apparent in ∼60% of the metaphases. Scanning electron microscopy revealed DNA-protein bridges connecting the centromeric regions of normal chromosomes and the associated m4 and m5 marker chromosomes. Interphase cell nuclei of TM4 Sertoli cells did not exhibit the characteristic morphology of Sertoli cells in the testes of adult mice as shown by fluorescence microscopy and confocal laser scanning microscopy.

  11. Impact of Upfront Cellular Enrichment by Laser Capture Microdissection on Protein and Phosphoprotein Drug Target Signaling Activation Measurements in Human Lung Cancer: Implications for Personalized Medicine

    PubMed Central

    Elisa, Baldelli; B., Haura Eric; Lucio, Crinò; Douglas, Cress W.; Vienna, Ludovini; B., Schabath Matthew; A., Liotta Lance; F., Petricoin Emanuel; Mariaelena, Pierobon

    2015-01-01

    Purpose The aim of this study was to evaluate whether upfront cellular enrichment via laser capture microdissection is necessary for accurately quantifying predictive biomarkers in non-small cell lung cancer tumors. Experimental design Fifteen snap frozen surgical biopsies were analyzed. Whole tissue lysate and matched highly enriched tumor epithelium via laser capture microdissection (LCM) were obtained for each patient. The expression and activation/phosphorylation levels of 26 proteins were measured by reverse phase protein microarray. Differences in signaling architecture of dissected and undissected matched pairs were visualized using unsupervised clustering analysis, bar graphs, and scatter plots. Results Overall patient matched LCM and undissected material displayed very distinct and differing signaling architectures with 93% of the matched pairs clustering separately. These differences were seen regardless of the amount of starting tumor epithelial content present in the specimen. Conclusions and clinical relevance These results indicate that LCM driven upfront cellular enrichment is necessary to accurately determine the expression/activation levels of predictive protein signaling markers although results should be evaluated in larger clinical settings. Upfront cellular enrichment of the target cell appears to be an important part of the workflow needed for the accurate quantification of predictive protein signaling biomarkers. Larger independent studies are warranted. PMID:25676683

  12. The Cause of Death of a Child in the 18th Century Solved by Bone Microbiome Typing Using Laser Microdissection and Next Generation Sequencing.

    PubMed

    D'Argenio, Valeria; Torino, Marielva; Precone, Vincenza; Casaburi, Giorgio; Esposito, Maria Valeria; Iaffaldano, Laura; Malapelle, Umberto; Troncone, Giancarlo; Coto, Iolanda; Cavalcanti, Paolina; De Rosa, Gaetano; Salvatore, Francesco; Sacchetti, Lucia

    2017-01-06

    The history of medicine abounds in cases of mysterious deaths, especially by infectious diseases, which were probably unresolved because of the lack of knowledge and of appropriate technology. The aim of this study was to exploit contemporary technologies to try to identify the cause of death of a young boy who died from a putative "infection" at the end of the 18th century, and for whom an extraordinarily well-preserved minute bone fragment was available. After confirming the nature of the sample, we used laser microdissection to select the most "informative" area to be examined. Tissue genotyping indicated male gender, thereby confirming the notary's report. 16S ribosomal RNA sequencing showed that Proteobacteria and Actinobacteria were more abundant than Firmicutes and Bacteroidetes, and that Pseudomonas was the most abundant bacterial genus in the Pseudomonadaceae family. These data suggest that the patient most likely died from Pseudomonas osteomyelitis. This case is an example of how new technological approaches, like laser microdissection and next-generation sequencing, can resolve ancient cases of uncertain etiopathology. Lastly, medical samples may contain a wealth of information that may not be accessible until more sophisticated technology becomes available. Therefore, one may envisage the possibility of systematically storing medical samples for evaluation by future generations.

  13. The Cause of Death of a Child in the 18th Century Solved by Bone Microbiome Typing Using Laser Microdissection and Next Generation Sequencing

    PubMed Central

    D’Argenio, Valeria; Torino, Marielva; Precone, Vincenza; Casaburi, Giorgio; Esposito, Maria Valeria; Iaffaldano, Laura; Malapelle, Umberto; Troncone, Giancarlo; Coto, Iolanda; Cavalcanti, Paolina; De Rosa, Gaetano; Salvatore, Francesco; Sacchetti, Lucia

    2017-01-01

    The history of medicine abounds in cases of mysterious deaths, especially by infectious diseases, which were probably unresolved because of the lack of knowledge and of appropriate technology. The aim of this study was to exploit contemporary technologies to try to identify the cause of death of a young boy who died from a putative “infection” at the end of the 18th century, and for whom an extraordinarily well-preserved minute bone fragment was available. After confirming the nature of the sample, we used laser microdissection to select the most “informative” area to be examined. Tissue genotyping indicated male gender, thereby confirming the notary’s report. 16S ribosomal RNA sequencing showed that Proteobacteria and Actinobacteria were more abundant than Firmicutes and Bacteroidetes, and that Pseudomonas was the most abundant bacterial genus in the Pseudomonadaceae family. These data suggest that the patient most likely died from Pseudomonas osteomyelitis. This case is an example of how new technological approaches, like laser microdissection and next-generation sequencing, can resolve ancient cases of uncertain etiopathology. Lastly, medical samples may contain a wealth of information that may not be accessible until more sophisticated technology becomes available. Therefore, one may envisage the possibility of systematically storing medical samples for evaluation by future generations. PMID:28067829

  14. Increased expression of ADAM12 and ADAM17 genes in laser-capture microdissected breast cancers and correlations with clinical and pathological characteristics.

    PubMed

    Narita, Diana; Seclaman, Edward; Ursoniu, Sorin; Anghel, Andrei

    2012-02-01

    ADAMs (a desintegrin and metalloprotease) are transmembrane glycoproteins involved in cell growth, differentiation, motility, and respectively, tumor growth and progression. Our aim was to evaluate ADAM12 spliced variants (ADAM12L - long membrane-bound and ADAM12S - secreted-short variant) and ADAM17 genes expression in breast cancers and to correlate their level of expression with clinical and pathological characteristics. Expression of ADAMs was analyzed using quantitative reverse-transcription polymerase chain reaction in laser-capture microdissected specimens of breast cancers and corresponding non-neoplastic breast tissues from 92 patients. The proteins' expression was confirmed by immunohistochemistry. Significantly elevated amounts of ADAM12L, ADAM12S and ADAM17 transcripts were found in malignant breast cells compared with normal breast tissue and both ADAMs proteins showed moderate to strong immunoexpression in tumor cells and peritumoral fibroblasts. ADAM12L and ADAM12S expressions were correlated with age, younger patients having higher expression of ADAM12L and ADAM12S; ductal cancers had higher expression of ADAM12L compared with lobular types, whereas ADAM12S was higher expressed in lobular cancers; higher expressions were found for both ADAM12 and ADAM17 in HER2/neu positive and highly proliferative cancers. High-grade cancers showed significantly increased expression of ADAM17. Our study on laser-capture microdissected specimens confers motivation for future work on development of ADAM-selective inhibitors for treatment of breast cancers.

  15. A comparative tissue-specific metabolite analysis and determination of protodioscin content in Asparagus species used in traditional Chinese medicine and Ayurveda by use of laser microdissection, UHPLC-QTOF/MS and LC-MS/MS.

    PubMed

    Jaiswal, Yogini; Liang, Zhitao; Ho, Alan; Chen, Hubiao; Zhao, Zhongzhen

    2014-01-01

    Asparagus is esteemed in Traditional Chinese Medicine and Ayurveda, and it is commercially one of the most important drugs in the global herbal market. Comparative metabolite profiling of different species would help in determining the similarities and ascertain their validity for being used as substitutes for each other. Laser microdissection (LMD) facilitates identification of metabolites in specific tissues, and thus it can aid in exploration of metabolic pathways in target tissues. To compare tissue-specific metabolites and protodioscin content of Asparagus cochinchinensis (Lour.) Merr. and Asparagus racemosus Willd. used in China and India. Metabolite analysis of laser-dissected tissues was carried out using UHPLC-QTOF/MS and LC-MS/MS. The protodioscin contents were determined and the method was validated as per the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. Metabolite analysis reveals that the velamen tissue, among other tissues such as cortex, vascular bundles and pith, contained maximum components, specifically those belonging to the steroidal saponin class. Although the metabolite profiles were similar, the content of protodioscin was found to be higher in Chinese than Indian species. The study provided a suitable methodology for metabolite profiling and protodioscin content determination of Asparagus by use of LMD, UHPLC-QTOF/MS and LC-MS/MS. The similarities in metabolite profiles indicate that Asparagus species from India and China can serve as substitute for each other in various therapeutic and pharmaceutical applications. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Laser microdissection-based analysis of the Y sex chromosome of the Antarctic fish Chionodraco hamatus (Notothenioidei, Channichthyidae)

    PubMed Central

    Cocca, Ennio; Petraccioli, Agnese; Morescalchi, Maria Alessandra; Odierna, Gaetano; Capriglione, Teresa

    2015-01-01

    Abstract Microdissection, DOP-PCR amplification and microcloning were used to study the large Y chromosome of Chionodraco hamatus, an Antarctic fish belonging to the Notothenioidei, the dominant component of the Southern Ocean fauna. The species has evolved a multiple sex chromosome system with digametic males showing an X1YX2 karyotype and females an X1X1X2X2 karyotype. Fluorescence in situ hybridization, performed with a painting probe made from microdissected Y chromosomes, allowed a deeper insight on the chromosomal rearrangement, which underpinned the fusion event that generated the Y. Then, we used a DNA library established by microdissection and microcloning of the whole Y chromosome of Chionodraco hamatus for searching sex-linked sequences. One clone provided preliminary information on the presence on the Y chromosome of the CHD1 gene homologue, which is sex-linked in birds but in no other vertebrates. Several clones from the Y-chromosome mini-library contained microsatellites and transposable elements, one of which mapped to the q arm putative fusion region of the Y chromosome. The findings confirm that interspersed repetitive sequences might have fostered chromosome rearrangements and the emergence of the Y chromosome in Chionodraco hamatus. Detection of the CHD1 gene in the Y sex-determining region could be a classical example of convergent evolution in action. PMID:25893071

  17. Redistribution of Ionotropic Glutamate Receptors Detected by Laser Microdissection of the Rat Dentate Gyrus 48 h following LTP Induction In Vivo

    PubMed Central

    Kennard, Jeremy T. T.; Guévremont, Diane; Mason-Parker, Sara E.; Abraham, Wickliffe C.; Williams, Joanna M.

    2014-01-01

    The persistence and input specificity of long-term potentiation (LTP) make it attractive as a mechanism of information storage. In its initial phase, both in vivo and in vitro studies have shown that LTP is associated with increased membrane localization of AMPA receptor subunits, but the molecular basis of LTP maintenance over the long-term is still unclear. We have previously shown that expression of AMPA and NMDA receptor subunits is elevated in whole homogenates prepared from dentate gyrus 48 h after LTP induction in vivo. In the present study, we utilized laser microdissection (LMD) techniques to determine whether AMPA and NMDA receptor upregulation occurs specifically in the stimulated regions of the dentate gyrus dendritic arbor. Receptor proteins GluN1, GluA1 and GluA2, as well as postsynaptic density protein of 95 kDa and tubulin were detected by Western blot analysis in microdissected samples. Gradients of expression were observed for GluN1 and GluA2, decreasing from the inner to the outer zones of the molecular layer, and were independent of LTP. When induced at medial perforant path synapses, LTP was associated with an apparent specific redistribution of GluA1 and GluN1 to the middle molecular layer that contains these synapses. These data indicate that glutamate receptor proteins are delivered specifically to dendritic regions possessing LTP-expressing synapses, and that these changes are preserved for at least 48 h. PMID:24667777

  18. Hepatocellular adenoma in a European flatfish (Limanda limanda): Genetic alterations in laser-capture micro-dissected tissue and global transcriptomic approach.

    PubMed

    Lerebours, Adélaïde; Chapman, Emma; Lyons, Brett P; Bignell, John P; Stentiford, Grant D; Rotchell, Jeanette M

    2017-06-30

    Liver tumours in flatfish have been diagnosed using histopathology for decades to monitor the impacts of marine pollution. Here we describe the application of specific gene (retinoblastoma, Rb) profiling in laser capture micro-dissected samples, and a suppression subtractive hybridization (SSH) approach to isolate differentially expressed genes in hepatocellular adenoma (HCA) samples from dab, Limanda limanda. The Rb profiles from apparently normal and HCA micro-dissected samples of fish from the North Sea showed no significant difference, and genotypic heterogeneity within defined histological phenotypes was observed. In the SSH, sequences associated with cell signalling, cell cycle, gene expression regulation, protein transport and protein degradation were isolated. These included up-regulation of arrestin domain containing 3 (arrdc3), Rac-1 and tribbles, and down-regulation of ankyrin repeat/sterile alpha-motif domain-containing protein 1B-like (ANKS1B-like), c-fos, CDKN1B and RhoA-like sequences, previously implicated in mammalian HCA. This study offers new candidates involved in fish liver tumour development. Copyright © 2017. Published by Elsevier Ltd.

  19. Selective vascular injury during cutaneous laser therapy

    NASA Astrophysics Data System (ADS)

    Tunnell, James William

    Pulsed laser irradiation in conjunction with cryogen spray cooling (CSC) can induce selective vascular injury to remove cutaneous hypervascular malformations such as port wine stains (PWS), hemangiomas, and facial veins. In this group of studies, we characterized the cryogen heat removal process and determined the effects of pulsed laser irradiation in conjunction with cryogen spray cooling of human skin. First, we employed an inverse heat conduction algorithm to measure the thermal boundary condition due to CSC in in vitro skin phantoms. Second, we developed a mathematical model of laser irradiation in conjunction with CSC in human skin. We determined tissue damage and temperature profiles due to varying combinations of laser pulse duration, radiant exposure, and CSC application times. Finally, we used ex vivo and in vivo human skin to determine the effects of high radiant exposures and CSC on epidermal and vascular injury. CSC induces a dynamic cooling effect, removing heat from the skin both during and following the spurt application time. Residual cryogen, deposited on the skin surface during the cryogen spurt, remains on the skin surface several times as long as the as cryogen spurt itself. The heat removal rate during the cryogen spurt is greatest; however, the total energy removed following the cryogen spurt is also substantial (approximately half as much as during the spurt application time). CSC was effective in protecting the human skin epidermis in light to moderately pigmented skin. Mathematical modeling, ex vivo, and in vivo studies showed that the epidermal damage threshold could be increased by a factor of approximately two. Increased radiant exposures increased the risk of non-selective vascular injury observed in histology as injury to the epidermis and perivascular collagen; however, proper choice of cryogen cooling durations resulted in the elimination of epidermal injury as well as perivascular tissue injury. In addition, higher radiant

  20. Use of laser microdissection for the construction of Humulusjaponicus Siebold et Zuccarini, 1846 (Cannabaceae) sex chromosome-specific DNA library and cytogenetics analysis.

    PubMed

    Yakovin, Nickolay A; Divashuk, Mikhail G; Razumova, Olga V; Soloviev, Alexander A; Karlov, Gennady I

    2014-01-01

    Dioecy is relatively rare among plant species, and distinguishable sex chromosomes have been reported in few dioecious species. The multiple sex chromosome system (XX/XY1Y2) of Humulusjaponicus Siebold et Zuccarini, 1846 differs from that of other members of the family Cannabaceae, in which the XX/XY chromosome system is present. Sex chromosomes of Humulusjaponicus were isolated from meiotic chromosome spreads of males by laser microdissection with the P.A.L.M. MicroLaser system. The chromosomal DNA was directly amplified by degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR). Fast fluorescence in situ hybridization (FAST-FISH) using a labeled, chromosome-specific DOP-PCR product as a probe showed preferential hybridization to sex chromosomes. In addition, the DOP-PCR product was used to construct a short-insert, Humulusjaponicus sex chromosomes-specific DNA library. The randomly sequenced clones showed that about 12% of them have significant homology to Humuluslupulus and 88% to Cannabissativa Linnaeus, 1753 sequences from GenBank database. Forty-four percent of the sequences show homology to plant retroelements. It was concluded that laser microdissection is a useful tool for isolating the DNA of sex chromosomes of Humulusjaponicus and for the construction of chromosome-specific DNA libraries for the study of the structure and evolution of sex chromosomes. The results provide the potential for identifying unique or sex chromosome-specific sequence elements in Humulusjaponicus and could aid in the identification of sex chromosome-specific repeat and coding regions through chromosome isolation and genome complexity reduction.

  1. Use of laser microdissection for the construction of Humulus japonicus Siebold et Zuccarini, 1846 (Cannabaceae) sex chromosome-specific DNA library and cytogenetics analysis

    PubMed Central

    Yakovin, Nickolay A.; Divashuk, Mikhail G.; Razumova, Olga V.; Soloviev, Alexander A.; Karlov, Gennady I.

    2014-01-01

    Abstract Dioecy is relatively rare among plant species, and distinguishable sex chromosomes have been reported in few dioecious species. The multiple sex chromosome system (XX/XY1Y2) of Humulus japonicus Siebold et Zuccarini, 1846 differs from that of other members of the family Cannabaceae, in which the XX/XY chromosome system is present. Sex chromosomes of Humulus japonicus were isolated from meiotic chromosome spreads of males by laser microdissection with the P.A.L.M. MicroLaser system. The chromosomal DNA was directly amplified by degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR). Fast fluorescence in situ hybridization (FAST-FISH) using a labeled, chromosome-specific DOP-PCR product as a probe showed preferential hybridization to sex chromosomes. In addition, the DOP-PCR product was used to construct a short-insert, Humulus japonicus sex chromosomes-specific DNA library. The randomly sequenced clones showed that about 12% of them have significant homology to Humulus lupulus and 88% to Cannabis sativa Linnaeus, 1753 sequences from GenBank database. Forty-four percent of the sequences show homology to plant retroelements. It was concluded that laser microdissection is a useful tool for isolating the DNA of sex chromosomes of Humulus japonicus and for the construction of chromosome-specific DNA libraries for the study of the structure and evolution of sex chromosomes. The results provide the potential for identifying unique or sex chromosome-specific sequence elements in Humulus japonicus and could aid in the identification of sex chromosome-specific repeat and coding regions through chromosome isolation and genome complexity reduction. PMID:25610546

  2. Laser Capture Microdissection Revisited as a Tool for Transcriptomic Analysis: Application of an Excel-Based qPCR Preparation Software (PREXCEL-Q)

    PubMed Central

    Sow, Fatoumata B.; Gallup, Jack M.; Sacco, Randy E.; Ackermann, Mark R.

    2009-01-01

    The ability to reliably analyze cellular and molecular profiles of normal or diseased tissues is frequently complicated by the inherent heterogeneous nature of tissues. Laser Capture Microdissection (LCM) is an innovative technique that allows the isolation and enrichment of pure subpopulations of cells from tissues under direct microscopic examination. Material obtained by LCM can be used for downstream assays including gene microarrays, western blotting, cDNA library generation and DNA genotyping. We describe a series of LCM protocols for cell collection, RNA extraction and qPCR gene expression analysis. Using reagents we helped develop commercially, we focus on two LCM approaches: laser cutting and laser capture. Reagent calculations have been pre-determined for 10 samples using the new PREXCEL-Q assay development and project management software. One can expect the entire procedure for laser cutting coupled to qPCR to take approximately 12.5-15 h, and laser capture coupled to qPCR to take approximately 13.5-17.5 h. PMID:20556230

  3. STR profiling of epithelial cells identified by X/Y-FISH labelling and laser microdissection using standard and elevated PCR conditions.

    PubMed

    Lynch, Laura; Gamblin, Amelia; Vintiner, Sue; Simons, Joanne L

    2015-05-01

    During the investigation of allegations of sexual assault, samples are frequently encountered that contain DNA from a female and a male donor. These may represent contributions of DNA from the complainant and potentially, the offender. Many semen stained samples successfully undergo DNA analysis and interpretation using a differential extraction method that separates sperm from the epithelial cells present in the stain. However, for those mixed cell samples that contain only epithelial cells, separation of any male cells from female cells is problematic. This paper describes the application of fluorescent in situ hybridisation (FISH) for the gender identification of epithelial cells and subsequent recovery of target cells using laser microdissection (LMD). The profiling results obtained from samples of known cell numbers using the Identifiler™ multiplex at standard 28-cycle PCR conditions and, when cell numbers are low, the SGM Plus™ multiplex at elevated 34-cycle PCR conditions (also known as Low Copy Number DNA analysis (LCN)) are described.

  4. Localization of ginsenosides in the rhizome and root of Panax ginseng by laser microdissection and liquid chromatography-quadrupole/time of flight-mass spectrometry.

    PubMed

    Liang, Zhitao; Chen, Yujie; Xu, Liang; Qin, Minjian; Yi, Tao; Chen, Hubiao; Zhao, Zhongzhen

    2015-02-01

    The root and rhizome of Panax ginseng C.A. Mey, known as ginseng, is a commonly used medicinal plant. Ginsenosides are the major active components responsible for the tonic effects of this herb. Here, the combination of laser microdissection and ultra-high performance liquid chromatography quadrupole/time of flight-mass spectrometry (UHPLC-QTOF-MS) was applied to investigate the localization of ginsenosides in root and rhizome of P. ginseng. Five kinds of tissue cells were separated from the rhizome, main root and branch root of ginseng. Fifty-nine ginsenosides were identified and the results showed that the cork contained more kinds of ginsenosides than did the cortex, phloem, xylem and resin canals. It is interesting that the phloem, xylem and resin canals from branch root contained a greater number of ginsenosides than did from main root. This study provides solid evidence on the accumulation of ginsenosides in cork, cortex, phloem and xylem.

  5. Incestuous paternity detected by STR-typing of chorionic villi isolated from archival formalin-fixed paraffin-embedded abortion material using laser microdissection.

    PubMed

    Robino, Carlo; Barilaro, Maria Rosa; Gino, Sarah; Chiarle, Roberto; Palestro, Giorgio; Torre, Carlo

    2006-01-01

    Microscopic examination of a blood clot expelled by a physically and mentally disabled woman taken to the emergency room because of genital bleeding revealed the presence of chorionic villi encircled by decidua, hemorrhage, and necrosis. In order to identify the father of the product of conception, sections of formalin-fixed, paraffin-embedded abortion material were subjected to laser microdissection: DNA extraction from chorionic villi selectively isolated from the surrounding tissues allowed successful STR-typing of fetal cells, which was otherwise prevented by excess maternal DNA. The large number of homozygous genotypes in the fetal profile suggested incestuous paternity. Analysis of reference DNA samples from male relatives excluded the woman's father, paternal grandfather, and maternal grandfather, whereas the obligate paternal alleles of the fetus were constantly present in the genotypes of the woman's brother, clearly demonstrating brother-sister incest (probability of paternity > 99.99999%).

  6. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies.

    PubMed

    Castro, Nadia P; Merchant, Anand S; Saylor, Karen L; Anver, Miriam R; Salomon, David S; Golubeva, Yelena G

    2016-01-01

    Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM.

  7. Laser treatment of oral vascular malformations

    NASA Astrophysics Data System (ADS)

    Romeo, U.; Gaimari, G.; Mohsen, M.; Tenore, G.; Palaia, G.

    2014-01-01

    Oral Vascular Malformations (OVM) are congenital anomalies characterized by morph-structural and/or functional changes of nature in severity and extension. OVM can affect any type of vessels arterial, venous or lymphatic and any capillary or anatomical. They are divided into two categories: low and high flow. In this study were treated 40 patients with OVM with a range size from 2 mm to 44 mm; they were subjected to clinical examination supported by Colour-Doppler Ultrasound instrumental examination and only for doubt cases the Magnetic Resonance Imaging (MRI) was prescribed. Only low flow venous and capillary malformations were treated by GaAlAs laser (Wiser®, Lambda, Brindole,Italy, 980nm) and KTP laser (SmartLite®, DEKA, Florence, Italy, 532nm) with two different techniques: the Transmucosal Thermophotocoagulation (TMT) and the Intralesional Photocoagulation (ILP). These techniques permitted a good control of haemostasis, avoiding bleeding both during surgery and in the postoperative. It is obtained an excellent and good healing respectively in 10% and 60% of cases, a moderate and poor resolution respectively in 22.5% and 7.5% of cases. A clear diagnosis allowed the management of Venous malformations (VM) by laser devices with wavelengths highly absorbed in haemoglobin in safety and efficacy and according to the principles of minimal invasive surgery. The aim of this study was to verify if the laser is effective in the treatment of OVM for the purpose of the clinical findings and the postoperative course. The Authors concluded that the laser can be considered the "gold standard" for treating OVM.

  8. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the

  9. Intralesional laser therapy for vascular malformations.

    PubMed

    Ma, Linda W; Levi, Benjamin; Oppenheimer, Adam J; Kasten, Steven J

    2014-11-01

    Intralesional laser therapy for the treatment of vascular malformations (VMs) has been previously reported for select patient populations. Larger studies, over a wider variety of indications, are needed to better define the potential role of this technology. In the current study, a 12-year, retrospective review of 44 patients who underwent 73 intralesional Nd:YAG or diode laser treatments of VMs was performed. The most commonly encountered lesions were venous malformations (66%) and the most commonly involved anatomic locations were the head and neck regions (41%) and lower extremity (39%). Primary indications for treatment were enlargement (73%) and pain (52%). Lesion size was reduced in 94% of cases after treatment and pain was improved in 91% of cases. Minor postoperative complications occurred in 16 (36%) patients. There was no difference in treatment response among various VM subtypes or anatomic locations (P=0.497, P=0.866) or in the incidence of complications (P=0.531, P=0.348). Age was the only factor associated with an increased risk of complications (odds ratio, 1.034; P=0.038). When used in accordance with the suggested guidelines, intralesional laser therapy is a safe and effective treatment modality for VMs of varying compositions and locations.

  10. Detection of Helicobacter pylori DNA in Formalin-Fixed Paraffin-Embedded Gastric Biopsies Using Laser Microdissection and qPCR.

    PubMed

    Loayza Villa, María Fernanda; Herrera Sevilla, Valeria Liliana; Vivar-Diaz, Nicolás

    2017-01-01

    Molecular detection and analysis of virulence factors of Helicobacter pylori depends on the specificity of cell selection in the gastric biopsies. The laser microdissection (LM) instruments combine microscopy with laser cut sectioning. This combination allows one to choose only the bacteria that are in direct contact with epithelial cells in the gastric biopsy sample, avoiding those microorganisms attached to the mucus layer in the sample. The average concentration of DNA isolated from 25 cuts with selected bacteria is around 1.94 ng/μL, which is enough DNA to perform a qPCR protocol using real-time instruments to amplify 16sDNA or virulence factors like cagA or vacA. Consequently, the application of these technologies in the molecular analysis of Helicobacter pylori directly in contact with the surface of gastric epithelial cells is more precise and could yield better insights about the complex mechanisms of interactions between pathogen and host. Insights derived from research using the techniques described herein may in future facilitate prevention of infection or improved therapeutic options.

  11. Micro RNA detection in long-term fixed tissue of cortical glutamatergic pyramidal neurons after targeted laser-capture neuroanatomical microdissection.

    PubMed

    Herai, Roberto R; Stefanacci, Lisa; Hrvoj-Mihic, Branka; Chailangkarn, Thanathom; Hanson, Kari; Semendeferi, Katerina; Muotri, Alysson R

    2014-09-30

    Formalin fixation (FF) is the standard and most common method for preserving postmortem brain tissue. FF stabilizes cellular morphology and tissue architecture, and can be used to study the distinct morphologic and genetic signatures of different cell types. Although the procedure involved in FF degrades messenger RNA over time, an alternative approach is to use small RNAs (sRNAs) for genetic analysis associated with cell morphology. Although genetic analysis is carried out on fresh or frozen tissue, there is limited availability or impossibility on targeting specific cell populations, respectively. The goal of this study is to detect miRNA and other classes of sRNA stored in formalin or in paraffin embedded for over decades. Two brain samples, one formed by a mixed population of cortical and subcortical cells, and one formed by pyramidal shaped cells collected by laser-capture microdissection, were subjected to sRNA sequencing. Performing bioinformatics analysis over the sequenced sRNA from brain tissue, we detected several classes of sRNA, such as miRNAs that play key roles in brain neurodevelopmental and maintenance pathways, and hsa-mir-155 expression in neurons. Comparison with existing method: Our method is the first to combine the approaches for: laser-capture of pyramidal neurons from long-term formalin-fixed brain; extract sRNA from laser-captured pyramidal neurons; apply a suite of bioinformatics tools to detect miRNA and other classes of sRNAs on sequenced samples having high levels of RNA degradation. This is the first study to show that sRNA can be rescued from laser-captured FF pyramidal neurons. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Pulsed dye laser treatment of vascular lesions in childhood.

    PubMed

    Barčot, Zoran; Zupančić, Božidar

    2010-01-01

    Almost all congenital vascular abnormalities affect the skin and are evident from birth or become so during the first few weeks of life. The two most common types of vascular birthmarks, hemangiomas and vascular malformations, may appear to be very similar but their course and treatment are different. Hemangiomas appear in the first few weeks of life and usually regress spontaneously over time. Vascular malformations are always present from birth even though they might not be apparent, never disappear and often grow during the person's lifetime and may vary extremely from high blood flow lesions, sometimes located in critical sites that may be life-threatening to asymptomatic spots of mere aesthetic concern. Laser therapy nowadays has become indispensable in the management of pediatric vascular lesions. With a proper balance of wavelength, energy density and pulse duration, the laser energy of thermo coagulation could be molded to effectively manage different lesions. Both dermatology and plastic surgery have been transformed by understanding vascular lesions biology and modern laser technology. As a result, we can now provide an optimal selective treatment with minimal collateral damage. Although alternatives such as the potassium titanyl phosphate (KTP), red/infrared (IR), or intense pulsed light lasers are available, pulsed dye lasers continue to be the standard of care for the majority of pediatric vascular lesions.

  13. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  14. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics

    PubMed Central

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-01-01

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies. PMID:28358042

  15. Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis.

    PubMed

    Løvendorf, Marianne B; Mitsui, Hiroshi; Zibert, John R; Røpke, Mads A; Hafner, Markus; Dyring-Andersen, Beatrice; Bonefeld, Charlotte M; Krueger, James G; Skov, Lone

    2015-03-01

    Psoriasis is a systemic disease with cutaneous manifestations. MicroRNAs (miRNAs) are small non-coding RNA molecules that are differentially expressed in psoriatic skin; however, only few cell- and region-specific miRNAs have been identified in psoriatic lesions. We used laser capture microdissection (LCM) and next-generation sequencing (NGS) to study the specific miRNA expression profiles in the epidermis (Epi) and dermal inflammatory infiltrates (RD) of psoriatic skin (N = 6). We identified 24 deregulated miRNAs in the Epi and 37 deregulated miRNAs in the RD of psoriatic plaque compared with normal psoriatic skin (FCH > 2, FDR < 0.05). Interestingly, 9 of the 37 miRNAs in RD, including miR-193b and miR-223, were recently described as deregulated in circulating peripheral blood mononuclear cells (PBMCs) from patients with psoriasis. Using flow cytometry and qRT-PCR, we found that miR-193b and miR-223 were expressed in Th17 cells. In conclusion, we demonstrate that LCM combined with NGS provides a robust approach to explore the global miRNA expression in the epidermal and dermal compartments of psoriatic skin. Furthermore, our results indicate that the altered local miRNA changes seen in the RD are reflected in the circulating immune cells, suggesting that miRNAs may contribute to the pathogenesis of psoriasis.

  16. Proteomic study of malignant pleural mesothelioma by laser microdissection and two-dimensional difference gel electrophoresis identified cathepsin D as a novel candidate for a differential diagnosis biomarker.

    PubMed

    Hosako, Mutsumi; Muto, Taika; Nakamura, Yukiko; Tsuta, Koji; Tochigi, Naobumi; Tsuda, Hitoshi; Asamura, Hisao; Tomonaga, Takeshi; Kawai, Akira; Kondo, Tadashi

    2012-01-04

    To investigate the proteomic background of malignancies of the pleura, we examined and compared the proteomic profile of malignant pleural mesothelioma (MPM)(10 cases), lung adenocarcinoma (11 cases), squamous cell carcinoma of the lung (13 cases), pleomorphic carcinoma of the lung (3 cases) and synovial sarcoma (6 cases). Cellular proteins were extracted from specific populations of tumor cells recovered by laser microdissection. The extracted proteins were labeled with CyDye DIGE Fluor saturation dyes and subjected to two-dimensional difference gel electrophoresis (2D-DIGE) using a large format electrophoresis device. Among 3875 protein spots observed, the intensity of 332 was significantly different (Wilcoxon p value less than 0.05) and with more than two-fold inter-sample-group average difference between the different histology groups. Among these 332, 282 were annotated by LC-MS/MS and included known biomarker proteins for MPM, such as calretinin, as well as proteins previously uncharacterized in MPM. Tissue microarray immunohistochemistry revealed that the expression of cathepsin D was lower in MPM than in lung adenocarcinoma (15% vs. 44% of cases respectively in immunohistochemistry). In conclusion, we examined the protein expression profile of MPM and other lung malignancies, and identified cathepsin D to distinguish MPM from most popular lung cancer such as lung adenocarcinoma. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Gene Expression Analysis of Immunostained Endothelial Cells Isolated from Formaldehyde-fixated Paraffin Embedded Tumors Using Laser Capture Microdissection – a Technical Report

    PubMed Central

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E.

    2009-01-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by RT-PCR and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4°C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. GAPDH and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM. PMID:19425073

  18. Gene expression analysis of immunostained endothelial cells isolated from formaldehyde-fixated paraffin embedded tumors using laser capture microdissection--a technical report.

    PubMed

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E

    2009-12-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by reverse transcription-PCR (RT-PCR) and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4 degrees C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. Glyceraldehyde-3-phosphate dehydrogenase and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM.

  19. Laser capture microdissection of cervical human papillomavirus infections: copy number of the virus in cancerous and normal tissue and heterogeneous DNA methylation.

    PubMed

    Kalantari, Mina; Garcia-Carranca, Alejandro; Morales-Vazquez, Claudia Dalia; Zuna, Rosemary; Montiel, Delia Perez; Calleja-Macias, Itzel E; Johansson, Bo; Andersson, Sonia; Bernard, Hans-Ulrich

    2009-08-01

    Research on the pathogenicity of human papillomaviruses (HPVs) during cervical carcinogenesis often relies on the study of homogenized tissue or cultured cells. This approach does not detect molecular heterogeneities within the infected tissue. It is desirable to understand molecular properties in specific histological contexts. We asked whether laser capture microdissection (LCM) of archival cervical tumors in combination with real-time polymerase chain reaction and bisulfite sequencing permits (i) sensitive DNA diagnosis of small clusters of formalin-fixed cells, (ii) quantification of HPV DNA in neoplastic and normal cells, and (iii) analysis of HPV DNA methylation, a marker of tumor progression. We analyzed 26 tumors containing HPV-16 or 18. We prepared DNA from LCM dissected thin sections of 100 to 2000 cells, and analyzed aliquots corresponding to between nine and 70 cells. We detected nine to 630 HPV-16 genome copies and one to 111 HPV-18 genome copies per tumor cell, respectively. In 17 of the 26 samples, HPV DNA existed in histologically normal cells distant from the margins of the tumors, but at much lower concentrations than in the tumor, suggesting that HPVs can infect at low levels without pathogenic changes. Methylation of HPV DNA, a biomarker of integration of the virus into cellular DNA, could be measured only in few samples due to limited sensitivity, and indicated heterogeneous methylation patterns in small clusters of cancerous and normal cells. LCM is powerful to study molecular parameters of cervical HPV infections like copy number, latency and epigenetics.

  20. Western blot analysis of a limited number of cells: a valuable adjunct to proteome analysis of paraffin wax-embedded, alcohol-fixed tissue after laser capture microdissection.

    PubMed

    Martinet, Wim; Abbeloos, Vanessa; Van Acker, Nathalie; De Meyer, Guido R Y; Herman, Arnold G; Kockx, Mark M

    2004-03-01

    In recent years, laser capture microdissection (LCM) has been used successfully to obtain distinct populations of cells for subsequent molecular analysis. Because of the limited sample availability and the absence of in vitro amplification steps for proteins, the use of LCM for proteome analysis largely depends on highly sensitive protein detection methods. In this study, a western blot protocol was developed and validated for the detection of beta-actin and the moderately expressed cell death protein caspase-3 in small numbers of cells. Initially, cultured human U937 monocytes and whole sections of paraffin wax-embedded, alcohol-fixed human tonsils were used to optimize protein electrophoresis and western blotting conditions. High-performance NuPAGE Bis-Tris gels in combination with high-quality transfer membranes, optimized antibody concentrations, and a sensitive chemiluminescent substrate provided a strong signal for beta-actin with approximately 500 U937 cells. In the same way, procaspase-3 could be identified with approximately 1000 cells. Similar results were obtained with germinal centre cells that were procured from paraffin wax-embedded, alcohol-fixed human tonsils by LCM. Treatment of U937 cells with etoposide rapidly induced cell death and allowed the detection of active caspase-3 with approximately 2500 cells (0.8 pg of protein). The findings of this study suggest that western blotting is a valuable adjunct to proteome analysis of LCM procured cells. Copyright 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Dicarbonyl/L-xylulose reductase: a potential biomarker identified by laser-capture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma.

    PubMed

    Cho-Vega, Jeong Hee; Tsavachidis, Spiridon; Do, Kim-Anh; Nakagawa, Junichi; Medeiros, L Jeffrey; McDonnell, Timothy J

    2007-12-01

    To identify genes involved in prostate carcinogenesis, we used laser-capture microdissection-micro serial analysis of gene expression to construct libraries of paired cancer and normal cells from human tissue samples. After computational comparison of the two libraries, we identified dicarbonyl/l-xylulose reductase (DCXR), an enzyme that catalyzes alpha-dicarbonyl and l-xylulose, as being significantly up-regulated in prostate cancer cells. The specificity of DCXR up-regulation for prostate cancer tissues was confirmed by quantitative real-time reverse transcriptase-PCR, virtual Northern blot, and Western blot analyses. Furthermore, DCXR expression at the protein level was assessed using fresh-frozen tissues and a tissue microarray consisting of 46 cases of organ-confined early-stage prostate cancer and 29 cases of chemohormonally treated prostate cancer. In most normal prostate epithelial cells, DCXR was expressed at low levels and was localized predominantly in the cytoplasmic membrane. In contrast, in virtually all grades of early-stage prostate cancer and in all chemohormonally treated cases, DCXR was strikingly overexpressed and was localized predominantly in the cytoplasm and nucleus. In all samples, the stromal cells were completely devoid of DCXR expression. Based on these findings, we suggest that DCXR overexpression has the potential to be an additional useful biomarker for prostate cancer.

  2. Laser Microdissection and Spatiotemporal Pinoresinol-Lariciresinol Reductase Gene Expression Assign the Cell Layer-Specific Accumulation of Secoisolariciresinol Diglucoside in Flaxseed Coats

    PubMed Central

    Fang, Jingjing; Ramsay, Aïna; Renouard, Sullivan; Hano, Christophe; Lamblin, Frédéric; Chabbert, Brigitte; Mesnard, François; Schneider, Bernd

    2016-01-01

    The concentration of secoisolariciresinol diglucoside (SDG) found in flaxseed (Linum usitatissimum L.) is higher than that found in any other plant. It exists in flaxseed coats as an SDG-3-hydroxy-3-methylglutaric acid oligomer complex. A laser microdissection method was applied to harvest material from different cell layers of seed coats of mature and developing flaxseed to detect the cell-layer specific localization of SDG in flaxseed; NMR and HPLC were used to identify and quantify SDG in dissected cell layers after alkaline hydrolysis. The obtained results were further confirmed by a standard molecular method. The promoter of one pinoresinol-lariciresinol reductase gene of L. usitatissimum (LuPLR1), which is a key gene involved in SDG biosynthesis, was fused to a β-glucuronidase (GUS) reporter gene, and the spatio-temporal regulation of LuPLR1 gene expression in flaxseed was determined by histochemical and activity assays of GUS. The result showed that SDG was synthesized and accumulated in the parenchymatous cell layer of the outer integument of flaxseed coats. PMID:27917190

  3. A pilot study on the expression of microRNAs resident on chromosome 21 in laser microdissected FFPE prostate adenocarcinoma samples.

    PubMed

    Mihala, Adrian; Alexa, Andreea Anda; Samoilă, Corina; Dema, Alis; Vizitiu, Anda Cornelia; Anghel, Andrei; Tămaş, Liviu; Marian, Cătălin Valer; Sîrbu, Ioan Ovidiu

    2015-01-01

    The tremendous research effort of the last decades added a new, epigenetic layer of complexity to the already complex image of prostate cancer pathogenesis. Here we use quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the expression of the microRNAs resident on chromosome 21 (miR-ch21) in laser capture microdissected (LCM) tissues from formalin-fixed paraffin-embedded (FFPE) archived, prostate adenocarcinoma samples. We show a strong, specific down-regulation of miR-ch21 in tumoral epithelia and stromae as compared to normal counterparts, results at odd with the current paradigm on the involvement of these microRNAs in prostate oncogenesis. By comparing this result with the expression of two well-known pluripotency associated microRNA, hsa-miR-372 and miR-373, we suggest that miR-ch21 down-regulation might be the result of specific silencing of miR genes mapped to chromosome 21. Further studies, of larger sample size are needed to confirm our preliminary data.

  4. Expression of Intermediate Filaments and Germ Cell Markers in the Developing Bovine Ovary: An Immunohistochemical and Laser-Assisted Microdissection Study.

    PubMed

    Kenngott, Rebecca Anna-Maria; Sauer, Ulrich; Vermehren, Margarete; Sinowatz, Fred

    2014-01-01

    In the present investigation, bovine ovary prenatal development was studied using immunohistochemistry and laser-assisted microdissection (LAM). A major aim of this study was to evaluate the protein expression pattern of intermediate filaments (IF) and distinguish S100 protein (S100 alpha and S100 beta protein) isoforms during prenatal follicle differentiation, subsequently correlating them with germ cell marker expression. A development-specific expression pattern of different keratins as well as vimentin was detected in the prenatal bovine ovary; K18-specific expression was found during all developmental stages (i.e. in surface epithelium, germ cell cord somatic cells, and follicle cells), and keratins 5, 7, 8, 14, and 19 and vimentin had a stage-specific expression pattern in the different cell populations of the prenatal ovaries. Additionally, our results represent new data on the expression pattern of germ cell markers during bovine ovary prenatal development. S100 alpha and beta protein was localized to oocyte cytoplasm of different follicle stages, and S100 alpha staining could be observed in granulosa cells. Furthermore, through isolation of characteristic ovary cell populations using LAM, specific confirmation of some genes of interest (KRT8, KRT18, S100 alpha, S100 beta, and OCT4, DDX4) could be obtained by RT-PCR in single cell groups of the developing bovine ovary. © 2015 S. Karger AG, Basel.

  5. A pilot study exploring the molecular architecture of the tumor microenvironment in human prostate cancer using laser capture microdissection and reverse phase protein microarray.

    PubMed

    Pin, Elisa; Stratton, Steven; Belluco, Claudio; Liotta, Lance; Nagle, Ray; Hodge, K Alex; Deng, Jianghong; Dong, Ting; Baldelli, Elisa; Petricoin, Emanuel; Pierobon, Mariaelena

    2016-12-01

    The cross-talk between tumor epithelium and surrounding stromal/immune microenvironment is essential to sustain tumor growth and progression and provides new opportunities for the development of targeted treatments focused on disrupting the tumor ecology. Identification of novel approaches to study these interactions is of primary importance. Using laser capture microdissection (LCM) coupled with reverse phase protein microarray (RPPA) based protein signaling activation mapping we explored the molecular interconnection between tumor epithelium and surrounding stromal microenvironment in 18 prostate cancer (PCa) specimens. Four specimen-matched cellular compartments (normal-appearing epithelium and its adjacent stroma, and malignant epithelium and its adjacent stroma) were isolated for each case. The signaling network analysis of the four compartments unraveled a number of molecular mechanisms underlying the communication between tumor cells and stroma in the context of the tumor microenvironment. In particular, differential expression of inflammatory mediators like IL-8 and IL-10 by the stroma cells appeared to modulate specific cross-talks between the tumor cells and surrounding microenvironment. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Improved method for extraction and detection of Helicobacter pylori DNA in formalin-fixed paraffin embedded gastric biopsies using laser micro-dissection

    PubMed Central

    Loayza, María Fernanda; Villavicencio, Fernando Xavier; Santander, Stephanie Carolina; Baldeón, Manuel; Ponce, Lourdes Karina; Salvador, Iván; Vivar Díaz, Nicolás

    2014-01-01

    To assess the molecular events exerted by Helicobacter pylori interacting directly with gastric epithelial cells, an improved procedure for microbial DNA isolation from stained hematoxilin-eosin gastric biopsies was developed based on laser micro-dissection (LM) [1]. Few articles have described the use of LM to select and detect H. pylori genome from formalin-fixed paraffin embedded gastric tissue [2]. To improve the yield and quality of DNA isolated from H. pylori contacting intestinal epithelial cells, the following conditions were established after modification of the QIAamp DNA Micro kit. • Use of at least 25 cut sections of 10–20 μm of diameter and 3 μm thick with more than 10 bacteria in each cut. • Lysis with 30 μL of tissue lysis buffer and 20 μL of proteinase K (PK) with the tube in an upside-down position. • The use of thin purification columns with 35 μL of elution buffer. The mean of DNA concentration obtained from 25 LM cut sections was 1.94± 0 .16 ng/μL, and it was efficiently amplified with qPCR in a Bio Rad iCycler instrument. The LM can improve the sample selection and DNA extraction for molecular analysis of H. pylori associated with human gastric epithelium. PMID:26150965

  7. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies

    PubMed Central

    Saylor, Karen L.; Anver, Miriam R.; Salomon, David S.; Golubeva, Yelena G.

