Sample records for laser microscope tested

  1. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    NASA Astrophysics Data System (ADS)

    Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.

    1991-03-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.

  2. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, M.; Campbell, D.R.; Johnson, C.W.

    1991-01-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less

  3. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    EPA Science Inventory

    Laser power abstract
    The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  4. Development and Optical Testing of the Camera, Hand Lens, and Microscope Probe with Scannable Laser Spectroscopy (CHAMP-SLS)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John

    2008-01-01

    Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.

  5. Aspects of CO2 laser engraving of printing cylinders.

    PubMed

    Atanasov, P A; Maeno, K; Manolov, V P

    1999-03-20

    Results of the experimental and theoretical investigations of CO(2) laser-engraved cylinders are presented. The processed surfaces of test samples are examined by a phase-stepping laser interferometer, digital microscope, and computer-controlled profilometer. Fourier analysis is made on the patterns parallel to the axis of the laser-scribed test ceramic cylinders. The problem of the visually observed banding is discussed.

  6. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    PubMed

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  7. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE

    EPA Science Inventory

    BACKGROUND. The confocal laser scanning microscope (CLSM) has enormous potential in many biological fields. Currently there is a subjective nature in the assessment of a confocal microscope's performance by primarily evaluating the system with a specific test slide provided by ea...

  8. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet.

    PubMed

    Müller, Matthias; Mey, Tobias; Niemeyer, Jürgen; Mann, Klaus

    2014-09-22

    An extremely compact soft x-ray microscope operating in the "water window" region at the wavelength λ = 2.88 nm is presented, making use of a long-term stable and nearly debris-free laser-induced plasma from a pulsed nitrogen gas jet target. The well characterized soft x-ray radiation is focused by an ellipsoidal grazing incidence condenser mirror. Imaging of a sample onto a CCD camera is achieved with a Fresnel zone plate using magnifications up to 500x. The spatial resolution of the recorded microscopic images is about 100 nm as demonstrated for a Siemens star test pattern.

  9. Safety of laser use under the dental microscope.

    PubMed

    Saegusa, Hidetoshi; Watanabe, Satoshi; Anjo, Tomoo; Ebihara, Arata; Suda, Hideaki

    2010-04-01

    The aim of this study was to investigate the safety of laser use under the dental microscope. Nd:YAG, Er:YAG and diode lasers were used. The end of the tips was positioned at a distance of 5 cm from the objective lens of a dental microscope. Each eye protector was made into a flat disc, which was fixed on the lens of the microscope. The filters were placed in front of the objective lens or behind the eye lens. Transmitted energy through the microscope with or without the filters was measured. No transmitted laser energy was detected when using matched eye protectors. Mismatched eye protectors were not effective for shutting out laser energy, especially for Nd:YAG and diode lasers. None or very little laser energy was detected through the microscope even without any laser filter. Matched filters shut out all laser energy irrespective of their positions.

  10. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  11. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    NASA Astrophysics Data System (ADS)

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  12. Bi-directional transmission of molecular information by photon or electron beams passing in the close vicinity of specific molecules, and its clinical and basic research applications: 1) Diagnosis of humans or animal patients without any direct contact; 2) Light microscopic and electron microscopic localization of neuro-transmitters, heavy metals, Oncogen C-fos (AB2), etc. of intracellular fine structures of normal and abnormal single cells using light or electro-microscopic indirect Bi-Digital O-Ring Test.

    PubMed

    Omura, Y; Losco, M; Omura, A K; Takeshige, C; Hisamitsu, T; Nakajima, H; Soejima, K; Yamamoto, S; Ishikawa, H; Kagoshima, T

    1992-01-01

    In 1985, Omura, Y. discovered that, when specific molecules were placed anywhere in the close vicinity of the path of a light beam (laser), their molecular information, as well as information on electrical & magnetic fields, is transmitted bi-directionally along the path of this light beam. Namely, this information is transmitted in the direction the light beam is projected and towards the direction from which the light beam is coming. This finding was applied to the following clinical and basic research: 1) In the past, using indirect Bi-Digital O-Ring Test, human or animal patients were diagnosed through an intermediate third person holding a good electrical conducting probe, the tip of which was touching the part of the patient to be examined. However, in order to diagnose the patient in isolation from a distance, or a dangerous or unmanagable unanesthesized animal, such as a lion or tiger, the author succeeded in making a diagnosis by replacing the metal conducting probe with a soft laser beam which is held by the one hand of the third person whose index finger is placed in close vicinity of the laser beam generated by a battery-powered penlight-type solid state laser generator. Thus, diagnosis within visible distance, without direct patient contact, became a reality. 2) Using a projection light microscope, by giving indirect Bi-Digital O-Ring Test while contacting with a fine electro-conductive probe on the magnified fine structure of normal and abnormal cells, various normal and abnormal intracellular substances were localized through a third person holding a pure reference control substance with the same hand that is holding the probe as an intermediary for the indirect Bi-Digital O-Ring Test. Instead of the photon beam in a light microscope, the author found that, using an electron beam passing through the close vicinity of specific molecules of specimens in an electron microscope, the molecular information is transmitted to the magnified fluorescent screen, and an indirect Bi-Digital O-Ring Test could be performed through a projected penlight-type solid state soft laser beam on the magnified intracellular structure through an observation glass window. Using the magnified fine structure of the cells, by either a light projection microscopic field or electron microscope, in various cancer cells of both humans and animals, Oncogen C-fos (AB2) and mercury were found inside of the nucleus. Integrin alpha 5 beta 1 was found on cell membranes and nuclear cell membranes of cancer cells. Acetylcholine was not found anywhere within cancer cells.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  14. Laser speckle contrast imaging using light field microscope approach

    NASA Astrophysics Data System (ADS)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  15. Corrosion performance of 7075 alloy under laser heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Su, Ruiming; Qu, Yingdong; Li, Rongde

    2018-05-01

    Microstructure, exfoliation corrosion (EXCO), intergranular corrosion (IGC) and potentidynamic polarization test of the 7075 aluminum alloy after retrogression and re-aging (RRA) treatment, and laser retrogression and re-aging (LRRA), respectively, were studied by using scanning electron microscope, and transmission electron microscope (TEM). The results show that after pre-aging, laser treatment (650 W, 2 mm s‑1) and re-aging a lot of matrix precipitates of alloy were precipitated again. The semi-continuous grain boundary precipitates and the wider precipitate-free zones (PFZ) improve the corrosion resistance of the alloy. The corrosion properties of the alloy after LRRA (650 W, 2 mm s‑1) treatment are better than that after RRA treatment.

  16. Research on Microstructure and Properties of Welded Joint of High Strength Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai

    2018-01-01

    BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosch, R.; Boutin, J. Y.; Le Breton, J. P.

    This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV--0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MegaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with differentmore » spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of {approx}80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 {mu}m over a 2-mm-diam region. The hard x-ray version microscope has a 10 {mu}m resolution over an 800-{mu}m-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 {mu}m over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.« less

  18. Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable Quantum Cascade Laser (QCL) based microscope.

    PubMed

    Bassan, Paul; Weida, Miles J; Rowlette, Jeremy; Gardner, Peter

    2014-08-21

    Chemical imaging in the field of vibrational spectroscopy is developing into a promising tool to complement digital histopathology. Applications include screening of biopsy tissue via automated recognition of tissue/cell type and disease state based on the chemical information from the spectrum. For integration into clinical practice, data acquisition needs to be speeded up to implement a rack based system where specimens are rapidly imaged to compete with current visible scanners where 100's of slides can be scanned overnight. Current Fourier transform infrared (FTIR) imaging with focal plane array (FPA) detectors are currently the state-of-the-art instrumentation for infrared absorption chemical imaging, however recent development in broadly tunable lasers in the mid-IR range is considered the most promising potential candidate for next generation microscopes. In this paper we test a prototype quantum cascade laser (QCL) based spectral imaging microscope with a focus on discrete frequency chemical imaging. We demonstrate how a protein chemical image of the amide I band (1655 cm(-1)) of a 2 × 2.4 cm(2) breast tissue microarray (TMA) containing over 200 cores can be measured in 9 min. This result indicates that applications requiring chemical images from a few key wavelengths would be ideally served by laser-based microscopes.

  19. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm.

  20. Lateral resolution testing of a novel developed confocal microscopic imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  1. CMO YAG laser damage test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hue, J.; Dijon, J.; Lyan, P.

    1996-12-31

    The CMO YAG laser damage test facility, which is equipped with a 30Hz laser, is presented in this paper. The main points are described below: (1) The characteristics of the laser beam and the in situ damage detection technique (a scattered light measurement system) are perfectly suited to work up to the frequency of the laser. They are monitored in real time, and work at three wavelengths: 1064 nm, 532 nm, 355 nm. (2) With this same shutter, it is possible to automatically stop the laser on the pulse which induces the first damages. These automatic capabilities enable the samplesmore » to be tested quickly. (3) A Nomarski microscope supplied with a 16-bit CCD camera enables the test sites to be photographed before and after the laser interaction. Image processing enables the authors to extract the first damages. before and after the laser interaction. Image processing enables them to extract the first damages. (4) Six pulse widths are available (between 3ns and 13ns). Therefore, with all these characterization tools, many kinds of laser tests may be considered. These different features are illustrated by experimental results (1-on-1 test or R-on-1 test).« less

  2. Construction of a system for single-cell transgene induction in Caenorhabditis elegans using a pulsed infrared laser

    PubMed Central

    Churgin, Matthew A.; He, Liping; Murray, John I.; Fang-Yen, Christopher

    2014-01-01

    The spatial and temporal control of transgene expression is an important tool in C. elegans biology. We previously described a method for evoking gene expression in arbitrary cells by using a focused pulsed infrared laser to induce a heat shock response (Churgin et al 2013). Here we describe detailed methods for building and testing a system for performing single-cell heat shock. Steps include setting up the laser and associated components, coupling the laser beam to a microscope, and testing heat shock protocols. All steps can be carried out using readily available off-the-shelf components. PMID:24835576

  3. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  4. Scanning electron microscope comparative surface evaluation of glazed-lithium disilicate ceramics under different irradiation settings of Nd:YAG and Er:YAG lasers.

    PubMed

    Viskic, Josko; Jokic, Drazen; Jakovljevic, Suzana; Bergman, Lana; Ortolan, Sladana Milardovic; Mestrovic, Senka; Mehulic, Ketij

    2018-01-01

    To evaluate the surface of glazed lithium disilicate dental ceramics after irradiation under different irradiation settings of Nd:YAG and Er:YAG lasers using a scanning electron microscope (SEM). Three glazed-press lithium disilicate ceramic discs were treated with HF, Er:YAG, and Nd:YAG, respectively. The laser-setting variables tested were laser mode, repetition rate (Hz), power (W), time of exposure (seconds), and laser energy (mJ). Sixteen different variable settings were tested for each laser type, and all the samples were analyzed by SEM at 500× and 1000× magnification. Surface analysis of the HF-treated sample showed a typical surface texture with a homogenously rough pattern and exposed ceramic crystals. Er:YAG showed no effect on the surface under any irradiation setting. The surface of Nd:YAG-irradiated samples showed cracking, melting, and resolidifying of the ceramic glaze. These changes became more pronounced as the power increased. At the highest power setting (2.25 W), craters on the surface with large areas of melted or resolidified glaze surrounded by globules were visible. However, there was little to no exposure of ceramic crystals or visible regular surface roughening. Neither Er:YAG nor Nd:YAG dental lasers exhibited adequate surface modification for bonding of orthodontic brackets on glazed lithium disilicate ceramics compared with the control treated with 9.5% HF.

  5. Purchase of a Laser Scanning Confocal Microscope at Xavier University of Louisiana

    DTIC Science & Technology

    2016-05-04

    SECURITY CLASSIFICATION OF: The purpose of this grant was to purchase a laser scanning confocal microscope to be used by multiple laboratories at...was being developed for undergraduate education. Over the course of the funding period, the microscope was purchased and installed, multiple training...Distribution Unlimited UU UU UU UU 04-05-2016 1-Feb-2015 31-Jan-2016 Final Report: Purchase of a Laser Scanning Confocal Microscope at Xavier

  6. Naval Research Laboratory Major Facilities 2008

    DTIC Science & Technology

    2008-10-01

    Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused

  7. Terahertz Microscope

    DTIC Science & Technology

    2010-05-01

    at the Brewster angle . The area of the elliptical laser spot on the semiconductor is approximately 0.5 mm2, the average optical power is about 50 mW...approximately above 100 THz, with quantum transition as the dominating physics and lens and mirror as the guiding elements for optics. The science and...waveguides are tested with a gas laser and a pyroelectric detector. A CW THz beam at 1.62 THz is collimated from the gas laser and focused by a lens

  8. Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source

    NASA Astrophysics Data System (ADS)

    Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.

    2010-03-01

    We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.

  9. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  10. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  11. Influence of Ultrasonic Surface Rolling on Microstructure and Wear Behavior of Selective Laser Melted Ti-6Al-4V Alloy

    PubMed Central

    Wang, Zhen; Xiao, Zhiyu; Huang, Chuanshou; Wen, Liping; Zhang, Weiwen

    2017-01-01

    The present article studied the effect of ultrasonic surface rolling process (USRP) on the microstructure and wear behavior of a selective laser melted Ti-6Al-4V alloy. Surface characteristics were investigated using optical microscope, nano-indentation, scanning electron microscope, transmission electron microscope and laser scanning confocal microscope. Results indicated that the thickness of pore-free surfaces increased to 100~200 μm with the increasing ultrasonic surface rolling numbers. Severe work hardening occurred in the densified layer, resulting in the formation of refined grains, dislocation walls and deformation twins. After 1000 N 6 passes, about 15.5% and 14.1% increment in surficial Nano-hardness and Vickers-hardness was obtained, respectively. The hardness decreased gradually from the top surface to the substrate. Wear tests revealed that the friction coefficient declined from 0.74 (polished surface) to 0.64 (USRP treated surface) and the wear volume reduced from 0.205 mm−3 to 0.195 mm−3. The difference in wear volume between USRP treated and polished samples increased with sliding time. The enhanced wear resistance was concluded to be associated with the improvement of hardness and shear resistance and also the inhibition of delamination initiation. PMID:29048344

  12. UV-laser-based microscopic dissection of tree rings - a novel sampling tool for δ(13) C and δ(18) O studies.

    PubMed

    Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard

    2014-02-01

    UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Influence of operating microscope in the sealing of cervical perforations.

    PubMed

    Schmidt, Bruna Schwingel; Zaccara, Ivana Maria; Reis Só, Marcus Vinícius; Kuga, Milton Carlos; Palma-Dibb, Regina Guenka; Kopper, Patrícia Maria Poli

    2016-01-01

    Accidental root canal perforations are among the main complications of endodontic treatment. This study evaluated the influence of operating microscope (OM) in the marginal adaptation of mineral trioxide aggregate (MTA) (Angelus(®)) and glass ionomer (Vitremer) inserted into cervical perforations. Perforations were made in the cervical third of the buccal wall of the root canal in mandibular incisors. Next, the teeth were divided into four groups (N = 10): MG - MTA without OM; VG - Vitremer without OM; MOMG - MTA with OM; VOMG - Vitremer with OM. The perforations were sealed according to the group and the teeth were prepared for analysis by confocal laser scanning microscope. Images of perforation region (1,024×) were made and the gap presented by the materials was measured using the Image J program. LEXT OLS4100 three dimensional (3D) measuring laser microscope measured the volumetric misfit. Data of gap were analyzed by Kruskal-Wallis and Dunn's tests. Analysis of variance (ANOVA) and Tukey's tests compared the volumetric misfits. The results showed lower volume and gap in the interface dentin/material in VOMG compared to the other groups (P < 0.05). The use of OM improved the quality of cervical perforations sealed with Vitremer, being indicated in clinical situations of iatrogenic cervical perforations.

  14. Scanning electron microscope and dye penetration test: comparison of root canal preparation with 15 F CO2 laser microprobe versus conventional method--in vivo study

    NASA Astrophysics Data System (ADS)

    Kesler, Gavriel; Koren, Rumelia; Kesler, Anat; Hay, Nissim; Gal, Rivka

    1999-05-01

    The study was conducted on 30 vital maxillary or mandibulary teeth destined for extraction due to periodontal problems. 21 were experimentally treated with pulsed CO2 laser delivered by a newly developed fiber and 9 teeth represented the control group. The micro probe is a flexible, hollow, metal fiber, 300 μm in diameter and 20 mm in length, coupled onto a handpiece, with the following radiation parameters: wavelength-10.6μm pulse duration-50m.sec; energy per pulses 0.25 joule; energy density-360 J/cm2 per pulse; power on tissue-5W. The laser group was divided into three, receiving 20, 40 or 60 pulses, respectively. On light microscopy: in all the control group cases, large amount of residual pulp tissue was seen, it was diminished in some of the low energy group and was totally eradicated in the high energy group. This was confirmed by the scanning electron microscope (SEM) examination. The dentin tubuli were partly occluded with the low energy levels and completely with the high levels, as shown by the high-speed centrifuge dye penetration test and by the SEM tests.

  15. Toward the development of a low-cost laser Doppler module for ophthalmic microscopes

    NASA Astrophysics Data System (ADS)

    Cattini, Stefano; Rovati, Luigi

    2012-03-01

    A laser Doppler module easily integrated into a commercial ophthalmic microscope is proposed. Such setup adds flow measurement capability to standard visual inspection of the fundus. The proposed instrument may provide important clinical information such as the detection of vessel occlusion provided by surgical treatments (i.e. photocoagulation). The measuring system is based on a self-mixing laser diode Doppler flowmeter (SM-DF). Reduced costs, easy implementation and small size represent the main features of SM-DF. Moreover, this technique offers the advantage to have the excitation and measurement beams spatially overlapped, thus both overcoming the alignment difficulty of traditional laser Doppler flowmeter and, well fitting with to limited optical aperture of the pupil. Thanks to an on-board DSP-microcontroller, the optoelectronic module directly estimates the blood flow; USB connection and an ad-hoc developed user-friendly software interface allow displaying the result on a personal computer. Preliminary test demonstrates the applicability of the proposed measuring system.

  16. Improved axial point spread function in a two-frequency laser scanning confocal fluorescence microscope

    NASA Astrophysics Data System (ADS)

    Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien

    2018-01-01

    A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.

  17. Intraoperative Fluorescence Cerebral Angiography by Laser Surgical Microscopy: Comparison With Xenon Microscopy and Simultaneous Observation of Cerebral Blood Flow and Surrounding Structures.

    PubMed

    Ito, Yuhei; Suzuki, Kyouichi; Ichikawa, Tsuyoshi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi

    2018-06-12

    Laser surgical microscopes should enable uniform illumination of the operative field, and require less luminous energy compared with existing xenon surgical microscopes. To examine the utility of laser illumination in fluorescence cerebral angiography. Fluorescein sodium (fluorescein) was used as a fluorescent dye. We first compared the clarity of cerebral blood flow images collected by fluorescence angiography between the laser illumination and xenon illumination methods. We then assessed use of the laser illuminator for simultaneous observation of blood flow and surrounding structures during fluorescence angiography. Furthermore, the study was designed to evaluate usefulness of the thus determined excitation light in clinical cases. Fluorescence angiography using blue light laser for excitation provided higher clarity and contrast blood flow images compared with using blue light generated from a xenon lamp. Further, illumination with excitation light consisting of a combination of 3 types of laser (higher level of blue light, no green light, and lower level of red light) enabled both blood flow and surrounding structures to be observed through the microscope directly by the surgeon. Laser-illuminated fluorescence angiography provides high clarity and contrast images of cerebral blood flow. Further, a laser providing strong blue light and weak red light for excitation light enables simultaneous visual observation of fluorescent blood flow and surrounding structures by the surgeon using a surgical microscope. Overall, these data suggest that laser surgical microscopes are useful for both ordinary operative manipulations and fluorescence angiography.

  18. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  19. Surface imaging microscope

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Bankman, Isaac N.

    2008-04-01

    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  20. Morphometric analysis of root canal cleaning after rotary instrumentation with or without laser irradiation

    NASA Astrophysics Data System (ADS)

    Marchesan, Melissa A.; Geurisoli, Danilo M. Z.; Brugnera, Aldo, Jr.; Barbin, Eduardo L.; Pecora, Jesus D.

    2002-06-01

    The present study examined root canal cleaning, using the optic microscope, after rotary instrumentation with ProFile.04 with or without laser application with different output energies. Cleaning and shaping can be accomplished manually, with ultra-sonic and sub-sonic devices, with rotary instruments and recently, increasing development in laser radiation has shown promising results for disinfection and smear layer removal. In this study, 30 palatal maxillary molar roots were examined using an optic microscope after rotary instrumentation with ProFile .04 with or without Er:YAG laser application (KaVo KeyLaser II, Germany) with different output energies (2940 nm, 15 Hz, 300 pulses, 500 milli-sec duration, 42 J, 140 mJ showed on the display- input, 61 mJ at fiberoptic tip-output and 140 mJ showed on the display-input and 51 mJ at fiberoptic tip-output). Statistical analysis showed no statistical differences between the tested treatments (ANOVA, p>0.05). ANOVA also showed a statistically significant difference (p<0.01) between the root canal thirds, indicating that the middle third had less debris than the apical third. We conclude that: 1) none of the tested treatments led to totally cleaned root canals; 2) all treatments removed debris similarly, 3) the middle third had less debris than the apical third; 4) variation in output energy did not increase cleaning.

  1. Patterning of organic photovoltaic on R2R processed thin film barriers using IR laser sources

    NASA Astrophysics Data System (ADS)

    Fledderus, H.; Akkerman, H. B.; Salem, A.; Friedrich Schilling, N.; Klotzbach, U.

    2017-02-01

    We present the development of laser processes for flexible OPV on roll-to-roll (RR2R) produced thin film barrier with indium tin oxide (ITO) as transparent conductive (TC) bottom electrode. Direct laser structuring of ITO on such barrier films (so-called P1 process) is very challenging since the layers are all transparent, a complete electrical isolation is required, and the laser process should not influence the barrier performance underneath the scribes. Based on the optical properties off the SiN and ITTO, ultra-short pulse lasers inn picosecond and femtosecond regime with standard infrared (IR) wavelength as well as lasers with new a wavelength (22 μm regime) are tested for this purpose. To determine a process window for a specific laser a fixed methodology is adopted. Single pulse ablation tests were followed by scribing experiments where the pulse overlap was tuned by varying laser pulse fluence, writing speed and frequency. To verify that the laser scribing does not result inn barrier damage underneath, a new test method was developed based on the optical Ca-test. This method shows a clear improvement in damage analysis underneath laser scribes over normal optical inspection methods (e.g. microscope, optical profiler, SEM). This way clear process windows can be obtained for IR TC patterning.

  2. Testing of optical components to assure performance in a high-average-power environment

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Taylor, John R.; Eickelberg, William K.; Primdahl, Keith A.

    1997-11-01

    Evaluation and testing of the optical components used in the atomic vapor laser isotope separation plant is critical for qualification of suppliers, developments of new optical multilayer designs and manufacturing processes, and assurance of performance in the production cycle. The range of specifications requires development of specialized test equipment and methods which are not routine or readily available in industry. Specifications are given on material characteristics such as index homogeneity, subsurface damage left after polishing, microscopic surface defects and contamination, coating absorption, and high average power laser damage. The approach to testing these performance characteristics and assuring the quality throughout the production cycle is described.

  3. Compact Kirkpatrick–Baez microscope mirrors for imaging laser-plasma x-ray emission

    DOE PAGES

    Marshall, F. J.

    2012-07-18

    Compact Kirkpatrick–Baez microscope mirror components for use in imaging laser-plasma x-ray emission have been manufactured, coated, and tested. A single mirror pair has dimensions of 14 × 7 × 9 mm and a best resolution of ~5 μm. The mirrors are coated with Ir providing a useful energy range of 2-8 keV when operated at a grazing angle of 0.7°. The mirrors can be circularly arranged to provide 16 images of the target emission a configuration best suited for use in combination with a custom framing camera. As a result, an alternative arrangement of the mirrors would allow alignment ofmore » the images with a fourstrip framing camera.« less

  4. Scanning laser microscope for imaging nanostructured superconductors

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  5. Ablation of a Neuronal Population Using a Two-photon Laser and Its Assessment Using Calcium Imaging and Behavioral Recording in Zebrafish Larvae.

    PubMed

    Muto, Akira; Kawakami, Koichi

    2018-06-02

    To identify the role of a subpopulation of neurons in behavior, it is essential to test the consequences of blocking its activity in living animals. Laser ablation of neurons is an effective method for this purpose when neurons are selectively labeled with fluorescent probes. In the present study, protocols for laser ablating a subpopulation of neurons using a two-photon microscope and testing of its functional and behavioral consequences are described. In this study, prey capture behavior in zebrafish larvae is used as a study model. The pretecto-hypothalamic circuit is known to underlie this visually-driven prey catching behavior. Zebrafish pretectum were laser-ablated, and neuronal activity in the inferior lobe of the hypothalamus (ILH; the target of the pretectal projection) was examined. Prey capture behavior after pretectal ablation was also tested.

  6. Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction.

    PubMed

    Ichikawa, Tetsuo; Hayasaki, Yoshio; Fujita, Keiji; Nagao, Kan; Murata, Masayo; Kawano, Takanori; Chen, JianRong

    2006-12-01

    The purpose of this study was to evaluate the feasibility of using a femtosecond pulse laser processing technique to store information on a dental prosthesis. Commercially pure titanium plates were processed by a femtosecond pulse laser system. The processed surface structure was observed with a reflective illumination microscope, scanning electron microscope, and atomic force microscope. Processed area was an almost conical pit with a clear boundary. When laser pulse energy was 2 microJ, the diameter and depth were approximately 10microm and 0.2 microm respectively--whereby both increased with laser pulse energy. Further, depth of pit increased with laser pulse number without any thermal effect. This study showed that the femtosecond pulse processing system was capable of recording personal identification and optional additional information on a dental prosthesis.

  7. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

    PubMed

    Rosenegger, David G; Tran, Cam Ha T; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.

  8. A High Performance, Cost-Effective, Open-Source Microscope for Scanning Two-Photon Microscopy that Is Modular and Readily Adaptable

    PubMed Central

    Rosenegger, David G.; Tran, Cam Ha T.; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R.

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems. PMID:25333934

  9. Epiphany sealer penetration into dentinal tubules: Confocal laser scanning microscopic study.

    PubMed

    Ravi, S V; Nageswar, Rao; Swapna, Honwad; Sreekant, Puthalath; Ranjith, Madhavan; Mahidhar, Surabhi

    2014-03-01

    The aim of the following study was to evaluate the percentage and average depth of epiphany sealer penetration into dentinal tubules among the coronal, middle and apical thirds of the root using the confocal laser scanning microscopy (CLSM). A total of 10 maxillary central incisors were prepared and obturated with Resilon-Epiphany system. Sealer was mixed with fluorescent rhodamine B isothiyocyanate dye for visibility under confocal microscope. Teeth were cross-sectioned into coronal, middle and apical sections-2 mm thick. Sections were observed under CLSM. Images were analyzed for percentage and average depth of sealer penetration into dentinal tubules using the lasso tool in Adobe Photoshop CS3 (Adobe systems incorporated, San jose, CA) and laser scanning microscopy (LSM 5) image analyzer. One-way analysis of variance with Student Neuman Keuls post hoc tests, Kruskal-Wallis test and Wilcoxon signed-rank post hoc tests. The results showed that a higher percentage of sealer penetration in coronal section-89.23%, followed by middle section-84.19% and the apical section-64.9%. Average depth of sealer penetration for coronal section was 526.02 μm, middle-385.26 μm and apical-193.49 μm. Study concluded that there was higher epiphany sealer penetration seen in coronal followed by middle and least at apical third of the roots.

  10. A study of cavity preparation by Er:YAG laser--observation of hard tooth structures by laser scanning microscope and examination of the time necessary to remove caries.

    PubMed

    Shigetani, Yoshimi; Okamoto, Akira; Abu-Bakr, Neamat; Iwaku, Masaaki

    2002-03-01

    The purpose of this study was to observe and measure the morphological changes that occur in the hard tissue after the application of Er:YAG laser. Another objective was to evaluate and compare the duration of application of both the laser apparatus and a conventional cutting device. In this study, sound and newly extracted carious tissues were used. The morphological changes in hard tooth structures produced by Er:YAG laser irradiation were examined by using a laser scanning microscope. Results showed that appropriate laser irradiation was 100 mJ/pulse for dentin, and 200 mJ/pulse for enamel. Also, the laser scanning microscope images were less damaged than the SEM images due to pretreatment of the specimens. The time taken to remove carious enamel by laser irradiation was slightly longer than the compared rotary cutting device; however, no differences between the two methods were observed in case of carious dentin removal.

  11. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging

    PubMed Central

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-01-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples. PMID:27699118

  12. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging.

    PubMed

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-09-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.

  13. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    PubMed Central

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  14. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, P; Flom, Z; Heinselman, K

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and themore » team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.« less

  15. Comparative Evaluation of Effects of Laser Modalities on Shear Bond Strengths of Veneering Porcelains to Laser Sintered Substructures: An In Vitro Study.

    PubMed

    Gorler, Oguzhan; Saygin, Aysegul Goze

    2017-06-01

    Laser modalities and direct metal laser sintering (DMLS) have a potential to enhance micromechanical bonding between dental super- and infrastructures. However, the effect of different manufacturing methods on the metal-ceramic bond strength needs further evaluation. We investigated the effect of surface treatment with Er:YAG, Nd:YAG, and Ho:YAG lasers on the shear bond strength (SBS) of high-fusion dental porcelains (Vita and G-Ceram) to infrastructures prepared with DMLS in vitro settings. Study specimens (n = 128) were randomly divided into study subsets (n = 8), considering treatment types applied on the surface of infrastructures, including sandblasting and selected laser modalities; infrastructure types as direct laser sintered (DLS) and Ni-Cr based; and superstructure porcelains as Vita and G-Ceram. The SBS test was performed to assess the effectiveness of surface modifications that were also examined with a stereo microscope. Considering laser procedure types, the highest SBS values were obtained by Er:YAG laser, followed by, with a decreasing efficiency, Ho:YAG laser and sandblasting procedures, and Nd:YAG laser procedure (p < 0.05). Nd:YAG laser decreases the bonding of Vita and G-Ceram in all the infrastructures compared with sandblasting. Considering porcelains, the highest SBS values were obtained by Vita (p < 0.05). Considering infrastructures, the highest SBS values were obtained by DMLS procedure (p < 0.05). The laser procedures caused surface irregularities as revealed by the stereo microscopic examination. In current experimental settings, Er:YAG laser applied to DLS infrastructure veneered with Vita porcelain increases bonding strength more distinctly, and Nd:YAG laser applied to Ni-Cr-based infrastructure veneered with G-Ceram porcelain alters bonding strength unfavorably.

  16. Improvements in low-cost label-free QPI microscope for live cell imaging

    NASA Astrophysics Data System (ADS)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-07-01

    This paper reports an improvement in the development of a low-cost QPI microscope offering new capabilities in term of phase measurement accuracy for label-free live samples in the longer term (i.e., hours to days). The spatially separated scattered and non-scattered image light fields are reshaped in the Fourier plane and modulated to form an interference image at a CCD camera. The apertures that enable these two beams to be generated have been optimised by means of laser-cut apertures placed on the mirrors of a Michelson interferometer and has improved the phase measuring and reconstruction capability of the QPI microscope. The microscope was tested with transparent onion cells as an object of interest.

  17. Evaluation of confocal microscopy system performance.

    PubMed

    Zucker, R M; Price, O

    2001-08-01

    The confocal laser scanning microscope (CLSM) has been used by scientists to visualize three-dimensional (3D) biological samples. Although this system involves lasers, electronics, optics, and microscopes, there are few published tests that can be used to assess the performance of this equipment. Usually the CLSM is assessed by subjectively evaluating a biological/histological test slide for image quality. Although there is a use for the test slide, there are many other components in the CLSM that need to be assessed. It would be useful if tests existed that produced reference values for machine performance. The aim of this research was to develop quality assurance tests to ensure that the CLSM was stable while delivering reproducible intensity measurements with excellent image quality. Our ultimate research objective was to quantify fluorescence using a CLSM. To achieve this goal, it is essential that the CLSM be stable while delivering known parameters of performance. Using Leica TCS-SP1 and TCS-4D systems, a number of tests have been devised to evaluate equipment performance. Tests measuring dichroic reflectivity, field illumination, lens performance, laser power output, spectral registration, axial resolution, laser stability, photomultiplier tube (PMT) reliability, and system noise were either incorporated from the literature or derived in our laboratory to measure performance. These tests are also applicable to other manufacturer's systems with minor modifications. A preliminary report from our laboratory has addressed a number of the QA issues necessary to achieve CLSM performance. This report extends our initial work on the evaluation of CLSM system performance. Tests that were described previously have been modified and new tests involved in laser stability and sensitivity are described. The QA tests on the CLSM measured laser power, PMT function, dichroic reflection, spectral registration, axial registration, system noise and sensitivity, lens performance, and laser stability. Laser power stability varied between 3% and 30% due to various factors, which may include incompatibility of the fiber-optic polarization with laser polarization, thermal instability of the acoustical optical transmission filter (AOTF), and laser noise. The sensitivity of the system was measured using a 10-microm Spherotech bead and the PMTs were assessed with the CV concept (image noise). The maximum sensitivity obtainable on our TCS-SP1 system measured on the 10-microm Spherotech beads was approximately 4% for 488 nm, 2.5% for 568 nm, 20% for 647 nm, and 19% for 365 nm laser light. The values serve as a comparison to test machine sensitivity from the same or different manufacturers. QA tests are described on the CLSM to assess performance and ensure that reproducing data are obtained. It is suggested strongly that these tests be used in place of a biological/histological sample to evaluate system performance. The tests are more specific and can recognize instrument functionality and problems better than a biological/histological sample. Utilization of this testing approach will eliminate the subjective assessment of the CLSM and may allow the data from different machines to be compared. These tests are essential if one is interested in making intensity measurements on experimental samples as well as obtaining the best signal detection and image resolution from a CLSM. Published 2001 Wiley-Liss, Inc.

  18. Color digital lensless holographic microscopy: laser versus LED illumination.

    PubMed

    Garcia-Sucerquia, Jorge

    2016-08-20

    A comparison of the performance of color digital lensless holographic microscopy (CDLHM) as utilized for illumination of RGB lasers or a super-bright white-light LED with a set of spectral filters is presented. As the use of lasers in CDLHM conceals the possibility of having a compact, lightweight, portable, and low cost microscope, and additionally the limited available laser radiation wavelengths limit a real multispectral imaging microscope, here we present the use of super-bright white-light LED and spectral filters for illuminating the sample. The performance of RGB laser-CDLHM and LED-CDLHM is evaluated on imaging a section of the head of a Drosophila melanogaster fly. This comparison shows that there is trade-off between the spatial resolution of the microscope and the light sources utilized, which can be understood with regard to the coherence properties of the illuminating light. Despite the smaller spatial coherence features of LED-CDLHM in comparison with laser-CDLHM, the former shows promise as a portable RGB digital lensless holographic microscope that could be extended to other wavelengths by the use of different spectral filters.

  19. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.

    PubMed

    Yan, Xiao-Jun; Yang, Da-Zhi

    2006-04-01

    The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio. (c) 2005 Wiley Periodicals, Inc.

  20. Light and scanning electron microscope investigations comparing calculus removal using an Er:YAG laser and a frequency-doubled alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas; Sadegh, Hamid M. M.; Goldin, Dan S.

    1997-05-01

    With respect to lasers emitting within the mid-IR spectral domain fiber applicators are being developed. Intended is the use of these lasers in periodontal therapy and their application inside the gingival pocket. Aim of the study presented here is to compare the effect of an Er:YAG laser on dental calculus with the results following irradiation with a frequency doubled Alexandrite laser. The surface of freshly extracted wisdom teeth and of extracted teeth suffering from severe periodontitis were irradiated with both laser wavelengths using a standardized application protocol. Calculus on the enamel surface, at the enamel cementum junction and on the root surface was irradiated. For light microscope investigations undecalcified histological sections were prepared after treatment. For the scanning electron microscope teeth were dried in alcohol and sputtered with gold. Investigations revealed that with both laser systems calculus can be removed. Using the frequency doubled Alexandrite laser selective removal of calculus is possible while engaging the Er:YAG laser even at lowest energies necessary for calculus removal healthy cementum is ablated without control.

  1. An in-vitro evaluation of the effect of 980 nm diode laser irradiation on intra-canal dentin surface and dentinal tubule openings after biomechanical preparation: Scanning electron microscopic study

    PubMed Central

    Jhingan, Pulkit; Sandhu, Meera; Jindal, Garima; Goel, Deepti; Sachdev, Vinod

    2015-01-01

    Context: Very recently, diode laser has been used for disinfecting the root canals in endodontic treatment and increasing its success rate and longevity utilizing the thermal effect of laser on surrounding tissues. Aims: The aim of this study is to evaluate the effect of 980 nm laser irradiation on intra-canal dentin surface – scanning electron microscopic (SEM) - in-vitro study. Methods: A total of 40 single-rooted freshly extracted permanent teeth were collected. Teeth were sectioned at the cemento-enamel junction using diamond disc. Root canals of all samples were prepared using hand ProTaper, which were randomly assigned into two groups (n = 20 each). Group 1: Receiving no treatment after biomechanical preparation; Group 2: 980 nm diode laser-treated root canals. Teeth were prepared for SEM analysis to check the size of intra-canal dentinal tubule openings. Statistical Analysis Used: Data were analyzed using SPSS V.16 software and compared using Levene's and independent t-test. Results: On statistical analysis, width of intracanal dentinal tubule openings in Group 1 (control) was significantly higher than those observed in Group 2 (diode laser-treated) (P < 0.001). Conclusion: This study showed that the application of 980 nm diode laser on intra-radicular dentin resulted in ultrastructural alterations resulting in melting of dentin. PMID:26097338

  2. Material removal effect of microchannel processing by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Chen, Lei; Chen, Jianxiong; Tu, Yiliu

    2017-11-01

    Material processing using ultra-short-pulse laser is widely used in the field of micromachining, especially for the precision processing of hard and brittle materials. This paper reports a theoretical and experimental study of the ablation characteristics of a silicon wafer under micromachining using a femtosecond laser. The ablation morphology of the silicon wafer surface is surveyed by a detection test with an optical microscope. First, according to the relationship between the diameter of the ablation holes and the incident laser power, the ablation threshold of the silicon wafer is found to be 0.227 J/cm2. Second, the influence of various laser parameters on the size of the ablation microstructure is studied and the ablation morphology is analyzed. Furthermore, a mathematical model is proposed that can calculate the ablation depth per time for a given laser fluence and scanning velocity. Finally, a microchannel milling test is carried out on the micromachining center. The effectiveness and accuracy of the proposed models are verified by comparing the estimated depth to the actual measured results.

  3. Bayesian analysis of two diagnostic methods for paediatric ringworm infections in a teaching hospital.

    PubMed

    Rath, S; Panda, M; Sahu, M C; Padhy, R N

    2015-09-01

    Quantitatively, conventional methods of diagnosis of tinea capitis or paediatric ringworm, microscopic and culture tests were evaluated with Bayes rule. This analysis would help in quantifying the pervasive errors in each diagnostic method, particularly the microscopic method, as a long-term treatment would be involved to eradicate the infection by the use of a particular antifungal chemotherapy. Secondly, the analysis of clinical data would help in obtaining digitally the fallible standard of the microscopic test method, as the culture test method is taken as gold standard. Test results of 51 paediatric patients were of 4 categories: 21 samples were true positive (both tests positive), and 13 were true negative; the rest samples comprised both 14 false positive (microscopic test positivity with culture test negativity) and 3 false negative (microscopic test negativity with culture test positivity) samples. The prevalence of tinea infection was 47.01% in the population of 51 children. The microscopic test of a sample was efficient by 87.5%, in arriving at a positive result on diagnosis, when its culture test was positive; and, this test was efficient by 76.4%, in arriving at a negative result, when its culture test was negative. But, the post-test probability value of a sample with both microscopic and culture tests would be correct in distinguishing a sample from a sick or a healthy child with a chance of 71.5%. However, since the sensitivity of the analysis is 87.5%, the microscopic test positivity would be easier to detect in the presence of infection. In conclusion, it could be stated that Trychophyton rubrum was the most prevalent species; sensitivity and specificity of treating the infection, by antifungal therapy before ascertaining by the culture method remain as 0.8751 and 0.7642, respectively. A correct/coveted diagnostic method of fungal infection would be could be achieved by modern molecular methods (matrix-assisted laser desorption ionisation-time of flight mass spectrometry or fluorescence in situ hybridization or enzyme-linked immunosorbent assay [ELISA] or restriction fragment length polymorphism or DNA/RNA probes of known fungal taxa) in advanced laboratories. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Endonasal laser-assisted microscopic dacryocystorhinostomy: surgical technique and follow-up results.

    PubMed

    Farzampour, Shahrokh; Fayazzadeh, Ehsan; Mikaniki, Ebrahim

    2010-01-01

    Endonasal dacryocystorhinostomy is known as an increasingly attractive and effective approach for the surgical treatment of nasal duct obstruction with minimal complications and best cosmetic consequences. In a relatively large-scale case-series study over a 5-year period, we describe the surgical technique and 12-month follow-up results of microscopic laser dacryocystorhinostomy with particular regard to the effect of various pre-/postoperational factors (ie, patients' sex, age, symptoms chronicity, previous interventions, duration of silicone intubation) on the surgical outcome. A total of 162 cases in 151 patients with chronic epiphora, mucocele, or recurrent episodes of dacryocystitis were included in the study. Endonasal laser dacryocystorhinostomy was performed using a surgical microscope with transcanalicular lacrimal sac illumination. The laser types used were potassium-titanyl-phosphate and neodymium:yttrium-aluminum-garnet for ablation of nasal mucosa and application to bone, respectively. Patients were evaluated 6 months and 1 year later. Data were analyzed by chi(2) tests. There were no major complications during or after the operations. Complete cure occurred in 89.5% (after 6 months) and 74.2% (after 1 year) of the cases. Anatomical patency was shown by lacrimal system irrigation with fluorescein in 81.5% of the cases after the 12-month follow-up. It was found that patients younger than 55 years, with symptoms lasting less than 1 year, and without history of nasal problems, had significantly higher surgical success rates (P < .05). Moreover, rates of failure were significantly lower in cases whose canaliculi were intubated for 5 to 6 months (P < .05). Endonasal microscopic laser dacryocystorhinostomy is a safe and minimally invasive procedure with reasonable results. It has many advantages over external or other conventional approaches. Successful results could be further enhanced by more wisely selecting the patients and by silicone extubation after 6 months. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Laser-assisted manufacturing of super-insulation materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhang, Tao; Park, Byung Kyu; Lee, Woo Il; Hwang, David

    2017-02-01

    Being lightweight materials with good mechanical and thermal properties, hollow glass micro-particles (HGMPs) have been widely studied for multiple applications. In this study, it is shown that by using reduced binder fraction diluted in solvent, enables minimal contacts among the HGMPs assisted by a natural capillary trend, as confirmed by optical and electron microscope imaging. Such material architecture fabricated in a composite level proves to have enhanced thermal insulation performance through quantitative thermal conductivity measurement. Mechanical strength has also been evaluated in terms of particle-binder bonding by tensile test via in-situ microscope inspection. Effect of laser treatment was examined for further improvement of thermal and mechanical properties by selective binder removal and efficient redistribution of remaining binder components. The fabricated composite materials have potential applications to building insulation materials for their scalable manufacturing nature, improved thermal insulation performance and reasonable mechanical strength. Further studies are needed to understand mechanical and thermal properties of the resulting composites, and key fabrication mechanisms involved with laser treatment of complex multi-component and multi-phase systems.

  6. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters.

    PubMed

    Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki

    2011-03-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.

  7. A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice

    NASA Astrophysics Data System (ADS)

    Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter

    2005-12-01

    We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.

  8. Development of principles of two-cascaded laser speckle-microscopy with implication to high-precision express diagnostics of chlamydial infection

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega; Moiseeva, Yulia; Filonova, Nadezhda; Subbotina, Irina; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Ulyanov, Sergey; Larionova, Olga; Utz, Sergey; Feodorova, Valentina

    2018-04-01

    Principles of two-cascaded laser speckle-microscopy prospect for application to express diagnostics of chlamydial infection are developed. Prototype of two-cascaded speckle-microscope is designed and tested. Specific case of illumination of bacterial cells by dynamic speckles is considered. Express method of detection of epithelial cells, containing defects, which are caused by Chlamydia trachomatis bacteria, is suggested. Results of improved recognition of C. trachomatis bacteria are discussed.

  9. Construction of a femtosecond laser microsurgery system.

    PubMed

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2010-03-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.

  10. Characteristics of plasma scalds in multilayer dielectric films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Zhao, Yuan'an; Li, Dawei; Hu, Guohang; Gao, Yanqi; Fan, Zhengxiu; Shao, Jianda

    2011-07-01

    Plasma scalding is one of the most typical laser damage morphologies induced by a nanosecond laser with a wavelength of 1053nm in HfO2/SiO2 multilayer films. In this paper, the characteristics of plasma scalds are systematically investigated with multiple methods. The scalding behaves as surface discoloration under a microscope. The shape is nearly circular when the laser incidence angle is close to normal incidence and is elliptical at oblique incidence. The nodular-ejection pit is in the center of the scalding region when the laser irradiates at the incidence angle close to normal incidence and in the right of the scalding region when the laser irradiates from left to right at oblique incidence. The maximum damage size of the scalding increases with laser energy. The edge of the scalding is high compared with the unirradiated film surface, and the region tending to the center is concave. Plasma scald is proved to be surface damage. The maximum depth of a scald increases with its size. Tiny pits of nanometer scale can be seen in the scalding film under a scanning electronic microscope at a higher magnification. The absorptions of the surface plasma scalds tend to be approximately the same as the lower absorptions of test sites without laser irradiation. Scalds do not grow during further illumination pulses until 65J/cm2. The formation of surface plasma scalding may be related to the occurrence of the laser-supported detonation wave.