    2016-01-01

    Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM. PMID:27077656

  8. Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation.

    PubMed

    Schuller, Astrid; Kehr, Julia; Ludwig-Müller, Jutta

    2014-02-01

    The clubroot disease caused by the obligate biotrophic protist Plasmodiophora brassicae on host plants of the Brassicaceae family is characterized by enhanced cell division and cell expansion. Since a typical root section of an infected plant always includes different stages of the pathogen as well as uninfected cells, we were interested in investigating specific developmental stages of the pathogen and their effect on host transcriptional changes. We extended previous microarray studies on whole roots by using laser microdissection and pressure catapulting (LMPC) to isolate individual cells harboring defined developmental stages of the pathogen. In addition, we compared the central cylinder of infected plants with that of control plants. We were especially interested in elucidating the stage-specific hormonal network. The up-regulation of genes involved in auxin and cytokinin metabolism and signaling was confirmed. In addition, we found evidence that brassinosteroid (BR) synthesis and signal perception genes were in many cases up-regulated in enlarged cells and the central cylinder. This was confirmed by quantitative PCR. Treatment of wild-type plants with the BR biosynthesis inhibitor propiconazole reduced gall formation, and the analysis of the BR receptor mutant bri1-6 revealed less severe gall formation than in the respective wild type. Our results identify novel hormone pathways involved in clubroot development. Using LMPC to generate pools of homogeneous cell type populations combined with transcriptome analysis has been very useful to elucidate the regulation of gall growth by this obligate biotropic pathogen in a cell- and stage-specific manner.

  9. Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision.

    PubMed

    Hatton, A; Nevelos, J E; Nevelos, A A; Banks, R E; Fisher, J; Ingham, E

    2002-08-01

    The aims of this study were to investigate the tissues from uncemented Mittelmeier alumina ceramic-on-ceramic total hip replacements using histological methods and to isolate and characterise the ceramic wear debris using laser capture microdissection and electron microscopy. Tissues from around 10 non-cemented Mittelmeier alumina ceramic on ceramic THRs were obtained from patients undergoing revision surgery. Tissues were also obtained from six patients who were undergoing revisions for aseptic loosening of Charnley, metal-on-polyethylene prostheses. Tissue sections were analysed using light microscopy to determine histological reactions and also the location and content of alumina ceramic wear debris. Tissue samples were extracted from sections using laser capture microdissection and the characteristics of the particles subsequently analysed by TEM and SEM. The tissues from around the ceramic-on-ceramic prostheses all demonstrated the presence of particles, which could be seen as agglomerates inside cells or in distinct channels in the tissues. The tissues from the ceramic-on-ceramic retrievals had a mixed pathology with areas that had no obvious pathology, areas that were relatively rich in macrophages and over half of the tissues had in the region of 60% necrosis/necrobiosis. In comparison, the Charnley tissues showed a granulomatous cellular reaction involving a dense macrophage infiltrate and the presence of giant cells and < 30% necrosis/necrobiosis. The tissues from the ceramic prostheses also showed the presence of neutrophils and lymphocytes, which were not evident in the tissues from the Charnley retrievals. There were significantly more macrophages (p < 0.05), and giant cells (p < 0.01) in the Charnley tissues and significantly more neutrophils (p < 0.01) in the ceramic-on-ceramic tissues. TEM of the laser captured tissue revealed the presence of very small alumina wear debris in the size range 5-90 nm, mean size + SD of 24 +/- 19nm whereas SEM (lower

  10. Analysis of Genome-Wide Monoallelic Expression Patterns in Three Major Cell Types of Mouse Visual Cortex Using Laser Capture Microdissection.

    PubMed

    Lin, Chia-Yi; Huang, Shih-Chuan; Tung, Chun-Che; Chou, Chih-Hsuan; Gau, Susan Shur-Fen; Huang, Hsien-Sung

    Genomic imprinting is an epigenetic mechanism causing monoallelic expression in a parent-of-origin-specific manner. Disruption of imprinted genes causes various neurological and psychiatric disorders. However, the role of imprinted genes in the brain is largely unknown. Different cell types within distinct brain regions can influence the genomic imprinting status, but imprinted genes in single cell types within distinct brain regions have not been characterized on a genome-wide scale. To address this critical question, we used a multi-stage approach, which combined genetically engineered mice with fluorescence-based laser capture microdissection (LCM) to capture excitatory neurons, inhibitory neurons and astrocytes as single cells in layer 2/3 of mouse visual cortex. RNA sequencing determined parental expression patterns on a genome-wide scale in the captured cells within specific brain regions. The expression level of cell-type-specific genes for excitatory neurons (13 genes), inhibitory neurons (16 genes) and astrocytes (20 genes) confirmed the LCM-captured cells maintained their cellular identities. The parent-of-origin-specific expression pattern of imprinted genes, including maternally expressed Meg3 and paternally expressed Peg3, provided evidence that the status of known imprinted genes was also maintained. Although our platform remains to be improved, our findings demonstrate the parental expression pattern can be analysed not only at the level of a single cell type but also at the level of specific cortical layers. Our approach has the potential to reveal novel regulatory modules associated with plasticity through genomic imprinting mechanisms in different cell types, not only in the visual cortex but also in other brain regions.

  11. Generation of Aorta Transcript Atlases of Wild-Type and Apolipoprotein E-null Mice by Laser Capture Microdissection-Based mRNA Expression Microarrays.

    PubMed

    Yin, Changjun; Mohanta, Sarajo; Ma, Zhe; Weber, Christian; Hu, Desheng; Weih, Falk; Habenicht, Andreas

    2015-01-01

    Atherosclerosis is a transmural chronic inflammatory disease of medium and large arteries. Though it is well recognized that immune responses contribute to atherosclerosis, it remains unclear whether these responses are carried out in secondary lymphoid organs such as the spleen and lymph nodes and/or within the arterial wall. Arteries are composed of three major layers, i.e., the laminae intima, media, and adventitia. However, each of these layers may play different roles in arterial wall biology and atherogenesis. We identified well-structured artery tertiary lymphoid organs (ATLOs) in the abdominal aorta adventitia but not in the intima of aged apolipoprotein E-null (ApoE(-/-)) mice. These observations suggested that disease-associated immune responses are highly territorialized within the arterial wall and that the adventitia may play distinct and hitherto unrecognized roles. Here, we set out to apply laser capture microdissection (LCM) to dissect plaque, media, adventitia, and adjacent aorta-draining lymph nodes (LN) in aged ApoE(-/-) mice in attempts to establish the territoriality of atherosclerosis immune responses. Using whole-genome mRNA expression microarrays of arterial wall tissues, we constructed robust transcript atlases of wild-type and ApoE(-/-) mouse aortas. Data were deposited in the National Center for Biotechnology Information's gene expression omnibus (GEO) and are accessible to the public through the Internet. These transcript atlases are anticipated to prove valuable to address a wide scope of issues ranging from atherosclerosis immunity and inflammation to the role of single genes in regulating arterial wall remodeling. This chapter presents protocols for LCM of mouse aorta and microarray expression analysis from LCM-isolated aorta laminae.

  12. Inclusion body myositis: laser microdissection reveals differential up-regulation of IFN-γ signaling cascade in attacked versus nonattacked myofibers.

    PubMed

    Ivanidze, Jana; Hoffmann, Reinhard; Lochmüller, Hanns; Engel, Andrew G; Hohlfeld, Reinhard; Dornmair, Klaus

    2011-09-01

    Sporadic inclusion body myositis (IBM) is a muscle disease with two separate pathogenic components, degeneration and inflammation. Typically, nonnecrotic myofibers are focally surrounded and invaded by CD8(+) T cells and macrophages. Both attacked and nonattacked myofibers express high levels of human leukocyte antigen class I (HLA-I) molecules, a prerequisite for antigen presentation to CD8(+) T cells. However, only a subgroup of HLA-I(+) myofibers is attacked by immune cells. By using IHC, we classified myofibers from five patients with sporadic IBM as attacked (A(IBM)) or nonattacked (N(IBM)) and isolated the intracellular contents of myofibers separately by laser microdissection. For comparison, we isolated myofibers from control persons (H(CTRL)). The samples were analyzed by microarray hybridization and quantitative PCR. HLA-I up-regulation was observed in A(IBM) and N(IBM), whereas H(CTRL) were negative for HLA-I. In contrast, the inducible chain of the interferon (IFN) γ receptor (IFNGR2) and several IFN-γ-induced genes were up-regulated in A(IBM) compared with N(IBM) and H(CTRL) fibers. Confocal microscopy confirmed segmental IFNGR2 up-regulation on the membranes of A(IBM), which positively correlated with the number of adjacent CD8(+) T cells. Thus, the differential up-regulation of the IFN-γ signaling cascade observed in the attacked fibers is related to local inflammation, whereas the ubiquitous HLA-I expression on IBM muscle fibers does not require IFNGR expression. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing.

    PubMed

    Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni

    2017-08-23

    Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now

  14. Analysis of Genome-Wide Monoallelic Expression Patterns in Three Major Cell Types of Mouse Visual Cortex Using Laser Capture Microdissection

    PubMed Central

    Gau, Susan Shur-Fen

    2016-01-01

    Genomic imprinting is an epigenetic mechanism causing monoallelic expression in a parent-of-origin-specific manner. Disruption of imprinted genes causes various neurological and psychiatric disorders. However, the role of imprinted genes in the brain is largely unknown. Different cell types within distinct brain regions can influence the genomic imprinting status, but imprinted genes in single cell types within distinct brain regions have not been characterized on a genome-wide scale. To address this critical question, we used a multi-stage approach, which combined genetically engineered mice with fluorescence-based laser capture microdissection (LCM) to capture excitatory neurons, inhibitory neurons and astrocytes as single cells in layer 2/3 of mouse visual cortex. RNA sequencing determined parental expression patterns on a genome-wide scale in the captured cells within specific brain regions. The expression level of cell-type-specific genes for excitatory neurons (13 genes), inhibitory neurons (16 genes) and astrocytes (20 genes) confirmed the LCM-captured cells maintained their cellular identities. The parent-of-origin-specific expression pattern of imprinted genes, including maternally expressed Meg3 and paternally expressed Peg3, provided evidence that the status of known imprinted genes was also maintained. Although our platform remains to be improved, our findings demonstrate the parental expression pattern can be analysed not only at the level of a single cell type but also at the level of specific cortical layers. Our approach has the potential to reveal novel regulatory modules associated with plasticity through genomic imprinting mechanisms in different cell types, not only in the visual cortex but also in other brain regions. PMID:27662371

  15. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread.

    PubMed

    Hogekamp, Claudia; Arndt, Damaris; Pereira, Patrícia A; Becker, Jörg D; Hohnjec, Natalija; Küster, Helge

    2011-12-01

    Arbuscular mycorrhizae (AM) are the most widespread symbioses on Earth, promoting nutrient supply of most terrestrial plant species. To unravel gene expression in defined stages of Medicago truncatula root colonization by AM fungi, we here combined genome-wide transcriptome profiling based on whole mycorrhizal roots with real-time reverse transcription-PCR experiments that relied on characteristic cell types obtained via laser microdissection. Our genome-wide approach delivered a core set of 512 genes significantly activated by the two mycorrhizal fungi Glomus intraradices and Glomus mossae. Focusing on 62 of these genes being related to membrane transport, signaling, and transcriptional regulation, we distinguished whether they are activated in arbuscule-containing or the neighboring cortical cells harboring fungal hyphae. In addition, cortical cells from nonmycorrhizal roots served as a reference for gene expression under noncolonized conditions. Our analysis identified 25 novel arbuscule-specific genes and 37 genes expressed both in the arbuscule-containing and the adjacent cortical cells colonized by fungal hyphae. Among the AM-induced genes specifying transcriptional regulators were two members encoding CAAT-box binding transcription factors (CBFs), designated MtCbf1 and MtCbf2. Promoter analyses demonstrated that both genes were already activated by the first physical contact between the symbionts. Subsequently, and corresponding to our cell-type expression patterns, they were progressively up-regulated in those cortical areas colonized by fungal hyphae, including the arbuscule-containing cells. The encoded CBFs thus represent excellent candidates for regulators that mediate a sequential reprogramming of root tissues during the establishment of an AM symbiosis.

  16. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    PubMed

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  17. Comparative quantitative proteomic analysis of disease stratified laser captured microdissected human islets identifies proteins and pathways potentially related to type 1 diabetes.

    PubMed

    Nyalwidhe, Julius O; Grzesik, Wojciech J; Burch, Tanya C; Semeraro, Michele L; Waseem, Tayab; Gerling, Ivan C; Mirmira, Raghavendra G; Morris, Margaret A; Nadler, Jerry L

    2017-01-01

    Type 1 diabetes (T1D) is a chronic inflammatory disease that is characterized by autoimmune destruction of insulin-producing pancreatic beta cells. The goal of this study was to identify novel protein signatures that distinguish Islets from patients with T1D, patients who are autoantibody positive without symptoms of diabetes, and from individuals with no evidence of disease. High resolution high mass accuracy label free quantitative mass spectrometry analysis was applied to islets isolated by laser capture microdissection from disease stratified human pancreata from the Network for Pancreatic Organ Donors with Diabetes (nPOD), these included donors without diabetes, donors with T1D-associated autoantibodies in the absence of diabetes, and donors with T1D. Thirty-nine proteins were found to be differentially regulated in autoantibody positive cases compared to the no-disease group, with 25 upregulated and 14 downregulated proteins. For the T1D cases, 63 proteins were differentially expressed, with 24 upregulated and 39 downregulated, compared to the no disease controls. We have identified functional annotated enriched gene families and multiple protein-protein interaction clusters of proteins are involved in biological and molecular processes that may have a role in T1D. The proteins that are upregulated in T1D cases include S100A9, S100A8, REG1B, REG3A and C9 amongst others. These proteins have important biological functions, such as inflammation, metabolic regulation, and autoimmunity, all of which are pathways linked to the pathogenesis of T1D. The identified proteins may be involved in T1D development and pathogenesis. Our findings of novel proteins uniquely upregulated in T1D pancreas provides impetus for further investigations focusing on their expression profiles in beta cells/ islets to evaluate their role in the disease pathogenesis. Some of these molecules may be novel therapeutic targets T1D.

  18. Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread1[W

    PubMed Central

    Hogekamp, Claudia; Arndt, Damaris; Pereira, Patrícia A.; Becker, Jörg D.; Hohnjec, Natalija; Küster, Helge

    2011-01-01

    Arbuscular mycorrhizae (AM) are the most widespread symbioses on Earth, promoting nutrient supply of most terrestrial plant species. To unravel gene expression in defined stages of Medicago truncatula root colonization by AM fungi, we here combined genome-wide transcriptome profiling based on whole mycorrhizal roots with real-time reverse transcription-PCR experiments that relied on characteristic cell types obtained via laser microdissection. Our genome-wide approach delivered a core set of 512 genes significantly activated by the two mycorrhizal fungi Glomus intraradices and Glomus mossae. Focusing on 62 of these genes being related to membrane transport, signaling, and transcriptional regulation, we distinguished whether they are activated in arbuscule-containing or the neighboring cortical cells harboring fungal hyphae. In addition, cortical cells from nonmycorrhizal roots served as a reference for gene expression under noncolonized conditions. Our analysis identified 25 novel arbuscule-specific genes and 37 genes expressed both in the arbuscule-containing and the adjacent cortical cells colonized by fungal hyphae. Among the AM-induced genes specifying transcriptional regulators were two members encoding CAAT-box binding transcription factors (CBFs), designated MtCbf1 and MtCbf2. Promoter analyses demonstrated that both genes were already activated by the first physical contact between the symbionts. Subsequently, and corresponding to our cell-type expression patterns, they were progressively up-regulated in those cortical areas colonized by fungal hyphae, including the arbuscule-containing cells. The encoded CBFs thus represent excellent candidates for regulators that mediate a sequential reprogramming of root tissues during the establishment of an AM symbiosis. PMID:22034628

  19. Lasers for vascular lesions: standard guidelines of care.

    PubMed

    Srinivas, C R; Kumaresan, M

    2011-01-01

    Lasers are a good therapeutic tool for congenital and acquired vascular lesions. Technological advances in lasers have reduced the adverse effects and increased the efficacy. MACHINES: Among the various lasers used for treating vascular lesions, pulsed dye laser (PDL) has the best efficacy and safety data. The other machines that are widely available are Nd:YAG laser and intense pulse light (IPL). RATIONALE AND SCOPE OF GUIDELINE: Much variation exists in different machines and techniques, and therefore, establishing standard guidelines has limitations. The guidelines recommended here indicate minimum standards of care for lasers on vascular lesions based on current evidence. Laser may be administered by a dermatologist, who has received adequate background training in lasers during post-graduation or later at a center that provides education and training in lasers, or in focused workshops, which provide such trainings. He/she should have adequate knowledge of the lesions being treated, machines, parameters, cooling systems, and aftercare. The procedure may be performed in the physician's minor procedure room with adequate laser safety measures. PWS, hemangioma, facial telangiectasia, rosacea, spider angioma, pyogenic granuloma, venous lakes, leg veins. Absolute: Active local infection, photo-aggravated skin diseases, and medical conditions. Relative: Unstable vitiligo, psoriasis, keloid and keloidal tendencies, patient on isotretinoin, patient who is not cooperative or has unrealistic expectation. Patient selection should be done after detailed counseling with respect to the course of lesions, different treatment options, possible results, cost, need for multiple treatments, and possible postoperative complications. TREATMENT SESSIONS: The number of treatments per lesion varies from 2 to 12 or more at 6-8 week intervals. All lesions may not clear completely even after multiple sessions in many cases. Hence, a realistic expectation and proper counseling is very

  20. Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells

    PubMed Central

    Delvaux, Elaine; Mastroeni, Diego; Nolz, Jennifer

    2016-01-01

    We describe a novel method for assessing the “open” or “closed” state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with qPCR to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than one gene and multiple sites within one gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue we also recognize its applicability to other tissue types. PMID:27158594

  1. Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells.

    PubMed

    Delvaux, Elaine; Mastroeni, Diego; Nolz, Jennifer; Coleman, Paul D

    2016-06-01

    We describe a novel method for assessing the "open" or "closed" state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with qPCR to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than one gene and multiple sites within one gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue we also recognize its applicability to other tissue types.

  2. Vascular tissue engineering by computer-aided laser micromachining.

    PubMed

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  3. Vascular Welding Using The Argon Laser

    NASA Astrophysics Data System (ADS)

    White, Rodney A.; Donayre, Carlos; Kopchok, George; White, Geoffrey; Abergel, R. Patrick; Lyons, Richard; Klein, Stanley; Dwyer, Richard; Uitto, Jouni

    1987-03-01

    This study compared the histology, biochemistry, and tensile strength of laser welded and sutured canine venotomies, arteriotomies and arteriovenous fistulas. Bilateral femoral, carotid or jugular vessels were studied with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralatral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks for each type of repair and evaluated histologically by hematoxylineosin, elastin and trichrome stains, biochemically by the formation of [3H] hyaroxyproline as an index of collagen synthesis, ana mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welaing may be an alternative to sutures for repair of large diameter venotomies, arteriotomies and arteriovenous fistulas, as they heal comparable to suture repairs up to 4 weeks postoperatively.

  4. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves.

    PubMed

    Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel

    2009-10-23

    Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to prevent pathogen

  5. Laser capture microdissection as a tool to evaluate human papillomavirus genotyping and methylation as biomarkers of persistence and progression of anal lesions

    PubMed Central

    Cornall, Alyssa M; Roberts, Jennifer M; Molano, Monica; Machalek, Dorothy A; Phillips, Samuel; Hillman, Richard J; Grulich, Andrew E; Jin, Fengyi; Poynten, I Mary; Templeton, David J; Garland, Suzanne M; Tabrizi, Sepehr N

    2015-01-01

    Introduction Anal squamous cell carcinoma is preceded by persistent infection with high-risk human papillomavirus (HPV) and the cancer precursor, high-grade squamous intraepithelial lesion (HSIL). Detection of specific HPV genotypes and HPV-related biomarkers may be an option for primary anal screening. However, more data on the natural history of HPV-related anal lesions are required. The outcomes from this study will enhance our understanding of the clinical and biological behaviour of HPV-related anal lesions and inform the development of future HPV genotype and/or biomarker screening tests. Methods and analysis HIV-negative and HIV-positive men who have sex with men, aged 35 years and over, recruited from community-based settings in Sydney, Australia, attend 6 clinic visits over 3 years. At the first 5 visits, participants undergo a digital anorectal examination, an anal swab for HPV genotyping and anal cytology, and high-resolution anoscopy with directed biopsy of any visible abnormalities that are suggestive of any abnormality suspicious of SIL. Tissue sections from participants diagnosed with histologically confirmed HSIL at the baseline clinic visit will undergo laser capture microdissection, HPV detection and genotyping, and quantitation of CpG methylation in baseline and follow-up biopsies. Histological and cytological findings in combination with HPV genotyping data will be used to identify persistent HSIL. HSIL will be stratified as non-persistent and persistent based on their status at 12 months. The performance of HPV genotype and methylation status in predicting disease persistence at 12 months will be assessed, along with associations with HIV status and other covariates such as age. Ethics and dissemination The St Vincent's Hospital Ethics Committee granted ethics approval for the study. Written informed consent is obtained from all individuals before any study-specific procedures are performed. Findings from this study will be disseminated

  6. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves

    PubMed Central

    Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel

    2009-01-01

    Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to

  7. Senescent vs. non-senescent cells in the human annulus in vivo: Cell harvest with laser capture microdissection and gene expression studies with microarray analysis

    PubMed Central

    2010-01-01

    Background Senescent cells are well-recognized in the aging/degenerating human disc. Senescent cells are viable, cannot divide, remain metabolically active and accumulate within the disc over time. Molecular analysis of senescent cells in tissue offers a special challenge since there are no cell surface markers for senescence which would let one use fluorescence-activated cell sorting as a method for separating out senescent cells. Methods We employed a novel laser capture microdissection (LCM) design to selectively harvest senescent and non-senescent annulus cells in paraffin-embedded tissue, and compared their gene expression with microarray analysis. LCM was used to separately harvest senescent and non-senescent cells from 11 human annulus specimens. Results Microarray analysis revealed significant differences in expression levels in senescent cells vs non-senescent cells: 292 genes were upregulated, and 321 downregulated. Genes with established relationships to senescence were found to be significantly upregulated in senescent cells vs. non-senescent cells: p38 (MPAK14), RB-Associated KRAB zinc finger, Discoidin, CUB and LCCL domain, growth arrest and DNA-damage inducible beta, p28ING5, sphingosine-1-phosphate receptor 2 and somatostatin receptor 3; cyclin-dependent kinase 8 showed significant downregulation in senescent cells. Nitric oxidase synthase 1, and heat shock 70 kDa protein 6, both of which were significantly down-regulated in senescent cells, also showed significant changes. Additional genes related to cytokines, cell proliferation, and other processes were also identified. Conclusions Our LCM-microarray analyses identified a set of genes associated with senescence which were significantly upregulated in senescent vs non-senescent cells in the human annulus. These genes include p38 MAP kinase, discoidin, inhibitor of growth family member 5, and growth arrest and DNA-damage-inducible beta. Other genes, including genes associated with cell

  8. Comedones Induced by Vascular Laser Therapy

    PubMed Central

    Demirci, Gulsen Tukenmez; Mansur, Ayse Tulin; Gulec, Ayse Tulin

    2016-01-01

    A 21-year-old female presented with acne-like blackheads on brownish areas located on the cheek. She had been treated with neodymium-doped yttrium aluminium garnet (Nd-YAG) laser (1071 nm), 160 j/cm2, three months ago for erythema and telangiectasia of her face. Afterwards, she developed atrophic, slightly depressed, hyperpigmented, 3-4 mm scars with superimposed tiny comedones within the treated areas. Topical treatment with tretinoin 0.05% cream on alternate days, and Sun Protection Factor (SPF) 50 sunscreen daily were commenced. After 2 months, comedones and hyperpigmentation mostly resolved but mild superficial atrophy persisted. According to our knowledge, this is the first case of atrophic scars studded with open comedones, developing shortly after laser therapy used for facial telangiectasia. PMID:27081249

  9. Vascular spasm complicates continuous wave but not pulsed laser irradiation

    SciTech Connect

    Gal, D.; Steg, P.G.; Rongione, A.J.; DeJesus, S.T.; Clarke, R.H.; Isner, J.M. )

    1989-11-01

    Preliminary clinical experience with laser angioplasty has suggested that arterial spasm may complicate attempts to employ laser light to accomplish vascular recanalization. The present study was designed to investigate the role of energy profile on the development of arterial spasm during laser angioplasty. Laser irradiation was delivered percutaneously in vivo to New Zealand white rabbits and to Yucatan microswine with or without atherosclerotic lesions induced by a combination of balloon endothelial denudation and atherogenic diet. Continuous wave (CW) laser irradiation from an argon ion gas laser (wavelength 488 to 514 nm) was applied to 23 arteries, while 16 arteries were irradiated using a pulsed xenon chloride (308 nm) or xenon fluoride (351 nm) excimer laser. Arterial spasm, defined as greater than 50% reduction in luminal diameter narrowing, complicated delivery of laser light to 17 (74%) of the 23 arteries irradiated with the CW argon laser. Spasm was consistently observed at powers greater than 2 W, at cumulative exposures greater than 200 seconds, and at total energy greater than 200 joules. Spasm was typically diffuse (including the length of the vessel) and protracted (lasting up to 120 minutes). Intra-arterial nitroglycerin (up to 300 micrograms) produced only temporary and incomplete resolution of laser-induced spasm. In contrast, spasm was never observed in any of the 16 arteries in which laser angioplasty was performed using a pulsed laser (0.95 to 6.37 joules/cm2, 10 to 50 Hz, 48 to 370 seconds). Thus CW but not pulsed laser angioplasty may be complicated by arterial spasm

  10. Argon laser vascular tissue fusion: current status and future perspectives

    NASA Astrophysics Data System (ADS)

    White, Rodney A.; Kopchok, George E.

    1991-06-01

    Tissue fusion by laser energy is an intriguing and very promising new applications for laser technology. In comparison to using high laser energy to ablate tissue as in the angioplasty application, laser tissue fusion is possible in any soft tissue by delivering appropriate low levels of energy to the opposed tissue surfaces. This technology is particularly appealing for vascular applications in making sutureless blood vessel anastomosisand for securing the endpoints of endarterectomies and dissection planes. Although there have been limited evaluations of this technology, the preliminary experimental and clinical data is very promising for continued development and application. Vascular tissue fusion or welding by lasers is performed by directing a low energy beam at the opposed edges of the repair. The energy is applied by moving the beam back and forth along the fusion line or, in certain cases, by delivering the energy in "spot" applications. Vessel sealing is apparent in the majority of fusions to the trained eye, as is nonunion caused by inadequate energy delivery, or tissue coagulation or vaporization from excessive energy exposure. Laser repairs can be fashioned in time intervals comparable to or slightly longer than those required for suture repairs. Precision of tissue apposition at the time of fusion is a critical parameter which affects the rate of healing and tensile strength of tissue welds. A gap between the vessel edges or blood at the interface compromises weld strength.

  11. In Situ Staining and Laser Capture Microdissection of Lymph Node Residing SIV Gag-Specific CD8+ T cells—A Tool to Interrogate a Functional Immune Response Ex Vivo

    PubMed Central

    Tjernlund, Annelie; Burgener, Adam; Lindvall, Jessica M.; Peng, Tao; Zhu, Jia; Öhrmalm, Lars; Picker, Louis J.; Broliden, Kristina; McElrath, M. Juliana; Corey, Lawrence

    2016-01-01

    While a plethora of data describes the essential role of systemic CD8+ T cells in the control of SIV replication little is known about the local in situ CD8+ T cell immune responses against SIV at the intact tissue level, due to technical limitations. In situ staining, using GagCM9 Qdot 655 multimers, were here combined with laser capture microdissection to detect and collect SIV Gag CM9 specific CD8+ T cells in lymph node tissue from SIV infected rhesus macaques. CD8+ T cells from SIV infected and uninfected rhesus macaques were also collected and compared to the SIV GagCM9 specific CD8+ T cells. Illumina bead array and transcriptional analyses were used to assess the transcriptional profiles and the three different CD8+ T cell populations displayed unique transcriptional patterns. This pilot study demonstrates that rapid and specific immunostaining combined with laser capture microdissection in concert with transcriptional profiling may be used to elucidate phenotypic differences between CD8+ T cells in SIV infection. Such technologies may be useful to determine differences in functional activities of HIV/SIV specific T cells. PMID:26986062

  12. Laser application in the field of vascular anastomosis: Experimental and clinical study

    NASA Astrophysics Data System (ADS)

    Okada, Masayoshi

    2005-07-01

    Nowadays, much attention has been paid to keep long-term patency after vascular anastomosis especially for small-caliber vessels in vascular surgery. From these standpoints, low energy CO2 laser was used to make an anastomosis especially for small -caliber vessels. And then an availability of vascular anastomosis by laser could be apparently recognized.

  13. Laser microdissection hyphenated with high performance gel permeation chromatography-charged aerosol detector and ultra performance liquid chromatography-triple quadrupole mass spectrometry for histochemical analysis of polysaccharides in herbal medicine: Ginseng, a case study.

    PubMed

    Chen, Qi-Lei; Chen, Yu-Jie; Zhou, Shan-Shan; Yip, Ka-Man; Xu, Jun; Chen, Hu-Biao; Zhao, Zhong-Zhen

    2017-09-01

    This study establishes a new combinatorial approach for histochemical analysis of polysaccharides in herbal medicines using laser microdissection followed by high performance gel permeation chromatography coupled with charged aerosol detector and ultra-performance liquid chromatography hyphenated with triple quadrupole mass spectrometry. Ginseng was employed as a study model. Tissue-specific qualitative and quantitative characterization of ginseng polysaccharides was performed by determining their molar masses and monosaccharide compositions in three macro-dissected parts (rhizome, main and branched roots) and five micro-dissected tissues (cork, cortex, xylem, phloem and resin canal). The results showed that ginseng "flesh" (xylem, phloem and resin canal) contained more polysaccharides with larger molecular weights and higher ratios of glucose residue, whereas ginseng "skin" (cork and cortex) had fewer polysaccharides with smaller molecular weights and higher ratios of non-glucose constituents (e.g. galacturonic acid, galactose, arabinose and rhamnose). These findings suggested that the polysaccharides of the "flesh" were predominantly starch-like glucans, while those of the "skin" were of a higher proportion of acidic pectins. The revealed histologic distribution and accumulation pattern of ginseng polysaccharides contributes to the scientific understanding of ginseng regarding the biosynthesis and transportation of polysaccharides, medicinal quality evaluation as well as empirical clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cellular expression and localization of estrogen receptor α and progesterone receptor mRNA in the bovine oviduct combining laser-assisted microdissection, quantitative PCR, and in situ hybridization.

    PubMed

    Kenngott, Rebecca Anna-Maria; Vermehren, Margarete; Sauer, Ulrich; Ebach, Katja; Sinowatz, Fred

    2011-03-01

    The importance of using techniques that allow the study of pure populations of cells has been increasingly recognized. The authors used laser-assisted microdissection (LAM) in combination with quantitative real-time PCR (qPCR) to assess the relative expression of mRNAs encoding estrogen receptor α (ERα) and progesterone receptor (PR) in the different compartments of the bovine oviduct (epithelium, stroma, smooth muscle coat) during the follicular and mid-luteal phases of the estrus cycle. The localization of receptor mRNA was further studied using non-radioactive in situ hybridization (NISH). A special focus was on whether formalin fixation and paraffin embedding influence the quality and quantity of mRNA obtained from microdissected material. Distinct cyclic changes of the mRNA in the bovine oviduct were observed with elevated levels of PR mRNA transcripts in the epithelium and smooth muscle coat during the follicular phase. The expression of PR mRNA did not vary significantly in the stroma of the bovine oviduct during follicular and mid-luteal phases. In conclusion, the authors found that LAM with qPCR can precisely locate and accurately quantify mRNA expression in specific cell populations from formalin-fixed and paraffin-embedded oviductal tissue.

  15. Cellular Expression and Localization of Estrogen Receptor a and Progesterone Receptor mRNA in the Bovine Oviduct Combining Laser-Assisted Microdissection, Quantitative PCR, and In Situ Hybridization

    PubMed Central

    Kenngott, Rebecca Anna-Maria; Vermehren, Margarete; Sauer, Ulrich; Ebach, Katja; Sinowatz, Fred

    2011-01-01

    The importance of using techniques that allow the study of pure populations of cells has been increasingly recognized. The authors used laser-assisted microdissection (LAM) in combination with quantitative real-time PCR (qPCR) to assess the relative expression of mRNAs encoding estrogen receptor α (ERα) and progesterone receptor (PR) in the different compartments of the bovine oviduct (epithelium, stroma, smooth muscle coat) during the follicular and mid-luteal phases of the estrus cycle. The localization of receptor mRNA was further studied using non-radioactive in situ hybridization (NISH). A special focus was on whether formalin fixation and paraffin embedding influence the quality and quantity of mRNA obtained from microdissected material. Distinct cyclic changes of the mRNA in the bovine oviduct were observed with elevated levels of PR mRNA transcripts in the epithelium and smooth muscle coat during the follicular phase. The expression of PR mRNA did not vary significantly in the stroma of the bovine oviduct during follicular and mid-luteal phases. In conclusion, the authors found that LAM with qPCR can precisely locate and accurately quantify mRNA expression in specific cell populations from formalin-fixed and paraffin-embedded oviductal tissue. PMID:21378285

  16. Online, absolute quantitation of propranolol from spatially distinct 20-μm and 40-μm dissections of brain, liver, and kidney thin tissue sections by laser microdissection – liquid vortex capture – mass spectrometry

    SciTech Connect

    Kertesz, Vilmos; Vavrek, Marissa; Freddo, Carol; Van Berkel, Gary J.; Cahill, John F.; Weiskittel, Taylor M.

    2016-05-23

    Here, spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression). Reported here is the use of laser cut and drop sampling with a laser microdissection-liquid vortex capture electrospray ionization tandem mass spectrometry (LMD-LVC/ESI-MS/MS) system for online and absolute quantitation of propranolol in mouse brain, kidney, and liver thin tissue sections of mice administered with the drug at a 7.5 mg/kg dose, intravenously. In this procedure either 20 μm x 20 μm or 40 μm x 40 μm tissue microdissections were cut and dropped into the flowing solvent of the capture probe. During transport to the ESI source drug related material was completely extracted from the tissue into the solvent, which contained a known concentration of propranolol-d7 as an internal standard. This allowed absolute quantitation to be achieved with an external calibration curve generated from standards containing the same fixed concentration of propranolold-d7 and varied concentrations of propranolol. Average propranolol concentrations determined with the laser cut and drop sampling method closely agreed with concentration values obtained from 2.3 mm diameter tissue punches from serial sections that were extracted and quantified by HPLC/ESI-MS/MS measurements. In addition, the relative abundance of hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous findings.

  17. Online, absolute quantitation of propranolol from spatially distinct 20-μm and 40-μm dissections of brain, liver, and kidney thin tissue sections by laser microdissection – liquid vortex capture – mass spectrometry

    DOE PAGES

    Kertesz, Vilmos; Vavrek, Marissa; Freddo, Carol; ...

    2016-05-23

    Here, spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression). Reported here is the use of laser cut and drop sampling with a laser microdissection-liquid vortex capture electrospray ionization tandem mass spectrometry (LMD-LVC/ESI-MS/MS) system for online and absolute quantitation of propranolol in mouse brain, kidney, and liver thin tissue sections of mice administered with the drug at a 7.5 mg/kg dose, intravenously. In this procedure either 20 μm x 20more » μm or 40 μm x 40 μm tissue microdissections were cut and dropped into the flowing solvent of the capture probe. During transport to the ESI source drug related material was completely extracted from the tissue into the solvent, which contained a known concentration of propranolol-d7 as an internal standard. This allowed absolute quantitation to be achieved with an external calibration curve generated from standards containing the same fixed concentration of propranolold-d7 and varied concentrations of propranolol. Average propranolol concentrations determined with the laser cut and drop sampling method closely agreed with concentration values obtained from 2.3 mm diameter tissue punches from serial sections that were extracted and quantified by HPLC/ESI-MS/MS measurements. In addition, the relative abundance of hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous findings.« less

  18. Online, absolute quantitation of propranolol from spatially distinct 20-μm and 40-μm dissections of brain, liver, and kidney thin tissue sections by laser microdissection – liquid vortex capture – mass spectrometry

    SciTech Connect

    Kertesz, Vilmos; Vavrek, Marissa; Freddo, Carol; Van Berkel, Gary J.; Cahill, John F.; Weiskittel, Taylor M.

    2016-05-23

    Here, spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression). Reported here is the use of laser cut and drop sampling with a laser microdissection-liquid vortex capture electrospray ionization tandem mass spectrometry (LMD-LVC/ESI-MS/MS) system for online and absolute quantitation of propranolol in mouse brain, kidney, and liver thin tissue sections of mice administered with the drug at a 7.5 mg/kg dose, intravenously. In this procedure either 20 μm x 20 μm or 40 μm x 40 μm tissue microdissections were cut and dropped into the flowing solvent of the capture probe. During transport to the ESI source drug related material was completely extracted from the tissue into the solvent, which contained a known concentration of propranolol-d7 as an internal standard. This allowed absolute quantitation to be achieved with an external calibration curve generated from standards containing the same fixed concentration of propranolold-d7 and varied concentrations of propranolol. Average propranolol concentrations determined with the laser cut and drop sampling method closely agreed with concentration values obtained from 2.3 mm diameter tissue punches from serial sections that were extracted and quantified by HPLC/ESI-MS/MS measurements. In addition, the relative abundance of hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous findings.

  19. Flashlamp-excited dye laser therapy for treatment of cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Goldberg, David J.

    1990-06-01

    Flashlamp excited dye laser therapy represents an exciting new advance in the treatment of a variety of cutaneous vascular lesions. Portwine stains, angiomas and telangiectases can be treated in all age groups with this laser system. This paper will review the physics of flashlamp dye laser photothermolysis. The differences between argon laser photocoagulation and flashlamp excited dye laser therapy will be reviewed.

  20. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics.

    PubMed

    Kondo, Tadashi; Hirohashi, Setsuo

    2006-01-01

    Proteome data combined with histopathological information provides important, novel clues for understanding cancer biology and reveals candidates for tumor markers and therapeutic targets. We have established an application of a highly sensitive fluorescent dye (CyDye DIGE Fluor saturation dye), developed for two-dimensional difference gel electrophoresis (2D-DIGE), to the labeling of proteins extracted from laser microdissected tissues. The use of the dye dramatically decreases the protein amount and, in turn, the number of cells required for 2D-DIGE; the cells obtained from a 1 mm2 area of an 8-12 microm thick tissue section generate up to 5,000 protein spots in a large-format 2D gel. This protocol allows the execution of large-scale proteomics in a more efficient, accurate and reproducible way. The protocol can be used to examine a single sample in 5 d or to examine hundreds of samples in large-scale proteomics.

  1. Laser therapy and sclerotherapy in the treatment of oral and maxillofacial hemangioma and vascular malformations

    NASA Astrophysics Data System (ADS)

    Crişan, Bogdan; BǎciuÅ£, Mihaela; BǎciuÅ£, Grigore; Crişan, Liana; Bran, Simion; Rotar, Horatiu; Moldovan, Iuliu; Vǎcǎraş, Sergiu; Mitre, Ileana; Barbur, Ioan; Magdaş, Andreea; Dinu, Cristian

    2016-03-01

    Hemangioma and vascular malformations in the field of oral and maxillofacial surgery is a pathology more often found in recent years in patients. The aim of this study was to evaluate the efficacy of the laser photocoagulation performed with a diode laser (Ga-Al-As) 980 nm wavelength in the treatment of vascular lesions which are located on the oral and maxillofacial areas, using color Doppler ultrasonography for evaluation of the results. We also made a comparison between laser therapy and sclerotherapy in order to establish treatment protocols and recommendations associated with this pathology. We conducted a controlled study on a group of 92 patients (38 male and 54 female patients, with an average age of 36 years) having low flow hemangioma and vascular malformations. Patients in this trial received one of the methods of treatment for vascular lesions such as hemangioma and vascular malformations: laser therapy or sclerotherapy. After laser therapy we have achieved a reduction in size of hemangioma and vascular malformations treated with such a procedure, and the aesthetic results were favorable. No reperfusion or recanalization of laser treated vascular lesions was observed after an average follow-up of 6 to 12 months. In case of sclerotherapy a reduction in the size of vascular lesions was also obtained. The 980 nm diode laser has been proved to be an effective tool in the treatment of hemangioma and vascular malformations in oral and maxillofacial area. Laser therapy in the treatment of vascular lesions was more effective than the sclerotherapy procedure.

  2. Treatment of facial vascular lesions with an argon laser

    NASA Astrophysics Data System (ADS)

    Szymanczyk, Jacek; Golebiowska, Aleksandra; Michalska, I.

    1996-03-01

    Two-hundred-ninety-six patients with various vascular lesions of the face have been treated with argon laser LAK-1 in the Department of Dermatology Warsaw Medical Academy since April 1992. The diagnosis of the treated lesions was port-wine stains, multiple telangiectasiae and small, most often induced by trauma hemangioma cavernosum of the lip. Best results were achieved in the patients with small hemangiomas cavernosum of the lip and multiple telangiectasiae on the face. Cure rate in this group was 100%. In 112 port-wine stain cases fading of 50 - 75% comparing with the adjacent skin was achieved. With stress, the argon laser therapy is a method of choice for the treatment of hemangioma cavernosum, port-wine stains and multiple teleagiectasiae of the face.

  3. [Therapeutic indications for percutaneous laser in patients with vascular malformations and tumors].

    PubMed

    Labau, D; Cadic, P; Ouroussoff, G; Ligeron, C; Laroche, J-P; Guillot, B; Dereure, O; Quéré, I; Galanaud, J-P

    2014-12-01

    Lasers are increasingly used to treat vascular abnormalities. Indeed, this technique is non-invasive and allows a specific treatment. The aim of this review is to present some biophysical principles of the lasers, to describe the different sorts of lasers available for treatment in vascular medicine indications. Three principal lasers exist in vascular medicine: the pulsed-dye laser, for the treatment of superficial pink lesions, the NdYAG-KTP laser for purple and bigger lesions, and the NdYAG long pulse laser for even deeper and bigger vascular lesions. In vascular malformations, port wine stains can also be treated by pulsed-dye laser, KTP or NdYAG when they are old and thick. Telangiectasias are good indications for the three sorts of lasers, depending on their depth, color and size. Microcystic lymphatic malformations can be improved by laser treatment. Arterio-venous malformations constitute a contraindication of laser treatment. In vascular tumors, involuted infantile hemangiomas constitute an excellent indication of pulsed-dye laser treatment. Controlled studies are necessary to evaluate and to compare the efficacy of each laser, in order to determine their optimal indications and optimal parameters for each machine.

  4. Microdissection of gonadal tissues for gene expression analyses.

    PubMed

    Jørgensen, Anne; Dalgaard, Marlene Danner; Sonne, Si Brask

    2011-01-01

    Laser microdissection permits isolation of specific cell types from tissue sections or cell cultures. This may be beneficial when investigating the role of specific cells in a complex tissue or organ. In tissues with easily distinguishable morphology, a simple hematoxylin staining is sufficient, but in most cases a more specific staining is required to identify which cells to microdissect. We have established two staining protocols for frozen sections (1) Oil red O, which stains lipid droplet in fat cells and steroid-producing cells and (2) NBT BCIP, which stains cells expressing an alkaline phosphatase enzyme, such as fetal germ cells, testicular carcinoma in situ cells, and putatively also other early stem cell populations. We have applied these protocols for microdissection of rat Leydig cells, fetal human and zebrafish germ cells, and human testicular germ cell tumors, but the staining protocols could also be used in other species and for other cell types containing lipid droplets or expressing alkaline phosphatase. Both protocols ensure a morphology that enables microdissection of single cells with RNA quality sufficient for subsequent gene expression analysis. However, RNA yields after microdissection and purification are small, and therefore, two rounds of linear amplification are recommended prior to gene expression analysis.