  11. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.

    PubMed

    Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing

    2016-01-25

    Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.

  12. The design and construction of a cost-efficient confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Rajwa, Bartlomiej; Jones, James T.; Robinson, J. Paul

    2007-03-01

    The optical dissection ability of confocal microscopy makes it a powerful tool for biological materials. However, the cost and complexity of confocal scanning laser microscopy hinders its wide application in education. We describe the construction of a simplified confocal scanning laser microscope and demonstrate three-dimensional projection based on cost-efficient commercial hardware, together with available open source software.

  13. A stand-alone compact EUV microscope based on gas-puff target source.

    PubMed

    Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk

    2017-02-01

    We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  14. Effect of photon-initiated photoacoustic streaming, passive ultrasonic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study.

    PubMed

    Akcay, Merve; Arslan, Hakan; Mese, Merve; Durmus, Nazlı; Capar, Ismail Davut

    2017-09-01

    The aim of this in vitro study was to evaluate the efficacy of different irrigation techniques including laser-activated irrigation using an erbium:yttrium-aluminum-garnet (Er:YAG) laser with a novel tip design (photon-induced photoacoustic streaming (PIPS)), Er:YAG laser with Preciso tip, sonic activation, and passive ultrasonic activation on the final irrigation solution penetration into dentinal tubules by using a laser scanning confocal microscope. In this study, 65 extracted single-rooted human mandibular premolars were instrumented up to size 40 and randomly divided into 5 groups (n = 13) based on the activation technique of the final irrigation solution as follows: conventional irrigation (control group), sonic activation, passive ultrasonic activation, Er:YAG-PIPS tip activation, and Er:YAG-Preciso tip activation. In each group, 5 mL of 5% NaOCl labeled with fluorescent dye was used during the activation as the final irrigation solution. Specimens were sectioned at 2.5 and 8 mm from the apex and then examined under a confocal microscope to calculate the dentinal tubule penetration area. Data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post hoc tests (P = 0.05). Both Er:YAG laser (Preciso/PIPS) activations exhibited a significantly higher penetration area than the other groups (P < 0.05). Additionally, passive ultrasonic activation had significantly higher penetration than the sonic activation group and the control group. Statistically significant differences were also found between each root canal third (coronal > middle > apical) (P < 0.001). The results from the present study support the use of Er:YAG laser activation (Preciso/PIPS) to improve the effectiveness of the final irrigation procedure by increasing the irrigant penetration area into the dentinal tubules. The activation of the irrigant and the creation of the streaming with the Er:YAG laser have a positive effect on the irrigant penetration.

  15. A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution

    DOE PAGES

    Zastrau, U.; Rodel, C.; Nakatsutsumi, M.; ...

    2018-02-05

    We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less

  16. A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zastrau, U.; Rodel, C.; Nakatsutsumi, M.

    We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Here, imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense mattermore » studies of micrometer-sized samples in laser-plasma experiments.« less

  17. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  18. To boldly glow ... applications of laser scanning confocal microscopy in developmental biology.

    PubMed

    Paddock, S W

    1994-05-01

    The laser scanning confocal microscope (LSCM) is now established as an invaluable tool in developmental biology for improved light microscope imaging of fluorescently labelled eggs, embryos and developing tissues. The universal application of the LSCM in biomedical research has stimulated improvements to the microscopes themselves and the synthesis of novel probes for imaging biological structures and physiological processes. Moreover the ability of the LSCM to produce an optical series in perfect register has made computer 3-D reconstruction and analysis of light microscope images a practical option.

  19. Light Microscopy Microscope Experiment

    NASA Image and Video Library

    2016-02-04

    Ground testing for the first confocal Light Microscopy Microscope (LMM) Experiment. Procter and Gamble is working with NASA Glenn scientists to prepare for a study that examines product stabilizers in a microgravity environment. The particles in the tube glow orange because they have been fluorescently tagged with a dye that reacts to green laser lights to allow construction of a 3D image point by point. The experiment, which will be sent to the ISS later this year, will help P&G develop improved product stabilizers to extend shelf life and develop more environmentally friendly packaging.

  20. Laser focal profiler based on forward scattering of a nanoparticle

    NASA Astrophysics Data System (ADS)

    Ota, Taisuke

    2018-03-01

    A laser focal intensity profiling method based on the forward scattering from a nanoparticle is demonstrated for in situ measurements using a laser focusing system with six microscope objective lenses with different numerical apertures ranging from 0.15 to 1.4. The measured profiles showed Airy disc patterns although their rings showed some imperfections due to aberrations and misalignment of the test system. The dipole radiation model revealed that the artefact of this method was much smaller than the influence of the deterioration in the experimental system; a condition where no artefact appears was predicted based on proper selection of measurement angles.

  1. Microscopically proven cure of actinic cheilitis by CO/sub 2/ laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, D.C.

    1987-01-01

    Actinic cheilitis is a premalignant condition of the lip frequently seen in individuals with chronic sun exposure. Various surgical and ablative therapies have been employed, but microscopic outcome has not been well documented. In this study CO/sub 2/ laser ablation was performed on 16 patients with actinic cheilitis that involved 50% or greater of the lower lip. Pre- and post-treatment biopsies were performed to assess results of therapy. After treatment all 16 patients showed microscopic clearing of atypical cells and disorderly maturation characteristic of actinic cheilitis. One patient had clinical recurrence at 14 months, which was retreated with laser.

  2. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    NASA Astrophysics Data System (ADS)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  3. Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope.

    PubMed

    Klauss, André; Hille, Carsten

    2017-01-01

    The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.

  4. Fully microscopic analysis of laser-driven finite plasmas using the example of clusters

    NASA Astrophysics Data System (ADS)

    Peltz, Christian; Varin, Charles; Brabec, Thomas; Fennel, Thomas

    2012-06-01

    We discuss a microscopic particle-in-cell (MicPIC) approach that allows bridging of the microscopic and macroscopic realms of laser-driven plasma physics. The simultaneous resolution of collisions and electromagnetic field propagation in MicPIC enables the investigation of processes that have been inaccessible to rigorous numerical scrutiny so far. This is illustrated by the two main findings of our analysis of pre-ionized, resonantly laser-driven clusters, which can be realized experimentally in pump-probe experiments. In the linear response regime, MicPIC data are used to extract the individual microscopic contributions to the dielectric cluster response function, such as surface and bulk collision frequencies. We demonstrate that the competition between surface collisions and radiation damping is responsible for the maximum in the size-dependent lifetime of the Mie surface plasmon. The capacity to determine the microscopic underpinning of optical material parameters opens new avenues for modeling nano-plasmonics and nano-photonics systems. In the non-perturbative regime, we analyze the formation and evolution of recollision-induced plasma waves in laser-driven clusters. The resulting dynamics of the electron density and local field hot spots opens a new research direction for the field of attosecond science.

  5. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  6. Protective effect of basic fibroblast growth factor on laser induced retinopathy

    PubMed Central

    Kartal, Unal; Koptagel, Emel; Bulut, H. Eray; Erdogan, Haydar

    2013-01-01

    AIM To investigate the side effects of the commonly used laser treatment along with testing the neuroprotective effect of bFGF on a potential retinal impairment. METHODS To do this, 30 chinchilla pigmented adult male rabbits were divided into the control and experimental groups. The control and experimental groups underwent both laser application and bFGF treatment. The retinal tissue impairment and its renewal rate were tested under the light and electron microscopical levels. RESULTS The focal laser application on rabbit eyes caused morphological alterations both in the application region and in the neighbouring areas. In the damaged areas, the outer nuclear layer of the neural retina was almost disappeared, retina pigment epithelium was interrupted, the retina pigment epithelium migrated intraretinally, and the damaged region along with neighbouring areas seemed to be not separated. bFGF application just after the laser photocoagulation, revealed better results in application areas. CONCLUSION It could be suggested that the bFGF application following laser photocoagulation might have protective, repairing and wound healing effects on the retina. PMID:24392319

  7. Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings

    PubMed Central

    Kong, Dejun; Song, Renguo

    2018-01-01

    Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555

  8. Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.

    PubMed

    He, Xing; Kong, Dejun; Song, Renguo

    2018-01-26

    Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.

  9. Quantification of incisal tooth wear in upper anterior teeth: conventional vs new method using toolmakers microscope and a three-dimensional measuring technique.

    PubMed

    Al-Omiri, Mahmoud K; Sghaireen, Mohd G; Alzarea, Bader K; Lynch, Edward

    2013-12-01

    This study aimed to quantify tooth wear in upper anterior teeth using a new CAD-CAM Laser scanning machine, tool maker microscope and conventional tooth wear index. Fifty participants (25 males and 25 females, mean age = 25 ± 4 years) were assessed for incisal tooth wear of upper anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 1 year later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System. Scanned images were printed and examined under a toolmaker microscope to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyze the data. TWI scores for incisal edges were 0-3 and were similar at both occasions. Score 4 was not detected. Wear values measured by directly assessing the dies under the toolmaker microscope (range = 113 - 150 μm, mean = 130 ± 20 μm) were significantly more than those measured from Cercon Digital Machine images (range=52-80 μm, mean = 68 ± 23 μm) and both showed significant differences between the two occasions. Wear progression in upper anterior teeth was effectively detected by directly measuring the dies or the images of dies under toolmaker microscope. Measuring the dies of worn dentition directly under tool maker microscope enabled detection of wear progression more accurately than measuring die images obtained with Cercon Digital Machine. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Low-power noncontact photoacoustic microscope for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, Krishnan; Strohm, Eric M.; Kolios, Michael C.

    2017-04-01

    An inexpensive noncontact photoacoustic (PA) imaging system using a low-power continuous wave laser and a kilohertz-range microphone has been developed. The system operates in both optical and PA imaging modes and is designed to be compatible with conventional optical microscopes. Aqueous coupling fluids are not required for the detection of the PA signals; air is used as the coupling medium. The main component of the PA system is a custom designed PA imaging sensor that consists of an air-filled sample chamber and a resonator chamber that isolates a standard kilohertz frequency microphone from the input laser. A sample to be examined is placed on the glass substrate inside the chamber. A laser focused to a small spot by a 40× objective onto the substrate enables generation of PA signals from the sample. Raster scanning the laser over the sample with micrometer-sized steps enables high-resolution PA images to be generated. A lateral resolution of 1.37 μm was achieved in this proof of concept study, which can be further improved using a higher numerical aperture objective. The application of the system was investigated on a red blood cell, with a noise-equivalent detection sensitivity of 43,887 hemoglobin molecules (72.88×10-21 mol or 72.88 zeptomol). The minimum pressure detectable limit of the system was 19.1 μPa. This inexpensive, compact noncontact PA sensor is easily integrated with existing commercial optical microscopes, enabling optical and PA imaging of the same sample. Applications include forensic measurements, blood coagulation tests, and monitoring the penetration of drugs into human membrane.

  11. 75 FR 23272 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ...) Protection in Sunscreen Products Description of Invention: There are different types of ultraviolet (UV) rays..., PhD at 301-435-3131 or [email protected] for more information. Laser Scanning Microscopy for Three... data from a high-speed laser-scanning microscope and compute motion of the sample under the microscope...

  12. Curved adjustable fibre-optic diode laser in microscopic cholesteatoma surgery: description of use and review of the relevant literature.

    PubMed

    McCaffer, C J; Pabla, L; Watson, C

    2018-04-01

    The use of lasers in cholesteatoma surgery is common and well accepted. The most commonly used laser fibres are straight and non-adjustable; these have several limitations. This paper describes the use of an alternative laser fibre. This 'How I Do It' paper describes and illustrates the use of an alternative curved adjustable fibre-optic diode laser in microscopic cholesteatoma surgery. The curved, adjustable laser fibre allows accurate and atraumatic disease removal when the use of a straight laser fibre may be less effective or accurate. It reduces potential damage to delicate structures without the need for extra drilling or bone removal. It is suggested that the curved adjustable laser fibre is superior to the traditional straight fibre for cholesteatoma surgery.

  13. EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: APPLICATIONS FOR IMAGING MORPHOLOGY AND DEATH IN EMBRYOS AND REPRODUCTIVE TISSUE/ORGANS

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. It is remarkable that procedures to test the performance of these machines are not done routinely by most investigators and thus many of the machines in the field are working at level...

  14. Research on microstructure and wear resistance of coatings obtained by adding nanoparticles of refractory compounds in laser cladding

    NASA Astrophysics Data System (ADS)

    Murzakov, M. A.; Chirikov, S. N.; Markushov, Y. V.

    2016-09-01

    The paper is aimed at research of coatings, which are achieved by means of laser cladding with additives of nanoparticles of high-melting compounds in form of tungsten carbide and tantalum (WC and TaC). In the course of experiment, various ceramic powder concentrations were tested. Main technological characteristics were determined. Power density amounted to 0.68-0.98 MW/cm2. During the coating wear resistance measurement, it was discovered that increase in nanopowder concentration extended wear resistance of coating 2-6 times. Wear resistance measurement and wear coefficient calculation were performed using Brinell-Howarth method. The load was 15 N, load time was 10 minutes. Optical metallographic microscope Neophot-30 was used to study microstructure of the deposited coatings. To reveal microstructure of the deposited coatings, the samples were exposed to chemical etching. Elemental composition of the samples was determined by the methods of X- ray microanalysis in testing solution using electron microscope EVO-50 under acceleration voltage 10-20 kV (probe current 5-50 nA) using energy- and wavelength-dispersive spectrometers.

  15. Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.

    PubMed

    Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R

    2016-12-01

    Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.

  16. Treating onychomycoses of the toenail: clinical efficacy of the sub-millisecond 1,064 nm Nd: YAG laser using a 5 mm spot diameter.

    PubMed

    Kimura, Utako; Takeuchi, Kaori; Kinoshita, Ayako; Takamori, Kenji; Hiruma, Masataro; Suga, Yasushi

    2012-04-01

    Onychomycosis is a relatively common fungal infection. Current treatments have limited applicability and low cure rates. Recently introduced laser therapy has shown to be a safe and effective treatment for onychomycosis. In this study, we evaluate a submillisecond Nd:YAG 1,064 nm laser for treating onychomycoses of the tonail. Thirteen subjects (9 female, 4 male) with 37 affected toenails received 1 to 3 treatments 4 and/or 8 weeks apart with a sub-millisecond 1,064 nm Nd:YAG laser. Diagnosis of onychomycosis was confirmed with microscopy. Average follow-up time was 16 weeks post-final treatment. Photos were taken and degree of turbidity was determined using a turbidity scale (ranging from "0 = clear nail" to "10 = completely turbid nail") at each visit. Improvement in turbidity was determined by comparison of turbidity scores at baseline and 16-week follow-up on average. Efficacy was assessed by an overall improvement scale (0 to 4), which combined improvement in turbidity scores and microscopic examination. Overall improvement was classified as "4 = complete clearance" if the turbidity score indicated "0 = clear nail" accompanied by a negative microscopic result. No microscopic examination was performed unless the turbidity score showed "0 = clear nail." Treatments were well tolerated by all subjects and there were no adverse events. Of the 37 toenails treated, 30 (81%) had "moderate" to "complete" clearance average of 16 weeks post-final treatment. Nineteen toenails (51%) were completely clear and all tested negative for fungal infection on direct microscopic analysis. Seven (19%) toenails had significant clearance and four (11%) had moderate clearance. The preliminary results of this study show this treatment modality is safe and effective for the treatment of onychomycosis in the short term. Additional studies are needed to more fully assess the clinical and mycological benefits as well as optimize the treatment protocol and parameters.

  17. Fit Analysis of Different Framework Fabrication Techniques for Implant-Supported Partial Prostheses.

    PubMed

    Spazzin, Aloísio Oro; Bacchi, Atais; Trevisani, Alexandre; Farina, Ana Paula; Dos Santos, Mateus Bertolini

    2016-01-01

    This study evaluated the vertical misfit of implant-supported frameworks made using different techniques to obtain passive fit. Thirty three-unit fixed partial dentures were fabricated in cobalt-chromium alloy (n = 10) using three fabrication methods: one-piece casting, framework cemented on prepared abutments, and laser welding. The vertical misfit between the frameworks and the abutments was evaluated with an optical microscope using the single-screw test. Data were analyzed using one-way analysis of variance and Tukey test (α = .05). The one-piece casted frameworks presented significantly higher vertical misfit values than those found for framework cemented on prepared abutments and laser welding techniques (P < .001 and P < .003, respectively). Laser welding and framework cemented on prepared abutments are effective techniques to improve the adaptation of three-unit implant-supported prostheses. These techniques presented similar fit.

  18. An integrated laser trap/flow control video microscope for the study of single biomolecules.

    PubMed Central

    Wuite, G J; Davenport, R J; Rappaport, A; Bustamante, C

    2000-01-01

    We have developed an integrated laser trap/flow control video microscope for mechanical manipulation of single biopolymers. The instrument is automated to maximize experimental throughput. A single-beam optical trap capable of trapping micron-scale polystyrene beads in the middle of a 200-microm-deep microchamber is used, making it possible to insert a micropipette inside this chamber to hold a second bead by suction. Together, these beads function as easily exchangeable surfaces between which macromolecules of interest can be attached. A computer-controlled flow system is used to exchange the liquid in the chamber and to establish a flow rate with high precision. The flow and the optical trap can be used to exert forces on the beads, the displacements of which can be measured either by video microscopy or by laser deflection. To test the performance of this instrument, individual biotinylated DNA molecules were assembled between two streptavidin beads, and the DNA elasticity was characterized using both laser trap and flow forces. DNA extension under varying forces was measured by video microscopy. The combination of the flow system and video microscopy is a versatile design that is particularly useful for the study of systems susceptible to laser-induced damage. This capability was demonstrated by following the translocation of transcribing RNA polymerase up to 650 s. PMID:10920045

  19. A simple but precise method for quantitative measurement of the quality of the laser focus in a scanning optical microscope

    PubMed Central

    MACRAE, K.; TRAVIS, C.; AMOR, R.; NORRIS, G.; WILSON, S.H.; OPPO, G.‐L.; MCCONNELL, G.

    2015-01-01

    Summary We report a method for characterizing the focussing laser beam exiting the objective in a laser scanning microscope. This method provides the size of the optical focus, the divergence of the beam, the ellipticity and the astigmatism. We use a microscopic‐scale knife edge in the form of a simple transmission electron microscopy grid attached to a glass microscope slide, and a light‐collecting optical fibre and photodiode underneath the specimen. By scanning the laser spot from a reflective to a transmitting part of the grid, a beam profile in the form of an error function can be obtained and by repeating this with the knife edge at different axial positions relative to the beam waist, the divergence and astigmatism of the postobjective laser beam can be obtained. The measured divergence can be used to quantify how much of the full numerical aperture of the lens is used in practice. We present data of the beam radius, beam divergence, ellipticity and astigmatism obtained with low (0.15, 0.7) and high (1.3) numerical aperture lenses and lasers commonly used in confocal and multiphoton laser scanning microscopy. Our knife‐edge method has several advantages over alternative knife‐edge methods used in microscopy including that the knife edge is easy to prepare, that the beam can be characterized also directly under a cover slip, as necessary to reduce spherical aberrations for objectives designed to be used with a cover slip, and it is suitable for use with commercial laser scanning microscopes where access to the laser beam can be limited. PMID:25864964

  20. Note: Tandem Kirkpatrick-Baez microscope with sixteen channels for high-resolution laser-plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Wang, Zhanshan; Wei, Lai; Liu, Dongxiao; Cao, Leifeng; Gu, Yuqiu

    2018-03-01

    Multi-channel Kirkpatrick-Baez (KB) microscopes, which have better resolution and collection efficiency than pinhole cameras, have been widely used in laser inertial confinement fusion to diagnose time evolution of the target implosion. In this study, a tandem multi-channel KB microscope was developed to have sixteen imaging channels with the precise control of spatial resolution and image intervals. This precise control was created using a coarse assembly of mirror pairs with high-accuracy optical prisms, followed by precise adjustment in real-time x-ray imaging experiments. The multilayers coated on the KB mirrors were designed to have substantially the same reflectivity to obtain a uniform brightness of different images for laser-plasma temperature analysis. The study provides a practicable method to achieve the optimum performance of the microscope for future high-resolution applications in inertial confinement fusion experiments.

  1. Laser-induced surface deformation microscope for the study of the dynamic viscoelasticity of plasma membrane in a living cell.

    PubMed

    Morisaku, Toshinori; Yui, Hiroharu

    2018-05-15

    A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.

  2. Nanosecond laser-induced ablation and laser-induced shockwave structuring of polymer foils down to sub-μm patterns

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.

    2015-03-01

    Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).

  3. Use of scanning near-field optical microscope with an aperture probe for detection of luminescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    The suitability of scanning near-field optical microscopy (SNOM) to image photoluminescent diamond nanoparticles with nanoscale resolution is demonstrated. Isolated diamond nanocrystals with an average size of 100 nm, containing negatively charged nitrogen-vacancy (NV-) centers, were chosen as tested material. The NV- luminescence was stimulated by continuous 532 nm laser light. Sizes of analyzed crystallites were monitored by an atomic force microscope. The lateral resolution of the order of 100 nm was reached in SNOM imaging of diamond nanoparticles using 150 nm square aperture of the probe.

  4. Self-mixing laser diode included in scanning microwave microscope to the control of probe nanodisplacement

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal, A. V.; Astakhov, E. I.; Dobdin, S. Y.

    2018-04-01

    The possibilities of self-mixing interferometry for measuring nanodisplacement of a probe included in a near-field scanning microwave microscope have been considered. The features of the formation of a laser interference signal at current modulation of the wavelength of laser radiation have been investigated. Experimental responses of a semiconductor laser system included in scanning microwave microscope to control nanodisplacement of the probe have been demonstrated.To register the nanodisplacement of the probe, it is proposed to use the method of determining the stationary phase of a laser interference signal by low-frequency spectrum of a semiconductor laser. The change of the amplitudes of the spectral components in the spectrum of the interference signal due to creation of the standing wave in the external resonator of the laser self-mixing system has been shown. The form of the interference signal at current modulation of the radiation wavelength was experimentally obtained when the probe moves with a step of 80 nm. The results of measuring nanodisplacements of an electromagnetic translator STANDA 8MVT40-13 have been demonstrated. Deviation of the nanodisplacement of the proposed method does not exceed 15%.

  5. Histologic comparison of microscopic treatment zones induced by fractional lasers and radiofrequency.

    PubMed

    Shin, Min-Kyung; Choi, Jeong Hwee; Ahn, Soo Beom; Lee, Mu Hyoung

    2014-12-01

    Fractional photothermolysis induces microscopic, localized thermal injury in the skin surrounded by undamaged viable tissue in order to promote wound healing. This study evaluated acute histologic changes following each single pass of various fractional lasers and radiofrequency (RF). Three male domestic swine were used. We used fractional Erbium:glass (Er:glass), Erbium:yttrium-aluminum-garnet (Er:YAG), CO2 lasers, and fractional ablative microplasma RF. We analyzed features and average values of the diameter, depth, and vertical sectional areas treated with each kind of laser and RF. The microscopic treatment zone (MTZ) of fractional Er:glass resulted in separation of dermoepidermal junction with no ablative zone. Fractional Er:YAG provided the most superficial and broad MTZ with little thermal collateral damage. Fractional CO2 resulted in a narrow and deep "cone"-like MTZ. Fractional RF resulted in a superficial and broad "crater"-like MTZ. This study provides the first comparison of MTZs induced by various fractional lasers and RF. These data provide basic information on proper laser and RF options. We think that these findings could be a good reference for information about fractional laser-assisted drug delivery.

  6. Parameters in selective laser melting for processing metallic powders

    NASA Astrophysics Data System (ADS)

    Kurzynowski, Tomasz; Chlebus, Edward; Kuźnicka, Bogumiła; Reiner, Jacek

    2012-03-01

    The paper presents results of studies on Selective Laser Melting. SLM is an additive manufacturing technology which may be used to process almost all metallic materials in the form of powder. Types of energy emission sources, mainly fiber lasers and/or Nd:YAG laser with similar characteristics and the wavelength of 1,06 - 1,08 microns, are provided primarily for processing metallic powder materials with high absorption of laser radiation. The paper presents results of selected variable parameters (laser power, scanning time, scanning strategy) and fixed parameters such as the protective atmosphere (argon, nitrogen, helium), temperature, type and shape of the powder material. The thematic scope is very broad, so the work was focused on optimizing the process of selective laser micrometallurgy for producing fully dense parts. The density is closely linked with other two conditions: discontinuity of the microstructure (microcracks) and stability (repeatability) of the process. Materials used for the research were stainless steel 316L (AISI), tool steel H13 (AISI), and titanium alloy Ti6Al7Nb (ISO 5832-11). Studies were performed with a scanning electron microscope, a light microscopes, a confocal microscope and a μCT scanner.

  7. Wide field video-rate two-photon imaging by using spinning disk beam scanner

    NASA Astrophysics Data System (ADS)

    Maeda, Yasuhiro; Kurokawa, Kazuo; Ito, Yoko; Wada, Satoshi; Nakano, Akihiko

    2018-02-01

    The microscope technology with wider view field, deeper penetration depth, higher spatial resolution and higher imaging speed are required to investigate the intercellular dynamics or interactions of molecules and organs in cells or a tissue in more detail. The two-photon microscope with a near infrared (NIR) femtosecond laser is one of the technique to improve the penetration depth and spatial resolution. However, the video-rate or high-speed imaging with wide view field is difficult to perform with the conventional two-photon microscope. Because point-to-point scanning method is used in conventional one, so it's difficult to achieve video-rate imaging. In this study, we developed a two-photon microscope with spinning disk beam scanner and femtosecond NIR fiber laser with around 10 W average power for the microscope system to achieve above requirements. The laser is consisted of an oscillator based on mode-locked Yb fiber laser, a two-stage pre-amplifier, a main amplifier based on a Yb-doped photonic crystal fiber (PCF), and a pulse compressor with a pair of gratings. The laser generates a beam with maximally 10 W average power, 300 fs pulse width and 72 MHz repetition rate. And the beam incident to a spinning beam scanner (Yokogawa Electric) optimized for two-photon imaging. By using this system, we achieved to obtain the 3D images with over 1mm-penetration depth and video-rate image with 350 x 350 um view field from the root of Arabidopsis thaliana.

  8. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  9. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  10. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M

    2016-06-21

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  11. Comparison of laser regimes for stamp cleaning

    NASA Astrophysics Data System (ADS)

    Radvan, Roxana N.; Dan, Suzana; Popovici, Nicoleta; Striber, J.; Savastru, Dan; Savastru, Roxana

    2001-10-01

    This paper presents a comparative study of the laser cleaning regimes applied to colored substrates with various chromatic characteristics, including colored paper and printed paper with different dpi (dots per inch) values. Tests are done under microscope with high precision techniques, using controlled Nd:YAG laser. The wavelength preponderantly used in the experiments is the Nd:YAG fundamental regime (1064 nm). Parallel experiments at 532 nm have been developed on difficult cases, or when the results were not satisfactory with 1064 nm. The main part of the work presents some results on stamp cleaning. Experimental results indicate that cleaning efficiency is correlated with the color of substrate, age of the ink on the stamp, color quality and paper quality.

  12. Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin

    2018-07-01

    This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.

  13. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser.

    PubMed

    Zheng, Chong; Hu, Anming; Li, Ruozhou; Bridges, Denzel; Chen, Tao

    2015-06-29

    Embedded microball lenses with superior optical properties function as convex microball lens (VMBL) and concave microball lens (CMBL) were fabricated inside a PMMA substrate with a high repetition rate femtosecond fiber laser. The VMBL was created by femtosecond laser-induced refractive index change, while the CMBL was fabricated due to the heat accumulation effect of the successive laser pulses irradiation at a high repetition rate. The processing window for both types of the lenses was studied and optimized, and the optical properties were also tested by imaging a remote object with an inverted microscope. In order to obtain the microball lenses with adjustable focal lengths and suppressed optical aberration, a shape control method was thus proposed and examined with experiments and ZEMAX® simulations. Applying the optimized fabrication conditions, two types of the embedded microball lenses arrays were fabricated and then tested with imaging experiments. This technology allows the direct fabrication of microlens inside transparent bulk polymer material which has great application potential in multi-function integrated microfluidic devices.

  14. Sealing ability of three root-end filling materials prepared using an erbium: Yttrium aluminium garnet laser and endosonic tip evaluated by confocal laser scanning microscopy

    PubMed Central

    Nanjappa, A Salin; Ponnappa, KC; Nanjamma, KK; Ponappa, MC; Girish, Sabari; Nitin, Anita

    2015-01-01

    Aims: (1) To compare the sealing ability of mineral trioxide aggregate (MTA), Biodentine, and Chitra-calcium phosphate cement (CPC) when used as root-end filling, evaluated under confocal laser scanning microscope using Rhodamine B dye. (2) To evaluate effect of ultrasonic retroprep tip and an erbium:yttrium aluminium garnet (Er:YAG) laser on the integrity of three different root-end filling materials. Materials and Methods: The root canals of 80 extracted teeth were instrumented and obturated with gutta-percha. The apical 3 mm of each tooth was resected and 3 mm root-end preparation was made using ultrasonic tip (n = 30) and Er:YAG laser (n = 30). MTA, Biodentine, and Chitra-CPC were used to restore 10 teeth each. The samples were coated with varnish and after drying, they were immersed in Rhodamine B dye for 24 h. The teeth were then rinsed, sectioned longitudinally, and observed under confocal laser scanning microscope. Statistical Analysis Used: Data were analyzed using one-way analysis of variance (ANOVA) and a post-hoc Tukey's test at P < 0.05 (R software version 3.1.0). Results: Comparison of microleakage showed maximum peak value of 0.45 mm for Biodentine, 0.85 mm for MTA, and 1.05 mm for Chitra-CPC. The amount of dye penetration was found to be lesser in root ends prepared using Er:YAG laser when compared with ultrasonics, the difference was found to be statistically significant (P < 0.05). Conclusions: Root-end cavities prepared with Er:YAG laser and restored with Biodentine showed superior sealing ability compared to those prepared with ultrasonics. PMID:26180420

  15. Fiber laser-microscope system for femtosecond photodisruption of biological samples

    PubMed Central

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.

    2012-01-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105

  16. Craters and nanostructures on BaF2 sample induced by a focused 46.9nm laser

    NASA Astrophysics Data System (ADS)

    Cui, Huaiyu; Zhang, Shuqing; Li, Jingjun; Lu, Haiqiang; Zhao, Yongpeng

    2017-08-01

    We successfully damaged BaF2 samples by a 46.9nm capillary discharge laser of 100μJ focused by a toroidal mirror at a grazing incidence. Ablation craters with clear boundaries were detected by optical microscope and atomic force microscope (AFM). Laser-induced nanostructures with a period of ˜1μm were observed in the ablation area under single pulse irradiation and multiple pulses irradiation. The surface behavior was compared and analyzed with that induced by the laser of 50μJ. The nanostructures were supposed to be attributed to the thermoelastic effect and the period of the structures was effected by the energy of the laser.

  17. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers.

    PubMed

    Lu, Feng; Belkin, Mikhail A

    2011-10-10

    We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

  18. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W [Livermore, CA

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  19. Research on aspheric focusing lens processing and testing technology in the high-energy laser test system

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Fu, Xiu-hua; Jia, Zong-he; Wang, Zhe; Dong, Huan

    2014-08-01

    In the high-energy laser test system, surface profile and finish of the optical element are put forward higher request. Taking a focusing aspherical zerodur lens with a diameter of 100mm as example, using CNC and classical machining method of combining surface profile and surface quality of the lens were investigated. Taking profilometer and high power microscope measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 0.5μm and the surface finish is □, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  20. Multimodal nonlinear microscope based on a compact fiber-format laser source

    NASA Astrophysics Data System (ADS)

    Crisafi, Francesco; Kumar, Vikas; Perri, Antonio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario

    2018-01-01

    We present a multimodal non-linear optical (NLO) laser-scanning microscope, based on a compact fiber-format excitation laser and integrating coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and two-photon-excitation fluorescence (TPEF) on a single platform. We demonstrate its capabilities in simultaneously acquiring CARS and SRS images of a blend of 6-μm poly(methyl methacrylate) beads and 3-μm polystyrene beads. We then apply it to visualize cell walls and chloroplast of an unprocessed fresh leaf of Elodea aquatic plant via SRS and TPEF modalities, respectively. The presented NLO microscope, developed in house using off-the-shelf components, offers full accessibility to the optical path and ensures its easy re-configurability and flexibility.

  1. Fracture resistance of Nd:YAG laser-welded cast titanium joints with various clinical thicknesses and welding pulse energies.

    PubMed

    Lin, Mau-Chin; Lin, Sheng-Chieh; Wang, Yu-Tsai; Hu, Suh-Woan; Lee, Tzu-Hsin; Chen, Li-Kai; Huang, Her-Hsiung

    2007-05-01

    The purpose of this study was to evaluate the fracture resistance of Nd:YAG laser-welded cast titanium (Ti) joints with various clinical thicknesses and welding pulse energies. A four-point bending test was used to assess the effects of various specimen thicknesses (1-3 mm) and welding pulse energies (11-24 J) on the fracture resistance of Nd:YAG laser-welded Ti dental joints. Fracture resistance was evaluated in terms of the ratio of the number of fractured specimens to the number of tested specimens. As for the fracture frequencies, they were compared using the Cochran-Mantel-Haenszel test. Morphology of the fractured Ti joints was observed using a scanning electron microscope. Results showed that decreasing the specimen thickness and/or increasing the welding pulse energy, i.e., increasing the welded area percentage, resulted in an increase in the fracture resistance of the Ti joint. Where fracture occurred, the fracture site would be at the center of the weld metal.

  2. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  3. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  4. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  5. Laser-assisted electron tunneling in a STM junction

    NASA Astrophysics Data System (ADS)

    Chang, Shunhua Thomas

    2000-10-01

    Since its introduction in 1981, the Nobel prize-winning scanning tunneling microscope (STM) has been developed into a powerful yet conceptually simple instrument, replacing traditional scanning and transmission electron microscopes (SEM/TEM) in many of the microscopic surface phenomenon studies. The strength of the STM stems from the sensitive tunneling current-potential barrier width relationship of the electron tunneling process, and has been used to re-examine the frequency-mixing and harmonic generation properties of an non-linear metal- oxide-metal (MOM) tunneling junction. In this research, electron-tunneling events under polarized laser radiation at 514.5-nm argon and 10.6-μm carbon dioxide laser wavelengths were investigated. The objective is to understand the underlying interactive mechanisms between the tunneling junction and the external laser excitation. A commercial scanning tunneling microscope head and controller were incorporated into the experimental setup. Operation characteristics and the electrical properties of the STM junction were determined. Tunneling current and distance responses with respect to different laser polarization, modulation frequency, incident power, and tunneling distance were also conducted. From the experimental results it is shown that thermal expansion effect was the dominant source of response for laser modulation frequency up to about 100 kHz, in quantitative agreement with theoretical calculations. Different laser polarizations as the experiments demonstrated did not contribute significantly to the STM response in the investigated frequency range. The electric field induced by the laser beam was calculated to be one to two order of magnitudes lower than the field required to initiate field emission where the tunneling junction I- V curve is most non-linear. Also, the electrical coupling of the incident laser at the STM junction was determined to be non-critical at visible laser wavelength, and the reflected laser energy from the sample re-entering the junction was shown to be weak and did not influence the ongoing electron tunneling process. In conclusion, the thermal expansion of the physical tunneling junction was found to be responsible to the tunneling current modulation in a laser - STM setup for laser modulation frequencies in the lower frequency range.

  6. Improving confocal microscopy with solid-state semiconductor excitation sources

    NASA Astrophysics Data System (ADS)

    Sivers, Nelson L.

    To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.

  7. Soft x-ray imaging with incoherent sources

    NASA Astrophysics Data System (ADS)

    Wachulak, P.; Torrisi, A.; Ayele, M.; Bartnik, A.; Czwartos, J.; Wegrzyński, Ł.; Fok, T.; Parkman, T.; Vondrová, Š.; Turnová, J.; Odstrcil, M.; Fiedorowicz, H.

    2017-05-01

    In this work we present experimental, compact desk-top SXR microscope, the EUV microscope which is at this stage a technology demonstrator, and finally, the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths, respectively, are capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range, to produce an imprint of the internal structure of the sample in a thin layer of SXR light sensitive photoresist. Applications of such desk-top EUV and SXR microscopes for studies of variety of different samples - test objects for resolution assessment and other objects such as carbon membranes, DNA plasmid samples, organic and inorganic thin layers, diatoms, algae and carcinoma cells, are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  8. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    PubMed

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  9. The effect of high energy concentration source irradiation on structure and properties of Fe-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Wirginia

    2016-06-01

    Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation process employing the high energy concentration sources.

  10. Examination of silicon solar cells by means of the Scanning Laser Acoustic Microscope (SLAM)

    NASA Technical Reports Server (NTRS)

    Vorres, C.; Yuhas, D. E.

    1981-01-01

    The Scanning Laser Acoustic Microscope produces images of internal structure in materials. The acoustic microscope is an imaging system based upon acoustic rather than electromagnetic waves. Variations in the elastic propertis are primarily responsible for structure visualized in acoustic micrographs. The instrument used in these investigations is the SONOMICROSCOPE 100 which can be operated at ultrasonic frequencies of from 30 MHz to 500 MHz. The examination of the silicon solar cells was made at 100 MHz. Data are presented in the form of photomicrographs.

  11. Silver Nanoscale Hexagonal Column Chips for Detecting Cell-free DNA and Circulating Nucleosomes in Cancer Patients.

    PubMed

    Ito, Hiroaki; Hasegawa, Katsuyuki; Hasegawa, Yuuki; Nishimaki, Tadashi; Hosomichi, Kazuyoshi; Kimura, Satoshi; Ohba, Motoi; Yao, Hiroshi; Onimaru, Manabu; Inoue, Ituro; Inoue, Haruhiro

    2015-05-21

    Blood tests, which are commonly used for cancer screening, generally have low sensitivity. Here, we developed a novel rapid and simple method to generate silver nanoscale hexagonal columns (NHCs) for use in surface-enhanced Raman scattering (SERS). We reported that the intensity of SERS spectra of clinical serum samples obtained from gastrointestinal cancer patients is was significantly higher than that of SERS spectra of clinical serum samples obtained from non-cancer patients. We estimated the combined constituents on silver NHCs by using a field emission-type scanning electron microscope, Raman microscopes, and a 3D laser scanning confocal microscope. We obtained the Raman scattering spectra of samples of physically fractured cells and clinical serum. No spectra were obtained for chemically lysed cultured cells and DNA, RNA, and protein extracted from cultured cells. We believe that our method, which uses SERS with silver NHCs to detect circulating nucleosomes bound by methylated cell-free DNA, may be successfully implemented in blood tests for cancer screening.

  12. Space-resolved diffusing wave spectroscopy measurements of the macroscopic deformation and the microscopic dynamics in tensile strain tests

    NASA Astrophysics Data System (ADS)

    Nagazi, Med-Yassine; Brambilla, Giovanni; Meunier, Gérard; Marguerès, Philippe; Périé, Jean-Noël; Cipelletti, Luca

    2017-01-01

    We couple a laser-based, space-resolved dynamic light scattering apparatus to a universal traction machine for mechanical extensional tests. We perform simultaneous optical and mechanical measurements on polyether ether ketone, a semi-crystalline polymer widely used in the industry. Due to the high turbidity of the sample, light is multiply scattered by the sample and the diffusing wave spectroscopy (DWS) formalism is used to interpret the data. Space-resolved DWS yields spatial maps of the sample strain and of the microscopic dynamics. An excellent agreement is found between the strain maps thus obtained and those measured by a conventional stereo-digital image correlation technique. The microscopic dynamics reveals both affine motion and plastic rearrangements. Thanks to the extreme sensitivity of DWS to displacements as small as 1 nm, plastic activity and its spatial localization can be detected at an early stage of the sample strain, making the technique presented here a valuable complement to existing material characterization methods.

  13. High-resolution interferometic microscope for traceable dimensional nanometrology in Brazil

    NASA Astrophysics Data System (ADS)

    Malinovski, I.; França, R. S.; Lima, M. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.

    2016-07-01

    The double color interferometric microscope is developed for step height standards nanometrology traceable to meter definition via primary wavelength laser standards. The setup is based on two stabilized lasers to provide traceable measurements of highest possible resolution down to the physical limits of the optical instruments in sub-nanometer to micrometer range of the heights. The wavelength reference is He-Ne 633 nm stabilized laser, the secondary source is Blue-Green 488 nm grating laser diode. Accurate fringe portion is measured by modulated phase-shift technique combined with imaging interferometry and Fourier processing. Self calibrating methods are developed to correct systematic interferometric errors.

  14. Two-photon microscopy and spectroscopy based on a compact confocal scanning head

    NASA Astrophysics Data System (ADS)

    Diaspro, Alberto; Chirico, Giberto; Federici, Federico; Cannone, Fabio; Beretta, Sabrina; Robello, Mauro; Olivini, Francesca; Ramoino, Paola

    2001-07-01

    We have combined a confocal laser scanning head modified for TPE (two-photon excitation) microscopy with some spectroscopic modules to study single molecules and molecular aggregates. The behavior of the TPE microscope unit has been characterized by means of point spread function measurements and of the demonstration of its micropatterning abilities. One-photon and two-photon mode can be simply accomplished by switching from a mono-mode optical fiber (one-photon) coupled to conventional laser sources to an optical module that allows IR laser beam (two- photon/TPE) delivery to the confocal laser scanning head. We have then described the characterization of the two-photon microscope for spectroscopic applications: fluorescence correlation, lifetime and fluorescence polarization anisotropy measurements. We describe the measurement of the response of the two-photon microscope to the light polarization and discuss fluorescence polarization anisotropy measurements on Rhodamine 6G as a function of the viscosity and on a globular protein, the Beta-lactoglobulin B labeled with Alexa 532 at very high dilutions. The average rotational and translational diffusion coefficients measured with fluorescence polarization anisotropy and fluorescence correlation methods are in good agreement with the protein size, therefore validating the use of the microscope for two-photon spectroscopy on biomolecules.

  15. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  16. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.

    PubMed Central

    Fan, G Y; Fujisaki, H; Miyawaki, A; Tsay, R K; Tsien, R Y; Ellisman, M H

    1999-01-01

    A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. PMID:10233058

  17. Recycling stainless steel orthodontic brackets with Er:YAG laser - An environmental scanning electron microscope and shear bond strength study.

    PubMed

    Chacko, Prince K; Kodoth, Jithesh; John, Jacob; Kumar, Kishore

    2013-07-01

    TO DETERMINE THE EFFICIENCY OF ERBIUM: Yttrium aluminum garnet (Er:YAG) laser with Environmental Scanning Electron Microscope (ESEM) and shear bond strength analysis as a method of recycling stainless steel orthodontic brackets and compare with other methods of recycling. Eighty samples of extracted premolar teeth bonded to SS brackets were tested for rebonded shear bond strength after recycling by four methods and compared with a control group of 20 samples. These 80 samples were randomized into four groups which were recycled by four methods, namely, sandblasting, thermal method, adhesive grinding by tungsten carbide bur, and Er: YAG laser method. After recycling, ESEM and shear bond strength analysis were used to analyze the efficiency of the recycling methods. ER: YAG laser group was found to be having the greatest bond strength among the recycled brackets (8.33±2.51 followed by the sandblasting at 6.12±1.12 MPa, thermal and electropolishing at 4.44±0.95 MPa, and lastly the adhesive grinding method at 3.08±1.07 MPa. The shear bond strength of Er: YAG laser group was found to be having no statistically significant difference with that of the control group (P>0.05 and had statistical signifance with sandblasting, thermal and electropolishing and adhesive grinding groups at P>0.001. ESEM analysis showed complete removal of adhesive from the brackets recycled with Er: YAG laser which mimicked that of the control group. ER: YAG laser (2940 nm) was found to be the most efficient method for recycling, followed by the sandblasting, thermal, and the tungsten carbide methods, which had the least shear bond strength value and is not fit for clinical usage.

  18. Frequency-doubled Alexandrite laser for use in periodontology: a scanning electron microscopic investigation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1996-12-01

    During prior studies it could be demonstrated that engaging a frequency double Alexandrite-laser allows a fast and strictly selective ablation of supra- and subgingival calculus. Furthermore, the removal of unstained microbial plaque was observed. First conclusions were drawn following light microscopic investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a scanning electron microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.

  19. CW laser use in biomedical research and practice

    NASA Astrophysics Data System (ADS)

    Matthopoulos, D. P.

    2003-04-01

    The communication of humans with their surrouding is achieved through their senses and the related organs. Visual communication using the eyes is made possible because the various sources of light, natural i.e. the sun or the lightning, or artificial such as Lasers, emit electromagnetic radiation which is either reflected or scattered by surfaces. This radiation received by eyes is processed in the brain where the images of the environment are developed. The luminous processing can be either macro- or microscopic. The macroscopic processing is the result of light coming from the sun or from wide range lamps, while the microscopic results from light coming from wide range lamps, mercury lamps, lasers or electron beam. The microscopic processing is the subject we are dealing with in this presentation.

  20. A setup for combined multiphoton laser scanning microscopic and multi-electrode patch clamp experiments on brain slices

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Reppen, Trond; Heggelund, Paul

    2009-02-01

    Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.