  5. Real time laser speckle imaging monitoring vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Ruth; Vyacheslav, Kalchenko; Scherz, Avigdor

    2017-02-01

    Laser speckle imaging is a technique that has been developed to non-invasively monitor in vivo blood flow dynamics and vascular structure, at high spatial and temporal resolution. It can record the full-field spatio-temporal characteristics of microcirculation and has therefore, often been used to study the blood flow in tumors after photodynamic therapy (PDT). Yet, there is a paucity of reports on real-time laser speckle imaging (RTLSI) during PDT. Vascular-targeted photodynamic therapy (VTP) with WST11, a water-soluble bacteriochlorophyll derivative, achieves tumor ablation through rapid occlusion of the tumor vasculature followed by a cascade of events that actively kill the tumor cells. WST11-VTP has been already approved for treatment of early/intermediate prostate cancer at a certain drug dose, time and intensity of illumination. Application to other cancers may require different light dosage. However, incomplete vascular occlusion at lower light dose may result in cancer cell survival and tumor relapse while excessive light dose may lead to toxicity of nearby healthy tissues. Here we provide evidence for the feasibility of concomitant RTLSI of the blood flow dynamics in the tumor and surrounding normal tissues during and after WST11-VTP. Fast decrease in the blood flow is followed by partial mild reperfusion and a complete flow arrest within the tumor by the end of illumination. While the primary occlusion of the tumor feeding arteries and draining veins agrees with previous data published by our group, the late effects underscore the significance of light dose control to minimize normal tissue impairment. In conclusion- RTSLI application should allow to optimize VTP efficacy vs toxicity in both the preclinical and clinical arenas.

  6. Gene expression profiles in squamous cell carcinomas of the oral cavity: use of laser capture microdissection for the construction and analysis of stage-specific cDNA libraries.

    PubMed

    Leethanakul, C; Patel, V; Gillespie, J; Shillitoe, E; Kellman, R M; Ensley, J F; Limwongse, V; Emmert-Buck, M R; Krizman, D B; Gutkind, J S

    2000-09-01

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer among men in the developed world affecting the oral cavity, salivary glands, larynx and pharynx. Utilizing tissue from patients with HNSCC, we sought to systematically identify and catalog genes expressed in HNSCC progression. Here, we demonstrate the successful use of laser capture microdissection for procuring pure populations of cells from patient tissue sets comprised of oral squamous cell carcinomas (OSCCs) and matching normal tissue. From the estimated 5000 cells procured for each sample, we were able to extract total RNA (14.7-18.6 ng) of sufficient quality to transcribe GAPDH by reverse transcriptase-polymerase chain reaction (RT-PCR). The RNA was used for the synthesis of blunt-ended, double-strand complementary DNAs (cDNAs) by oligo (dT)-mediated reverse transcription, followed by addition of linkers. Primers specific for these linkers with uracil deglycosylase-compatible ends were used to amplify these cDNAs by PCR and the product was subcloned into the pAMP10 cloning vector. Ninety-six clones from each of six libraries were randomly sequenced and results indicated that 76-96% of the inserts represent either anonymous expressed sequence tags (ESTs) (25-48%), known genes (9-29%) or novel sequences (27-51%), respectively, with very little redundancy. These results demonstrate that high quality, representative cDNA libraries can be generated from microdissected OSCC tissue. Furthermore, these finding suggest the existence of at least 132 novel genes expressed in our cDNA libraries, which may have a role in the pathogenesis of HNSCC, and may represent novel markers for early detection as well as targets for pharmacological intervention in this disease.

  7. Gene expression analysis of rheumatoid arthritis synovial lining regions by cDNA microarray combined with laser microdissection: up-regulation of inflammation-associated STAT1, IRF1, CXCL9, CXCL10, and CCL5

    PubMed Central

    Yoshida, S; Arakawa, F; Higuchi, F; Ishibashi, Y; Goto, M; Sugita, Y; Nomura, Y; Niino, D; Shimizu, K; Aoki, R; Hashikawa, K; Kimura, Y; Yasuda, K; Tashiro, K; Kuhara, S; Nagata, K; Ohshima, K

    2012-01-01

    Objectives The main histological change in rheumatoid arthritis (RA) is the villous proliferation of synovial lining cells, an important source of cytokines and chemokines, which are associated with inflammation. The aim of this study was to evaluate gene expression in the microdissected synovial lining cells of RA patients, using those of osteoarthritis (OA) patients as the control. Methods Samples were obtained during total joint replacement from 11 RA and five OA patients. Total RNA from the synovial lining cells was derived from selected specimens by laser microdissection (LMD) for subsequent cDNA microarray analysis. In addition, the expression of significant genes was confirmed immunohistochemically. Results The 14 519 genes detected by cDNA microarray were used to compare gene expression levels in synovial lining cells from RA with those from OA patients. Cluster analysis indicated that RA cells, including low- and high-expression subgroups, and OA cells were stored in two main clusters. The molecular activity of RA was statistically consistent with its clinical and histological activity. Expression levels of signal transducer and activator of transcription 1 (STAT1), interferon regulatory factor 1 (IRF1), and the chemokines CXCL9, CXCL10, and CCL5 were statistically significantly higher in the synovium of RA than in that of OA. Immunohistochemically, the lining synovium of RA, but not that of OA, clearly expressed STAT1, IRF1, and chemokines, as was seen in microarray analysis combined with LMD. Conclusions Our findings indicate an important role for lining synovial cells in the inflammatory and proliferative processes of RA. Further understanding of the local signalling in structural components is important in rheumatology. PMID:22401175

  8. Vascular lasers and IPLS: guidelines for care from the European Society for Laser Dermatology (ESLD).

    PubMed

    Adamic, Metka; Troilius, Agneta; Adatto, Maurice; Drosner, Michael; Dahmane, Raja

    2007-06-01

    Dermatology and dermatologic surgery have rapidly evolved during the last two decades thanks to the numerous technological and scientific acquisitions focused on improved precision in the diagnosis and treatment of skin alterations. Given the proliferation of new devices for the treatment of vascular lesions, we have considerably changed our treatment approach. Lasers and non-coherent intense pulse light sources (IPLS) are based on the principle of selective photothermolysis and can be used for the treatment of many vascular skin lesions. A variety of lasers has recently been developed for the treatment of congenital and acquired vascular lesions which incorporate these concepts into their design. The list is a long one and includes pulsed dye (FPDL, APDL) lasers (577 nm, 585 nm and 595 nm), KTP lasers (532 nm), long pulsed alexandrite lasers (755 nm), pulsed diode lasers (in the range of 800 to 900 nm), long pulsed 1064 Nd:YAG lasers and intense pulsed light sources (IPLS, also called flash-lights or pulsed light sources). Several vascular lasers (such as argon, tunable dye, copper vapour, krypton lasers) which were used in the past are no longer useful as they pose a higher risk of complications such as dyschromia (hypopigmentation or hyperpigmentation) and scarring. By properly selecting the wavelength which is maximally absorbed by the target--also called the chromophore (haemoglobin in the red blood cells within the vessels)--and a corresponding pulse duration which is shorter than the thermal relaxation time of that target, the target can be preferentially injured without transferring significant amounts of energy to surrounding tissues (epidermis and surrounding dermal tissue). Larger structures require more time for sufficient heat absorption. Therefore, a longer laser-pulse duration has to be used. In addition, more deeply situated vessels require the use of longer laser wavelengths (in the infrared range) which can penetrate deeper into the skin. Although

  9. Multispectral imaging of pigmented and vascular cutaneous malformations: the influence of laser treatment

    NASA Astrophysics Data System (ADS)

    Kuzmina, Ilona; Diebele, Ilze; Asare, Lasma; Kempele, Anna; Abelite, Anita; Jakovels, Dainis; Spigulis, Janis

    2010-11-01

    The paper investigates influence and efficacy of laser therapy on pigmented and vascular cutaneous malformations by multispectral imaging technique. Parameter mapping of skin pigmented and vascular lesions and monitoring of the laser therapy efficacy are performed by multispectral imaging in wavelength range 450-700nm by scanning step - 10nm. Parameter maps of the oxyhemoglobin deoxyhemoglobin and melanin derived from the images are presented. Possibility of laser therapy efficacy monitoring by comparison of the parameter maps before and after laser treatment has been demonstrated. As both cutaneous pigmented and vascular malformations are commonly found lesions, the parameter mapping would be a valuable method to use routinely.

  10. Microdissection of shoot meristem functional domains.

    PubMed

    Brooks, Lionel; Strable, Josh; Zhang, Xiaolan; Ohtsu, Kazuhiro; Zhou, Ruilian; Sarkar, Ananda; Hargreaves, Sarah; Elshire, Robert J; Eudy, Douglas; Pawlowska, Teresa; Ware, Doreen; Janick-Buckner, Diane; Buckner, Brent; Timmermans, Marja C P; Schnable, Patrick S; Nettleton, Dan; Scanlon, Michael J

    2009-05-01

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection-microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize.

  11. Present status and new perspectives in laser welding of vascular tissues.

    PubMed

    Esposito, G; Rossi, F; Matteini, P; Puca, A; Albanese, A; Sabatino, G; Maira, G; Pini, R

    2011-01-01

    The laser welding of biological tissues is a particular use of lasers in surgery. The technique has been proposed since the 1970s for surgical applications, such as repairing blood vessels, nerves, tendons, bronchial fistulae, skin and ocular tissues. In vascular surgery, two procedures have been tested and optimized in animal models, both ex vivo and in vivo, in order to design different approaches for blood vessels anastomoses and for the repair of vascular lesions: the laser-assisted vascular anastomosis (LAVA) and the laser-assisted vessel repair (LAVR). Sealing tissues by laser may overcome the problems related to the use of conventional closuring methods that are generally associated with various degrees of vascular wall damage that can ultimately predispose to vessel thrombosis and occlusion. In fact, the use of a laser welding technique provides several advantages such as simplification of the surgical procedure, reduction of the operative time, suppression of bleeding, and may guarantee an optimal healing process of vascular structures, very similar to restitutio ad integrum. Despite the numerous preclinical studies performed by several research groups, the clinical applications of laser-assisted anastomosis or vessel repair are still far off. Substantial breakthrough in the laser welding of biological tissues may come from the advent of nanotechnologies. Herein we describe the present status and the future perspectives in laser welding of vascular structures.

  12. Guidelines of care for vascular lasers and intense pulse light sources from the European Society for Laser Dermatology.

    PubMed

    Adamič, M; Pavlović, M D; Troilius Rubin, A; Palmetun-Ekbäck, M; Boixeda, P

    2015-09-01

    Lasers and non-coherent intense pulse light sources (IPLS) are based on the principle of selective photothermolysis and can be used for the treatment of many vascular skin lesions. A variety of lasers has been developed for the treatment of congenital and acquired vascular lesions which incorporate these concepts into their design. Although laser and light sources are very popular due to their non-invasive nature, caution should be considered by practitioners and patients to avoid permanent side-effects. The aim of these guidelines is to give evidence-based recommendations for the use of lasers and IPLS in the treatment of vascular lesions. These guidelines were produced by a Consensus Panel made up of experts in the field of vascular laser surgery under the auspices of the European Society of Laser Dermatology. Recommendations on the use of vascular lasers and IPLS were made based on the quality of evidence for efficacy, safety, tolerability, cosmetic outcome, patient satisfaction/preference and, where appropriate, on the experts' opinion. The recommendations of these guidelines are graded according to the American College of Chest Physicians Task Force recommendations on Grading Strength of Recommendations and Quality of Evidence in Clinical Guidelines. Lasers and IPLS are very useful and sometimes the only available method to treat various vascular lesions. It is of a paramount importance that the type of laser or IPLS and their specific parameters are adapted to the indication but also that the treating physician is familiar with the device to be used. The crucial issue in treating vascular lesions is to recognize the immediate end-point after laser treatment. This is the single most important factor to ensure both the efficacy of the treatment and avoidance of serious side-effects. © 2015 European Academy of Dermatology and Venereology.

  13. A method for obtaining simian immunodeficiency virus RNA sequences from laser capture microdissected and immune captured CD68+ and CD163+ macrophages from frozen tissue sections of bone marrow and brain.

    PubMed

    Mallard, Jaclyn; Papazian, Emily; Soulas, Caroline; Nolan, David J; Salemi, Marco; Williams, Kenneth C

    2017-03-01

    Laser capture microdissection (LCM) is used to extract cells or tissue regions for analysis of RNA, DNA or protein. Several methods of LCM are established for different applications, but a protocol for consistently obtaining lentiviral RNA from LCM captured immune cell populations is not described. Obtaining optimal viral RNA for analysis of viral genes from immune-captured cells using immunohistochemistry (IHC) and LCM is challenging. IHC protocols have long antibody incubation times that increase risk of RNA degradation. But, immune capture of specific cell populations like macrophages without staining for virus cannot result in obtaining only a fraction of cells which are productively lentivirally infected. In this study we sought to obtain simian immunodeficiency virus (SIV) RNA from SIV gp120+ and CD68+ monocyte/macrophages in bone marrow (BM) and CD163+ perivascular macrophages in brain of SIV-infected rhesus macaques. Here, we report an IHC protocol with RNase inhibitors that consistently results in optimal quantity and yield of lentiviral RNA from LCM-captured immune cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca)

    PubMed Central

    2010-01-01

    Background Laser microdissection (LMD) has been established for isolation of individual tissue types from herbaceous plants. However, there are few reports of cell- and tissue-specific analysis in woody perennials. While microdissected tissues are commonly analyzed for gene expression, reports of protein, enzyme activity and metabolite analysis are limited due in part to an inability to amplify these molecules. Conifer stem tissues are organized in regular patterns with xylem, phloem and cortex development controlled by the activity of the cambial zone (CZ). Defense responses of conifer stems against insects and pathogens involve increased accumulation of terpenoids in cortical resin ducts (CRDs) and de novo formation of traumatic resin ducts from CZ initials. These tissues are difficult to isolate for tissue-specific molecular and biochemical characterization and are thus good targets for application of LMD. Results We describe robust methods for isolation of individual tissue-types from white spruce (Picea glauca) stems for analysis of RNA, enzyme activity and metabolites. A tangential cryosectioning approach was important for obtaining large quantities of CRD and CZ tissues using LMD. We report differential expression of genes involved in terpenoid metabolism between CRD and CZ tissues and in response to methyl jasmonate (MeJA). Transcript levels of β-pinene synthase and levopimaradiene/abietadiene synthase were constitutively higher in CRDs, but induction was stronger in CZ in response to MeJA. 3-Carene synthase was more strongly induced in CRDs compared to CZ. A differential induction pattern was observed for 1-deoxyxyulose-5-phosphate synthase, which was up-regulated in CRDs and down-regulated in CZ. We identified terpene synthase enzyme activity in CZ protein extracts and terpenoid metabolites in both CRD and CZ tissues. Conclusions Methods are described that allow for analysis of RNA, enzyme activity and terpenoid metabolites in individual tissues isolated

  15. Nd:YAG laser photocoagulation of benign oral vascular lesions: a case series.

    PubMed

    Medeiros, Rui; Silva, Igor Henrique; Carvalho, Alessandra Tavares; Leão, Jair Carneiro; Gueiros, Luiz Alcino

    2015-11-01

    Vascular anomalies of the head and neck are common lesions usually associated with functional and/or aesthetic limitations. The aim of the present paper was to report a case series of oral vascular malformations treated with Nd:YAG laser photocoagulation, highlighting the clinical evolution and post-surgical complications. Fifteen patients diagnosed with oral vascular malformations were treated with Nd:YAG laser followed by three sessions of biostimulation. None of the patients presented post-surgical pain, but 6 of 15 patients (40%) experienced minimal post-surgical complications. All cases presented complete resolution of the lesions after laser treatment. More importantly, 12 out of 15 (80%) resolved after a single session. Low morbidity, minimal patient discomfort, and satisfactory aesthetic results point Nd:YAG laser photocoagulation as a promising option for the management of benign oral vascular lesions.

  16. Microdissected Prefabricated Flap: An Evolution in Flap Prefabrication

    PubMed Central

    2016-01-01

    When traditional flap techniques are not feasible, we apply flap prefabrication, which is more complicated and sophisticated but supplies large and thin flaps. There are some disadvantages to the technique that require improvement, such as venous congestion after flap transfer, which requires months for neoangiogenesis and necessitates a vascular carrier. Here, the author presents a new technique, called as ‘microdissected prefabricated flap,’ to successfully produce a safe, large, and thin flap. This technique is based on the microdissection of the perforators to the greatest extent possible, spreading them out into the subdermal level and using them as a carrier. The details and the application of this technique are presented and reported. PMID:27896196

  17. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells.

    PubMed

    Barcala, Marta; García, Alejandra; Cabrera, Javier; Casson, Stuart; Lindsey, Keith; Favery, Bruno; García-Casado, Gloria; Solano, Roberto; Fenoll, Carmen; Escobar, Carolina

    2010-02-01

    Root-knot nematodes differentiate highly specialized feeding cells in roots (giant cells, GCs), through poorly characterized mechanisms that include extensive transcriptional changes. While global transcriptome analyses have used galls, which are complex root structures that include GCs and surrounding tissues, no global gene expression changes specific to GCs have been described. We report on the differential transcriptome of GCs versus root vascular cells, induced in Arabidopsis by Meloidogyne javanica at a very early stage of their development, 3 days after infection (d.p.i.). Laser microdissection was used to capture GCs and root vascular cells for microarray analysis, which was validated through qPCR and by a promoter-GUS fusion study. Results show that by 3 d.p.i., GCs exhibit major gene repression. Although some genes showed similar regulation in both galls and GCs, the majority had different expression patterns, confirming the molecular distinctiveness of the GCs within the gall. Most of the differentially regulated genes in GCs have no previously assigned function. Comparisons with other transcriptome analyses revealed similarities between GCs and cell suspensions differentiating into xylem cells. This suggests a molecular link between GCs and developing vascular cells, which represent putative GC stem cells. Gene expression in GCs at 3 d.p.i. was also found to be similar to crown galls induced by Agrobacterium tumefaciens, a specialized root biotroph.

  18. Pulsed dye laser application in ablation of vascular ectasias of the larynx: a preliminary animal study

    NASA Astrophysics Data System (ADS)

    Woo, Peak; Wang, Zhi; Perrault, Donald F., Jr.; McMillan, Kathleen; Pankratov, Michail M.

    1995-05-01

    Vascular ectasias (dilatation) and vascular lesions of the larynx are difficult to treat with exciting modalities. Varix (enlarged vessel) of the vocal folds, vocal fold hemorrhage, vascular polyp, hemangioma, intubation or contact granuloma are common problems which disturb voice. Current applications of CO2 laser and cautery often damage the delicate vocal fold cover. The 585 nm dermatologic pulsed dye laser may be an ideal substitute. Two adult canines were examined under anesthesia via microlaryngoscopy technique. Pulsed dye laser (SPTL-1a, Candela Laser Corp., Wayland, MA) energy was delivered via the micromanipulator with the 3.1-mm spot size in single pulses of 6, 8, and 10 Joules/cm2 and applied to the vessels of the vocal folds, epiglottis, and arytenoid cartilage. Endoscopic examination was carried out immediately after the treatment and at 4 weeks postoperatively. The animals were sacrificed at 3 weeks, larynges excised, and whole organ laryngeal section were prepared for histology. Pulsed dye laser thrombosed vessels of the vocal fold using 6 or 8 Joules/cm2. Vascular break and leakage occurred at 10 Joules/cm2. Follow up examination showed excellent vessel obliteration or thrombosis without scarring or injury to the overlying tissues. Histologic examination shows vascular thrombosis without inflammation and fibrosis in the vocal fold cover. Pulsed dye laser may have promise in treatment of vascular lesions of the larynx and upper airway.

  19. Laser assisted vascular anastomosis (LAVA): a promising nonsuture technique for surgery

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Peng, Fei; Xu, Dahai; Cheng, Qinghua

    2009-08-01

    The first successful experiment of laser vascular welding was reported in 1979. Laser assisted vascular anastomosis (LAVA) is looked as a particularly promising non-suture method in future. We performed a Medline literature search on laser vessel welding combined with cross-referencing. According to the former experimental animal studies, CO2-, argon-, diode-, KTP-, Holmium:YAG-, and Nd:YAG-lasers have been used for LAVA. Almost all lasers have been used in combination with stay suture and/or solders in order to improve the strength on anastomosis site. Advantages of LAVA are minimal vessel damage, faster operation and the potential for minimally invasive application. However, the clinical application of LAVA is still seldom employed because of aneurysm formation. In conclusion of the literature study, the diode laser is the most popular, but long-term evaluation is required.

  20. Ten years of laser treatment of congenital vascular disorders: techniques and results

    NASA Astrophysics Data System (ADS)

    Philipp, Carsten M.; Berlien, Hans-Peter; Poetke, Margitta; Waldschmidt, Juergen

    1994-12-01

    During the period of January 1984 - July 1993, we have treated 611 children with more than 2000 lesions of congenital vascular disorders (CVD) such as hemangiomas and vascular malformations. This number does not include the patients with port wine stains, which also have been treated by means of laser. Most of the CVD patients (n equals 467) presented hemangiomas of the face, the anogenital region, and the extremities, some were located in the trachea or mouth or in the urogenital tract. All of these hemangiomas were growing prior to intervention or showed complications such as bleeding, ulceration, superinfection, or obstruction. Nearly a quarter (n equals 144) of the patients presented vascular malformations, either of singular vessel type involvement or of mixed vascular genesis (venous, arterio- venous, veno-lymphatic or lymphatic) with various complications like tracheal obstruction or recurrent thrombophlebitis. According to our step program, which is based on a clinical classification, the hemangiomas were treated as early as possible, while the vascular malformations were only treated with laser when no other therapeutic technique (embolization, resection) was suitable. All patients were referred for laser treatment from other centers. The lasers used were Nd:YAG and Argon lasers with transcutaneous application with or without continuous ice-cube surface cooling or interstitial laser application. The treatments were performed either on in- or outpatient basis according to age, localization and with good to excellent results in most cases and a complication rate of less than 2%.

  1. The role of vascular endothelial growth factor in fractional laser resurfacing with the carbon dioxide laser.

    PubMed

    Jiang, Xia; Ge, Hongmei; Zhou, Chuanqing; Chai, Xinyu; Ren, Qiu Shi

    2012-05-01

    The aim of this study was to analyze the role of vascular endothelial growth factor (VEGF) in mechanisms of cutaneous remodeling induced by fractional CO(2) laser treatment. The dorsal skin of Kunming mice was exposed to a single-pass fractional CO(2) laser treatment. Biopsies were taken 1 h, and 1, 3, 7, 14, 28 and 56 days after treatment. Skin samples VEGF expression was evaluated by immunohistochemistry and ELISA, fibroblasts by hematoxylin-eosin staining, and types I and III collagen by ELISA. Staining for VEGF was found in many types of cell including fibroblasts. The amount of VEGF in the skin of laser-treated areas had increased significantly compared to that in the control areas on days 1 and 3 (P < 0.05, P < 0.01, respectively), then decreased by day 7 after treatment and returned to the baseline level. The number of fibroblasts in the skin of the laser-treated areas had increased significantly compared to that in control areas on days 3, 7, 14, 28 and 56 after irradiation (P < 0.05, P < 0.01, P < 0.01, P < 0.01, P < 0.01, respectively). The amount of type I collagen was significantly higher in the skin of the laser-treated areas compared to that in control areas from day 28 to day 56 (P < 0.05, respectively), and type III collagen was significantly higher from day 3 to day 56 (P < 0.05, P < 0.05, P < 0.05, P < 0.05, P < 0.01, respectively). There was a positive correlation between the level of VEGF and fibroblast proliferation early stage after laser treatment (r = 0.853, P < 0.01), but there was no correlation after the first week (r = -0.124, P > 0.05). The amounts of type I and III collagen showed no significant correlations with the expression of VEGF in the late stages after laser treatment (r = 0.417, P > 0.05 and r = 0.340, P > 0.05, respectively). The results suggest that VEGF might be mainly involved in the early stages of wound healing, including the stages

  2. Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM).

    PubMed

    Mehta, Prachi; Premkumar, Brian; Morris, Renée

    2016-08-03

    The mammalian central nervous system (CNS) is composed of multiple cellular elements, making it challenging to segregate one particular cell type to study their gene expression profile. For instance, as motor neurons represent only 5-10% of the total cell population of the spinal cord, meaningful transcriptional analysis on these neurons is almost impossible to achieve from homogenized spinal cord tissue. A major challenge faced by scientists is to obtain good quality RNA from small amounts of starting material. In this paper, we used Laser Capture Microdissection (LCM) techniques to identify and isolate spinal cord motor neurons. The present analysis revealed that perfusion with paraformaldehyde (PFA) does not alter RNA quality. RNA integrity numbers (RINs) of tissue samples from rubrospinal tract (RST)-transected, intact spinal cord or from whole spinal cord homogenate were all above 8, which indicates intact, high-quality RNA. Levels of mRNA for brain-derived neurotrophic factor (BDNF) or for its tropomyosin receptor kinase B (TrkB) were not affected by rubrospinal tract (RST) transection, a surgical procedure that deprive motor neurons from one of their main supraspinal input. The isolation of pure populations of neurons with LCM techniques allows for robust transcriptional characterization that cannot be achieved with spinal cord homogenates. Such preparations of pure population of motor neurons will provide valuable tools to advance our understanding of the molecular mechanisms underlying spinal cord injury and neuromuscular diseases. In the near future, LCM techniques might be instrumental to the success of gene therapy for these debilitating conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Identification of mRNAs and lincRNAs associated with lung cancer progression using next-generation RNA sequencing from laser micro-dissected archival FFPE tissue specimens.

    PubMed

    Morton, Matthew L; Bai, Xiaodong; Merry, Callie R; Linden, Philip A; Khalil, Ahmad M; Leidner, Rom S; Thompson, Cheryl L

    2014-07-01

    Adenocarcinoma in situ (AIS) is an intermediate step in the progression of normal lung tissue to invasive adenocarcinoma. However, molecular mechanisms underlying this progression remain to be fully elucidated due to challenges in obtaining fresh clinical samples for downstream analyses. Formalin fixation and paraffin embedding (FFPE) is a tissue preservation system widely used for long-term storage. Until recently, challenges in working with FFPE precluded using new RNA sequencing technologies (RNA-seq), which would help clarify key pathways in cancer progression. Also, isolation techniques including laser-capture micro-dissection provide the ability to select histopathologically distinct tissues, allowing researchers to study transcriptional variations between tightly juxtaposed cell and tissue types. Utilizing these technologies and new alignment tools we examined differential expression of long intergenic non-coding RNAs (lincRNAs) and mRNAs across normal, AIS and invasive adenocarcinoma samples from six patients to identify possible markers of lung cancer progression. RNA extracted and sequenced from these 18 samples generated an average of 198 million reads per sample. After alignment and filtering, uniquely aligned reads represented an average 35% of the total reads. We detected differential expression of a number of lincRNAs and mRNAs when comparing normal to AIS, or AIS to invasive adenocarcinoma. Of these, 5 lincRNAs and 31 mRNAs were consistently up- or down-regulated from normal to AIS and more so to invasive carcinoma. We validated the up-regulation of two mRNAs and one lincRNA by RT-qPCR as proof of principle. Our findings indicate a potential role of not only mRNAs, but also lincRNAs in the progression to invasive adenocarcinoma. We anticipate that these findings will lay the groundwork for future experimental studies of candidate RNAs from FFPE to identify their functional roles in lung cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights

  4. Laser-Capture Microdissection: Refining Estimates of the Quantity and Distribution of Latent Herpes Simplex Virus 1 and Varicella-Zoster Virus DNA in Human Trigeminal Ganglia at the Single-Cell Level

    PubMed Central

    Wang, Kening; Lau, Tsz Y.; Morales, Melissa; Mont, Erik K.; Straus, Stephen E.

    2005-01-01

    There remains uncertainty and some controversy about the percentages and types of cells in human sensory nerve ganglia that harbor latent herpes simplex virus 1 (HSV-1) and varicella-zoster virus (VZV) DNA. We developed and validated laser-capture microdissection and real-time PCR (LCM/PCR) assays for the presence and copy numbers of HSV-1 gG and VZV gene 62 sequences in single cells recovered from sections of human trigeminal ganglia (TG) obtained at autopsy. Among 970 individual sensory neurons from five subjects, 2.0 to 10.5% were positive for HSV-1 DNA, with a median of 11.3 copies/positive cell, compared with 0.2 to 1.5% of neurons found to be positive by in situ hybridization (ISH) for HSV-1 latency-associated transcripts (LAT), the classical surrogate marker for HSV latency. This indicates a more pervasive latent HSV-1 infection of human TG neurons than originally thought. Combined ISH/LCM/PCR assays revealed that the majority of the latently infected neurons do not accumulate LAT to detectable levels. We detected VZV DNA in 1.0 to 6.9% of individual neurons from 10 subjects. Of the total 1,722 neurons tested, 4.1% were VZV DNA positive, with a median of 6.9 viral genomes/positive cell. After removal by LCM of all visible neurons on a slide, all surrounding nonneuronal cells were harvested and assayed: 21 copies of HSV-1 DNA were detected in ∼5,200 nonneuronal cells, while nine VZV genomes were detected in ∼14,200 nonneuronal cells. These data indicate that both HSV-1 and VZV DNAs persist in human TG primarily, if not exclusively, in a moderate percentage of neuronal cells. PMID:16254342

  5. Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines).

    PubMed

    Klink, Vincent P; Overall, Christopher C; Alkharouf, Nadim W; MacDonald, Margaret H; Matthews, Benjamin F

    2007-11-01

    Syncytial cells in soybean (Glycine max cultivar [cv.] Peking) roots infected by incompatible and compatible populations of soybean cyst nematode (SCN [Heterodera glycines]) were collected using laser capture microdissection (LCM). Gene transcript abundance was assayed using Affymetrix soybean GeneChips, each containing 37,744 probe sets. Our analyses identified differentially expressed genes in syncytial cells that are not differentially expressed in the whole root analyses. Therefore, our results show that the mass of transcriptional activity occurring in the whole root is obscuring identification of transcriptional events occurring within syncytial cells. In syncytial cells from incompatible roots at three dpi, genes encoding lipoxygenase (LOX), heat shock protein (HSP) 70, superoxidase dismutase (SOD) were elevated almost tenfold or more, while genes encoding several transcription factors and DNA binding proteins were also elevated, albeit at lower levels. In syncytial cells formed during the compatible interaction at three dpi, genes encoding prohibitin, the epsilon chain of ATP synthase, allene oxide cyclase and annexin were more abundant. By 8 days, several genes of unknown function and genes encoding a germin-like protein, peroxidase, LOX, GAPDH, 3-deoxy-D-arabino-heptolosonate 7-phosphate synthase, ATP synthase and a thioesterase were abundantly expressed. These observations suggest that gene expression is different in syncytial cells as compared to whole roots infected with nematodes. Our observations also show that gene expression is different between syncytial cells that were isolated from incompatible and compatible roots and that gene expression is changing over the course of syncytial cell development as it matures into a functional feeding site.

  6. Regulation of the spatial code for BDNF mRNA isoforms in the rat hippocampus following pilocarpine-treatment: a systematic analysis using laser microdissection and quantitative real-time PCR.

    PubMed

    Baj, Gabriele; Del Turco, Domenico; Schlaudraff, Jessica; Torelli, Lucio; Deller, Thomas; Tongiorgi, Enrico

    2013-05-01

    Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and plasticity and is one of those genes that generate multiple mRNAs with different alternatively spliced 5'UTRs. The functional significance of many BDNF transcripts, each producing the same protein, is emerging. On the basis of the analysis of the four most abundant brain BDNF transcripts, we recently proposed the "spatial code hypothesis of BDNF splice variants" according to which the BDNF transcripts, through their differential subcellular localization in soma or dendrites, represent a mechanism to synthesize the protein at distinct locations and produce local effects. In this study, using laser microdissection of hippocampal laminae and reverse transcription-quantitative real-time PCR (RT-qPCR), we analyzed all known BDNF mRNA variants at resting conditions or following 3 h pilocarpine-induced status epilepticus. In untreated rats, we found dendritic enrichment of BDNF transcripts encoding exons 6 and 7 in CA1; exons 1, 6, and 9a in CA3; and exons 5, 6, 7, and 8 in DG. Considering the low abundance of the other transcripts, exon 6 was the main transcript in dendrites under resting conditions. Pilocarpine treatment induced an increase of BDNF transcripts encoding exons 4 and 6 in all dendritic laminae and, additionally, of exon 2 in CA1 stratum radiatum and exons 2, 3, 9a in DG molecular layer while the other transcripts were decreased in dendrites, suggesting restriction to the soma. These results support the hypothesis of a spatial code to differentially regulate BDNF in the somatic or dendritic compartment under conditions of pilocarpine-induced status epilepticus and, furthermore, highlight the existence of subfield-specific differences.

  7. Fiber laser micromachining of thin NiTi tubes for shape memory vascular stents

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Dong Bo; Tong, Yi Fei; Zhu, Yu Fu

    2016-07-01

    Nickel titanium (NiTi) alloy has widely been used in the vascular stent manufacturing due to its excellent properties. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is commonly used for the preparation of metal vascular stents. Recently, fiber lasers have been used for stent profiling for better cutting quality. To investigate the cutting-kerf characters of NiTi vascular stents fabricated by fiber laser cutting, laser cutting experiments with thin NiTi tubes were conducted in this study, while NiTi sheets were used in other fiber laser cutting studies. Different with striation topography, new topographies such as layer topography and topography mixed with layers and striations were observed, and the underlying reason for new topographies was also discussed. Comparative research on different topographies was conducted through analyzing the surface roughness, kerf width, heat-affected zone (HAZ) and dross formation. Laser cutting process parameters have a comprehensive influence on the cutting quality; in this study, the process parameters' influences on the cutting quality were studied from the view of power density along the cutting direction. The present research provides a guideline for improving the cutting quality of NiTi vascular stents.

  8. Percutaneous and combined percutaneous and intralesional Nd:YAG-laser therapy for vascular malformations.

    PubMed

    Wimmershoff, M B; Landthaler, M; Hohenleutner, U

    1999-01-01

    The numerous types of vascular abnormality are classified in groups according to their pathological and anatomical features. We present case histories of 2 patients who had vascular malformations of the face since birth or early childhood. Application methods, side-effects and complications of percutaneous and intra-lesional Nd:YAG-laser therapy are reviewed for these patients. A 54-year-old woman was treated percutaneously with the Nd: YAG-laser at 1064 nm, with 20 30 W, cw 1-5 s pulses and 2 - 3 mm spot size. A 59-year-old woman was treated with the combined percutaneous and intralesional laser therapy with 30 W, cw 1-5 s pulses and 2-3 mm spot size. In both cases, percutaneous or combined percutaneous and intra-lesional Nd: YAG-laser application resulted in a significant shrinking of the lesion. The Nd:YAG-laser radiation at 1064 nm presents an effective treatment of vascular malformations due to its deep penetration into the tissue. No standardized guidelines for Nd: YAG-laser therapy exist and the treatment parameters should be chosen individually according to the type of vascular malformation.

  9. Cardiopulmonary bypass standby avoids fatality due to vascular laceration in laser-assisted lead extraction.

    PubMed

    Wang, Wei; Wang, Xiaowei; Modry, Dennis; Wang, Shaohua

    2014-03-01

    Vascular laceration is a rare but potentially fatal complication with excimer laser-assisted pacemaker or implantable cardioverter-defibrillator lead extraction. We report our experience on management of vascular laceration during laser-assisted lead extraction. We retrospectively reviewed 140 consecutive patients undergoing laser-assisted lead extraction from May 2004 to March 2011. Clinical outcomes were compared in patients with and without intraoperative vascular laceration. Risk factors were identified by multivariate logistic regression. All cases were performed in the operating room with cardiopulmonary bypass standby. Complete lead removal was achieved in 118 (84.3%) patients. Potentially fatal complications occurred in five patients (3.6%) who had superior vena cava and/or innominate vein laceration. Lacerated veins were repaired under emergency sternotomy and cardiopulmonary bypass. The mean time from vascular laceration to establishment of cardiopulmonary bypass was 6.0 ± 3.6 minutes. All five patients survived without neurological sequelae. The rates of dual-coil leads (80.0% vs. 31.9%, p=0.025) and history of lead revision (100.0% vs. 40.0%, p=0.008) were significantly higher in the five patients who had major vascular laceration than those who did not. Logistic regression showed that dual-coil implantable cardioverter-defibrillator lead was an independent risk factor for vascular laceration (odds ratio 11.264, p=0.048). Cardiopulmonary bypass standby is helpful when performing laser-assisted lead extraction to treat potentially fatal vascular laceration. Dual-coil lead is an independent risk factor to predict intraoperative vascular laceration. © 2014 Wiley Periodicals, Inc.

  10. Excimer laser phototherapy for the dissolution of vascular obstruction

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1984-01-09

    Removal of abnormal human tissue with reduced thermal damage is achieved by selecting a laser having a wavelength in the order of 290 to 400 nm, orienting a laser-transmitting glass member toward the abnormal tissue and directing the laser through the glass member at power densities, pulse rates, and times sufficient to cause multiphoton absorption and bond breaking by Coulomb repulsion rather than thermal destruction. 2 figures.

  11. Selective disruption of vascular endothelium of zebrafish embryos by ultrafast laser microsurgical treatment

    PubMed Central

    Woo, Suk-Yi; Moon, Heh-Young; Kim, Tag Gyum; Lee, Heung Soon; Sidhu, Mehra S.; Kim, Changho; Jeon, Jae-Phil; Jeoung, Sae Chae

    2015-01-01

    In this work, we demonstrate that ultrafast laser irradiation could selectively disrupt vascular endothelium of zebrafish embryos in vivo. Ultrafast lasers minimize the collateral damage in the vicinity of the laser focus and eventually reduce coagulation in the tissues. We have also found that the threshold fluence for lesion formation of the vascular endothelium strongly depends on the developmental stage of the embryos. The threshold laser fluence required to induce apparent lesions in the vascular structure for Somite 14, 20 and 25 stages is about 5 J/cm2 ~7 J/cm2, which is much lower than that for the later development stages of Prim 16 and Prim 20 of 30 J/cm2 ~50 J/cm2. The proposed method for treating the vascular cord of zebrafish embryos in the early stage of development has potential as a selective and effective method to induce a fatal lesion in the vascular endothelium without damaging the developed blood vessels. PMID:26713187

  12. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    SciTech Connect

    Kuznetsov, Yu L; Kalchenko, V V; Astaf'eva, N G; Meglinski, I V

    2014-08-31

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials. (laser biophotonics)

  13. Laser treatment of 13 benign oral vascular lesions by three different surgical techniques.

    PubMed

    Romeo, Umberto; Del Vecchio, Alessandro; Russo, Claudia; Palaia, Gaspare; Gaimari, Gianfranco; Arnabat-Dominguez, Josep; España, Antoni-Jesus

    2013-03-01

    Benign Oral Vascular Lesions (BOVLs) are a group of vascular diseases characterized by congenital, inflammatory or neoplastic vascular dilations clinically evidenced as more or less wide masses of commonly dark bluish color. If traumatized BOVLs are characterized by a great risk of hemorrhage and their treatment usually requires great caution to prevent massive bleeding. In the last decades lasers have dramatically changed the way of treatment of BOVLs permitting the application of even peculiar techniques that gave interesting advantages in their management reducing hemorrhage risks. The aim of this study was to evaluate the capabilities and disadvantages of three laser assisted techniques in the management of BOVLs. In this study 13 BOVLs were treated by three different laser techniques: the traditional excisional biopsy (EB), and two less invasive techniques, the transmucosal thermocoagulation (TMT) and the intralesional photocoagulation (ILP). Two different laser devices were adopted in the study: a KTP laser (DEKA, Florence, Italy, 532 nm) and a GaAlAs laser (Laser Innovation, Castelgandolfo, Italy, 808 nm) selected since their great effectiveness on hemoglobin. In each case, lasers permitted safe treatments of BOVLs without hemorrhages, both during the intervention and in the post-operative period. The minimally invasive techniques (TMT and ILP) permitted even the safe resolution of big lesions without tissue loss. Laser devices confirm to be the gold standard in BOVLs treatment, permitting even the introduction of minimal invasive surgery principles and reducing the risks of hemorrhage typical of these neoplasms. As usual in laser surgery, it is necessary a clear knowledge of the devices and of the laser-tissue interaction to optimize the results reducing risks and disadvantages.

  14. Initial trial of argon ion laser endarterectomy for peripheral vascular disease

    SciTech Connect

    Eugene, J.; Ott, R.A.; Baribeau, Y.; McColgan, S.J.; Berns, M.W.; Mason, G.R. )

    1990-08-01

    In the initial of open laser endarterectomy, 16 patients underwent 18 reconstructions for claudication (13 patients), rest pain (3 patients), and gangrene (2 patients). The mean (+/- SD) preoperative ankle arm index was 0.53 +/- 0.18. The laser endarterectomies were aorto-bi-iliac (1 patient), iliac (1 patient), superficial femoral (7 patients), profunda femoral (7 patients), and popliteal-posterior tibial (2 patients). All operations included surgical exposure, vascular control, administration of heparin, and an arteriotomy. Atheromas were dissected from arteries with argon ion laser radiation (power, 1.0 W). End points were welded with laser light. Arteries were closed primarily. The laser endarterectomies were 6 to 60 cm long and required 168 J to 2447.5 J. All patients had symptomatic relief, with a postoperative ankle arm index of 0.97 +/- 0.10. There were no arterial perforations from laser radiation. Surgical complications included early thrombosis requiring thrombectomy (3 patients) and hematoma requiring evacuation (1 patient). The laser endarterectomies have an 88% patency at 1 year. Open endarterectomy can be performed with laser radiation. A larger clinical trial is necessary to define the indications for laser endarterectomy in peripheral vascular disease.

  15. Microdissection of Shoot Meristem Functional Domains

    PubMed Central

    Zhang, Xiaolan; Ohtsu, Kazuhiro; Zhou, Ruilian; Sarkar, Ananda; Hargreaves, Sarah; Elshire, Robert J.; Eudy, Douglas; Pawlowska, Teresa; Ware, Doreen; Janick-Buckner, Diane; Buckner, Brent; Timmermans, Marja C. P.; Schnable, Patrick S.; Nettleton, Dan; Scanlon, Michael J.

    2009-01-01

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize. PMID:19424435

  16. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker.

    PubMed

    Molano, Monica; Tabrizi, Sepehr N; Garland, Suzanne M; Roberts, Jennifer M; Machalek, Dorothy A; Phillips, Samuel; Chandler, David; Hillman, Richard J; Grulich, Andrew E; Jin, Fengyi; Poynten, I Mary; Templeton, David J; Cornall, Alyssa M

    2016-01-01

    Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC) are associated with human papillomavirus (HPV). Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS) and laser capture microdissected (LCM) tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL.

  17. Stage-specific gene expression during spermatogenesis in the Senegalese sole (Solea senegalensis), a fish with semi-cystic type of spermatogenesis, as assessed by laser capture microdissection and absolute quantitative PCR.

    PubMed

    Marín-Juez, Rubén; Viñas, Jordi; Mechaly, Alejandro S; Planas, Josep V; Piferrer, Francesc

    2013-07-01

    Spermatogenesis is a complex process where hormonal signals regulate the interaction of different cell types in a tight spatial and temporal fashion. The Senegalese sole (Solea senegalensis) is a marine flatfish that, in contrast to many fish, exhibits a semi-cystic, asynchronous pattern of spermatogenesis progression. This pattern is characterized by the release of spermatids into the tubule lumen, where they transform into spermatozoa. In this study, we used laser capture microdissection (LCM) to isolate cells from cysts containing spermatogonia, spermatocytes, spermatids or spermatozoa in order to investigate developmental patterns of gene expression. Furthermore, we also analyzed the stage-specific expression of the same set of genes throughout spermatogenesis (early-mid, late and maturing spermatogenic stages) in tissue fragments of the Senegalese sole testis. Genes analyzed by absolute qPCR in cysts isolated by LCM and stage-specific testis samples included genes involved in steroid synthesis and action (3β-hsd, 17β-hsd, 20β-hsd, star, star-like, progesterone receptor), gonadotropin action (fshr, lhr), the kisspeptin system (kiss2, kiss2r) and other genes important for the production of mature gametes (zona pellucida 2.2, claudin and clusterin). Our results show that, in general, steroidogenesis-related genes tended to increase with spermatogenesis progression and that 3β-hsd and 20β-hsd were expressed in germ cells but 17β-hsd was not. Our results also show that fshr is expressed in most testicular cell types, including germ cells. In contrast, lhr is expressed only in late spermatogenesis and is not expressed in any of the germ cell types examined, indicating that, in contrast to fshr, lhr may be primarily expressed in non-germinal cells (e.g. Leydig cells). Furthermore, kisspeptin and its receptor were expressed in all germ cell types examined and, as expected, gamete maturation-related genes were more expressed in mature stages. These results

  18. Human Papillomavirus (HPV) Genotypes in Condylomas, Intraepithelial Neoplasia, and Invasive Carcinoma of the Penis Using Laser Capture Microdissection (LCM)-PCR: A Study of 191 Lesions in 43 Patients.