  1. ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance

    PubMed Central

    Hng, Keng Imm; Dormann, Dirk

    2013-01-01

    Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017

  2. Effects of Er:YAG laser irradiation on human dentin: polarizing microscopic, light microscopic and microradiographic observations, and FT-IR analysis.

    PubMed

    Ishizaka, Yaeko; Eguro, Toru; Maeda, Toru; Tanaka, Hisayoshi

    2002-01-01

    The effects of Er:YAG laser irradiation on dentin have not been sufficiently investigated. The purpose of this study was to investigate the effects of Er:YAG laser irradiation on dentin. After cavities were prepared using Er:YAG laser irradiation or rotary cutting instruments, histological observations of cavity-floor dentin utilizing polarizing microscopy, microradiography and light microscopy, and analysis of composition of cavity-floor dentin using Fourier-transformed (FT-IR) spectrometry were conducted. In the laser-treated side, a deeply stained basophilic layer was observed. The number of odontoblastic processes present was obviously less in the laser-treated side than in the bur-treated side. FT-IR analysis revealed that compared to the bur-treated side, a broad background peak at around 1,600 cm(-1) was present. Er:YAG laser irradiation might have denatured the organic materials of dentin. Copyright 2002 Wiley-Liss, Inc.

  3. Non-iterative characterization of few-cycle laser pulses using flat-top gates.

    PubMed

    Selm, Romedi; Krauss, Günther; Leitenstorfer, Alfred; Zumbusch, Andreas

    2012-03-12

    We demonstrate a method for broadband laser pulse characterization based on a spectrally resolved cross-correlation with a narrowband flat-top gate pulse. Excellent phase-matching by collinear excitation in a microscope focus is exploited by degenerate four-wave mixing in a microscope slide. Direct group delay extraction of an octave spanning spectrum which is generated in a highly nonlinear fiber allows for spectral phase retrieval. The validity of the technique is supported by the comparison with an independent second-harmonic fringe-resolved autocorrelation measurement for an 11 fs laser pulse.

  4. Effect of CO2 laser on Class V cavities of human molar teeth under a scanning electron microscope.

    PubMed

    Watanabe, I; Lopes, R A; Brugnera, A; Katayama, A Y; Gardini, A E

    1996-01-01

    The purpose of this study was to evaluate the effects of CO2 laser on dentin of class V cavities of extracted human molar teeth using a scanning electron microscope. SEM showed a smooth area with concentric lines formed by melting with subsequent recrystallization of dentin, areas of granulation, vitrified surface, numerous cracks, and irregular areas of descamative dentin. These data indicate that CO2 laser (4 and 6 watts) produces dentin alterations and limit its clinical applications.

  5. The Effects of CO2 Laser with or without Nanohydroxyapatite Paste in the Occlusion of Dentinal Tubules

    PubMed Central

    Al-maliky, Mohammed Abbood; Mahmood, Ali Shukur; Al-karadaghi, Tamara Sardar; Kurzmann, Christoph; Laky, Markus; Franz, Alexander; Moritz, Andreas

    2014-01-01

    The aim of this study was to evaluate a new treatment modality for the occlusion of dentinal tubules (DTs) via the combination of 10.6 µm carbon dioxide (CO2) laser and nanoparticle hydroxyapatite paste (n-HAp). Forty-six sound human molars were used in the current experiment. Ten of the molars were used to assess the temperature elevation during lasing. Thirty were evaluated for dentinal permeability test, subdivided into 3 groups: the control group (C), laser only (L−), and laser plus n-HAp (L+). Six samples, two per group, were used for surface and cross section morphology, evaluated through scanning electron microscope (SEM). The temperature measurement results showed that the maximum temperature increase was 3.2°C. Morphologically groups (L−) and (L+) presented narrower DTs, and almost a complete occlusion of the dentinal tubules for group (L+) was found. The Kruskal-Wallis nonparametric test for permeability test data showed statistical differences between the groups (P < 0.05). For intergroup comparison all groups were statistically different from each other, with group (L+) showing significant less dye penetration than the control group. We concluded that CO2 laser in moderate power density combined with n-HAp seems to be a good treatment modality for reducing the permeability of dentin. PMID:25386616

  6. Research on microstructure properties of the TiC/Ni-Fe-Al coating prepared by laser cladding technology

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Zan, Shaoping; Zhang, Wenwu; Sheng, Liyuan

    2017-10-01

    In this paper, the laser cladding method was used to preparation the TiC reinforced Ni-Fe-Al coating on the Ni base superalloy. The Ti/Ni-Fe-Al powder was preset on the Ni base superalloy and the powder layer thickness is 0.5mm. A fiber laser was used the melting Ti/Ni-Fe-Al powder in an inert gas environment. The shape of the cladding layer was tested using laser scanning confocal microscope (LSCM) under different cladding parameters such as the laser power, the melting velocity and the defocused amount. The microstructure, the micro-hardness was tested by LSCM, SEM, Vickers hardness tester. The test result showed that the TiC particles was distributed uniformly in the cladding layer and hardness of the cladding layer was improved from 180HV to 320HV compared with the Ni-Fe-Al cladding layer without TiC powder reinforced, and a metallurgical bonding was produced between the cladding layer and the base metal. The TiC powder could make the Ni-Fe-Al cladding layer grain refining, and the more TiC powder added in the Ni-Fe-Al powder, the smaller grain size was in the cladding layer.

  7. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  8. Biostimulation effects of low-energy laser radiation on yeast cell suspensions

    NASA Astrophysics Data System (ADS)

    Anghel, Sorin; Stanescu, Constantin S.; Giosanu, Dana; Neagu, Ionica; Savulescu, Geta; Iorga-Siman, Ion

    2000-02-01

    This paper presents work to determine the effects produced by low energy laser radiation on the metabolism and growth of a yeast cell suspension. As experimental material, we used young yeast culture in liquid medium, then distributed on a solid medium, to obtain isolated colonies. As laser source, we used a He-Ne laser, and the irradiation was made with different exposure times. Form each irradiated material, a sample of white grape sterile must was sowed, that has fermented at 18 divided by 20 degrees C for 10 divided by 15 days, after that some properties was tested. Some microscopic studies were also made. The results prove some influence of low energy laser irradiation, which can induce mutations, with new properties of the irradiated material. These mutations can be obtained in a positive sense, with new and important perspectives in wine industry. Also, we observed an inhibitory effect of the laser radiation on the yeast cell growth, due, probably to the too high values of the exposure.

  9. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments.

    PubMed

    Zavanelli, R A; Guilherme, A S; Pessanha-Henriques, G E; de Arruda Nóbilo, M Antônio; Mesquita, M F

    2004-10-01

    This study evaluated the corrosion-fatigue life of laser-repaired specimens fabricated from commercially pure titanium (CP Ti) and Ti-6Al-4V alloy, tested under different storage conditions. For each metal, 30 dumbbell rods with a central 2.3 mm diameter were prepared by lost-wax casting with the Rematitan System. Simulating the failure after service, corrosion-fatigue life in different media at room temperature (air, synthetic saliva and fluoride synthetic saliva) was determined at a testing frequency of 10 Hz for intact specimens and after laser repairing, using a square waveform with equal maximum tensile and compressive stress that was 30% lower than the 0.2% offset yield strength. For laser welding, the fractured specimens were rejoined using a jig to align the sections invested in type-IV dental stone. The adjacent areas of the gap was air-abraded with 100 microm aluminum oxide, laser welded and retested under the same conditions as the initial intact specimens. The number of cycles at failure was recorded, and the fracture surface was examined with a scanning electron microscope (SEM). The number of cycles for failure of the welded and intact specimens was compared by anova and the Tukey test at a 5% probability level. Within the limitations of this study, the number of cycles required for fracture decreased in wet environments and the laser repairing process adversely affected the life of both metals under the corrosion-fatigue conditions.

  10. Apertureless scanning microscope probe as a detector of semiconductor laser emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunaevskiy, Mikhail, E-mail: Mike.Dunaeffsky@mail.ioffe.ru; National Research University of Information Technologies, Mechanics and Optics; Dontsov, Anton

    2015-04-27

    An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the lightmore » absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.« less

  11. R-on-1 automatic mapping: A new tool for laser damage testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hue, J.; Garrec, P.; Dijon, J.

    1996-12-31

    Laser damage threshold measurement is statistical in nature. For a commercial qualification or for a user, the threshold determined by the weakest point is a satisfactory characterization. When a new coating is designed, threshold mapping is very useful. It enables the technology to be improved and followed more accurately. Different statistical parameters such as the minimum, maximum, average, and standard deviation of the damage threshold as well as spatial parameters such as the threshold uniformity of the coating can be determined. Therefore, in order to achieve a mapping, all the tested sites should give data. This is the major interestmore » of the R-on-1 test in spite of the fact that the laser damage threshold obtained by this method may be different from the 1-on-1 test (smaller or greater). Moreover, on the damage laser test facility, the beam size is smaller (diameters of a few hundred micrometers) than the characteristic sizes of the components in use (diameters of several centimeters up to one meter). Hence, a laser damage threshold mapping appears very interesting, especially for applications linked to large optical components like the Megajoule project or the National Ignition Facility (N.I.F). On the test bench used, damage detection with a Nomarski microscope and scattered light measurement are almost equivalent. Therefore, it becomes possible to automatically detect on line the first defects induced by YAG irradiation. Scattered light mappings and laser damage threshold mappings can therefore be achieved using a X-Y automatic stage (where the test sample is located). The major difficulties due to the automatic capabilities are shown. These characterizations are illustrated at 355 nm. The numerous experiments performed show different kinds of scattering curves, which are discussed in relation with the damage mechanisms.« less

  12. Quantification of tooth wear: conventional vs new method using toolmakers microscope and a three-dimensional measuring technique.

    PubMed

    Al-Omiri, Mahmoud K; Harb, Rousan; Abu Hammad, Osama A; Lamey, Philip-John; Lynch, Edward; Clifford, Thomas J

    2010-07-01

    This study aimed to evaluate the reliability of a new CAD-CAM Laser scanning machine in detection of incisal tooth wear through a 6-month period and to compare the accuracy of using this new machine against measuring tooth wear using tool maker microscope and conventional tooth wear index. Twenty participants (11 males and 9 females, mean age=22.7 years, SD=2.0) were assessed for incisal tooth wear of lower anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 6 months later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System (Cercon Smart Ceramics, DeguDent, Germany). Scanned images were printed and examined under a toolmaker microscope (Stedall-Dowding Machine Tool Company, Optique et Mecanique de Precision, Marcel Aubert SA, Switzerland) to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyse the data. TWI scores for incisal edges were 0, 1, and 2 and were similar at both occasions. Scores 3 and 4 were not detected. Wear values measured by directly assessing the dies under the tool maker microscope (range=517-656microm, mean=582microm, and SD=50) were significantly more than those measured from the Cercon digital machine images (range=132-193microm, mean =165microm, and SD=27) and both showed significant differences between the two occasions. Measuring images obtained with Cercon digital machine under tool maker microscope allowed detection of wear progression over the 6-month period. However, measuring the dies of worn dentition directly under the tool maker microscope enabled detection of wear progression more accurately. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Photoacoustic microscopic imaging of surface and subsurface damages in CFRP

    NASA Astrophysics Data System (ADS)

    Nakahata, Kazuyuki; Ogi, Keiji; Namita, Takeshi; Ohira, Katsumi; Maruyama, Masayuki; Shiina, Tsuyoshi

    2018-04-01

    Photoacoustic imaging comprises an optical excitation within a target zone and the detection of the ultrasonic wave so created. A pulsed laser illuminates the target zone, and this illumination causes rapid thermoelastic expansion that generates a broadband high-frequency ultrasonic wave (photoacoustic wave, PA). In this paper, we report proof-of-concept experiments for nondestructive testing of laminar materials using a PA microscope. A specimen containing carbon-fiber-reinforced plastic (CFRP) was used in this experiment and involved an artificial delamination. A 532-nm-wavelength laser irradiates the top surface of the specimen, and the resulting ultrasonic waves are received by a point-focusing immersion transducer on the same side. Our system estimated the depth and dimension of the subsurface delamination accurately. By coating a light-absorbing material on the surface, the amplitude of the PA wave increased. This finding shows that the signal-noise (S/N) ratio of the scattered wave from delaminations can be improved with the surface coatings.

  14. Energy and Technology Review

    NASA Astrophysics Data System (ADS)

    Poggio, Andrew J.

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.

  15. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    EPA Science Inventory

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation Analysis

    Phouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.
    <...

  16. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  17. Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo

    2013-12-02

    We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.

  18. Real-time quantum cascade laser-based infrared microspectroscopy in-vivo

    NASA Astrophysics Data System (ADS)

    Kröger-Lui, N.; Haase, K.; Pucci, A.; Schönhals, A.; Petrich, W.

    2016-03-01

    Infrared microscopy can be performed to observe dynamic processes on a microscopic scale. Fourier-transform infrared spectroscopy-based microscopes are bound to limitations regarding time resolution, which hampers their potential for imaging fast moving systems. In this manuscript we present a quantum cascade laser-based infrared microscope which overcomes these limitations and readily achieves standard video frame rates. The capabilities of our setup are demonstrated by observing dynamical processes at their specific time scales: fermentation, slow moving Amoeba Proteus and fast moving Caenorhabditis elegans. Mid-infrared sampling rates between 30 min and 20 ms are demonstrated.

  19. Effect of the Femtosecond Laser on an Intracorneal Inlay for Surgical Compensation of Presbyopia during Cataract Surgery: Scanning Electron Microscope Imaging.

    PubMed

    Ibarz, Marta; Rodríguez-Prats, Jose Luis; Hernández-Verdejo, Jose Luis; Tañá, Pedro

    2017-02-01

    To investigate the effect of the femtosecond laser-assisted cataract surgery (FLACS) on porcine eyes implanted with a Kamra corneal inlay and to describe how the inlay may change the effect of the femtosecond laser on the lens. FLACS was performed on six porcine eyes and a Kamra corneal inlay had been implanted, exploring the lens under the surgical microscope. Another Kamra corneal inlay was attached to the upper part of the transparent hemisphere used for calibration of the femtosecond laser. Capsulorhexis, arcuate incisions, and phacofragmentation were carried out. The Kamra corneal inlay was compared with a nontreated one using a scanning electron microscope (SEM), and the hemisphere was analyzed with a surgical microscope. Capsulorhexis and phacofragmentation were completed in all the porcine eyes, although accuracy to determine the exact effect on the lens was not possible to achieve. The effect of the femtosecond laser on the PMMA hemisphere through the Kamra corneal inlay showed the capsulorhexis was placed outside the outer margin of the inlay and a sharply sculpted fragmentation pattern with a three-dimensional (donut-shaped) annulus untreated beneath it. SEM images of the nontreated and the treated inlays were comparable. No ultrastructural changes were found in the treated Kamra corneal inlay. FLACS can be performed with a Kamra corneal inlay for surgical compensation of presbyopia without the risk of damaging the inlay. The Kamra corneal inlay acts as a screen that avoids the laser to reach the areas beneath its shadow, but not the exposed areas of the lens.

  20. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, Paul L.; Gourley, Mark F.

    1997-01-01

    An apparatus and method for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis thereof.

  1. Laser apparatus and method for microscopic and spectroscopic analysis and processing of biological cells

    DOEpatents

    Gourley, P.L.; Gourley, M.F.

    1997-03-04

    An apparatus and method are disclosed for microscopic and spectroscopic analysis and processing of biological cells. The apparatus comprises a laser having an analysis region within the laser cavity for containing one or more biological cells to be analyzed. The presence of a cell within the analysis region in superposition with an activated portion of a gain medium of the laser acts to encode information about the cell upon the laser beam, the cell information being recoverable by an analysis means that preferably includes an array photodetector such as a CCD camera and a spectrometer. The apparatus and method may be used to analyze biomedical cells including blood cells and the like, and may include processing means for manipulating, sorting, or eradicating cells after analysis. 20 figs.

  2. Nanoimaging using soft X-ray and EUV laser-plasma sources

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Ayele, Mesfin; Bartnik, Andrzej; Czwartos, Joanna; Węgrzyński, Łukasz; Fok, Tomasz; Fiedorowicz, Henryk

    2018-01-01

    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications.

  3. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods.

    PubMed

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-09-29

    The keeper and cast dowel-coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt-chromium, CoCr; silver-palladium-gold, PdAu; gold-platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr-keeper complex but not to the AuPt-keeper complex. Only the keeper area of cast CoCr-keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt-keeper complexes had the highest free corrosion potential, followed by the PdAu-keeper complex. We concluded that although the corrosion resistance of the CoCr-keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr- and PdAu-keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt-keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area.

  4. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods

    PubMed Central

    Wu, Min-Ke; Song, Ning; Liu, Fei; Kou, Liang; Lu, Xiao-Wen; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-01-01

    The keeper and cast dowel–coping, as a primary component for a magnetic attachment, is easily subjected to corrosion in a wet environment, such as the oral cavity, which contains electrolyte-rich saliva, complex microflora and chewing behaviour and so on. The objective of this in vitro study was to examine the corrosion resistance of a dowel and coping-keeper complex fabricated by finish keeper and three alloys (cobalt–chromium, CoCr; silver–palladium–gold, PdAu; gold–platinum, AuPt) using a laser-welding process and a casting technique. The surface morphology characteristics and microstructures of the samples were examined by means of metallographic microscope and scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) with SEM provided elements analysis information for the test samples after 10% oxalic acid solution etching test. Tafel polarization curve recordings demonstrated parameter values indicating corrosion of the samples when subjected to electrochemical testing. This study has suggested that massive oxides are attached to the surface of the CoCr–keeper complex but not to the AuPt–keeper complex. Only the keeper area of cast CoCr–keeper complex displayed obvious intergranular corrosion and changes in the Fe and Co elements. Both cast and laser-welded AuPt–keeper complexes had the highest free corrosion potential, followed by the PdAu–keeper complex. We concluded that although the corrosion resistance of the CoCr–keeper complex was worst, the keeper surface passive film was actually preserved to its maximum extent. The laser-welded CoCr– and PdAu–keeper complexes possessed superior corrosion resistance as compared with their cast specimens, but no significant difference was found between the cast and laser-welded AuPt–keeper complexes. The Fe-poor and Cr-rich band, appearing on the edge of the keeper when casting, has been proven to be a corrosion-prone area. PMID:27388806

  5. Effects of Laser Remelting and Oxidation on NiCrAlY/8Y2O3-ZrO2 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Xu, S. Q.; Zhu, C.; Zhang, Y.

    2018-02-01

    In this study, three groups of thermal barrier coatings (TBCs) samples were remelted by CO2 laser with different laser energy densities (1, 5 and 10 J/mm2) to seal the surface of yttria-stabilized zirconia (YSZ) coatings. Microscopic observations showed that the cracks size and the remelted depth in YSZ coatings increased. A 50-μm-thick dense layer was formed on the surface of YSZ coating in samples with 1 J/mm2 energy density. Microindentation tests showed that the Vickers hardness of YSZ coatings increases with the increase in laser energy density. After isothermal oxidation at 1200 °C for 200 h, thinner thermally growth oxides were found in laser remelted YSZ samples under energy density of 1 J/mm2 (6.32 ± 0.28 μm). Cyclic oxidation results showed that the weight gain per unit area of low energy density laser remelted TBCs was smaller than that of the high energy density laser remelted and as-sprayed TBCs.

  6. Control and acquisition systems for new scanning transmission x-ray microscopes at Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.

    2002-03-01

    Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope and integration with visual light microscopy indexing of the samples. The beam line 7.0 microscope upgrade is a new design which will replace the existing microscope. The design is similar to that of beam line 5.3.2, including interferometric position encoding. However the acquisition and control is based on VXI systems, a Sun computer, and LABVIEW™ software. The main objective of the BL 7.0 microscope upgrade is to achieve precise image scans at very high speed (pixel dwells as short as 10 μs) to take full advantage of the high brightness of the 7.0 undulator beamline. Results of tests and a discussion of the benefits of our scanning microscope designs will be presented.

  7. Ultrastructural analysis of dental ceramic surface processed by a 1070 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Fornaini, C.; Merigo, E.; Poli, F.; Rocca, J.-P.; Selleri, S.; Cucinotta, A.

    2018-04-01

    Background: Lithium di-silicate dental ceramic bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fibre laser for their surface treatment. Methods: Samples were irradiated by a pulsed fibre laser at 1070 nm with different parameters (peak power of 5, 7.5, and 10 kW, repetition rate (RR) 20 kHz, speed of 10 and 50 mm/sec, and total energy density from 1.3 to 27 kW/cm2) Subsequently, the surface modifications were analysed by optical microscope, scanning electron microscope (SEM) and energy dispersive X-ray Spectroscopy (EDS). Results: With a peak power of 5 kW, RR of 20 kHz, and speed of 50 mm/sec, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Conclusions: A 1070 nm fibre laser can be considered as a good device to increase the adhesion of lithium di-silicate ceramics when optimum parameters are considered.

  8. Nd:YOV4 laser polishing on WC-Co HVOF coating

    NASA Astrophysics Data System (ADS)

    Giorleo, L.; Ceretti, E.; Montesano, L.; La Vecchia, G. M.

    2017-10-01

    WC/Co coatings are widely applied to different types of components due to their extraordinary performance properties including high hardness and wear properties. In industrial applications High Velocity Oxy-Fuel (HVOF) technique is extensively used to deposit hard metal coatings. The main advantage of HVOF compared to other thermal spray techniques is the ability to accelerate the melted powder particles of the feedstock material at a relatively high velocity, leading to obtain good adhesion and low porosity level. However, despite the mentioned benefits, the surface finish quality of WC-Co HVOF coatings results to be poor (Ra higher than 5 µm) thus a mechanical polishing process is often needed. The main problem is that the high hardness of coating leads the polishing process expensive in terms of time and tool wear; moreover polishing becomes difficult and not always possible in case of limited accessibility of a part, micro dimensions or undercuts. Nowadays a different technique available to improve surface roughness is the laser polishing process. The polishing principle is based on focused radiation of a laser beam that melts a microscopic layer of surface material. Compared to conventional polishing process (as grinding) it ensures the possibility of avoiding tool wear, less pollution (no abrasive or liquids), no debris, less machining time and coupled with a galvo system it results to be more suitable in case of 3D complex workpieces. In this paper laser polishing process executed with a Nd:YOV4 Laser was investigated: the effect of different process parameters as initial coating morphology, laser scan speed and loop cycles were tested. Results were compared by a statistical approach in terms of average roughness along with a morphological analysis carried out by Scanning Electron Microscope (SEM) investigation coupled with EDS spectra.

  9. The effect of different angiolytic lasers on resolution of subepithelial mucosal hematoma in an animal model.

    PubMed

    Novakovic, Daniel; D'Elia, Joanna; Branski, Ryan C; Blitzer, Andrew

    2014-06-01

    Vocal fold hematoma is traditionally managed with a period of voice rest, in the order of weeks, to allow natural resolution. This study is designed to examine the efficacy and safety of a number of hemoglobin-avid (vascular) lasers when used in the setting of acute vocal fold hematoma. Venous blood drawn from 4 white rabbits was used to create an array of subepithelial hematomas in the buccal cavities of each animal. Laser energy from I of 3 different lasers (532-nm pulsed potassium titanyl phosphate [KTP], 532-nm diode KTP, and 940-nm diode laser) was applied to each of the test hematomas at varying energy levels. Hematoma sites were photographed at days 0, 1, 5, 7, 9, and 12. Two animals were sacrificed on day 7 and the remainder on day 12. Histological evaluation of collateral tissue damage and residual hematoma was performed on biopsy specimens. Macroscopic and microscopic ulceration at laser-treated sites was mostly resolved by day 7. Inflammatory cell infiltrate was present in laser-treated and hematoma-only sites. Laser-treated samples showed alterations in vascularity. Hemoglobin-avid lasers may be beneficial in accelerating subepithelial hematoma resolution with a favorable tissue damage profile.

  10. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  11. Routine use of the CO2 laser technique for resection of cerebral tumours.

    PubMed

    Deruty, R; Pelissou-Guyotat, I; Mottolese, C; Amat, D

    1993-01-01

    The CO2 laser technique has been routinely used from 1988 through 1992 for the resection of 93 cerebral tumours (meningiomas 58%, gliomas 15%, neurinomas 9%, miscellaneous 18%). The CO2 laser technique was found the more effective 1) in tumours of hard consistency, 2) in large or giant tumours, 3) in tumours with scarce vascularization. Meningiomas were the indication of choice (54 cases that is 58% of all tumours treated with CO2 laser, and 64% of all meningiomas operated on during the same period). Among the meningiomas treated with the CO2 laser, 54% were located on the skull base. The CO2 laser beam provides good haemostasis of small vessels during the vaporization process. When attached to the operative microscope, the other advantages of the CO2 laser technique are: the absence of a handle-piece, the absence of manual manipulation of the tumour, the coaxiality of the laser beam with the visual beam. The disadvantages are: the rigidity of the coupled microscope-Laser arm, the smoke produced by the vaporization of hard tumours, the noise of the device.

  12. Laser versus traditional techniques in cerebral and brain stem gliomas

    NASA Astrophysics Data System (ADS)

    Lombard, Gian F.

    1996-01-01

    In medical literature no significant studies have been published on the effectiveness of laser compared with traditional procedures in two series of cerebral gliomas; for this reason we have studied 220 tumors (200 supratentorial -- 20 brain stem gliomas), 110 operated upon with laser, 100 with conventional techniques. Four surgical protocols have been carried out: (1) traditional techniques; (2) carbon dioxide laser free hand; (3) carbon dioxide laser plus microscope; (4) multiple laser sources plus microscope plus neurosector plus CUSA. Two laser sources have been used alone or in combination (carbon dioxide -- Nd:YAG 1.06 or 1.32). Patients have been monitored for Karnofsky scale before and after operation, 12 - 24 and 36 months later; and for survival rate. Tumors were classified by histological examination, dimensions, vascularization, topography (critical or non critical areas). Results for supratentorial gliomas: survival time is the same in both series (laser and traditional). Post- op morbidity is significantly improved in the laser group (high grade sub-group); long term follow-up shows an improvement of quality of life until 36 months in the low grade sub-group.

  13. Effect of Heat Input and Post-Weld Heat Treatment on the Mechanical and Metallurgical Characteristics of Laser-Welded Maraging Steel Joints

    NASA Astrophysics Data System (ADS)

    Karthikeyan, R.; Saravanan, M.; Singaravel, B.; Sathiya, P.

    This paper investigates the impact of heat input and post-weld aging behavior at different temperatures on the laser paper welded maraging steel grade 250. Three different levels of heat inputs were chosen and CO2 laser welding was performed. Aging was done at six different temperatures: 360∘C, 400∘C, 440∘C, 480∘C, 520∘C and 560∘C. The macrostructure and microstructure of the fusion zone were obtained using optical microscope. The microhardness test was performed on the weld zone. Tensile tests and impact tests were carried out for the weld samples and different age-treated weld samples. Fracture surfaces were investigated by scanning electron microscopy (SEM). Microhardness values of the fusion zone increased with increasing aging temperature, while the base metal microhardness value decreased. Tensile properties increased with aging temperature up to 480∘C and reduced for 520∘C and 560∘C. This was mainly due to the formation of reverted austenite beyond 500∘C. XRD analysis confirmed the formation of reverted austenite.

  14. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  15. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Xu, Zifa; Wang, Qiang; Sheng, Liyuan; Zhang, Wenwu

    2018-07-01

    Experiments with different joining parameters were carried out on fiber laser welding system to explore the mechanism of CFRTP/stainless steel joining and the influence of the parameters on the joining quality. The thermal defect and the microstructure of the joint was tested by SEM, EDS. The joint strength and the thermal defect zone width was measured by the tensile tester and the laser confocal microscope, respectively. The influence of parameters such as the laser power, the joining speed and the clamper pressure on the stainless steel surface thermal defect and the joint strength was analyzed. The result showed that the thermal defect on the stainless steel surface would change metal's mechanical properties and reduce its service life. A chemical bonding was found between the CFRTP and the stainless steel besides the physical bonding and the mechanical bonding. The highest shear stress was obtained as the laser power, the joining speed and the clamper pressure is 280 W, 4 mm/s and 0.15 MPa, respectively.

  16. Microstructure and properties of laser-clad high-temperature wear-resistant alloys

    NASA Astrophysics Data System (ADS)

    Yang, Yongqiang

    1999-02-01

    A 2-kW CO 2 laser with a powder feeder was used to produce alloy coatings with high temperature-wear resistance on the surface of steel substrates. To analyze the microstructure and microchemical composition of the laser-clad layers, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray microanalysis system was employed. X-ray diffraction techniques were applied to characterize the phases formed during the cladding process. The results show that the microstructure of the cladding alloy consists mainly of many dispersed particles (W 2C, (W,Ti)C 1- x, WC), a lamellar eutectic carbide M 12C, and an (f.c.c) matrix. Hardness tested at room and high temperature showed that the laser-clad zone has a moderate room temperature hardness and relatively higher elevated temperature hardness. The application of the laser-clad layer to a hot tool was very successful, and its operational life span was prolonged 1 to 4 times.

  17. Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles

    PubMed Central

    Zharov, Vladimir P.; Mercer, Kelly E.; Galitovskaya, Elena N.; Smeltzer, Mark S.

    2006-01-01

    We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420–570 nm, 12 ns, 0.1–5 J/cm2, 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing. PMID:16239330

  18. Characterization of laser induced damage of HR coatings with picosecond pulses

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Zhao, Yuan'an; Cui, Yun; Wang, Yueliang; Peng, Xiaocong; Shan, Chong; Zhu, Meiping; Wang, Jianguo; Shao, Jianda

    2017-11-01

    The effect of protective layer on the picosecond laser-induced damage behaviors of HfO2/SiO2 high-reflective (HR) coatings are explored. Two kinds of 1064nm HR coatings with and without protective layer are deposited by electron beam evaporation. Laser-induced damage tests are conducted with 1064nm, 30ps S-polarized and P-polarized pulses with different angle of incidence (AOI) to make the electric fields intensity in the HR coatings discrepantly. Damage morphology and cross section of damage sites were characterized by scanning electron microscope (SEM) and focused ion beam (FIB), respectively. It is found that SiO2 protective layer have a certain degree of improvement on laser induced damage threshold (LIDT) for every AOIs. The onset damage initiated very near to the Max peak of e-field, after which forms ripple-like pits. The damage morphology presents as layer delamination at high fluence. The Laser damage resistance is correspond with the maximum E-intensity in the coating stacks.

  19. Scalable patterning using laser-induced shock waves

    NASA Astrophysics Data System (ADS)

    Ilhom, Saidjafarzoda; Kholikov, Khomidkhodza; Li, Peizhen; Ottman, Claire; Sanford, Dylan; Thomas, Zachary; San, Omer; Karaca, Haluk E.; Er, Ali O.

    2018-04-01

    An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the surface. Scanning electron microscope and optical microscope images show that various patterns were obtained on the surface with high fidelity. One-dimensional profile analysis indicates that the depth of the patterned sample initially increases with the laser energy and later levels off. Our simulations of laser irradiation process also confirm that high temperature and high pressure could be generated when the laser energy density of 2 J/cm2 is used.

  20. Direct laser sintered WC-10Co/Cu nanocomposites

    NASA Astrophysics Data System (ADS)

    Gu, Dongdong; Shen, Yifu

    2008-04-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  1. Laser and Non-Coherent Light Effect on Peripheral Blood Normal and Acute Lymphoblastic Leukemic Cells by Using Different Types of Photosensitizers

    NASA Astrophysics Data System (ADS)

    El Batanouny, Mohamed H.; Khorshid, Amira M.; Arsanyos, Sonya F.; Shaheen, Hesham M.; Abdel Wahab, Nahed; Amin, Sherif N.; El Rouby, Mahmoud N.; Morsy, Mona I.

    2010-04-01

    Photodynamic therapy (PDT) is a novel treatment modality of cancer and non-cancerous conditions that are generally characterized by an overgrowth of unwanted or abnormal cells. Irradiation of photosensitizer loaded cells or tissues leads via the photochemical reactions of excited photosensitizer molecules to the production of singlet oxygen and free radicals, which initiate cell death. Many types of compounds have been tested as photosensitizers, such as methylene blue (MB) and photopherin seemed to be very promising. This study involved 26 cases of acute lymphoblastic leukemia and 15 normal volunteers as a control group. The cell viability was measured by Light microscope and flowcytometer. Mode of cell death was detected by flowcytometer and electron microscope in selected cases. The viability percentage of normal peripheral blood mononuclear cells (PBMC) incubated with methylene blue (MB) alone or combined with photo irradiation with diode laser (as measured by light microscope) was significantly lower than that of untreated cases either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. There was a significantly lower viability percentage of normal cells incubated with MB and photoirradiated with diode laser compared to normal cells treated with MB alone for either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. The decrease in viability was more enhanced with increasing the incubation time. For normal cells incubated with photopherin either for 1/2 an hour or 1 hour, there was a weak cytotoxic effect compared to the effect on untreated cells. There was a significant decrease in viability percentage of cells incubated with photopherin either for 1/2 an hour or 1 hour and photoirradiated with He:Ne laser compared to normal untreated cells. The decrease in the cell viability percentage was significantly lower with the use of PDT (photopherin and He:Ne laser ) compared to either photopherin alone or He:Ne laser alone. The decrease in viability was more enhanced with increasing the incubation time. The same effects reported on normal cells were detected on leukemic cells on comparing different methods used. However a more pronounced decrease in cell viability was detected. The most efficient ways of decreasing viability of leukemic cells with much less effect on normal cells was the use of PDT of cell incubation with MB for 1 hour then photoirradiation with diode laser and PDT of cell incubation with photopherin for 1 hour then photoirradiation with He:Ne laser. Flowcytometer (FCM) was more sensitivite than the light microscope in detecting the decrease in cell viability, it also helped in determining the mode of cell death weather apoptosis, necrosis or combined apoptosis and necrosis. Apoptotic cell percentage was higher in PDT of MB and Diode laser or photopherin and He:Ne laser, treated ALL cells compared to untreated ALL cells after 1 hour but was significantly lower after 24 hours post irradiation. A significant increase in necrotic, combined necrotic and apoptotic cell percentages either measured 1 hour or 24 hours post PDT, compared to untreated ALL cells and PDT treated normal cells. Electron microscope helped in detecting early cellular apoptotic changes occurring in response to different therapeutic modalities used in this study. In conclusion, PDT proved to be an effective clinical modality in decreasing the number of leukemic cells when irradiated in vitro with appropriate laser and photosensitizer system. Both PDT systems used in this study were efficient in inducing cell death of leukemic cells compared to untreated leukemic cells. However, photopherin PDT system was more efficient in decreasing the cell viability. A significant decrease in viability percentage was detected when studying the effect of PDT on leukemic cells compared to that on normal cells. This suggests that PDT when applied clinically will selectively differentiate between leukemic cells and normal cells, offering a successful component in ALL therapy.

  2. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2018-02-13

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  3. Phase Sensitive Demodulation in Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Fisher, Walt G.; Piston, David W.; Wachter, Eric A.

    2002-06-01

    Multiphoton laser scanning microscopy offers advantages in depth of penetration into intact samples over other optical sectioning techniques. To achieve these advantages it is necessary to detect the emitted light without spatial filtering. In this nondescanned (nonconfocal) approach, ambient room light can easily contaminate the signal, forcing experiments to be performed in absolute darkness. For multiphoton microscope systems employing mode-locked lasers, signal processing can be used to reduce such problems by taking advantage of the pulsed characteristics of such lasers. Specifically, by recovering fluorescence generated at the mode-locked frequency, interference from stray light and other ambient noise sources can be significantly reduced. This technology can be adapted to existing microscopes by inserting demodulation circuitry between the detector and data collection system. The improvement in signal-to-noise ratio afforded by this approach yields a more robust microscope system and opens the possibility of moving multiphoton microscopy from the research lab to more demanding settings, such as the clinic.

  4. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.

    2015-04-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution.

  5. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  6. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  7. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    NASA Astrophysics Data System (ADS)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  8. Evaluation of the Effects of Er,Cr:YSGG Laser, Ultrasonic Scaler and Curette on Root Surface Profile Using Surface Analyser and Scanning Electron Microscope: An In Vitro Study.

    PubMed

    Arora, Shipra; Lamba, Arundeep Kaur; Faraz, Farrukh; Tandon, Shruti; Ahad, Abdul

    2016-01-01

    Introduction: The periodontal therapy is primarily targeted at removal of dental plaque and plaque retentive factors. Although the thorough removal of adherent plaque, calculus and infected root cementum is desirable, it is not always achieved by conventional modalities. To accomplish more efficient results several alternative devices have been used. Lasers are one of the most promising modalities for nonsurgical periodontal treatment as they can achieve excellent tissue ablation with strong bactericidal and detoxification effects. Methods: Thirty freshly extracted premolars were selected and decoronated. The mesial surface of each root was divided vertically into four approximately equal parts. These were distributed into four group based on the root surface treatment. Part A (n = 30) was taken as control and no instrumentation was performed. Part B (n = 30) was irradiated by Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser. Part C (n = 30) was treated by piezoelectric ultrasonic scaler. Part D (n = 30) was treated by Gracey curette. The surface roughness was quantitatively analyzed by profilometer using roughness average (Ra) value, while presence of smear layer, cracks, craters and melting of surface were analyzed using scanning electron microscope (SEM). The means across the groups were statistically compared with control using Dunnett test. Results: Among the test groups, Er,Cr:YSGG laser group showed maximum surface roughness (mean Ra value of 4.14 μm) as compared to ultrasonic scaler (1.727 μm) and curette group (1.22 μm). However, surface with smear layer were found to be maximum (50%) in curette treated samples and minimum (20%) in laser treated ones. Maximum cracks (83.34%) were produced by ultrasonic scaler, and minimum (43.33%) by curettes. Crater formation was maximum (50%) in laser treated samples and minimum (3.33%) in curette treated ones. 63.33% samples treated by laser demonstrated melting of root surface, followed by ultrasonic scaler and curettes. Conclusion: Er,Cr:YSGG laser produced maximum microstructural changes on root surface that can influence the attachment of soft periodontal tissues as well as plaque and calculus deposition. In vivo studies are needed to validate these results and to evaluate their clinical effects.

  9. Efficacy of Sodium Hypochlorite Activated With Laser in Intracanal Smear Layer Removal: An SEM Study

    PubMed Central

    Shahriari, Shahriar; Kasraei, Shahin; Roshanaei, Ghodratollah; Karkeabadi, Hamed; Davanloo, Hossein

    2017-01-01

    Introduction: The purpose of the present study was to evaluate the different concentrations of sodium hypochlorite activated with laser in removing of the smear layer in the apical, middle, and coronal segments of root canal walls by scanning electron microscopy analysis. Methods: Sixty single-rooted human mandibular teeth were decoronated to a standardized length. The samples were prepared by using Race rotary system to size 40, 0.04 taper and divided into 4 equal groups (n = 15). Group 1, irrigated with EDTA 17% and 5.25% NaOCl, groups 2, 3 and 4, 1%, 2.5%, and 5% NaOCl activated with Nd:YAG laser, respectively. Teeth were split longitudinally and subjected to scanning electron microscope (SEM). Data were analyzed by Kruskal-Wallis, Mann-Whitney tests. P value of <0.05 was considered statistically significant. Results: Five percent NaOCl LAI (laser-activated irrigation) showed best smear layer removal in test groups and the difference was statistically significant (P < 0.001). Control group (EDTA 17% and 5.25% NaOCl irrigation) showed significantly better outcomes in comparative with test groups (P < 0.001). In the apical third, compared to coronal and middle third, the canal walls were often contaminated by inorganic debris and smear layer. Conclusion: All different concentrations of sodium hypochlorite activated with laser have a positive effect on removing of smear layer. Sodium hypochlorite activated with laser removed smear layer more effectively at the coronal and middle third compared to the apical third. PMID:28912942

  10. Assessment of damage in 'green' composites

    NASA Astrophysics Data System (ADS)

    Malinowski, Paweł H.; Ostachowicz, Wiesław M.; Touchard, Fabienne; Boustie, Michel; Chocinski-Arnault, Laurence; Pascual Gonzalez, Pedro; Berthe, Laurent; de Vasconcellos, Davi; Sorrentino, Luigi

    2017-04-01

    The behaviour of eco-composites, when subjected to laser or mechanical impact loadings, is not well known yet. A research was proposed looking at the behaviour of `green' and synthetic composites under impact loading. The study was focused on composites reinforced with short, medium and long fibres. Short fibre composites were made of spruce fibres and ABS. The fibres were used both as received and after a thermal treatment. Another set of samples was made of 60 mm-long flax fibres. Two types of thermoplastic polymers were used as matrices: polypropylene and polylactide. Also a woven eco-composite was investigated. It was made of plain woven hemp fabric impregnated with epoxy resin. A fully synthetic woven composite, used as reference laminate for comparison with `green' composites, was prepared by using a plain weave woven glass fabric impregnated with epoxy resin. Mechanical impacts were performed by means of a falling dart impact testing machine. The specimens were tested at different impact energy levels (from 1J to 5J) by keeping constant the mass of the impactor and varying the drop height. Laser impact tests were performed by means of a high power laser shock facility. All the samples were tested at six different laser shock intensities, keeping constant the shock diameter and the pulse duration. Six assessment techniques were employed in order to analyse and compare impact damages: eye observation, back face relief, terahertz spectroscopy, laser vibrometry, X-ray micro-tomography and microscopic observations. Different damage detection thresholds for each material and technique were obtained.

  11. Low-power laser effects at the single-cell level: a confocal microscopy study

    NASA Astrophysics Data System (ADS)

    Alexandratou, Eleni; Yova, Dido M.; Atlamazoglou, Vassilis; Handris, Panagiotis; Kletsas, Dimitris; Loukas, Spyros

    2000-11-01

    Confocal microscopy was used for irradiation and observation of the same area of interest, allowing the imaging of low power laser effects in subcellular components and functions, at the single cell level. Coverslips cultures of human fetal foreskin fibroblasts (HFFF2) were placed in a small incubation chamber for in vivo microscopic observation. Cells were stimulated by the 647 nm line of the Argon- Krypton laser of the confocal microscope (0.1 mW/cm2). Membrane permeability, mitochondrial membrane potential ((delta) Psim), intracellular pHi, calcium alterations and nuclear chromatin accessibility were monitored, at different times after irradiation, using specific fluorescent vital probes. Images were stored to the computer and quantitative evaluation was performed using image- processing software. After irradiation, influx and efflux of the appropriate dyes monitored changes in cell membrane permeability. Laser irradiation caused alkalizatoin of the cytosolic pHi and increase of the mitochondrial membrane potential ((delta) Psim). Temporary global Ca2+ responses were also observed. No such effects were noted in microscopic fields other than the irradiated ones. No toxic effects were observed, during time course of the experiment.

  12. Effect of pretreatment with an Er:YAG laser and fluoride on the prevention of dental enamel erosion.

    PubMed

    dos Reis Derceli, Juliana; Faraoni-Romano, Juliana Jendiroba; Azevedo, Danielle Torres; Wang, Linda; Bataglion, César; Palma-Dibb, Regina Guenka

    2015-02-01

    The aim of this study was to evaluate the effect of the Er:YAG laser and its association with fluoride (1.23% acidulate phosphate fluoride gel) on the prevention of enamel erosion. Sixty specimens were obtained from bovine enamel (4 × 4 mm), which were ground flat, polished, and randomly divided into five groups according to the preventive treatments: control-fluoride application; L--Er:YAG laser; L+F--laser + fluoride; F+L--fluoride + laser; L/F--laser/fluoride simultaneously. Half of the enamel surface was covered with nail varnish (control area), and the other half was pretreated with one of the preventive strategies to subsequently be submitted to erosive challenge. When the laser was applied, it was irradiated for 10 s with a focal length of 4 mm and 60 mJ/2 Hz. Fluoride gel was applied for 4 min. Each specimen was individually exposed to regular Coca-Cola® for 1 min, four times/day, for 5 days. Wear analysis was performed with a profilometer, and demineralization was assessed with an optical microscope. Data were analyzed using the Kruskal-Wallis test (wear)/Dunn test and ANOVA/Fisher's exact tests. The group L/F was similar to control group. The other groups showed higher wear, which did not present differences among them. In the demineralization assessment, the groups F+L and L/F showed lower demineralization in relation to the other groups. It can be concluded that none preventive method was able to inhibit dental wear. The treatments L/F and F+L showed lower enamel demineralization.

  13. Nano material processing with lasers in combination with nearfield technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickmann, K.; Jersch, J.; Demming, F.

    1996-12-31

    Recent research work has shown, that focusing of laser radiation down to a few nanometer can be obtained by using lasers in combination with nearfield technology (known from Scanning Tunneling Microscope STM or Atomic Force Microscope AFM). Lateral external illumination of STM- or AFM-probe tips with laser radiation can cause tremendous intensity enhancement in the nearfield underneath the tip. This effect can be explained by various electrostatic as well as electrodynamic effects known from Surface Enhanced Raman Spectroscopy (SERS). This effect was utilized to concentrate laser radiation with high intensity between a tip and a substrate in the nearfield. FOLANT-techniquemore » (FOcusing of LAser radiation in the Nearfield of a Tip) enables intensity enhancement up to 10{sup 6} in a narrow localized zone underneath the tip. The interaction area with nanometer scale can be applied for material processing even down to atomic dimensions. Using STM-/ laser-combination, hillocks, pits and grooves with lateral dimensions down to 10 nm have been obtained on gold substrates. AFM-/ laser-combination enabled nanostructures down to 20 nm on dielectric materials as for example polycarbonate.« less

  14. Setup for functional cell ablation with lasers: coupling of a laser to a microscope.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-06-01

    The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about their origin, fate, or function in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. The primary advantage of laser-based ablation is the flexibility provided by the method: The operations can be performed in any cell pattern and at any time in development. Laser-based techniques permit manipulation of structures within cells, even to the molecular level. They can also be used for gene activation. However, laser ablation can be expensive, labor-intensive, and time-consuming. Although live cells can be difficult to image in Drosophila embryos, the use of vital fluorescent imaging methods has made laser-mediated cell manipulation methods more appealing; the methods are relatively straightforward. This article provides the information necessary for setting up and using a laser microscope for lasesr ablation studies.

  15. Surface wettability of silicon substrates enhanced by laser ablation

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Chen, Ming-Fei; Huang, Kuo-Cheng; Hsiao, Sheng-Yi; Lin, Yung-Sheng; Chou, Chang-Pin

    2010-11-01

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.

  16. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  17. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  18. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Hidetoshi, E-mail: nakanisi@screen.co.jp; Ito, Akira, E-mail: a.ito@screen.co.jp; Takayama, Kazuhisa, E-mail: takayama.k0123@gmail.com

    2015-11-15

    A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  19. Demodulation signal processing in multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Fisher, Walter G.; Wachter, Eric A.; Piston, David W.

    2002-06-01

    Multiphoton laser scanning microscopy offers numerous advantages, but sensitivity can be seriously affected by contamination from ambient room light. Typically, this forces experiments to be performed in an absolutely dark room. Since mode-locked lasers are used to generate detectable signals, signal-processing can be used to avoid such problems by taking advantage of the pulsed characteristics of such lasers. Demodulation of the fluorescence signal generated at the mode-locked frequency can result in significant reduction of interference from ambient noise sources. Such demodulation can be readily adapted to existing microscopes by inserting appropriate processor circuitry between the detector and data collection system, yielding a more robust microscope.

  20. Compensation of temporal and spatial dispersion for multiphoton acousto-optic laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Saggau, Peter

    2003-10-01

    In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).

  1. Laser ablation of Au-CuO core-shell nanocomposite in water for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Abdul-Hamed, Ryam S.

    2017-12-01

    Core-shell gold-copper oxide Au-CuO nanocomposites were synthesized using laser ablation of CuO target in colloidal solution of Au nanoparticles (NPs). The effect of laser fluence on the structural, morphological, electrical, and optical properties of Au-CuO nanocomposites was investigated using x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL), Fourier transformed infrared spectroscopy (FTIR), Hall measurement, and UV-vis spectroscopy. X-ray diffraction results confirm the formation of polycrystalline Au-CuO NPs with monoclinic structure. The optical energy gap for CuO was 4 eV and for the Au-CuO core-shell nanocomposites was found to be in the range of 3.4-3.7 eV. SEM and TEM investigations revealed that the structure and morphology of Au-CuO core-shell nanocomposites were strongly depending on the laser fluence. A formation of Au-CuO nanospheres and platelets structures was observed. The photoluminescence data showed an emission of broad visible peaks between 407 and 420 nm. The effect of laser fluence on the dark and illuminated I-V characteristics of Au-CuO/n-Si heterojunction photodetectors was investigated and analyzed. The experimental data demonstrated that the photodetector prepared at optimum laser fluence exhibited photosensitivity of 0.6 AW-1 at 800 nm.

  2. CONFOCAL LASER SCANNING MICROSCOPY OF RAT FOLLICLE DEVELOPMENT

    EPA Science Inventory

    This study used confocal laser scanning microscopy (CLSM) to study follicular development in millimeter pieces of rat ovary. To use this technology, it is essential to stain the tissue before laser excitation with the confocal microscope. Various fluorescent stains (Yo-Pro, Bo-Pr...

  3. An automatic system to study sperm motility and energetics

    PubMed Central

    Nascimento, Jaclyn M.; Chandsawangbhuwana, Charlie; Botvinick, Elliot L.; Berns, Michael W.

    2012-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm’s mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry. PMID:18299996

  4. An automatic system to study sperm motility and energetics.

    PubMed

    Shi, Linda Z; Nascimento, Jaclyn M; Chandsawangbhuwana, Charlie; Botvinick, Elliot L; Berns, Michael W

    2008-08-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm's mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the human fertility clinic and in animal husbandry.

  5. Automatic analysis for neuron by confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko

    2005-12-01

    The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.

  6. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    PubMed

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Design of small confocal endo-microscopic probe working under multiwavelength environment

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab

    2010-02-01

    Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.

  8. Demonstration of a plenoptic microscope based on laser optical feedback imaging.

    PubMed

    Glastre, Wilfried; Hugon, Olivier; Jacquin, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric

    2013-03-25

    A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.

  9. Morphology of Er:YAG-laser-treated root surfaces

    NASA Astrophysics Data System (ADS)

    Keller, Ulrich; Stock, Karl; Hibst, Raimund

    1997-12-01

    From previous studies it could be demonstrated that an efficient ablation of dental calculus is possible using an Er:YAG laser with a special contact fiber tip. After improving of the design and the efficiency of light transmission of the contact tip laser treated tooth root surfaces were investigated due to morphological changes in comparison to conventional root scaling and planing. Surface modifications were observed histologically under the light microscope and by means of a Scanning Electron Microscope. During laser treatment the intrapulpal temperature increase was measured. The results show that the improved contact tip a microstructured surface can be generated, which shows no signs of thermal effects even when a laser pulse repetition rate of 15 Hz was used. Temperature increase was limited to 4 K at a repetition rate of 10 Hz and to 5.5 K at a repetition rate of 15 Hz.

  10. Light Microscopy Module Fan Disturbance Characterized Through Microgravity Emissions Laboratory Testing

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Motil, Susan M.

    2003-01-01

    A Light Microscopy Module (LMM) is being engineered, designed, and developed at the NASA Glenn Research Center. The LMM is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of physical science and biological science experiments within Glenn s Fluids Integrated Rack on the International Space Station. The LMM concept is a modified commercial research imaging light microscope with powerful laser-diagnostic hardware and interfaces, creating a one-of-a-kind, state-of-the-art microscopic research facility. The microscope will house several different objectives, corresponding to magnifications of 10, 40, 50, 63, and 100. Features of the LMM include high-resolution color video microscopy, brightfield, darkfield, phase contrast, differential interference contrast, spectrophotometry, and confocal microscopy combined in a single configuration. Also, laser tweezers are integrated with the diagnostics as a sample manipulation technique. As part of the development phase of the LMM, it was necessary to quantify the microgravity disturbances generated by the control box fan. Isolating the fan was deemed necessary to reduce the fan speed harmonic amplitudes and to eliminate any broadband disturbances across the 60- to 70-Hz and 160- to 170-Hz frequency ranges. The accelerations generated by a control box fan component of the LMM were measured in the Microgravity Emissions Laboratory (MEL). The MEL is a low-frequency measurement system developed to simulate and verify the on-orbit International Space Station (ISS) microgravity environment. The accelerations generated by various operating components of the ISS, if too large, could hinder the science performed onboard by disturbing the microgravity environment. The MEL facility gives customers a test-verified way of measuring their compliance with ISS limitations on vibratory disturbance levels. The facility is unique in that inertial forces in 6 degrees of freedom can be characterized simultaneously for an operating test article. Vibratory disturbance levels are measured for engineering or flight-level hardware following development from component to subassembly through the rack-level configuration. The MEL can measure accelerations as small as 10-7g, the accuracy needed to confirm compliance with ISS requirements.

  11. Increasing Student Understanding of Microscope Optics by Building and Testing the Limits of Simple, Hand-Made Model Microscopes†

    PubMed Central

    Drace, Kevin; Couch, Brett; Keeling, Patrick J.

    2012-01-01

    The ability to effectively use a microscope to observe microorganisms is a crucial skill required for many disciplines within biology, especially general microbiology and cell biology. A basic understanding of the optical properties of light microscopes is required for students to use microscopes effectively, but this subject can also be a challenge to make personally interesting to students. To explore basic optical principles of magnification and resolving power in a more engaging and hands-on fashion, students constructed handmade lenses and microscopes based on Antony van Leeuwenhoek’s design using simple materials—paper, staples, glass, and adhesive putty. Students determined the power of their lenses using a green laser pointer to magnify a copper grid of known size, which also allowed students to examine variables affecting the power and resolution of a lens such as diameter, working distance, and wavelength of light. To assess the effectiveness of the laboratory’s learning objectives, four sections of a general microbiology course were given a brief pre-activity assessment quiz to determine their background knowledge on the subject. One week after the laboratory activity, students were given the same quiz (unannounced) under similar conditions. Students showed significant gains in their understanding of microscope optics. PMID:23653781

  12. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  13. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  14. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing.

    PubMed

    Baumgartl, Martin; Gottschall, Thomas; Abreu-Afonso, Javier; Díez, Antonio; Meyer, Tobias; Dietzek, Benjamin; Rothhardt, Manfred; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2012-09-10

    An environmentally-stable low-repetition rate fiber oscillator is developed to produce narrow-bandwidth pulses with several tens of picoseconds duration. Based on this oscillator an alignment-free all-fiber laser for multi-photon microscopy is realized using in-fiber frequency conversion based on four-wave-mixing. Both pump and Stokes pulses for coherent anti-Stokes Raman scattering (CARS) microscopy are readily available from one fiber end, intrinsically overlapped in space and time, which drastically simplifies the experimental handling for the user. The complete laser setup is mounted on a home-built laser scanning microscope with small footprint. High-quality multimodal microscope images of biological tissue are presented probing the CH-stretching resonance of lipids at an anti-Stokes Raman-shift of 2845 cm(-1) and second-harmonic generation of collagen. Due to its simplicity, compactness, maintenance-free operation, and ease-of-use the presented low-cost laser is an ideal source for bio-medical applications outside laser laboratories and in particular inside clinics.

  15. Experimental study of hot cracking at circular welding joints of 42CrMo steel

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Chen, Genyu; Chen, Binghua; Wang, Jinhai; Zhou, Cong

    2017-12-01

    The hot cracking at circular welding joints of quenched and tempered 42CrMo steel were studied. The flow of the molten pool and the solidification process of weld were observed with a high-speed video camera. The information on the variations in the weld temperature was collected using an infrared (IR) thermal imaging system. The metallurgical factors of hot cracking were analyzed via metallographic microscope and scanning electron microscope (SEM). The result shows that leading laser laser-metal active gas (MAG) hybrid welding process has a smaller solid-liquid boundary movement rate (VSL) and a smaller solid-liquid boundary temperature gradient (GSL) compared with leading arc laser-MAG hybrid welding process and laser welding process. Additionally, the metal in the molten pool has superior permeability while flowing toward the dendritic roots and can compensate for the inner-dendritic pressure balance. Therefore, leading laser laser-MAG hybrid welding process has the lowest hot cracking susceptibility.

  16. Novel Optical Technique Developed and Tested for Measuring Two-Point Velocity Correlations in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Goldburg, Walter I.

    2002-01-01

    A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.

  17. Near-infrared Raman spectroscopy of single optically trapped biological cells

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Dinno, Mumtaz A.; Li, Yong-Qing

    2002-02-01

    We report on the development and testing of a compact laser tweezers Raman spectroscopy (LTRS) system. The system combines optical trapping and near-infrared Raman spectroscopy for manipulation and identification of single biological cells in solution. A low-power diode laser at 785 nm was used for both trapping and excitation for Raman spectroscopy of the suspended microscopic particles. The design of the LTRS system provides high sensitivity and permits real-time spectroscopic measurements of the biological sample. The system was calibrated by use of polystyrene microbeads and tested on living blood cells and on both living and dead yeast cells. As expected, different images and Raman spectra were observed for the different cells. The LTRS system may provide a valuable tool for the study of fundamental cellular processes and the diagnosis of cellular disorders.

  18. Automated Image Analysis Corrosion Working Group Update: February 1, 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.

    These are slides for the automated image analysis corrosion working group update. The overall goals were: automate the detection and quantification of features in images (faster, more accurate), how to do this (obtain data, analyze data), focus on Laser Scanning Confocal Microscope (LCM) data (laser intensity, laser height/depth, optical RGB, optical plus laser RGB).

  19. Noninvasive measurement of three-dimensional morphology of adhered animal cells employing phase-shifting laser microscope.

    PubMed

    Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio

    2007-01-01

    Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.

  20. A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies.

    PubMed

    Parker, I; Callamaras, N; Wier, W G

    1997-06-01

    We describe the construction of a high-resolution confocal laser-scanning microscope, and illustrate its use for studying elementary Ca2+ signalling events in cells. An avalanche photodiode module and simple optical path provide a high efficiency system for detection of fluorescence signals, allowing use of a small confocal aperture giving near diffraction-limited spatial resolution (< 300 nm lateral and < 400 nm axial). When operated in line-scan mode, the maximum temporal resolution is 1 ms, and the associated computer software allows complete flexibility to record line-scans continuously for long (minutes) periods or to obtain any desired pixel resolution in x-y scans. An independent UV irradiation system permits simultaneous photolysis of caged compounds over either a uniform, wide field (arc lamp source) or at a tightly focussed spot (frequency-tripled Nd:YAG laser). The microscope thus provides a versatile tool for optical studies of dynamic cellular processes, as well as excellent resolution for morphological studies. The confocal scanner can be added to virtually any inverted microscope for a component cost that is only a small fraction of that of comparable commercial instruments, yet offers better performance and greater versatility.

  1. Resonant Cavity Enhanced On-Chip Raman Spectrometer Array with Precisely Positioned Metallic Nano-Gaps for Single Molecule Detection

    DTIC Science & Technology

    2011-03-22

    the nanogaps are engraved on. Simulations show that smaller diameters of the nanowires should provide higher enhancement factors for SERS signal...Inverted Microscope with lasers of wavelengths of 512 to 633 nm as the excitation source. The signal was collected and analyzed by a 50cm Spectrometer...the optical path which can selectively pass the Raman signals and reject the excitation lasers . Figure 2.12 Custom built Raman microscope for the

  2. Easy performance of 6-color confocal immunofluorescence with 4-laser line microscopes.

    PubMed

    Eissing, Nathalie; Heger, Lukas; Baranska, Anna; Cesnjevar, Robert; Büttner-Herold, Maike; Söder, Stephan; Hartmann, Arndt; Heidkamp, Gordon F; Dudziak, Diana

    2014-09-01

    Confocal laser scanning microscopy is an advanced technique for imaging tissue samples in vitro and in vivo at high optical resolution. The development of new fluorochrome variants do not only make it possible to perform multicolor flow cytometry of single cells, but in combination with high resolution laser scanning systems also to investigate the distribution of cells in lymphoid tissues by confocal immunofluorescence analyses, thus allowing the distinction of various cell populations directly in the tissue. Here, we provide a protocol for the visualization of at least six differently fluorochrome-labeled antibodies at the same time using a conventional confocal laser scanning microscope with four laser lines (405 nm, 488 nm, 555 nm, and 639 nm laser wavelength) in both murine and human tissue samples. We further demonstrate that compensation correction algorithms are not necessary to reduce spillover of fluorochromes into other channels when the used fluorochromes are combined according to their specific emission bands and the varying Stokes shift for co-excited fluorochromes with the same laser line. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    NASA Astrophysics Data System (ADS)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  4. Surface Modifications with Laser Synthesized Mo Modified Coating

    NASA Astrophysics Data System (ADS)

    Sun, Lu; Chen, Hao; Liu, Bo

    2013-01-01

    Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.

  5. Microscopic mechanism analyses on influence of metabolism of erythrocyte membrane-lipid etc. by LLLIB

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Zhang, Canbang; Wen, Yuanbin; Liu, Shuxiao; Zhou, Lingyun

    2009-08-01

    Some cases with cerebral infarction were treated by He-Ne laser irradiation on blood. In the treatment before and after, membrane-cholesterol(C)/membrane-phosphatide(P), membrane fluidity(F) and deformability of erythrocyte were determined. The results showed that low level laser irradiation on blood (LLLIB) can sure reduce the ratio of (C)/(P), can heighten fluidity and improve deformability of erythrocyte .Thus the metabolism ability of erythrocyte membrane-lipid ,the blood circulation and the properties of hemorheology can be improved. In this paper, the microscopic mechanism of those aforesaid action effects by low level laser irradiation on blood were analyzed by means of Quantum theory and some corresponding models.

  6. Quantum Cascade Laser-Based Infrared Microscopy for Label-Free and Automated Cancer Classification in Tissue Sections.

    PubMed

    Kuepper, Claus; Kallenbach-Thieltges, Angela; Juette, Hendrik; Tannapfel, Andrea; Großerueschkamp, Frederik; Gerwert, Klaus

    2018-05-16

    A feasibility study using a quantum cascade laser-based infrared microscope for the rapid and label-free classification of colorectal cancer tissues is presented. Infrared imaging is a reliable, robust, automated, and operator-independent tissue classification method that has been used for differential classification of tissue thin sections identifying tumorous regions. However, long acquisition time by the so far used FT-IR-based microscopes hampered the clinical translation of this technique. Here, the used quantum cascade laser-based microscope provides now infrared images for precise tissue classification within few minutes. We analyzed 110 patients with UICC-Stage II and III colorectal cancer, showing 96% sensitivity and 100% specificity of this label-free method as compared to histopathology, the gold standard in routine clinical diagnostics. The main hurdle for the clinical translation of IR-Imaging is overcome now by the short acquisition time for high quality diagnostic images, which is in the same time range as frozen sections by pathologists.

  7. Optical micromanipulation methods for controlled rotation, transportation, and microinjection of biological objects.

    PubMed

    Mohanty, S K; Gupta, P K

    2007-01-01

    The use of laser microtools for rotation and controlled transport of microscopic biological objects and for microinjection of exogenous material in cells is discussed. We first provide a brief overview of the laser tweezers-based methods for rotation or orientation of microscopic objects. Particular emphasis is placed on the methods that are more suitable for the manipulation of biological objects, and the use of these for two-dimensional (2D) and 3D rotations/orientations of intracellular objects is discussed. We also discuss how a change in the shape of a red blood cell (RBC) suspended in hypertonic buffer leads to its rotation when it is optically tweezed. The potential use of this approach for the diagnosis of malaria is also illustrated. The use of a line tweezers having an asymmetric intensity distribution about the center of its major axis for simultaneous transport of microscopic objects, and the successful use of this approach for induction, enhancement, and guidance of neuronal growth cones is presented next. Finally, we describe laser microbeam-assisted microinjection of impermeable drugs into cells and also briefly discuss possible adverse effects of the laser trap or microbeams on cells.

  8. Characterisation of debris from laser and mechanical cutting of bone.

    PubMed

    Rachmanis, Nikolaos; McGuinness, Garrett B; McGeough, Joseph A

    2014-07-01

    Laser cutting of bones has been proposed as a technology in orthopaedic surgery. In this short study, the laser-bone interaction was examined using a pulsed erbium-doped yttrium aluminium garnet laser and compared to a conventional cutting technique. Microscopic analysis revealed the nature of waste debris and showed higher proportions of finer particles for conventional sagittal sawing compared to laser cutting. © IMechE 2014.

  9. Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Chen, ChangJun; Yan, Kai; Qin, Lanlan; Zhang, Min; Wang, Xiaonan; Zou, Tao; Hu, Zengrong

    2017-11-01

    The effect of heat treatment on microstructure and mechanical properties (microhardness, wear resistance and impact toughness) of laser additively manufactured AISI H13 tool steel was systemically investigated. To understand the variation of microstructure and mechanical properties under different heat treatments, the as-deposited samples were treated at 350, 450, 550, 600 and 650 °C/2 h, respectively. Microstructure and phase transformation were investigated through optical microscopy, scanning electron microscope and transmission electron microscope. The mechanical properties were characterized by nanoindentation tests, Charpy tests and high-temperature wear tests. The microstructure of as-deposited samples consisted of martensite, ultrafine carbides and retained austenite. After the tempering treatment, the martensite was converted into tempered martensite and some fine alloy carbides which precipitated in the matrix. When treated at 550 °C, the greatest hardness and nanohardness were 600 HV0.3 and 6119.4 MPa due to many needle-like carbides precipitation. The value of hardness increased firstly and then decreased when increasing the temperature. When tempered temperatures exceeded 550 °C, the carbides became coarse, and martensitic matrix recrystallized at the temperature of 650 °C. The least impact energy was 6.0 J at a temperature of 550 °C. Samples tempered at 550 °C had larger wear volume loss than that of others. Wear resistances of all samples under atmospheric condition at 400 °C showed an oxidation mechanism.

  10. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.

    PubMed

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  11. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K

    NASA Astrophysics Data System (ADS)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  12. Disorderly Light.

    ERIC Educational Resources Information Center

    Peterson, Ivars

    1991-01-01

    The relationship between theories about electrical conductivity in microscopic wires and laser speckle patterns is described. Practical applications of laser speckle patterns are included. Wave ideas are being used to describe and predict novel phenomena in disordered solids. (KR)

  13. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  14. Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets.

    PubMed

    Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza

    2017-01-01

    Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice.

  15. Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets

    PubMed Central

    Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza

    2017-01-01

    Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice. PMID:28912939

  16. Fluorescence lifetime imaging with near-infrared dyes

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavskiy, Vladislav

    2013-02-01

    Near-infrared (NIR) dyes are used as fluorescence markers in small-animal imaging and in diffuse optical tomography of the human brain. In these applications it is important to know whether the dyes bind to proteins or other tissue constituents, and whether their fluorescence lifetimes depend on the targets they are bound to. Unfortunately, neither the lasers nor the detectors of commonly used confocal and multiphoton laser scanning microscopes allow for excitation and detection of NIR fluorescence. We therefore upgraded existing confocal TCSPC FLIM systems with NIR lasers and NIR sensitive detectors. In multiphoton systems we used the Ti:Sa laser as a one-photon excitation source in combination with an NIR-sensitive detector in the confocal beam path. We tested a number of NIR dyes in biological tissue. Some of them showed clear lifetime changes depending on the tissue structures they are bound to. We therefore believe that NIR FLIM can deliver supplementary information on the tissue constitution and on local biochemical parameters.

  17. The formation of periodic micro/nano structured on stainless steel by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Yao, Caizhen; Gao, Wei; Ye, Yayun; Jiang, Yong; Xu, Shizhen; Yuan, Xiaodong

    2017-07-01

    Stainless steel surface was irradiated by linear polarized laser (800 nm, 35 fs, 4 Hz and 0.7 J/cm2) with different pulse numbers. Environmental scanning electron microscope (ESEM/EDS) was used for detailed morphology, microstructure and composition studies. The wettability of irradiated steel surface was tested by Interface Tensiometer JC-2000X and compared with untreated stainless steel. Results showed that micro/nanostripes with different periods were formed. The period increased with the increasing pulse numbers from 450 nm for 90 pulses to 500 nm for 180 pulses. The orientation of those stripes was parallel with the laser beam polarization. Nanoparticles were observed on those periodic structures. EDS indicated that the atomic ratio of Cr increased and the atomic ratios of Fe and Ni decreased after laser irradiation, which may enhance the corrosion resistance due to the Cr-rich layer. The prepared structure exhibited hydrophobic property without further treatment. The formation mechanism of micro/nanoperiodic structures was also explored.

  18. Surface laser alloying of 17-4PH stainless steel steam turbine blades

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Wang, Liang; Zhang, Qunli; Kong, Fanzhi; Lou, Chenghua; Chen, Zhijun

    2008-09-01

    As a known high-quality precipitation hardening stainless steel with high strength, high antifatigue, excellent corrosion resistance and good weldability, 17-4PH has been widely used to produce steam turbine blades. However, under the impact of high-speed steam and water droplets, the blades are prone to cavitation, which could lead to lower efficiency, shorter life time, and even accidents. In this article, the 17-4PH blade's surface was alloyed using a high power CO 2 laser. The microstructure and microhardness of hardened 17-4PH were tested by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy disperse spectroscopy (EDS) and a microhardness tester. After laser alloying, the surface layer was denser and the grain refined, while the microhardness of the surface (average 610HV 0.2) was about one times higher than that of the substrate material (330HV 0.2). The friction coefficient of the laser-alloyed 17-4PH layer was much lower than that of the substrate.

  19. Microstructure and Wear Resistance of Composite Coating by Laser Cladding Al/TiN on the Ti-6Al-4V Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.

    2015-05-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.

  20. Improving friction performance of cast iron by laser shock peening

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda

    2015-05-01

    According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.

  1. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Kotaro; Mizuno, Akari; Shintani, Seine A.

    Highlights: Black-Right-Pointing-Pointer Infra-red laser beam generates microscopic heat pulses. Black-Right-Pointing-Pointer Heat pulses induce contraction of cardiomyocytes. Black-Right-Pointing-Pointer Ca{sup 2+} transients during the contraction were not detected. Black-Right-Pointing-Pointer Skinned cardiomyocytes in free Ca{sup 2+} solution also contracted. Black-Right-Pointing-Pointer Heat pulses regulated the contractions without Ca{sup 2+} dynamics. -- Abstract: It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heatmore » pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, {Delta}T, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, {Delta}T at physiological temperature was lower than that at room temperature. Ca{sup 2+} transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca{sup 2+} solution. This heat pulse-induced Ca{sup 2+}-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.« less

  2. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  3. Removal of Verrucaria nigrescens from Carrara marble artefacts using Nd:YAG lasers: comparison among different pulse durations and wavelengths

    NASA Astrophysics Data System (ADS)

    Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S.

    2015-03-01

    The periodical removal of biodeteriogens is a fundamental need for the preservation of outdoor stone cultural heritage, which is stimulating significant efforts toward the development of low-impact conservation strategies. In the present work, the potential of laser removal of Verrucaria nigrescens Pers. from Carrara marble and the evaluation of the associated biocide effect on the organism residues embedded in the surface texture and through the outer porosities of the stone substrate were investigated. The fundamental wavelength of Nd:YAG laser (1,064 nm), commonly used in stone cleaning, and its second harmonic (532 nm) were comparatively tested. The phenomenology of laser treatments carried out in different irradiation conditions was characterized using optical, epifluorescence, and electron microscopes along with chlorophyll fluorescence with pulsed amplitude-modulated imaging. The results achieved show that 532 nm can provide significant advantages with respect to 1,064 nm. The potential of the latter against the biodeteriogens appears rather limited because of the low optical absorption, whereas the former can allow effective and practicable laser treatments, which disclose a significant application perspective.

  4. New software tools for enhanced precision in robot-assisted laser phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new software package created to enhance precision during robot-assisted laser phonomicrosurgery procedures. The new software is composed of three tools for camera calibration, automatic tumor segmentation, and laser tracking. These were designed and developed to improve the outcome of this demanding microsurgical technique, and were tested herein to produce quantitative performance data. The experimental setup was based on the motorized laser micromanipulator created by Istituto Italiano di Tecnologia and the experimental protocols followed are fully described in this paper. The results show the new tools are robust and effective: The camera calibration tool reduced residual errors (RMSE) to 0.009 ± 0.002 mm under 40× microscope magnification; the automatic tumor segmentation tool resulted in deep lesion segmentations comparable to manual segmentations (RMSE= 0.160 ± 0.028 mm under 40× magnification); and the laser tracker tool proved to be reliable even during cutting procedures (RMSE= 0.073 ± 0.023 mm under 40× magnification). These results demonstrate the new software package can provide excellent improvements to the previous microsurgical system, leading to important enhancements in surgical outcome.

  5. Histological study on the effects of microablative fractional CO2 laser on atrophic vaginal tissue: an ex vivo study.

    PubMed

    Salvatore, Stefano; Leone Roberti Maggiore, Umberto; Athanasiou, Stavros; Origoni, Massimo; Candiani, Massimo; Calligaro, Alberto; Zerbinati, Nicola

    2015-08-01

    Microablative fractional CO2 laser has been proven to determine tissue remodeling with neoformation of collagen and elastic fibers on atrophic skin. The aim of our study is to evaluate the effects of microablative fractional CO2 laser on postmenopausal women with vulvovaginal atrophy using an ex vivo model. This is a prospective ex vivo cohort trial. Consecutive postmenopausal women with vulvovaginal atrophy managed with pelvic organ prolapse surgical operation were enrolled. After fascial plication, the redundant vaginal edge on one side was treated with CO2 laser (SmartXide2; DEKA Laser, Florence, Italy). Five different CO2 laser setup protocols were tested. The contralateral part of the vaginal wall was always used as control. Excessive vagina was trimmed and sent for histological evaluation to compare treated and nontreated tissues. Microscopic and ultrastructural aspects of the collagenic and elastic components of the matrix were studied, and a specific image analysis with computerized morphometry was performed. We also considered the fine cytological aspects of connective tissue proper cells, particularly fibroblasts. During the study period, five women were enrolled, and 10 vaginal specimens were finally retrieved. Four different settings of CO2 laser were compared. Protocols were tested twice each to confirm histological findings. Treatment protocols were compared according to histological findings, particularly in maximal depth and connective changes achieved. All procedures were uneventful for participants. This study shows that microablative fractional CO2 laser can produce a remodeling of vaginal connective tissue without causing damage to surrounding tissue.

  6. Laser damage properties of TiO{sub 2}/Al{sub 2}O{sub 3} thin films grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Yaowei; Liu Hao; Sheng Ouyang

    2011-08-20

    Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO{sub 2}/Al{sub 2}O{sub 3} films at 110 deg. C and 280 deg. C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the filmsmore » deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm {Phi} samples, and the transmission is more than 99.8% at 1064 nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO{sub 2}/Al{sub 2}O{sub 3} films, the LIDTs were 6.73{+-}0.47 J/cm{sup 2} and 6.5{+-}0.46 J/cm{sup 2} at 110 deg. C on fused silica and BK7 substrates, respectively. The LIDTs at 110 deg. C are notably better than 280 deg. C.« less

  7. Effects of pulsed Nd:YAG laser on tensile bond strength and caries resistance of human enamel.

    PubMed

    Wen, X; Zhang, L; Liu, R; Deng, M; Wang, Y; Liu, L; Nie, X

    2014-01-01

    This study aims to evaluate the effects of pulsed Nd:YAG laser on the tensile bond strength (TBS) of resin to human enamel and caries resistance of human enamel. A total of 201 human premolars were used in this in vitro study. A flat enamel surface greater than 4 × 4 mm in area was prepared on each specimen using a low-speed cutting machine under a water coolant. Twenty-one specimens were divided into seven groups for morphology observations with no treatment, 35% phosphoric acid etching (30 seconds), and laser irradiation (30 seconds) of pulsed Nd:YAG laser with five different laser-parameter combinations. Another 100 specimens were used for TBS testing. They were embedded in self-cured acrylic resin and randomly divided into 10 groups. After enamel surface pretreatments according to the group design, resin was applied. The TBS values were tested using a universal testing machine. The other 80 specimens were randomly divided into eight groups for acid resistance evaluation. Scanning electron microscope (SEM) results showed that the enamel surfaces treated with 1.5 W/20 Hz and 2.0 W/20 Hz showed more etching-like appearance than those with other laser-parameter combinations. The laser-parameter combinations of 1.5 W/15 Hz and 1.5 W/20 Hz were found to be efficient for the TBS test. The mean TBS value of 14.45 ± 1.67 MPa in the laser irradiated group was significantly higher than that in the untreated group (3.48 ± 0.35 MPa) but lower than that in the 35% phosphoric acid group (21.50 ± 3.02 MPa). The highest mean TBS value of 26.64 ± 5.22 MPa was identified in the combination group (laser irradiation and then acid etching). Acid resistance evaluation showed that the pulsed Nd:YAG laser was efficient in preventing enamel demineralization. The SEM results of the fractured enamel surfaces, resin/enamel interfaces, and demineralization depths were consistent with those of the TBS test and the acid resistance evaluation. Pulsed Nd:YAG laser as an enamel surface pretreatment method presents a potential clinical application, especially for the caries-susceptible population or individuals with recently bleached teeth.

  8. New Recording Layer of Recordable Digital Versatile Disc with CrOx Film Using Red Laser

    NASA Astrophysics Data System (ADS)

    Liu, Chung Ping; Hung, Yao Ti

    2006-03-01

    In this study, CrOx film deposited by rf magnetron reactive sputtering was used as a new recording layer for a recordable digital versatile disc (DVD-R) with a red laser. X-ray photoelectron spectroscopy (XPS) indicated the films have three major components: CrO2, CrO3, and Cr2O3. From disc dynamic tests and atomic force microscope (AFM) images of a polycarbonate (PC) substrate, a DVD-R structure of PC/ZnS-SiO2 (30 nm)/CrOx (120 nm)/ZnS-SiO2 (40 nm)/Ag (50 nm), deposited by sputtering at an O2/Ar flow rate ratio of 0.4, had an improved carrier-to-noise ratio (CNR). The principle of recording depends primarily on the explosive pressure of the O2 released due to laser heating of the annealed CrOx film.

  9. Nanoscale surface characterization using laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  10. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  11. Microscopic analysis of structural changes in diode-laser-welded corneal stroma

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Rossi, Francesca; Menabuoni, Luca; Pini, Roberto

    2007-02-01

    Diode laser welding of the cornea is a technique used to provide immediate sealing of corneal wounds: the cut is stained with a water solution of Indocyanine Green and is then irradiated with an 810 nm laser at low power densities (12-16 W/cm2), which induces a localized heating of the stroma in the range 55-66 °C range. In this study, we present a microscopic analysis aimed at evaluating the structural modifications induced in the stromal collagen of pig eyes during the laser welding of corneal wounds. Cornea samples obtained from twenty freshly-enucleated eyes were cut with a pre-calibrated knife and subjected to the laser welding procedure. Histological slices of the laser-welded stroma were examined by means of optical and transmission electron microscopy. These analyses indicated that bridges of lamellar structures crossed the wound edges with no presence of a coagulation effect. After laser welding, collagen fibrils appeared differently oriented among themselves in comparison with those of the control samples, but with similar mean fibril diameters. The laser-induced effect appeared to be confined to the ICG stained area of the cut walls, and no heat damage was observed at the operative power levels of laser corneal welding.

  12. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-08-01

    Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  13. Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.

    PubMed

    Kancharla, Vidhyullatha; Bashir, Sajid; Liu, Jingbo L; Ramirez, Oscar M; Derrick, Peter J; Beran, Kyle A

    2017-10-01

    Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.

  14. A Case of Bilateral Descemet's Membrane and Subepithelial Opacity: In vivo Laser Confocal Microscopic Study.

    PubMed

    Hatta, Yukiko; Yokogawa, Hideaki; Kobayashi, Akira; Torisaki, Makoto; Sugiyama, Kazuhisa

    2013-01-01

    To report the in vivo laser confocal microscopy findings from a patient with Descemet's membrane and subepithelial opacity OU. A healthy 41-year-old male with Descemet's membrane and subepithelial opacity OU was studied. Routine ophthalmic examination, standard slit-lamp biomicroscopy, and in vivo laser confocal microscopic analysis of the entire corneal layer were performed. Slit-lamp biomicroscopy revealed subepithelial opacity in the mid-peripheral to peripheral cornea and numerous opacities located at the level of Descemet's membrane. It was difficult to distinguish the precise histological location of the opacity. In vivo laser confocal microscopy showed numerous hyperreflective particles in the subepithelium to superficial stroma and hyperreflectivity of Descemet's membrane. No abnormalities could be detected in the epithelial cell layer, midstromal layer, deep stromal layer, or endothelial cell layer. Although the origin of the corneal opacities was unclear, in vivo laser confocal microscopy was useful for observing microstructural abnormalities in a case of Descemet's membrane and subepithelial opacity.

  15. A Case of Bilateral Descemet's Membrane and Subepithelial Opacity: In vivo Laser Confocal Microscopic Study

    PubMed Central

    Hatta, Yukiko; Yokogawa, Hideaki; Kobayashi, Akira; Torisaki, Makoto; Sugiyama, Kazuhisa

    2013-01-01

    Purpose To report the in vivo laser confocal microscopy findings from a patient with Descemet's membrane and subepithelial opacity OU. Case Report A healthy 41-year-old male with Descemet's membrane and subepithelial opacity OU was studied. Routine ophthalmic examination, standard slit-lamp biomicroscopy, and in vivo laser confocal microscopic analysis of the entire corneal layer were performed. Slit-lamp biomicroscopy revealed subepithelial opacity in the mid-peripheral to peripheral cornea and numerous opacities located at the level of Descemet's membrane. It was difficult to distinguish the precise histological location of the opacity. In vivo laser confocal microscopy showed numerous hyperreflective particles in the subepithelium to superficial stroma and hyperreflectivity of Descemet's membrane. No abnormalities could be detected in the epithelial cell layer, midstromal layer, deep stromal layer, or endothelial cell layer. Conclusion Although the origin of the corneal opacities was unclear, in vivo laser confocal microscopy was useful for observing microstructural abnormalities in a case of Descemet's membrane and subepithelial opacity. PMID:23626574

  16. In situ TEM Raman spectroscopy and laser-based materials modification.

    PubMed

    Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M

    2017-07-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    NASA Astrophysics Data System (ADS)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  18. Analysis of the Microstructure and Thermal Shock Resistance of Laser Glazed Nanostructured Zirconia TBCs

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie

    2010-03-01

    Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.

  19. Biological Effects of Laser Radiation. Volume I. Review of the Literature on Biological Effects of Laser Radiation-to 1965.

    DTIC Science & Technology

    1978-10-17

    because of the rapid progress made in laser technology to date. The use of the Laser Microprobe in spectrochemical analysis of the elements is based on...spectroscopy to vaporize microscopic amounts of samples for elemental analysis . On the other hand, the intense, highly monochromatic laser beam is being...employed as a light source for Raman spectroscopy to study molecular structure. These two uses of lasers in spectroscopic analysis have been sucessful

  20. Effects of photodynamic therapy on Gram-positive and Gram-negative bacterial biofilms by bioluminescence imaging and scanning electron microscopic analysis.

    PubMed

    Garcez, Aguinaldo S; Núñez, Silvia C; Azambuja, Nilton; Fregnani, Eduardo R; Rodriguez, Helena M H; Hamblin, Michael R; Suzuki, Hideo; Ribeiro, Martha S

    2013-11-01

    The aim of this study was to test photodynamic therapy (PDT) as an alternative approach to biofilm disruption on dental hard tissue, We evaluated the effect of methylene blue and a 660 nm diode laser on the viability and architecture of Gram-positive and Gram-negative bacterial biofilms. Ten human teeth were inoculated with bioluminescent Pseudomonas aeruginosa or Enterococcus faecalis to form 3 day biofilms in prepared root canals. Bioluminescence imaging was used to serially quantify and evaluate the bacterial viability, and scanning electron microscopic (SEM) imaging was used to assess architecture and morphology of bacterial biofilm before and after PDT employing methylene blue and 40 mW, 660 nm diode laser light delivered into the root canal via a 300 μm fiber for 240 sec, resulting in a total energy of 9.6 J. The data were statistically analyzed with analysis of variance (ANOVA) followed by Tukey test. The bacterial reduction showed a dose dependence; as the light energy increased, the bioluminescence decreased in both planktonic suspension and in biofilms. The SEM analysis showed a significant reduction of biofilm on the surface. PDT promoted disruption of the biofilm and the number of adherent bacteria was reduced. The photodynamic effect seems to disrupt the biofilm by acting both on bacterial cells and on the extracellular matrix.

  1. Application of laser scanning speckle-microscopy for high-resolution express diagnostics of chlamydial infection

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey; Larionova, Olga; Ulianova, Onega; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Filonova, Nadezhda; Subbotina, Irina; Kalduzova, Irina; Utz, Sergey; Moiseeva, Yulia; Feodorova, Valentina

    2018-04-01

    Method of speckle-microscopy has been adapted to the problem of detection of Chlamydia trachomatis microbial cells in clinical samples. Prototype of laser scanning speckle-microscope has been designed. Spatial resolution and output characteristics of this microscope have been analyzed for the case of scanning of C. trachomatis bacteria inclusions - Elementary Bodies (EBs) inside the human cells, fixed on the glass. It has been demonstrated, that presence of C. trachomatis microbial cells in the sample can be easily detected using speckle microscopy.

  2. Effect of Nd: YAG laser on the apical seal after root-end resection and MTA retrofill: a bacterial leakage study.

    PubMed

    Birang, Reza; Kiani, Sepideh; Shokraneh, Ali; Hasheminia, Seyed Mohsen

    2015-02-01

    Laser irradiation has been investigated in terms of preventing leakage in retrofilled root canals. The aim of the present study was to evaluate the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser on the bacterial leakage of mineral trioxide aggregate (MTA)-retrofilled roots. In this ex vivo experimental study, 90 single-rooted incisor teeth were filled with gutta-percha and AH26 sealer. The apical 3 mm of all the roots were resected and 3-mm retrocavities were prepared by an ultrasonic device. The specimens were randomly divided into two experimental (n = 25), one positive control (n = 10), and two negative control (n = 10) groups. In the laser + MTA group, the cavity walls were irradiated by Nd: YAG laser prior to MTA placement. In the MTA group, MTA was placed without laser irradiation. The root surfaces were covered with two layers of nail varnish except for the apical 2 mm. The specimens were then embedded in a bacterial leakage test system and examined daily for 90 days. Contamination periods were recorded. Data were analyzed by Kaplan-Meier and Mann-Whitney U tests (α = 0.05). Five teeth with and five teeth without laser irradiation underwent scanning electron microscopic evaluation. The specimens in the laser + MTA group were contaminated earlier than those in the MTA group (p < 0.05). Comparison of survival times between the two groups showed significant differences (p < 0.05). Nd: YAG laser irradiation can decrease the sealing capacity of MTA in comparison to the apical seal achieved by MTA without laser irradiation. Further studies are recommended to provide a better seal for the MTA-retrofilled teeth after laser irradiation.

  3. Effects of Laser Shock Processing on Morphologies and Mechanical Properties of ANSI 304 Stainless Steel Weldments Subjected to Cavitation Erosion

    PubMed Central

    Zhang, Lei; Lu, Jin-Zhong; Zhang, Yong-Kang; Ma, Hai-Le; Luo, Kai-Yu; Dai, Feng-Ze

    2017-01-01

    Effects of laser shock processing (LSP) on the cavitation erosion resistance of laser weldments were investigated by optical microscope (OM), scanning electron microscope (SEM) observations, roughness tester, micro hardness tester, and X-ray diffraction (XRD) technology. The morphological microstructures were characterized. Cumulative mass loss, incubation period, erosion rate, and damaged surface areas were monitored during cavitation erosion. Surface roughness, micro-hardness, and residual stress were measured in different zones. Results showed that LSP could improve the damage of morphological microstructures and mechanical properties after cavitation erosion. The compressive residual stresses were generated during the process of LSP, which was an effective guarantee for the improvement of the above mentioned properties. PMID:28772652

  4. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  5. Development and applications of optical interferometric micrometrology in the angstrom and subangstrom range

    NASA Technical Reports Server (NTRS)

    Lauer, James L.; Abel, Phillip B.

    1988-01-01

    The recent development of the scanning electron tunneling microscope and the atomic force microscope requires absolute standards for measurements in the angstrom and subangstrom range. Optical interferometry with lasers and multiple mode laser resonances can provide absolute measurements as the laser wavelengths are very accurately known. A key feature of such measurements is the use of piezoelectric crystals as translators of the highest accuracy for very small disturbances. However, the dimensional changes of these crystals resulting from electrical potential changes depend on many variables, among them the method of mounting, so that accurate calibrations are necessary. Starting from advances in optical metrology made by physicists trying to find gravity waves, advances which led to measurements down to 10 to the -5 A, the author designed and built a much simpler system for the angstrom range. The major limiting factors were mechanical vibrations, air currents, thermal changes and laser instabilities.

  6. Comparative Morphologic Evaluation and Occluding Effectiveness of Nd: YAG, CO2 and Diode Lasers on Exposed Human Dentinal Tubules: An Invitro SEM Study

    PubMed Central

    Grover, Harpreet Singh; Choudhary, Pankaj

    2016-01-01

    Introduction Dentinal hypersensitivity is one of the most common problem, encountered in dental practice but has least predictable treatment outcome. The advent of lasers in dentistry has provided an additional therapeutic option for treating dentinal hypersensitivity. Although various lasers have been tried over a period of time to treat dentinal hypersensitivity, but still the doubt persist as to which laser leads to maximum dentinal tubular occlusion and is most suitable with minimal hazardous effects. Aim To compare the effects of Nd: YAG, CO2 and 810-nm diode lasers on width of exposed dentinal tubule orifices and to evaluate the morphologic changes on dentinal surface of human tooth after laser irradiation by scanning electron microscope (SEM). Materials and Methods Forty root specimens were obtained from ten freshly extracted human premolars, which were randomly divided into four groups of ten each. Group I: control group treated with only saline, Group II: Nd:YAG laser, Group III: CO2 laser and Group IV: 810-nm diode laser. The specimens were examined using SEM. After calculating mean tubular diameter for each group, the values were compared statistically using parametric one-way ANOVA test and Turkey’s post hoc multiple comparison test. Results All the three lased groups showed a highly statistical significant result with p-value of <0.001 as compared to non-lased group. On intergroup comparison within the lased groups, all the three groups showed statistically significant difference in the reduction of dentinal tubular diameter (p-value < 0.001). Conclusion Nd: YAG laser was found to be most effective, followed by the CO2 laser and 810-nm diode laser was found to be least effective. The morphologic changes like craters, cracks and charring effect of the dentine were seen maximum by the use of CO2 laser. PMID:27630957

  7. Comparative Morphologic Evaluation and Occluding Effectiveness of Nd: YAG, CO2 and Diode Lasers on Exposed Human Dentinal Tubules: An Invitro SEM Study.