    PubMed

    Fernández-Nestosa, María J; Guimerà, Nuria; Sanchez, Diego F; Cañete-Portillo, Sofía; Velazquez, Elsa F; Jenkins, David; Quint, Wim; Cubilla, Antonio L

    2017-06-01

    Laser capture microdissection-polymerase chain reaction (LCM-PCR) supported by p16 was used for the first time to demonstrate human papillomavirus (HPV) DNA in histologically specific penile lesions, which were as follows: squamous hyperplasia (12 lesions, 10 patients), flat lesions (12 lesions, 5 patients), condylomas (26 lesions, 7 patients), penile intraepithelial neoplasia (PeIN) (115 lesions, 43 patients), and invasive squamous cell carcinomas (26 lesions, 26 patients). HPV was detected by whole-tissue section and LCM-PCR. LCM proved to be more precise than whole-tissue section in assigning individual genotypes to specific lesions. HPV was negative or very infrequent in squamous hyperplasia, differentiated PeIN, and low-grade keratinizing variants of carcinomas. HPV was strongly associated with condylomas, warty/basaloid PeIN, adjacent flat lesions, and warty/basaloid carcinomas. A single HPV genotype was found in each lesion. Some condylomas and flat lesions, especially those with atypia, were preferentially associated with high-risk HPV. Unlike invasive carcinoma, in which few genotypes of HPV were involved, there were 18 HPV genotypes in PeIN, usually HPV 16 in basaloid PeIN but marked HPV heterogeneity in warty PeIN (11 different genotypes). Variable and multiple HPV genotypes were found in multicentric PeIN, whereas unicentric PeIN was usually related to a single genotype. There was a correspondence among HPV genotypes in invasive and associated PeIN. p16 was positive in the majority of HPV-positive lesions except condylomas containing LR-HPV. p16 was usually negative in squamous hyperplasia, differentiated PeIN, and low-grade keratinizing variants of squamous cell carcinomas. In summary, we demonstrated that LCM-PCR was a superior research technique for investigating HPV genotypes in intraepithelial lesions. A significant finding was the heterogeneity of HPV genotypes in PeIN and the differential association of HPV genotypes with subtypes of PeIN. The

  19. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker

    PubMed Central

    Molano, Monica; Tabrizi, Sepehr N.; Garland, Suzanne M.; Roberts, Jennifer M.; Machalek, Dorothy A.; Phillips, Samuel; Chandler, David; Hillman, Richard J.; Grulich, Andrew E.; Jin, Fengyi; Poynten, I. Mary; Templeton, David J.; Cornall, Alyssa M.

    2016-01-01

    Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC) are associated with human papillomavirus (HPV). Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS) and laser capture microdissected (LCM) tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL. PMID:27529629

  20. Statistical characteristics of surface integrity by fiber laser cutting of Nitinol vascular stents

    NASA Astrophysics Data System (ADS)

    Fu, C. H.; Liu, J. F.; Guo, Andrew

    2015-10-01

    Nitinol alloys have been widely used in manufacturing of vascular stents due to the outstanding properties such as superelasticity, shape memory, and superior biocompatibility. Laser cutting is the dominant process for manufacturing Nitinol stents. Conventional laser cutting usually produces unsatisfactory surface integrity which has a significant detrimental impact on stent performance. Emerging as a competitive process, fiber laser with high beam quality is expected to produce much less thermal damage such as striation, dross, heat affected zone (HAZ), and recast layer. To understand the process capability of fiber laser cutting of Nitinol alloy, a design-of-experiment based laser cutting experiment was performed. The kerf geometry, roughness, topography, microstructure, and hardness were studied to better understand the nature of the HAZ and recast layer in fiber laser cutting. Moreover, effect size analysis was conducted to investigate the relationship between surface integrity and process parameters.

  1. Thermal model for optimization of vascular laser tissue soldering.

    PubMed

    Bogni, Serge; Stumpp, Oliver; Reinert, Michael; Frenz, Martin

    2010-06-01

    Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of epidermal pigmentation on selective vascular effects of pulsed laser

    SciTech Connect

    Tan, O.T.; Kerschmann, R.; Parrish, J.A.

    1984-01-01

    The effect of epidermal pigmentation on the threshold exposure dose for inducing purpura with a tunable dye laser at 577 nm, 1.5 microseconds pulse duration, was studied in 21 human volunteers with varied genetically determined amounts of melanin. More laser energy was required to produce purpura as constitutive skin pigmentation increased. Histology showed that, in lighter skin, the laser threshold dose produced the most specific vascular injury with no disruption of surrounding structures. In more pigmented skin, damage occurred in the epidermal basal layer and very few changes were seen in blood vessels below.

  3. Endovascular excimer laser atherectomy techniques to treat complex peripheral vascular disease: an orderly process.

    PubMed

    Garnic, J Daniel; Hurwitz, Andrew S

    2005-12-01

    Peripheral vascular disease represents the largest obstructive subsegment within the vascular system. Advances in equipment, techniques, biochemical treatments, and the influx of multiple specialties into this arena indicate a coming tidal wave of change to the standard treatment plan for patients with claudication and especially critical limb ischemia. Initial attempts in the 1980s to utilize the "laser" to treat peripheral vascular disease led to a clinical debacle: wavelengths and methods were not optimized; tissue heating was excessive, resulting in restenosis. Since then the "laser" has fallen from grace for endovascular treatment, although it has an infinite set of potential wavelengths, energy levels, and delivery methods. The xenon chloride, excimer laser, a pulsed 308-nm system, has overcome many of these early catastrophes. The long, ongoing success of this method of photoablating thrombus and plaque represents a true step forward in the endovascular treatment of occlusive disease. Although only a tool, the excimer laser provides a means to utilize electromagnetic energy instead of shearing mechanical force to resolve occlusions. With its active element at the tip, the excimer laser requires much less mechanical translation force to cross total occlusions, find the distal lumen, and thereby cause less plaque destabilization. In addition, removing the firm surface layer of plaque, decapping, and some of the plaque volume, debulking, exposes the softer subsegments of the plaque to balloon angioplasty. Utilizing this method, more complex lesions can be approached safely, with a high likelihood of successful revascularization and a low risk of potentially limb-threatening complication.

  4. Optimizing treatment parameters for the vascular malformations using 1064-nm Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Lin, He; Xie, Shusen

    2010-02-01

    Near infrared Nd:YAG pulsed laser treatment had been proved to be an efficient method to treat large-sized vascular malformations like leg telangiectasia for deep penetrating depth into skin and uniform light distribution in vessel. However, optimal clinical outcome was achieved by various laser irradiation parameters and the key factor governing the treatment efficacy was still unclear. A mathematical model in combination with Monte Carlo algorithm and finite difference method was developed to estimate the light distribution, temperature profile and thermal damage in epidermis, dermis and vessel during and after 1064 nm pulsed Nd:YAG laser irradiation. Simulation results showed that epidermal protection could be achieved during 1064 nm Nd:YAG pulsed laser irradiation in conjunction with cryogen spray cooling. However, optimal vessel closure and blood coagulation depend on a compromise between laser spot size and pulse duration.

  5. Fabrication and In Vitro Deployment of a Laser-Activated Shape Memory Polymer Vascular Stent

    SciTech Connect

    Baer, G M; Small IV, W; Wilson, T S; Benett, W J; Matthews, D L; Hartman, J; Maitland, D J

    2007-04-25

    Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of {approx}8 W. We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated.

  6. Optical diagnostics of vascular reactions triggered by weak allergens using laser speckle-contrast imaging technique

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu L.; Kalchenko, V. V.; Astaf'eva, N. G.; Meglinski, I. V.

    2014-08-01

    The capability of using the laser speckle contrast imaging technique with a long exposure time for visualisation of primary acute skin vascular reactions caused by a topical application of a weak contact allergen is considered. The method is shown to provide efficient and accurate detection of irritant-induced primary acute vascular reactions of skin. The presented technique possesses a high potential in everyday diagnostic practice, preclinical studies, as well as in the prognosis of skin reactions to the interaction with potentially allergenic materials.

  7. Laser-assisted fibrinogen bonding of vascular tissue.

    PubMed

    Ashton, R C; Oz, M C; Lontz, J F; Matsumae, M; Taylor, R; Lemole, G M; Shapira, N; Lemole, G M

    1991-10-01

    Characterization of the stress-strain profiles of welded tissue would provide an additional means of analyzing this new technology and comparing it with alternative anastomosing techniques. Rabbit longitudinal aortotomies were repaired with either 7-O polypropylene sutures or an 808-nm diode laser (power density, 4.8 watts/cm2) after topical application of fibrinogen mixed with indocyanine green dye (peak absorption, 805 nm). The rabbits were sacrificed between 0 and 28 days, and the fresh aortic specimens were strained axially in diluted plasma solution until ultimate breakage occurred in order to produce a stress-strain profile graph. No significant differences were noted between sutured and bonded aorta at any time interval. Nonincised aortic tissue (378 lb/in2) withstood significantly higher stress (P less than 0.05) than both sutured (257 lb/in2) and bonded (210 lb/in2) groups at the time of creation. By 7 days after operation, however, no significant differences were noted among any of the three groups. At 28 days after operation, the laser-bonded aorta was significantly stronger than the control aorta (P less than 0.05). The only significant difference in modulus (stretchability) identified the sutured aorta (373 lb/in2) to be more rigid than the control aorta (231 lb/in2) (P less than 0.05). Both sutured and laser-bonded anastomoses are weaker than control aorta initially; however, after an early critical period, both treatments achieve the strength of control aorta. By 1 month postoperatively, sutured anastomoses have the disadvantage of being less distensible.

  8. Comparison of different surface-cooling methods for transcutaneous laser treatment of vascular lesions

    NASA Astrophysics Data System (ADS)

    Philipp, Carsten M.; Sokoll, C.; Nowak, W.; Berlien, Hans-Peter

    1997-12-01

    The purpose of this study was the evaluation of different combined cooling and compression techniques for the treatment of vascular disorders of the skin and subdermal layers. In combination with flashlamp pumped dye lasers, argon lasers and Nd:YAG-lasers the effectiveness of glass plates, a cooling chamber with a flexible membrane and continuous ice cube cooling were evaluated in vitro by temperature measurements with thermocouples and thermographic camera readings and in vivo by laser doppler flowmetry, color coded duplex sonography and comparison of photographic documents for effectiveness and occurrence of side effects. Experimental and clinical evaluations show excellent results for skin protection, effective treatment depth enhancement and minimalization of side effects as well as for pain perception.

  9. Photosclerosis of cutaneous vascular malformations with a pulsed 810-nm diode laser

    NASA Astrophysics Data System (ADS)

    Bass, Lawrence S.

    1995-05-01

    Various continuous wave lasers have been effectively used for sclerosis of cutaneous vascular lesions. The risk of scarring has been as high as 15% in some applications, however. Pulse dye lasers have virtually eliminated scarring as a complication, substituting high cost and cumbersome operation. Pre-clinical studies have demonstrated the ability of the 810 nm gallium-aluminum-arsenide diode laser in photosclerosis. In this study, a small group of patients (n equals 6) were treated with a pulsed 810 nm diode laser (Surgimedics, The Woodlands, TX). Pulse widths used were 5 - 15 msec with corresponding energy densities during the square wave pulse of 14 - 42 J/cm2. Pulse interval was 32 msec. Lesions treated include telangiectasias (n equals 5), spider veins, (n equals 4), capillary dermal malformation (n equals 1) and a cutaneous venous malformation (n equals 1). Lower extremity spider veins were the most resistent to treatment, rarely disappearing entirely. Telangiectasias were most responsive, usually disappearing after one treatment. No scarring was noted and textural changes were seen in only one patient. While these data are preliminary and parameters have not been optimized, pulsed diode laser exposure can be an effective treatment for cutaneous vascular lesions.

  10. Treatment of large vascular lesions in the orofacial region with the Nd:YAG laser.

    PubMed

    Vesnaver, Ales; Dovsak, David A

    2009-06-01

    Large vascular lesions in the orofacial region are often very difficult to remove. In the 1990s, the neodymium: yttrium-aluminum-garnet (Nd:YAG) laser emerged as a new and effective mode of treatment for vascular lesions. The purpose of this paper was to determine its effectiveness and safety for the treatment of large vascular lesions in the orofacial region. A prospective study was conducted in which 28 patients with large vascular lesions (their surface diameters being more than 3 x 3 cm) in the orofacial region were treated with the Nd:YAG laser by photocoagulation (PhC). Four different modalities of treatment were used: simple transmucosal PhC, transmucosal PhC with the use of compression, simple intralesional PhC, and ultrasound guided intralesional PhC. Follow up was conducted in all of the cases, time until complete healing was recorded, as were postoperative complications. In all of the patients undergoing transmucosal PhC (simple or with the use of compression), tissue sloughing occured within 1-3 days, and the time until complete healing was 3-5 weeks. In patients undergoing intralesional PhC (simple or ultrasound guided), swelling was present for 1 week. There were no cases of inadvertent bleeding. Nine patients required two or more sessions of PhC. Three patients required a corrective surgical procedure as the final step. Two patients required prolonged intubation and one patient a temporary tracheostomy, all due to oedema. Two patients developed a local intraoral infection, which was controlled with broad-spectrum oral antibiotics. If used properly, the Nd:YAG laser is a safe and effective tool for the treatment of large vascular lesions.

  11. Study of clinical applications and safety for Pascal® laser photocoagulation in retinal vascular disorders.

    PubMed

    Muqit, Mahiul M K; Sanghvi, Chintan; McLauchlan, Rita; Delgado, Christine; Young, Lorna B; Charles, Stephen J; Marcellino, George R; Stanga, Paulo E

    2012-03-01

    To establish safe laser parameter standards for 10-30 ms Pascal(®) laser in clinical practice and to evaluate clinical and visual outcomes using this 532-nm multi-spot photocoagulation system. Retrospective observational case series of 313 patients treated between 2006 and 2008. Evaluation of eight groups: A - panretinal photocoagulation (PRP) for proliferative diabetic retinopathy (PDR); B - focal laser treatment for clinically significant diabetic macular oedema; C - grid laser for diffuse diabetic macular oedema; D - sector PRP for ischaemic branch retinal vein occlusions (I-BRVO); E - full PRP for ischaemic central retinal vein occlusions (I-CRVO); F - macular laser treatment for macular oedema secondary to non-ischaemic BRVO; G - full PRP for rubeosis iridis and/or neovascular glaucoma (NVG) secondary to I-BRVO, I - CRVO or PDR; H - laser retinopexy for retinal breaks/degenerations. Mean LogMAR visual acuity for all procedures improved postlaser (p = 0.065), and laser prevented visual loss in 85% eyes. Topical anaesthesia was only required. At mean follow-up of 5 months, 72% procedures had a successful clinical outcome. Significantly higher powers were required for PRP using Pascal(®) compared to conventional laser (p = 0.001) in PDR, I-BRVO, I-CRVO and NVG. Sixty-seven per cent of patients (15/20) were successfully treated with single-session 20-ms PRP using a mean 1952 burns. There were no laser-associated adverse effects or ocular complications associated with multi-spot PRP or macular Pascal(®) arrays. The clinical efficacy using 10- to 30-ms pulse duration Pascal(®) laser is comparable to conventional standard protocols used for the treatment of vascular retinal disorders. Higher power, 10- to 30-ms pulse duration laser may be safely and effectively used in clinical practice. © 2010 The Authors. Acta Ophthalmologica © 2010 Acta Ophthalmologica Scandinavica Foundation.

  12. Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation

    PubMed Central

    Soetikno, Brian T.; Shu, Xiao; Liu, Qi; Liu, Wenzhong; Chen, Siyu; Beckmann, Lisa; Fawzi, Amani A.; Zhang, Hao F.

    2017-01-01

    Retinal vascular occlusive diseases represent a major form of vision loss worldwide. Rodent models of these diseases have traditionally relied upon a slit-lamp biomicroscope to help visualize the fundus and subsequently aid delivery of high-power laser shots to a target vessel. Here we describe a multimodal imaging system that can produce, image, and monitor retinal vascular occlusions in rodents. The system combines a spectral-domain optical coherence tomography system for cross-sectional structural imaging and three-dimensional angiography, and a fluorescence scanning laser ophthalmoscope for Rose Bengal monitoring and high-power laser delivery to a target vessel. This multimodal system facilitates the precise production of occlusions in the branched retinal veins, central retinal vein, and branched retinal arteries. Additionally, changes in the retinal morphology and retinal vasculature can be longitudinally documented. With our device, retinal vascular occlusions can be easily and consistently created, which paves the way for futures studies on their pathophysiology and therapeutic targets. PMID:28856036

  13. Imaging of Vascular Wall Fine Structure in the Human Retina Using Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Chui, Toco Y. P.; Gast, Thomas J.; Burns, Stephen A.

    2013-01-01

    Purpose. To improve the ability to image the vascular walls in the living human retina using multiply-scattered light imaging with an adaptive optics scanning laser ophthalmoscope (AOSLO). Methods. In vivo arteriolar wall imaging was performed on eight healthy subjects using the Indiana AOSLO. Noninvasive imaging of vascular mural cells and wall structure were performed using systematic control of the position of a 10× Airy disk confocal aperture. Retinal arteries and arterioles were divided into four groups based on their lumen diameters (group 1: ≥100 μm; group 2: 50–99 μm; group 3: 10–49 μm; group 4: <10 μm). Results. Fine structure of retinal vasculature and scattering behavior of erythrocytes were clearly visualized in all eight subjects. In group 1 vessels the mural cells were flatter and formed the outer layer of regularly spaced cells of a two (or more) layered vascular wall. In the vessels of groups 2 and 3, mural cells were visualized as distinct cells lying along the lumen of the blood vessel, resulting in a wall of irregular thickness. Vascular wall components were not readily identified in group 4 vessels. Conclusions. Our results show that retinal vascular mural cells and wall structure can be readily resolved in healthy subjects using AOSLO with multiply scattered light imaging for retinal vessels with a lumen diameter greater than or equal to 10 μm. Our noninvasive imaging approach allows direct assessment of the cellular structure of the vascular wall in vivo with potential applications in retinal vascular diseases such as diabetes and hypertension. PMID:24071955

  14. Optimal dye concentration and power density for laser-assisted vascular anatomosis (LAVA)

    NASA Astrophysics Data System (ADS)

    Ren, Zhen; Furnary, Anthony; Xie, Hua; Lagerquist, Kathryn A.; Burke, Allen; Prahl, Scott A.; Gregory, Kenton W.

    2003-06-01

    Laser tissue welding with albumin solder/indocyanine green (ICG) dye is an effective technique in surgical reconstruction. This study was carried out in vitro to find optimal ICG concentration and power density (PD) in laser assisted vascular anastomosis (LAVA). Fresh porcine carotid arteries incised into vascular strips (n = 120) were welded by diode laser in end-to-end with 50% albumin solder of 0.01, 0.1, and 1.0 mM ICG and at power density of 27.7, 56.7, and 76.9 W/cm2. Direct temperature was measured by inserting thermocouples outside and inside vessel. Tensile strength was tested immediately and histological study was performed. Temperature (both outside and inside vessel) significantly gradually decreasd (p < 0.01) with the increasing of ICG concentration at PD 56.7 W/cm2. Tensile strength significantly gradually decreased (p < 0.01) with increasing of ICG concentration at PD 56.7 W/cm2. Histological study showed minimal thermal injury limited to adventitia of vessels and no appreciable difference in all groups. We find that ICG concentration within solder is most important factor affecting both tissue temperature and tensile strength during laser vessel welding. The optimal balance between stronger strength and minimal thermal injury of vessel may be achieved primarily by using PD 56.7 W/cm2 at 0.01 mM ICG within solder during LAVA.

  15. Histopathology and vascular endothelial growth factor in untreated and diode laser-treated retinopathy of prematurity.

    PubMed

    Young, T L; Anthony, D C; Pierce, E; Foley, E; Smith, L E

    1997-06-01

    We had the unique opportunity to compare the eyes of a premature infant with stage 3 retinopathy of prematurity (ROP) in both eyes after the condition was treated by diode laser photocoagulation in one eye only. After the infant's death, we investigated the extent of structural damage incurred with the diode laser and examined the effect of treatment on vascular endothelial growth factor (VEGF) expression. The eyes were fixed and embedded in paraffin. Adjacent 6 microns sections were either stained for histopathologic analysis or used for in situ hybridization. VEGF messenger RNA (mRNA) was detected by using radiolabeled antisense riboprobes. In the treated eye, histopathologic results demonstrated the clinically evident dose-response effect, with sparing of inner retinal elements with mild laser burns and full-thickness retinal cell disruption with severe burns. Scleral and ciliary nerve effects were absent. VEGF mRNA was localized primarily in the ganglion cell layer but was also found in the inner nuclear layer. In the untreated eye, an increase in VEGF mRNA was detected at the peripheral edge of the vascularized retina anterior to the ridge. In the laser-treated eye, VEGF mRNA expression was dramatically upregulated in the ganglion cell layer in areas adjacent to laser burns. VEGF mRNA was found to be elevated in the peripheral, avascular retina of the untreated eye, consistent with the hypothesis that retinal hypoxia stimulates VEGF expression. In the treated eye with recurrent ROP, VEGF mRNA was not detected in the photocoagulated areas of retina but was increased between laser scars. This finding confirms the results of prior animal studies and validates the use of these models.

  16. Experimental and theoretical optimization of laser-produced x-ray spectra for vascular imaging

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Jiang, Zhiming; Ichalalene, Zahia; Kieffer, Jean-Claude; Chamberlain, Charles C.; Scalzetti, Ernest M.

    2000-04-01

    Experimental and theoretical studies of image quality using iodinated contrast agent and x-ray spectra generated by laser- based x-ray source were performed. A TableTop Terawatt (T3) laser (intensity: 1017 - 1019 W/cm-2, pulse duration: 150 fs or 450 fs, with or without controlled pre-pulse) was used to crate x-ray source. Infrared and/or green beams were utilized. Ba, La, Ce, Nd, and Gd laser targets were used. For each target, a number of suitable filters was utilized to produce optimized x-ray spectra for a specific imaging task. The MTF function due to the focal spot was obtained. A simple theoretical model of x-ray detector response was developed. An index of image quality (Detective Image Quality) as well as a figure of merit for dual energy imaging FOM(DESA) were defined and optimized via x-ray spectrum manipulation. The optimum, for a specific imaging task, technique parameters such as: target/filter combination, focal spot size, laser-light wavelength and surface power density, laser pulse duration, pre-pulse delay and contrast ratio, and hot electrons temperature were obtained experimentally and confirmed theoretically. We found that an optimized laser-based x-ray source can outperform conventional x-ray tube-based source in application to vascular imaging in terms of contrast resolution and spatial resolution.

  17. Novel laser-vascular welding to close catheter sheath hole after catheter intervention: welding against vascular model and fiber-based back scattering monitoring

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Usami, Noriko; Ohmori, Sayaka

    2005-04-01

    In order to attain complete seal of catheter sheath hole just after catheter intervention, we applied laser welding technique. We employed combination of diode laser (wavelength: 810nm) irradiation and indocyanine green stain to enhance heat generation on the stained surface. We studied laser sealing of catheter sheath hole on an ex vivo vascular model using porcine carotid artery. We successfully demonstrated the sheath hole closure in this welding in the model with 1.8W, 8s diode laser irradiation. In this case, we estimated 78 °C of the maximum temperature at welding surface by thermal conduction calculation. Collagen fiber melting was found in welding region. To know vascular wall at the fiber tip to perform laser welding in blind procedure, we constructed fiber-optic backscattering light measurement system. We used green He-Ne laser light (543nm) to distinguish hemoglobin concentration in the tissue. We obtained tissue discrimination at fiber tip in blind procedure. We think our particular laser welding in combination with novel tissue discrimination technique at the fiber tip may attain the catheter sheath hole closure with sufficient mechanical strength in blind procedure.

  18. Single and double wavelength excitation of laser-induced fluorescence of normal and atherosclerotic peripheral vascular tissue.

    PubMed

    Filippidis, G; Zacharakis, G; Katsamouris, A; Giannoukas, A; Papazoglou, T G

    2000-07-01

    Laser-induced fluorescence spectra were recorded from the exposure of peripheral vascular tissue to both helium-cadmium and argon-ion laser radiation. Spectral analysis was based on simple algebraic expressions constructed using the intensity difference of the various spectral regions. The above methods were developed in order to determine the degree of atherosclerosis according to the laser-induced fluorescence signal. Similar results with single wavelength excitation were observed during in vivo irradiation of peripheral vessels.

  19. Laser balloon vascular welding using a dye-enhanced albumin solder

    NASA Astrophysics Data System (ADS)

    Ott, Beat; Zueger, Benno J.; Erni, Dominique; Banic, Andrej; Schaffner, Thomas; Weber, Heinz P.; Frenz, Martin

    2001-05-01

    Porcine posterior tibial arteries (n equals 50) and saphenous veins (n equals 32) have been welded end-to-end using an 808 nm diode laser combined with an indocyanine green enhanced albumin solder. For comparison, the same welding procedure has been performed with a Holmium:YAG laser without solder. Both lasers were running in continuous wave (cw) regime at a power limited below 1.2 W. The vascular stumps were approached to each other over a coronary dilatation catheter in order to obtain a precise alignment. The balloon catheter simplified vessel handling and the tight vessel positioning prevented a solder penetration into the lumen. Standard histology revealed for both welding techniques a lateral tissue damage between 2 and 3 mm. The vessels welded with the 808 nm diode laser using albumin solder showed considerably higher tensile strength (1 N compared to 0.3 N) than vessels welded exclusively by Ho:YAG laser radiation. In contrast, leaking pressure (350 +/- 200 mmHg) and bursting pressure 457 +/- 200 mmHg) were independent of the welding technique used.

  20. Krypton laser photocoagulation induces retinal vascular remodeling rather than choroidal neovascularization.

    PubMed

    Behar-Cohen, F; Benezra, D; Soubrane, G; Jonet, L; Jeanny, J C

    2006-08-01

    The purpose of this study is to analyze the retina and choroid response following krypton laser photocoagulation. Ninety-two C57BL6/Sev129 and 32 C57BL/6J, 5-6-week-old mice received one single krypton (630 nm) laser lesion: 50 microm, 0.05 s, 400 mW. On the following day, every day thereafter for 1 week and every 2-3 days for the following 3 weeks, serial sections throughout the lesion were systematically collected and studied. Immunohistology using specific markers or antibodies for glial fibrillary acidic protein (GFAP) (astrocytes, glia and Muller's cells), von Willebrand (vW) (vascular endothelial cells), TUNEL (cells undergoing caspase dependent apoptosis), PCNA (proliferating cell nuclear antigen) p36, CD4 and F4/80 (infiltrating inflammatory and T cells), DAPI (cell nuclei) and routine histology were carried out. Laser confocal microscopy was also performed on flat mounts. Temporal and spatial observations of the created photocoagulation lesions demonstrate that, after a few hours, activated glial cells within the retinal path of the laser beam express GFAP. After 48 h, GFAP-positive staining was also detected within the choroid lesion center. "Movement" of this GFAP-positive expression towards the lasered choroid was preceded by a well-demarcated and localized apoptosis of the retina outer nuclear layer cells within the laser beam path. Later, death of retinal outer nuclear cells and layer thinning at this site was followed by evagination of the inner nuclear retinal layer. Funneling of the entire inner nuclear and the thinned outer nuclear layers into the choroid lesion center was accompanied by "dragging" of the retinal capillaries. Thus, from days 10 to 14 after krypton laser photocoagulation onward, well-formed blood capillaries (of retinal origin) were observed within the lesion. Only a few of the vW-positive capillary endothelial cells stained also for PCNA p36. In the choroid, dilatation of the vascular bed occurred at the vicinity of the

  1. Laser in situ keratomileusis in patients with collagen vascular disease: a review of the literature

    PubMed Central

    Simpson, Rachel G; Moshirfar, Majid; Edmonds, Jason N; Christiansen, Steven M; Behunin, Nicholas

    2012-01-01

    Purpose To evaluate the current United States Food and Drug Administration (FDA) recommendations regarding laser in situ keratomileusis (LASIK) surgery in patients with collagen vascular diseases (CVD) and assess whether these patients make appropriate candidates for laser vision correction, and offer treatment recommendations based on identified clinical data. Methods A literature search was conducted using PubMed, Medline, and Ovid to identify all existing studies of LASIK in patients with collagen vascular diseases. The search was conducted without date limitations. Keywords used for the search included MeSH terms: laser in situ keratomileusis, LASIK, refractive surgery, ocular surgery, and cataract surgery connected by “and” with the following MeSH and natural-language terms: collagen vascular disease, rheumatic disease, systemic disease, rheumatoid arthritis, systemic lupus erythematosus, Sjögren’s syndrome, seronegative spondyloarthropathy, HLA B27, ankylosing spondylitis, reactive arthritis, psoriatic arthritis. The abstracts for all studies meeting initial search criteria were reviewed; relevant studies were included. No prospective studies were found; however, four retrospective case studies were identified that examined LASIK surgery in patients with CVD. Several case reports were also identified in similar fashion. Results The FDA considers CVD a relative contraindication to LASIK surgery, due largely to the ocular complications associated with disease in the CVD spectrum. However, recent studies of LASIK in patients with CVD indicate LASIK may be safe for patients with very well-controlled systemic disease, minimal ocular manifestations, and no clinical signs or history of dry-eye symptoms. Conclusion LASIK surgery may be safe in patients with rheumatoid arthritis or systemic lupus erythematosus and the seronegative spondyloarthropathies if stringent preoperative criteria are met. Evidence suggests patients with Sjögren’s syndrome are not

  2. Vascular Adhesion Protein-1 Blockade Suppresses Ocular Inflammation After Retinal Laser Photocoagulation in Mice.

    PubMed

    Matsuda, Takashi; Noda, Kousuke; Murata, Miyuki; Kawasaki, Akiko; Kanda, Atsuhiro; Mashima, Yukihiko; Ishida, Susumu

    2017-06-01

    To investigate the effect of the vascular adhesion protein-1 (VAP-1) inhibitor RTU-1096 on retinal morphologic changes and ocular inflammation after retinal laser photocoagulation in mice. C57BL/6JJcl mice were fed a diet containing RTU-1096, a specific inhibitor for VAP-1, or a control diet ad libitum for 7 days. Laser photocoagulation was performed on the peripheral retina of the animals. The semicarbazide sensitive amine oxidase (SSAO) activities in plasma and chorioretinal tissues were measured. Optical coherence tomography (OCT) images were acquired before and at 1, 3, and 7 days after laser photocoagulation, and thickness of the individual retinal layers was measured. Intravitreal leukocyte infiltration was assessed by histologic analysis. The expression level of intercellular adhesion molecule-1 (ICAM-1) in retinal tissues were examined by quantitative real-time PCR. One day after laser photocoagulation, the thickness of the outer nuclear layer (ONL) increased in the laser group compared with in the control group, and RTU-1096 administration abrogated the ONL thickening. Histologic analysis and OCT observation revealed that laser photocoagulation caused infiltration of inflammatory cells and the appearance of hyperreflective foci at the vitreoretinal surface, both of which were suppressed by RTU-1096 administration. In addition, systemic administration of RTU-1096 reduced upregulation of the leukocyte adhesion molecules ICAM-1 in the retina. The current data indicate that VAP-1/SSAO inhibition may be a potential therapeutic strategy for the prevention of macular edema secondary to scatter laser photocoagulation in patients with ischemic retinal diseases such as diabetic retinopathy.

  3. Micro-vascular shape-memory polymer actuators with complex geometries obtained by laser stereolithography

    NASA Astrophysics Data System (ADS)

    Díaz Lantada, Andrés; de Blas Romero, Adrián; Chacón Tanarro, Enrique

    2016-06-01

    In our work we present the complete development process of geometrically complex micro-vascular shape-memory polymer actuators. The complex geometries and three-dimensional networks are designed by means of computer aided design resources. Manufacture is accomplished, in a single step, by means of laser stereolithography, directly from the computer-aided design files with the three dimensional geometries of the different actuators under development. To our knowledge, laser stereolithography is applied here for the first time to the development of shape memory polymer devices with complex geometries and inner micro-vasculatures for their activation using a thermal fluid. Final testing of the developed actuators helps to validate the approach and to put forward some present challenges.

  4. Confocal laser endomicroscopy and immunoendoscopy for real-time assessment of vascularization in gastrointestinal malignancies.

    PubMed

    Gheonea, Dan Ionuţ; Cârţână, Tatiana; Ciurea, Tudorel; Popescu, Carmen; Bădărău, Anca; Săftoiu, Adrian

    2011-01-07

    Gastrointestinal cancers represent a major cause of morbidity and mortality, with incomplete response to chemotherapy in the advanced stages and poor prognosis. Angiogenesis plays a crucial part in tumor growth and metastasis, with most gastrointestinal cancers depending strictly on the development of a new and devoted capillary network. Confocal laser endomicroscopy is a new technology which allows in vivo microscopic analysis of the gastrointestinal mucosa and its microvascularization during ongoing endoscopy by using topically or systemically administered contrast agents. Targeting markers of angiogenesis in association with confocal laser endomicroscopic examination (immunoendoscopy), as a future challenge, will add functional analysis to the morphological aspect of the neoplastic process. This review describes previous experience in endomicroscopic examination of the upper and lower digestive tract with emphasis on vascularization, resulting in a broad spectrum of potential clinical applications, and also preclinical research that could be translated to human studies.

  5. Influence of 670 nm low-level laser therapy on mast cells and vascular response of cutaneous injuries.

    PubMed

    Pereira, Manoela Carrera M C; de Pinho, Cristina Bacellar; Medrado, Alena Ribeiro Peixoto; Andrade, Zilton de Araújo; Reis, Sílvia Regina de Almeida

    2010-03-08

    Laser biomodulation has been getting considerable attention when it comes to its effects on the inflammatory process. Its action upon mast cells have been already studied, but none of the previous papers related the resulting effect to the inflammatory and vascular status of the wounds. Therefore, the acute inflammatory process as well as the mast cells behavior and the vascular response were analyzed under the influence of laser treatment on cutaneous wounds. Surgical procedures were performed on 60 rats divided into sham and laser groups. Low-level laser therapy was performed following surgical procedures (670 nm, 9 mW, 4 J/cm(2), 124 s). Histological specimens were analyzed for cell morphology and immunohistochemistry using anti-von Willebrand Factor and anti-Vascular Endothelial Growth Factor antibody. Laser treatment resulted in an increased acute inflammatory response in irradiated tissues; surgical wounds treated with laser therapy had increased polymorphonuclear cells, mast cells and vasodilation and lower numbers of vessels than those in control rats. Laser treatment resulted in higher expression of VEGF in irradiated tissues 6-24h post-treatment (p=0.002). It is possible to observe an amplification of acute inflammatory process during the first hours after surgical procedure in rats submitted to laser therapy. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Role of laser and thermal ablation devices in the treatment of vascular diseases.

    PubMed

    Litvack, F; Grundfest, W S; Papaioannou, T; Mohr, F W; Jakubowski, A T; Forrester, J S

    1988-05-09

    Since the first coronary angioplasty in 1977, both the number and complexity of interventional procedures have grown dramatically. Continuous-wave and pulsed lasers may further extend the capabilities of balloon angioplasty. Fiberoptic catheters may be used to transmit continuous-wave laser energy to ablate plaque via thermal mechanisms. Pulsed laser systems (such as the excimer) are technologically more complex than the continuous-wave systems, but may prove superior in small vessels given their ability to ablate plaque with minimal associated effects. On the other hand, modifications of the fiber-optic tip, such as the placement of a metal cap, have yielded even better results than current bare fiber systems. Such laser thermal techniques have proved a useful adjunct to balloon dilatation in peripheral vessels, but further research is necessary to determine their effect on coronary arteries. New, nonlaser technologies, however, may provide simpler power sources for thermal angioplasty. Although balloon angioplasty remains the cornerstone of interventional vascular therapy, new technologies should help to further expand the indications for nonsurgical interventions.

  7. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks.

    PubMed

    Heintz, Keely A; Mayerich, David; Slater, John H

    2017-01-03

    This detailed protocol outlines the implementation of image-guided, laser-based hydrogel degradation for the fabrication of vascular-derived microfluidic networks embedded in PEGDA hydrogels. Here, we describe the creation of virtual masks that allow for image-guided laser control; the photopolymerization of a micromolded PEGDA hydrogel, suitable for microfluidic network fabrication and pressure head-driven flow; the setup and use of a commercially available laser scanning confocal microscope paired with a femtosecond pulsed Ti:S laser to induce hydrogel degradation; and the imaging of fabricated microfluidic networks using fluorescent species and confocal microscopy. Much of the protocol is focused on the proper setup and implementation of the microscope software and microscope macro, as these are crucial steps in using a commercial microscope for microfluidic fabrication purposes that contain a number of intricacies. The image-guided component of this technique allows for the implementation of 3D image stacks or user-generated 3D models, thereby allowing for creative microfluidic design and for the fabrication of complex microfluidic systems of virtually any configuration. With an expected impact in tissue engineering, the methods outlined in this protocol could aid in the fabrication of advanced biomimetic microtissue constructs for organ- and human-on-a-chip devices. By mimicking the complex architecture, tortuosity, size, and density of in vivo vasculature, essential biological transport processes can be replicated in these constructs, leading to more accurate in vitro modeling of drug pharmacokinetics and disease.

  8. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks

    PubMed Central

    Heintz, Keely A.; Mayerich, David; Slater, John H.

    2017-01-01

    This detailed protocol outlines the implementation of image-guided, laser-based hydrogel degradation for the fabrication of vascular-derived microfluidic networks embedded in PEGDA hydrogels. Here, we describe the creation of virtual masks that allow for image-guided laser control; the photopolymerization of a micromolded PEGDA hydrogel, suitable for microfluidic network fabrication and pressure head-driven flow; the setup and use of a commercially available laser scanning confocal microscope paired with a femtosecond pulsed Ti:S laser to induce hydrogel degradation; and the imaging of fabricated microfluidic networks using fluorescent species and confocal microscopy. Much of the protocol is focused on the proper setup and implementation of the microscope software and microscope macro, as these are crucial steps in using a commercial microscope for microfluidic fabrication purposes that contain a number of intricacies. The image-guided component of this technique allows for the implementation of 3D image stacks or user-generated 3D models, thereby allowing for creative microfluidic design and for the fabrication of complex microfluidic systems of virtually any configuration. With an expected impact in tissue engineering, the methods outlined in this protocol could aid in the fabrication of advanced biomimetic microtissue constructs for organ- and human-on-a-chip devices. By mimicking the complex architecture, tortuosity, size, and density of in vivo vasculature, essential biological transport processes can be replicated in these constructs, leading to more accurate in vitro modeling of drug pharmacokinetics and disease. PMID:28117805

  9. Diode laser to treat small oral vascular malformations: A prospective case series study.

    PubMed

    Bacci, Christian; Sacchetto, Luca; Zanette, Gastone; Sivolella, Stefano

    2017-09-14

    The current work examined a consecutive series of patients presenting vascular malformations (VMs) and venous lakes (VLs) of the lip and oral mucosa who were treated with transmucosal diode laser applications and assessed over a 1 year period. Fifty-nine patients (31 males and 28 females) presenting low-flow VMs or VLs of the oral cavity were treated transmucosally using a diode laser (with an 830 nm operating wavelength and 1.6 W output power) with a 320 µm diameter flexible fiber. All the lesions were assessed 7 days, 30 days, and 1 year after the laser treatment, and the lesion reduction percentage was scored on a one to five scale. The patients were also asked to assess their pain perception daily during the 7 days following the treatment using a visual analog scale (VAS). There were no procedure-related intra- or post-operative complications; only modest pain intensity was reported. Thirty days after the treatment, lesion reduction was described as excellent or good in 52 cases; it was fair or poor in 7. Six patients (F:M ratio 2:4) required a second diode laser application. At the 1 year follow-up, volume reduction was complete in 48 out of 59 patients; there were five recurrences (F:M ratio 3:2). No relevant gender-related differences were noted. The use of diode laser application to treat small oral VMs and VLs was associated to shorter operating times and fewer postoperative complications with respect to the scapel surgery approach. More than one session may nevertheless be required if the anomaly is larger than 10 mm. Lasers Surg. Med. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Experimental investigation on the vascular thermal response to near-infrared laser pulses.

    PubMed

    Li, Dong; Chen, Bin; Wu, Wenjuan; Ying, Zhaoxia

    2017-09-02

    Port wine stains (PWS) are congenital vascular malformations that progressively darken and thicken with age. To improve the effect of laser therapy in clinical practice, thermal response of blood vessel to a 1064 nm Nd:YAG laser with controlled energy doses and pulse durations was evaluated using the dorsal skin chamber model. A total of 137 vessels with 30-300 μm diameters were selected from the dorsal skin of the mouse to match those capillaries in port wine stains. Experimental results showed that the thermal response of blood vessels to 1064 nm laser irradiation can be classified as follows: vessel dilation, coagulation, constriction with decreased diameter, complete constriction, hemorrhage, and collagen damage with increasing laser radiant exposure. In most cases, that is, 83 of 137 blood vessels (60.6%), Nd:YAG laser irradiation was characterized by complete constriction (immediate blood vessel disappearance). To reveal the possible damage mechanisms and evaluate blood vessel photocoagulation patterns, theoretical investigation using bioheat transfer equation was conducted in mouse skin with a depth of 1000 μm. Complete constriction as the dominant thermal response as evidenced by uniform blood heating within the vessel lumen was noted in both experimental observation and theoretical investigation. To achieve the ideal clinical effect using the Nd:YAG laser treatment, the radiant exposure should not only be high enough to induce complete constriction of the blood vessels but also controlled carefully to avoid surrounding collagen damage. The short pulse duration of 1-3 ms is better than long pulse durations because hemorrhaging of small capillaries is occasionally observed postirradiation with pulse durations longer than 10 ms.

  11. Real-time measurements of endogenous CO production from vascular cells using an ultrasensitive laser sensor

    NASA Technical Reports Server (NTRS)

    Morimoto, Y.; Durante, W.; Lancaster, D. G.; Klattenhoff, J.; Tittel, F. K.

    2001-01-01

    Carbon monoxide (CO) has been implicated as a biological messenger molecule analogous to nitric oxide. A compact gas sensor based on a midinfrared laser absorption spectroscopy was developed for direct and real-time measurement of trace levels (in approximate pmol) of CO release by vascular cells. The midinfrared light is generated by difference frequency mixing of two nearinfrared lasers in a nonlinear optical crystal. A strong infrared absorption line of CO (4.61 microm) is chosen for convenient CO detection without interference from other gas species. The generation of CO from cultured vascular smooth muscle cells was detected every 20 s without any chemical modification to the CO. The sensitivity of the sensor reached 6.9 pmol CO. CO synthesis was measured from untreated control cells (0.25 nmol per 10(7) cells/h), sodium nitroprusside-treated cells (0.29 nmol per 10(7) cells/h), and hemin-treated cells (0.49 nmol per 10(7) cells/h). The sensor also detected decreases in CO production after the addition of the heme oxygenase (HO) inhibitor tin protoporphyrin-IX (from 0.49 to 0.02 nmol per 10(7) cells/h) and increases after the administration of the HO substrate hemin (from 0.27 to 0.64 nmol per 10(7) cells/h). These results demonstrate that midinfrared laser absorption spectroscopy is a useful technique for the noninvasive and real-time detection of trace levels of CO from biological tissues.

  12. Real-time measurements of endogenous CO production from vascular cells using an ultrasensitive laser sensor

    NASA Technical Reports Server (NTRS)

    Morimoto, Y.; Durante, W.; Lancaster, D. G.; Klattenhoff, J.; Tittel, F. K.

    2001-01-01

    Carbon monoxide (CO) has been implicated as a biological messenger molecule analogous to nitric oxide. A compact gas sensor based on a midinfrared laser absorption spectroscopy was developed for direct and real-time measurement of trace levels (in approximate pmol) of CO release by vascular cells. The midinfrared light is generated by difference frequency mixing of two nearinfrared lasers in a nonlinear optical crystal. A strong infrared absorption line of CO (4.61 microm) is chosen for convenient CO detection without interference from other gas species. The generation of CO from cultured vascular smooth muscle cells was detected every 20 s without any chemical modification to the CO. The sensitivity of the sensor reached 6.9 pmol CO. CO synthesis was measured from untreated control cells (0.25 nmol per 10(7) cells/h), sodium nitroprusside-treated cells (0.29 nmol per 10(7) cells/h), and hemin-treated cells (0.49 nmol per 10(7) cells/h). The sensor also detected decreases in CO production after the addition of the heme oxygenase (HO) inhibitor tin protoporphyrin-IX (from 0.49 to 0.02 nmol per 10(7) cells/h) and increases after the administration of the HO substrate hemin (from 0.27 to 0.64 nmol per 10(7) cells/h). These results demonstrate that midinfrared laser absorption spectroscopy is a useful technique for the noninvasive and real-time detection of trace levels of CO from biological tissues.