    PubMed

    Saluja, Mini; Grover, Harpreet Singh; Choudhary, Pankaj

    2016-07-01

    Dentinal hypersensitivity is one of the most common problem, encountered in dental practice but has least predictable treatment outcome. The advent of lasers in dentistry has provided an additional therapeutic option for treating dentinal hypersensitivity. Although various lasers have been tried over a period of time to treat dentinal hypersensitivity, but still the doubt persist as to which laser leads to maximum dentinal tubular occlusion and is most suitable with minimal hazardous effects. To compare the effects of Nd: YAG, CO2 and 810-nm diode lasers on width of exposed dentinal tubule orifices and to evaluate the morphologic changes on dentinal surface of human tooth after laser irradiation by scanning electron microscope (SEM). Forty root specimens were obtained from ten freshly extracted human premolars, which were randomly divided into four groups of ten each. Group I: control group treated with only saline, Group II: Nd:YAG laser, Group III: CO2 laser and Group IV: 810-nm diode laser. The specimens were examined using SEM. After calculating mean tubular diameter for each group, the values were compared statistically using parametric one-way ANOVA test and Turkey's post hoc multiple comparison test. All the three lased groups showed a highly statistical significant result with p-value of <0.001 as compared to non-lased group. On intergroup comparison within the lased groups, all the three groups showed statistically significant difference in the reduction of dentinal tubular diameter (p-value < 0.001). Nd: YAG laser was found to be most effective, followed by the CO2 laser and 810-nm diode laser was found to be least effective. The morphologic changes like craters, cracks and charring effect of the dentine were seen maximum by the use of CO2 laser.

  8. Effects of Laser Treatment on the Bond Strength of Differently Sintered Zirconia Ceramics.

    PubMed

    Dede, Doğu Ömür; Yenisey, Murat; Rona, Nergiz; Öngöz Dede, Figen

    2016-07-01

    The purpose of this study was to investigate the effects of carbon dioxide (CO2) and Erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiations on the shear bond strength (SBS) of differently sintered zirconia ceramics to resin cement. Eighty zirconia specimens were prepared, sintered in two different periods (short = Ss, long = Ls), and divided into four treatment groups (n = 10 each). These groups were (a) untreated (control), (b) Er:YAG laser irradiated with 6 W power for 5 sec, (c) CO2 laser with 2 W power for 10 sec, (d) CO2 laser with 4 W power for 10 sec. Scanning electron microscope (SEM) images were recorded for each of the eight groups. Eighty composite resin discs (3 × 3 mm) were fabricated and cemented with an adhesive resin cement to ceramic specimens. The SBS test was performed after specimens were stored in water for 24 h by an universal testing machine at a crosshead speed of 1 mm/min. Data were statistically analyzed with two way analysis of variance (ANOVA) and Tukey honest significant difference (HSD) test (α = 0.05). According to the ANOVA, the sintering time, surface treatments and their interaction were statistically significant (p < 0.05). Although each of the laser-irradiated groups were significantly higher than the control groups, there was no statistically significant difference among them (p > 0.05). Variation in sintering time from 2.5 to 5.0 h may have influenced the SBS of Yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics. Although CO2 and Er:YAG laser irradiation techniques may increase the SBS values of both tested zirconia ceramics, they are recommended for clinicians as an alternative pretreatment method.

  9. Light Microscopy Module Imaging Tested and Demonstrated

    NASA Technical Reports Server (NTRS)

    Gati, Frank

    2004-01-01

    The Fluids Integrated Rack (FIR), a facility-class payload, and the Light Microscopy Module (LMM), a subrack payload, are integrated research facilities that will fly in the U.S. Laboratory module, Destiny, aboard the International Space Station. Both facilities are being engineered, designed, and developed at the NASA Glenn Research Center by Northrop Grumman Information Technology. The FIR is a modular, multiuser scientific research facility that is one of two racks that make up the Fluids and Combustion Facility (the other being the Combustion Integrated Rack). The FIR has a large volume dedicated for experimental hardware; easily reconfigurable diagnostics, power, and data systems that allow for unique experiment configurations; and customizable software. The FIR will also provide imagers, light sources, power management and control, command and data handling for facility and experiment hardware, and data processing and storage. The first payload in the FIR will be the LMM. The LMM integrated with the FIR is a remotely controllable, automated, on-orbit microscope subrack facility, with key diagnostic capabilities for meeting science requirements--including video microscopy to observe microscopic phenonema and dynamic interactions, interferometry to make thin-film measurements with nanometer resolution, laser tweezers to manipulate micrometer-sized particles, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure the photonic properties of materials. Vibration disturbances were identified early in the LMM development phase as a high risk for contaminating the science microgravity environment. An integrated FIR-LMM test was conducted in Glenn's Acoustics Test Laboratory to assess mechanical sources of vibration and their impact to microscopic imaging. The primary purpose of the test was to characterize the LMM response at the sample location, the x-y stage within the microscope, to vibration emissions from the FIR and LMM support structures.

  10. Study of morphological changes in breast cancer cells MCF-7 under the action of pro-apoptotic agents with laser modulation interference microscope MIM-340

    NASA Astrophysics Data System (ADS)

    Nebogatikov, V.; Nikitiuk, A.; Konysheva, A.; Ignatyev, P.; Grishko, V.; Naimark, O.

    2017-09-01

    Quantitative phase microscopy is a new method to measure and evaluate the microlevel processes characterized by the high resolution and providing ample opportunities to quantitatively analyze various parameters, including specimens from biological matter. In this study, a laser interference microscope was used to evaluate the state of cancer cells (living and apoptotic). Apoptotic cancer cells were obtained by treatment of MCF-7 cells with the use of betulin-based α-bromomethyl ketone (BMK) derivative. When using the microscope, the main differences in the morphometric parameters of living and apoptotic cells such as height, diameter, perimeter, area and volume were appraised. The criteria that can be used as markers of apoptosis activation were identified.

  11. Laser based imaging of time depending microscopic scenes with strong light emission

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik

    2011-10-01

    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  12. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl

    2017-09-01

    The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.

  13. Experimental Investigation of the Reflection Mode Micro Laser Propulsion under Highly Frequent and Multi Pulse Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xinghua; Cai Jian; Li Long

    Micro laser propulsion used for some space tasks of micro-satellites are preferred to providing small thrust and high specific impulse while keeping power consumption low. Most previous work on micro laser propulsion are about transmission mode (T-mode) using a CW laser. In this article, a pulsed fiber laser is used to study the micro laser propulsion performance under reflection mode. Multi pulse (ranged from 100 to 2000) tests are conducted on a double base propellant with the vacuum less than 10 Pa. The laser frequency is 20 kHz and two kinds of instantaneous power density 4.77x10{sup 6} W/cm{sup 2} andmore » 2.39x10{sup 7} W/cm{sup 2} are used. It is found that the momentum coupling coefficient C{sub m} and the mean thrust F increases with the increasing pulse numbers, which is different to the previous work. By adjusting the irradiation time T, it is easy to get a large mean thrust, up to mN. When the energy density is the same, C{sub m}, I{sub sp}, F and {eta} increase with the increasing power density. Also I{sub sp} and {eta} are very low, laser ablation is insufficiently under the current condition. 3D Morphology of the ablation hole is obtained by confocal microscope for the first time.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Ming-Hung; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Haung, Chiung-Fang

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples.more » The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.« less

  15. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    PubMed Central

    Schröter, Tobias J.; Johnson, Shane B.; John, Kerstin; Santi, Peter A.

    2011-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. PMID:22254177

  16. Confocal laser scanning microscopic photoconversion: a new method to stabilize fluorescently labeled cellular elements for electron microscopic analysis.

    PubMed

    Colello, Raymond J; Tozer, Jordan; Henderson, Scott C

    2012-01-01

    Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.

  17. RGB digital lensless holographic microscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, Jorge

    2013-11-01

    The recent introduction of color digital lensless holographic microscopy (CDLHM) has shown the possibility of imaging microscopic specimens at full color without the need of lenses. Owing to the simplicity, robustness, and compactness of the digital lensless holographic microscopes (DLHM), they have been presented as the ideal candidates to being developed into portable holographic microscopes. However, in the case of CDLHM the utilization of three independent lasers hinders the portability option for this microscope. In this contribution an alternative to reduce the complexity of CDLHM aimed to recover the portability of this microscopy technology is presented. A super-bright white-light light-emitting diode (LED) is spectrally and spatially filtered to produce the needed illumination by CDLHM to work. CDLHM with LED illumination is used to image at full color a section of the head of a drosophila melanogaster fly (fruit fly). The LED-CDLHM method shows the capability of imaging objects of 2μm size in comparison with the micrometer resolution reported for LASER-CDLHM.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less

  19. Fractional laser skin resurfacing.

    PubMed

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  20. THE INFLUENCE OF SCREW TYPE, ALLOY AND CYLINDER POSITION ON THE MARGINAL FIT OF IMPLANT FRAMEWORKS BEFORE AND AFTER LASER WELDING

    PubMed Central

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-01-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. Objectives: To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. Methods: After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5 μm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (α =0.05). Results: Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13μm) than the hexagonal screws (27.93 μm). Besides, no statistically significant differences were found after laser welding. Conclusions: 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values. PMID:19089035

  1. The influence of screw type, alloy and cylinder position on the marginal fit of implant frameworks before and after laser welding.

    PubMed

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-04-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5mm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (alpha=0.05). Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13 microm) than the hexagonal screws (27.93 microm). Besides, no statistically significant differences were found after laser welding. 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values.

  2. Homogeneity testing and quantitative analysis of manganese (Mn) in vitrified Mn-doped glasses by laser-induced breakdown spectroscopy (LIBS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unnikrishnan, V. K.; Nayak, Rajesh; Kartha, V. B.

    2014-09-15

    Laser-induced breakdown spectroscopy (LIBS), an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn) in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×10{sup 9} W/cm{sup 2}. The spatially integrated plasma emission was collected and imaged on tomore » the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX) surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.« less

  3. Two-photon laser scanning microscopy with electrowetting-based prism scanning

    PubMed Central

    Supekar, Omkar D.; Ozbay, Baris N.; Zohrabi, Mo; Nystrom, Philip D.; Futia, Gregory L.; Restrepo, Diego; Gibson, Emily A.; Gopinath, Juliet T.; Bright, Victor M.

    2017-01-01

    Laser scanners are an integral part of high resolution biomedical imaging systems such as confocal or 2-photon excitation (2PE) microscopes. In this work, we demonstrate the utility of electrowetting on dielectric (EWOD) prisms as a lateral laser-scanning element integrated in a conventional 2PE microscope. To the best of our knowledge, this is the first such demonstration for EWOD prisms. EWOD devices provide a transmissive, low power consuming, and compact alternative to conventional adaptive optics, and hence this technology has tremendous potential. We demonstrate 2PE microscope imaging of cultured mouse hippocampal neurons with a FOV of 130 × 130 μm2 using EWOD prism scanning. In addition, we show simulations of the optical system with the EWOD prism, to evaluate the effect of propagating a Gaussian beam through the EWOD prism on the imaging quality. Based on the simulation results a beam size of 0.91 mm full width half max was chosen to conduct the imaging experiments, resulting in a numerical aperture of 0.17 of the imaging system. PMID:29296477

  4. A compact "water-window" microscope with 60-nm spatial resolution based on a double stream gas-puff target and Fresnel zone plate optics

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F.; Adjei, Daniel; Bartnik, Andrzej; Kostecki, Jerzy; Wegrzynski, Łukasz; Vondrová, Šárka; Turňová, Jana; Fok, Tomasz; Jančarek, Alexandr; Fiedorowicz, Henryk

    2015-05-01

    Radiation with shorter illumination wavelength allows for extension of the diffraction limit towards nanometer scale, which is a straightforward way to significantly improve a spatial resolution in photon based microscopes. Soft X-ray (SXR) radiation, from the so called "water window" spectral range, λ=2.3-4.4 nm, which is particularly suitable for biological imaging due to natural optical contrast, providing much better spatial resolution than one obtained with visible light microscopes. The high contrast is obtained because of selective absorption of radiation by carbon and water, being constituents of the biological samples. We present a desk-top system, capable of resolving 60 nm features in few seconds exposure time. We exploit the advantages of a compact, laser-plasma SXR source, based on a double stream nitrogen gas puff target, developed at the Institute of Optoelectronics, Military University of Technology. The source, emitting quasi-monochromatic, incoherent radiation, in the "water widow" spectral range at λ = 2.88 nm, is coupled with ellipsoidal, grazing incidence condenser and Fresnel zone plate objective. The construction of the microscope with some recent images of test and real samples will be presented and discussed.

  5. Sub-micrometer resolution proximity X-ray microscope with digital image registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chkhalo, N. I.; Salashchenko, N. N.; Sherbakov, A. V., E-mail: SherbakovAV@ipm.sci-nnov.ru

    A compact laboratory proximity soft X-ray microscope providing submicrometer spatial resolution and digital image registration is described. The microscope consists of a laser-plasma soft X-ray radiation source, a Schwarzschild objective to illuminate the test sample, and a two-coordinate detector for image registration. Radiation, which passes through the sample under study, generates an absorption image on the front surface of the detector. Optical ceramic YAG:Ce was used to convert the X-rays into visible light. An image was transferred from the scintillator to a charge-coupled device camera with a Mitutoyo Plan Apo series lens. The detector’s design allows the use of lensesmore » with numerical apertures of NA = 0.14, 0.28, and 0.55 without changing the dimensions and arrangement of the elements of the device. This design allows one to change the magnification, spatial resolution, and field of view of the X-ray microscope. A spatial resolution better than 0.7 μm and an energy conversion efficiency of the X-ray radiation with a wavelength of 13.5 nm into visible light collected by the detector of 7.2% were achieved with the largest aperture lens.« less

  6. Broadband X-ray edge-enhancement imaging of a boron fibre on lithium fluoride thin film detector

    NASA Astrophysics Data System (ADS)

    Nichelatti, E.; Bonfigli, F.; Vincenti, M. A.; Cecilia, A.; Vagovič, P.; Baumbach, T.; Montereali, R. M.

    2016-10-01

    The white beam (∼6-80 keV) available at the TopoTomo X-ray beamline of the ANKA synchrotron facility (KIT, Karlsruhe, Germany) was used to perform edge-enhancement imaging tests on lithium fluoride radiation detectors. The diffracted X-ray image of a microscopic boron fibre, consisting of tungsten wire wrapped by boron cladding, was projected onto lithium fluoride thin films placed at several distances, from contact to 1 m . X-ray photons cause the local formation of primary and aggregate colour centres in lithium fluoride; these latter, once illuminated under blue light, luminesce forming visible-light patterns-acquired by a confocal laser scanning microscope-that reproduce the intensity of the X-ray diffracted images. The tests demonstrated the excellent performances of lithium fluoride films as radiation detectors at the investigated photon energies. The experimental results are here discussed and compared with those calculated with a model that takes into account all the processes that concern image formation, storing and readout.

  7. Investigation of crack initiation with a three color digital holographic interferometer

    NASA Astrophysics Data System (ADS)

    Karray, Mayssa; Poilane, Christophe; Mounier, Denis; Gargoury, Mohamed; Picart, Pascal

    2012-10-01

    This paper proposes a three-color holographic interferometer devoted to the deformation analysis of a composite material submitted to a short beam shear test. The simultaneous recording of three laser wavelengths using a triple CCD sensor results in the evaluation of shear strains at the lateral surface of the sample. Such an evaluation provides a pertinent parameter to detect premature crack in the structure, long before it becomes visible on the real time stress/strain curve, or with a classical microscope.

  8. Neodymium:yttrium-aluminum-garnet laser fusion of endarterectomy flaps.

    PubMed

    Humphrey, P W; Slocum, M M; Loy, T S; Silver, D

    1995-07-01

    This study evaluated the efficacy of neodymium:yttrium-aluminum-garnet laser welding of flaps in canine arteries and in securing the distal flap during human carotid endarterectomy. Endarterectomy flaps were created in both common carotid and both common femoral arteries in 12 dogs. The flaps were repaired with either the neodymium:yttrium-aluminum-garnet laser or with 6-0 polypropylene sutures. The arteries were removed after duplex scanning at either 7 or 28 days. Eighteen high carotid endarterectomy flaps in 16 patients have been subsequently secured with the laser welding technique. Laser repairs (125 +/- 19 joule) of the canine arteries were completed more quickly than suture repairs (mean 25 seconds vs 135 seconds, respectively; p < 0.04). Duplex ultrasonography revealed no discernable differences between the two groups of arteries. Arteries studied at 7 days revealed three microscopic flaps (two suture, one laser), more subintimal fibroblastic proliferation in suture than laser-repaired carotid arteries (3: 1, p = 0.0530), and similar amounts of inflammation in suture- and laser-repaired arteries. Arteries studied at 28 days revealed one microscopic intimal flap (suture-repaired); equal fibroblastic and inflammatory responses in suture- and laser-repaired vessels; and no evidence of laser thermal injury. Eighteen carotid endarterectomy flaps have been successfully fused with no immediate or long-term complications in 16 patients (follow-up of 0 to 24 months). Laser fusion appears to be a safe and effective method for securing distal carotid endarterectomy flaps.

  9. Direct-write maskless lithography using patterned oxidation of Si-substrate Induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2013-03-01

    In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.

  10. Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers.

    PubMed

    Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M

    1992-08-20

    An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.

  11. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2014-11-01

    Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.

  12. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to be realized by an imaging optical system which can include microscope objectives and tube lenses. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in microscopy systems. Examples of real implementations and experimental results will be presented as well.

  13. Special Features of the Optical Absorption and Photoconductivity of Indium Monoselenide Upon Laser Excitation

    NASA Astrophysics Data System (ADS)

    Kyazym-Zade, A. G.; Salmanov, V. M.; Guseinov, A. G.; Mamedov, R. M.; Salmanova, A. A.; Akhmedova, F. Sh.

    2018-02-01

    The successive ionic layer adsorption and reaction (SILAR) method is used to prepare InSe thin films and InSe nanoparticles. Shapes and sizes of the obtained nanoparticles are investigated using a scanning electron microscope and an atomic force microscope. The main parameters of the examined structures, nanoparticle sizes (4-20 nm), and band gap ( E g = 1.60 eV) for nanoparticles with the least sizes are determined. Superfast (1.5·10-8 s) photocurrent relaxation and stimulated emission with line half-width of 8 Å have been observed upon exposure to laser radiation.

  14. The development of laser surgery and medicine in China

    NASA Astrophysics Data System (ADS)

    Chen, Mingzhe

    2005-07-01

    The first Chinese ruby laser was created in 1961 and it was adopted for the retina coagulation experiment in 1965. Since 1970's, lasers had been widely applied clinically including the diseases suitable to physical therapy or acupuncture. The Chinese HpD was first produced in 1981 and first case of PDT was treated using Chinese HpD and Chinese lasers in the same year. Its success brought attention establishing a research group supported by the government in 1982. A nationwide systemic research project on PDT was then carried out. The step taken for PDT also accelerated the development of various fields of laser medicine and surgery. Laser treatments had been commonly adopted in the clinics and hospitals for the diseases of the superficial lesions and the lesions can be reached by the endoscopes non-invasively in 1980's. Since 1990's, the interventional laser therapies adopted mainly were percutaneous laser angioplasty, laser treatments through laparoscope, thoracoscope, arthroscope, neuro-endoscope etc. Ultrasound guided percutaneous laser heat coagulation for small hepatic cancer revealed good results and ultrasound guided percutaneous PDT for advanced large liver cancer revealed unexpected results after five years follow-up. At present: There are more long-term follow-up patients in the clinical trial; more advanced commercial available lasers and new techniques are adopted. Since the popularization of scanning electron microscope, laser scanning confocal microscope, laser induced auto-fluorescence system, high sensitivity fluorescence microscopic imaging system etc. in the laboratories, the basic studies can be more advanced and some times, the sub-cellular level can be reached; ultra-structure histo-morphology and gene studies are involved. In dermatology, Q-switched Alexandrite laser and other Q-switched lasers are used mainly for the treatment of skin pigmentation and vascular diseases; pulsed dye laser, ultra-pulsed CO2 laser are used in resurfacing, facial acne scar, osmidrosis etc. For ophthalmology, excimer laser are used for myopia or hyperopia; argon green laser, krypton yellow laser are adopted in coagulation for retinal detachment and neovascularization etc. Lasers are often used for the canaliculoplasty in the lacrimal canal. Low level lasers had been used very often on the acupuncture points and for many chronic diseases. Intravascular low level laser irradiation adopting semiconductor lasers and He-Ne laser were reported to use for comatose patients, schizophrenia, vascular dementia, Alzeimer"s disease and coronary disease. Reports from laboratory studies in the field of low level laser demonstrated the stimulation effect on the cells and immunology system; inhibitory effect on proliferation; it improved the biomedical data in hemorrheology; promoted the spinal motor nerve cell function, axonal regeneration; increased epidermal Langerhams cell to improve the antigen function, increased myocardial capillary permeability. Intra-coronary low power red laser irradiation assisted coronary interventional therapy showed its prevention effect on restenosis. Studies about the effects of various kinds of lasers, their wavelength, power densities and doses on various kinds of tissues were reported.

  15. Measurement of the index of refraction of μm crystals by a confocal laser microscope--potential application for the refractive index mapping of μm scale.

    PubMed

    Kimura, Keisaku; Sato, Seiichi

    2014-05-01

    A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.

  16. Laser-based microstructuring of materials surfaces using low-cost microlens arrays

    NASA Astrophysics Data System (ADS)

    Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.

    2012-03-01

    Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.

  17. Recommendations for the design and the installation of large laser scanning microscopy systems

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes

    2012-03-01

    Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.

  18. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    EPA Science Inventory

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  19. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan

    1992-01-01

    A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

  20. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes

    PubMed Central

    Sarder, Pinaki; Yazdanfar, Siavash; Akers, Walter J.; Tang, Rui; Sudlow, Gail P.; Egbulefu, Christopher

    2013-01-01

    Abstract. The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100  μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500  μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms. PMID:24150231

  1. Quantitative phase imaging by wide field lensless digital holographic microscope

    NASA Astrophysics Data System (ADS)

    Adinda-Ougba, A.; Koukourakis, N.; Essaidi, A.; Ger­hardt, N. C.; Hofmann, M. R.

    2015-05-01

    Wide field, lensless microscopes have been developed for telemedicine and for resource limited setting [1]. They are based on in-line digital holography which is capable to provide amplitude and phase information resulting from numerical reconstruction. The phase information enables achieving axial resolution in the nanometer range. Hence, such microscopes provide a powerful tool to determine three-dimensional topologies of microstructures. In this contribution, a compact, low-cost, wide field, lensless microscope is presented, which is capable of providing topological profiles of microstructures in transparent material. Our setup consist only of two main components: a CMOSsensor chip and a laser diode without any need of a pinhole. We use this very simple setup to record holograms of microobjects. A wide field of view of ~24 mm², and a lateral resolution of ~2 μm are achieved. Moreover, amplitude and phase information are obtained from the numerical reconstruction of the holograms using a phase retrieval algorithm together with the angular spectrum propagation method. Topographic information of highly transparent micro-objects is obtained from the phase data. We evaluate our system by recording holograms of lines with different depths written by a focused laser beam. A reliable characterization of laser written microstructures is crucial for their functionality. Our results show that this system is valuable for determination of topological profiles of microstructures in transparent material.

  2. Effect of Nickel Contents on the Microstructure and Mechanical Properties for Low-Carbon Bainitic Weld Metals

    NASA Astrophysics Data System (ADS)

    Mao, Gaojun; Cao, Rui; Yang, Jun; Jiang, Yong; Wang, Shuai; Guo, Xili; Yuan, Junjun; Zhang, Xiaobo; Chen, Jianhong

    2017-05-01

    Multi-pass weld metals were deposited on Q345 base steel using metal powder-flux-cored wire with various Ni contents to investigate the effects of the Ni content on the weld microstructure and property. The types of the microstructures were identified by optical microscope, scanning electron microscope, transmission electron microscope, and micro-hardness tests. As a focusing point, the lath bainite and lath martensite were distinguished by their compositions, morphologies, and hardness. In particular, a number of black plane facets appearing between lath bainite or lath martensite packets were characterized by laser scanning confocal microscope. The results indicated that with the increase in Ni contents in the range of 0, 2, 4, and 6%, the microstructures in the weld-deposited metal were changed from the domination of the granular bainite to the majority of the lath bainite and/or the lath martensite and the micro-hardness of the weld-deposited metal increased. Meanwhile, the average width of columnar grain displays a decreasing trend and prior austenite grain size decreases while increases with higher Ni content above 4%. Yield strength and ultimate tensile strength decrease, while the reduction in fracture area increases with the decreasing Ni mass fraction and the increasing test temperature, respectively. And poor yield strength in Ni6 specimen can be attributed to elements segregation caused by weld defect. Finally, micro-hardness distribution in correspondence with specimens presents as a style of cloud-map.

  3. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  4. Developing a more useful surface quality metric for laser optics

    NASA Astrophysics Data System (ADS)

    Turchette, Quentin; Turner, Trey

    2011-02-01

    Light scatter due to surface defects on laser resonator optics produces losses which lower system efficiency and output power. The traditional methodology for surface quality inspection involves visual comparison of a component to scratch and dig (SAD) standards under controlled lighting and viewing conditions. Unfortunately, this process is subjective and operator dependent. Also, there is no clear correlation between inspection results and the actual performance impact of the optic in a laser resonator. As a result, laser manufacturers often overspecify surface quality in order to ensure that optics will not degrade laser performance due to scatter. This can drive up component costs and lengthen lead times. Alternatively, an objective test system for measuring optical scatter from defects can be constructed with a microscope, calibrated lighting, a CCD detector and image processing software. This approach is quantitative, highly repeatable and totally operator independent. Furthermore, it is flexible, allowing the user to set threshold levels as to what will or will not constitute a defect. This paper details how this automated, quantitative type of surface quality measurement can be constructed, and shows how its results correlate against conventional loss measurement techniques such as cavity ringdown times.

  5. A Comparative Study of Microleakage on Dental Surfaces Bonded with Three Self-Etch Adhesive Systems Treated with the Er:YAG Laser and Bur

    PubMed Central

    Sanhadji El Haddar, Youssef; Cetik, Sibel; Bahrami, Babak; Atash, Ramin

    2016-01-01

    Aim. This study sought to compare the microleakage of three adhesive systems in the context of Erbium-YAG laser and diamond bur cavity procedures. Cavities were restored with composite resin. Materials and Methods. Standardized Class V cavities were performed in 72 extracted human teeth by means of diamond burs or Er-YAG laser. The samples were randomly divided into six groups of 12, testing three adhesive systems (Clearfil s3 Bond Plus, Xeno® Select, and Futurabond U) for each method used. Cavities were restored with composite resin before thermocycling (methylene blue 2%, 24 h). The slices were prepared using a microtome. Optical microscope photography was employed to measure the penetration. Results. No statistically significant differences in microleakage were found in the use of bur or laser, nor between adhesive systems. Only statistically significant values were observed comparing enamel with cervical walls (p < 0.001). Conclusion. It can be concluded that the Er:YAG laser is as efficient as diamond bur concerning microleakage values in adhesive restoration procedures, thus constituting an alternative tool for tooth preparation. PMID:27419128

  6. Using laser induced breakdown spectroscopy and acoustic radiation force elasticity microscope to measure the spatial distribution of corneal elasticity

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Li, Xin; Fan, Zhongwei; Kurtz, Ron; Juhasz, Tibor

    2017-02-01

    Corneal biomechanics plays an important role in determining the eye's structural integrity, optical power and the overall quality of vision. It also plays an increasingly recognized role in corneal transplant and refractive surgery, affecting the predictability, quality and stability of final visual outcome [1]. A critical limitation to increasing our understanding of how corneal biomechanics controls corneal stability and refraction is the lack of non-invasive technologies that microscopically measure local biomechanical properties, such as corneal elasticity within the 3D space. Bubble based acoustic radiation force elastic microscopy (ARFEM) introduce the opportunity to measure the inhomogeneous elastic properties of the cornea by the movement of a micron size cavitation bubble generated by a low energy femtosecond laser pulse [2, 3]. Laser induced breakdown spectroscopy (LIBS) also known as laser induced plasma spectroscopy (LIPS) or laser spark spectrometry (LSS) is an atomic emission spectroscopy [4]. The LIBS principle of operation is quite simple, although the physical processes involved in the laser matter interaction are complex and still not completely understood. In one sentence for description, the laser pulses are focused down to a target so as to generate plasma that vaporizes a small amount of material which the emitted spectrum is measured to analysis the elements of the target.

  7. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  8. Selective treatment of carious dentin using a mid-infrared tunable pulsed laser at 6 μm wavelength range

    NASA Astrophysics Data System (ADS)

    Saiki, Masayuki; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2011-03-01

    Optical technologies have good potential for caries detection, prevention, excavation, and the realization of minimal intervention dentistry. This study aimed to develop a selective excavation technique of carious tissue using the specific absorption in 6 μm wavelength range. Bovine dentin demineralized with lactic acid solution was used as a carious dentin model. A mid-infrared tunable pulsed laser was obtained by difference-frequency generation technique. The wavelength was tuned to 6.02 and 6.42 μm which correspond to absorption bands called amide I and amide II, respectively. The laser delivers 5 ns pulse width at a repetition rate of 10 Hz. The morphological change after irradiation was observed with a scanning electron microscope, and the measurement of ablation depth was performed with a confocal laser microscope. At λ = 6.02 μm and the average power density of 15 W/cm2, demineralized dentin was removed selectively with less-invasive effect on sound dentin. The wavelength of 6.42 μm also showed the possibility of selective removal. High ablation efficiency and low thermal side effect were observed using the nanosecond pulsed laser with λ = 6.02 μm. In the near future, development of compact laser device will open the minimal invasive laser treatment to the dental clinic.

  9. High-power direct green laser oscillation of 598 mW in Pr(3+)-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes.

    PubMed

    Nakanishi, Jun; Horiuchi, Yuya; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki; Yoshida, Minoru; Fujimoto, Yasushi

    2011-05-15

    We demonstrated a high-power and highly efficient Pr-doped waterproof fluoride glass fiber laser at 522.2 nm excited by two-polarization-combined GaN laser diodes and achieved a subwatt output power of 598 mW and slope efficiency of 43.0%. This system will enable us to make a vivid laser display, a photocoagulation laser for eye surgery, a color confocal scanning laser microscope, and an effective laser for material processing. Direct visible ultrashort pulse generation is also expected. © 2011 Optical Society of America

  10. Argon Ion Laser Polymerized Acrylic Resin: A Comparative Analysis of Mechanical Properties of Laser Cured, Light Cured and Heat Cured Denture Base Resins

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: Dentistry in general and prosthodontics in particular is evolving at greater pace, but the denture base resins poly methyl methacrylate. There has been vast development in modifying chemically and the polymerization techniques for better manipulation and enhancement of mechanical properties. One such invention was introduction of visible light cure (VLC) denture base resin. Argon ion lasers have been used extensively in dentistry, studies has shown that it can polymerize restorative composite resins. Since composite resin and VLC resin share the same photo initiator, Argon laser is tested as activator for polymerizing VLC resin. In the Phase 1 study, the VLC resin was evaluated for exposure time for optimum polymerization using argon ion laser and in Phase 2; flexural strength, impact strength, surface hardness and surface characteristics of laser cured resin was compared with light cure and conventional heat cure resin. Materials and Methods: Phase 1; In compliance with American Dental Association (ADA) specification no. 12, 80 samples were prepared with 10 each for different curing time using argon laser and evaluated for flexural strength on three point bend test. Results were compared to established performance requirement specified. Phase 2, 10 specimen for each of the mechanical properties (30 specimen) were polymerized using laser, visible light and heat and compared. Surface and fractured surface of laser, light and heat cured resins were examined under scanning electron microscope (SEM). Results: In Phase 1, the specimen cured for 7, 8, 9 and 10 min fulfilled ADA requirement. 8 min was taken as suitable curing time for laser curing. Phase 2 the values of mechanical properties were computed and subjected to statistical analysis using one-way ANOVA and Tukey post-hoc test. The means of three independent groups showed significant differences between any two groups (P < 0.001). Conclusion: Triad VLC resin can be polymerized by argon ion laser with 1 W/mm2 power and exposure time of 8 min to satisfy ADA specification. Impact strength, surface hardness of laser cure was better than light cure and heat cure resin. Flexural strength of light cure was better than laser cure and heat cure resin. The SEM study showed similar density on surface, the fractured surface of heat cure resin was dense and compact. PMID:26124596

  11. Quantum Cascade Lasers in Biomedical Infrared Imaging.

    PubMed

    Bird, Benjamin; Baker, Matthew J

    2015-10-01

    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Fraxel laser indications and long-term follow-up.

    PubMed

    Tanzi, Elizabeth L; Wanitphakdeedecha, Rungsima; Alster, Tina S

    2008-01-01

    Fractional photothermolysis, based on creating spatially precise microscopic thermal wounds, is performed using a 1550-nm erbium fiber laser that targets water-containing tissue to effect the photocoagulation of narrow, sharply defined columns of skin known as microscopic thermal zones. According to the authors, Fraxel resurfacing has been shown to be both safe and effective for facial and nonfacial photodamage, atrophic acne scars, hypopigmented scars, and dyspigmentation. Because only a fraction of the skin is treated during a single session, a series (typically 3 to 6 treatments) of fractional resurfacing at 2- to 4-week intervals is required for the best clinical improvement. It is the authors' experience that a series of Fraxel treatments can achieve a similar clinical result for atrophic scars compared with traditional ablative laser skin resurfacing. However, the improvement seen after a series of Fraxel treatments for perioral laxity and rhytides often falls short of the impressive results that can be achieved with ablative laser skin resurfacing.

  13. Spectral ophthalmoscopy based on supercontinuum

    NASA Astrophysics Data System (ADS)

    Cheng, Yueh-Hung; Yu, Jiun-Yann; Wu, Han-Hsuan; Huang, Bo-Jyun; Chu, Shi-Wei

    2010-02-01

    Confocal scanning laser ophthalmoscope (CSLO) has been established to be an important diagnostic tool for retinopathies like age-related macular degeneration, glaucoma and diabetes. Compared to a confocal laser scanning microscope, CSLO is also capable of providing optical sectioning on retina with the aid of a pinhole, but the microscope objective is replaced by the optics of eye. Since optical spectrum is the fingerprint of local chemical composition, it is attractive to incorporate spectral acquisition into CSLO. However, due to the limitation of laser bandwidth and chromatic/geometric aberration, the scanning systems in current CSLO are not compatible with spectral imaging. Here we demonstrate a spectral CSLO by combining a diffraction-limited broadband scanning system and a supercontinuum laser source. Both optical sectioning capability and sub-cellular resolution are demonstrated on zebrafish's retina. To our knowledge, it is also the first time that CSLO is applied onto the study of fish vision. The versatile spectral CSLO system will be useful to retinopathy diagnosis and neuroscience research.

  14. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  15. Femtosecond laser patterning of biological materials

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.

    2011-03-01

    This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.

  16. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    DTIC Science & Technology

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  17. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  18. Pulsed source of energetic atomic oxygen

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.

    1987-01-01

    A pulsed high flux source of nearly monoenergetic atomic oxygen was designed, built, and successfully demonstrated. Molecular oxygen at several atmospheres pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. An 18 J pulsed CO2 TEA laser is focused to intensities greater than 10(9) W/sq cm in the nozzle throat to generate a laser-induced breakdown. The resulting plasma is heated in excess of 20,000 K by a laser supported detonation wave, and then rapidly expands and cools. Nozzle geometry confines the expansion to provide rapid electron-ion recombination into atomic oxygen. Average O atom beam velocities from 5 to 13 km/s were measured at estimated fluxes to 10(18) atoms per pulse. Preliminary materials testing has produced the same surface oxygen enrichment in polyethylene samples as obtained on the STS-8 mission. Scanning electron microscope examinations of irradiated polymer surfaces reveal an erosion morphology similar to that obtained in low Earth orbit, with an estimated mass removal rate of approx. 10(-24) cu cm/atom. The characteristics of the O atom source and the results of some preliminary materials testing studies are reviewed.

  19. Evaluation of different types of enamel conditioning before application of a fissure sealant.

    PubMed

    Ciucchi, Philip; Neuhaus, Klaus W; Emerich, Marta; Peutzfeldt, Anne; Lussi, Adrian

    2015-01-01

    The aim of the study was to compare fissure sealant quality after mechanical conditioning of erbium-doped yttrium aluminium garnet (Er:YAG) laser or air abrasion prior to chemical conditioning of phosphoric acid etching or of a self-etch adhesive. Twenty-five permanent molars were initially divided into three groups: control group (n = 5), phosphoric acid etching; test group 1 (n = 10), air abrasion; and test group 2, (n = 10) Er:YAG laser. After mechanical conditioning, the test group teeth were sectioned buccolingually and the occlusal surface of one half tooth (equal to one sample) was acid etched, while a self-etch adhesive was applied on the other half. The fissure system of each sample was sealed, thermo-cycled and immersed in 5% methylene dye for 24 h. Each sample was sectioned buccolingually, and one slice was analysed microscopically. Using specialized software microleakage, unfilled margin, sealant failure and unfilled area proportions were calculated. A nonparametric ANOVA model was applied to compare the Er:YAG treatment with that of air abrasion and the self-etch adhesive with phosphoric acid (α = 0.05). Test groups were compared to the control group using Wilcoxon rank sum tests (α = 0.05). The control group displayed significantly lower microleakage but higher unfilled area proportions than the Er:YAG laser + self-etch adhesive group and displayed significantly higher unfilled margin and unfilled area proportions than the air-abrasion + self-etch adhesive group. There was no statistically significant difference in the quality of sealants applied in fissures treated with either Er:YAG laser or air abrasion prior to phosphoric acid etching, nor in the quality of sealants applied in fissures treated with either self-etch adhesive or phosphoric acid following Er:YAG or air-abrasion treatment.

  20. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    PubMed

    Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A

    2012-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America

  1. Intensity calibration of a laser scanning confocal microscope based on concentrated dyes.

    PubMed

    Model, Michael A; Blank, James L

    2006-10-01

    To find water-soluble fluorescent dyes with absorption in various regions of the spectrum and investigate their utility as standards for laser scanning confocal microscopy. Several dyes were found to have characteristics required for fluorescence microscopy standards. The intensity of biological fluorescent specimens was measured against the emission of concentrated dyes. Results using different optics and different microscopes were compared. Slides based on concentrated dyes can be prepared in a highly reproducible manner and are stable under laser scanning. Normalized fluorescence of biological specimens remains consistent with different objective lenses and is tolerant to some mismatch in optical filters or imperfect pinhole alignment. Careful choice of scanning parameters is necessary to ensure linearity of intensity measurements. Concentrated dyes provide a robust and inexpensive intensity standard that can be used in basic research or clinical studies.

  2. INTERACTION OF LASER RADIATION WITH MATTER AND OTHER LASER APPLICATIONS: Changes in the emission properties of metal targets during pulse-periodic laser irradiation

    NASA Astrophysics Data System (ADS)

    Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.

  3. Two-Photon Fluorescence Microscope for Microgravity Research

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the longer-wavelength excitation light and passes the shorter-wavelength fluorescence light. Also, the confocal pinhole has been removed to increase the signal strength. The laser beam is scanned by a twoperpendicular- axis pair of galvanometer mirrors through a pupil transfer lens into the side port of an inverted microscope. Finally, the beam is focused by a 63-magnification, 1.3-numerical- aperture oil-immersion objective lens onto a specimen. The pupil transfer lens serves to match the intermediate image planes of the scanning head and the microscope, and its location is critical. In order to maximize the quality of the image, (that is, the point spread function of the objective lens for all scan positions), the entire system was modeled in optical-design software, and the various free design parameters (the parameters of the spatial-filter components as well as the separations of all of the system components) were determined through an iterative optimization process. A modular design was chosen to facilitate access to the optical train for future fluorescence correlation spectroscopy and fluorescence-lifetime experiments.

  4. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  5. Quantitative-phase microscopy of nanosecond laser-induced micro-modifications inside silicon.

    PubMed

    Li, Q; Chambonneau, M; Chanal, M; Grojo, D

    2016-11-20

    Laser-induced permanent modification inside silicon has been recently demonstrated by using tightly focused nanosecond sources at a 1550 nm wavelength. We have developed a quantitative-phase microscope operating in the near-infrared domain to characterize the laser-induced modifications deep into silicon. By varying the number of applied laser pulses and the energy, we observe porous and densified regions in the focal region. The observed changes are associated with refractive index variations |Δn| exceeding 10-3, enough to envision the laser writing of optical functionalities inside silicon.

  6. A simple optical tweezers for trapping polystyrene particles

    NASA Astrophysics Data System (ADS)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  7. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  8. Solar-cell defect analyzer

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Miller, E. L.; Shumka, A.

    1980-01-01

    Laser-Scanning System pinpoints imperfections in solar cells. Entire solar panels containing large numbers of cells can be scanned. Although technique is similar to use of scanning electron microscope (SEM) to locate microscopic imperfections, it differs in that large areas may be examined, including entire solar panels, and it is not necessary to remove cover glass or encapsulants.

  9. Development and applications of optical interferometric micrometrology in the Angstrom and subangstrom range

    NASA Technical Reports Server (NTRS)

    Lauer, James L.; Abel, Phillip B.

    1988-01-01

    The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables themore » investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.« less

  11. The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes

    PubMed Central

    Richard, R.; Martone, P.; Callahan, L.M.

    2014-01-01

    The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.

  12. Introductory lecture. Advanced laser spectroscopy in combustion chemistry: from elementary steps to practical devices.

    PubMed

    Wolfrum, J

    2001-01-01

    In recent years a large number of linear and nonlinear laser-based diagnostic techniques for nonintrusive measurements of species concentrations, temperatures, and gas velocities in a wide pressure and temperature range with high temporal and spatial resolution have been developed and have become extremely valuable tools to study many aspects of combustion. Beside the nonintrusive diagnostics of technical combustion devices the kinetics and microscopic dynamics of elementary chemical combustion reactions can be investigated in great detail by laser spectroscopy. These investigations show, that a small number of relatively simple elementary steps like H + O2-->OH + O, H2O2-->2OH, O + N2-->NO + N, NH2 + NO-->H2O + N2, OH + N2H control a large variety of combustion phenomena and pollutant formation processes. Laminar flames are ideal objects to develop the application of laser spectroscopic methods for practical combustion systems and to test and improve the gas-phase reaction mechanism in combustion models. Nonintrusive laser point and field measurements are of basic importance in the validation and further development of turbulent combustion models. Nonlinear laser spectroscopic techniques using infrared-visible sum-frequency generation can now bridge the pressure and materials gap to provide kinetic data for catalytic combustion. Finally, the potential of laser techniques for active combustion control in municipal waste incinerators is illustrated.

  13. Comparison of nerve trimming with the Er:YAG laser and steel knife

    NASA Astrophysics Data System (ADS)

    Josephson, G. D.; Bass, Lawrence S.; Kasabian, A. K.

    1995-05-01

    Best outcome in nerve repair requires precise alignment and minimization of scar at the repair interface. Surgeons attempt to create the sharpest cut surface at the nerve edge prior to approximation. Pulsed laser modalities are being investigated in several medical applications which require precise atraumatic cutting. We compared nerve trimming with the Er:YAG laser (1375 J/cm2) to conventional steel knife trimming prior to neurorrhaphy. Sprague- Dawley rats were anesthetized with ketamine and xylazine. Under operating microscope magnification the sciatic nerve was dissected and transected using one of the test techniques. In the laser group, the pulses were directed axially across the nerve using a stage which fixed laser fiber/nerve distance and orientation. Specimens were sent for scanning electron microscopy (SEM) at time zero. Epineurial repairs were performed with 10 - 0 nylon simple interrupted sutures. At intervals to 90 days, specimens were harvested and sectioned longitudinally and axially for histologic examination. Time zero SEM revealed clean cuts in both groups but individual axons were clearly visible in all laser specimens. Small pits were also visible on the cut surface of laser treated nerves. No significant differences in nerve morphology were seen during healing. Further studies to quantify axon counts, and functional outcome will be needed to assess this technique of nerve trimming. Delivery system improvements will also be required, to make the technique clinically practical.

  14. Investigation of laser-fired point contacts on KOH structured laser-crystallized silicon by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice

    2016-06-01

    A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.

  15. Friction and fretting wear characteristics of different diamond-like carbon coatings against alumina in water-lubricated fretting conditions.

    PubMed

    Watabe, Tsukasa; Amanov, Auezhan; Tsuboi, Ryo; Sasaki, Shinya

    2013-12-01

    Diamond-like carbon (DLC) coatings typically show low friction and high wear resistance. In this study, the friction and fretting wear characteristics of PVD, CVD and CVD-Si DLC coatings were investigated against an alumina (Al2O3) ball under water-lubricated fretting conditions. The objective of this study is to investigate and compare the friction and fretting wear characteristics of those DLC coatings at various fretting frequencies. The test results showed that the PVD DLC coating led to a lower friction coefficient and a higher resistance to fretting wear compared to those of the CVD and CVD-Si DLC coatings. However, the CVD DLC coating showed that the fretting wear resistance decreases with increasing frequency, while no significant difference in fretting wear resistances of the PVD and CVD-Si DLC coatings was observed. Quantitative surface analyses of the specimens were performed using an energy dispersive spectroscopy (EDS), a laser scanning microscope (LSM), a scanning electron microscope (SEM), an atomic force microscope (AFM) and the Raman spectroscopy.

  16. Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Koneva, Irina I; Oginsky, Alexander O; La Francesca, Saverio; Lapotko, Dmitri O

    2011-03-01

    The accuracy, selectivity, and safety of surgical and laser methods for tissue elimination are often limited at microscale. We developed a novel agent, the plasmonic nanobubble (PNB), for optically guided selective elimination of the target tissue with micrometer precision. PNBs were tested in vitro in the two different models of superficial tumors and vascular plaques. PNBs were selectively generated around gold nanoparticles (delivered to the target tissues) with short laser pulses. Monolayers of cancerous cells and atherosclerotic plaque tissue were eliminated with PNBs with micrometer accuracy and without thermal and mechanical damage to collateral normal tissues. The effect of the PNB was dynamically controlled through the fluence of laser pulses (532 nm, duration 0.5 and 10 ns) and was guided through the optical scattering by PNB. Plasmonic nanobubbles were shown to provide precise, tunable, selective, and guided ablation of tissue at a microscopic level and could be employed as a new generation of surgical tools. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Experimental Study of the Microstructure and Micromechanical Properties of Laser Cladded Ni-based Amorphous Composite Coatings

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Zheng, Qichi; Zhu, Yanyan; Li, Zhuguo; Feng, Kai; Liu, Chuan

    2018-01-01

    (Ni0.6Fe0.4)65B18Si10Nb4C3 amorphous composite coating was successfully fabricated on AISI 1045 steel substrate by using laser cladding process with coaxial powder feeding equipment. The microstructure and phase distribution of the coating were investigated by using x-ray diffraction, scanning electron microscopy and transmission electron microscope. The mechanical properties of the coating were examined by using microhardness testing and nanoindentation. The experimental results indicated that the volume fraction of amorphous phase increased with the decrease in laser cladding heat input, leading to an improvement of mean microhardness and nanohardness. NbC particles in a size ranging between 150 and 1650 nm were found embedding in the amorphous composite coatings in all situations. The presence of the NbC particles can contribute to an improvement of 96.7 HV in hardness on the basis of experimental results, while theoretical prediction suggests an improvement of 92.5 HV by using Orowan-Ashby equation.

  18. Dual-beam optical trapping of cells in an optofluidic device fabricated by femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Bellini, N.; Bragheri, F.; Vishnubhatla, K. C.; Ferrara, L.; Minzioni, P.; Cerullo, G.; Ramponi, R.; Cristiani, I.; Osellame, R.

    2010-02-01

    We present design and optimization of an optofluidic monolithic chip, able to provide optical trapping and controlled stretching of single cells. The chip is fabricated in a fused silica glass substrate by femtosecond laser micromachining, which can produce both optical waveguides and microfluidic channels with great accuracy. Versatility and three-dimensional capabilities of this fabrication technology provide the possibility to fabricate circular cross-section channels with enlarged access holes for an easy connection with an external fluidic circuit. Moreover, a new fabrication procedure adopted allows the demonstration of microchannels with a square cross-section, thus guaranteeing an improved quality of the trapped cell images. Optical trapping and stretching of single red blood cells are demonstrated, thus proving the effectiveness of the proposed device as a monolithic optical stretcher. We believe that femtosecond laser micromachining represents a promising technique for the development of multifunctional integrated biophotonic devices that can be easily coupled to a microscope platform, thus enabling a complete characterization of the cells under test.

  19. Design and investigation of a multichannel laser-triggered vacuum switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Wenfang, E-mail: fwf1990@126.com; He, Zhenghao; Mao, Xiaopo

    2016-03-15

    A laser-triggered vacuum switch (LTVS) is an advanced closing switch with nanosecond delay and jitter. In order to enhance hold-off voltage and extend the service lifetime of an LTVS, we designed a multichannel laser-triggered vacuum switch (MLTVS) utilizing a cone-shaped target electrode placed on the cathode platform. The fabrication and testing of the MLTVS is described in this paper. Experimental results show that the working voltage of the MLTVS with a gap distance of 12 mm is from 30 V to 20 kV. The threshold energy for triggering the switch is 0.4 mJ corresponding to a peak power density ofmore » 27.9 MW/cm{sup 2}. The triggering lifetime of a spot can reach up to 18 000 shots. In addition, the relationship between triggering lifetime and target materials is analyzed using a field emission scanning electron microscope. A hypothesis of the vacuum gap’s triggering mechanism is discussed based on the measured results.« less

  20. Use of digital micromirror devices as dynamic pinhole arrays for adaptive confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Wilding, Dean; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2018-02-01

    In this work, we present a new confocal laser scanning microscope capable to perform sensorless wavefront optimization in real time. The device is a parallelized laser scanning microscope in which the excitation light is structured in a lattice of spots by a spatial light modulator, while a deformable mirror provides aberration correction and scanning. A binary DMD is positioned in an image plane of the detection optical path, acting as a dynamic array of reflective confocal pinholes, images by a high performance cmos camera. A second camera detects images of the light rejected by the pinholes for sensorless aberration correction.

  1. Laser-induced fluorescence microscopic system using an optical parametric oscillator for tunable detection in microchip analysis.

    PubMed

    Kumemura, Momoko; Odake, Tamao; Korenaga, Takashi

    2005-06-01

    A laser-induced fluorescence microscopic system based on optical parametric oscillation has been constructed as a tunable detector for microchip analysis. The detection limit of sulforhodamine B (Ex. 520 nm, Em. 570 nm) was 0.2 mumol, which was approximately eight orders of magnitude better than with a conventional fluorophotometer. The system was applied to the determination of fluorescence-labeled DNA (Ex. 494 nm, Em. 519 nm) in a microchannel and the detection limit reached a single molecule. These results showed the feasibility of this system as a highly sensitive and tunable fluorescence detector for microchip analysis.

  2. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  3. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.

    PubMed

    Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  4. Apertureless near-field scanning optical microscope working with or without laser source.

    PubMed

    Formanek, F; De Wilde, Y; Aigouy, L; Chen, Y

    2004-01-01

    An apertureless near-field scanning optical microscope (ANSOM), used indifferent configurations, is presented. Our versatile home-made setup, based on a sharp tungsten tip glued onto a quartz tuning fork and working in tapping mode, allows to perform imaging over a broad spectral range. We have recorded optical images in the visible (wavelength, lambda = 655 nm) and in the infrared (lambda = 10.6 microm), proving that the setup routinely achieves an optical resolution of <50 nm regardless of the illumination wavelength. We have also shown optical images recorded in the visible (lambda = 655 nm) in an inverted configuration where the tip does not perturb the focused spot of the illumination laser. Approach curves as well as image profiles have revealed that on demodulating the optical signal at higher harmonics, we can obtain an effective probe sharpening which results in an improvement of the resolution. Finally, we have presented optical images recorded in the infrared without any illumination, that is, the usual laser source is replaced by a simple heating of the sample. This has shown that the ANSOM can be used as a near-field thermal optical microscope (NTOM) to probe the near field generated by the thermal emission of the sample.

  5. Imaging fluorescence detected linear dichroism of plant cell walls in laser scanning confocal microscope.

    PubMed

    Steinbach, Gábor; Pomozi, István; Zsiros, Ottó; Páy, Anikó; Horváth, Gábor V; Garab, Gyozo

    2008-03-01

    Anisotropy carries important information on the molecular organization of biological samples. Its determination requires a combination of microscopy and polarization spectroscopy tools. The authors constructed differential polarization (DP) attachments to a laser scanning microscope in order to determine physical quantities related to the anisotropic distribution of molecules in microscopic samples; here the authors focus on fluorescence-detected linear dichroism (FDLD). By modulating the linear polarization of the laser beam between two orthogonally polarized states and by using a demodulation circuit, the authors determine the associated transmitted and fluorescence intensity-difference signals, which serve the basis for LD (linear dichroism) and FDLD, respectively. The authors demonstrate on sections of Convallaria majalis root tissue stained with Acridin Orange that while (nonconfocal) LD images remain smeared and weak, FDLD images recorded in confocal mode reveal strong anisotropy of the cell wall. FDLD imaging is suitable for mapping the anisotropic distribution of transition dipoles in 3 dimensions. A mathematical model is proposed to account for the fiber-laminate ultrastructure of the cell wall and for the intercalation of the dye molecules in complex, highly anisotropic architecture. Copyright 2007 International Society for Analytical Cytology.

  6. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  7. Changes in the emission properties of metallic targets upon exposure to repetitively pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Konov, V. I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope and a repetitively pulsed CO2 laser are used to reveal the relationships which govern the correlation of the transforming metal surface microrelief with the emission of charged particles and the surface luminescence upon exposure to multipulse laser focusing. It is shown that the effect of sorption and laser-stimulated desorption on the emission signals can manifest itself in different ways depending on the current oscillation mode in the target-vacuum chamber circuit.

  8. Laser-induced cartilage damage: an ex-vivo model using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas

    1999-06-01

    Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell viability and metabolism. Ho:YAG and Er:YAG lasers emitting at 2.1 micrometer and 2.94 micrometer, respectively, are ideally suited for tissue treatment because these wavelengths are strongly absorbed in water. The Purpose of the present study is to evaluate the effect of laser type and energy on chondrocyte viability in an ex vivo model. Free running Er:YAG (E equals 100 and 150 mJ) and Ho:YAG (E equals 500 and 800 mJ) lasers were used at different energy levels using a fixed pulse length of 400 microseconds. The energy was delivered at 8 Hz through optical fibers. Fresh bovine hyaline cartilage samples were mounted in a water bath at room temperature and the fiber was positioned at 30 degree and 180 degree angles relative to the tissue surface. After laser irradiation the samples were assessed by a life-dead cell viability test using a confocal microscope and by standard histology. Thermal damage was much deeper with Ho:YAG (up to 1800 micrometer) than with the Er:YAG laser (up to 70 micrometer). The cell viability test revealed a damage zone about twice the one determined by standard histology. Confocal microscopy is a powerful tool for assessing changes in tissue structure after laser treatment. In addition this technique allows to quantify these alterations without necessitating time consuming and expensive animal experiments.

  9. Heterogeneously Integrated Microwave Signal Generators with Narrow Linewidth Lasers

    DTIC Science & Technology

    2017-03-20

    the linewidth in two ways: (1) increasing the photon lifetime due to effective cavity length enhancement, and (2) providing negative optical...structures. Some devices are also labeled. Figure 1. Microscope image of the photonic microwave generator comprising of two tunable lasers, a coupler...Integrated Photodiodes on Silicon,” IEEE JQE, vol.51, no.11, pp.1-6, Nov. 2015 Figure 9. (left) Optical spectra of two lasers comprising a photonic

  10. Two-Photon Fluorescence Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Fischer, David G.

    2002-01-01

    We will describe a two-photon microscope currently under development at the NASA Glenn Research Center. It is composed of a Coherent Mira 900 tunable, pulsed Titanium:Sapphire laser system, an Olympus Fluoview 300 confocal scanning head, and a Leica DM IRE inverted microscope. It will be used in conjunction with a technique known as fluorescence correlation spectroscopy (FCS) to study intracellular protein dynamics. We will briefly explain the advantages of the two-photon system over a conventional confocal microscope, and provide some preliminary experimental results.

  11. Single step high-speed printing of continuous silver lines by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Puerto, D.; Biver, E.; Alloncle, A.-P.; Delaporte, Ph.

    2016-06-01

    The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.

  12. ISS Materials Research

    NASA Image and Video Library

    2017-01-09

    Deena Dombrosky (Zin Technologies Engineer) is shown here filling a Procter & Gamble (P & G) sample that will be used in ground-testing as NASA prepares for their experiment on the International Space Station (ISS). The sample particles are the size of the wavelength of light and they are dyed orange/pink to glow when illuminated with the laser light enabling a confocal microscope to produce 3D images. The P & G experiment will improve product stabilizers that extend product shelf life. This has the added advantage of leading to more compact environmentally friendly containers.

  13. Silicon solar cell fabrication technology

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.

    1979-01-01

    The laser cell scanner was used to characterize a number of solar cells made in various materials. An electron beam-induced current (EBIC) study was performed using a stereoscan scanning electron microscope. Planar p-n junctions were analyzed. A theory for the EBIC based on the analytical solution of the ambipolar diffusion equation under the influence of electron beam excitation parameter z (which is related to beam penetration), the junction depth Z sub j, the beam current and the surface recombination, was formulated and tested. The effect of a grain boundary was studied.

  14. Fabrication of bio-inspired nitinol alloy surface with tunable anisotropic wetting and high adhesive ability.

    PubMed

    Tian, Yan L; Zhao, Yue C; Yang, Cheng J; Wang, Fu J; Liu, Xian P; Jing, Xiu B

    2018-10-01

    In this paper, micro/nano-scale structures were fabricated on nitinol alloy (NiTi) to realize tunable anisotropic wetting and high adhesive capability. Laser texturing and silanization process are utilized to change the morphological and chemical properties of substrates. It is noted that these treated substrates exhibit the joint characteristics of anisotropic wetting and high adhesive capability. In order to investigate the influences of laser-texturing and silanization processes on NiTi, these surfaces were evaluated using scanning electron microscope (SEM), a white light confocal microscope, X-ray photoelectron spectroscopy (XPS) and goniometer. The relationship between water volume and anisotropic wetting was also established. From the experimental testing, we can obtain the following conclusions: (1) the anisotropic wetting characterized by the difference between the water contact angles (WCAs) in the vertical and parallel directions ranges from 0° to 20.3°, which is far more than the value of natural rice leaves. (2) the water sliding angles (WSAs) kept stable at 180°, successfully mimicking the adhesive ability of rose petals. (3) the silanization process could strengthen the hydrophobicity but weaken anisotropic wetting. These bio-inspired NiTi surfaces have a tremendous potential applications such as microfluidic devices, bio-mimetic materials fabrication and lab on chip. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Antibacterial Effect of Diode Laser in Pulpectomy of Primary Teeth.

    PubMed

    Bahrololoomi, Zahra; Fekrazad, Reza; Zamaninejad, Shiva

    2017-01-01

    Introduction: Laser irradiation has been suggested as an adjunct to traditional methods of canal preparation but few studies are available on the antibacterial effect of diode laser in pulpectomy of primary teeth. The purpose of the present study is to investigate the antibacterial effect of diode laser in pulpectomy of primary teeth, in addition to define the optimal and harmless diode lasing conditions in the root canal. Methods: A total of 125 single rooted primary teeth were selected. After traditional canal cleaning, they were divided in 2 groups. Sixty-five specimens after culturing of Enterococcus faecalis into the canals, were divided in 3 groups: (1) traditional canal cleaning with 0.5% NaOCl irrigation, (2) method of group 1+ 1.5 W diode laser (980 nm, pulse), (3) without treatment (5 specimens). Then the specimens were cultured and after colony counting under light microscope, were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests. For 60 specimens, temperature rise of apical and cervical parts of the external root surface were measured using 2 thermocouple type K, when radiating a 1.5 W diode laser into the canal. Results: In the first experiment, the diode laser group showed tmost reduction in bacterial count. And in the second experiment, the mean temperature rise of external root surface was less than the threshold of periodontal ligament (PDL) damage. Conclusion: Diode laser with a power output of 1.5 W, is effective in reduction of E. faecalis bacterial count without damaging periodontal structures.

  16. One-step synthesis of hybrid inorganic-organic nanocomposite coatings by novel laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir

    2013-03-01

    A novel approach for one-step synthesis of hybrid inorganic-organic nanocomposite coatings by new modification of Pulsed Laser Deposition technology called Laser Adaptive Ablation Deposition (LAAD) is presented. Hybrid nanocomposite coatings including Mg- Rapamycin and Mg- Desoximetasone were produced by UV TEA N2 laser under low vacuum (0.1 Pa) and room temperature onto substrates from SS 316L, KCl and NaCl. The laser fluence for Mg alloy was 1, 8 J/cm2 and for Desoximetasone 0,176 J/cm2 and for Rapamycin 0,118 J/cm2 were respectively. The threedimensional two-segmented single target was used to adapt the interaction of focused laser beam with inorganic and organic material. Magnesium alloy nanoparticles with sizes from 50 nm to 250 nm were obtained in organic matrices. The morphology of nanocomposites films were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Fourier Transform Infrared (FTIR) spectroscopy measurements were applied in order to study the functional properties of organic component before and after the LAAD process. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of Mg alloy presence in hybrid nanocomposites coatings. The precise control of process parameters and particularly of the laser fluence adjustment enables transfer on materials with different physical chemical properties and one-step synthesis of complex inorganic- organic nanocomposites coatings.

  17. Temperature induced degradation mechanisms of AlInAs/InGaAs/InP quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Pierścińska, D.; Pierściński, K.; Płuska, M.; Sobczak, G.; Kuźmicz, A.; Gutowski, P.; Bugajski, M.

    2018-01-01

    In this paper, we report on the investigation of temperature induced degradation mode of quantum cascade lasers (QCLs) with an emphasis on the influence of different processing technology. We investigate and compare lattice matched AlInAs/InGaAs/InP QCLs of various constructions, i.e., double trench, buried heterostructure and ridge waveguide regarding thermal management, reliability and sources of degradation. The analysis was performed by CCD thermoreflectance spectroscopy, scanning electron microscope inspection and destructive analysis by focused ion beam etching, enabling determination of the source and mode of degradation for investigated lasers. Experimental temperature data relate temperature rise, arising from supply current, with device geometry. Results clearly indicate, that the buried heterostructure geometry, allows reaching the highest maximal operating current densities, before the degradation occurs. Microscopic images of degradation confirm that degradation includes the damage of the contact layer as well as damage of the active region layers.

  18. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    PubMed

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.

  19. SEM investigations of the cementum surface after irradiation with a frequency-doubled Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1996-04-01

    During prior studies it could be demonstrated while engaging a frequency doubled Alexandrite-laser (wavelength 380 nm, pulse duration 100 ns, fluence 1 J/cm2, pulse repetition rate 110 Hz) a fast and strictly selective ablation of supra- and subgingival calculus is possible. Even the removal of unstained microbial plaque was observed. First conclusions were drawn after light microscopical investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a Scanning Electron Microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.

  20. Variable diameter CO2 laser ring-cutting system adapted to a zoom microscope for applications on polymer tapes.

    PubMed

    Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert

    2016-11-20

    This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.

  1. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    PubMed

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Design and Characterization of Thin Stainless Steel Burst Disks for Increasing Two-Stage Light Gas Launcher Efficiency

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan M.; Johnson, Kenneth L.; Henderson, Donald; Rodriguez, Karen

    2012-01-01

    Laser etched 300 series Stainless Steel Burst Disks (SSBD) ranging between 0.178 mm (0.007-in.) and 0.508mm (0.020-in.) thick were designed for use in a 17-caliber two-stage light gas launcher. First, a disk manufacturing method was selected using a combination of wire electrical discharge machining (EDM) to form the blank disks and laser etching to define the pedaling fracture pattern. Second, a replaceable insert was designed to go between the SSDB and the barrel. This insert reduced the stress concentration between the SSBD and the barrel, providing a place for the petals of the SSDB to open, and protecting the rifling on the inside of the barrel. Thereafter, a design of experiments was implemented to test and characterize the burst characteristics of SSBDs. Extensive hydrostatic burst testing of the SSBDs was performed to complete the design of experiments study with one-hundred and seven burst tests. The experiment simultaneously tested the effects of the following: two SSBD material states (full hard, annealed); five SSBD thicknesses 0.178, 0.254, 0.305, 0.381 mm (0.007, 0.010, 0.012, 0.015, 0.020-in.); two grain directions relative); number of times the laser etch pattern was repeated (varies between 5-200 times); two heat sink configurations (with and without heat sink); and, two barrel configurations (with and without insert). These tests resulted in the quantification of the relationship between SSBD thickness, laser etch parameters, and desired burst pressure. Of the factors investigated only thickness and number of laser etches were needed to develop a mathematical relationship predicting hydrostatic burst pressure of disks using the same barrel configuration. The fracture surfaces of two representative SSBD bursts were then investigated with a scanning electron microscope, one burst hydrostatically in a fixture and another dynamically in the launcher. The fracture analysis verified that both burst conditions resulted in a ductile overload failure indicated by transgranular microvoid coalescence, non-fragmenting rupture and mixed tensile and shear failure modes, regardless of the material states tested. More testing is underway to determine the relationship between SSBD burst pressure and projectile velocity.

  3. Surgical Lasers In Gynecology

    NASA Astrophysics Data System (ADS)

    Schellhas, Helmut F.; Barnes, Alfonso E.

    1982-12-01

    Multipurpose surgical CO2 lasers marketed in the USA have been developed to be applicable to a variety of surgical procedures in many surgical fields. They are all suited for endoscopic surgical procedures and can be fitted to all standard surgical microscopes. They all can adjust the focal length of the laser beam to the different standard focal lengths of the surgical microscope which for instance in laryngoscopy is 400 mm and in colposcopy 300 mm. One laser instrument can even change the spot size in a given focal distance which is very advantageous for some microsurgical procedures (Merrimack Laboratories 820). All multipurpose surgical CO2 laser systems provide a multi-articulated surgical arm for free-hand surgery. The surgical arms are cumbersome to use but they are adapted to the surgeons needs with ingenuity. The practicality of the multi-articulated surgical arms depends mostly on the distance of the handpiece from the surgical console which now is also overbridged by the laser tube in most surgical laser system. The spot size of the beam is variable in most handpieces by interchangeable lenses which modify the focal distance of the beam and the power density. Another common feature in all systems is a coaxial He-Ne pilot light which provides a red spot which unfortunately becomes invisible in a bleeding surgical field. Most surgical laser systems have a spacial mode of TEM 00 which is essential for incisional surgery. The continuous mode of beam delivery is used for incisional surgery and also for most endoscopic procedures.

  4. Comparative scanning electron microscope analysis of diode laser and desensitizing toothpastes for evaluation of efficacy of dentinal tubular occlusion.

    PubMed

    Reddy, Guntakala Vikram; Akula, Sushma; Malgikar, Suryakanth; Babu, Palaparthy Raja; Reddy, Gooty Jagadish; Josephin, Johnson Juliet

    2017-01-01

    The present study aims to evaluate the efficacy of diode laser alone and in combination with desensitizing toothpastes in occluding dentinal tubules (both partially occluded and completely occluded tubules) by scanning electron microscope (SEM). Fifty human teeth were extracted, cervical cavities were prepared and etched with 17% ethylenediaminetetraacetic acid, and smear layer was removed to expose the tubules. The teeth were divided into five groups: Group I - Application of NovaMin-formulated toothpaste, Group II - Application of Pro-Argin ™ -formulated toothpaste, Group III - Application of diode laser in noncontact mode, Group IV - NovaMin-formulated toothpaste followed by laser irradiation, and Group V - Pro-Argin ™ -formulated toothpaste followed by laser irradiation. After treatment, quantitative analysis of occluded dentinal tubules was done by SEM analysis. The mean values of percentages of total occlusion of dentinal tubules in Groups I, II, III, IV, and V were 92.73% ± 1.38, 90.67% ± 1.86, 96.57% ± 0.64, 97.3% ± 0.68, and 96.9% ± 6.08, respectively. Addition of diode laser (Groups III, IV, and V) yielded a significant occlusion of the dentinal tubules when compared to desensitizing toothpastes alone (Groups I and II). Diode laser (Group III) has shown more efficacy in occluding dentinal tubules when compared with desensitizing toothpastes which was statistically significant ( P < 0.05). Among the five groups, NovaMin + diode laser (Group IV) showed the highest percentage of occluded dentinal tubules.

  5. Design, assembly, and metrology of an oil-immersion microscope objective with long working distance

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Lin, Wen-Lung; Kuo, Hui-Jean; Ho, Cheng-Fang; Hsu, Wei-Yao

    2016-10-01

    The design, tolerance sensitivity reduction, assembly, and optical bench test for an oil-immersion microscope objective with long working distance employed in a lattice light-sheet microscope is presented in this paper. In this application, the orthogonal excitation and detection objectives are dipped in an oil medium. The excitation objective focuses the incident laser beam to generate fluorescence on specimen for collecting by detection objective. The excitation objective is custom-designed to meet the requirement specification such as oil-immersion, the long working distance, and numerical aperture (NA) of 0.5, etc. To produce an acceptable point spread function (PSF) for effective excitation, the performance of the objective needs to be close to diffraction limit. Because the tolerance of the modulation transfer function (MTF) is more and more sensitive at higher spatial frequency, it is extremely critical to keep the performance after manufacture. Consequently, an insensitive optical design is very important for relaxing tolerance. We compare the design with and without tolerance sensitivity reduction, and the as-built MTF shows the result. Furthermore, the method for sensitivity reduction is presented. The opto-mechanical design and assembly method are also discussed. Eventually, the objective with five spherical lenses was fabricated. In optical bench test, the depth of the oil is sensitive to MTF, and it leads to the complicated adjustment. For solving this issue, we made an index-matching lens to replace oil for measurement easily. Finally, the measured MTF of the excitation objective can accomplish the requirement specification and successfully employed in a lattice light-sheet microscope.

  6. Influence of laser light on bioimplants used in otorhinolaryngology.

    PubMed

    Siedek, Vanessa; Nehls, Kristina; Zur Nieden, Katrin; Leunig, Andreas; Sroka, Ronald

    2014-05-01

    In otorhinolaryngology, dermatology and reconstructive surgery biomaterials as implants and a variety of lasers are used. Laser light applied near to an implant could have the risk to damage these materials. Therefore, their resistance exposed to laser light is of interest. A diode laser emitting at 940 nm and a CO2 laser were used to investigate its effects to the biomaterials Bioverit®, Medpor® and Palacos®, and in addition, an excised implant containing Medpor® and nasal turbinate tissue, excised and fixed in formalin. The macro- and microscopic changes of the material, temperature development during laser energy application in dependency to distance of fibre and material, time of exposure and applied power were investigated. Interaction of diode laser light with Bioverit® (0 mm distance, 360 s, 10 W, 3,600 J) resulted in minimal microscopic effects in direct contact of with the fibre. Using Medpor® (1 mm, 10s, 10 W, 100 J) resulted in melting and perforation. In the case of Palacos® (0.6 mm, 10s, 10 W, 100 J), melting occurred creating a flat excavation. The effect to Medpor® in nasal turbinate (1-2 mm, 10s, 10 W, 100 J) showed tissue denaturation and carbonisation and creation of a hole. The interaction of the CO2 laser with Bioverit® (3 cm, 0.5, 1 and 5 s, 2, 10 or 20 W) induced melting and discolouring resulting finally in a perforating hole. Depending on the material, first damage starts 10 s after an impact of 100 J (threshold value). So interaction between laser energy and biomaterials occurs. This should be carefully considered during clinical laser treatments especially nearby implants.

  7. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources.

    PubMed

    István, Krisztina; Keresztury, Gábor; Szép, Andrea

    2003-06-01

    A comparative study of the feasibility and efficiency of Raman spectroscopic detection of thin layer chromatography (TLC) spots of some weak Raman scatterers (essential amino acids, namely, glycine and L-forms of alanine, serine, valine, proline, hydroxyproline, and phenylalanine) was carried out using four different visible and near-infrared (NIR) laser radiations with wavelengths of 532, 633, 785, and 1064 nm. Three types of commercial TLC plates were tested and the possibility of inducing surface enhanced Raman scattering (SERS) by means of Ag-sol was also investigated. The spectra obtained from spotted analytes adsorbed on TLC plates were of very different quality strongly depending on the excitation wavelength, the wetness of the samples, and the compounds examined. The best results were obtained with the simple silica TLC plate, and it has been established that the longest wavelength (lowest energy) NIR excitation of a Nd:YAG laser is definitely more suitable for generating normal Raman scattering of analyte spots than any of the visible radiations. Concerning SERS with application of Ag-sol to the TLC spots, 1-3 orders of magnitude enhancement was observed with wet samples, the greatest with the 532 nm radiation and gradually smaller with the longer wavelength excitations. It is shown, however, that due to severe adsorption-induced spectral distortions and increased sensitivity to microscopic inhomogeneity of the sample, none of the SERS spectra obtained with the dispersive Raman microscope operating in the visible region were superior to the best NIR normal FT-Raman spectra, as far as sample identification is concerned.

  8. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources

    NASA Astrophysics Data System (ADS)

    István, Krisztina; Keresztury, Gábor; Szép, Andrea

    2003-06-01

    A comparative study of the feasibility and efficiency of Raman spectroscopic detection of thin layer chromatography (TLC) spots of some weak Raman scatterers (essential amino acids, namely, glycine and L-forms of alanine, serine, valine, proline, hydroxyproline, and phenylalanine) was carried out using four different visible and near-infrared (NIR) laser radiations with wavelengths of 532, 633, 785, and 1064 nm. Three types of commercial TLC plates were tested and the possibility of inducing surface enhanced Raman scattering (SERS) by means of Ag-sol was also investigated. The spectra obtained from spotted analytes adsorbed on TLC plates were of very different quality strongly depending on the excitation wavelength, the wetness of the samples, and the compounds examined. The best results were obtained with the simple silica TLC plate, and it has been established that the longest wavelength (lowest energy) NIR excitation of a Nd:YAG laser is definitely more suitable for generating normal Raman scattering of analyte spots than any of the visible radiations. Concerning SERS with application of Ag-sol to the TLC spots, 1-3 orders of magnitude enhancement was observed with wet samples, the greatest with the 532 nm radiation and gradually smaller with the longer wavelength excitations. It is shown, however, that due to severe adsorption-induced spectral distortions and increased sensitivity to microscopic inhomogeneity of the sample, none of the SERS spectra obtained with the dispersive Raman microscope operating in the visible region were superior to the best NIR normal FT-Raman spectra, as far as sample identification is concerned.

  9. Design, assembly, and testing of a high-resolution relay lens used for holography with operation at both doubled and tripled Nd:YAG laser wavelengths

    NASA Astrophysics Data System (ADS)

    Malone, Robert M.; Capelle, Gene A.; Cox, Brian C.; Frogget, Brent C.; Grover, Mike; Kaufman, Morris I.; Pazuchanics, Peter; Sorenson, Danny S.; Stevens, Gerald D.; Tibbitts, Aric; Turley, William D.

    2009-08-01

    The design and assembly of a nine-element lens that achieves >2000 lp/mm resolution at a 355-nm wavelength (ultraviolet) has been completed. By adding a doublet to this lens system, operation at a 532-nm wavelength (green) with >1100 lp/mm resolution is achieved. This lens is used with high-power laser light to record holograms of fast-moving ejecta particles from a shocked metal surface located inside a test package. Part of the lens and the entire test package are under vacuum with a 1-cm air gap separation. Holograms have been recorded with both doubled and tripled Nd:YAG laser light. The UV operation is very sensitive to the package window's tilt. If this window is tilted by more than 0.1 degrees, the green operation performs with better resolution than that of the UV operation. The setup and alignment are performed with green light, but the dynamic recording can be done with either UV light or green light. A resolution plate can be temporarily placed inside the test package so that a television microscope located beyond the hologram position can archive images of resolution patterns that prove that the calibration wires, interference filter, holographic plate, and relay lenses are in their correct positions. Part of this lens is under vacuum, at the point where the laser illumination passes through a focus. Alignment and tolerancing of this high-resolution lens are presented. Resolution variation across the 12-mm field of view and throughout the 5-mm depth of field is discussed for both wavelengths.

  10. Wurtzite Spin-Lasers

    NASA Astrophysics Data System (ADS)

    Xu, Gaofeng; Faria Junior, Paulo E.; Sipahi, Guilherme M.; Zutic, Igor

    Lasers in which spin-polarized carriers are injected provide paths to different practical room temperature spintronic devices, not limited to magnetoresistive effects. While theoretical studies of such spin-lasers have focused on zinc-blende semiconductors as their active regions, the first electrically injected carriers at room temperature were recently demonstrated in GaN-based wurtzite semiconductors, recognized also for the key role as highly-efficient light emitting diodes. By focusing on a wurtzite quantum well-based spin-laser, we use accurate electronic structure calculations to develop a microscopic description for its lasing properties. We discuss important differences between wurtzite and zinc-blende spin-lasers.

  11. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.

    PubMed

    Harsono, Marcellinus S; Zhu, Qingyuan; Shi, Linda Z; Duquette, Michelle; Berns, Michael W

    2013-02-01

    A multi-joystick robotic laser microscope system used to control two optical traps (tweezers) and one laser scissors has been developed for subcellular organelle manipulation. The use of joysticks has provided a "user-friendly" method for both trapping and cutting of organelles such as chromosomes in live cells. This innovative design has enabled the clean severing of chromosome arms using the laser scissors as well as the ability to easily hold and pull the severed arm using the laser tweezers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 193nm high power lasers for the wide bandgap material processing

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru

    2017-02-01

    Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.

  13. Atomic magnetometer-based ultra-sensitive magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Savukov, Igor

    2016-03-01

    An atomic magnetometer (AM) based on lasers and alkali-metal vapor cells is currently the most sensitive non-cryogenic magnetic-field sensor. Many applications in neuroscience and other fields require high resolution, high sensitivity magnetic microscopic measurements. In order to meet this need we combined a cm-size spin-exchange relaxation-free AM with a flux guide (FG) to produce an ultra-sensitive FG-AM magnetic microscope. The FG serves to transmit the target magnetic flux to the AM thus enhancing both the sensitivity and resolution for tiny magnetic objects. In this talk, we will describe a prototype FG-AM device and present experimental and numerical tests of its sensitivity and resolution. We also demonstrate that an optimized FG-AM achieves high resolution and high sensitivity sufficient to detect a magnetic field of a single neuron in a few seconds, which would be an important milestone in neuroscience. We anticipate that this unique device can be applied to the detection of a single neuron, the detection of magnetic nano-particles, which in turn are very important for detection of target molecules in national security and medical diagnostics, and non-destructive testing.

  14. Application of reflectance confocal microscopy to evaluate skin damage after irradiation with an yttrium-scandium-gallium-garnet (YSGG) laser.

    PubMed

    Yue, Xueping; Wang, Hongwei; Li, Qing; Li, Linfeng

    2017-02-01

    The objective of this study was to observe the characteristics of the skin after irradiation with a 2790-nm yttrium-scandium-gallium-garnet (YSGG) laser using reflectance confocal microscopy (RCM). A 2790-nm YSGG laser was used to irradiate fresh foreskin (four doses, at spot density 3) in vitro. The characteristics of microscopic ablative columns (MAC), thermal coagulation zone (TCZ), and microscopic treatment zones (MTZ) were observed immediately after irradiation using digital microscope and RCM. The characteristics of MAC, TCZ, and MTZ with variations in pulse energy were comparatively analyzed. After irradiation, MAC, TCZ, and MTZ characteristics and undamaged skin between MTZs can be observed by RCM. The depth and width of MTZ obviously increased with the increase in pulse energy. At 80, 120, and 160 mJ/microbeam (MB), the MTZ actual area and proportion were about two times that of the theoretical value and three times at 200 mJ/MB. With increases in depth, the single MAC gradually decreased in a fingertip-shaped model, with TCZ slowly increasing, and MTZ slightly decreasing in a columnar shape. RCM was able to determine the characteristics of thermal injury on the skin after the 2790-nm YSGG laser irradiation with different pulse energies. Pulse energy higher than 200 mJ/MB may have much larger thermal injury and side effect. RCM could be used in the clinic in future.

  15. Local Resistance Profiling of Ultra Shallow Junction Annealed with Combination of Spike Lamp and Laser Annealing Processes using Scanning Spreading Resistance Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abo, Satoshi; Nishikawa, Kazuhisa; Ushigome, Naoya

    2011-01-07

    Local resistance profiles of ultra shallow boron and arsenic implanted into silicon with energies of 2.0 and 4.0 keV and doses of 2.0x10{sup 15} and 1.0x10{sup 15} ions/cm{sup 2} activated by a combination of conventional spike lamp and laser annealing processes were measured by scanning spreading resistance microscope (SSRM) with a depth resolution of less than 10 nm. The lowest local resistance at the low resistance region in 2.0 keV boron implanted silicon with 1050 deg. C spike lamp annealing followed by 0.35 kW/mm{sup 2} laser annealing was half of that without laser annealing. The lowest local resistance at themore » low resistance region in the arsenic implanted silicon activated by 1050 deg. C spike lamp annealing followed by 0.39 kW/mm{sup 2} laser annealing was 74% lower than that followed by 0.36 kW/mm{sup 2} laser annealing. The lowest local resistances at the low resistance regions in the arsenic implanted silicon with 0.36 and 0.39 kW/mm{sup 2} laser annealing followed by 1050 deg. C spike lamp annealing were 41 and 33% lower than those with spike lamp annealing followed by laser annealing. Laser annealing followed by spike lamp annealing could suppress the diffusion of the impurities and was suitable for making the ultra shallow and low resistance regions.« less

  16. High incidence of rainbow glare after femtosecond laser assisted-LASIK using the upgraded FS200 femtosecond laser.

    PubMed

    Zhang, Yu; Chen, Yue-Guo

    2018-03-05

    To compare the incidence of rainbow glare (RG) after femtosecond laser assisted-LASIK (FS-LASIK) using the upgraded FS200 femtosecond laser with different flap cut parameter settings. A consecutive series of 129 patients (255 eyes) who underwent FS-LASIK for correcting myopia and/or astigmatism using upgraded WaveLight FS200 femtosecond laser with the original settings was included in group A. Another consecutive series of 129 patients (255 eyes) who underwent FS-LASIK using upgraded WaveLight FS200 femtosecond laser with flap cut parameter settings changed (decreased pulse energy, spot and line separation) was included in group B. The incidence and fading time of RG, confocal microscopic image and postoperative clinical results were compared between the two groups. There were no differences between the two groups in age, baseline refraction, excimer laser ablation depth, postoperative uncorrected visual acuity and refraction. The incidence rate of RG in group A (35/255, 13.73%) was significantly higher than that in group B (4/255, 1.57%) (P < 0.05). The median fading time was 3 months in group A and 1 month in group B (P > 0.05).The confocal microscopic images showed wider laser spot spacing in group A than group B. The incidence of RG was significantly correlated with age and grouping (P < 0.05). The upgraded FS200 femtosecond laser with original flap cut parameter settings could increase the incidence of RG. The narrower grating size and lower pulse energy could ameliorate this side effect.

  17. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and calibration of an optical tweezer setup in the Instrumentation and Controls Division (5520). I am utilizing a custom LabVIEW Virtual Instrument program for data collection and microscope stage control. Helping me in my assignment are the following people: Mentor Susan Wrbanek (5520), Dr. Baha Jassemnejad (UCO) and Technicians Ken Weiland (7650) and James Williams (7650). Without their help, my task would not be possible.

  18. Microscope and method of use

    DOEpatents

    Bongianni, Wayne L.

    1984-01-01

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  19. Microscope and method of use

    DOEpatents

    Bongianni, W.L.

    1984-04-17

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers. 7 figs.

  20. Biological Effects of Laser Radiation. Volume II. Review of Our Studies on Biological Effects of Laser Radiation-1965-1971.

    DTIC Science & Technology

    1978-10-17

    alter the immunological capability/virulence ratio of influenza virus ; gross and microscopic descriptions of lesions, their natural history, and...with Viruses 4 Chapter 4 Studies on Normal Animals 6 Chapter 5 Tumor-Related Laser Radiation Studies and Potential for Carcinogenesis 17 Chapter 6...affect the immunological capability/virulence ratio of influenza virus in order to explore facilitation of vaccine production; 5) extensive gross and

  1. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  2. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope.

    PubMed

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  3. Quality Control of Laser-Beam-Melted Parts by a Correlation Between Their Mechanical Properties and a Three-Dimensional Surface Analysis

    NASA Astrophysics Data System (ADS)

    Grimm, T.; Wiora, G.; Witt, G.

    2017-03-01

    Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.

  4. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  5. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser

    PubMed Central

    Pires, Patrícia T.; Ferreira, João C.; Oliveira, Sofia A.; Azevedo, Álvaro F.; Dias, Walter R.; Melo, Paulo R.

    2013-01-01

    Context: Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Aims: Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. Subjects and Methods: One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I – 37% phosphoric acid (PA)+ ExciTE®; Group II – ExciTE®; Group III – AdheSE® self-etching; Group IV – FuturaBond® no-rinse. NR; Group V – Xeno® V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. Statistical Analysis Used: One-way ANOVA and post-hoc tests (P < 0.05). For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA) and the etching pattern analyzed under Scanning Electron Microscope (SEM). Results: Mean bond strengths were Group I – 47.17 ± 1.61 MPa (type I etching pattern); Group II – 32.56 ± 1.64 MPa, Group III – 29.10 ± 1.34 MPa, Group IV – 23.32 ± 1.53 MPa (type III etching pattern); Group V – 24.43 MPa ± 1.55 (type II etching pattern). Conclusions: Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE® and ExciTE® without condition with PA. FuturaBond® NR and Xeno® V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used. PMID:23853447

  6. Shear bond strength and SEM morphology evaluation of different dental adhesives to enamel prepared with ER:YAG laser.

    PubMed

    Pires, Patrícia T; Ferreira, João C; Oliveira, Sofia A; Azevedo, Alvaro F; Dias, Walter R; Melo, Paulo R

    2013-01-01

    Early observations of enamel surfaces prepared by erbium lasers motivated clinicians to use laser as an alternative to chemical etching. Evaluate shear bond strength (SBS) values of different dental adhesives on Erbium:Yttrium Aluminum Garnet (Er:YAG) laser prepared enamel and to evaluate possible etching patterns correlations between dental adhesives and SBS values. One hundred bovine incisors were randomly assigned to SBS tests on enamel (n = 15) and to enamel morphology analysis (n = 5) after Er:YAG laser preparation as follows: Group I - 37% phosphoric acid (PA)+ ExciTE(®); Group II - ExciTE(®); Group III - AdheSE(®) self-etching; Group IV - FuturaBond(®) no-rinse. NR; Group V - Xeno(®) V. Teeth were treated with the adhesive systems and subjected to thermal cycling. SBS were performed in a universal testing machine at 5 mm/min. One-way ANOVA and post-hoc tests (P < 0.05). For the morphology evaluation, specimens were immersed in Ethylenediamine tetraacetic acid (EDTA) and the etching pattern analyzed under Scanning Electron Microscope (SEM). Mean bond strengths were Group I - 47.17 ± 1.61 MPa (type I etching pattern); Group II - 32.56 ± 1.64 MPa, Group III - 29.10 ± 1.34 MPa, Group IV - 23.32 ± 1.53 MPa (type III etching pattern); Group V - 24.43 MPa ± 1.55 (type II etching pattern). Different adhesive systems yielded significantly different SBSs. Acid etching significantly increased the adhesion in laser treated enamel. No differences in SBS values were obtained between AdheSE(®) and ExciTE(®) without condition with PA. FuturaBond(®) NR and Xeno(®) V showed similar SBS, which was lower in comparison to the others adhesives. No correlation between enamel surface morphology and SBS values was observed, except when PA was used.

  7. Nondestructive defect detection in laser optical coatings

    NASA Astrophysics Data System (ADS)

    Marrs, C. D.; Porteus, J. O.; Palmer, J. R.

    1985-03-01

    Defects responsible for laser damage in visible-wavelength mirrors are observed at nondamaging intensities using a new video microscope system. Studies suggest that a defect scattering phenomenon combined with lag characteristics of video cameras makes this possible. Properties of the video-imaged light are described for multilayer dielectric coatings and diamond-turned metals.

  8. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, Leon

    1995-01-01

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  9. Skin surface microscopy of port-wine stains: preliminary data on classification and assessment of laser therapy results

    NASA Astrophysics Data System (ADS)

    Rotteleur, Guy; Huan, P.; Mordon, Serge R.; Beacco, Claire; Brunetaud, Jean Marc

    1994-12-01

    In order to characterize port-wine stains (PWS) before and after laser-therapy, a study using epiluminescence microscopy is achieved. The technique consists in placing a thin layer of mineral oil on the skin surface and inspecting the PWS with a Delta 10 dermatoscope (HEINE). A contact microphotography is then performed in a similar manner by means of a Dermaphot optical module (HEINE). One hundred and sixteen patients have been explored prior to laser treatment. Twenty eight have been explored at the same place three months after the first treatment and four three months after two treatments. The preliminary results are compared with Jones, Shakespeare, and Carruth's studies on transcutaneous microscopy. It is possible to classify PWS according to their epiluminescence microscopic aspect. The classification proposed by the English authors is not ideal and some adaptations are desirable, regarding particularly the background condition. Some correlation can be established between the macroscopic and microscopic aspect of PWS. It is far too early to correlate epiluminescence aspect before treatment and long term results of laser-therapy.

  10. Influence of laser-welding and electroerosion on passive fit of implant-supported prosthesis.

    PubMed

    Silva, Tatiana Bernardon; De Arruda Nobilo, Mauro Antonio; Pessanha Henriques, Guilherme Elias; Mesquita, Marcelo Ferraz; Guimaraes, Magali Beck

    2008-01-01

    This study investigated the influence of laser welding and electroerosion procedure on the passive fit of interim fixed implant-supported titanium frameworks. Twenty frameworks were made from a master model, with five parallel placed implants in the inter foramen region, and cast in commercially pure titanium. The frameworks were divided into 4 groups: 10 samples were tested before (G1) and after (G2) electroerosion application; and another 10 were sectioned into five pieces and laser welded before (G3) and after (G4) electroerosion application. The passive fit between the UCLA abutment of the framework and the implant was evaluated using an optical microscope Olympus STM (Olympus Optical Co., Tokyo, Japan) with 0.0005mm of accuracy. Statistical analyses showed significant differences between G1 and G2, G1 and G3, G1 and G4, G2 and G4. However, no statistical difference was observed when comparing G2 and G3. These results indicate that frameworks may show a more precise adaptation if they are sectioned and laser welded. In the same way, electroerosion improves the precision in the framework adaptation.