  13. Experimental study on the vascular thermal response to visible laser pulses.

    PubMed

    Li, D; Chen, B; Wu, W J; Wang, G X; He, Y L; Ying, Z X

    2015-01-01

    Port-wine stains (PWSs) are congenital vascular malformations that progressively darken and thicken with age, and laser therapy is the most effective in clinical practice. Using dorsal skin chamber (DSC), this study evaluated thermal response of blood vessel to a 595-nm pulsed dye laser (PDL) with controlled energy doses and pulse durations. Totally, 32 vessels (30∼300 μm in diameter) are selected from the dorsal skin of the mouse to match those in port-wine stain. The experimental results showed that the thermal response of the blood vessels to laser irradiation can be recognized as coagulation, constriction with diameter decrease, disappearance (complete constriction), hemorrhage, and collagen damage in the order of increasing laser radiant exposure. Blood vessels with small diameter would response poorly and survive from the laser heating because their thermal relaxation time is much shorter than the pulse duration. The optimalradiant exposure is from 10 to 12 J/cm(2) under 6 ms pulse duration without considering the epidermal light absorption. Numerical simulations were also conducted using a 1,000-μm deep Sprague-Dawley (SD) mouse skinfold. The light transportation and heat diffusion in dorsal skin were simulated with the Monte Carlo method and heat transfer equation, while the blood vessel photocoagulation was evaluated by Arrhenius-type kinetic integral. Both experimental observation and numerical simulation supported that hemorrhage is the dominant thermal response, which occurs due to preferential heating of the superior parts of large blood vessels. In clinical practice for 595 nm PDL, the consequent purpura caused by hemorrhage can be used as a treatment end point.

  14. Tumor vascular proteins as biomarkers in ovarian cancer.

    PubMed

    Buckanovich, Ronald J; Sasaroli, Dimitra; O'Brien-Jenkins, Anne; Botbyl, Jeffrey; Hammond, Rachel; Katsaros, Dionysios; Sandaltzopoulos, Raphael; Liotta, Lance A; Gimotty, Phyllis A; Coukos, George

    2007-03-01

    This study aimed to identify novel ovarian cancer biomarkers and potential therapeutic targets through molecular analysis of tumor vascular cells. Immunohistochemistry-guided laser-capture microdissection and genome-wide transcriptional profiling were used to identify genes that were differentially expressed between vascular cells from human epithelial ovarian cancer and healthy ovaries. Tumor vascular markers (TVMs) were validated through quantitative real-time polymerase chain reaction (qRT-PCR) of immunopurified tumor endothelial cells, in situ hybridization, immunohistochemistry, and Western blot analysis. TVM expression in tumors and noncancerous tissues was assessed by qRT-PCR and was profiled using gene expression data. We identified a tumor vascular cell profile of ovarian cancer that was distinct from the vascular profile of normal ovary and other tumors. We validated 12 novel ovarian TVMs. These were expressed by immunopurified tumor endothelial cells and localized to tumor vasculature. Select TVMs were found to be specifically expressed in ovarian cancer and were absent in all normal tissues tested, including female reproductive tissues with physiologic angiogenesis. Many ovarian TVMs were expressed by a variety of other solid tumors. Finally, overexpression of any one of three ovarian TVMs by vascular cells was associated with decreased disease-free interval (all P < .005). We have identified for the first time the molecular profile of ovarian tumor vasculature. We demonstrate that TVMs may serve as potential biomarkers and molecular targets for ovarian cancer and a variety of other solid tumors.

  15. A meta-analysis of aneurysm formation in laser assisted vascular anastomosis (LAVA)

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Peng, Fei; Xu, Dahai; Cheng, Qinghua

    2009-08-01

    Laser assisted vascular anastomosis (LAVA) is looked as a particularly promising non-suture method in future. However, aneurysm formation is one of the main reasons delay the clinical application of LAVA. Some scientists investigated the incidence of aneurysms in animal model. To systematically analyze the literature on reported incidence of aneurysm formation in LAVA therapy, we performed a meta-analysis comparing LAVA with conventional suture anastomosis (CSA) in animal model. Data were systematically retrieved and selected from PUBMED. In total, 23 studies were retrieved. 18 studies were excluded, and 5 studies involving 647 animals were included. Analysis suggested no statistically significant difference between LAVA and CSA (OR 1.24, 95%CI 0.66-2.32, P=0.51). Result of meta analysis shows that the technology of LAVA is very close to clinical application.

  16. Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion

    NASA Astrophysics Data System (ADS)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Postnov, Dmitry E.; Tuchin, Valery V.

    2016-04-01

    We propose μPIV-based technique for quantitative assessment of blood flow redistribution in microcirculatory networks. Our approach is based on per-segment averaging of measured quantities so we can avoid most of problems that are typical for point-wise measurements. The key point of our technique is the digital processing algorithms of recorded data that include: capillary network axial line construction; interrogation regions centering; blood flow velocity local estimate using PIV approach; blood flow velocity calculation by means of averaging over entire vessel segment; the calculation of blood volume flow rate map. We illustrate the application of developed technique with in vivo measurements and blood flow velocity map reconstruction for chorioallantoic membrane (CAM) of chicken embryo, in which the local vascular occlusion was produced using continuous wave laser light irradiation..

  17. Controlled ultrasonic micro-dissection of thin tissue sections.

    PubMed

    Ru, Changhai; Liu, Jun; Pang, Ming; Sun, Yu

    2014-08-01

    In order to obtain sufficient quantities of pure populations of cells or a single cell from surrounding tissue for analytical investigation, we have developed an ultrasonic microdissection system. The system utilizes a vision-based method for detecting the contact between the microdissection needle tip and a target surface. A multilayer stack piezoelectric actuator is employed to generate ultrasonic vibrations for histological isolation. Automated micro-dissection is also realized using visual feedback and vision-based control. Experimental results on tumor tissue sections show that the system has a high dissection accuracy and efficiency and is able to realize dissecting arbitrary shapes in specified locations on a tissue sample. Furthermore, effects in variations of vibration amplitude and frequency of ultrasonic micro-dissection as well as needle insertion depths on micro-dissection accuracy and speed were evaluated.

  18. In-vivo argon laser vascular welding using thermal feedback: open- and closed-loop patency and collagen crosslinking

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV; Celliers, Peter M.; Kopchok, George E.; Reiser, Karen M.; Heredia, Nicholas J.; Maitland, Duncan J.; Eder, David C.; London, Richard A.; Heilbron, Mauricio; Hussain, Farabi; White, Rodney A.; Da Silva, Luiz B.; Matthews, Dennis L.

    1997-05-01

    An in vivo study of vascular welding with a fiber-delivered argon laser was conducted using a canine model. Longitudinal arteriotomies and venotomies were treated on femoral vein and artery. Laser energy was delivered to the vessel wall via a 400 micrometer optical fiber. The surface temperature at the center of the laser spot was monitored in real time using a hollow glass optical fiber-based two-color infrared thermometer. The surface temperature was limited by either a room-temperature saline drip or direct feedback control of the laser using a mechanical shutter to alternately pass and block the laser. Acute patency was evaluated either visually (leak/no leak) or by in vivo burst pressure measurements. Biochemical assays were performed to investigate the possible laser-induced formation or destruction of enzymatically mediated covalent crosslinks between collagen molecules. Viable welds were created both with and without the use of feedback control. Tissues maintained at 50 degrees Celsius using feedback control had an elevated crosslink count compared to controls, while those irradiated without feedback control experienced a decrease. Differences between the volumetric heating associated with open and closed loop protocols may account for the different effects on collagen crosslinks. Covalent mechanisms may play a role in argon laser vascular fusion.

  19. In vivo argon laser vascular welding using thermal feedback: open and closed loop patency and collagen crosslinking

    SciTech Connect

    Small, W., LLNL

    1997-02-28

    An in vivo study of vascular welding with a fiber-delivered argon laser was conducted using a canine model. Longitudinal arteriotomies and venotomies were treated on femoral vein and artery. Laser energy was delivered to the vessel wall via a 400 {micro}m optical fiber. The surface temperature at the center of the laser spot was monitored in real time using a hollow glass optical fiber-based two-color infrared thermometer. The surface temperature was limited by either a room-temperature saline drip or direct feedback control of the laser using a mechanical shutter to alternately pass and block the laser. Acute patency was evaluated either visually (leak/no leak) or by in vivo burst pressure measurements. Biochemical assays were performed to investigate the possible laser-induced formation or destruction of enzymatically mediated covalent crosslinks between collagen molecules. Viable welds were created both with and without the use of feedback control. Tissues maintained at 50 C using feedback control had an elevated crosslink count compared to controls, while those irradiated without feedback control experienced a decrease. Differences between the volumetric heating associated with open and closed loop protocols may account for the different effects on collagen crosslinks. Covalent mechanisms may play a role in argon laser vascular fusion.

  20. Endoluminal laser-assisted vascular anastomosis-an in vivo study in a pig model.

    PubMed

    Mbaidjol, Zacharia; Kiermeir, David; Schönfeld, Annemarie; Arnoldi, Jörg; Frenz, Martin; Constantinescu, Mihai A

    2017-08-01

    Microvascular surgery is time consuming and requires high expertise. Laser-assisted vascular anastomosis (LAVA) is a promising sutureless technique that has the potential to facilitate this procedure. In this study, we evaluate the handling of our soldering material and the 1-week patency rate in a porcine model. Six pigs were subjected to LAVA. For each pig, the saphenous artery on one side was transected while the contralateral side was used as control. A porous polycaprolactone scaffold soaked in 40% (w/w) bovine serum albumin solution in combination with 0.1% (w/w) indocyanine green was wrapped at the anastomosis site and at the control site. Both sides were then soldered with a diode laser coupled into a light diffuser fiber emitting radiation with a wavelength of 808 nm and a power of 2-2.2 W. Vessels were successfully soldered with a 100% immediate patency rate. The 1-week patency rate was 83% for the anastomoses versus 67% for the control side. Vessels irradiated for 80 to 90 s tended to maintain the highest patency rate. Macroscopically, there was no difference between the two sides. The patch was easy to handle provided that the environment could be kept dry. This study shows the potential and the limitations of endoluminal LAVA as a one-step procedure without the use of stay sutures. Further studies are needed to improve the soldering material, the long-term patency rate, and standardized irradiation parameters. The long-term effects of laser soldering on the vessel wall remain to be determined.

  1. Construction of cDNA libraries from microdissected benign and malignant thyroid tissue.

    PubMed

    Kaserer, Klaus; Knezevic, Vladimir; Pichlhöfer, Bettina; Scheuba, Christian; Passler, Christian; Worth, Jennifer; Niederle, Bruno; Krizman, David

    2002-12-01

    cDNA libraries were constructed from thyroid epithelial cells gained by laser capture microdissection for gene expression analysis of the progression of thyroid cancer. Six histologically diverse thyroid tissue specimens were used. A mean of 93 ng of total RNA was gained per tissue sample from a mean estimated number of 25,000 microdissected cells per sample. Analysis of randomly selected clones from six libraries showed an average insert size of 600 (range, 300-1500) bp. Preliminary sequencing of clones selected from the six libraries indicates a range of 46% to 62% known genes per library, 4% to 25% anonymous expressed sequence tags per library, and 15% to 43% novel expressed sequence tags per library. Thyroglobulin was found in normal thyroid epithelium and follicular thyroid adenoma, whereas calcitonin precursor transcripts were found in medullary thyroid carcinoma. We demonstrate production of high-quality cDNA libraries of microdissected tissue of the thyroid, which should prove useful for gene expression analysis of human thyroid tumors.

  2. Proteomic characterization of microdissected breast tissue environment provides a protein‐level overview of malignant transformation

    PubMed Central

    Stingl, Christoph; Tilanus‐Linthorst, Madeleine M. A.; van Deurzen, Carolien H. M.; Timmermans, Mieke A. M.; Smid, Marcel; Foekens, John A.; Luider, Theo M.; Martens, John W. M.; Umar, Arzu

    2017-01-01

    Both healthy and cancerous breast tissue is heterogeneous, which is a bottleneck for proteomics‐based biomarker analysis, as it obscures the cellular origin of a measured protein. We therefore aimed at obtaining a protein‐level interpretation of malignant transformation through global proteome analysis of a variety of laser capture microdissected cells originating from benign and malignant breast tissues. We compared proteomic differences between these tissues, both from cells of epithelial origin and the stromal environment, and performed string analysis. Differences in protein abundances corresponded with several hallmarks of cancer, including loss of cell adhesion, transformation to a migratory phenotype, and enhanced energy metabolism. Furthermore, despite enriching for (tumor) epithelial cells, many changes to the extracellular matrix were detected in microdissected cells of epithelial origin. The stromal compartment was heterogeneous and richer in the number of fibroblast and immune cells in malignant sections, compared to benign tissue sections. Furthermore, stroma could be clearly divided into reactive and nonreactive based on extracellular matrix disassembly proteins. We conclude that proteomics analysis of both microdissected epithelium and stroma gives an additional layer of information and more detailed insight into malignant transformation. PMID:28058811

  3. Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer's disease brain tissue.

    PubMed

    Drummond, Eleanor S; Nayak, Shruti; Ueberheide, Beatrix; Wisniewski, Thomas

    2015-10-21

    The vast majority of human tissue specimens are formalin-fixed, paraffin embedded (FFPE) archival samples, making this type of tissue a potential gold mine for medical research. It is now accepted that proteomics can be done using FFPE tissue and can generate similar results as snap-frozen tissue. However, the current methodology requires a large amount of starting protein, limiting the questions that can be answered in these types of proteomics studies and making cell-type specific proteomics studies difficult. Cell-type specific proteomics has the potential to greatly enhance understanding of cell functioning in both normal and disease states. Therefore, here we describe a new method that allows localized proteomics on individual cell populations isolated from FFPE tissue sections using laser capture microdissection. To demonstrate this technique we microdissected neurons from archived tissue blocks of the temporal cortex from patients with Alzheimer's disease. Using this method we identified over 400 proteins in microdissected neurons; on average 78% that were neuronal and 50% that were associated with Alzheimer's disease. Therefore, this technique is able to provide accurate and meaningful data and has great potential for any future study that wishes to perform localized proteomics using very small amounts of archived FFPE tissue.

  4. Treatment of erythemato-telangiectatic rosacea with brimonidine alone or combined with vascular laser based on preliminary instrumental evaluation of the vascular component.

    PubMed

    Micali, Giuseppe; Dall'Oglio, Federica; Verzì, Anna Elisa; Luppino, Ivano; Bhatt, Karishma; Lacarrubba, Francesco

    2017-09-09

    The purpose of this study is to evaluate the outcome of a series of patients with erythematotelangiectatic rosacea (ETR) affected by persistent erythema and varying degree of telangiectasias being treated with brimonidine alone or combined with a vascular laser based on the type of vascular components preliminarily evaluated by clinical and instrumental observation. Ten patients affected by ETR were enrolled in a pilot, open study. Instrumental evaluation included erythema-directed digital photography by VISIA-CR™ system and X10 dermoscopy. Those patients showing marked background erythema and minimal telangiectasias (group A) were treated with a single application of brimonidine 0.33% gel, while patients showing both marked background erythema and marked telangiectasias (group B) were treated with a session of Nd:YAG laser and reevaluated 1 month later after a single application of brimonidine. An Investigator Global Assessment (IGA) of treatment outcome was performed at the end of treatment in both groups. In group A, 6 h after brimonidine application, a marked reduction of the background erythema was observed in all patients, and IGA was rated as excellent. In group B, 6 h following the application of brimonidine, a marked reduction of the background erythema was observed in all cases, while telangiectasias remained unchanged. A further treatment with brimonidine 1 month after the Nd:YAG laser session determined complete clearing of facial erythema, and IGA was rated as excellent. In conclusion, a preliminary evaluation of the vascular component by erythema-directed digital photography and dermoscopy in ETR may be helpful to select the most appropriate therapeutic strategy.

  5. Different imaging methods in the comparative assessment of vascular lesions: color-coded duplex sonography, laser Doppler perfusion imaging, and infrared thermography

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Philipp, Carsten M.; Weinberg, Lutz; Berlien, Hans-Peter

    1997-12-01

    Aim of the study was the comparative investigation of cutaneous and subcutaneous vascular lesions. By means of color coded duplex sonography (CCDS), laser doppler perfusion imaging (LDPI) and infrared thermography (IT) we examined hemangiomas, vascular malformations and portwine stains to get some evidence about depth, perfusion and vascularity. LDI is a helpful method to get an impression of the capillary part of vascular lesions and the course of superficial vessels. CCDS has disadvantages in the superficial perfusion's detection but connections to deeper vascularizations can be examined precisely, in some cases it is the only method for visualizing vascular malformations. IT gives additive hints on low blood flow areas or indicates arterial-venous-shunts. Only the combination of all imaging methods allows a complete assessment, not only for planning but also for controlling the laser treatment of vascular lesions.

  6. Treatment of Superficial Cutaneous Vascular Lesions: Experience with the Long-Pulsed 1064 nm Nd:YAG Laser

    PubMed Central

    Ozyurt, Kemal; Colgecen, Emine; Baykan, Halit; Ozturk, Perihan; Ozkose, Mehmet

    2012-01-01

    Recent published studies evaluating the long-pulsed 1064 nm Nd:YAG laser for superficial cutaneous vascular lesions have limited subjects and optimal treatment parameters have not been established. To determine the efficacy and safety of the long-pulsed 1064 nm Nd:YAG laser on superficial cutaneus vascular lesions and analyse retrospectively our experience of a 3-year period are the aims of this study. Over the 3-year period, 255 patients were treated [189 female and 66 male; median age 35 (range 7–65) years; Fitzpatrick skin types II-V]. Twenty-six patients with spider angioma, 130 with facial telangiectasia, and 99 with leg telangiectasia were treated. A long-pulsed 1064 nm Nd:YAG laser was used. A test dose was performed at the initial consultation and thereafter patients were reviewed and treated at 4-week intervals for 5 months. Of those patients who completed treatment and followup, 26/26 (100%) of spider angiomas, 125/130 (97%) of facial telangiectasia, and 80/99 (80,8%) of leg telangiectasia markedly improved or cleared. We suggest that the long pulsed Nd:YAG laser is a safe and effective treatment for common superficial cutaneous vascular lesions. However, it is not the first choise to use to treat superficial vessels on the face where depth is not the concern. PMID:23028248

  7. 808-nm diode lasers with and without exogenous chromophore in the treatment of benign facial pigmented and vascular lesions

    NASA Astrophysics Data System (ADS)

    Marangoni, Ovidio; Magaton Rizzi, G.; Trevisan, G.

    2001-10-01

    Aim: To evaluate the safety and efficacy of an 808 nm diode laser for the treatment of benign facial pigmented and vascular lesions, with and without the use of an exogenous chromophore. Method: Thirty-eight patients were treated with an 808 nm diode laser (Eufoton, Italy), in some cases using a chromophore (1% methylene blue, SALF, Bergamo). Pigmented lesions: 21 patients, (15 pigmented keratoses, 6 melanoses). All the lesions were evaluated by dermatoscopy (Videocap 200, DS Medica, Italy) before the treatment. Fluence levels were 10 - 30 J/cmq; pulse lengths were 10 - 50 ms; spot size was 2 mm. Five hypopigmented keratoses were artificially pigmented using exogenous chromophore. Two melanoses required an additional laser session. Vascular lesions: 17 patients, (12 small angiomas, 5 teleangectasias). Fluences were 50 - 100 J/cmq; pulse lengths were 10 - 50 ms; spot size was 2 mm. Eight angiomas were pigmented with exogenous chromophore prior to the treatment. In all cases the areas surrounding the lesions were cooled. The patients were followed at 1, 4 and 8 weeks after the procedure. Results: The keratoses healed completely within two weeks. Four melanoses healed after four weeks. In the two melanoses that were re-treated after eight weeks there remained slight hypopigmentation of the area. All the vascular lesions healed after 15 days without any residual scarring. Considerations: The use of the 808 nm diode laser in the treatment of benign facial pigmented and vascular lesions appears to be justified on the grounds of efficacy and safety of the device, and good degree of acceptance by the patients. By increasing absorption of the 808 nm beam and reducing its penetration, the pigmentation of superficial lesions with exogenous chromophore allowed us to decrease fluences and reduce irradiation times.

  8. Evaluation of laser treatment response of vascular skin disorders in relation to skin properties using multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    de Roode, Rowland; Noordmans, Herke Jan; Rem, Alex; Couwenberg, Sharon; Verdaasdonk, Rudolf

    2008-02-01

    There can be a large variation in response between laser treatments of vascular malformations like port-wine stains even in one patient. This could be ascribed to variations in the skin properties like tint (melanin) and perfusion (redness) which will influence the effectiveness of the laser dosimetry. To obtain a better understanding of the relation between skin properties just before treatment, laser dosimetry and clinical response, a multi-spectral dermatoscope is applied. A sequence of calibrated images is captured from 400 to 720 nm. Images at the treatment laser wavelength (532 nm) show the absorbing structures during laser exposure. Images of different treatment sessions of one patient were matched with dedicated registration software to quantify the results of the laser treatment (change in blood vessels structure, effect on pigment). For feasibility, images were collected from 5 patients and used to determine the optimal wavelength combination strategies. The image matching software gives an objective impression of the improvement, e.g. the clearing of the port-wine stain over time or pigment reactions, which will facilitate the discussion with the patient about the end point of treatment. The multi-spectral dermatoscope and software developed enables the evaluation of large patient series which will result in objective data to advise the dermatologist on the optimal laser dosimetry in future in relation to the skin properties.

  9. Treatment of Complicated Spontaneous Twin Anemia-Polycythemia Sequence via Fetoscopic Laser Ablation of the Vascular Communications.

    PubMed

    Abdel-Sattar, Mira; Platt, Larry D; DeVore, Greggory; Porto, Manuel; Benirschke, Kurt; Chmait, Ramen H

    2015-01-01

    Monochorionic diamniotic twins share a single placenta and have intertwin vascular communications that link the circulatory systems of the twins together. Twin anemia-polycythemia sequence (TAPS) is an atypical form of twin-twin transfusion syndrome (TTTS) caused by net transfer of blood from one fetus to the other and is characterized by large intertwin hemoglobin differences in the absence of oligohydramnios and polyhydramnios. This condition may develop spontaneously (sTAPS) or as a result of residual vascular communications after prior laser surgery. Because of the relatively low prevalence and lack of clinical awareness, the natural history of sTAPS is unclear and the antenatal treatment remains controversial. Case series of sTAPS have described expectant management with timed delivery, intrauterine blood transfusion, and fetoscopic laser treatment. Favorable outcomes have been described in cases of uncomplicated sTAPS that underwent conservative measures. However, we believe that there may be a subgroup of high-risk or complicated sTAPS patients that may benefit from definitive treatment afforded by fetoscopic laser therapy. We describe 3 complicated cases of sTAPS successfully treated with selective laser photocoagulation of communicating vessels. In 2 of the cases, placental pathology identified thrombosed fetal vessels of the polycythemic twin. © 2014 S. Karger AG, Basel.

  10. Nanotechnology and vascular neurosurgery: an in vivo experimental study on microvessels repair using laser photoactivation of a nanostructured hyaluronan solder.

    PubMed

    Esposito, G; Rossi, F; Matteini, P; Ratto, F; Sabatino, G; Puca, A; Albanese, A; Rossi, G; Marchese, E; Maira, G; Pini, R

    2012-01-01

    Sealing tissues by laser in neurosurgical procedures may overcome problems related to the use of conventional suturing methods which can be associated with various degrees of vascular wall damage. Despite the significant experimental and clinical achievements of the past, a standardized clinical application of laser-welding technology has not yet been implemented. The main problem is related to the use of common organic chromophores. A substantial breakthrough in the laser welding of biological tissues may come from the advent of nanotechnologies. In this paper we describe an experimental study, to confirm the feasibility of an innovative laser-assisted vascular repair (LAVR) technique based on diode laser irradiation and subsequent photoactivation of a hyaluronan solder embedded with near infrared (NIR) absorbing gold nanorods (GNRs), and to analyze the induced closuring effect in a follow-up study performed in animal model. Twenty New Zealand rabbits underwent closure of a 3-mm longitudinal incision performed on the common carotid artery (CCA) by means of 810 nm diode laser irradiation, in conjunction with the topical application of an optimized GNR composite. Effective closure of the arterial wound was accomplished by using very low laser intensity (30 W/cm2). The average CCA occlusion time was as low as 50 sec. Animals underwent different follow-up periods (2, 8, 30 days). After follow-up, they were re-anesthetized, the patency of the treated vessels was tested (Doppler analysis) and then the irradiated vessels were excised and subjected to histological evaluations. Morphological examinations of the samples documented the integrity of the vascular wall. No host reaction to nanoparticles occurred. Collagen and elastic fibers returned to their normal architecture 30 days after treatment. A Scanning Electron Microscopy (SEM) examination and immuno-histochemical analysis demonstrated a full re-endothelization of the vessel walls. We thus confirmed that a laser

  11. Management of an Extensive Vascular Lesion on the Lip by Photocoagulation with High-Intensity Diode Laser

    PubMed Central

    Azevedo, Luciane H.; Migliari, Dante

    2017-01-01

    Objective: Extensive vascular malformations (VM) pose difficulties for an effective management. Introduction: This article describes a very satisfactory result, both functional and aesthetic, following a management by the technique of photocoagulation using diode laser in an extensive VM lesion involving the lower lip and left buccal mucosa in a 25 year old male. Case report: The patient reported that the lesion had been present since birth. The whole treatment, carried out under local anesthesia, spread over 6 months since as many as 4 sessions of laser, with a 1.5-month interval in each, were required. The resting period between sessions played an important part in treatment by allowing a time for the recovery of the patient and the shrinking of the lesion. Conclusion: The patient had no complications during the laser sessions, and his postoperative period was uneventful. No recurrence has been seen after a 2.5-year follow-up. PMID:28603563

  12. MMAD: microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples.

    PubMed

    Liebner, David A; Huang, Kun; Parvin, Jeffrey D

    2014-03-01

    One of the significant obstacles in the development of clinically relevant microarray-derived biomarkers and classifiers is tissue heterogeneity. Physical cell separation techniques, such as cell sorting and laser-capture microdissection, can enrich samples for cell types of interest, but are costly, labor intensive and can limit investigation of important interactions between different cell types. We developed a new computational approach, called microarray microdissection with analysis of differences (MMAD), which performs microdissection in silico. Notably, MMAD (i) allows for simultaneous estimation of cell fractions and gene expression profiles of contributing cell types, (ii) adjusts for microarray normalization bias, (iii) uses the corrected Akaike information criterion during model optimization to minimize overfitting and (iv) provides mechanisms for comparing gene expression and cell fractions between samples in different classes. Computational microdissection of simulated and experimental tissue mixture datasets showed tight correlations between predicted and measured gene expression of pure tissues as well as tight correlations between reported and estimated cell fraction for each of the individual cell types. In simulation studies, MMAD showed superior ability to detect differentially expressed genes in mixed tissue samples when compared with standard metrics, including both significance analysis of microarrays and cell type-specific significance analysis of microarrays. We have developed a new computational tool called MMAD, which is capable of performing robust tissue microdissection in silico, and which can improve the detection of differentially expressed genes. MMAD software as implemented in MATLAB is publically available for download at http://sourceforge.net/projects/mmad/.

  13. Non-invasive technique for assessment of vascular wall stiffness using laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Segers, Patrick; Heuten, Hilde; Goovaerts, Inge; Ennekens, Guy; Vrints, Christiaan; Baets, Roel; Dirckx, Joris

    2014-06-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter is best known when estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery in the groin, but may also be determined locally from short-distance measurements on a short vessel segment. In this work, we propose a novel, non-invasive, non-contact laser Doppler vibrometry (LDV) technique for evaluating PWV locally in an elastic vessel. First, the method was evaluated in a phantom setup using LDV and a reference method. Values correlated significantly between methods (R ≤ 0.973 (p ≤ 0.01)); and a Bland-Altman analysis indicated that the mean bias was reasonably small (mean bias ≤ -2.33 ms). Additionally, PWV was measured locally on the skin surface of the CCA in 14 young healthy volunteers. As a preliminary validation, PWV measured on two locations along the same artery was compared. Local PWV was found to be between 3 and 20 m s-1, which is in line with the literature (PWV = 5-13 m s-1). PWV assessed on two different locations on the same artery correlated significantly (R = 0.684 (p < 0.01)). In summary, we conclude that this new non-contact method is a promising technique to measure local vascular stiffness in a fully non-invasive way, providing new opportunities for clinical diagnosing.

  14. The novel drug delivery to vascular wall using laser driven thermal balloon: basic study ex vivo

    NASA Astrophysics Data System (ADS)

    Suganuma, Kao; Homma, Rie; Shimazaki, Natsumi; Ogawa, Emiyu; Arai, Tsunenori

    2016-10-01

    To enhance drug delivery performance of popular drug eluting balloon against re-stenosis after angioplasty, we have an idea regarding to adjacent use of our unique laser driven thermal balloon of which characteristics could realize short term and uniform temperature elevation to modify drug delivery characteristics. We have already reported a delivery enhancement effect using this idea, however, detailed characteristics have not been studied yet. We studied balloon dilatation in terms of vascular circumferential tension on the heating drug delivery performance using porcine carotid artery wall ex vivo. The extracted carotid artery was used and circumferential tension of 0-30 mN/mm2 was added. Heating drug delivery was performed on this carotid artery with the heated solution of hydrophobic fluorescent Rhodamine B with 3 μg/ml in concentration at 37 and 70°C. We obtained a defined drug delivery quantity as well as delivery depth by a microscopic fluorescence measurement on a cross section of the drug delivered vessel wall. In the cases of 70°C, we found the drug penetration increase against 3°C case. We predict that the collagen thermal denaturation of the vessel wall may play important role to this penetration. In the case of 3°C, we found the drug concentration on the intimal surface with 7 mN/mm2 was increased as 10-30 times as other tension values. We found surface grooves in this case using an electron micrography. Therefore, we think that the drug delivery enhancement might be related to the groove formations of the vessel wall.

  15. Residual vascular communications in twin-twin transfusion syndrome treated with sequential laser surgery: frequency and clinical implications.

    PubMed

    Chmait, R H; Assaf, S A; Benirschke, K

    2010-07-01

    The goal of fetoscopic laser surgery for twin-twin transfusion syndrome (TTTS) is to ablate all placental vascular communications, thereby separating the fetal circulatory systems. We sought to ascertain the frequency and clinical implications of residual vascular communications (RVC) post preferential sequential selective laser photocoagulation of communicating vessels (SQLPCV). TTTS placentas treated via preferential SQLPCV were examined. Patency of vascular communications was assessed via water and/or milk injections. Cases with intrauterine fetal demise or placental disruption were excluded. Outcomes with and without RVC were compared. One hundred seventy-four TTTS patients were treated during the study period. Dual survival at birth was 76% (133/174). Of the 133 dual survivors, 105 (79%) submitted an intact placenta. Five of these 105 placentas had RVC (4.8%). Comparison of RVC versus non-RVC cases revealed the following: gestational age at delivery 28.7(6.5) vs. 33.4(3.3) weeks (p=0.178); recipient birth weight 1287(1061) vs. 1973(610) grams (p=0.020); donor birth weight 1429(1369) vs. 1653(715) grams (p=0.518); donor central/eccentric placental cord insertion 80% vs. 17% (p=0.006). One case required a second laser surgery to complete the laser ablation; this placenta did not have RVC after delivery. Otherwise there were no cases of persistent TTTS. One of the 5 RVC cases (20%) exhibited neonatal findings consistent with twin anemia-polycythemia sequence (TAPS), while none of the non-RVC cases had TAPS (p=0.005). The rate of RVC was less than 5% among gestations with dual survivors post preferential SQLPCV treatment for TTTS.

  16. Effect of General Anesthesia on Neurodevelopmental Abnormalities in Children Undergoing Treatment of Vascular Anomalies With Laser Surgery: A Retrospective Review.

    PubMed

    Terushkin, Vitaly; Brauer, Jeremy; Bernstein, Leonard; Geronemus, Roy

    2017-04-01

    Multiple exposures to general anesthesia may be neurotoxic to the developing brain. This relationship has not been evaluated in children undergoing laser surgery for vascular anomalies. To evaluate the prevalence of neurodevelopmental abnormalities in children who received multiple laser procedures under general anesthesia before the age of 4 years for the treatment of vascular anomalies. Retrospective chart review of patients with contact of parents for telephone interview. Thirty-three patients were eligible. Average age at the time of survey was 7.8 years. Twenty-three (84.8%) patients were female, with average age at the time of first treatment at 1.9 years. Average number of treatments received before the age of 4 years was 6.7. Anesthetics included inhalational nitrous oxide and isoflurane and intravenous propofol. Seven patients carried one or more of the following diagnoses: attention-deficit hyperactivity disorder (3.0%), anxiety (6.1%), behavioral disorder (3.0%), language disorder (3.0%), speech disorder (3.0%), and motor disorder (6.1%). These prevalence rates are similar to those found in the US population. This is the first report on the prevalence of neurodevelopmental disorders in children undergoing multiple laser treatments under general anesthesia. Although the study sample is small, no increased risks when comparing with prevalence rates reported in the literature were noted.

  17. Improved laser-assisted vascular tissue fusion using solder-doped polymer membranes on a canine model

    NASA Astrophysics Data System (ADS)

    McNally-Heintzelman, Karen M.; Sorg, Brian S.; Hammer, Daniel X.; Heintzelman, Douglas L.; Hodges, Diane E.; Welch, Ashley J.

    2000-05-01

    Newly developed light-activated surgical adhesives have been investigated as a substitute to traditional protein solders for vascular tissue fusion without the need for sutures. Canine femoral arteries (n equals 14), femoral veins (n equals 14) and carotid arteries (n equals 10) were exposed, and a 0.3 to 0.6 cm longitudinal incision was made in the vessel walls. The surgical adhesive, composed of a poly(L-lactic-co-glycolic acid) scaffold doped with the traditional protein solder mix of bovine serum albumin and indocyanine green dye, was used to close the incisions in conjunction with an 805 nm diode laser. Blood flow was restored to the vessels immediately after the procedure and the incision sites were checked for patency. The new adhesives were flexible enough to be wrapped around the vessels while their solid nature avoided the problems associated with 'runaway' of the less viscous liquid protein solders widely used by researchers. Assessment parameters included measurement of the ex vivo intraluminal bursting pressure one to two hours after surgery, as well as histology. The acute intraluminal bursting pressures were significantly higher in the laser-solder group (greater than 300 mmHg) compared to the suture control group (less than 150 mmHg) where four evenly spaced sutures were used to repair the vessel (n equals 4). Histological analysis showed negligible evidence of collateral thermal damage to the underlying tissue in the laser-solder repair group. These initial results indicated that laser-assisted vascular repair using the new adhesives is safe, easy to perform, and contrary to conventional suturing, provides an immediate leak-free closure. In addition, the flexible and moldable nature of the new adhesives should allow them to be tailored to a wide range of tissue geometries, thus greatly improving the clinical applicability of laser-assisted tissue repair.

  18. Effects of low-intensity laser irradiation on the apoptosis of rabbit vascular smooth muscle cells in culture

    NASA Astrophysics Data System (ADS)

    Li, S. D.; Chen, P.; Zhang, C. P.; Wen, J. X.; Liang, J.; Kang, H. X.; Gao, R. L.; Fu, X. B.

    2011-11-01

    Restenosis is a major complication after coronary intervention therapy. Excessive proliferation of vascular smooth muscle cells (VSMCs) and a decline in their apoptosis, which eventually leads to excessive neointimal thickening in coronary arteries, are the main causes of restenosis. Induction of the apoptosis of VSMCs and inhibition of excessive proliferation of VSMCs are therefore crucial for the prevention of restenosis, and low-intensity laser irradiation of coronary arteries may play a promising role in keeping this in balance. In this study, we used in vitro cultured rabbit VSMCs to investigate the effects of low-intensity laser irradiation at a wavelength of 532 nm on the apoptosis of VSMCs via morphological observation and molecular biology. The results showed that apoptotic bodies and obvious intranuclear apoptosis-positive particles formed within VSMCs 24 h after laser irradiation, suggesting that low-intensity laser irradiation at certain doses can inhibit the proliferation of VSMCs by promoting their apoptosis. This experiment provides evidences for further animal experiments and clinical trials on prevention and treatment of restenosis by intracoronary low-intensity laser irradiation at a wavelength of 532 nm.

  19. Experimental and numerical investigation on the transient vascular thermal response to multi-pulse Nd:YAG laser.

    PubMed

    Li, Dong; Li, Ruohui; Jia, Hao; Chen, Bin; Wu, Wenjuan; Ying, Zhaoxia

    2017-06-09

    Port wine stains (PWS) are congenital vascular malformations that progressively darken and thicken with age. Laser therapy is currently the most effective way in clinical practice for PWS. A 1,064 nm Nd:YAG laser in the near-infrared band can achieve a deeper treatment depth compared to the current widely adopted pulsed dye laser. However, because of its relatively weak absorption by blood, single-pulse Nd:YAG laser requires high energy density to cause effective vessel damage, but may inflict undesirable burning to surrounding collagen. Multi-pulse laser has great potential in clinical treatment because it needs less energy density for each pulse. This paper presented an experimental and theoretical study of the transient thermal effects of low-energy multi-pulse Nd:YAG laser on blood vessels. In vivo experiments were performed on dorsal skin chamber. By using a high speed camera (up to 2,000 fps), the complete and dynamic thermal response of blood vessels during laser irradiation and between pulse intervals was obtained. In vitro experiment in capillary tubes and Numerical simulations by two-scale heat transfer model were also conducted to further explore the in vivo experimental findings. The complete and dynamic response of blood vessels were obtained, including vessel dilation, thrombus formation, partial vessel constriction, thread-like constriction, cavitation and bubbles, and hemorrhage. Thread-like constriction is the desirable treatment end point, which will only occur after thrombus completely occludes the vessel lumen. Cavitation can cause hemorrhage when thrombus fails to occlude the vessel lumen. In vitro experiment found that vessel constriction was due to the constriction of thrombus induced by laser irradiation. Theoretical investigation revealed that the mechanism for the effective reduction of energy density by multi-pulse Nd:YAG laser was due to enhanced light absorption of the blood with thrombus formation. For multi-pulse treatment, laser

  20. Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser

    NASA Technical Reports Server (NTRS)

    Kosterev, A. A.; Tittel, F. K.; Durante, W.; Allen, M.; Kohler, R.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Cho, A. Y.

    2002-01-01

    We report the first application of pulsed, near-room-temperature quantum cascade laser technology to the continuous detection of biogenic CO production rates above viable cultures of vascular smooth muscle cells. A computer-controlled sequence of measurements over a 9-h period was obtained, resulting in a minimum detectable CO production of 20 ppb in a 1-m optical path above a standard cell-culture flask. Data-processing procedures for real-time monitoring of both biogenic and ambient atmospheric CO concentrations are described.

  1. The use of Intravenous Laser Blood Irradiation (ILBI) at 630–640 nm to prevent vascular diseases and to increase life expectancy

    PubMed Central

    2015-01-01

    Background and Aims: The mortality rate from vascular diseases is one of the highest. The use of Intravenous Laser Blood Irradiation (ILBI) within the last 30 years has demonstrated high efficacy in the treatment of vascular, cardiac and other systemic diseases. Rationale: Laser energy at 630-640 nanometers is arguably the most effective for irradiation of blood and the vascular wall. Photons at this wavelength are absorbed by oxygen, improve microcirculation, can change the viscosity of the blood and affect vascular endothelium. Conclusions: In summary, more than 25 years of experience of using laser energy at 630-640 nm has shown that this waveband directly influences the parameters of all cells in the blood, blood plasma, the coagulation process and all the structural components of the vascular wall. Additionally, ILBI directly or indirectly affects the cells of the immune system, hormones, and exchange processes in an organism, thereby not only improving the function of the vascular system, but also the other systems of an organism. It can finally lead to lower the incidence and number of vascular diseases, and indirectly to the reduction of the number of diseases in other organs and even systemically, thus helping to prolong the lifespan. PMID:25941421

  2. Real-time ultrasonography as a monitoring technique for interstitial Nd:YAG laser treatment of voluminous hemangiomas and vascular malformations

    NASA Astrophysics Data System (ADS)

    Werner, Jochen A.; Gottschlich, Stefan; Lippert, Burkard M.; Folz, Benedikt J.

    1998-01-01

    Voluminous vascular anomalies of the head and neck region are still treated with conventional surgery although Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser therapy is an effective treatment method. One hundred thirty give patients with voluminous hemangiomas and vascular malformations were treated with interstitial Nd:YAG laser therapy, partly complemented by a non-contact mode Nd:YAG laser light application. The vascular tumors had a diameter of more than 3 cm in two or all three dimensions. Treatment was carried out under ultrasound and manual control. Nearly 60% of the patients showed a complete clinical regression of the vascular tumor, a third of the patients had a partial regression and were satisfied with the treatment outcome. Four patients were treated unsuccessfully with the laser and three of them subsequently underwent conventional surgery. Only 10 patients showed cosmetic and functional deficits. These results on the interstitial Nd:YAG laser therapy of voluminous hemangiomas and vascular malformations in a large patient group demonstrated the high effectiveness of this novel and innovative therapy modality.

  3. The role of tissue microdissection in cancer research.

    PubMed

    Gillespie, J W; Ahram, M; Best, C J; Swalwell, J I; Krizman, D B; Petricoin, E F; Liotta, L A; Emmert-Buck, M R

    2001-01-01

    Tissue microdissection is a laboratory method that is used to procure specific cells or cell populations from a histology slide under direct microscopic visualization. The recovered cells can be studied with a variety of DNA, messenger RNA, and protein analysis methods, including new high-throughput gene expression and proteomics technologies. This approach is permitting investigators to comprehensivelyexamine the molecular anatomy of cells in tissue sections forthe first time. This article reviews the development and evolution of tissue microdissection techniques, summarizes examples of research studies, and discusses related challenges that the research community must address. Additional information and complete laboratory protocols are available on a website at http://cgap-mf.nih.gov/.

  4. Laser-induced (endo)vascular photothermal effects studied by combined brightfield and fluorescence microscopy in hamster dorsal skin fold venules

    NASA Astrophysics Data System (ADS)

    Bezemer, R.; Heger, M.; van den Wijngaard, J. P. H.; Mordon, S. R.; van Gemert, M. J. C.; Beek, J. F.

    2007-07-01

    The putative features of the (endo)vascular photothermal response, characterized by laser-induced thermal denaturation of blood and vessel wall constituents, have been elucidated individually, but not simultaneously in dynamic, isolated in vivo systems. A hamster dorsal skin fold model in combination with brightfield/fluorescence intravital microscopy was used to examine the effect of laser pulse duration and blood flow velocity on the size of the thermal coagulum, its attachment behavior, and laser-mediated vasomotion. The size of the coagulum and the extent of vasoconstriction and latent vasodilation were proportional to the laser pulse duration, but pulse duration had no effect on coagulum attachment/dislodgement. Blood flow velocity exhibited no significant effect on the studied parameters. The (endo)vascular photothermal response is governed predominantly by laser energy deposition and to a marginal extent by blood flow velocity.

  5. An experimental study on minimally occlusive laser-assisted vascular anastomosis in bypass surgery: the importance of temperature monitoring during laser welding procedures.

    PubMed

    Esposito, G; Rossi, F; Puca, A; Albanese, A; Sabatino, G; Matteini, P; Lofrese, G; Maira, G; Pini, R

    2010-01-01

    Laser welding has been proposed as an alternative technique to conventional stitching in microvascular anastomosis, with the advantages of improving the vascular healing process and reducing the risk of malfunction of a bypass. Our group recently proposed a laser-assisted end-to-side anastomotic technique, providing the advantages of laser welding and reducing the occlusion time of the recipient vessel, that is important in neurosurgical bypass procedures, in order to reduce the risk of cerebral ischemia. This in vivo study focuses on the control of the temperature dynamics developing in the welded tissue. A jugular vein graft was harvested and implanted on the rabbit carotid artery by means of two end-to-side anastomosis. Laser welding procedure was then carried out to implant the bypass. A real-time monitoring of the temperature during welding was performed with an infrared thermocamera, in order to control the laser-induced heating effect on the external surface of the vessel walls. The temperature analysis highlighted the dynamic of the heating effect in space and time and enabled us to define an optimal temperature range in operative conditions. The temperature control provided safe tissue heating confined within the directly irradiated area, with negligible damage to surrounding tissues, as well as effective sealing and welding of the vessel edges at the anastomotic sites. The average occlusion time of the carotid artery was about 11 minutes. After a follow-up of 30 days, all the bypasses were patent and no signs of thrombosis or leak point pressure were present, thus confirming the safety of this laser-assisted anastomotic procedure.