  11. A practical optical-resolution photoacoustic microscopy prototype using a 300 mW visible laser diode

    NASA Astrophysics Data System (ADS)

    Zeng, Lvming; Piao, Zhonglie; Huang, Shenghai; Jia, Wangcun; Chen, Zhongping

    2016-03-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is an emerging technique for microvasculature imaging at high spatial resolution and contrast. In this work, we present a practical visible laser-diode-based OR-PAM (LD-OR-PAM) prototype for vasculature imaging, which has the desirable properties of being portable, low-cost, and label-free. The prototype employs a 300 mW pulsed laser diode in a 3.8 mm diameter package, emitting 174 ns pulses at 405 +/- 5 nm wavelength and a pulse energy of 52 nJ. An aspheric objective with a numerical aperture of 0.60 is used to achieve microscope optical illumination. The laser diode excitation has a compact size of 4.5 × 1.8 × 1.8 cm3 assembled with a cooling block. The lateral resolution was tested to be 0.95 μm on ~7 μm carbon fibers. The subcutaneous microvasculature on a mouse back was label-free imaged ex vivo, which demonstrates the potential of the LD-OR-PAM prototype for in vivo imaging skin chromosphores such as hemoglobin. Our ultimate aim is to provide a practical and affordable OR-PAM system as a routine instrument for standard clinical applications.

  12. Rapid constructions of microstructures for optical fiber sensors using a commercial CO2 laser system.

    PubMed

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-06-27

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO₂ laser system which help exposing the optical fiber core to the measurand. The direct-write CO₂ laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO₂ laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.

  13. Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System

    PubMed Central

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-01-01

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures. PMID:19662114

  14. Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon.

    PubMed

    Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A

    2012-09-01

    Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.

  15. Microshear Bond Strength of OptiBond All-in-One Self-adhesive Agent to Er:YAG Laser Treated Enamel After Thermocycling and Water Storage.

    PubMed

    Kasraei, Shahin; Yarmohammadi, Ebrahim; Ghazizadeh, Mohammad Vahid

    2016-01-01

    Introduction: This study aimed to compare the microshear bond strength of composite to enamel treated with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser using a self-etch one step bonding agent. Methods: Seventy-six enamel surfaces were prepared from 38 sound human third molar teeth. Specimens were randomly divided into four groups of 18. The enamel surface in half the specimens was irradiated with Er:YAG laser. One extra specimen from each group was evaluated under a scanning electron microscope (SEM). Composite micro-cylinders were bonded to the specimen surfaces using OptiBond All-In-One (OB) adhesive agent and stored in distilled water for 24 hours. Half the specimens were thermocycled (2000 cycles) and stored in distilled water at 37°C for three months (TW). The microshear bond strength of composite to enamel was measured using a universal testing machine at a crosshead speed of 1 mm/min. The fractured surfaces were evaluated under a stereomicroscope at ×40 magnification to determine the mode of failure. Data were analyzed using repeated measures analysis of variance (ANOVA) and t test. Results: The mean values (±standard deviation) were 17.96 ± 2.92 MPa in OB group, 22.29 ± 4.25 MPa in laser + OB group, 18.11 ± 3.52 MPa in laser + OB + TW group and 9.42 ± 2.47 MPa in OB + TW group. Repeated measures ANOVA showed that laser irradiation increased the microshear bond strength ( P < 0.001). Bond strength decreased when the samples were thermocycled and stored for three months ( P < 0.001). The interaction effect of water storage and laser treatment on bond strength was significant ( P < 0.05). Conclusion: Enamel surface preparation with Er:YAG laser is recommended to enhance the durability of the bond of self-etch bonding systems to enamel.

  16. Microshear Bond Strength of OptiBond All-in-One Self-adhesive Agent to Er:YAG Laser Treated Enamel After Thermocycling and Water Storage

    PubMed Central

    Kasraei, Shahin; Yarmohammadi, Ebrahim; Ghazizadeh, Mohammad Vahid

    2016-01-01

    Introduction: This study aimed to compare the microshear bond strength of composite to enamel treated with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser using a self-etch one step bonding agent. Methods: Seventy-six enamel surfaces were prepared from 38 sound human third molar teeth. Specimens were randomly divided into four groups of 18. The enamel surface in half the specimens was irradiated with Er:YAG laser. One extra specimen from each group was evaluated under a scanning electron microscope (SEM). Composite micro-cylinders were bonded to the specimen surfaces using OptiBond All-In-One (OB) adhesive agent and stored in distilled water for 24 hours. Half the specimens were thermocycled (2000 cycles) and stored in distilled water at 37°C for three months (TW). The microshear bond strength of composite to enamel was measured using a universal testing machine at a crosshead speed of 1 mm/min. The fractured surfaces were evaluated under a stereomicroscope at ×40 magnification to determine the mode of failure. Data were analyzed using repeated measures analysis of variance (ANOVA) and t test. Results: The mean values (±standard deviation) were 17.96 ± 2.92 MPa in OB group, 22.29 ± 4.25 MPa in laser + OB group, 18.11 ± 3.52 MPa in laser + OB + TW group and 9.42 ± 2.47 MPa in OB + TW group. Repeated measures ANOVA showed that laser irradiation increased the microshear bond strength (P < 0.001). Bond strength decreased when the samples were thermocycled and stored for three months (P < 0.001). The interaction effect of water storage and laser treatment on bond strength was significant (P < 0.05). Conclusion: Enamel surface preparation with Er:YAG laser is recommended to enhance the durability of the bond of self-etch bonding systems to enamel. PMID:28144434

  17. Organic chemical analysis on a microscopic scale using two-step laser desorption/laser ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Philippoz, J.-M.; Bucenell, J. R.; Zenobi, R.; Zare, R. N.

    1991-01-01

    The distribution of PAHs in the Allende meteorite has been measured using two-step laser desorption and laser multiphoton-ionization mass spectrometry. This method enables in situ analysis (with a spatial resolution of 1 mm or better) of selected organic molecules. Results show that PAH concentrations are locally high compared to the average concentration found by analysis of pulverized samples, and are found primarily in the fine-grained matrix; no PAHs were detected in the interiors of individual chondrules at the detection limit (about 0.05 ppm).

  18. Electrically pumped graphene-based Landau-level laser

    NASA Astrophysics Data System (ADS)

    Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin

    2018-03-01

    Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.

  19. First results for custom-built low-temperature (4.2 K) scanning tunneling microscope/molecular beam epitaxy and pulsed laser epitaxy system designed for spin-polarized measurements

    NASA Astrophysics Data System (ADS)

    Foley, Andrew; Alam, Khan; Lin, Wenzhi; Wang, Kangkang; Chinchore, Abhijit; Corbett, Joseph; Savage, Alan; Chen, Tianjiao; Shi, Meng; Pak, Jeongihm; Smith, Arthur

    2014-03-01

    A custom low-temperature (4.2 K) scanning tunneling microscope system has been developed which is combined directly with a custom molecular beam epitaxy facility (and also including pulsed laser epitaxy) for the purpose of studying surface nanomagnetism of complex spintronic materials down to the atomic scale. For purposes of carrying out spin-polarized STM measurements, the microscope is built into a split-coil, 4.5 Tesla superconducting magnet system where the magnetic field can be applied normal to the sample surface; since, as a result, the microscope does not include eddy current damping, vibration isolation is achieved using a unique combination of two stages of pneumatic isolators along with an acoustical noise shield, in addition to the use of a highly stable as well as modular `Pan'-style STM design with a high Q factor. First 4.2 K results reveal, with clear atomic resolution, various reconstructions on wurtzite GaN c-plane surfaces grown by MBE, including the c(6x12) on N-polar GaN(0001). Details of the system design and functionality will be presented.

  20. In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser

    NASA Astrophysics Data System (ADS)

    Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu

    2013-03-01

    In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology.

  1. Optical and Acoustical Techniques for Non-viral Gene Delivery to Mammalian Cells and In-situ Study of Cytoskeletal Mechanics

    NASA Astrophysics Data System (ADS)

    Ma, Zili

    Since the first optical microscope invented by Anton van Leeuwenhoek in 1674, the great development of laser technique and its applications in biophotonics have helped us reveal the mechanisms underlying numerous biological activities gradually. The introduction of fs lasers to the studies of biology has emerged as a fast developing area calling for the efforts and skills both from optics and electric engineering and biology and medicine. Due to the fast update of laser source techniques, there has been an increasing number of commercialized fs lasers available for this growing market of biophotonics. To better utilize the potential offered by fs lasers, we studied the technique of optical gene delivery and tried to narrow the gap between laboratorial research and industrial/clinical applications, in that the strict experimental conditions of specific optical laboratorial studies are generally not appropriate for the practical biological applications. To carry out our experiments, we built a two-stage amplifier fs laser system to generate the desired pulse train. The laser pulse train was coupled into an invert fluorescence microscope for the imaging and manipulation of each cell. To overcome limitations brought by the tight focus of laser beam due to high NA objective, we introduced gold nanorods (GNRs), a metallic nanomaterial, with tunable optical property. With these additional membrane for membrane permeabilization, which could significantly improve the manipulation speed than that based on the tightly focused laser. We used GFP plasmid to demonstrate the applications of this technique in gene delivery, and successfully transfected and GFP-expressed cells were observed one day after the optical transfection. Additionally, as an important trend of biophotonics, the integration of optics with microfluidic chips has become the new frontier of both biology and engineering. Here we firstly demonstrated a technique of gene delivery by an on-chip device generating surface acoustic waves, which not only achieved a high efficiency of cells permeabilization in a quick speed, but also allowed us to observe the permeabilization process in real time by microscope. This device is also compatible with biophotonics studies based on fs laser, which can be further developed as a powerful tool for optical gene delivery with the capability of precisely controlling the fluid on-chip by SAW. SAW devices could also achieve exogenous gene delivery through the cell membrane without the need of adding chemical agents. Our results showed that the membrane of mammalian adherent cells could be effectively perforated transiently by applying a SAW. The transfection of pEGFP plasmids into endothelial cells was carried out successfully via this SAW-induced cell perforation. The expression of GFP was observed after 24-hour incubation subsequent to the SAW treatment. In regard to the application of fs lasers in cellular and subcellular level studies, we applied the optical nanoscissoring technique based on fs lasers in biomechanical studies to study the mechanical properties of single SF in-situ. Integrated into a confocal microscope, the fs laser showed great power in manipulating targeted in-situ subcellular structures under real-time imaging without damaging nearby regions. Here, how oxidative challenges would alter the mechanical properties of SFs in myoblasts was firstly investigated using the optical nanoscissoring technique to comprehend the whole picture of muscle tissue injury and repair from the basics. The prestress of stress fibers after the oxidative challenges was found through our modified viscoelastic retraction model and experiment result.

  2. Coherent anti-Stokes Raman scattering microscope with a high-signal-to-noise ratio, high stability, and high-speed imaging for live cell observation

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinichi; Takimoto, Shinichi; Hashimoto, Takeshi

    2007-02-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy, which can produce images of specific molecules without staining, has attracted the attention of researchers, as it matches the need for molecular imaging and pathway analysis of live cells. In particular, there have been an increasing number of CARS experimental results regarding lipids in live cells, which cannot be fluorescently tagged while keeping the cells alive. One of the important applications of lipid research is for the metabolic syndrome. Since the metabolic syndrome is said to be related to the lipids in lipocytes, blood, arterial vessels, and so on, the CARS technique is expected to find application in this field. However, CARS microscopy requires a pair of picosecond laser pulses, which overlap both temporally and spatially. This makes the optical adjustments of a CARS microscope challenging. The authors developed a CARS unit that includes optics for easy and stable adjustment of the overlap of these laser pulses. Adding the CARS unit to a laser scanning microscope provides CARS images of a high signal-to-noise ratio, with an acquisition rate as high as 2 microseconds per pixel. Thus, images of fast-moving lipid droplets in Hela cells were obtained.

  3. Development of a New Punch Head Shape to Replicate Scale-Up Issues on a Laboratory Tablet Press III: Replicating sticking phenomenon using the SAS punch and evaluation by checking the tablet surface using 3D laser scanning microscope.

    PubMed

    Ito, Manabu; Aoki, Shigeru; Uchiyama, Jumpei; Yamato, Keisuke

    2018-04-20

    Sticking is a common observation in the scale-up stage on the punch tip using a commercial tableting machine. The difference in the total compression time between a laboratory and a commercial tableting machine is considered one of the main root causes of scale up issues in the tableting processes. The proposed Size Adjusted for Scale-up (SAS) punch can be used to adjust the consolidation and dwell times for commercial tableting machine. As a result, the sticking phenomenon is able to be replicated at the pilot scale stage. As reported in this paper, the quantification of sticking was measured using a 3D laser scanning microscope to check the tablet surface. It was shown that the sticking area decreased with the addition of magnesium stearate in the formulation, but the sticking depth was not affected by the additional amount of magnesium stearate. It is proposed that use of a 3D laser scanning microscope can be applied to evaluate sticking as a process analytical technology (PAT) tool and so sticking can be monitored continuously without stopping the machine. Copyright © 2018. Published by Elsevier Inc.

  4. Hyperspectral imaging with laser-scanning sum-frequency generation microscopy

    PubMed Central

    Hanninen, Adam; Shu, Ming Wai; Potma, Eric O.

    2017-01-01

    Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-μm resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family. PMID:28966861

  5. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    NASA Astrophysics Data System (ADS)

    Harooni, Masoud

    It is advantageous for the transportation industry to use lightweight components in the structure in order to save mass and reduce CO2 emissions. One of the lightest structural metals, magnesium, fulfills the need for mass reduction within the automotive industry. Many of the body structure components in the automotive industry are assembled using joining processes such as fusion welding. Furthermore, laser welding offers a low heat impact, high process rate, joining method which is becoming increasingly popular as the cost for laser systems continues to decrease. However, there is a limited body of work investigating the laser welding of magnesium and therefore, in the current study, different techniques and methods for laser welding of magnesium alloys are numerically and experimentally studied in order to optimize process parameters to achieve high quality welds. A feasibility study was designed in order to study the effect of various laser welding process parameters (such as laser power levels and welding speeds) on weld quality. Three regression models were developed to find the best fit model that relates process parameters to the shear load of the weld. Furthermore, to understand the effect of laser welding parameters on temperature distribution in laser welding of AZ31B magnesium alloy, a numerical model was developed. A rotary Gaussian volumetric body heat source was applied in this study to obtain the temperature history during the laser welding process. Cross-sectional views of the weld beads, temperature history recorded by thermocouples, and temperature history recorded by infrared camera were used to validate the numerical model. In order to study the real-time dynamic behavior of the molten pool and the keyhole during the welding process, a high speed charge-coupled device (CCD) assisted with a green laser as an illumination source was used. In order to observe the presence of pores, prior studies destructively evaluated the weld bead however; in the current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two different methods including focused beam laser welding (FBLW) and defocused beam laser welding (DBLW) are performed. The cross-sections of the welds were studied using an optical microscope, scanning electron microscope (SEM) as well as energy-dispersive X-ray spectroscopy (EDS) to reveal the quality of the obtained dissimilar welds. The mechanical properties of the welds were studied using a tensile test and microhardness testing machines. The results show that the defocused laser welding process could help to achieve a better quality of weld. (Abstract shortened by UMI.)

  6. Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina

    PubMed Central

    Hausselt, Susanne E.; Breuninger, Tobias; Castell, Xavier; Denk, Winfried; Margolis, David J.; Detwiler, Peter B.

    2009-01-01

    Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons. PMID:19023590

  7. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  8. Two-photon imaging in living brain slices.

    PubMed

    Mainen, Z F; Maletic-Savatic, M; Shi, S H; Hayashi, Y; Malinow, R; Svoboda, K

    1999-06-01

    Two-photon excitation laser scanning microscopy (TPLSM) has become the tool of choice for high-resolution fluorescence imaging in intact neural tissues. Compared with other optical techniques, TPLSM allows high-resolution imaging and efficient detection of fluorescence signal with minimal photobleaching and phototoxicity. The advantages of TPLSM are especially pronounced in highly scattering environments such as the brain slice. Here we describe our approaches to imaging various aspects of synaptic function in living brain slices. To combine several imaging modes together with patch-clamp electrophysiological recordings we found it advantageous to custom-build an upright microscope. Our design goals were primarily experimental convenience and efficient collection of fluorescence. We describe our TPLSM imaging system and its performance in detail. We present dynamic measurements of neuronal morphology of neurons expressing green fluorescent protein (GFP) and GFP fusion proteins as well as functional imaging of calcium dynamics in individual dendritic spines. Although our microscope is a custom instrument, its key advantages can be easily implemented as a modification of commercial laser scanning microscopes. Copyright 1999 Academic Press.

  9. Design and installation of a multimode microscopy system

    NASA Astrophysics Data System (ADS)

    Helm, Johannes P.; Haug, Finn-Mogens S.; Storm, Johan F.; Ottersen, Ole-Petter

    2001-04-01

    We describe design and installation of a multi-mode microscopy core facility in an environment of varied research activity in life-sciences. The experimentators can select any combination of a) microscopes (upright, upright fixed-stage, inverted), b) microscopy modes (widefield, DIC, IRDIC, widefield epifluorescence, transmission LSM, reflection and fluorescence CLSM, MPLSM), c) imaging techniques (direct observation, video observation, photography, quantitative camera-recording, flying spot scanning), d) auxiliary systems (equipment for live specimen imaging, electrophysiology, time-coordinated laser-scanning and electrophysiology, patch-clamp). The equipment is installed on one large vibration-isolating optical table (3m X 1.5m X 0.3m). Electronics, auxiliary equipment, and a fiber-coupled, remotely controlled Ar+-Kr+ laser are mounted in a rack system fixed to the ceiling. The design of the shelves allows the head of the CSLM to be moved to any of the microscopes without increasing critical cable lengths. At the same time easy access to all the units is preserved. The beam of a Titanium-Sapphire laser, controlled by means of an EOM and a prism GVD, is coupled directly to the microscopes. Three mirrors mounted on a single precision translation table are integrated into the beam steering system so that the beam can easily be redirected to any of the microscopes. All the available instruments can be operated by the educated and trained user. The system is popular among researchers in neuroanatomy, embryology, cell biology, molecular biology - including the study of protein interactions, e.g. by means of FRET, and electrophysiology. Its colocalization with an EM facility promises to provide considerable synergy effects.

  10. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    NASA Astrophysics Data System (ADS)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  11. Bleaching of tattooed skin phantoms by series of laser shots

    NASA Astrophysics Data System (ADS)

    Shubnyy, Andrey G.; Zhigarkov, Vyacheslav S.; Yusupov, Vladimir I.; Sviridov, Alexander P.; Bagratashvili, Victor N.

    2018-04-01

    The bleaching of polyacrylamide tattooed skin-mimicking phantoms by a series of laser pulses in a single session is studied. It is shown that compared to the single-pulse procedures tattoo removal by series of laser pulses allows not only for reducing the necessary laser fluence, but also for improving the degree of bleaching. The dynamics of formation and dissolution of microscopic gas bubbles in tattooed skin phantoms exposed to laser radiation is also studied. A laser-induced tattoo bleaching mechanism is suggested, based on the process of selective photo-thermolysis of pigmented particles in conditions where the thermal conductivity of the medium surrounding the particles is decreased because of the microbubbles formed therein.

  12. Retinal response of Macaca mulatta to picosecond laser pulses of varying energy and spot size.

    PubMed

    Roach, William P; Cain, Clarence P; Narayan, Drew G; Noojin, Gary D; Boppart, Stephen A; Birngruber, Reginald; Fujimoto, James G; Toth, Cynthia A

    2004-01-01

    We investigate the relationship between the laser beam at the retina (spot size) and the extent of retinal injury from single ultrashort laser pulses. From previous studies it is believed that the retinal effect of single 3-ps laser pulses should vary in extent and location, depending on the occurrence of laser-induced breakdown (LIB) at the site of laser delivery. Single 3-ps pulses of 580-nm laser energy are delivered over a range of spot sizes to the retina of Macaca mulatta. The retinal response is captured sequentially with optical coherence tomography (OCT). The in vivo OCT images and the extent of pathology on final microscopic sections of the laser site are compared. With delivery of a laser pulse with peak irradiance greater than that required for LIB, OCT and light micrographs demonstrate inner retinal injury with many intraretinal and/or vitreous hemorrhages. In contrast, broad outer retinal injury with minimal to no choriocapillaris effect is seen after delivery of laser pulses to a larger retinal area (60 to 300 microm diam) when peak irradiance is less than that required for LIB. The broader lesions extend into the inner retina when higher energy delivery produces intraretinal injury. Microscopic examination of stained fixed tissues provide better resolution of retinal morphology than OCT. OCT provides less resolution but could be guided over an in vivo, visible retinal lesion for repeated sampling over time during the evolution of the lesion formation. For 3-ps visible wavelength laser pulses, varying the spot size and laser energy directly affects the extent of retinal injury. This again is believed to be partly due to the onset of LIB, as seen in previous studies. Spot-size dependence should be considered when comparing studies of retinal effects or when pursuing a specific retinal effect from ultrashort laser pulses. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.

  13. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando

    2012-12-01

    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.

  14. Laser scatter in clinical applications

    NASA Astrophysics Data System (ADS)

    Luther, Ed; Geddie, William

    2008-02-01

    Brightfield Laser Scanning Imaging (BLSI) is available on Laser Scanning Cytometers (LSCs) from CompuCyte Corporation. Briefly, digitation of photodetector outputs is coordinated with the combined motions of a small diameter (typically 2 to 10 microns) laser beam scanning a specimen in the Y direction (directed by a galvanometer-driven scanning mirror) and the microscope stage motion in the X direction. The output measurements are assembled into a two-dimensional array to provide a "non-real" digital image, where each pixel value reports the amount of laser-scattered light that is obtained when the laser beam is centered on that location. Depending on the detector positions, these images are analogous to Differential Interference Contrast or Phase Contrast microscopy. We report the incorporation of the new laser scattering capabilities into the workflow of a high-volume clinical cytology laboratory at University Health Network, Toronto, Canada. The laboratory has been employing LSC technology since 2003 for immunophenotypic fluorescence analysis of approximately 1200 cytological specimens per year, using the Clatch methodology. The new BLSI component allows visualization of cellular morphology at higher resolution levels than is possible with standard brightfield microscopic evaluation of unstained cells. BLSI is incorporated into the triage phase, where evaluation of unstained samples is combined with fluorescence evaluation to obtain specimen background levels. Technical details of the imaging methodology will be presented, as well as illustrative examples from current studies and comparisons to detailed, but obscure, historical studies of cytology specimens based on phase contrast microscopy.

  15. Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Yung, K. C.; Choy, H. S.; Xiao, T. Y.; Cai, Z. X.

    2018-06-01

    Laser polishing of 3D printed metal components has drawn great interest in view of its potential applications in the dental implant industries. In this study, corrosion resistance, surface composition and crystalline structure of CoCr alloys were investigated. The corrosion resistance, micromorphology, composition, phase transformations and crystalline structures of samples were characterized using an electrochemical analyzer, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and transmission electron microscope (TEM), respectively. The results indicate that high laser powers and low object distances within a certain range can facilitate the formation of complex oxide films, which exhibits high corrosion resistance. Further, object distances have a significant influence on cooling rates during the solidification of the melt pool in laser polishing, and fast cooling generates vast amounts of vacancies and defects, which result in the crystalline phase transformation from γ to ε. Consequently, the formed oxides play an important role in corrosion resistance on the outer layer, and inner layer with γ phase also helps keep the CoCr alloys in a stable structure with high resistant to corrosion. The two process parameters in laser polishing, laser power and object distances, are demonstrated as being important for controlling the surface microstructures and corrosion resistance of the additive manufactured CoCr alloy components.

  16. Direct laser writing for micro-optical devices using a negative photoresist.

    PubMed

    Tsutsumi, Naoto; Hirota, Junichi; Kinashi, Kenji; Sakai, Wataru

    2017-12-11

    Direct laser writing (DLW) via two-photon absorption (TPA) has attracted much attention as a new microfabrication technique because it can be applied to fabricate complex, three-dimensional (3D) microstructures. In this study, 3D microstructures and micro-optical devices of micro-lens array on the micrometer scale are fabricated using the negative photoresist SU-8 through TPA with a femtosecond laser pulse under a microscope. The effects of the irradiation conditions on linewidths, such as laser power, writing speed, and writing cycles (a number of times a line is overwritten), are investigated before the fabrication of the 3D microstructures. Various microstructures such as woodpiles, hemisphere and microstructures, 3D micro-lens and micro-lens array for micro-optical devices are fabricated. The shape of the micro-lens is evaluated using the shape analysis mode of a laser microscope to calculate the working distance of the fabricated micro-lenses. The calculated working distance corresponds well to the experimentally measured value. The focusing performance of the fabricated micro-lens is confirmed by the TPA fluorescence of an isopropyl thioxanthone (ITX) ethanol solution excited by a Ti:sapphire femtosecond laser at 800 nm. Micro-lens array (assembled 9 micro-lenses) are fabricated. Nine independent woodpile structures are simultaneously manufactured by DLW via TPA to confirm the multi-focusing ability using the fabricated micro-lens array.

  17. Carbon dioxide laser microsurgery of the uterine tube.

    PubMed

    Baggish, M S; Chong, A P

    1981-07-01

    The carbon dioxide (CO2) laser was used to perform microsurgical excision of obstructed tubal segments in rabbit and human subjects. Approximation of the freshly severed tubes by means of laser "welding" was evaluated in both groups investigated. More important, the laser beam cuts accurately and atraumatically while sealing small vascular channels. Scanning electron microscopic studies of the human fallopian tube following laser surgery were done to determine the extent of tissue injury. At a distance of 1 mm distal to the vaporization and necrotic impact zone, normal tubal anatomy was observed. Follow-up data are presented for 7 women who underwent laser beam tuboplasty between 1979 and 1980. The principle advantages of the CO2 laser are its precise control, minimal tissue injury, and hemostatic properties.

  18. Studies on the mechanism of printing film-coated tablets containing titanium dioxide in the film by using UV laser irradiation.

    PubMed

    Kato, Yoshiteru; Nakashima, Yasuhiko; Shino, Naoki; Sasaki, Koichi; Hosokawa, Akihiro; Ishihara, Hiroshi

    2010-04-01

    The purpose of this article is to study a detailed mechanism of printing when film-coated tablets were irradiated by UV laser at a wavelength of 355 nm. Hydroxypropylmethylcellulose (HPMC) film containing titanium dioxide (TiO(2)) and the film not containing TiO(2) and TiO(2) powder were lirradiated by the UV laser and estimated by the morphological observation by zoom stereo microscope, thermogravimetric analysis (TGA), total color difference (dE), X-ray powder diffraction (XRD), and dispersive Raman microscopy. In the case of the film containing TiO(2), the film showed a visible change in its color from white to gray by the UV laser irradiation. By zoom stereo microscope, it was found that the entire UV laser-irradiated area was not grayed uniformly, but many black particles, whose diameter was about 2 microm, were observed on the film. When TiO(2) powder was irradiated by the UV laser, a visible change in its color from white to gray was observed similar to the case of the film containing TiO(2). There were many black particles locally in the UV laser-treated TiO(2) powder by the morphological observation, and these black particles, agglomerates of the grayed oxygen-defected TiO(2), were associated with the visible change of the TiO(2). It was found that the film-coated tablets were printed utilizing the formation of the black particles by the agglomeration of the grayed oxygen-defected TiO(2) by the UV laser irradiation.

  19. Comparative scanning electron microscope analysis of diode laser and desensitizing toothpastes for evaluation of efficacy of dentinal tubular occlusion

    PubMed Central

    Reddy, Guntakala Vikram; Akula, Sushma; Malgikar, Suryakanth; Babu, Palaparthy Raja; Reddy, Gooty Jagadish; Josephin, Johnson Juliet

    2017-01-01

    Background: The present study aims to evaluate the efficacy of diode laser alone and in combination with desensitizing toothpastes in occluding dentinal tubules (both partially occluded and completely occluded tubules) by scanning electron microscope (SEM). Materials and Methods: Fifty human teeth were extracted, cervical cavities were prepared and etched with 17% ethylenediaminetetraacetic acid, and smear layer was removed to expose the tubules. The teeth were divided into five groups: Group I – Application of NovaMin-formulated toothpaste, Group II – Application of Pro-Argin™-formulated toothpaste, Group III – Application of diode laser in noncontact mode, Group IV – NovaMin-formulated toothpaste followed by laser irradiation, and Group V – Pro-Argin™-formulated toothpaste followed by laser irradiation. After treatment, quantitative analysis of occluded dentinal tubules was done by SEM analysis. Results: The mean values of percentages of total occlusion of dentinal tubules in Groups I, II, III, IV, and V were 92.73% ± 1.38, 90.67% ± 1.86, 96.57% ± 0.64, 97.3% ± 0.68, and 96.9% ± 6.08, respectively. Addition of diode laser (Groups III, IV, and V) yielded a significant occlusion of the dentinal tubules when compared to desensitizing toothpastes alone (Groups I and II). Conclusion: Diode laser (Group III) has shown more efficacy in occluding dentinal tubules when compared with desensitizing toothpastes which was statistically significant (P < 0.05). Among the five groups, NovaMin + diode laser (Group IV) showed the highest percentage of occluded dentinal tubules. PMID:29398853

  20. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, L.

    1995-10-17

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  1. Combined laser heating and tandem acousto-optical filter for two-dimensional temperature distribution on the surface of the heated microobject

    NASA Astrophysics Data System (ADS)

    Bykov, A. A.; Kutuza, I. B.; Zinin, P. V.; Machikhin, A. S.; Troyan, I. A.; Bulatov, K. M.; Batshev, V. I.; Mantrova, Y. V.; Gaponov, M. I.; Prakapenka, V. B.; Sharma, S. K.

    2018-01-01

    Recently it has been shown that it is possible to measure the two-dimensional distribution of the surface temperature of microscopic specimens. The main component of the system is a tandem imaging acousto-optical tunable filter synchronized with a video camera. In this report, we demonstrate that combining the laser heating system with a tandem imaging acousto-optical tunable filter allows measurement of the temperature distribution under laser heating of the platinum plates as well as a visualization of the infrared laser beam, that is widely used for laser heating in diamond anvil cells.

  2. Volume Measurements of Laser-generated Pits for in Situ Geochronology Using KArLE (Potassium-Argon Laser Experiment)

    NASA Technical Reports Server (NTRS)

    French, R. A.; Cohen, B. A.; Miller, J. S.

    2014-01-01

    KArLE (Potassium-­-Argon Laser Experiment) has been developed for in situ planetary geochronology using the K - Ar (potassium-­-argon) isotope system, where material ablated by LIBS (Laser-­-Induced Breakdown Spectroscopy) is used to calculate isotope abundances. We are determining the accuracy and precision of volume measurements of these pits using stereo and laser microscope data to better understand the ablation process for isotope abundance calculations. If a characteristic volume can be determined with sufficient accuracy and precision for specific rock types, KArLE will prove to be a useful instrument for future planetary rover missions.

  3. Pros and cons of characterising an optical translocation setup

    NASA Astrophysics Data System (ADS)

    Maphanga, Charles; Malabi, Rudzani; Ombinda-Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    The delivery of genetic material and drugs into mammalian cells using femtosecond (fs) laser pulses is escalating rapidly. This novel light based technique achieved through a precise focusing of a laser beam on the plasma membrane is called photoporation. This technique is attained using ultrashort laser pulses to irradiate plasma membrane of mammalian cells, thus resulting in the accumulation of a vast amount of free electrons. These generated electrons react photochemically with the cell membrane, resulting in the generation of sub-microscopic pores on the cell membrane enabling a variety of extracellular media to diffuse into the cell. This study is aimed at critically analysing the "do's and don'ts" of designing, assembling, and characterising an optical translocation setup using a femtosecond legend titanium sapphire regenerative amplifier pulsed laser (Gaussian beam, 800 nm, 1 kHz, 113 fs, and an output power of 850 mW). The main objective in our study is to determine optical phototranslocation parameters which are compatible to the plasma membrane and cell viability. Such parameters included beam profiling, testing a range of laser fluencies suitable for photoporation, assessment of the beam quality and laser-cell interaction time. In our study, Chinese Hamster Ovary-K1 (CHO-K1) cells were photoporated in the presence of trypan blue to determine optimal parameters for photoporation experiment. An average power of 4.5 μW, exposure time of 7 ms, with a laser beam spot of 1.1 μm diameter at the focus worked optimally without any sign of cell stress and cytoplasmic bleeding. Cellular responses post laser treatment were analysed using cell morphology studies.

  4. Histologic effects of a high-repetition pulsed Nd:YAG laser on intraoral soft tissue

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Goodis, Harold E.; Yessik, Michael J.; Myers, Terry D.

    1995-05-01

    High-repetition rate, fiberoptic-delivered Nd:YAG lasers have increased oral soft tissue laser applications. This study focused on three parameters: the temperature rise occurring in deeper tissue during excision, the histology of thermal coagulation during excision of oral tissue, and effects of accidental exposure to adjacent hard tissue. Thermocouples were placed 5.0 +/- 0.5 mm in bone below fresh bovine gingiva and at the same depth in tongue; temperatures in the underlying tissue were measured during laser excision. An Nd:YAG laser with 100 microsecond(s) pulse duration was used to excise the tissue using a 200 or 300 micrometers diameter fiber in contact with the tissue. The soft tissue was excised using constant force and rate with laser powers of 1.5, 3, 5, and 10 W, and a variety of pulse rates. The tissue was bioprepared, sectioned and stained with hematoxylin and eosin. The width and depth of the tissue removed as well as lateral and deep thermal coagulation were measured in histologic sections with a measuring microscope (10x). Multifactor randomized ANOVA showed that probe diameter and repetition rates were not significant variables (p

  5. Comparative evaluation of surface topography of tooth prepared using erbium, chromium: Yttrium, scandium, gallium, garnet laser and bur and its clinical implications.

    PubMed

    Verma, Mahesh; Kumari, Pooja; Gupta, Rekha; Gill, Shubhra; Gupta, Ankur

    2015-01-01

    Erbium, chromium: Yttrium, scandium, gallium, garnet (Er, Cr: YSGG) laser has been successfully used in the ablation of dental hard and soft tissues. It has been reported that this system is also useful for preparing tooth surfaces and etching, but no consensus exist in the literature regarding the advantage of lasers over conventional tooth preparation technique. Labial surfaces of 25 extracted human maxillary central incisors were divided into two halves. Right half was prepared with diamond bur and left half with Er, Cr; YSGG laser and a reduction of 0.3-0.5 mm was carried out. Topography of prepared surfaces of five teeth were examined under scanning electron microscope (SEM). The remaining samples were divided into 4 groups of 10 specimens each based on the surface treatment received: One group was acid etched and other was nonetched. Composite resin cylinders were bonded on prepared surfaces and shear bond strength was assessed using a universal testing machine. The SEM observation revealed that the laser prepared surfaces were clean, highly irregular and devoid of a smear layer. Bur prepared surfaces were relatively smooth but covered with smear layer. Highest bond strength was shown by laser prepared acid etched group, followed by bur prepared the acid etched group. The bur prepared nonacid etched group showed least bond strength. Er, Cr: YSGG laser can be used for preparing tooth and bond strength value achieved by laser preparation alone without surface treatment procedure lies in the range of clinical acceptability.

  6. Evaluation of crystalline changes and resistance to demineralization of the surface of human dental enamel treated with Er:YAG laser and fluoride using x-ray diffraction analysis and Vickers microhardness

    NASA Astrophysics Data System (ADS)

    Behroozibakhsh, Marjan; Shahabi, Sima; Ghavami-Lahiji, Mehrsima; Sadeghian, Safura; Sadat Faal Nazari, Neda

    2018-06-01

    This study aimed to investigate the changes in crystalline structure and resistance to demineralization of human dental surface enamel treated with erbium-doped yttrium aluminium garnet laser (Er:YAG) laser and fluoride. The enamel surfaces were divided into four groups according to the treatment process including, (L): irradiated with Er:YAG; (F): treated with acidulated phosphate fluoride gel (LF): Pre-irradiated surfaces with Er:YAG subjected to acidulated phosphate fluoride gel and (FL): laser irradiation was performed on the fluoridated enamel surface. Before and after the treatment procedure, the samples were evaluated using X-ray diffraction, scanning electron microscope (SEM) and the Vickers microhardness test. The surface microhardness values also were measured after a pH-cycling regime and acid challenge. The a-axis of all lased groups was contracted after treatment procedure. Measurement of the area under the peaks showed the highest crysallinity in the FL group. The hardness values of all laser treated samples significantly reduced after treatment procedure compared to the F group (p  ⩽  0.001). The morphological observations showed remarkable changes on the lased enamel surfaces including cracks, craters and exposed prisms. These findings suggest, irradiation of the Er:YAG laser accompanying with fluoride application can induce some beneficial crystalline changes regarding the acid-resistance properties of enamel, however, the craters and cracks produced by laser irradiation can promote enamel demineralization and consequently the positive effects of the Er:YAG laser will be eliminated.

  7. Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

    2013-04-01

    Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a significant reduction in size, weight, power, and overall complexity - making time resolved detection feasible for planetary applications. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection and combined Raman-LIBS capability.

  8. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  9. Changes in surface morphology of enamel after Er:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of the study was to investigate the surface and subsurface structure of enamel after irradiation with an Er:YAG laser (wavelength 2.94 micrometer, pulse duration 250 - 500 microseconds, free running, beam profile close to tophead, focus diameter 600 micrometer, focus distance 13 mm, different power settings, air-water spray 2 ml/min; KAVO Key Laser 1242, Kavo Biberach, Germany). The surface of more than 40 freshly extracted wisdom teeth were irradiated using a standardized application protocol (pulse repetition rate 4 and 6 Hz, moving speed of the irradiation table 2 mm/sec and 3 mm/sec, respectively). On each surface between 3 and 5 tracks were irradiated at different laser energies (60 - 500 mJ/pulse) while each track was irradiated between one and ten times respectively. For the scanning electron microscope investigation teeth were dried in alcohol and sputtered with gold. For light microscopic examinations following laser impact, samples were fixed in formaldehyde, dried in alcohol and embedded in acrylic resin. Investigations revealed that at subsurface level cracks can not be observed even at application of highest energies. Borders of the irradiated tracks seem to be sharp while melted areas of different sizes are observed on the bottom of the tracks depending on applied energy. Small microcracks can be seen on the surface of these melted areas.

  10. Effect of diode laser and ultrasonics with and without ethylenediaminetetraacetic acid on smear layer removal from the root canals: A scanning electron microscope study.

    PubMed

    Amin, Khalid; Masoodi, Ajaz; Nabi, Shahnaz; Ahmad, Parvaiz; Farooq, Riyaz; Purra, Aamir Rashid; Ahangar, Fayaz Ahmad

    2016-01-01

    To evaluate the effect of diode laser and ultrasonics with and without ethylenediaminetetraacetic acid (EDTA) on the smear layer removal from root canals. A total of 120 mandibular premolars were decoronated to working the length of 12 mm and prepared with protaper rotary files up to size F3. Group A canals irrigated with 1 ml of 3% sodium hypochlorite (NaOCl) followed by 3 ml of 3% NaOCl. Group B canals irrigated with 1 ml of 17% EDTA followed by 3 ml of 3% NaOCl. Group C canals lased with a diode laser. Group D canals were initially irrigated with 0.8 ml of 17% EDTA the remaining 0.2 ml was used to fill the root canals, and diode laser application was done. Group E canals were irrigated with 1 ml distilled water with passive ultrasonic activation, followed by 3 ml of 3% NaOCl. Group F canals were irrigated with 1 ml EDTA with passive ultrasonic activation, followed by 3 ml of 3% NaOCl. Scanning electron microscope examination of canals was done for remaining smear layer at coronal middle and apical third levels. Ultrasonics with EDTA had the least smear layer scores. Diode laser alone performed significantly better than ultrasonics.

  11. Comparison of different focusing fiber tips for improved oral diode laser surgery.

    PubMed

    Stock, Karl; Stegmayer, Thomas; Graser, Rainer; Förster, Wolfram; Hibst, Raimund

    2012-12-01

    State of the art for use of the fiber guided diode laser in dental therapy is the application of bare fibers. A novel concept with delivery fiber and exchangeable fiber tips enables the use of tips with special and optimized geometries for various applications. The aim of this study is the comparison of different focusing fiber tips for enhanced cutting efficacy in oral surgery. For this purpose various designs of tip geometry were investigated and optimized by ray tracing simulations. Two applicators, one with a sphere, and another one with a taper, were realized and tested on porcine gingiva (diode laser, 940 nm, 5 W/cw; 7 W/modulated). The cutting depth and quality were determined by light microscope. Histological sections of the cuts were prepared by a cryo-microtome and microscopically analyzed to determine the cut depths and thermal damage zones. The simulations show that, using a sphere as fiber tip, an intensity increase of up to a factor of 16.2 in air, and 13.2 in water compared to a bare 200 µm fiber can be achieved. Although offering high focusing factor in water, the cutting quality of the sphere was rather poor. This is probably caused by a derogation of the focusing quality due to contamination during cutting and light scattering. Much better results were achieved with conically shaped fiber tips. Compared to bare fibers they exhibit improved handling properties with no hooking, more regular and deeper cuts (5 W/cw: 2,393 ± 468 µm, compared to the cleaved bare fiber 5 W/cw: 711 ± 268 µm). The thermal damage zones of the cuts are comparable for the various tips and fibers. In conclusion the results of our study show that cutting quality and efficiency of diode laser on soft tissue can be significantly improved using conically shaped fiber tips. Copyright © 2012 Wiley Periodicals, Inc.

  12. Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy.

    PubMed

    Su, Ting-Wei; Erlinger, Anthony; Tseng, Derek; Ozcan, Aydogan

    2010-10-01

    We demonstrate a compact and lightweight platform to conduct automated semen analysis using a lensfree on-chip microscope. This holographic on-chip imaging platform weighs ∼46 g, measures ∼4.2 × 4.2 × 5.8 cm, and does not require any lenses, lasers or other bulky optical components to achieve phase and amplitude imaging of sperms over ∼24 mm(2) field-of-view with an effective numerical aperture of ∼0.2. Using this wide-field lensfree on-chip microscope, semen samples are imaged for ∼10 s, capturing a total of ∼20 holographic frames. Digital subtraction of these consecutive lensfree frames, followed by appropriate processing of the reconstructed images, enables automated quantification of the count, the speed and the dynamic trajectories of motile sperms, while summation of the same frames permits counting of immotile sperms. Such a compact and lightweight automated semen analysis platform running on a wide-field lensfree on-chip microscope could be especially important for fertility clinics, personal male fertility tests, as well as for field use in veterinary medicine such as in stud farming and animal breeding applications.

  13. Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Correia, Edmilson Emanuel Monteiro; Guedes, Glaucia Morgana de Melo; Pereira, Vandbergue Santos; Oliveira, Jonathas Sales de; Bandeira, Silviane Praciano; Alencar, Lucas Pereira de; Andrade, Ana Raquel Colares de; Castelo-Branco, Débora de Souza Collares Maia; Cordeiro, Rossana de Aguiar; Pinheiro, Adriana de Queiroz; Chaves, Lúcio Jackson Queiroz; Pereira Neto, Waldemiro de Aquino; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2017-07-01

    The aim of this study was to evaluate the in vitro and ex vivo biofilm-forming ability of dermatophytes on a nail fragment. Initially, four isolates of Trichophyton rubrum, six of Trichophyton tonsurans, three of Trichophyton mentagrophytes, ten of Microsporum canis and three of Microsporum gypseum were tested for production biomass by crystal violet assay. Then, one strain per species presenting the best biofilm production was chosen for further studies by optical microscopy (Congo red staining), confocal laser scanning (LIVE/DEAD staining) and scanning electron (secondary electron) microscopy. Biomass quantification by crystal violet assay, optical microscope images of Congo red staining, confocal microscope and scanning electron microscope images revealed that all species studied are able to form biofilms both in vitro and ex vivo, with variable density and architecture. M. gypseum, T. rubrum and T. tonsurans produced robust biofilms, with abundant matrix and biomass, while M. canis produced the weakest biofilms compared to other species. This study sheds light on biofilms of different dermatophyte species, which will contribute to a better understanding of the pathophysiology of dermatophytosis. Further studies of this type are necessary to investigate the processes involved in the formation and composition of dermatophyte biofilms.

  14. Optical probing of high intensity laser interaction with micron-sized cryogenic hydrogen jets

    NASA Astrophysics Data System (ADS)

    Ziegler, Tim; Rehwald, Martin; Obst, Lieselotte; Bernert, Constantin; Brack, Florian-Emanuel; Curry, Chandra B.; Gauthier, Maxence; Glenzer, Siegfried H.; Göde, Sebastian; Kazak, Lev; Kraft, Stephan D.; Kuntzsch, Michael; Loeser, Markus; Metzkes-Ng, Josefine; Rödel, Christian; Schlenvoigt, Hans-Peter; Schramm, Ulrich; Siebold, Mathias; Tiggesbäumker, Josef; Wolter, Steffen; Zeil, Karl

    2018-07-01

    Probing the rapid dynamics of plasma evolution in laser-driven plasma interactions provides deeper understanding of experiments in the context of laser-driven ion acceleration and facilitates the interplay with complementing numerical investigations. Besides the microscopic scales involved, strong plasma (self-)emission, predominantly around the harmonics of the driver laser, often complicates the data analysis. We present the concept and the implementation of a stand-alone probe laser system that is temporally synchronized to the driver laser, providing probing wavelengths beyond the harmonics of the driver laser. The capability of this system is shown during a full-scale laser proton acceleration experiment using renewable cryogenic hydrogen jet targets. For further improvements, we studied the influence of probe color, observation angle of the probe and temporal contrast of the driver laser on the probe image quality.

  15. Nondestructive monitoring damage in composites using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Wey, A. C.; Kessler, L. W.; Dos Reis, H. L. M.

    1992-01-01

    Several Nicalon fiber reinforced LAS (lithium alumino-silicate) glass matrix composites were tested to study the relation between the residual strength and the different amounts of damage. The samples were fatigued by four-point cyclic loading at a 5 Hz rate at 500 C for a different number of cycles. 10 MHz scanning laser acoustic microscope (SLAM) images were taken to monitor damage on the samples. Our SLAM results indicate that there were defects already existing throughout the sample before fatigue, and the resultant damage pattern from fatigue could be related to the initial defect distribution in the sample. Finally, the fatigued samples were fractured and the residual strength data could not be explained by the cyclic fatigue alone. Rather, the damage patterns evident in the SLAM images were needed to explain the scatter in the data. The results show that SLAM is useful in nondestructively monitoring damage and estimating residual strength of fatigued ceramic composites.