  6. Regulation of tyrosine phosphatases in the adventitia during vascular remodelling

    SciTech Connect

    Micke, Patrick; Hackbusch, Daniel; Mercan, Sibel; Stawowy, Philipp; Ostman, Arne; Kappert, Kai

    2009-05-15

    Protein tyrosine phosphatases (PTPs) are regulators of growth factor signalling in vascular remodelling. The aim of this study was to evaluate PTP expression in the context of PDGF-signalling in the adventitia after angioplasty. Utilising a rat carotid artery model, the adventitial layers of injured and non-injured vessels were laser microdissected. The mRNA expression of the PDGF {beta}-receptor, the ligands PDGF-A/B/C/D and the receptor-antagonising PTPs (DEP-1, TC-PTP, SHP-2, PTP1B) were determined and correlated to vascular morphometrics, proliferation markers and PDGF {beta}-receptor phosphorylation. The levels of the PDGF {beta}-receptor, PDGF-C and PDGF-D were upregulated concurrently with the antagonising PTPs DEP-1 and TC-PTP at day 8, and normalised at day 14 after vessel injury. Although the proliferation parameters were time-dependently altered in the adventitial layer, the phosphorylation of the PDGF {beta}-receptor remained unchanged. The expression dynamics of specific PTPs indicate a regulatory role of PDGF-signalling also in the adventitia during vascular remodelling.

  7. Laser preconditioning of calvarial bone prior to an X-ray radiation injury: a preliminary in vivo study of the vascular response.

    PubMed

    Desmons, Sophie O; Delfosse, Caroline J; Rochon, Philippe; Buys, Bruno; Penel, Guillaume; Mordon, Serge

    2008-01-01

    Thermal preconditioning prior to injury induces a cytoprotective effect on soft tissues and promotes their recovery. Lasers are an adequate tool to generate controlled and reproducible heat. X-ray irradiation induces a chronic antiangiogenic effect on bone, affecting its healing and remodeling processes. The aim of this study was to investigate the effect of laser preconditioning on the re-vascularization of X-ray irradiated bone. A bone chamber was implanted onto the calvaria of rabbits to study the vascularization process. Digital pictures were taken of the vascular plexus at the target bone site using a modified digital camera. Vascular density (VD) was determined using image processing. It was defined as the ratio of blood vessel pixels to the total number of pixels to the region of interest. Laser preconditioning was performed with a diode laser (810 nm, 2 W, 3 seconds, 48 J/cm(2), 4 mm). A 12-week follow-up study was performed on 20 rabbits divided into four groups: #1: control group (n = 5); #2: laser irradiation alone (n = 5). #3: X-ray radiation (18.75 Gy) alone (n = 5), #4: laser preconditioning 24 hours prior to X-ray radiation (n = 5). VD remained stable during the 12-week follow up for group #1. No significant difference was observed between laser irradiation group (#2) and control group (#1) (P>0.5). The angiolytic action of X-ray radiation was confirmed in groups #3 and #4, which were statistically different from group #1 (P<0.001). However, the decrease of the vascularization was limited in group #4 highlighting a different evolution between group #3 and #4 (P<0.05). These results were confirmed by histological analysis. The bone chamber is an effective reproducible method for the longitudinal analysis of the dynamics of vascularization. Our findings have shown that laser preconditioning is capable of preserving vascularization in an X-ray irradiated bone site, thus suggesting a novel approach for promoting the healing of bone tissue in which the

  8. Microdissection of Shoot Meristem Functional Domains

    USDA-ARS?s Scientific Manuscript database

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes th...

  9. RGB imaging system for monitoring of skin vascular malformation's laser therapy

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Kuzmina, Ilona; Berzina, Anna; Spigulis, Janis

    2012-06-01

    A prototype RGB imaging system for mapping of skin chromophores consists of a commercial RGB CMOS sensor, RGB LEDs ring-light illuminator and orthogonally orientated polarizers for reducing specular reflectance. The system was used for monitoring of vascular malformations (hemagiomas and telangiectasias) therapy.

  10. Laser-induced hyperthermia of nanoshell mediated vascularized tissue - a numerical study.

    PubMed

    Singh, Rupesh; Das, Koushik; Mishra, Subhash C

    2014-08-01

    Laser-induced hyperthermia treatment of tumor in a 2-D axisymmetric tissue embedded with moderate size (100-150µm) blood vessels is studied. Laser absorption is enhanced by embedding gold-silica nanoshells in the tumor. Heat transfer in the tissue is modeled using Weinbaum-Jiji bioheat transfer equation. With laser irradiation, the volumetric radiation is accounted in the governing bioheat equation. Radiative information needed in the bioheat equation is calculated using the discrete ordinate method, and the coupled bioheat-radiation equation is solved using the finite volume method. Effects of power density, laser exposure time, beam radius, diameter of blood vessel and volume fractions of nanoshells on temperature spread in the tissue are analyzed.

  11. Binding of indocyanine green in polycaprolactone fibers using blend electrospinning for in vivo laser-assisted vascular anastomosis.

    PubMed

    Schönfeld, Annemarie; Kabra, Zacharia Mbäıdjol; Constantinescu, Mihai; Bosshardt, Dieter; Stoffel, Michael H; Peters, Kirsten; Frenz, Martin

    2017-07-12

    The clinical application of laser-assisted vascular anastomosis is afflicted by unreliable and low bonding strengths as well as tedious handling during microvascular surgery. The challenge to be met arises from the flow-off of the chromophore during soldering that changes the absorption and stains the surrounding tissue, leading to an uncontrollable thermal damage zone. In this study, we investigated the feasibility to produce an indocyanine green (ICG)-loaded patch by electrospinning and tested its applicability to both in vitro and in vivo microvascular laser soldering. A blend of polycaprolactone and ICG was electrospun to produce a pliable patch. Prior to soldering, the patch was soaked in 40% wt. bovine serum albumin solution. The solder patch was wrapped in vitro around blood vessel stumps of rabbit aortas. An intraluminal balloon catheter enabled an easy alignment and held the setup in place. The soldering energy was delivered via a diffusor fiber from the vessel lumen using a diode laser at 810 nm. During the procedure, the surface temperature was observed with an infrared camera. Afterward, samples were embedded in methylmethacrylate and epon to study thermal damage. The quality of the fusion was assessed by measuring the tensile strength. After in vitro tests with rabbit aortas, eight large white pigs were subjected to an acute in vivo experiment, and the artery of the latissimus dorsi flap was anastomosed to the distal femoral artery. The ICG-loaded patch, produced by electrospinning, has a thickness of 279 ± 62 μm, a fiber diameter of 1.20 ± 0.19 μm, and an attenuation coefficient of 1,119 ± 183 cm(-1) at a wavelength of 790 nm. The patch was pliable and easy to handle during surgery. No leakage of the chromophore was observed. Thermal damage was restricted to the Tunica adventitia and Tunica media and the area of the vessel wall that was covered with the patch. Six pigs were successfully treated, without any bleeding and with

  12. A study of vascular response to thermal injury on hairless mice by fibre optic confocal imaging, laser doppler flowmetry and conventional histology.

    PubMed

    Vo, L T; Papworth, G D; Delaney, P M; Barkla, D H; King, R G

    1998-06-01

    Burn injury causes vascular thrombosis and occlusion by thermal damage to the vascular network in the dermis. In this study, fibre optic confocal imaging (FOCI) and laser doppler flowmetry were used to detect changes in vascular morphology and local dermal blood flux over 4 h, in three defined zones after a thermal burn (50 degrees C, 20 s duration, 3 mm in diameter) was induced on fully anaesthetised hairless mice. FITC-dextran (i.v.) was used to enable FOCI of vascular morphology including three-dimensional imaging of the burn site and its surrounding areas. Samples of the affected areas were collected for conventional histology, including Masson's trichrome. There was vascular damage in the zone of coagulation which showed no change during the 4 h period. The zone of stasis showed an initial reduction in blood flux and confocal imaging of the area indicated significant vessel leakage during the first 2 h which later improved. The zone of hyperaemia showed an initial increase in total blood flux and confocal imaging of the area showed initial blood vessel dilatation. This study demonstrates that FOCI is a useful non-invasive tool in the assessment of vascular changes in thermal burns in vivo, and compares the findings of FOCI with those from laser doppler flowmetry and histology.

  13. Endometriosis research using capture microdissection techniques: Progress and future applications

    PubMed Central

    Zhao, Luyang; Gu, Chenglei; Huang, Ke; Han, Weidong; Fu, Meng; Meng, Yuanguang

    2016-01-01

    Endometriosis is a common gynecological disease with high prevalence, while its etiology and pathophysiology have remained to be fully elucidated. Previous evidence suggested that this disorder may be in part or completely of somatic origin. However, traditional endometrial samples may not be ideal for investigation, as target cells, including epithelial and stromal cells, in endometriotic lesions are too sparse to be analyzed. Recently, capture microdissection techniques have been used to overcome these limitations and eliminate tissue heterogeneity in endometriosis research. Therefore, the present review summarized the alterations in epithelial and stromal cells in endometriosis tissues isolated through capture microdissection, outlined recent progress and provided directions for future investigation of the pathogenesis of endometriosis. PMID:27882213

  14. Vascular-specific laser wavelength for the treatment of facial telangiectasias.

    PubMed

    Dudelzak, Jacob; Hussain, Mussarrat; Goldberg, David J

    2009-03-01

    Facial telangiectasias have been successfully treated with a variety of laser wavelengths. Shorter wavelengths (532 nm) are generally effective in the treatment of smaller vessels; longer wavelengths (1064 nm), although potentially more effective in the treatment of larger vessels, may be associated with a higher complication rate. The 980-nm wavelength has the potential benefits of a longer wavelength with the safety of shorter wavelengths. The efficacy and safety of a new 980-nm diode laser in the treatment of facial telangiectasias was evaluated. Twelve subjects, aged 44 to 67 years with Fitzpatrick skin types 1 to 3 and bilateral facial telangiectasias, underwent 1 to 3 monthly treatments with a 980-nm diode laser using fluences ranging from 22.2 to 146.9 J/cm2, pulse durations of 50-160 ms, spot sizes of 0.7 to 1 mm, and pulse frequencies of 3 to 10 Hz. Clinical evaluation included digital photography, as well as subject and investigator assessment of reduction in the size and appearance of telangiectasias on a 1 to 5 point scale. Adverse effects were also assessed. Significant improvement in the appearance of telangiectasias was seen after treatment. No complications were observed. A new 980-nm diode laser effectively treats facial telangiectasias without any observed complications.

  15. Effects of endovenous laser ablation on vascular tissue: molecular genetics approach

    PubMed Central

    Alur, İhsan; Dodurga, Yavuz; Güneş, Tevfik; Eroglu, Canan; Durna, Fırat; Türk, Nilay Şen; Adıgüzel, Esat; Emrecan, Bilgin

    2015-01-01

    Background: Endovenous laser ablation (EVLA) is a treatment option for lower extremity varicose veins. In the present study, we investigate to the genetic changes and possibility of living tissue in the saphenous vein wall after the EVLA procedure. Methods: Eleven saphenous vein grafts were randomized in two groups: (1) 4 cm SVG segments of performed EVLA procedure in study group, (2) 4 cm segments of SVG none performed EVLA procedure in control group. SVG were taken from the remnants of distal saphenous vein grafts prepared for the bypass procedure but not used. SVG was approximately 8 cm in length and was divided into two parts 4 cm in length. One half was exposed to laser energy, while the other half of the same vein graft was untreated as a control. EVLA was performed on complete saphenous veins in the study group. Abnormal genetic changes of the SVG were observed with a Tri-Reagent method and quantified with a Nanodrop™ spectrophotometer. Results: Histopathological changes indicated that the intima including the endothelium was completely necrotized in the study group. It was observed that intimal thermal-energy-induced injury did not reach the media. Histopathological examination showed that homogenous eosinophilic discoloration and coagulation necrosis characterized the laser related thermal damage as well. Conclusions: In this preliminary study, we found that living tissue remained in the SVG wall after application of laser ablation, and we also detected abnormal genetic changes in the study group compared with the control group. PMID:26379903

  16. Optimum Pulse Duration and Radiant Exposure for Vascular Laser Therapy of Dark port-wine Skin: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Tunnell, James W.; Wang, Lihong V.; Anvari, Bahman

    2003-03-01

    Laser therapy for cutaneous hypervascular malformations such as port-wine stain birthmarks is currently not feasible for dark-skinned individuals. We study the effects of pulse duration, radiant exposure, and cryogen spray cooling (CSC) on the thermal response of skin, using a Monte Carlo based optical-thermal model. Thermal injury to the epidermis decreases with increasing pulse duration during irradiation at a constant radiant exposure; however, maintaining vascular injury requires that the radiant exposure also increase. At short pulse durations, only a minimal increase in radiant exposure is necessary for a therapeutic effect to be achieved because thermal diffusion from the vessels is minimal. However, at longer pulse durations the radiant exposure must be greatly increased. There exists an optimum pulse duration at which minimal damage to the epidermis and significant injury within the targeted vasculature occur. For example, the model predicts optimum pulse durations of approximately 1.5, 6, and 20 ms for vessel diameters of 40, 80, and 120 μm, respectively. Optimization of laser pulse duration and radiant exposure in combination with CSC may offer a means to treat cutaneous lesions in dark-skinned individuals.

  17. Selective vascular coagulation of rabbit colon using a flashlamp-excited dye laser operating at 577 nanometers

    SciTech Connect

    Nishioka, N.S.; Tan, O.T.; Bronstein, B.R.; Farinelli, W.A.; Richter, J.M.; Parrish, J.A.; Anderson, R.R.

    1988-11-01

    Previous studies have demonstrated that brief pulses of selectively absorbed optical radiation can be used to confine thermal injury to pigmented targets within tissues. We performed studies in rabbits to assess the usefulness of this technique for selectively coagulating the colonic vasculature. By measuring the optical absorbance of rabbit colon with a spectrophotometer, it was determined that hemoglobin exhibits strong absorption relative to the rabbit colon at a wavelength of 577 nm. Because light must be absorbed to affect tissue, it was hypothesized that laser pulses of this wavelength would selectively damage blood vessels. This hypothesis was tested by examining the effect of 300-microseconds-long 577-nm laser pulses on rabbit colon in vivo. For delivered radiant exposures between 4 and 8 J/cm2, selective coagulation of the colonic vasculature could be produced without damage to the surrounding colon. At greater radiant exposures, vessel hemorrhage was occasionally noted but no transmural thermal injury was produced with delivered radiant exposures as high as 22 J/cm2. This technique may form the basis of a safe and simple treatment of vascular lesions of the colon such as angiodysplasia.

  18. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  19. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  20. Laser diffractometry technique for determination of stationary and dynamics viscoelastic parameters of erythrocyte in vascular pathologies

    NASA Astrophysics Data System (ADS)

    Riquelme, Bibiana D.; Foresto, Patricia; D'Arrigo, Mabel; Rasia, Rodolfo J.

    2003-10-01

    In this work we investigated the erythrocyte membrane viscoelastic behavior, in hypertensive and dislipidemic patients using the "Erythrodeformeter" that permit to obtain the stationary and dynamical linear parameters of erythrocyte membrane by laser diffractometry. Our results show that several erythrocyte membrane rheological parameters were statistically altered in patients if compared with the control group. Then, the analyzed hemorheological parameters could be use in order to detect and diagnostic the hypertension and dyslipidemic alterations.

  1. Design and characterization of a laser-based instrument with spectroscopic feedback control for treatment of vascular lesions: the "Smart Scalpel"

    NASA Astrophysics Data System (ADS)

    Sebern, Elizabeth L.; Brenan, Colin J.; Hunter, Ian W.

    2000-10-01

    To improve the effectiveness of microsurgical techniques, we are developing a semi-autonomous robotic surgical tool (called the `Smart Scalpel') as an alternate approach to treatment of vascular lesions. The device employs optical reflectance spectroscopy as part of a line scan imaging system to identify and selectively target blood vessels in a vascular lesion for thermal treatment with a focused laser beam. Our proof-of-concept reported here presents the design and construction of a prototype instrument, initial quantification of imaging system resolution and contrast, and preliminary verification of the imaging and targeting strategies with standard targets and live dermal tissue.

  2. Determination of EGFR mutations in single cells microdissected from enriched lung tumor cells in peripheral blood.

    PubMed

    Ran, Ran; Li, Longyun; Wang, Mengzhao; Wang, Shulan; Zheng, Zhi; Lin, Peter Ping

    2013-09-01

    A minimally invasive and repeatable approach for real-time epidermal growth factor receptor (EGFR) mutation surveillance would be highly beneficial for individualized therapy of late stage lung cancer patients whose surgical specimens are often not available. We aim to develop a viable method to detect EGFR mutations in single circulating tumor cells (CTCs). Using a model CTC system of spiked tumor cells in whole blood, we evaluated EGFR mutation determination in single tumor cells enriched from blood. We used magnetic beads labeled with antibody against leukocyte surface antigens to deplete leukocytes and enrich native CTCs independent of epithelial marker expression level. We then used laser cell microdissection (LCM) to isolate individual CTCs, followed by whole-genome amplification of the DNA for exon 19 microdeletion, L858R and T790M mutation detection by PCR sequencing. EGFR mutations were successfully measured in individual spiked tumor cells enriched from 7.5 ml whole blood. Whole-genome amplification provided sufficient DNA for mutation determination at multiple sites. Ninety-five percent of the single CTCs microdissected by LCM (19/20) yielded PCR amplicons for at least one of the three mutation sites. The amplification success rates were 55 % (11/20) for exon 19 deletion, 45 % (9/20) for T790M, and 85 % (17/20) for L858R. Sequencing of the amplicons showed allele dropout in the amplification reactions, but mutations were correctly identified in 80 % of the amplicons. EGFR mutation determination from single captured tumor cells from blood is feasible with the approach described here. However, to overcome allele dropout and to obtain reliable information about the tumor's EGFR status, multiple individual tumor cells should be assayed.

  3. 3D Monte Carlo model of optical transport in laser-irradiated cutaneous vascular malformations

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Milanič, Matija; Jia, Wangcun; Nelson, J. S.

    2010-11-01

    We have developed a three-dimensional Monte Carlo (MC) model of optical transport in skin and applied it to analysis of port wine stain treatment with sequential laser irradiation and intermittent cryogen spray cooling. Our MC model extends the approaches of the popular multi-layer model by Wang et al.1 to three dimensions, thus allowing treatment of skin inclusions with more complex geometries and arbitrary irradiation patterns. To overcome the obvious drawbacks of either "escape" or "mirror" boundary conditions at the lateral boundaries of the finely discretized volume of interest (VOI), photons exiting the VOI are propagated in laterally infinite tissue layers with appropriate optical properties, until they loose all their energy, escape into the air, or return to the VOI, but the energy deposition outside of the VOI is not computed and recorded. After discussing the selection of tissue parameters, we apply the model to analysis of blood photocoagulation and collateral thermal damage in treatment of port wine stain (PWS) lesions with sequential laser irradiation and intermittent cryogen spray cooling.

  4. Eczematous dermatitis after vascular laser therapy: a report of two cases.

    PubMed

    Li, Guang; Zhou, Zhanchao; Gold, Michael H

    2010-04-01

    Eczematous dermatitis was found in two port wine stain (PWS) lesions in two different individuals following variable pulsed 532-nm laser therapy. Both of the individuals described in this report had received low-dose superficial X-ray several years prior to the development of the eczematous dermatitis. The eczematous dermatitis in the PWS lesions was characterized by oozing, crusting, and pruritus, which showed a tendency to expand to other sites when exacerbated. Treatment with topical corticosteroid ointments produced some temporary improvement, but the dermatitis in both cases recurred when the topical medications were stopped. The mechanism of action for the development of an eczematous dermatitis in a PWS remains unclear, but may be related to multiple factors including abnormal hemodynamic forces resulting from the malformed vessels, an abnormal production of cytokines, local pathophysiological and immunological changes resulting from either the X-ray therapy or the laser therapy, and atopic constitution inherent in these individuals. These hypotheses and ideas need further study for additional insight into this rare, but reported adverse event.

  5. Cerebral Cavernous Malformations: Somatic Mutations in Vascular Endothelial Cells

    PubMed Central

    Gault, Judith; Awad, Issam A.; Recksiek, Peter; Shenkar, Robert; Breeze, Robert; Handler, Michael; Kleinschmidt-DeMasters, Bette Kay

    2009-01-01

    OBJECTIVE Germline mutations in three genes have been found in familial cases of cerebral cavernous malformations (CCM). We previously discovered somatic and germline truncating mutations in the KRIT1 gene supporting the “two-hit” mechanism of CCM lesion formation in a single lesion. The purpose of this study was to screen for somatic, nonheritable, mutations in three more lesions from different patients and identify the cell type(s) in which somatic mutations occur. METHODS Somatic mutations were sought in DNA from three surgically excised, fresh-frozen CCM lesions by cloning and screening PCR products generated from KRIT1 or PDCD10 coding regions. Laser capture microdissection (LCM) was used to isolated endothelial and nonendothelial cells in order to determine if somatic mutations were found in endothelial cells. RESULTS A CCM lesion harbored somatic and germline KRIT1 mutations on different chromosomes and are therefore biallelic. Both mutations are predicted to truncate the protein. The KRIT1 somatic mutations (novel c.1800delG mutation and previously identified 34 nucleotide deletion) in CCMs from two different patients were only found in the vascular endothelial cells lining caverns. No obvious somatic mutations were identified in the two other lesions; however, the results were inconclusive possibly due to the technical limitations or the fact that these specimens had a small proportion of vascular endothelial cells lining pristine caverns. CONCLUSION The “two-hit” mechanism occurs in vascular endothelial cells lining CCM caverns from two patients with somatic and Hispanic-American KRIT1 germline mutations. Methods for somatic mutation detection should focus on vascular endothelial cells lining pristine caverns. PMID:19574835

  6. Vascularity of gastrointestinal staple lines demonstrated with silicone rubber injection.

    PubMed

    Smith, C R; Cokelet, G R; Adams, J T; Schwartz, S I

    1981-11-01

    Gastrointestinal stapling devices were applied across canine small intestine, and then the blood supply of the stapled segments was immediately filled with silicone rubber. After tissue clearing and microdissection, the outstanding vascularity of the staple lines was clearly demonstrated. The B configuration of the closed staple allows blood vessels of substantial size to pass through it. This might make staple technique especially advantageous whenever vascularity is critical.

  7. Laser Doppler line scanner for monitoring skin perfusion changes of port wine stains during vascular-targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Chen, Defu; Ren, Jie; Wang, Ying; Gu, Ying

    2014-11-01

    Vascular-targeted photodynamic therapy (V-PDT) is known to be an effective therapeutic modality for the treatment of port wine stains (PWS). Monitoring the PWS microvascular response to the V-PDT is crucial for improving the effectiveness of PWS treatment. The objective of this study was to use laser Doppler technique to directly assess the skin perfusion in PWS before and during V-PDT. In this study, 30 patients with PWS were treated with V-PDT. A commercially laser Doppler line scanner (LDLS) was used to record the skin perfusion of PWS immediately before; and at 1, 3, 5, 7, 10, 15 and 20 minutes during V-PDT treatment. Our results showed that there was substantial inter- and intra-patient perfusion heterogeneity in PWS lesion. Before V-PDT, the comparison of skin perfusion in PWS and contralateral healthy control normal skin indicated that PWS skin perfusion could be larger than, or occasionally equivalent to, that of control normal skin. During V-PDT, the skin perfusion in PWS significantly increased after the initiation of V-PDT treatment, then reached a peak within 10 minutes, followed by a slowly decrease to a relatively lower level. Furthermore, the time for reaching peak and the subsequent magnitude of decrease in skin perfusion varied with different patients, as well as different PWS lesion locations. In conclusion, the LDLS system is capable of assessing skin perfusion changes in PWS during V-PDT, and has potential for elucidating the mechanisms of PWS microvascular response to V-PDT.

  8. Role of Vascular Endothelial Growth Factor in the Breakdown of the Blood-Aqueous Barrier After Retinal Laser Photocoagulation in Pigmented Rabbits

    PubMed Central

    Chen, Muh-Shy; Chang, Ching-Chung; Lin, Chang-Ping; Wang, Peng-Chen; Lin, Li-Rong; Hou, Ping-Kang

    2012-01-01

    Abstract Purpose Retinal laser photocoagulation is used to treat a variety of retinal diseases. Breakdown of the blood-aqueous barrier has been noted after retinal laser photocoagulation. The effect of vascular endothelial growth factor (VEGF) on the function of the blood-aqueous barrier after retinal laser photocoagulation remains undetermined. The current study was designed to evaluate the relationship between intraocular levels of VEGF and breakdown of the blood-aqueous barrier after retinal laser photocoagulation in rabbits. Methods Pigmented rabbits were treated with retinal laser photocoagulation in one eye; the other served as control. Laser flare photometry was carried out on post-treatment days 1, 3, 7, and 14. Animals were sacrificed at the time period just mentioned postlaser, the eyes were removed, and samples of vitreous and aqueous humor were collected. Intraocular VEGF levels were measured by using an immunoassay. An intravitreal injection of VEGF was administered, and the aqueous flare intensity and VEGF levels in the aqueous and vitreous humor were measured at the time periods just mentioned. Results A significant increase in the aqueous flare intensity after retinal laser photocoagulation was noticed on postoperative day 1, with the values returning to baseline levels on day 14. The VEGF levels in the vitreous of the lasered eyes were significantly increased on day 1 compared with the nonlasered control eyes. The VEGF levels in the aqueous humor of the lasered eyes were also significantly increased on day 1 compared with the control eyes. An intravitreal injection of VEGF induced a significant increase in the aqueous flare intensity and VEGF levels in the aqueous and vitreous humor. Conclusions The current results suggested that retinal laser photocoagulation can produce a breakdown of the blood-aqueous barrier. VEGF may play a role in the blood-aqueous barrier dysfunction after retinal laser photocoagulation. PMID:22011077

  9. Endocrine organs and laser scanning confocal microscopy (LSCM) imaging: vascular bed in human spleen.

    PubMed

    Galfiova, P; Pospisilova, V; Varga, I; Sikuta, J; Kiss, A; Majesky, I; Jakubovsky, J; Polak, S

    2010-10-01

    This work was aimed to utilize the precise method of laser confocal microscopy (LSCM) to depict the image of spatial relationships of the vessel network in the tissue structures of the human spleen. With the use of serial paraffin or vibratome sections of more than 20 μm thickness infiltrated with eosin fluorescence dye the images of arterial and venous walls of different calibres, capillaries, and venous sinuses were morphologically revealed. Venous sinuses were frequently found to create mutually communicating branches and their lining projected into the lumen protruding cells with distinct spherically or ovally shaped nuclei, positioned on the brightly fluorescent and fragmented lamina basalis. The presence of lymphocytes was distinct in periarteriolar lymphoid sheath (PALS) and lymphatic follicles. Lining cells of the red pulp veins sporadically contained marked eosinophilic granules. The method of LSCM allowed: 1. to reveal two-dimensional and sharp image of the human spleen structures, 2. to investigate the vertical course of venous structures in the tissue, 3. to obtain serial optic sections in z axis to their maximum spatial projections. These data will also serve for the creation of three-dimensional images of vessel network in the human spleen in the future studies.

  10. Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound

    PubMed Central

    Höfling, Danilo Bianchini; Chavantes, Maria Cristina; Juliano, Adriana G.; Cerri, Giovanni G.; Knobel, Meyer; Yoshimura, Elisabeth M.; Chammas, Maria Cristina

    2012-01-01

    Background. Chronic autoimmune thyroiditis (CAT) frequently alters thyroid vascularization, likely as a result of the autoimmune process. Objective. To evaluate the effects of low-level laser therapy (LLLT) on the thyroid vascularization of patients with hypothyroidism induced by CAT using color Doppler ultrasound parameters. Methods. In this randomized clinical trial, 43 patients who underwent levothyroxine replacement for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (L group, n = 23) or 10 sessions of a placebo treatment (P group, n = 20). Color Doppler ultrasounds were performed before and 30 days after interventions. To verify the vascularity of the thyroid parenchyma, power Doppler was performed. The systolic peak velocity (SPV) and resistance index (RI) in the superior (STA) and inferior thyroid arteries (ITAs) were measured by pulsed Doppler. Results. The frequency of normal vascularization of the thyroid lobes observed in the postintervention power Doppler examination was significantly higher in the L than in the P group (P = 0.023). The pulsed Doppler examination revealed an increase in the SPV of the ITA in the L group compared with the P group (P = 0.016). No significant differences in the SPV of the STA and in the RI were found between the groups. Conclusion. These results suggest that LLLT can ameliorate thyroid parenchyma vascularization and increase the SPV of the ITA of patients with hypothyroidism caused by CAT. PMID:23316383

  11. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte.

    PubMed

    Sonne, Si Brask; Almstrup, Kristian; Dalgaard, Marlene; Juncker, Agnieszka Sierakowska; Edsgard, Daniel; Ruban, Ludmila; Harrison, Neil J; Schwager, Christian; Abdollahi, Amir; Huber, Peter E; Brunak, Søren; Gjerdrum, Lise Mette; Moore, Harry D; Andrews, Peter W; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2009-06-15

    Testicular germ cell cancers in young adult men derive from a precursor lesion called carcinoma in situ (CIS) of the testis. CIS cells were suggested to arise from primordial germ cells or gonocytes. However, direct studies on purified samples of CIS cells are lacking. To overcome this problem, we performed laser microdissection of CIS cells. Highly enriched cell populations were obtained and subjected to gene expression analysis. The expression profile of CIS cells was compared with microdissected gonocytes, oogonia, and cultured embryonic stem cells with and without genomic aberrations. Three samples of each tissue type were used for the analyses. Unique expression patterns for these developmentally very related cell types revealed that CIS cells were very similar to gonocytes because only five genes distinguished these two cell types. We did not find indications that CIS was derived from a meiotic cell, and the similarity to embryonic stem cells was modest compared with gonocytes. Thus, we provide new evidence that the molecular phenotype of CIS cells is similar to that of gonocytes. Our data are in line with the idea that CIS cells may be gonocytes that survived in the postnatal testis. We speculate that disturbed development of somatic cells in the fetal testis may play a role in allowing undifferentiated cells to survive in the postnatal testes. The further development of CIS into invasive germ cell tumors may depend on signals from their postpubertal niche of somatic cells, including hormones and growth factors from Leydig and Sertoli cells.

  12. Visualization of in vivo thromboprophylactic and thrombolytic efficacy of enoxaparin in laser-induced vascular endothelial injury model using multiphoton microscopy

    PubMed Central

    Tanaka, Koji; Koike, Yuhki; Matsushita, Kohei; Okigami, Masato; Toiyama, Yuji; Kawamura, Mikio; Saigusa, Susumu; Okugawa, Yoshinaga; Inoue, Yasuhiro; Uchida, Keiichi; Araki, Toshimitsu; Mohri, Yasuhiko; Mizoguchi, Akira; Kusunoki, Masato

    2015-01-01

    Enoxaparin is used postoperatively for the prevention of venous thromboembolism. In vitro studies and clinical trials have demonstrated the anticoagulant and antithrombotic efficacy of enoxaparin. In this study, we visualised thromboprophylactic and thrombolytic efficacy of enoxaparin in a laser-induced thrombus formation model in vivo using two-photon laser-scanning microscopy (TPLSM). Thrombus was induced by the selective irradiation of vascular endothelium in arterioles of the cecum of green fluorescent protein transgenic mice. The thromboprophylactic and thrombolytic efficacy of enoxaparin was visualised in vivo real-time using TPLSM. Platelet adhesion, aggregation, and platelet-dependent thrombus formation were observed in the laser-induced thrombus formation model with reproducibility. Laser-induced thrombus formation was significantly inhibited by enoxaparin pretreatment as the thromboprophylactic agent, as compared with control. The mean thrombus volumes were 652 microcubic meters in mice pretreated with enoxaparin and 8906 microcubic meter in control mice. Enoxaparin reduced the volume of laser-induced thrombus when using it as a thrombolytic agent. The mean rate of reduction was 59 percent. In a lipopolysaccharide-induced sepsis model, thromboprophylactic efficacy of enoxaparin was also observed in vivo in real-time. In vivo thromboprophylactic and thrombolytic efficacy of enoxaparin can be visualised at the single platelet level in the laser-induced endothelium injury model using TPLSM. PMID:25755830

  13. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  14. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  15. A Smart Haptic Hand-Held Device for Neurosurgical Microdissection.

    PubMed

    Payne, Christopher J; Marcus, Hani J; Yang, Guang-Zhong

    2015-09-01

    Microneurosurgery requires dexterity, precision and delicate force application in order to be carried out safely and effectively. Neurosurgeons must apply sufficient force in order to carry out microsurgical procedures effectively but not excessive force such that iatrogenic injury occurs. This paper presents a smart hand-held microsurgical instrument that indicates to the surgeon when a force-threshold has been exceeded by providing vibrotactile feedback. Many existing haptic-feedback systems, particularly master-slave robotic platforms, are large, highly complex, and costly. By comparison, the proposed device is compact, fail-safe and low cost. Two psychophysical user studies were carried out to assess the proposed vibrotactile force-threshold feedback system. A cadaveric pilot study was carried out to evaluate the device in a microdissection task. In all the studies performed, the haptic dissector device has shown to be effective in providing real-time feedback in terms of force application during microsurgical tasks.

  16. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    PubMed

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling

    PubMed Central

    Xiang, Charlie C.; Mezey, Eva; Chen, Mei; Key, Sharon; Ma, Li; Brownstein, Michael J.

    2004-01-01

    Mammalian organs are typically comprised of several cell populations. Some (e.g. brain) are very heterogeneous, and this cellular complexity makes it difficult, if not impossible, to interpret expression profiles obtained with microarrays. Instruments, such as those manufactured by Leica or Arcturus, that permit laser capture microdissection of specific cells or cell groups from tissues were developed to solve this problem. To take full advantage of these instruments, however, one must be able to recognize cell populations of interest and, after they are harvested, to extract intact, unmodified RNA from them. Here we describe a novel, fast and simple method to fix and immunostain tissue sections that permits this to be done. PMID:15604454

  18. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion.

    PubMed

    Szymanska, J; Goralczyk, K; Klawe, J J; Lukowicz, M; Michalska, M; Goralczyk, B; Zalewski, P; Newton, J L; Gryko, L; Zajac, A; Rosc, D

    2013-06-01

    The healing process and the angiogenesis associated with it, is a very important but currently poorly understood area. Low level laser therapy (LLLT) has been reported to modulate the process of tissue repair by stimulation of cellular reaction such as migration, proliferation, apoptosis and cellular differentiation. The aim of this work was to evaluate the influence of laser radiation in the range of visible and infrared light on the proliferation of vascular endothelial cells in vitro and the secretion of angiogenic factors: vascular endothelial growth factor (VEGF)-A and transforming growth factor (TGF)-β. Vascular human endothelial cells (Ecs) were exposed to radiation with laser beam of the wavelengths: 635 nm (1.875 mW/cm²) and 830 nm (3.75 mW/cm²). Depending on the radiation energy density, the experiment was conducted in four groups : I) the control group (no radiation, 0 J/cm²); II) 635 nm - the energy density was 2 J/cm²; III) 635 nm - 4 J/cm²; IV635 nm - 8 J/cm², II) 830 nm - the energy density was 2 J/cm²; III) 830 nm - 4 J/cm²; IV) 830 nm - 8 J/cm². The proliferation and concentration of VEGF-A and TGF-β were examined. LLLT with wavelength 635 nm increases endothelial cell proliferation. Significant increase in endothelial cell proliferation and corresponding decrease in VEGF concentration may suggest the role for VEGF in this process. The wavelength of 830 nm was associated with a decrease in TGF-β secretion.

  19. Vascular Cures

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  20. Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments.

    PubMed Central

    Terada, Y; Tomita, K; Nonoguchi, H; Marumo, F

    1992-01-01

    Stimulation of the release of nitric oxide (NO) in the kidney has been shown to result in renal hemodynamic changes and natriuresis. NO is a potent stimulator of soluble guanylate cyclase, leading to an increase of cyclic GMP. The precise localization of NO synthase and soluble guanylate cyclase in the renal structure is not known. In this study, the microlocalization of mRNAs coding for constitutive NO synthase and soluble guanylate cyclase was carried out in the rat kidney, using an assay of reverse transcription and polymerase chain reaction in individual microdissected renal tubule segments along the nephron, glomeruli, vasa recta bundle, and arcuate arteries. A large signal for constitutive NO synthase was detected in inner medullary collecting duct. Small signals were detected in inner medullary thin limb, cortical collecting duct, outer medullary collecting duct, glomerulus, vasa recta, and arcuate artery. Soluble guanylate cyclase mRNA is expressed largely in glomerulus, proximal convoluted tubule, proximal straight tubule, and cortical collecting duct, and in small amounts in medullary thick ascending limb, inner medullary thin limb, outer medullary collecting duct, inner medullary collecting duct, and the vascular system. Our data demonstrate that NO can be produced locally in the kidney, and that soluble guanylate cyclase is widely distributed in glomerulus, renal tubules, and the vascular system. Images PMID:1379616

  1. High-Throughput Microdissection for Next-Generation Sequencing

    PubMed Central

    Rosenberg, Avi Z.; Armani, Michael D.; Fetsch, Patricia A.; Xi, Liqiang; Pham, Tina Thu; Raffeld, Mark; Chen, Yun; O’Flaherty, Neil; Stussman, Rebecca; Blackler, Adele R.; Du, Qiang; Hanson, Jeffrey C.; Roth, Mark J.; Filie, Armando C.; Roh, Michael H.; Emmert-Buck, Michael R.; Hipp, Jason D.; Tangrea, Michael A.

    2016-01-01

    Precision medicine promises to enhance patient treatment through the use of emerging molecular technologies, including genomics, transcriptomics, and proteomics. However, current tools in surgical pathology lack the capability to efficiently isolate specific cell populations in complex tissues/tumors, which can confound molecular results. Expression microdissection (xMD) is an immuno-based cell/subcellular isolation tool that procures targets of interest from a cytological or histological specimen. In this study, we demonstrate the accuracy and precision of xMD by rapidly isolating immunostained targets, including cytokeratin AE1/AE3, p53, and estrogen receptor (ER) positive cells and nuclei from tissue sections. Other targets procured included green fluorescent protein (GFP) expressing fibroblasts, in situ hybridization positive Epstein-Barr virus nuclei, and silver stained fungi. In order to assess the effect on molecular data, xMD was utilized to isolate specific targets from a mixed population of cells where the targets constituted only 5% of the sample. Target enrichment from this admixed cell population prior to next-generation sequencing (NGS) produced a minimum 13-fold increase in mutation allele frequency detection. These data suggest a role for xMD in a wide range of molecular pathology studies, as well as in the clinical workflow for samples where tumor cell enrichment is needed, or for those with a relative paucity of target cells. PMID:26999048

  2. Predictive factors of successful microdissection testicular sperm extraction.

    PubMed

    Bernie, Aaron M; Ramasamy, Ranjith; Schlegel, Peter N

    2013-01-01

    Azoospermia in men requires microsurgical reconstruction or a procedure for sperm retrieval with assisted reproduction to allow fertility. While the chance of successful retrieval of sperm in men with obstructive azoospermia approaches >90%, the chances of sperm retrieval in men with non-obstructive azoospermia (NOA) are not as high. Conventional procedures such as fine needle aspiration of the testis, testicular biopsy and testicular sperm extraction are successful in 20-45% of men with NOA. With microdissection testicular sperm extraction (micro-TESE), the chance of successful retrieval can be up to 60%. Despite this increased success, the ability to counsel patients preoperatively on their probability of successful sperm retrieval has remained challenging. A combination of variables such as age, serum FSH and inhibin B levels, testicular size, genetic analysis, history of Klinefelter syndrome, history of cryptorchidism or varicocele and histopathology on diagnostic biopsy have provided some insight into the chance of successful sperm retrieval in men with NOA. The goal of this review was to evaluate the preoperative factors that are currently available to predict the outcome for success with micro-TESE.

  3. Determination of relative Notch1 and gamma-secretase-related gene expression in puromycin-treated microdissected rat kidneys.

    PubMed

    Simic, Damir; Simutis, Frank; Euler, Catherine; Thurby, Christina; Peden, W Mike; Bunch, R Todd; Pilcher, Gary; Sanderson, Thomas; Van Vleet, Terry

    2013-01-01

    Notch signaling pathways are involved in the regulation of cell differentiation and are highly conserved across species. Notch ligand binding leads to gamma-secretase-mediated proteolytic cleavage of the Notch receptor releasing the Notch intracellular domain, resulting in its subsequent translocation into the nucleus and gene expression regulation. To investigate the level of expression of Notch signaling pathway components in microanatomic regions following renal injury, kidneys from untreated, vehicle control, and puromycin aminonucleoside (PA, 150 mg/kg)-treated rats were evaluated. Frozen tissue sections from rats were microdissected using laser capture microdissection (LCM) to obtain glomeruli, cortical (proximal) tubules, and collecting ducts, and relative gene expression levels of Presenilin1, Notch1 and Hes1 were determined. In untreated rats, the Notch1 expression in glomeruli was higher than in the proximal tubules and similar to that in collecting ducts, whereas Presenilin1 and Hes1 expressions were highest in the collecting ducts, followed by cortical tubules and glomeruli. Following PA-induced renal injury, Hes1 gene expression increased significantly in the glomeruli and tubules compared to the collecting ducts where no injury was observed microscopically. Although these data present some evidence of change in Notch signaling related to injury, the expression of Presenilin1, Notch1, and Hes1 in the microanatomic regions of the kidney following PA treatment were not significantly different when compared to controls. These results demonstrate that there are differences in Notch-related gene expression in the different microanatomic regions of the kidneys in rats and suggest a minimal role for Notch in renal injury induced by PA. In addition, this work shows that LCM coupled with the RT-PCR can be used to determine the relative differences in target gene expression within regions of a complex organ.

  4. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.

    PubMed

    Stany, Michael P; Vathipadiekal, Vinod; Ozbun, Laurent; Stone, Rebecca L; Mok, Samuel C; Xue, Hui; Kagami, Takashi; Wang, Yuwei; McAlpine, Jessica N; Bowtell, David; Gout, Peter W; Miller, Dianne M; Gilks, C Blake; Huntsman, David G; Ellard, Susan L; Wang, Yu-Zhuo; Vivas-Mejia, Pablo; Lopez-Berestein, Gabriel; Sood, Anil K; Birrer, Michael J

    2011-01-01

    Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib) compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.

  5. Spatial gene expression analysis in tomato hypocotyls suggests cysteine as key precursor of vascular sulfur accumulation implicated in Verticillium dahliae defense.

    PubMed

    Klug, Katharina; Hogekamp, Claudia; Specht, André; Myint, San Shwe; Blöink, Dominik; Küster, Helge; Horst, Walter J

    2015-02-01

    Verticillium dahliae is a prominent generator of plant vascular wilting disease and sulfur (S)-enhanced defense (SED) mechanisms contribute to its in-planta elimination. The accumulation of S-containing defense compounds (SDCs) including elemental S (S(0) ) has been described based on the comparison of two near-isogenic tomato (Solanum lycopersicum) lines differing in fungal susceptibility. To better understand the effect of S nutrition on V. dahliae resistance both lines were supplied with low, optimal or supraoptimal sulfate-S. An absolute quantification demonstrated a most effective fungal elimination due to luxury plant S nutrition. High-pressure liquid chromatography (HPLC) showed a strong regulation of Cys levels and an S-responsive GSH pool rise in the bulk hypocotyl. High-frequency S peak accumulations were detected in vascular bundles of resistant tomato plants after fungal colonization by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Global transcriptomic analysis suggested that early steps of the primary S metabolism did not promote the SDCs synthesis in the whole hypocotyl as gene expression was downregulated after infection. Enhanced S fertilization mostly alleviated the repressive fungal effect but did not reverse it. Upregulation of glutathione (GSH)-associated genes in bulk hypocotyls but not in vascular bundles indicated a global antioxidative role of GSH. To finally assign the contribution of S metabolism-associated genes to high S(0) accumulations exclusively found in the resistant tomato line, a spatial gene expression approach was applied. Laser microdissection of infected vascular bundles revealed a switch toward transcription of genes connected with cysteine (Cys) synthesis. The upregulation of LeOASTLp1 suggests a role for Cys as key precursor for local S accumulations (possibly S(0) ) in the vascular bundles of the V. dahliae-resistant tomato line. © 2014 Scandinavian Plant Physiology Society.

  6. The alternative complement pathway aids in vascular regression during the early stages of a murine model of proliferative retinopathy

    PubMed Central

    Kim, Clifford; Smith, Kaylee E.; Castillejos, Alexandra; Diaz-Aguilar, Daniel; Saint-Geniez, Magali; Connor, Kip M.

    2016-01-01

    Proliferative retinopathic diseases often progress in 2 phases: initial regression of retinal vasculature (phase 1) followed by subsequent neovascularization (NV) (phase 2). The immune system has been shown to aid in vascular pruning in such retinopathies; however, little is known about the role of the alternative complement pathway in the initial vascular regression phase. Using a mouse model of oxygen-induced retinopathy (OIR), we observed that alternative complement pathway–deficient mice (Fb−/−) exhibited a mild decrease in vascular loss at postnatal day (P)8 compared with age- and strain-matched controls (P = 0.035). Laser capture microdissection was used to isolate the retinal blood vessels. Expression of the complement inhibitors Cd55 and Cd59 was significantly decreased in blood vessels isolated from hyperoxic retinas compared with those from normoxic control mice. Vegf expression was measured at P8 and found to be significantly lower in OIR mice than in normoxic control mice (P = 0.0048). Further examination of specific Vegf isoform expression revealed a significant decrease in Vegf120 (P = 0.00032) and Vegf188 (P = 0.0092). In conjunction with the major modulating effects of Vegf during early retinal vascular development, our data suggest a modest involvement of the alternative complement pathway in targeting vessels for regression in the initial vaso-obliteration stage of OIR.—Kim, C., Smith, K. E., Castillejos, A., Diaz-Aguilar, D., Saint-Geniez, M., Connor, K. M. The alternative complement pathway aids in vascular regression during the early stages of a murine model of proliferative retinopathy. PMID:26631482

  7. A New Method for Histological Microdissection Utilizing an Ultrasonically Oscillating Needle

    PubMed Central

    Harsch, Michael; Bendrat, Klaus; Hofmeier, Gerhard; Branscheid, Detlef; Niendorf, Axel

    2001-01-01

    Molecular analysis of microdissected tissue samples is used for analyzing tissue heterogeneity of histological specimens. We have developed a rapid one-step microdissection technique, which was applied for the selective procurement of tissue areas down to a minimum of 10 cell profiles. The special features of our microdissection system consist of an ultrasonically oscillating needle and a piezo-driven micropipette. The validity of this technique is demonstrated in human lung large-cell carcinoma by real-time quantitative reverse transcriptase-polymerase chain reaction assays of vimentin, cyclin D1, and carcinoembryonic antigen after linear RNA amplification. mRNA expression values of microdissected samples scattered around those of bulk tumor tissue and showed differential mRNA expression between samples of tumor parenchyma and supportive stromal cells for vimentin and carcinoembryonic antigen as confirmed by immunohistochemistry. In conclusion, this procedure requires simple equipment, is easily performed, and delivers microdissected tissue samples of oligocellular clusters suitable for further molecular analysis. PMID:11395375

  8. Rapid generation of whole chromosome painting probes (WCPs) by chromosome microdissection

    SciTech Connect

    Guan, X.Y.; Meltzer, P.S.; Trent, J.M.

    1994-07-01

    A strategy for rapid construction of whole chromosome painting probes (WCPs) by chromosome microdissection has recently been developed. WCPs were prepared from 20 copies of each target chromosome microdissected from normal human metaphase chromosomes and then directly amplified by PCR using a universal primer. Fifteen WCPs, including chromosomes 1, 3, 6, 7, 9, 12, 13, 14, 15, 17, 19, 20, 21, 22, and X, have been generated using this strategy. The probe complexity and hybridization specificity of these WCPs have been characterized by gel electrophoresis and fluorescence in situ hybridization. Analysis of WCPs constructed by chromosome microdissection indicated that microdissected WCPs invariably provide strong and uniform signal intensity with no cytologically apparent cross-hybridization. To demonstrate the application of WCPs generated from microdissection, the authors have used these probes to detect complex chromosome rearrangements in a melanoma cell line, UM93-007. Two different translocations involving three chromosomes [t(1;3;13) and t(1;7;13)] have been identified, both of which were undetectable by conventional banding analysis. Further application of these WCPs (including generation of WCPs from mouse and other species) should greatly facilitate the cytogenetic analysis of complex chromosome rearrangements. 35 refs., 4 figs.

  9. Efficiency of EGFR mutation analysis for small microdissected cytological specimens using multitech DNA extraction solution.

    PubMed

    Oh, Seo Young; Lee, Hoon Taek

    2015-07-01

    The microdissection method has greatly facilitated the isolation of pure cell populations for accurate analysis of mutations. However, the absence of coverslips in these preparations leads to poor resolution of cellular morphological features. In the current study, the authors developed the MultiTech DNA extraction solution to improve the visualization of cell morphology for microdissection and tested it for the preservation of morphological properties of cells, quality of DNA, and ability to detect mutations. A total of 121 cytological samples, including fine-needle aspirates, sputum, pleural fluid, and bronchial washings, were selected from hospital archives. DNA extracted from microdissected cells was evaluated by epidermal growth factor receptor (EGFR) mutation analysis using pyrosequencing, Sanger sequencing, and peptide nucleic acid (PNA)-mediated real-time polymerase chain reaction clamping. Morphological features of cells as well as DNA quality and quantity were analyzed in several cytological samples to assess the performance of the MultiTech DNA extraction solution. The results were compared with previous EGFR mutation tests. The MultiTech DNA extraction solution improved the morphology of archived stained cells before microdissection and provided a higher DNA yield than the commercial QIAamp DNA Mini Kit in samples containing a minimal number of cells (25-50 cells). The authors were able to detect identical EGFR mutations by using different analysis platforms and consistently identified these mutations in samples comprising as few as 25 microdissected cells. The MultiTech DNA extraction solution is a reliable medium that improves the resolution of cell morphology during microdissection. It was particularly useful in EGFR mutations of samples containing a small number of cells. © 2015 American Cancer Society.

  10. Salvage hormonal therapy after failed microdissection testicular sperm extraction: A multi-institutional prospective study.

    PubMed

    Shiraishi, Koji; Ishikawa, Tomomoto; Watanabe, Noriko; Iwamoto, Teruaki; Matsuyama, Hideyasu

    2016-06-01

    To validate the efficacy of salvage hormonal therapy in men with non-obstructive azoospermia at their second microdissection testicular sperm extraction. This was a multi-institutional study registered at the Japanese University Hospital Medical Information Network clinical trial center. After 1 month of human chorionic gonadotropin therapy (5000 IU, three times a week), patients were treated with recombinant human follicle-stimulating hormone (150 IU, three times a week) and human chorionic gonadotropin for the next 3 months. Three testicular samples were obtained randomly from both testes, and sent for pathological diagnosis at the first and second microdissection testicular sperm extraction. A total of 21 men, excluding those with chromosomal abnormalities, azoospermia factor a or b deletions, extremely small testes (<2 mL), or prior hormonal therapy, were eligible to participate based on our inclusion criteria. At the first microdissection testicular sperm extraction, 13 and six patients had Sertoli cells only and an early maturation arrest, respectively. With the second microdissection testicular sperm extraction, sperm were successfully obtained from two patients (10%). Patient age, testicular volume and hormone profiles were not associated with the results of the second microdissection testicular sperm extraction. However, the testicular histology of the two successful patients were late maturation arrest and hypospermatogenesis. Effectiveness of human chorionic gonadotropin-based salvage hormonal therapy preceding a second microdissection testicular sperm extraction seems to be limited. Non-obstructive azoospermia men who have differentiated cells in their testes are likely to respond to hormonal stimulation. © 2016 The Japanese Urological Association.

  11. Microdissection of black widow spider silk-producing glands.

    PubMed

    Jeffery, Felicia; La Mattina, Coby; Tuton-Blasingame, Tiffany; Hsia, Yang; Gnesa, Eric; Zhao, Liang; Franz, Andreas; Vierra, Craig

    2011-01-11

    case threads] and pyriform [produces attachment disc silk]. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.

  12. Multiple laser pulses in conjunction with an optical clearing agent to improve the curative effect of cutaneous vascular lesions.

    PubMed

    Ma, Jun; Chen, Bin; Zhang, Yue; Li, Dong; Xing, Zhuang Lin

    2017-08-01

    Port-wine stains (PWSs) usually respond poorly to pulsed dye laser treatment because of the shallow penetration and light absorption of melanin in the epidermis. Multiple laser pulses (MLPs) Nd:YAG laser in conjunction with an optical clearing agent can help to reduce the total laser energy required for blood coagulation. The quantitative optical clearing effect (OCE) of glycerol was investigated by using a tissue-like phantom. Thereafter, an in vitro capillary tube experimental system and an in vivo hamster dorsal skin chamber experiment for the laser treatment of PWSs were established to visually obtain the quantitative relationship between the OCE and the blood coagulation properties under the irradiation of 1064 nm MLPs. Diffuse reflection coefficient decreases by 36.69% and transmission coefficient increases by 38.73% at 1064 nm, after applying 0.5 mL anhydrous glycerol for 10 min on the surface of the tissue-like phantom. The number of laser pulses required for blood coagulation decreases by 25% after the application of 0.5 mL anhydrous glycerol for 4 min, thrombosis appears after 10 min, and the 0.0854 clotting area completely blocks the capillary tubes in 6 pulses. For 10 min, the incident energy can be reduced by 35.09 and 29.82%. When the 0.3-mm vessel's buried depths are 1 and 0.5 mm, the pulse number can be reduced from 11 to 8 and from 6 to 4, respectively. Adding anhydrous glycerol directly on the hamster dorsal skin is an effective way to reduce the number of laser pulses from 4∼5 to 2∼3 for similar capillary tube diameter. Therefore, the MLPs of 1064 nm Nd:YAG demonstrates a substantial curative effect for large capillary tubes. In conjunction with glycerol, this approach may treat deeply buried cutaneous capillary tubes and prevent the unwanted thermal damage of normal dermal tissue.

  13. Retrospective analysis of the treatment of melasma lesions exhibiting increased vascularity with the 595-nm pulsed dye laser combined with the 1927-nm fractional low-powered diode laser.

    PubMed

    Geddes, Elizabeth R C; Stout, Ashlyn B; Friedman, Paul M

    2017-01-01

    Melasma presents a significant challenge to laser surgeons. Aggressive treatments often result in rebound melasma or post-inflammatory pigmentary alteration. Recent reports suggest melasma pathogenesis may have a vascular component. Spectrocolorimetry can detect subtle or sub-clinical telangiectatic erythema within melasma lesions. For certain patients identified by spectrocolorimetry, effective melasma treatment may include vascular-targeted therapy together with pigment-specific treatment modalities. Such combined therapies may reduce the likelihood of melasma recurrence. To evaluate the efficacy of treating melasma lesions exhibiting subtle or sub-clinical telangiectatic erythema with the 595-nm pulsed dye laser (PDL) combined with the 1927-nm fractional low-powered diode laser (FDL). A retrospective review was performed over a 2-year period as follows. Evaluated patients (n = 11) include 10 women and 1 man, average age of 38.7 years, and Fitzpatrick skin types II-IV. Each patient exhibited melasma lesions with subtle or sub-clinical telangiectatic erythema identified by spectrocolorimetry. Each underwent a series of treatments (average of four) at approximate 4-6 week intervals of the PDL followed by the FDL. Treatments were performed same-day, sequentially, with 10-15 minute interim time allowance for skin cooling. The following PDL parameters were utilized: 10 mm spot, 10-20 ms pulse duration, 7.5-8.5 J/cm(2) fluence, 30/30 DCD. Eight passes with the FDL (Clear + Brilliant(®) Permea™, Solta Medical, Hayward, CA) were then performed utilizing a "low" treatment level. Clinical endpoint was mild erythema and edema. Patients were encouraged to practice strict photoprotection and apply topical skin lightening agents, but compliance was not measured. An independent physician evaluated photographs taken at baseline and at follow-up after last treatment session (average follow-up of 96 days). A quartile improvement score was used to grade the

  14. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    SciTech Connect

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  15. beta-Catenin regulates vascular endothelial growth factor expression in colon cancer.

    PubMed

    Easwaran, Vijay; Lee, Sang H; Inge, Landon; Guo, Lida; Goldbeck, Cheryl; Garrett, Evelyn; Wiesmann, Marion; Garcia, Pablo D; Fuller, John H; Chan, Vivien; Randazzo, Filippo; Gundel, Robert; Warren, Robert S; Escobedo, Jaime; Aukerman, Sharon L; Taylor, Robert N; Fantl, Wendy J

    2003-06-15

    To evaluate whether beta-catenin signaling has a role in the regulation of angiogenesis in colon cancer, a series of angiogenesis-related gene promoters was analyzed for beta-catenin/TCF binding sites. Strikingly, the gene promoter of human vascular endothelial growth factor (VEGF, or VEGF-A) contains seven consensus binding sites for beta-catenin/TCF. Analysis of laser capture microdissected human colon cancer tissue indicated a direct correlation between up-regulation of VEGF-A expression and adenomatous polyposis coli (APC) mutational status (activation of beta-catenin signaling) in primary tumors. In metastases, this correlation was not observed. Analysis by immunohistochemistry of intestinal polyps in mice heterozygous for the multiple intestinal neoplasia gene (Min/+) at 5 months revealed an increase and redistribution of VEGF-A in proximity to those cells expressing nuclear beta-catenin with a corresponding increase in vessel density. Transfection of normal colon epithelial cells with activated beta-catenin up-regulated levels of VEGF-A mRNA and protein by 250-300%. When colon cancer cells with elevated beta-catenin levels were treated with beta-catenin antisense oligodeoxynucleotides, VEGF-A expression was reduced by more than 50%. Taken together, our observations indicate a close link between beta-catenin signaling and the regulation of VEGF-A expression in colon cancer.

  16. Comparative Tissue Proteomics of Microdissected Specimens Reveals Novel Candidate Biomarkers of Bladder Cancer*

    PubMed Central

    Chen, Chien-Lun; Chung, Ting; Wu, Chih-Ching; Ng, Kwai-Fong; Yu, Jau-Song; Tsai, Cheng-Han; Chang, Yu-Sun; Liang, Ying; Tsui, Ke-Hung; Chen, Yi-Ting

    2015-01-01

    More than 380,000 new cases of bladder cancer are diagnosed worldwide, accounting for ∼150,200 deaths each year. To discover potential biomarkers of bladder cancer, we employed a strategy combining laser microdissection, isobaric tags for relative and absolute quantitation labeling, and liquid chromatography-tandem MS (LC-MS/MS) analysis to profile proteomic changes in fresh-frozen bladder tumor specimens. Cellular proteins from four pairs of surgically resected primary bladder cancer tumor and adjacent nontumorous tissue were extracted for use in two batches of isobaric tags for relative and absolute quantitation experiments, which identified a total of 3220 proteins. A DAVID (database for annotation, visualization and integrated discovery) analysis of dysregulated proteins revealed that the three top-ranking biological processes were extracellular matrix organization, extracellular structure organization, and oxidation-reduction. Biological processes including response to organic substances, response to metal ions, and response to inorganic substances were highlighted by up-expressed proteins in bladder cancer. Seven differentially expressed proteins were selected as potential bladder cancer biomarkers for further verification. Immunohistochemical analyses showed significantly elevated levels of three proteins—SLC3A2, STMN1, and TAGLN2—in tumor cells compared with noncancerous bladder epithelial cells, and suggested that TAGLN2 could be a useful tumor tissue marker for diagnosis (AUC = 0.999) and evaluating lymph node metastasis in bladder cancer patients. ELISA results revealed significantly increased urinary levels of both STMN1 and TAGLN2 in bladder cancer subgroups compared with control groups. In comparisons with age-matched hernia urine specimens, urinary TAGLN2 in bladder cancer samples showed the largest fold change (7.13-fold), with an area-under-the-curve value of 0.70 (p < 0.001, n = 205). Overall, TAGLN2 showed the most significant

  17. Vascular Diseases

    MedlinePlus

    The vascular system is the body's network of blood vessels. It includes the arteries, veins and capillaries that carry ... to and from the heart. Problems of the vascular system are common and can be serious. Arteries ...

  18. Reproducibility of Cutaneous Vascular Conductance Responses to Slow Local Heating Assessed Using seven-Laser Array Probes.

    PubMed

    Dawson, Ellen A; Low, David A; Meeuwis, Iris H M; Kerstens, Floor G; Atkinson, Ceri L; Cable, Nigel Timothy; Green, Daniel J; Thijssen, Dick H J

    2015-05-01

    Gradual local heating of the skin induces a largely NO-mediated vasodilatation. However, use of this assessment of microvascular health is limited because little is known about its reproducibility. Healthy volunteers (n = 9) reported twice to the laboratory. CVC, derived from laser Doppler flux and mean arterial pressure, was examined in response to a standardized local heating protocol (0.5°C per 150 second from 33°C to 42°C, followed by 20 minutes at 44°C). Skin responses were examined at two locations on the forearm (between-site). Heating was repeated after a break of 24-72 hours (between-day). Reproducibility of skin responses at 33-42°C is presented for absolute CVC and relative CVC responses corrected for maximal CVC at 44°C (%CVCmax ). Between-day reproducibility of baseline CVC and %CVCmax for both sites was relatively poor (22-30%). At 42°C, CVC and %CVCmax responses showed less variation (9-19%), whilst absolute CVC responses at 44°C were 14-17%. Between-day variation for %CVCmax increased when using data from site 1 on day 1, but site 2 on the subsequent day (25%). Day-to-day reproducibility of baseline laser Doppler-derived skin perfusion responses is poor, but acceptable when absolute and relative skin perfusion to a local gradual heating protocol is utilized and site-to-site variation is minimized. © 2015 John Wiley & Sons Ltd.

  19. PUNCTATE VASCULAR EXPRESSION1 Is a Novel Maize Gene Required for Leaf Pattern Formation That Functions Downstream of the Trans-Acting Small Interfering RNA Pathway1[C][W][OA

    PubMed Central

    Zhang, Xiaolan; Douglas, Ryan N.; Strable, Josh; Lee, Michelle; Buckner, Brent; Janick-Buckner, Diane; Schnable, Patrick S.; Timmermans, Marja C.P.; Scanlon, Michael J.

    2012-01-01

    The maize (Zea mays) gene RAGGED SEEDLING2-R (RGD2-R) encodes an ARGONAUTE7-like protein required for the biogenesis of trans-acting small interfering RNA, which regulates the accumulation of AUXIN RESPONSE FACTOR3A transcripts in shoots. Although dorsiventral polarity is established in the narrow and cylindrical leaves of rgd2-R mutant plants, swapping of adaxial/abaxial epidermal identity occurs and suggests a model wherein RGD2 is required to coordinate dorsiventral and mediolateral patterning in maize leaves. Laser microdissection-microarray analyses of the rgd2-R mutant shoot apical meristem identified a novel gene, PUNCTATE VASCULAR EXPRESSION1 (PVE1), that is down-regulated in rgd2-R mutant apices. Transcripts of PVE1 provide an early molecular marker for vascular morphogenesis. Reverse genetic analyses suggest that PVE1 functions during vascular development and in mediolateral and dorsiventral patterning of maize leaves. Molecular genetic analyses of PVE1 and of rgd2-R;pve1-M2 double mutants suggest a model wherein PVE1 functions downstream of RGD2 in a pathway that intersects and interacts with the trans-acting small interfering RNA pathway. PMID:22669891

  20. Isolation of guard cells from fresh epidermis using a piezo-power micro-dissection system with vibration-attenuated needles.

    PubMed

    Terpitz, Ulrich; Zimmermann, Dirk

    2010-01-01

    The Eppendorf Piezo-Power Microdissection (PPMD) system uses a tungsten needle (MicroChisel) oscillating in a forward-backward (vertical) mode to cut cells from surrounding tissue. This technology competes with laser-based dissection systems, which offer high accuracy and precision, but are more expensive and require fixed tissue. In contrast, PPMD systems can dissect freshly prepared tissue, but their accuracy and precision is lower due to unwanted lateral vibrations of the MicroChisel. Especially in tissues where elasticity is high, these vibrations can limit the cutting resolution or hamper the dissection. Here we describe a cost-efficient and simple glass capillary-encapsulation modification of MicroChisels for effective attenuation of lateral vibrations. The use of modified MicroChisels enables accurate and precise tissue dissection from highly elastic material.

  1. Endovenous Laser Ablation of Varicose Veins Preserves Biological Properties of Vascular Endothelium and Modulates Proinflammatory Agent Profile More Favorably Than Classic Vein Stripping.

    PubMed

    Uruski, Paweł; Aniukiewicz, Krzysztof; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Tykarski, Andrzej; Książek, Krzysztof; Krasiński, Zbigniew

    2017-01-01

    Here we compared effect of serum from varicose patients undergoing endovenous laser ablation (EVLA) and classic vein stripping (CVS) on biological properties of endothelial cells and on the local and systemic profiles of proinflammatory agents. Results showed that serum from EVLA patients improved proliferation and reduced senescence and oxidative stress in the endothelial cells, as compared with the serum from CVS patients. These effects were related to a suppressed activity of TGF-β1, the level of which in the serum from the EVLA patients was decreased. Medium generated by the cells subjected to EVLA serum contained decreased amounts of ICAM-1, VCAM-1, and E-selectin and increased amount of uPA, whereas the serum itself contained decreased concentrations of ICAM-1, E-selectin, and P-selectin and increased concentrations of uPA, PAI-1, and TFPI. Both EVLA and CVS resulted in diversified patients' reaction with respect to a direction of postprocedure changes in proinflammatory factors' serum level. Analysis of proportions showed that the groups differed remarkably in case of ICAM-1 and ET-1, the level of which declined in a higher fraction of patients treated endovenously. Our findings indicate that EVLA preserves better than CVS the functionality of vascular endothelium and modulates better both local and systemic profile of proinflammatory mediators.

  2. Endovenous Laser Ablation of Varicose Veins Preserves Biological Properties of Vascular Endothelium and Modulates Proinflammatory Agent Profile More Favorably Than Classic Vein Stripping

    PubMed Central

    Uruski, Paweł; Aniukiewicz, Krzysztof; Mikuła-Pietrasik, Justyna; Sosińska, Patrycja; Tykarski, Andrzej; Krasiński, Zbigniew

    2017-01-01

    Here we compared effect of serum from varicose patients undergoing endovenous laser ablation (EVLA) and classic vein stripping (CVS) on biological properties of endothelial cells and on the local and systemic profiles of proinflammatory agents. Results showed that serum from EVLA patients improved proliferation and reduced senescence and oxidative stress in the endothelial cells, as compared with the serum from CVS patients. These effects were related to a suppressed activity of TGF-β1, the level of which in the serum from the EVLA patients was decreased. Medium generated by the cells subjected to EVLA serum contained decreased amounts of ICAM-1, VCAM-1, and E-selectin and increased amount of uPA, whereas the serum itself contained decreased concentrations of ICAM-1, E-selectin, and P-selectin and increased concentrations of uPA, PAI-1, and TFPI. Both EVLA and CVS resulted in diversified patients' reaction with respect to a direction of postprocedure changes in proinflammatory factors' serum level. Analysis of proportions showed that the groups differed remarkably in case of ICAM-1 and ET-1, the level of which declined in a higher fraction of patients treated endovenously. Our findings indicate that EVLA preserves better than CVS the functionality of vascular endothelium and modulates better both local and systemic profile of proinflammatory mediators. PMID:28316983

  3. [Cloning associated genes using microdissection-cDNA PCR-SSH in gastric dysplasia].

    PubMed

    Hao, Dong-mei; Sun, Xiu-ju; Zheng, Zhi-hong; He, Guang; Ma, Ming-chao; Xu, Hui-mian; Wang, Mei-xian; Sun, Kai-lai

    2003-10-01

    To construct cDNA subtracted libraries from gastric dysplasia and further screen differentially expressed genes. Relatively pure dysplasia and normal tissue were procured by manual microdissection, and amplified by cDNA-PCR, which was used to carry on for suppression subtractive hybridization (SSH). Subtracted cDNA fragments were linked with vector, cloned, screened, sequenced, and made homologous search. Differentially expressed fragments were verified by dot hybridization. Two subtracted cDNA libraries were constructed. Among 26 sequenced clones, 15 fragments corresponded to known genes, 3 fragments were known EST and 8 fragments were unknown EST (GenBank BQ164614-BQ164616, BQ291516-BQ291520). Fifteen fragments were verified to be differentially expressed in gastric dysplasia. Subtracted cDNA libraries from gastric dysplasia are constructed using combination of microdissection-cDNA PCR and SSH setup in our laboratory. Some fragments have been screened and verified to help to search for novel associated genes with gastric carcinogenesis.

  4. Mini-incision microdissection testicular sperm extraction: a useful technique for men with cryptozoospermia.

    PubMed

    Alrabeeah, K; Witmer, J; Ruiz, S; AlMalki, A; Phillips, S; Zini, A

    2016-03-01

    Microdissection testicular sperm extraction (micro-TESE) was developed to minimize the testicular injury associated with multiple open TESEs. We sought to evaluate a mini-incision micro-TESE in men with cryptozoospermia and non-obstructive azoospermia (NOA). We conducted a retrospective study of 26 consecutive men with NOA and cryptozoospermia who underwent a primary (first) micro-TESE between March 2015 and August 2015. Final assessment of sperm recovery (reported on the day of intra-cytoplasmic sperm injection (ICSI)) was recorded as (i) successful (available spermatozoa for ICSI) or (ii) unsuccessful (no spermatozoa for ICSI). The decision to perform a mini-incision micro-TESE (with limited unilateral micro-dissection) or standard/extensive (with unilateral or bilateral micro-dissection) was guided by the intra-operative identification of sperm recovery (≥5 spermatozoa) from the first testicle. Overall, sperm recovery was successful in 77% (20/26) of the men. In 37% of the men (8/26), the mini-incision micro-TESE was successful (positive sperm recovery). The remaining 18 men required a standard (extensive) microdissection: 61% (11/18) underwent a unilateral and 39% (7/18) a bilateral micro-TESE. We found that 90% (9/10) of the men with cryptozoospermia and 63% (10/16) of the men with NOA underwent a unilateral (mini or standard micro-TESE). The mini-incision micro-TESE allowed for successful sperm recovery in 60% (6/10) of the men with cryptozoospermia and 13% (2/16) of the men with NOA. The data demonstrate that a mini-incision micro-TESE together with rapid intra-operative assessment and identification of spermatozoa recovery can be useful in men undergoing microTESE, particularly, men with cryptozoospermia.

  5. Can the rapid identification of mature spermatozoa during microdissection testicular sperm extraction guide operative planning?

    PubMed

    Alrabeeah, K; Doucet, R; Boulet, E; Phillips, S; Al-Hathal, N; Bissonnette, F; Kadoch, I J; Zini, A

    2015-05-01

    The minimum sperm count and quality that must be identified during microdissection testicular sperm extraction (micro-TESE) to deem the procedure successful remains to be established. We conducted a retrospective study of 81 consecutive men with non-obstructive azoospermia who underwent a primary (first) micro-TESE between March 2007 and October 2013. Final assessment of sperm recovery [reported on the day of (intracytoplasmic sperm injection) ICSI] was recorded as (i) successful (available spermatozoa for ICSI) or (ii) unsuccessful (no spermatozoa for ICSI). The decision to perform a unilateral (with limited or complete microdissection) or bilateral micro-TESE was guided by the intra-operative identification of sperm recovery (≥5 motile or non-motile sperm) from the first testicle. Overall, sperm recovery was successful in 56% (45/81) of the men. A unilateral micro-TESE was performed in 47% (38/81) of the men (based on intra-operative identification of sperm) and in 100% (38/38) of these men, spermatozoa was found on final assessment. In 42% (16/38) of the unilateral cases, a limited microdissection was performed (owing to the rapid intra-operative identification of sperm). The remaining 43 men underwent a bilateral micro-TESE and 16% (7/43) of these men had sperm identified on final assessment. The cumulative ICSI pregnancy rates (per cycle started and per embryo transfer) were 47% (21/45) and 60% (21/35), respectively, with a mean (±SD) of 1.9 ± 1.0 embryos transferred. The data demonstrate that intra-operative assessment of sperm recovery can correctly identify those men that require a unilateral micro-TESE. Moreover, the rapid identification of sperm recovery can allow some men to undergo a limited unilateral micro-TESE and avoid the need for complete testicular microdissection.

  6. Microdissection and visualization of individual hair follicles for lineage tracing studies.

    PubMed

    Sequeira, Inês; Legué, Emilie; Capgras, Suzanne; Nicolas, Jean-François

    2014-01-01

    In vivo lineage tracing is a valuable technique to study cellular behavior. Our lab developed a lineage tracing method, based on the Cre/lox system, to genetically induce clonal labelling of cells and follow their progeny. Here we describe a protocol for temporally controlled clonal labelling and for microdissection of individual mouse hair follicles. We further present staining and visualization techniques used in our lab to analyze clones issued from genetically induced labelling.

  7. Characterization of a microdissection library from human chromosome region 3p14

    SciTech Connect

    Bardenheuer, W.; Szymanski, S.; Lux, A.; Schuette, J. ); Luedecke, H.J.; Horsthemke, B. ); Claussen, U.; Senger, G. ); Smith, D.I.; Wang, N.D. )

    1994-01-15

    Structural alterations in human chromosome region 3p14-p23 resulting in the inactivation of one or more tumor suppressor genes are thought to play a pathogenic role in small cell lung cancer, renal cell carcinoma, and other human neoplasms. To identify putative tumor suppressor genes, 428 recombinant clones from a microdissection library specific for human chromosome region 3p14 were isolated and characterized. Ninety-six of these (22.5%) were human single-copy DNA sequences, 57 of which were unique sequence clones. Forty-four of these were mapped to the microdissected region using a cell hybrid mapping panel. Within this mapping panel, four probes detected two new chromosome breakpoints that were previously indistinguishable from the translocation breakpoint t(3;8) in 3p14.2 in hereditary renal cell carcinoma. One probe maps to the homozygously deleted region of the small cell lung cancer cell line U2020. In addition, microdissection clones have been shown to be suitable for isolation of yeast artificial chromosomes. 52 refs., 3 figs., 2 tabs.

  8. Microdissection and chromosome painting of X and B chromosomes in Locusta migratoria.

    PubMed

    Teruel, María; Cabrero, Josefa; Montiel, Eugenia E; Acosta, Manuel J; Sánchez, Antonio; Camacho, Juan Pedro M

    2009-01-01

    Acquisition of knowledge of the nature and DNA content of B chromosomes has been triggered by a collection of molecular techniques, one of which, microdissection, has provided interesting results in a number of B chromosome systems. Here we provide the first data on the molecular composition of B chromosomes in Locusta migratoria, after microdissection of the B and X chromosomes, DNA amplification by one (B) or two (X) different methods, and chromosome painting. The results showed that B chromosomes share at least two types of repetitive DNA sequences with the A chromosomes, suggesting that Bs in this species most likely arose intraspecifically. One of these repetitive DNAs is located on the heterochromatic distal half of the B chromosome and in the pericentromeric regions of about half of the A chromosomes, including the X. The other type of repetitive DNA is located interspersedly over the non-centromeric euchromatic regions of all A chromosomes and in an interstitial part of the proximal euchromatic half of the B chromosome. Chromosome painting, however, did not provide results sufficiently reliable to determine, in this species, which A chromosome gave rise to the B; this might be done by detailed analysis of the microdissected DNA sequences.

  9. Cigarette smoke upregulates pulmonary vascular matrix metalloproteinases via TNF-alpha signaling.

    PubMed

    Wright, J L; Tai, H; Wang, R; Wang, X; Churg, A

    2007-01-01

    Cigarette smoke exposure causes vascular remodeling and pulmonary hypertension by poorly understood mechanisms. To ascertain whether cigarette smoke exposure affects production of matrix metalloproteinases (MMPs) in the pulmonary vessels, we exposed C57Bl/6 (C57) mice or mice lacking TNF-alpha receptors (TNFRKO) to smoke daily for 2 wk or 6 mo. Using laser capture microdissection and RT-PCR analysis, we examined gene expression of MMP-2, MMP-9, MMP-12, MMP-13, and tissue inhibitor of metalloproteinase (TIMP-1) and examined protein production by immunohistochemistry for MMP-2, MMP-9, and MMP-12 in small intrapulmonary arteries. At 2 wk, mRNA levels of TIMP-1 and all MMPs were increased in the C57, but not TNFRKO, mice, and immunoreactive protein for MMP-2, MMP-9, and MMP-12 was also increased in the C57 mice. Increased gelatinase activity was identified by in situ and bulk tissue zymography. At 6 mo, only MMP-12 mRNA levels remained increased in the C57 mice, but at a much lower level; however, MMP-2 mRNA levels increased in the TNFRKO mice. We conclude that smoke exposure increases MMP production in the small intrapulmonary arteries but that, with the exception of MMP-12, increased MMP production is transient. MMPs probably play a role in smoke-induced vascular remodeling, as they do in other forms of pulmonary hypertension, implying that MMP inhibitors might be beneficial. MMP production is largely TNF-alpha dependent, further supporting the importance of TNF-alpha in the pathogenesis of cigarette smoke-induced lung disease.

  10. What Is Vascular Disease?

    MedlinePlus

    ... Donors Corporate Sponsors Donor Privacy Policy What Is Vascular Disease? What Is Vascular Disease? Vascular disease is any abnormal condition of ... steps to prevent vascular disease here. Understanding the Vascular System Your vascular system – the highways of the ...

  11. Vascular Disorders

    MedlinePlus

    ... a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Vascular Disorders Email to a friend * required fields From * To * DESCRIPTION Vascular disorders are problems with arteries and veins. Arteries are pipes that bring oxygen-rich blood from the heart to the fingers. Veins ...

  12. LASER CAPTURE MICRODISSECTION AND GENE ARRAY ANALYSIS OF PALATAL EPITHELIAL AND MESENCHYMAL CELLS EXPOSED TO TCDD

    EPA Science Inventory

    Palatal shelves from embryos exposed on gestation day (GD) 12 to either retinoic acid (RA) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contact but fail to fuse. It is of interest to know if diverse agents that induce clefting via the same etiology also activate the same biochem...

  13. Comparative proteomic analysis of urine and laser microdissected glomeruli in IgA nephropathy.

    PubMed

    Ning, Xiaoyuan; Yin, Zhong; Li, Zuoxiang; Xu, Jiayun; Wang, Linna; Shen, Wanjun; Lu, Yang; Cai, Guangyan; Zhang, Xueguang; Chen, Xiangmei

    2017-01-21

    The purpose of the present study was to identify the differential proteins that synchronously change in urine and glomeruli and could be used to monitor glomerular lesions of IgA nephropathy (IgAN). The proteomes of urine and glomeruli from 4 IgAN patients who were graded III/IV according to the grading system of Lee et al were compared to the urine proteomes of 4 healthy volunteers and the glomeruli proteomes of adjacent normal tissue from 4 patients with renal tumors, respectively. Western blot, enzyme-linked immunosorbent assay and immunofluorescence assay were applied to verify the results of the proteomic analysis. In the proteomic analysis of urine from IgAN patients and healthy volunteers, 714 proteins were identified, with 246 proteins identified as differential proteins. In the proteomic analysis of glomeruli from renal biopsy tissue of IgAN patients and from adjacent normal tissue of patients with renal tumors, 161 proteins were identified altogether, and 20 proteins of these were recognized as differential proteins. After comparatively analyzing the differential proteins identified in the urine and glomeruli, five synchronously changed differential proteins were found: complement C9, Ig kappa chain C region and three cytoskeleton proteins. In summary, our findings indicate that certain immunological indices in urine appear to be associated with glomerular lesions of IgAN. This article is protected by copyright. All rights reserved.

  14. LASER CAPTURE MICRODISSECTION AND GENE ARRAY ANALYSIS OF PALATAL EPITHELIAL AND MESENCHYMAL CELLS EXPOSED TO TCDD

    EPA Science Inventory

    Palatal shelves from embryos exposed on gestation day (GD) 12 to either retinoic acid (RA) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contact but fail to fuse. It is of interest to know if diverse agents that induce clefting via the same etiology also activate the same biochem...

  15. Highly Selective Tumor Targeting With Phage Display and Laser Capture Microdissection

    DTIC Science & Technology

    2010-09-01

    References Golchin, M. and R. Aitken (2008). "Isolation by phage display of recombinant antibodies able to block adherence of Escherichia coli ...this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...conjugated chicken anti-rabbit antibody and blood vessels were visualized with Alex 568 conjugated goat anti-mouse secondary antibody. The slides were

  16. Gene expression analysis of the microdissected trophoblast layer of human placenta after the spontaneous onset of labor.

    PubMed

    Kim, Soo Hyun; Shim, Sung Han; Sung, Se Ra; Lee, Kyung A; Shim, Jung Yun; Cha, Dong Hyun; Lee, Kyoung Jin

    2013-01-01

    Despite increasing evidence that human parturition is associated with alteration in gene expression in the uteroplacental unit, the precise mechanisms that elicit spontaneous term labor in humans remain unknown. Our goal in this study was to compare the mRNA expression pattern of the trophoblast layer of normal term placenta between women who had given natural birth (labor group) and those who had undergone an elective cesarean section without labor (non-labor group). We collected placental tissue samples from six pregnant women after term vaginal deliveries (labor group) and from six pregnant women after scheduled Cesarean sections (non-labor group). Frozen sections were made immediately after placental delivery. Because the placenta is a heterogeneous tissue composed of several cell types, we used laser capture microdissection to separate the trophoblast layer from the rest of the placental tissues. A number of genes were differentially expressed in the trophoblast layer when the labor and non-labor groups were compared. The expression of SIRT1, KAP1, and CRH was significantly lower in the trophoblast layer of the labor group than of the non-labor group. The expression of IL-1b, NF-kB1 and TLR 8 in the labor group was significantly higher than that in the non-labor group. Human term labor may be closely associated with inflammatory response. We suggest that downregulation of SIRT1, KAP1, and CRH gene expression in the trophoblast may play a key role in parturition and initiation of labor in pregnant human females.

  17. Gene Expression Analysis of the Microdissected Trophoblast Layer of Human Placenta after the Spontaneous Onset of Labor

    PubMed Central

    Kim, Soo Hyun; Shim, Sung Han; Sung, Se Ra; Lee, Kyung A.; Shim, Jung Yun; Cha, Dong Hyun; Lee, Kyoung Jin

    2013-01-01

    Background Despite increasing evidence that human parturition is associated with alteration in gene expression in the uteroplacental unit, the precise mechanisms that elicit spontaneous term labor in humans remain unknown. Our goal in this study was to compare the mRNA expression pattern of the trophoblast layer of normal term placenta between women who had given natural birth (labor group) and those who had undergone an elective cesarean section without labor (non-labor group). Methods We collected placental tissue samples from six pregnant women after term vaginal deliveries (labor group) and from six pregnant women after scheduled Cesarean sections (non-labor group). Frozen sections were made immediately after placental delivery. Because the placenta is a heterogeneous tissue composed of several cell types, we used laser capture microdissection to separate the trophoblast layer from the rest of the placental tissues. Results A number of genes were differentially expressed in the trophoblast layer when the labor and non-labor groups were compared. The expression of SIRT1, KAP1, and CRH was significantly lower in the trophoblast layer of the labor group than of the non-labor group. The expression of IL-1b, NF-kB1 and TLR 8 in the labor group was significantly higher than that in the non-labor group. Conclusions Human term labor may be closely associated with inflammatory response. We suggest that downregulation of SIRT1, KAP1, and CRH gene expression in the trophoblast may play a key role in parturition and initiation of labor in pregnant human females. PMID:24147045

  18. Vascular rings.

    PubMed

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing.

    PubMed

    Radovich, Milan; Clare, Susan E; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A; Solzak, Jeffrey P; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V; Rufenbarger, Connie; Lillemoe, Heather A; Blosser, Rachel J; Choi, Mi Ran; Sauder, Candice A; Doxey, Diane; Henry, Jill E; Hilligoss, Eric E; Sakarya, Onur; Hyland, Fiona C; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W; Schneider, Bryan P

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.

  20. Vascular Tumors

    PubMed Central

    Sepulveda, Abel; Buchanan, Edward P.

    2014-01-01

    Vascular anomalies are divided into two main groups: tumors and malformations. Vascular tumors are a large and complex group of lesions, especially for clinicians with none or little experience in this field. In the past, these lesions caused a great deal of confusion because many appear analogous to the naked eye. Thankfully, recent advances in diagnostic techniques have helped the medical community to enhance our comprehension, accurately label, diagnose, and treat these lesions. In this article, we will review the most frequent vascular tumors and provide the reader with the tools to properly label, diagnose, and manage these complex lesions. PMID:25045329

  1. Quantification-based mass spectrometry imaging of proteins by parafilm assisted microdissection.

    PubMed

    Franck, Julien; Quanico, Jusal; Wisztorski, Maxence; Day, Robert; Salzet, Michel; Fournier, Isabelle

    2013-09-03

    MALDI mass spectrometry imaging (MALDI-MSI) was presented as a good strategy to highlight regions presenting specific phenotypes based on molecular content. The proteins present in the different areas can be identified by MALDI MSI; however, the number of protein identifications remains low in comparison with classical MS-based proteomics approaches. To overcome this, a new strategy, involving the microdissection of tissue sections mounted on parafilm M-covered glass slides, is presented. Extraction and fractionation of proteins from a specific region of interest were investigated, leading to the identification of more than 1000 proteins from each microdissected piece. The strength of this cheap technique lies in the facile excision of millimeter-sized portions from the tissue allowing for the identification of proteins from cells of a specific phenotype obtained from the MALDI MS imaging-based molecular classification using hierarchical clustering. This approach can be extended to whole tissue sections in order to generate images of the section based on label-free quantification obtained from identification data. As a proof of concept, we have studied a tissue mounted on a parafilm M-covered glass slide, cut it into regular pieces, and submitted each piece to identification and quantification according to the developed parafilm-assisted microdissection (PAM) method. Images were then reconstructed by relative quantification of identified proteins based on spectral counting of the peptides analyzed by nanoLC-MS and MS/MS. This strategy of quantification-based MSI offers new possibilities for mapping a large number of high and low abundance proteins.

  2. Vascular Dementia

    MedlinePlus

    ... dementia is a general term describing problems with reasoning, planning, judgment, memory and other thought processes caused ... dementia. Whether a stroke affects your thinking and reasoning depends on your stroke's severity and location. Vascular ...

  3. Ultrasound -- Vascular

    MedlinePlus

    ... ultrasound uses sound waves to evaluate the body’s circulatory system and help identify blockages in the arteries and ... is a useful way of evaluating the body's circulatory system. Vascular ultrasound is performed to: help monitor the ...

  4. Vascular Cures

    MedlinePlus

    ... patient to vascular research and care. It combines digital health tools for people to manage their own health with online education and communities, and improves communication between doctors, patients ...

  5. Ultrasound -- Vascular

    MedlinePlus

    ... ultrasound uses sound waves to evaluate the body’s circulatory system and help identify blockages and detect blood clots. ... is a useful way of evaluating the body's circulatory system. Vascular ultrasound is performed to: help monitor the ...

  6. Vascular anomalies: classification, imaging characteristics and implications for interventional radiology treatment approaches

    PubMed Central

    Prajapati, H J S; Martin, L G; Patel, T H

    2014-01-01

    The term vascular anomaly represents a broad spectrum of vascular pathology, including proliferating vascular tumours and vascular malformations. While the treatment of most vascular anomalies is multifactorial, interventional radiology procedures, including embolic therapy, sclerotherapy and laser coagulation among others, are playing an increasingly important role in vascular anomaly management. This review discusses the diagnosis and treatment of common vascular malformations, with emphasis on the technique, efficacy and complications of different interventional radiology procedures. PMID:24588666

  7. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  8. Peripheral vascular imaging and intervention

    SciTech Connect

    Kim, D. ); Orron, D.E. )

    1990-01-01

    This reference addresses the entire clinical approach to the vascular system from the diagnosis of pathology to surgery or interventional radiological management. All diagnostic imaging modalities currently available are included with specific information on how to interpret various results. It features discussions of the latest therapeutic techniques, including laser angioplasty, intravascular stents, and transluminal embolization.

  9. An improved method for construction of directionally cloned cDNA libraries from microdissected cells.

    PubMed

    Peterson, L A; Brown, M R; Carlisle, A J; Kohn, E C; Liotta, L A; Emmert-Buck, M R; Krizman, D B

    1998-12-01

    Here, we developed an improved method for constructing microdissected cDNA libraries, based on strand-switching properties of reverse transcriptase, followed by PCR amplification with primers to mediate unidirectional insert cloning. Using RNA from microdissected ovarian carcinoma cells, we constructed a cDNA library consisting of 1.3 x 10(6) unidirectional recombinants with an average insert size of 500 bp. Single-pass sequencing of 100 clones with the T7 primer revealed 89 inserts derived from known genes, anonymous expressed sequence tags (ESTs), or novel sequences. Among these clones were known genes and ESTs previously found in cDNA libraries from bulk ovarian tissue RNA, sequences seen for the first time in an ovarian-derived library, and novel sequences not previously seen in any cDNA library. These results demonstrate a methodology for constructing quality cDNA libraries that are cloned in a unidirectional fashion, are complex and diverse, and reflect the tissue of origin.

  10. Application of chromosomal microdissection, polymerase chain reaction (PCR), and reverse chromosome painting in prenatal diagnosis

    SciTech Connect

    Wang, N.; Xu, J.; Cedrone, E.

    1994-09-01

    De novo marker chromosomes have been found in about 0.04% of amniotic fluid cultures. The origin of these marker chromosomes is difficult to identify by routine chromosome banding analysis. In the present study, we applied microdissection, PCR, and reverse chromosome painting to two amniotic fluid cases with a karyotype of 47,XX,+mar, and 47,XX,+?i(9p), respectively. Fluorescence in situ hybridization of the biotin-labeled DNA probe generated from 5 copies of the dissected marker chromosomes was applied to the normal metaphase spreads and revealed that the marker originated from the p arm of chromosomes 14 and 22, while the ?i(9p) was actually i(4p). Reverse painting of the same probe to the metaphase spreads of the patients completely painted the marker chromosomes in question, which confirms the accuracy of the analysis. Our study provides an example of the application of chromosome microdissection and molecular cytogenetics in prenatal diagnosis for the identification of marker chromosomes unidentifiable by routine analysis.

  11. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting

    PubMed Central

    Pinton, Alain; Ducos, Alain; Yerle, Martine

    2003-01-01

    A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+) translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5) were elaborated and hybridised independently on chromosomal preparations of the bull who was a carrier of the mosaic translocation. The impossibility of differentiating chromosomes 2 and der(2) from other chromosomes of the metaphases did not allow the production of painting probes for these chromosomes. For all experiments, the quality of painting was comparable to that usually observed with probes obtained from flow-sorted chromosomes. The results obtained allowed confirmation of the interpretations proposed with G-banding karyotype analyses. In the bovine case, however, the reciprocity of the translocation could not be proven. The results presented in this paper show the usefulness of the microdissection technique for characterising chromosomal rearrangements in species for which commercial probes are not available. They also confirmed that the main limiting factor of the technique is the quality of the chromosomal preparations, which does not allow the identification of target chromosomes or chromosome fragments in all cases. PMID:14604515

  12. Qualitative comparison of anatomical microdissection, Sihler's staining and computerized reconstruction methods for visualizing intramuscular nerve branches.

    PubMed

    Gülekon, Nadir; Peker, Tuncay; Turgut, Hasan Basri; Anil, Afitap; Karaköse, Mustafa

    2007-07-01

    STATING BACKGROUND: This study was designed to examine the entire intramuscular nerve distribution pattern of various human skeletal muscles in fetuses. In the present study rhomboid major, trapezius, long head of the biceps femoris and masseter muscles were investigated in five 18 weeks old fetal cadavers. Anatomical microdissection was applied to one fetal cadaver. In two fetuses, the extramuscular (main), major and minor nerve branches, and anastomosis were examined using Sihler's staining and labeling. In the remaining two fetuses, consecutive slices with 0.5 mm interval and 5 microm thickness were obtained from each skeletal muscle. These slices were stained with S100 for the demonstration of the nerve fibers and thereafter 3D reconstruction images were constituted using PC software. Anatomical microdissection, Sihler's staining and computerized reconstruction methods were compared to demonstrate the intramuscular nerve distribution pattern. Demonstration of the intramuscular minor nerve branches and anastomosis showed difficulties in anatomical dissected specimens when compared with three-dimensionally reconstructed images and specimens obtained with Sihler's staining technique. Nevertheless, anatomical dissection is a simple method whereas Sihler's technique and computer aided 3D reconstruction are complex methods and take a long time to complete. The obtained information exposed that staining technique and the 3D reconstructions appeared to provide better results than did anatomical dissection.

  13. Laser Physics and Laser-Tissue Interaction

    PubMed Central

    Welch, A. J.; Torres, Jorge H.; Cheong, Wai-Fung

    1989-01-01

    Within the last few years, lasers have gained increasing use in the management of cardiovascular disease, and laser angioplasty has become a widely performed procedure. For this reason, a basic knowledge of lasers and their applications is essential to vascular surgeons, cardiologists, and interventional radiologists. To elucidate some fundamental concepts regarding laser physics, we describe how laser light is generated and review the properties that make lasers useful in medicine. We also discuss beam profile and spotsize, as well as dosimetric specifications for laser angioplasty. After considering laser-tissue interaction and light propagation in tissue, we explain how the aforementioned concepts apply to direct laser angioplasty and laser-balloon angioplasty. An understanding of these issues should prove useful not only in performing laser angioplasty but in comparing the reported results of various laser applications. (Texas Heart Institute Journal 1989;16:141-9) PMID:15227198

  14. Parafilm-assisted microdissection: a sampling method for mass spectrometry-based identification of differentially expressed prostate cancer protein biomarkers.

    PubMed

    Quanico, J; Franck, J; Gimeno, J P; Sabbagh, R; Salzet, M; Day, R; Fournier, I

    2015-03-18

    Mass spectrometry-based methods for prostate cancer biomarker discovery are hampered by their low-throughput capabilities because of extensive sample preparation. We present the parafilm-assisted microdissection technique coupled with label-free quantification and bioinformatics analysis as a means to evaluate directly protein expression changes on benign and tumor regions.

  15. Diagnosis of four chromosome abnormalities of unknown origin by chromosome microdissection and subsequent reverse and forward painting

    SciTech Connect

    Coelho, K.E.F.A. de; Egashira, M.; Kato, R.

    1996-06-14

    A molecular cytogenetic method consisting of chromosome microdissection and subsequent reverse/forward chromosome painting is a powerful tool to identify chromosome abnormalities of unknown origin. We present 4 cases of chromosome structural abnormalities whose origins were ascertained by this method. In one MCA/MR patient with an add(5q)chromosome, fluorescence in situ hybridization (FISH), using probes generated from a microdissected additional segment of the add(5q) chromosome and then from a distal region of normal chromosome 5, confirmed that the patient had a tandem duplication for a 5q35-qter segment. Similarly, we ascertained that an additional segment of an add(3p) chromosome in another MCA/MR patient had been derived from a 7q32-qter segment. In a woman with a history of successive spontaneous abortions and with a minute marker chromosome, painting using microdissected probes from the whole marker chromosome revealed that it was i(15)(p10) or psu dic(15;15)(q11;q11). Likewise, a marker observed in a fetus was a ring chromosome derived from the paracentromeric region of chromosome 19. We emphasize the value of the microdissection-based chromosome painting method in the identification of unknown chromosomes, especially for marker chromosomes. The method may contribute to a collection of data among patients with similar or identical chromosome abnormalities, which may lead to a better clinical syndrome delineation. 15 refs., 2 figs.

  16. Loss of Heterozygosity on Chromosome 11p15 during Histological Progression in Microdissected Ductal Carcinoma of the Breast

    PubMed Central

    Lichy, Jack H.; Zavar, Maryam; Tsai, Mark M.; O’Leary, Timothy J.; Taubenberger, Jeffery K.

    1998-01-01

    Microdissection of histologically identifiable components from formalin-fixed, paraffin-embedded tissue sections allows molecular genetic analyses to be correlated directly with pathological findings. In this study, we have characterized loss of heterozygosity (LOH) at chromosome 11p15 at different stages of progression in microdissected tumor components from 115 ductal carcinomas of the breast. Microdissected foci of intraductal, infiltrating, and metastatic tumors were analyzed to determine the stage of progression at which LOH at 11p15 occurs. LOH was detected in 43 (37%) of 115 cases. Foci of intraductal carcinoma could be microdissected from 85 cases, of which 30 (35%) showed LOH at some stage of progression. LOH was detected in the intraductal component in 26 of these 30 cases. Interstitial deletions were characterized by using a panel of 10 highly polymorphic markers. The smallest region of overlap (SRO) for LOH at 11p15 was bounded by the markers D11S4046 and D11S1758. LOH at 11p15.5 showed no correlation with estrogen receptor status, the presence of positive lymph nodes, tumor size, histological grade, or long-term survival. We conclude that 11p15 LOH usually occurs early in breast cancer development but less frequently does not develop until the infiltrating or metastatic stages of tumor progression. PMID:9665488

  17. Generation of full coverage libraries from microdissected DNA: Optimization for FISH of DNA microclones from an amplified domain

    SciTech Connect

    Cummings, L.; Bittner, M.L.; McGill, J.R.

    1994-09-01

    Chromosome microdissection/microcloning is increasingly important in the molecular analysis of chromosome rearrangements. Despite a number of publications using this technology, no detailed report examining representation of the starting template DNA have appeared. Based upon fluorescence in situ hybridization (FISH) performance of microdissected DNA probes derived from genetically amplified regions (dmins, hsrs) form compact intense signals readily interpretable even in interphase nuclei. Microdissected probes from non-amplified DNA typically produce much more diffuse signals in interphase nuclei. The difference in fluorescence intensity may arise from the more abundant template of the amplified domain at the time of dissection. We will report on the construction and characterization of microclone libraries using FISH to interphase nuclei as an indicator of template representation. Factors influencing cloning efficiency (e.g., vector cloning schemes, transformation vs. electroporation, generation of large PCR fragments, etc.) are being optimized to generate microclone libraries more fully representative of the dissected region. Retention of representation during microclone library generation is being examined for both a highly amplified starting material (dmin amplified for cmyc), and for a microdissected normal chromosome 8. It is expected that comparisons of the signal intensity between the uncloned and cloned dmin-derived PCR products will assist in the establishment of full coverage DNA microclone libraries and optimization of these products for FISH.

  18. Vascular ring

    MedlinePlus

    ... Stanton BF, St Geme JW, Schor NF. Other congenital heart and vascular malformations. In: Kliegman RM, Stanton BF, St Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, ... AN. Congenital heart disease. In: Mann DL, Zipes DP, Libby ...

  19. What Is Vascular Disease?

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  20. Vascular Disease Foundation

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  1. Effects of the Combined PDL/Nd:YAG Laser on Surgical Scars: Vascularity and Collagen Changes Evaluated by In Vivo Confocal Microscopy

    PubMed Central

    Vas, Krisztina; Gaál, Magdolna; Varga, Erika; Kovács, Réka; Bende, Balázs; Kocsis, Ádám; Kemény, Lajos

    2014-01-01

    The aim of this study was to investigate the efficacy of the sequential combined 585 nm PDL and the 1064 nm neodymium:yttrium-aluminium-garnet laser (PDL/Nd:YAG) in the treatment of surgical scars and to evaluate the short-term effects by in vivo confocal microscopy (RCM) and the long-term effects by clinical assessment of the scars. Twenty-five patients were enrolled with 39 postoperative linear scars; each scar was divided into two fields. One half was treated with the combined PDL/Nd:YAG laser, whereas the other half remained untreated. Each scar was treated three times at monthly intervals. Scars were evaluated by an independent examiner, using the Vancouver Scar Scale. The combined PDL/Nd:YAG laser significantly improved the appearance of the scars. In order to study the short-term effects of combined laser treatment, six additional patients were enrolled with 7 postoperative linear scars. One half of scars was treated once with the combined PDL/Nd:YAG laser. One week after this laser treatment, both the treated and the nontreated parts of the scars were examined by dermoscopy and RCM. The dermoscopic pictures revealed improvements even in treated areas. In conclusion, the combined PDL/Nd:YAG laser was found to be effective in improving the quality and appearance of the surgical scars. PMID:25276770

  2. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    PubMed

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group.

  3. Novel surgical management of spinal adhesive arachnoiditis by arachnoid microdissection and ventriculo-subarachnoid shunting.

    PubMed

    Mitsuyama, Tetsuryu; Asamoto, Shunji; Kawamata, Takakazu

    2011-12-01

    Spinal cord tethering and cerebrospinal fluid (CSF) flow disturbance are two major features in the pathophysiology of spinal adhesive arachnoiditis. We hypothesized that insufficient CSF supply to the surgically untethered spinal cord may be one of the causes of the typical post-operative recurrent extensive lesion. We report a patient with extensive spinal adhesive arachnoiditis, who was successfully treated using a novel surgical technique consisting of two procedures. First, microdissection of the thickened adherent arachnoid was performed to resolve spinal cord tethering. Next, a ventriculo-subarachnoid shunt was placed to provide sufficient flow of CSF. Clinical improvement was sustained for at least 22 months after surgery. The present surgical procedure may improve clinical outcome in patients with longitudinally extensive spinal adhesive arachnoiditis.

  4. Serratus anterior intercostal nerve graft: a new vascularized nerve graft.

    PubMed

    Gailliot, R V; Core, G B

    1995-07-01

    We present our investigative and clinical experience with a new vascularized nerve graft: the serratus anterior intercostal nerve graft. The serratus branch of the thoracodorsal arterial system was injected with silicone rubber injection compound in seven fresh cadavers (N = 11 injected specimens) after the composite serratus-intercostal structures were harvested. Microdissection of selected vascular territories was then performed. Our findings reconfirmed the previously described vascular connections between the thoracodorsal system and the intercostal vessels via periosteal vessels. We also newly discovered vascular anastomoses between the serratus anterior muscle and the intercostal artery running within a mesentery. This mesentery is lateral to and distinct from the serratus-periosteal-intercostal network. The nerve graft was applied clinically in the reconstruction of a complex soft-tissue, 13-cm ulnar nerve defect of the volar forearm after an electrical injury. The clinical application was successful with limb salvage and return of protective sensation at 4 months. Our clinical and investigative results support the feasibility of the serratus anterior intercostal nerve graft, a unique and versatile new vascularized nerve graft.

  5. Quantification of β-Catenin Signaling Components in Colon Cancer Cell Lines, Tissue Sections, and Microdissected Tumor Cells using Reaction Monitoring Mass Spectrometry

    PubMed Central

    Chen, Yi; Gruidl, Mike; Remily-Wood, Elizabeth; Liu, Richard Z.; Eschrich, Steven; Lloyd, Mark; Nasir, Aejaz; Bui, Marilyn M.; Huang, Emina; Shibata, David; Yeatman, Timothy; Koomen, John M.

    2010-01-01

    Reaction monitoring mass spectrometry has emerged as a powerful tool for targeted detection and quantification of proteins in clinical samples. Here, we report the use of gel electrophoresis for protein fractionation and liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) screening for quantitative analysis of components from the Wnt/β-catenin signaling pathway, which contributes to colon tumor formation and progression. In silico tools are used to design LC-MRM screens for each target protein. Following successful peptide detection, stable isotope labeled peptides are synthesized and developed as internal standards. Then, the assays are implemented in colon cancer cell lines to achieve detection in minimal amounts of cells, compatible with direct translation to clinical specimens. Selected assays are compared with qualitative results from immunoblotting (Westerns) and translated to individual frozen colon tissue sections and laser capture microdissected tumor cells. This LC-MRM platform has been translated from in vitro models to clinical specimens, forming the basis for future experiments in patient assessment. PMID:20590165

  6. The H2S-generating enzymes cystathionine β-synthase and cystathionine γ-lyase play a role in vascular development during normal lung alveolarization.

    PubMed

    Madurga, Alicia; Golec, Anita; Pozarska, Agnieszka; Ishii, Isao; Mižíková, Ivana; Nardiello, Claudio; Vadász, István; Herold, Susanne; Mayer, Konstantin; Reichenberger, Frank; Fehrenbach, Heinz; Seeger, Werner; Morty, Rory E

    2015-10-01

    The gasotransmitter hydrogen sulfide (H2S) is emerging as a mediator of lung physiology and disease. Recent studies revealed that H2S administration limited perturbations to lung structure in experimental animal models of bronchopulmonary dysplasia (BPD), partially restoring alveolarization, limiting pulmonary hypertension, limiting inflammation, and promoting epithelial repair. No studies have addressed roles for endogenous H2S in lung development. H2S is endogenously generated by cystathionine β-synthase (Cbs) and cystathionine γ-lyase (Cth). We demonstrate here that the expression of Cbs and Cth in mouse lungs is dynamically regulated during lung alveolarization and that alveolarization is blunted in Cbs(-/-) and Cth(-/-) mouse pups, where a 50% reduction in the total number of alveoli was observed, without any impact on septal thickness. Laser-capture microdissection and immunofluorescence staining indicated that Cbs and Cth were expressed in the airway epithelium and lung vessels. Loss of Cbs and Cth led to a 100-500% increase in the muscularization of small- and medium-sized lung vessels, which was accompanied by increased vessel wall thickness, and an apparent decrease in lung vascular supply. Ablation of Cbs expression using small interfering RNA or pharmacological inhibition of Cth using propargylglycine in lung endothelial cells limited angiogenic capacity, causing a 30-40% decrease in tube length and a 50% decrease in number of tubes formed. In contrast, exogenous administration of H2S with GYY4137 promoted endothelial tube formation. These data confirm a key role for the H2S-generating enzymes Cbs and Cth in pulmonary vascular development and homeostasis and in lung alveolarization. Copyright © 2015 the American Physiological Society.

  7. Laser surgery of the skin.

    PubMed

    Goldberg, D J

    1989-11-01

    The carbon dioxide laser, the argon laser and the pulse-dye laser are used to remove a variety of skin lesions. Advantages of laser surgery include a relatively bloodless operating field and minimal postoperative discomfort and swelling. Warts, tattoos, actinic cheilitis, skin cancer, xanthelasma, ingrown toenails, keloids and port-wine stains are among the lesions that can be removed with laser surgery. The tunable pulse-dye laser is particularly useful in the treatment of vascular lesions.

  8. Vascular dementia

    PubMed Central

    Korczyn, Amos D; Vakhapova, Veronika; Grinberg, Lea T

    2012-01-01

    The epidemic grow of dementia causes great concern for the society. It is customary to consider Alzheimer’s disease (AD) as the most common cause of dementia, followed by vascular dementia (VaD). This dichotomous view of a neurodegenerative disease as opposed to brain damage caused by extrinsic factors led to separate lines of research in these two entities. Indeed, accumulated data suggest that the two disorders have additive effects and probably interact; however it is still unknown to what degree. Furthermore, epidemiological studies have shown “vascular” risk factors to be associated with AD. Therefore, a clear distinction between AD and VaD cannot be made in most cases, and is furthermore unhelpful. In the absence of efficacious treatment for the neurodegenerative process, special attention must be given to vascular component, even in patients with presumed mixed pathology. Symptomatic treatment of VaD and AD are similar, although the former is less effective. For prevention of dementia it is important to treat aggressively all factors, even in stroke survivors who do not show evidence of cognitive decline,. In this review, we will give a clinical and pathological picture of the processes leading to VaD and discuss it interaction with AD. PMID:22575403

  9. Genetic association between chromosome 8 microsatellite (MS8-134) and Werner syndrome (WRN): Chromosome microdissection and homozygosity mapping

    SciTech Connect

    Ye, Lin; Nakura, Jun; Mitsuda, Noriaki; Miki, Tetsuro

    1995-08-10

    Werner syndrome (WRN) is an autosomal recessive disorder characterized by premature aging that has been mapped to the short arm of chromosome 8, 8p11.2-p12. To refine the genetic map around the WRN region, we have isolated eight microsatellites for this region from a microdissection library. We typed members of Japanese families with WRN on the basis of homozygosity mapping analysis. There was no obligate recombination between the WRN locus and microsatellite clone, MS8-134 (D8S1055). The maximum lod score was 20.28 at {theta} = 0.00. Alleles for MS8-134 showed association with WRN in a case-control study (OR = 3.55, 95% CI 1.56-8.07, P < 0.01). Such microsatellites from a microdissection library of the definite chromosome region may be useful for positional cloning of the WRN gene. 23 refs., 1 figs., 1 tab.

  10. Rapid generation of region-specific probes by chromosome microdissection: Application to the identification of chromosomal rearrangements

    SciTech Connect

    Trent, J.M.; Guan, X.Y.; Zang, J.; Meltzer, P.S. )

    1993-01-01

    The authors present results using a novel strategy for chromosome microdissection and direct in vitro amplification of specific chromosomal regions, to identify cryptic chromosome alterations, and to rapidly generate region-specific genomic probes. First, banded chromosomes are microdissected and directly PCR amplified by a procedure which eliminates microchemistry (Meltzer, et al., Nature Genetics, 1:24, 1992). The resulting PCR product can be used for several applications including direct labeling for fluorescent in situ hybridization (FISH) to normal metaphase chromosomes. A second application of this procedure is the extremely rapid generation of chromosome region-specific probes. This approach has been successfully used to determine the derivation of chromosome segments unidentifiable by standard chromosome banding analysis. In selected instances these probes have also been used on interphase nuclei and provides the potential for assessing chromosome abnormalities in a variety of cell lineages. The microdissection probes (which can be generated in <24 hours) have also been utilized in direct library screening and provide the possibility of acquiring a significant number of region-specific probes for any chromosome band. This procedure extends the limits of conventional cytogenetic analysis by providing an extremely rapid source of numerous band-specific probes, and by enabling the direct analysis of essentially any unknown chromosome region.

  11. Vascular effect of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fyodorov, Svyatoslav N.; Kopayeva, V. G.; Andreev, J. B.; Ponomarev, Gelii V.; Stranadko, Eugeny P.; Suchin, H. M.

    1996-01-01

    Vascular effect of PDT has been studied in patients with corneal vascularized leucomas (10 patients) and in patients with corneal neovascularized transplant (3 patients). For vascularized leucomas the method of photodynamic therapy consisted of the local injection of dimegin (deiteroporphyrin derivative) into the space of the newly-formed vessels under operating microscope (opton) with the microneedle (diameter 200 microns) and corneal irradiation by the operating microscope light. For corneal neovascularized transplant the injection of photogem (hematoporphyrin derivative) intravenously were made with subsequent irradiation by light of dye laser (5 hours after the injection) with light density of 150 mW/cm2 for 15 minutes. In all the cases at the time of irradiation the aggregated blood flow was appeared, followed by blood flow stasis. In postoperative period the vessels disintegrated into separate fragments which disappeared completely after 10 - 15 days. Taking into account the data of light microscopy, the disappearance of the vessels took place as a result of the vascular endothelium lisis along the vascular walls. Neovascularized cornea and newly-formed vessels in tumor stroms have much in common. The vessel alterations study presented in this paper, may serve to specify the mechanism of photodynamic destruction of neovascularized stroma of tumor.

  12. Tumoral and Choroidal Vascularization

    PubMed Central

    Jost, Maud; Maillard, Catherine; Lecomte, Julie; Lambert, Vincent; Tjwa, Marc; Blaise, Pierre; Alvarez Gonzalez, Maria-Luz; Bajou, Khalid; Blacher, Silvia; Motte, Patrick; Humblet, Chantal; Defresne, Marie Paule; Thiry, Marc; Frankenne, Francis; Gothot, André; Carmeliet, Peter; Rakic, Jean-Marie; Foidart, Jean-Michel; Noël, Agnès

    2007-01-01

    An adequate balance between serine proteases and their plasminogen activator inhibitor-1 (PAI-1) is critical for pathological angiogenesis. PAI-1 deficiency in mice is associated with impaired choroidal neovascularization (CNV) and tumoral angiogenesis. In the present work, we demonstrate unexpected differences in the contribution of bone marrow (BM)-derived cells in these two processes regulated by PAI-1. PAI-1−/− mice grafted with BM-derived from wild-type mice were able to support laser-induced CNV formation but not skin carcinoma vascularization. Engraftment of irradiated wild-type mice with PAI-1−/− BM prevented CNV formation, demonstrating the crucial role of PAI-1 delivered by BM-derived cells. In contrast, the transient infiltration of tumor transplants by local PAI-1-producing host cells rather than by BM cells was sufficient to rescue tumor growth and angiogenesis in PAI-1-deficient mice. These data identify PAI-1 as a molecular determinant of a local permissive soil for tumor angiogenesis. Altogether, the present study demonstrates that different cellular mechanisms contribute to PAI-1-regulated tumoral and CNV. PAI-1 contributes to BM-dependent choroidal vascularization and to BM-independent tumor growth and angiogenesis. PMID:17717143

  13. Microdissection and chromosome painting of X and B chromosomes in the grasshopper Eyprepocnemis plorans.

    PubMed

    Teruel, M; Cabrero, J; Perfectti, F; Acosta, M J; Sánchez, A; Camacho, J P M

    2009-01-01

    The relative location of 2 repetitive DNAs, i.e. ribosomal (rDNA) and a tandemly repeated satellite DNA (satDNA), with respect to the centromere, suggested that B chromosomes in the grasshopper Eyprepocnemis plorans derived intraspecifically from the X chromosome. To test this hypothesis, we microdissected X and B chromosomes and amplified the obtained DNA by 2 different procedures, the conventional DOP-PCR method and the single-cell whole-genome amplification GenomePlex method. We then generated DNA probes to perform chromosome painting. Our results have confirmed that X and B chromosomes share many DNA sequences between them and with most of the autosomes, especially at locations where the satDNA and rDNA reside, in consistency with previous information. This supports the hypothesis of an intraspecific origin of B chromosomes in E. plorans. Nevertheless, the present results did not help to clarify whether Bs were derived from the X chromosome or else from 1 or more autosomes. (c) 2009 S. Karger AG, Basel.

  14. Demonstration of myenteric plexus abnormalities in genetic diseases by a microdissection technique: preliminary studies.

    PubMed

    Galvis, D A; Nakazato, Y; Wells, T R; Landing, B H

    1987-01-01

    Eighty-eight specimens of esophagus, small intestine, or colon from 45 patients, predominantly infants and children, with 30 different genetic diseases were analyzed by a microdissection technique for the following abnormalities of the Auerbach (myenteric) plexus: (1) abnormality of the pattern of the nervous network of the plexus, (2) abnormal fraction of neural tissue in the plane of the plexus, (3) abnormal size or appearance of the cytoplasm of the neurons of the plexus, and (4) abnormal number of neurons in the ganglia of the plexus. Seven of 8 specimens of esophagus from patients with neuronal storage diseases (infantile Niemann-Pick disease, Jansky-Bielschowsky disease, etc.) showed an increased fraction of neural tissue in the plane of the plexus, whereas 2 of 3 patients with Cockayne syndrome showed a reduced fraction, with abnormally slender interganglionic fibers. The fraction of neural tissue in the plane of the plexus was also abnormal at one or more levels in patients with adrenoleukodystrophy, ataxia telangiectasia, Krabbe disease, and juvenile metachromatic leukodystrophy. Abnormality of neuron size and cytology was seen in several neuronal lipidoses, including Jansky-Bielschowsky and Sandhoff diseases and juvenile GM2 gangliosidosis, with the most striking neuronal enlargement noted in infantile Niemann-Pick disease. Abnormalities of plexus mass or pattern, as well as those of neuronal cytoplasm and neuron number, offer improved insight into possible mechanisms producing gastrointestinal tract dysfunction (swallowing difficulty, gastroesophageal reflux, constipation, etc) in patients with genetic disorders.

  15. Microdissection and microcloning of genomic DNA markers from human chromosomal region 11q23

    SciTech Connect

    Seki, Naohiko Kazusa DNA Research Inst., Chiba ); Yamauchi, Masatake; Saito, Toshiyuki; Katakura, Reiko; Hori, Tada-Aki ); Ohta, Tohru; Yoshiura, Koh-Ichiro; Jinno, Yoshihiro; Niikawa, Norio )

    1993-04-01

    A human genomic DNA library was constructed by using a microdissection-microcloning procedure with polymerase chain reaction (PCR) techniques on DNA from the chromosome 11q23 region. A total of 450 recombinant pUC clones were isolated from the library. Their insert sizes ranged from 150 to 850 bp with a mean of 320 bp. Fifty clones were randomly selected and analyzed in detail. Southern blot analyses showed that 21 (42%) clones were unique DNA sequences, 20 (40%) clones were repetitive sequences, and 9 (18%) clones had no detectable hybridization. The unique sequences were used further in a secondary screening of a partially digested human genomic DNA library constructed in phage vector, and 4 clones were isolated. The chromosomal locations of these phage clones were confirmed to be in the q23 region of chromosome 11 by fluorescence in situ suppression hybridization. These pUC microclones isolated from the chromosomal region-specific genomic DNA library will be useful in the construction of physical contig maps with yeast artificial chromosome and/or cosmid clones and in the positional cloning of disease-associated genes localized to the q23 region of chromosome 11. 21 refs., 3 figs.

  16. Somatic cell hybrid and long-range physical mapping of 11p13 microdissected genomic clones.

    PubMed Central

    Davis, L M; Senger, G; Lüdecke, H J; Claussen, U; Horsthemke, B; Zhang, S S; Metzroth, B; Hohenfellner, K; Zabel, B; Shows, T B

    1990-01-01

    Microdissection and microcloning of banded human metaphase chromosomes have been used to construct a genomic library of 20,000 clones that is highly enriched for chromosome 11p13 DNA sequences. Clones from this library have been mapped on a panel of human-rodent somatic cell hybrids that divides the region from distal p12 to proximal p14 into seven physical intervals, A total of 1500 clones has been isolated, 250 clones have been characterized, and 58 clones have been mapped. Six of the clones were used to complete a long-range physical map of 7.5 megabases through the region. Two of the clones are localized to the Wilms tumor (WT) region, three are localized to the aniridia (AN2) region, and two are localized to the region between WT and AN2. The library represents DNA sequences spanning a distance of approximately 13 x 10(6) base pairs, with an average density of one clone per 37,000 base pairs. Images PMID:2169618

  17. A Fast Carrier Chromatin Immunoprecipitation Method Applicable to Microdissected Tissue Samples

    PubMed Central

    Hao, Haiping; Liu, Hester; Gonye, Gregory; Schwaber, James S.

    2008-01-01

    Transcriptional regulation studies of CNS neurons are complicated by both cellular diversity and plasticity. Microdissection of specific functionally related populations of neurons can greatly reduce these issues, but typically excludes the use of many technologies due to tissue requirements, such as Chromatin Immunoprecipitation (ChIP), a powerful tool for studying in vivo protein-DNA interactions. We have developed a fast carrier ChIP (Fast CChIP) method for analyzing specific in vivo transcription factor-DNA interactions in as little as 0.2 mm3 brain tissue. Using an antibody against phosphorylated cyclic-AMP response element binding (CREB) protein, we confirmed phospho-CREB (pCREB) binding at the c-fos gene promoter. Then we further demonstrated the applicability of Fast CChIP in determining hypertension-induced pCREB binding at the c-fos gene promoter in the rat nucleus tractus solitarius (NTS), confirming CREB’s role in mediating hypertension-induced c-fos expression. This method will be broadly applicable to individual brain nucleus and biopsy/surgical samples. PMID:18502516

  18. Microdissection and painting of the Y chromosome in spinach (Spinacia oleracea).

    PubMed

    Deng, Chuan-Liang; Qin, Rui-Yun; Cao, Ying; Gao, Jun; Li, Shu-Fen; Gao, Wu-Jun; Lu, Long-Dou

    2013-07-01

    Spinach has long been used as a model for genetic and physiological studies of sex determination and expression. Although trisomic analysis from a cross between diploid and triploid plants identified the XY chromosome as the largest chromosome, no direct evidence has been provided to support this at the molecular level. In this study, the largest chromosomes of spinach from mitotic metaphase spreads were microdissected using glass needles. Degenerate oligonucleotide primed polymerase chain reaction was used to amplify the dissected chromosomes. The amplified products from the Y chromosome were identified using the male-specific marker T11A. For the first time, the largest spinach chromosome was confirmed to be a sex chromosome at the molecular level. PCR products from the isolated chromosomes were used in an in situ probe mixture for painting the Y chromosome. The fluorescence signals were mainly distributed on all chromosomes and four pair of weaker punctate fluorescence signal sites were observed on the terminal region of two pair of autosomes. These findings provide a foundation for the study of sex chromosome evolution in spinach.

  19. Integrating Scleral Buckling, Transscleral Drainage of Subretinal Fluid, Intravitreal Anti-Vascular Endothelial Growth Factor, and Laser Photocoagulation in Stage 3B Coats' Total Retinal Detachment.

    PubMed

    Huang, Ying-Chen; Lai, Chi-Chun; Wu, Wei-Chi

    2016-09-01

    The integration of quadruple therapy in a 13-year-old boy with stage 3B Coats' disease achieved retinal reattachment and visual improvement. Scleral buckling might play a role in retinal detachment in Coats' disease, although it has previously been considered insignificant. Instead of performing vitrectomy and internal drainage with a drainage hole in the retina, less-invasive procedures that do not require retinotomy appear to be beneficial in cases of advanced Coats' disease. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:865-868.].

  20. [The use of lasers in dermatology].

    PubMed

    Lecocq, C; Pirard, D; del Marmol, V; Berlingin, E

    2013-01-01

    Albert Einstein is undoubtedly the father of lasers. But it is not until 1964 that the first dermatological lasers were introduced. The Nd-YAG laser, the CO2 laser were developed by Kumar Patel. In a 40 year period lasers not only were diversified but have also become safer and miniaturized. This article hopes to strengthen general practionners' and specialist's knowledge of the different categories of available lasers. The most frequently used ones are ablative lasers (CO2-Erbium), vascular lasers (Nd-YAG, KTP, pulsed dye laser) and the pigment lasers (Q-Switched Nd-YAG, Alexandrite). A description of these lasers and their indications in dermatology will be discussed.

  1. Vascular permeability, vascular hyperpermeability and angiogenesis

    PubMed Central

    Nagy, Janice A.; Benjamin, Laura; Zeng, Huiyan; Dvorak, Ann M.

    2008-01-01

    The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability. PMID:18293091

  2. Cloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa.

    PubMed

    Mariotti, Beatrice; Navajas-Pérez, Rafael; Lozano, Rafael; Parker, John S; de la Herrán, Roberto; Rejón, Carmelo Ruiz; Rejón, Manuel Ruiz; Garrido-Ramos, Manuel; Jamilena, Manuel

    2006-02-01

    Rumex acetosa is characterized by a multiple chromosome system (2n = 12 + XX for females, and 2n = 12 + XY1Y2 for males), in which sex is determined by the ratio between the number of X chromosomes and autosome sets. For a better understanding of the molecular structure and evolution of plant sex chromosomes, we have generated a sex chromosome specific library of R. acetosa by microdissection. The screening of this library has allowed us to identify 5 repetitive DNA families that have been characterized in detail. One of these families, DOP-20, has shown no homology with other sequences in databases. Nevertheless, the putative proteins encoded by the other 4 families, DOP-8, DOP-47, DOP-60, and DOP-61, show homology with proteins from different plant retroelements, including poly proteins from Ty3-gypsy- and Ty1-copia-like long terminal repeat (LTR) retroelements, and reverse transcriptase from non-LTR retro elements. Results indicate that sequences from these 5 families are dispersed throughout the genome of both males and females, but no appreciable accumulation or differentiation of these types of sequences have been found in the Y chromosomes. These repetitive DNA sequences are more conserved in the genome of other dioecious species such as Rumex papillaris, Rumex intermedius, Rumex thyrsoides, Rumex hastatulus, and Rumex suffruticosus, than in the polygamous, gynodioecious, or hermaphrodite species Rumex induratus, Rumex lunaria, Rumex con glom er atus, Rumex crispus, and Rumex bucephalo phorus, which supports a single origin of dioecious species in this genus. The implication of these transposable elements in the origin and evolution of the heteromorphic sex chromosomes of R. acetosa is discussed.

  3. Sperm retrieval outcomes with microdissection testicular sperm extraction (micro-TESE) in men with cryptozoospermia.

    PubMed

    Alrabeeah, K; Wachter, A; Phillips, S; Cohen, B; Al-Hathal, N; Zini, A

    2015-05-01

    Several studies support of the use of testicular rather than ejaculated spermatozoa for intracytoplasmic sperm injection (ICSI) in couples with virtual azoospermia or cryptozoospermia, although this approach remains controversial. We sought to evaluate sperm retrieval outcomes with microdissection testicular sperm extraction (micro-TESE) in men with cryptozoospermia. We conducted a retrospective study of 24 consecutive micro-TESEs in men with cryptozoospermia. We also evaluated the outcomes of seven consecutive TESAs (testicular sperm aspiration) in cryptozoospermic men during the same time period (January 2007 and September 2014). Micro-TESE and TESA were performed on the day prior to ICSI. Final assessment of sperm recovery (reported on the day of ICSI) was recorded as (i) successful (available spermatozoa for ICSI) or (ii) unsuccessful (no spermatozoa for ICSI). The decision to perform a unilateral or bilateral micro-TESE was guided by the intra-operative evaluation of sperm recovery from the first testicle. A unilateral procedure was performed in 87.5% (21/24) and 57% (4/7) of the micro-TESE and TESA cohorts, respectively. Sperm recovery was successful in 96% (23/24) of the men who underwent micro-TESE and 43% (3/7) of the men who underwent TESA (p < 0.01). The ICSI pregnancy rates (per embryo transfer) in the micro-TESE and TESA groups were comparable [33% (6/18) and 50% (1/2), respectively]. The data indicate that micro-TESE is a highly successful sperm retrieval technique for men with cryptozoospermia and few of these men will require a bilateral procedure. Moreover, sperm retrieval rates are higher with micro-TESE than TESA in this group of men.

  4. Isolation, characterization, and regional mapping of microclones from a human chromosome 21 microdissection library

    SciTech Connect

    Yu, J.; Hartz, J.; Yisheng Xu; Gemmill, R.M.; Patterson, D.; Kao, Faten ); Gemmill, R.M.; Patterson, D.; Kao, Fa-Ten ); Korenberg, J.R. )

    1992-08-01

    Thirty-four unique-sequence microclones were isolated from a previously described microdissection library of human chromosome 21 and were regionally mapped using a cell hybrid mapping panel which consists of six cell hybrids and divides chromosome 21 into eight regions. The mapping results showed that the microclones were unevenly distributed along chromosome 21, with the majority of microclones located in the distal half portion of the long arm, between 21q21.3 and 21qter. The number of unique-sequence clones began to decrease significantly from 21q21.2 to centromere and extending to the short arm. This finding is consistent with those reported in other chromosome 21 libraries. Thus, it may be inferred that the proximal portion of the long arm of chromosome 21 contains higher proportions of repetitive sequences, rather than unique sequences of genes. The microclones were also characterized for insert size and were used to identify the corresponding genomic fragments generated by HindIII. In addition, the authors demonstrated that the microclones with short inserts can be efficiently used to identify YAC (yeast artificial chromosome) clones with large inserts, for increased genomic coverage for high-resolution physical mapping. They also used 200 unique-sequence microclones to screen a human liver cDNA library and identified two cDNA clones which were regionally assigned to the 21q21.3-q22.1 region. Thus, generation of unique-sequence microclones from chromosome 21 appears to be useful to isolate and regionally map many cDNA clones, among which will be candidate genes for important diseases on chromosome 21, including Down syndrome, Alzheimer disease, amyotrophic lateral sclerosis, and one form of epilepsy.

  5. Microdissection testicular sperm extraction and salvage hormonal treatment in patients with postchemotherapy azoospermia.

    PubMed

    Shiraishi, Koji; Matsuyama, Hideyasu

    2014-01-01

    To investigate the efficacy of microdissection testicular sperm extraction (micro-TESE) in patients with postchemotherapy azoospermia (PCA), we reviewed our results of micro-TESE combined with intracytoplasmic sperm injection, which are the most commonly used fertility treatments. Furthermore, we investigated the efficacy of hormonal therapy for men who failed to recover sperm after micro-TESE. Twenty-six patients with PCA with the mean age of 34.6 years (range, 23-42) were included in this study. The cancer types included testicular cancer, Hodgkin's lymphoma, non-Hodgkin's lymphoma, leukemia, neuroblastoma, osteosarcoma, and malignant pheochromocytoma. The mean interval from chemotherapy to micro-TESE was 14.8 years (range, 7-25), and the mean age of the female partners was 34.1 years. Sperm were retrieved in 11 (42%) of the patients. Six patients who did not obtain successful sperm retrieval underwent human chorionic gonadotropin-based hormonal therapy, and sperm were retrieved from 2 patients by a second micro-TESE. In total, 7 (27%) pregnancies and 5 (19%) live birth deliveries were achieved. Patients with PCA after testicular cancer treatment were able to achieve a high rate (75%) of sperm retrieval and that exposure to alkylating agents resulted in lower sperm retrieval rates. Micro-TESE-intracytoplasmic sperm injection is an effective fertility treatment for patients with PCA. Furthermore, patients who could not achieve successful sperm retrieval by micro-TESE might obtain improved outcomes with hormonal therapy, indicating that these treatments might provide the patients with PCA with the opportunity to retrieve sperm and father a child. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A molecular map of G protein alpha chains in microdissected rat nephron segments.

    PubMed Central

    Senkfor, S I; Johnson, G L; Berl, T

    1993-01-01

    Membrane-associated guanine nucleotide binding proteins regulate many receptor-mediated signals. Heterogeneity of biochemical and functional properties in nephron segments could be due to differences in G protein expression. To ascertain whether such heterogeneity of G proteins is present in various nephron segments, this study examines the distribution and relative abundance of G protein alpha chains in microdissected medullary thick ascending limb, cortical collecting tubules, outer medullary collecting tubules, proximal inner medullary tubules, and distal inner medullary tubules. Reverse transcription and polymerase chain reactions were employed using oligonucleotides encoding highly conserved regions of all known alpha chains. The cDNA was sequenced for alpha chain identification. The alpha i2 versus alpha s distribution was different in the outer medullary collecting tubules, when compared with the medullary thick ascending limb (P < 0.001) or the cortical collecting tubule, the proximal inner medullary tubules, and the distal inner medullary tubules (P < 0.05). These latter four segments did not significantly differ from each other. A similar analysis was applied to the frequently used line of kidney cells, LLC-PK1, whose exact cellular origin remains unclear. Interestingly, we detected both alpha i2 and alpha i3, while only alpha i2 was detected in the rat distal nephron. No alpha o or alpha z reverse transcription PCR products were detected. In contrast alpha 11 and alpha 14 members of the more recently described alpha q family were detected in the outer medullary collecting tubules and the proximal inner medullary tubules, respectively. We conclude that the majority of nephron segments have a relatively constant distribution of G protein alpha chains. Images PMID:8349818

  7. Microdissecting the Genetic Events in Nephrogenic Rests and Wilms’ Tumor Development

    PubMed Central

    Charles, Adrian K.; Brown, Keith W.; Berry, P. Jeremy

    1998-01-01

    Nephrogenic rests are precursor lesions associated with about 40% of Wilms’ tumors. This study identifies genetic steps occurring in the development of Wilms’ tumor. Thirty-four Wilms’ tumors with nephrogenic rests and/or areas of anaplasia were microdissected from paraffin sections to determine whether and at what stage loss of heterozygosity (LOH) occurred, using polymerase chain reaction-based polymorphic markers at 11p13, 11p15, and 16q. LOH at these loci have been identified in Wilms’ tumors and are associated with identified or putative tumor suppressor genes. Three cystic nephromas/cystic partially differentiated nephroblastomas were also examined. LOH was detected in six cases at 11p13 and in six cases at 11p15, and two of these cases had LOH at both loci. All intralobar rests showing LOH also showed LOH in the tumor. A case with a small perilobar rest showed LOH of 11p13 only in the tumor. Five cases showing LOH at 16q were identified (this was identified only in the tumor, and not in the associated rest), and three of these had recurrence of the tumor. Two cases had a WT1 mutation (one germline and the other somatic), as well as LOH in both the intralobar rest and the tumor. A cystic partially differentiated nephroblastoma showed loss at 11p13 and 11p15, as well as at 16q. This study suggests that LOH at 11p13 and 11p15 and WT1 mutations are early events but that LOH at 16q occurs late in the pathogenesis of Wilms’ tumor. Intralobar and perilobar nephrogenic rests are known to have different biological behaviors, and this study suggests that they are genetically different. A multistep model of Wilms’ tumor pathogenesis is supported by these findings. PMID:9736048

  8. In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Carbary-Ganz, Jordan L.; Welge, Weston A.; Barton, Jennifer K.; Utzinger, Urs

    2015-09-01

    Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo.

  9. In vivo molecular imaging of colorectal cancer using quantum dots targeted to vascular endothelial growth factor receptor 2 and optical coherence tomography/laser-induced fluorescence dual-modality imaging

    PubMed Central

    Carbary-Ganz, Jordan L.; Welge, Weston A.; Barton, Jennifer K.; Utzinger, Urs

    2015-01-01

    Abstract. Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo. PMID:26397238

  10. Vascular development in Arabidopsis.

    PubMed

    Ye, Zheng-Hua; Freshour, Glenn; Hahn, Michael G; Burk, David H; Zhong, Ruiqin

    2002-01-01

    Vascular tissues, xylem and phloem, form a continuous network throughout the plant body for transport of water, minerals, and food. Characterization of Arabidopsis mutants defective in various aspects of vascular formation has demonstrated that Arabidopsis is an ideal system for investigating the molecular mechanisms controlling vascular development. The processes affected in these mutants include initiation or division of procambium or vascular cambium, formation of continuous vascular cell files, differentiation of procambium or vascular cambium into vascular tissues, cell elongation, patterned secondary wall thickening, and biosynthesis of secondary walls. Identification of the genes affected by some of these mutations has revealed essential roles in vascular development for a cytokinin receptor and several factors mediating auxin transport or signaling. Mutational studies have also identified a number of Arabidopsis mutants defective in leaf venation pattern or vascular tissue organization in stems. Genetic evidence suggests that the vascular tissue organization is regulated by the same positional information that determines organ polarity.

    <