  16. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability.

    PubMed

    Brown, Christopher U; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  17. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability

    PubMed Central

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2017-01-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure. PMID:28243032

  18. Femtosecond ablation of ultrahard materials

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Sentis, M.; Marine, W.

    Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5-8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1-0.2 μm per pulse for all the materials investigated.

  19. Performance of a three-dimensional-printed microscanner in a laser scanning microscopy application

    NASA Astrophysics Data System (ADS)

    Oyman, Hilmi Artun; Gokdel, Yigit Daghan; Ferhanoglu, Onur; Yalcinkaya, Arda Deniz

    2018-04-01

    A magnetically actuated microscanner is used in a laser scanning microscopy application. Stress distribution along the circular-profiled flexure is compared with a rectangular counterpart in finite-element environment. Magnetic actuation mechanism of the scanning unit is explained in detail. Moreover, reliability of the scanner is tested for 3×106 cycle. The scanning device is designed to meet a confocal microscopy application providing 100 μm×100 μm field of view and <3-μm lateral resolution. The resonance frequencies of the device were analytically modeled, where we obtained 130- and 268-Hz resonance values for the out-of-plane and torsion modes, respectively. The scanning device provided an optical scan angle about 2.5 deg for 170-mA drive current, enabling the desired field of view for our custom built confocal microscope setup. Finally, imaging experiments were conducted on a resolution target, showcasing the desired scan area and resolution.

  20. Interlaboratory Study for Nickel Alloy 625 Made by Laser Powder Bed Fusion to Quantify Mechanical Property Variability

    NASA Astrophysics Data System (ADS)

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser powder bed fusion-additive manufacturing machines. The tensile specimens were heat treated and tensile tests were conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to four times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  1. Thermally-induced voltage alteration for analysis of microelectromechanical devices

    DOEpatents

    Walraven, Jeremy A.; Cole, Jr., Edward I.

    2002-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.

  2. Any Way You Slice It—A Comparison of Confocal Microscopy Techniques

    PubMed Central

    Jonkman, James

    2015-01-01

    The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research. PMID:25802490

  3. Dynamic high-resolution patterning for biomedical, materials, and semiconductor research

    NASA Astrophysics Data System (ADS)

    Garner, Harold R.; Joshi, Amruta; Mitnala, Sandhya N.; Huebschman, Michael L.; Shandy, Surya; Wallek, Brandi; Wong, Season

    2009-02-01

    By combining unique light sources, a Texas Instruments DLP system and a microscope, a submicron dynamic patterning system has been created. This system has a resolution of 0.5 microns, and can illuminate with rapidly changing patterns of visible, UV or pulsed laser light. This system has been used to create digital masks for the production of micron scale electronic test circuits and has been used in biological applications. Specifically we have directed light on a sub-organelle scale to cells to control their morphology and motility with applications to tissue engineering, cell biology, drug discovery and neurology.

  4. Electrochemical wall shear rate microscopy of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Reuter, Fabian; Mettin, Robert

    2018-06-01

    An electrochemical high-speed wall shear raster microscope is presented. It involves chronoamperometric measurements on a microelectrode that is flush-mounted in a submerged test specimen. Wall shear rates are derived from the measured microelectrode signal by numerically solving a convection-diffusion equation with an optimization approach. This way, the unsteady wall shear rates from the collapse of a laser pulse seeded cavitation bubble close to a substrate are measured. By planar scanning, they are resolved in high spatial resolution. The wall shear rates are related to the bubble dynamics via synchronized high-speed imaging of the bubble shape.

  5. Laser and biological methods of biomonitoring of surrounding waters

    NASA Astrophysics Data System (ADS)

    Posudin, Yuri I.

    1994-02-01

    Three main methods are proposed for the biomonitoring of chemicals in water medium: laser spectrofluorometry, which is based on the excitation and recording of the spectra of fluorescence; laser scattering, which is connected with measurement of the Doppler shifts of the scattered light from the motile cells; videomicrography, which provides the analysis of parameters of photomovement of motile cells via microscope and video system. Such chemicals as surface-active substances, heavy metals and pesticides were determined in water medium due to these methods.

  6. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappettini, A.; Zambelli, N.; Benassi, G.

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  7. LANTCET: laser nanotechnology for screening and treating tumors ex vivo and in vivo

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri O.; Lukianova-Hleb, Ekaterina Y.; Zhdanok, Sergei A.; Hafner, Jason H.; Rostro, Betty C.; Scully, Peter; Konopleva, Marina; Andreeff, Michael; Li, Chun; Hanna, Ehab Y.; Myers, Jeffrey N.; Oraevsky, Alexander A.

    2007-06-01

    LANTCET (laser-activated nano-thermolysis as cell elimination technology) was developed for selective detection and destruction of individual tumor cells through generation of photothermal bubbles around clusters of light absorbing gold nanoparticles (nanorods and nanoshells) that are selectively formed in target tumor cells. We have applied bare nanoparticles and their conjugates with cell-specific vectors such as monoclonal antibodies CD33 (specific for Acute Myeloid Leukemia) and C225 (specific for carcinoma cells that express epidermal growth factor -EGF). Clusters were formed by using vector-receptor interactions with further clusterization of nanoparticles due to endocytosis. Formation of clusters was verified directly with optical resonance scattering microscopy and microspectroscopy. LANTCET method was tested in vitro for living cell samples with: (1) model myeloid K562 cells (CD33 positive), (2) primary human bone marrow CD33-positive blast cells from patients with the diagnosis of acute myeloid leukemia, (3) monolayers of living EGF-positive carcinoma cells (Hep-2C), (4) human lymphocytes and red blood cells as normal cells. The LANTCET method was also tested in vivo using rats with experimental polymorphic sarcoma. Photothermal bubbles were generated and detected in vitro with a photothermal microscope equipped with a tunable Ti-Sa pulsed laser. We have found that cluster formation caused an almost 100-fold decrease in the bubble generation threshold of laser pulse fluence in tumor cells compared to the bubble generation threshold for normal cells. The animal tumor that was treated with a single laser pulse showed a necrotic area of diameter close to the pump laser beam diameter and a depth of 1-2 mm. Cell level selectivity of tumor damage with single laser pulse was demonstrated. Combining lightscattering imaging with bubble imaging, we introduced a new image-guided mode of the LANTCET operation for screening and treatment of tumors ex vivo and in vivo.

  8. Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium

    NASA Astrophysics Data System (ADS)

    Li, Peng

    2014-12-01

    This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.

  9. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography.

    PubMed

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2008-06-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance.

  10. Investigation of laser irradiation of WC-Co cemented carbides inside a scanning electron microscope (LASEM)

    NASA Astrophysics Data System (ADS)

    Schultrich, B.; Wetzig, K.

    1987-09-01

    A combination of SEM and laser enables direct observation of structural modifications by a high-energy input. With this new device, melting phenomena and fracture processes in a WC-6 percent Co hard metal were investigated. The first laser pulse leads to melting of a thin surface layer with the formation of blisters and craters. Cracking is induced by the relaxation of compressive surface stresses during the high-temperature stage and the appearance of tensile stresses during cooling. Besides crack formation and extension, complete welding of crack surfaces was observed after repeated laser irradiation.

  11. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography

    PubMed Central

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2014-01-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051

  12. Miniaturized Laser-Induced Breakdown Spectroscopy for the in-situ analysis of the Martian surface: Calibration and quantification

    NASA Astrophysics Data System (ADS)

    Rauschenbach, I.; Jessberger, E. K.; Pavlov, S. G.; Hübers, H.-W.

    2010-08-01

    We report on our ongoing studies to develop Laser-Induced Breakdown Spectroscopy (LIBS) for planetary surface missions to Mars and other planets and moons, like Jupiter's moon Europa or the Earth's moon. Since instruments for space missions are severely mass restricted, we are developing a light-weight miniaturized close-up LIBS instrument to be installed on a lander or rover for the in-situ geochemical analysis of planetary surface rocks and coarse fines. The total mass of the instrument will be ≈ 1 kg in flight configuration. Here we report on a systematic performance study of a LIBS instrument equipped with a prototype laser of 216 g total mass and an energy of 1.8 mJ. The LIBS measurements with the prototype laser and the comparative measurements with a regular 40 mJ laboratory laser were both performed under Martian atmospheric conditions. We calibrated 14 major and minor elements by analyzing 18 natural samples of certified composition. The calibration curves define the limits of detection that are > 5 ppm for the lab laser and > 400 ppm for the prototype laser, reflecting the different analyzed sample masses of ≈ 20 µg and ≈ 2 µg, respectively. To test the accuracy we compared the LIBS compositions, determined with both lasers, of Mars analogue rocks with certified or independently measured compositions and found agreements typically within 10-20%. In addition we verified that dust coverage is effectively removed from rock surfaces by the laser blast. Our study clearly demonstrates that a close-up LIBS instrument (spot size ≈ 50 µm) will decisively enhance the scientific output of planetary lander missions by providing a very large number of microscopic elemental analyses.

  13. High power laser welding of thick steel plates in a horizontal butt joint configuration

    NASA Astrophysics Data System (ADS)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  14. Comparison of Tensile Damage Evolution in Ti6A14V Joints Between Laser Beam Welding and Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2014-12-01

    The present paper studied the evolution of tensile damage in joints welded using laser beam welding (LBW) and gas tungsten arc welding (TIG) under a uniaxial tensile load. The damage evolution in the LBW joints and TIG-welded joints was studied by using digital image correlation (DIC) technology and monitoring changes in Young's modulus during tensile testing. To study the mechanism of void nucleation and growth in the LBW joints and TIG-welded joints, test specimens with various amounts of plastic deformation were analyzed using a scanning electron microscope (SEM). Compared with TIG-welded joints, LBW-welded joints have a finer microstructure and higher microhardness in the fusion zone. The SEM analysis and DIC test results indicated that the critical strain of void nucleation was greater in the LBW-welded joints than in the TIG-welded joints, while the growth rate of voids was lower in the LBW-welded joints than in the TIG-welded joints. Thus, the damage ratio in the LBW joints was lower than that in the TIG-welded joints during tensile testing. This can be due to the coarser martensitic α' and the application of TC-1 welding rods in the TIG-welded joint.

  15. Effects of laser-weld joint opening size on fatigue strength of Ti-6Al-4V structures with several diameters.

    PubMed

    Nuñez-Pantoja, J M C; Vaz, L G; Nóbilo, M A A; Henriques, G E P; Mesquita, M F

    2011-03-01

    This study was conducted to evaluate the fatigue strength of Ti-6Al-4V laser-welded joints with several diameters and joint openings. Sixty dumbbell rods were machined in Ti-6Al-4V alloy with central diameters of 1·5, 2·0 and 3·5 mm. The specimens were sectioned and then welded using two joint openings (0·0 and 0·6 mm). The combination of variables created six groups, which when added to the intact groups made a total of nine groups (n = 10). Laser welding was executed as follows: 360 V per 8 ms (1·5 and 2·0 mm) and 380 V per 9 ms (3·5 mm) with focus and frequency regulated to zero. The joints were finished, polished and submitted to radiographic examination to be analysed visually for the presence of porosity. The specimens were then subjected to a mechanical cyclic test, and the number of cycles until failure was recorded. The fracture surface was examined with a scanning electron microscope (SEM). The Kruskal-Wallis test and Dunn test (α = 0·05) indicated that the number of cycles required for fracture was lower for all specimens with joint openings of 0·6 mm, and for 3·5-mm-diameter specimens with joint openings of 0·0 mm. The Spearman correlation coefficient (α = 0·05) indicated that there was a negative correlation between the number of cycles and the presence of porosity. So, laser welding of Ti-6Al-4V structures with a thin diameter provides the best conditions for the juxtaposition of parts. Radiographic examination allows for the detection of internal voids in titanium joints. © 2010 Blackwell Publishing Ltd.

  16. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  17. High-Efficiency and High-Power Mid-Wave Infrared Cascade Lasers

    DTIC Science & Technology

    2012-10-01

    internal quantum efficiency () and factor (2) is usually called the optical extraction efficiency (). The optical extraction efficiency ... quantum efficiency involves more fundamental parameters corresponding to the microscopic processes of the device operation, nevertheless, it can be...deriving parameters such as the internal quantum efficiency of a QC laser, the entire injector miniband can be treated as a single virtual state

  18. 10.6 Micrometer Absorption in Molybdenum Mirrors

    DTIC Science & Technology

    1974-07-01

    laser damage studies. Interferometric versus stylus instrument measurement of surface rough- ness is discussed. The polishing and coating procedures are...preliminary CW laser damage studies. Interferometric versus stylus instrument measurement of surface roughness is discussed. The polishing and coating...contrast ( Nomarski ) microscopic invescigations were made of th. surface. Figue 3 presents Nomarski photographs of mirrors M-107 through M-109. M-108

  19. Use of a white light supercontinuum laser for confocal interference-reflection microscopy

    PubMed Central

    Chiu, L-D; Su, L; Reichelt, S; Amos, WB

    2012-01-01

    Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542

  20. Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, L.; Zou, G.; Chen, N.; Wu, A.; Bai, H.; Zhou, Y.

    2015-01-01

    In this study, the femtosecond laser-induced crystallization of CuNiSnP amorphous ribbons was investigated by utilizing an amplified Ti:sapphire laser system. X-ray diffraction and scanning electronic microscope were applied to examine the phase and morphology changes of the amorphous ribbons. Micromachining without crystallization, surface patterning, and selective crystallization were successfully achieved by changing laser parameters. Obvious crystallization occurred under the condition that the laser fluence was smaller than the ablation threshold, indicating that the structural evolution of the material depends strongly on the laser parameters. Back cooling method was used to inhibit heat accumulation; a reversible transformation between the disordered amorphous and crystalline phases can be achieved by using this method.

  1. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  2. Comparative efficacy of Er,Cr:YSGG and Er:YAG lasers for etching of composite for orthodontic bracket bonding.

    PubMed

    Mirhashemi, Amir Hossein; Chiniforush, Nasim; Sharifi, Nastaran; Hosseini, Amir Mehdi

    2018-05-01

    Several techniques have been proposed to obtain a durable bond, and the efficacy of these techniques is assessed by measuring parameters such as bond strength. Laser has provided a bond strength as high as that of acid etching in vitro and has simpler use with shorter clinical time compared to acid etching. This study aimed to compare the efficacy of Er:YAG and Er,Cr:YSGG lasers for etching and bonding of composite to orthodontic brackets. No previous study has evaluated the effect of these particular types of laser. A total of 70 composite blocks were randomly divided into five groups (n = 14): group 1, etching with phosphoric acid for 20 s; group 2, Er:YAG laser irradiation with 2 W power for 10 s; group 3, Er:YAG laser with 3 W power for 10 s; group 4, Er,Cr:YSGG laser with 2 W power for 10 s; group 5, Er,Cr:YSGG laser with 3 W power for 10 s. Metal brackets were then bonded to composites, and after 5000 thermal cycles, they were subjected to shear bond strength test in a universal testing machine after 24 h of water storage. One sample of each group was evaluated under a scanning electron microscope (SEM) to assess changes in composite surface after etching. The adhesive remnant index (ARI) was calculated under a stereomicroscope. Data were statistically analyzed. The mean and standard deviation of shear bond strength were 18.65 ± 3.36, 19.68 ± 5.34, 21.31 ± 4.03, 17.38 ± 6.94, and 16.45 ± 4.26 MPa in groups 1-5, respectively. The ARI scores showed that the bond failure mode in all groups was mainly mixed. The groups were not significantly different in terms of shear bond strength. Er:YAG and Er,Cr:YSGG lasers with the mentioned parameters yield optimal shear bond strength and can be used as an alternative to acid etching for bracket bond to composite.

  3. Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Brenner, Carsten; Gerhardt, Nils C.; Hofmann, Martin

    2017-02-01

    Microscopy imaging with a single technology is usually restricted to a single contrast mechanism. Multimodal imaging is a promising technique to improve the structural information that could be obtained about a device under test (DUT). Due to the different contrast mechanisms of laser scanning microscopy (LSM), confocal laser scanning microscopy (CLSM) and optical beam induced current microscopy (OBICM), a combination could improve the detection of structures in integrated circuits (ICs) and helps to reveal their layout. While OBIC imaging is sensitive to the changes between differently doped areas and to semiconductor-metal transitions, CLSM imaging is mostly sensitive to changes in absorption and reflection. In this work we present the implementation of OBIC imaging into a CLSM. We show first results using industry standard Atmel microcontrollers (MCUs) with a feature size of about 250nm as DUTs. Analyzing these types of microcontrollers helps to improve in the field of side-channel attacks to find hardware Trojans, possible spots for laser fault attacks and for reverse engineering. For the experimental results the DUT is placed on a custom circuit board that allows us to measure the current while imaging it in our in-house built stage scanning microscope using a near infrared (NIR) laser diode as light source. The DUT is thinned and polished, allowing backside imaging through the Si-substrate. We demonstrate the possibilities using this optical setup by evaluating OBIC, LSM and CLSM images above and below the threshold of the laser source.

  4. Modification of tribology and high-temperature behavior of Ti 48Al 2Cr 2Nb intermetallic alloy by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Bo; Wang, Hua-Ming

    2006-06-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm × 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7C 3, TiC and both continuous and dense Al 2O 3, Cr 2O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials.

  5. ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant.

    PubMed

    El-Kereti, Mohammed A; El-feky, Souad A; Khater, Mohammed S; Osman, Yasser A; El-sherbini, El-sayed A

    2013-12-01

    This study was conducted to evaluate the effectiveness of zinc nanofertilizer strategy on sweet basil yield, through alone application or combined with pre-sowing laser irradiation. Furthermore, evaluate the growth of plant and the level of active essential oil constituents. Zinc oxide (ZnO) nanoparticles (NPs) were synthesized, and transmission electron microscope revealed particle size of approximately 10.5-15.5 nm. ZnO NPs were applied to sweet basil plants by foliar spray at varying concentrations (10, 20 and 30 mg/L); He Ne laser of power 3mW was used for red light irradiation of sweet basil seeds for 2 min. exposure time. Total chlorophyll, total carbohydrate, essential oil levels, zinc content, plant height, branches/plant and fresh weight were measured. In general, the combined foliar spray application of ZnO nanofertilizer with pre-sowing He Ne laser irradiation showed more effectiveness than ZnO nanofertilizer alone and 20mg/L concentration gave the highest results of all measured traits. Statistical analysis (t-test) showed significant differences among the effects of the various concentrations of zinc oxide NPs on these attributes. The results showed an inverse relationship between the total carbohydrate content and the percentage of essential oil in the leaves. Together these findings support the usefulness and effectiveness of zinc oxide nanofertilizer and laser irradiation treatment to enhance the growth and yield of sweet basil plants. The article presents some promising patents on ZnO nanofertilizer and He Ne laser irradiation.

  6. Passive fit of frameworks in titanium and palladium-silver alloy submitted the laser welding.

    PubMed

    de Sousa, S A; de Arruda Nobilo, M A; Henriques, G E P; Mesquita, M F

    2008-02-01

    This study evaluated the precision of fit of implant frameworks cast in titanium (cp Ti) and palladium-silver alloy (Pd-Ag), made by the one-piece cast and laser welding techniques. From a metal matrix with five implants, 20 master casts were obtained, to which replicas of implants were incorporated. On these masters 10 frameworks were made for each type of material (cp Ti and Pd-Ag alloy). Half of these were made by the one-piece cast technique and the other half by the laser welding technique. The implant/prosthesis interface was analysed and measured in the vestibular and lingual regions of the central and distal implants with the help of a measuring microscope. The results indicated that in the central cylinders, the Tukey test (P<0.0005) showed a significant difference in the passive fit between the laser-welded frameworks (34.73 microm) and those one-piece cast frameworks (151.39 microm), and as regards materials, the palladium-silver alloy (66.30 microm) showed better results than the titanium (119.83 microm). In the distal cylinders there was no significant difference between the frameworks cast in titanium and palladium-silver by the one-piece technique. However, after laser welding, there was a significant difference for the frameworks cast in titanium (31.37 microm) and palladium-silver (106.59 microm).

  7. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings.

    PubMed

    Kim, Myung-Joo; Choi, Yun-Jung; Kim, Seong-Kyun; Heo, Seong-Joo; Koak, Jai-Young

    2017-01-23

    Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture) milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance), a Scheffe's test, and Pearson's correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps ( p < 0.05). The CAD/CAM milled group revealed a significantly high axial internal gap. There are moderate correlations between the vertical marginal discrepancy and the internal gap variables ( r = 0.654), except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit.

  8. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings

    PubMed Central

    Kim, Myung-Joo; Choi, Yun-Jung; Kim, Seong-Kyun; Heo, Seong-Joo; Koak, Jai-Young

    2017-01-01

    Laser sintered technology has been introduced for clinical use and can be utilized more widely, accompanied by the digitalization of dentistry and the development of direct oral scanning devices. This study was performed with the aim of comparing the marginal accuracy and internal fit of Co-Cr alloy copings fabricated by casting, CAD/CAM (Computer-aided design/Computer-assisted manufacture) milled, and 3-D laser sintered techniques. A total of 36 Co-Cr alloy crown-copings were fabricated from an implant abutment. The marginal and internal fit were evaluated by measuring the weight of the silicone material, the vertical marginal discrepancy using a microscope, and the internal gap in the sectioned specimens. The data were statistically analyzed by One-way ANOVA (analysis of variance), a Scheffe’s test, and Pearson’s correlation at the significance level of p = 0.05, using statistics software. The silicone weight was significantly low in the casting group. The 3-D laser sintered group showed the highest vertical discrepancy, and marginal-, occlusal-, and average- internal gaps (p < 0.05). The CAD/CAM milled group revealed a significantly high axial internal gap. There are moderate correlations between the vertical marginal discrepancy and the internal gap variables (r = 0.654), except for the silicone weight. In this study, the 3-D laser sintered group achieved clinically acceptable marginal accuracy and internal fit. PMID:28772451

  9. Using laser technological unit ALTI "Karavella" for precision components of IEP production

    NASA Astrophysics Data System (ADS)

    Labin, N. A.; Chursin, A. D.; Paramonov, V. S.; Klimenko, V. I.; Paramonova, G. M.; Kolokolov, I. S.; Vinogradov, K. Y.; Betina, L. L.; Bulychev, N. A.; Dyakov, Yu. A.; Zakharyan, R. A.; Kazaryan, M. A.; Koshelev, K. K.; Kosheleva, O. K.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.; Chen, C.

    2015-12-01

    The paper revealed the using of industrial production equipment ALTI "Karavella-1", "Karavella-1M", "Karavella-2" and "Karavella-2M" precision components of IEP production [1-4]. The basis for the ALTI using in the IEP have become the positive results of research and development of technologies of foil (0.01-0.2 mm) and thin sheets (0.3-1 mm) materials micromachining by pulsed radiation CVL [5, 6]. To assess the micromachining quality and precision the measuring optical microscope (UHL VMM200), projection microscope (Mitutoyo PV5100) and Carl Zeiss microscope were used.

  10. The impact of antimicrobial photodynamic therapy on Streptococcus mutans in an artificial biofilm model

    NASA Astrophysics Data System (ADS)

    Schneider, Martin; Kirfel, Gregor; Krause, Felix; Berthold, Michael; Brede, Olivier; Frentzen, Matthias; Braun, Andreas

    2010-02-01

    The aim of the study was to assess the impact of laser induced antimicrobial photodynamic therapy on the viability of Streptococcus mutans cells employing an aritificial biofilm model. Employing sterile chambered coverglasses, a salivary pellicle layer formation was induced in 19 chambers. Streptococcus mutans cells were inoculated in a sterile culture medium. Using a live/dead bacterial viability kit, bacteria with intact cell membranes stain fluorescent green. Test chambers containing each the pellicle layer and 0.5 ml of the bacterial culture were analyzed using a confocal laser scan microscope within a layer of 10 μm at intervals of 1 μm from the pellicle layer. A photosensitizer was added to the test chambers and irradiated with a diode laser (wavelength: 660 nm, output power: 100 mW, Helbo) for 2 min each. Comparing the baseline fluorescence (median: 13.8 [U], min: 3.7, max: 26.2) with the values after adding the photosensitizer (median: 3.7, min: 1.1, max: 9), a dilution caused decrease of fluorescence could be observed (p<0.05). After irradiation of the samples with a diode laser, an additional 48 percent decrease of fluorescence became evident (median: 2.2, min: 0.4, max: 3.4) (p<0.05). Comparing the samples with added photosensitizer but without laser irradiation at different times, no decrease of fluorescence could be measured (p>0.05). The present study indicates that antimicrobial photodynamic therapy can reduce living bacteria within a layer of 10 μm in an artificial biofilm model. Further studies have to evaluate the maximum biofilm thickness that still allows a toxic effect on microorganisms.

  11. The influence of a novel in-office tooth whitening procedure using an Er,Cr:YSGG laser on enamel surface morphology.

    PubMed

    Dionysopoulos, Dimitrios; Strakas, Dimitrios; Koliniotou-Koumpia, Eugenia

    2015-08-01

    The purpose of this in vitro study was to evaluate the influence of a novel in-office tooth whitening procedure using Er,Cr:YSGG laser radiation on bovine enamel. Forty-eight enamel specimens were prepared from bovine canines and divided into four groups: Group 1 specimens (control) received no whitening treatment; Group 2 received whitening treatment with an at-home whitening agent (22% carbamide peroxide) for 7 days; Group 3 received whitening treatment with a novel in-office whitening agent (35% H(2)O(2)); Group 4 received the same in-office whitening therapy with Group 3 using Er,Cr:YSGG laser in order to accelerate the whitening procedure. The specimens were stored for 10 days after the whitening treatment in artificial saliva. Vickers hardness was determined using a microhardness tester and surface roughness was evaluated using a VSI microscope. Three specimens of each experimental group were examined under SEM and the mineral composition of the specimens was evaluated using EDS. Data were statistically analyzed using one-way ANOVA, Tukey's post-hoc test, Wilcoxon signed rank and Kruskal-Wallis tests (a = 0.05). The surface microhardness of the enamel was reduced after the in-office whitening treatments (P< 0.05), but not influenced after the at-home whitening treatment (P> 0.05). Moreover, the surface roughness was not significantly changed after tooth whitening. EDS analysis did not show alterations in the enamel mineral composition, while SEM observations indicated changes in the surface morphology, especially after in-office tooth whitening (P< 0.05). The laser-assisted whitening treatment with Er,Cr:YSGG laser did not affect the alterations in enamel surface compared with the conventional in-office whitening technique. © 2015 Wiley Periodicals, Inc.

  12. Laser solder welding of articular cartilage: tensile strength and chondrocyte viability.

    PubMed

    Züger, B J; Ott, B; Mainil-Varlet, P; Schaffner, T; Clémence, J F; Weber, H P; Frenz, M

    2001-01-01

    The surgical treatment of full-thickness cartilage defects in the knee joint remains a therapeutic challenge. Recently, new techniques for articular cartilage transplantation, such as mosaicplasty, have become available for cartilage repair. The long-term success of these techniques, however, depends not only on the chondrocyte viability but also on a lateral integration of the implant. The goal of this study was to evaluate the feasibility of cartilage welding by using albumin solder that was dye-enhanced to allow coagulation with 808-nm laser diode irradiation. Conventional histology of light microscopy was compared with a viability staining to precisely determine the extent of thermal damage after laser welding. Indocyanine green (ICG) enhanced albumin solder (25% albumin, 0.5% HA, 0.1% ICG) was used for articular cartilage welding. For coagulation, the solder was irradiated through the cartilage implant by 808-nm laser light and the tensile strength of the weld was measured. Viability staining revealed a thermal damage of typically 500 m in depth at an irradiance of approximately 10 W/cm(2) for 8 seconds, whereas conventional histologies showed only half of the extent found by the viability test. Heat-bath investigations revealed a threshold temperature of minimum 54 degrees C for thermal damage of chondrocytes. Efficient cartilage bonding was obtained by using bovine albumin solder as adhesive. Maximum tensile strength of more than 10 N/cm(2) was achieved. Viability tests revealed that the thermal damage is much greater (up to twice) than expected after light microscopic characterization. This study shows the feasibility to strongly laser weld cartilage on cartilage by use of a dye-enhanced albumin solder. Possibilities to reduce the range of damage are suggested. Copyright 2001 Wiley-Liss, Inc.

  13. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection.

  14. Microscopic Engine Powered by Critical Demixing

    NASA Astrophysics Data System (ADS)

    Schmidt, Falko; Magazzù, Alessandro; Callegari, Agnese; Biancofiore, Luca; Cichos, Frank; Volpe, Giovanni

    2018-02-01

    We experimentally demonstrate a microscopic engine powered by the local reversible demixing of a critical mixture. We show that, when an absorbing microsphere is optically trapped by a focused laser beam in a subcritical mixture, it is set into rotation around the optical axis of the beam because of the emergence of diffusiophoretic propulsion. This behavior can be controlled by adjusting the optical power, the temperature, and the criticality of the mixture.

  15. Optical Interferometric Micrometrology

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.; Lauer, James R.

    1989-01-01

    Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.

  16. Biological applications of an LCoS-based programmable array microscope (PAM)

    NASA Astrophysics Data System (ADS)

    Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.

    2007-02-01

    We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.

  17. Passport examination by a confocal-type laser profile microscope.

    PubMed

    Sugawara, Shigeru

    2008-06-10

    The author proposes a nondestructive and highly precise method of measuring the thickness of a film pasted on a passport using a confocal-type laser profile microscope. The effectiveness of this method in passport examination is demonstrated. A confocal-type laser profile microscope is used to create profiles of the film surface and film-paper interface; these profiles are used to calculate the film thickness by employing an algorithm developed by the author. The film thicknesses of the passport samples--35 genuine and 80 counterfeit Japanese passports--are measured nondestructively. The intra-sample standard deviation of the film thicknesses of the genuine and counterfeit Japanese passports was of the order of 1 microm The intersample standard deviations of the film thicknesses of passports forged using the same tools and techniques are expected to be of the order of 1 microm. The thickness values of the films on the machine-readable genuine passports ranged between 31.95 microm and 36.95 microm. The likelihood ratio of this method in the authentication of machine-readable Japanese genuine passports is 11.7. Therefore, this method is effective for the authentification of genuine passports. Since the distribution of the film thickness of all forged passports was considerably larger than the accuracy of this method, this method is considered effective also for revealing the relation among the forged passports and acquiring proof of the crime.

  18. Assessing and benchmarking multiphoton microscopes for biologists

    PubMed Central

    Corbin, Kaitlin; Pinkard, Henry; Peck, Sebastian; Beemiller, Peter; Krummel, Matthew F.

    2017-01-01

    Multiphoton microscopy has become staple tool for tracking cells within tissues and organs due to superior depth of penetration, low excitation volumes, and reduced phototoxicity. Many factors, ranging from laser pulse width to relay optics to detectors and electronics, contribute to the overall ability of these microscopes to excite and detect fluorescence deep within tissues. However, we have found that there are few standard ways already described in the literature to distinguish between microscopes or to benchmark existing microscopes to measure the overall quality and efficiency of these instruments. Here, we discuss some simple parameters and methods that can either be used within a multiphoton facility or by a prospective purchaser to benchmark performance. This can both assist in identifying decay in microscope performance and in choosing features of a scope that are suited to experimental needs. PMID:24974026

  19. Absorption of laser plasma in competition with oscillation currents for a terahertz spectrum.

    PubMed

    Li, Xiaolu; Bai, Ya; Li, Na; Liu, Peng

    2018-01-01

    We generate terahertz radiation in a supersonic jet of nitrogen molecules pumped by intense two-color laser pulses. The tuning of terahertz spectra from blue shift to red shift is observed by increasing laser power and stagnation pressure, and the red shift range is enlarged with the increased stagnation pressure. Our simulation reveals that the plasma absorption of the oscillation currents and expanded plasma column owing to increased laser intensity and gas number density are crucial factors in the recurrence of the red shift of terahertz spectra. The findings disclose the microscopic mechanism of terahertz radiation and present a controlling knob for the manipulation of a broadband terahertz spectrum from laser plasma.

  20. Nanosecond laser coloration on stainless steel surface.

    PubMed

    Lu, Yan; Shi, Xinying; Huang, Zhongjia; Li, Taohai; Zhang, Meng; Czajkowski, Jakub; Fabritius, Tapio; Huttula, Marko; Cao, Wei

    2017-08-02

    In this work, we present laser coloration on 304 stainless steel using nanosecond laser. Surface modifications are tuned by adjusting laser parameters of scanning speed, repetition rate, and pulse width. A comprehensive study of the physical mechanism leading to the appearance is presented. Microscopic patterns are measured and employed as input to simulate light-matter interferences, while chemical states and crystal structures of composites to figure out intrinsic colors. Quantitative analysis clarifies the final colors and RGB values are the combinations of structural colors and intrinsic colors from the oxidized pigments, with the latter dominating. Therefore, the engineering and scientific insights of nanosecond laser coloration highlight large-scale utilization of the present route for colorful and resistant steels.

  1. Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates.

    PubMed

    Varkentina, Nadezda; Cardinal, Thierry; Moroté, Fabien; Mounaix, Patrick; André, Pascal; Deshayes, Yannick; Canioni, Lionel

    2013-12-02

    The paper presents our results on laser micro- and nanostructuring of sodium aluminosilicate glass for the permanent storage purposes and photonics applications. Surface structuring is realized by fs laser irradiation followed by the subsequent etching in a potassium hydroxide (10M@80 °C) for 1 to 10 minutes. As the energy deposited is lower than the damage and/or ablation threshold, the chemical etching permits to produce small craters in the laser modified region. The laser parameters dependent interaction regimes are revealed by microscopic analysis (SEM and AFM). The influence of etching time on craters formation is investigated under different incident energies, number of pulses and polarization states.

  2. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers.

    PubMed

    Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce

    2018-03-19

    To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.

  3. A study of the mechanism of laser welding defects in low thermal expansion superalloy GH909

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Fei; Wang, Chunming, E-mail: yanxiangfei225@163.com; Wang, Yajun

    2013-04-15

    In this paper, we describe experimental laser welding of low-thermal-expansion superalloy GH909. The main welding defects of GH909 by laser in the weld are liquation cracks and porosities, including hydrogen and carbon monoxide porosity. The forming mechanism of laser welding defects was investigated. This investigation was conducted using an optical microscope, scanning electron microscope, energy diffraction spectrum, X-ray diffractometer and other methodologies. The results demonstrated that porosities appearing in the central weld were related to incomplete removal of oxide film on the surface of the welding samples. The porosities produced by these bubbles were formed as a result of residualmore » hydrogen or oxygenium in the weld. These elements failed to escape from the weld since laser welding has both a rapid welding speed and cooling rate. The emerging crack in the heat affected zone is a liquation crack and extends along the grain boundary as a result of composition segregation. Laves–Ni{sub 2}Ti phase with low melting point is a harmful phase, and the stress causes grain boundaries to liquefy, migrate and even crack. Removing the oxides on the surface of the samples before welding and carefully controlling technological parameters can reduce welding defects and improve formation of the GH909 alloy weld. - Highlights: ► It is a new process for the forming of GH909 alloy via laser welding. ► The forming mechanism of laser welding defects in GH909 has been studied. ► It may be a means to improve the efficiency of aircraft engine production.« less

  4. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.

    PubMed

    Traini, T; Mangano, C; Sammons, R L; Mangano, F; Macchi, A; Piattelli, A

    2008-11-01

    This work focuses on a titanium alloy implants incorporating a gradient of porosity, from the inner core to the outer surface, obtained by laser sintering of metal powder. Surface appearance, microstructure, composition, mechanical properties and fractography were evaluated. All the specimens were prepared by a selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 1-10 microm. The morphological and chemical analyses were performed by SEM and energy dispersive X-ray spectroscopy. The flexure strength was determined by a three-point bend test using a universal testing machine. The surface roughness was investigated using a confocal scanning laser microscope. The surface roughness variation was statistically evaluated by use of a Chi square test. A p value of <0.05 was considered statistically significant. The original surface microstructure consisted of roughly spherical particles, diameter range 5-50 microm. After exposure to hydrofluoric acid some of these were removed and the microsphere diameter then ranged from 5.1 microm to 26.8 microm. Following an organic acid treatment, particles were replaced by grooves 14.6-152.5 microm in width and 21.4-102.4 microm depth. The metal core consisted of columnar beta grains with alpha and beta laths within the grains. The alloy was composed of 90.08% Ti, 5.67% Al and 4.25% V. The Young's modulus of the inner core material was 104+/-7.7 GPa; while that of the outer porous material was 77+/-3.5 GPa. The fracture face showed a dimpled appearance typical of ductile fracture. In conclusion, laser metal sintering proved to be an efficient means of construction of dental implants with a functionally graded material which is better adapted to the elastic properties of the bone. Such implants should minimize stress shielding effects and improve long-term performance.

  5. Endoluminal laser delivery mode and wavelength effects on varicose veins in an ex vivo model.

    PubMed

    Massaki, Ane B M N; Kiripolsky, Monika G; Detwiler, Susan P; Goldman, Mitchel P

    2013-02-01

    Endovenous laser ablation (EVLA) has been shown to be effective for the elimination of saphenous veins and associated reflux. Mechanism is known to be heat related, but precise way in which heat causes vein ablation is not completely known. This study aimed to determine the effects of various endovenous laser wavelengths and delivery modes on ex vivo human vein both macroscopically and microscopically. We also evaluated whether protected-tip fibers, consisting of prototype silica fibers with a metal tube over the distal end, reduced vein wall perforations compared with non-protected-tip fibers. An ex vivo EVLA model with human veins harvested during ambulatory phlebectomy procedures was used. Six laser fiber combinations were tested: 810 nm continuous wave (CW) diode laser with a flat tip fiber, 810 CW diode laser with a protected tip fiber, 1,320 nm pulsed Nd:YAG laser, 1,310 nm CW diode laser, 1,470 nm CW diode laser, and 2,100 nm pulsed Ho:YAG laser. Perforation or full thickness necrosis of a portion of the vein wall was observed in 5/11 (45%), 0/11 (0%), 3/22 (14%), 7/11 (64%), 4/6 (67%), and 5/10 (50%) of cross-sections of veins treated with the 810 nm CW diode laser with a flat tip fiber, the 810 CW diode laser with a protected tip fiber, the 1,320 nm pulsed Nd:YAG laser, the 1,310 nm CW diode laser, the 1,470 nm CW diode laser, and the 2,100 nm pulsed Ho:YAG laser, respectively. Our results have shown that the delivery mode, pulsed Nd:YAG versus CW, may be just as important as the wavelength. Therefore, the 1,310 nm CW laser may not be equivalent to the 1,320 nm pulsed laser. In addition, protected 810 nm fibers may be less likely to yield wall perforations than their non-protected counterparts. Copyright © 2012 Wiley Periodicals, Inc.

  6. Modular Scanning Confocal Microscope with Digital Image Processing.

    PubMed

    Ye, Xianjun; McCluskey, Matthew D

    2016-01-01

    In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.

  7. Caries inhibition with a CO2 9.3 μm laser: An in vitro study.

    PubMed

    Rechmann, Peter; Rechmann, Beate M T; Groves, William H; Le, Charles Q; Rapozo-Hilo, Marcia L; Kinsel, Richard; Featherstone, John D B

    2016-07-01

    The caries preventive effects of different laser wavelengths have been studied in the laboratory as well as in pilot clinical trials. The objective of this in vitro study was to evaluate whether irradiation with a new 9.3 μm microsecond short-pulsed CO2 -laser could enhance enamel caries resistance with and without additional fluoride applications. One hundred and one human tooth enamel samples were divided into seven groups. Each group was treated with different laser parameters (CO2 -laser, wavelength 9.3 μm, 43 Hz pulse-repetition rate, pulse duration between 3 µs at 1.5 mJ/pulse to 7 µs at 2.9 mJ/pulse). A laboratory pH-cycling model followed by cross-sectional microhardness testing determined the mean relative mineral loss delta Z (ΔZ) for each group to assess caries inhibition in tooth enamel by the CO2 9.3 µm short-pulsed laser irradiation. The pH-cycling was performed with or without additional fluoride. The non-laser control groups with additional fluoride had a relative mineral loss (ΔZ, vol% × µm) that ranged between 646 ± 215 and 773 ± 223 (mean ± SD). The laser irradiated and fluoride treated samples had a mean ΔZ ranging between 209 ± 133 and 403 ± 245 for an average 55% ± 9% reduction in mineral loss (ANOVA test, P < 0.0001). Increased mean mineral loss (ΔZ between 1166 ± 571 and 1339 ± 347) was found for the non-laser treated controls without additional fluoride. In contrast, the laser treated groups without additional fluoride showed a ΔZ between 470 ± 240 and 669 ± 209 (ANOVA test, P < 0.0001) representing an average 53% ± 11% reduction in mineral loss. Scanning electron microscopical assessment revealed that 3 µs pulses did not markedly change the enamel surface, while 7 µs pulses caused some enamel ablation. The CO2 9.3 µm short-pulsed laser energy renders enamel caries resistant with and without additional fluoride use. The observed enhanced acid resistance occurred with the laser irradiation parameters used without obvious melting of the enamel surface as well as after irradiation with energies causing cutting of the enamel. Lasers Surg. Med. 48:546-554, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. Energy absorption behavior of polyurea coatings under laser-induced dynamic tensile and mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Jajam, Kailash; Lee, Jaejun; Sottos, Nancy

    2015-06-01

    Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.

  9. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques.

    PubMed

    Paddock, Stephen W; Eliceiri, Kevin W

    2014-01-01

    Confocal microscopy is an established light microscopical technique for imaging fluorescently labeled specimens with significant three-dimensional structure. Applications of confocal microscopy in the biomedical sciences include the imaging of the spatial distribution of macromolecules in either fixed or living cells, the automated collection of 3D data, the imaging of multiple labeled specimens and the measurement of physiological events in living cells. The laser scanning confocal microscope continues to be chosen for most routine work although a number of instruments have been developed for more specific applications. Significant improvements have been made to all areas of the confocal approach, not only to the instruments themselves, but also to the protocols of specimen preparation, to the analysis, the display, the reproduction, sharing and management of confocal images using bioinformatics techniques.

  10. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  11. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    PubMed

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Modeling of ultrashort pulse generation in mode-locked VECSELs

    NASA Astrophysics Data System (ADS)

    Kilen, I.; Koch, S. W.; Hader, J.; Moloney, J. V.

    2016-03-01

    We present a study of various models for the mode-locked pulse dynamics in a vertical external-cavity surface emitting laser with a saturable absorber. The semiconductor Bloch equations are used to model microscopically the light-matter interaction and the carrier dynamics. Maxwell's equations describe the pulse propagation. Scattering contributions due to higher order correlation effects are approximated using effective rates that are found from a comparison to solving the microscopic scattering equations on the second Born-Markov level. It is shown that the simulations result in the same mode-locked final state whether the system is initialized with a test pulse close to the final mode-locked pulse or the full field build-up from statistical noise is considered. The influence of the cavity design is studied. The longest pulses are found for a standard V-cavity while a linear cavity and a V-cavity with an high reflectivity mirror in the middle are shown to produce similar, much shorter pulses.

  13. Greater vertical spot spacing to improve femtosecond laser capsulotomy quality.

    PubMed

    Schultz, Tim; Joachim, Stephanie C; Noristani, Rozina; Scott, Wendell; Dick, H Burkhard

    2017-03-01

    To evaluate the effect of adapted capsulotomy laser settings on the cutting quality in femtosecond laser-assisted cataract surgery. Ruhr-University Eye Clinic, Bochum, Germany. Prospective randomized case series. Eyes were treated with 1 of 2 laser settings. In Group 1, the regular standard settings were used (incisional depth 600 μm, pulse energy 4 μJ, horizontal spot spacing 5 μm, vertical spot spacing 10 μm, treatment time 1.2 seconds). In Group 2, vertical spot spacing was increased to 15 μm and the treatment time was 1.0 seconds. Light microscopy was used to evaluate the cut quality of the capsule edge. The size and number of tags (misplaced laser spots, which form a second cut of the capsule with high tear risk) were evaluated in a blinded manner. Groups were compared using the Mann-Whitney U test. The study comprised 100 eyes (50 eyes in each group). Cataract surgery was successfully completed in all eyes, and no anterior capsule tear occurred during the treatment. Histologically, significant fewer tags were observed with the new capsulotomy laser setting. The mean score for the number and size of free tags was significantly lower in this group than with the standard settings (P < .001). The new laser settings improved cut quality and reduced the number of tags. The modification has the potential to reduce the risk for radial capsule tears in femtosecond laser-assisted cataract surgery. With the new settings, no tags and no capsule tears were observed under the operating microscope in any eye. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.

    PubMed

    Diaspro, A; Corosu, M; Ramoino, P; Robello, M

    1999-11-01

    Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode. Copyright 1999 Wiley-Liss, Inc.

  15. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    PubMed Central

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920

  16. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.

    PubMed

    Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  17. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    NASA Astrophysics Data System (ADS)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  18. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging

    PubMed Central

    Entenberg, David; Wyckoff, Jeffrey; Gligorijevic, Bojana; Roussos, Evanthia T; Verkhusha, Vladislav V; Pollard, Jeffrey W; Condeelis, John

    2014-01-01

    Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via ‘over-clocking’ of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in ~24 h. PMID:21959234

  19. Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Jarvis, Suzanne P.

    2006-04-01

    We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: <3μm) as well as for focusing a laser beam (laser spot size: ˜10μm). Even for a broad range of cantilevers with lengths from 35to125μm, the sensor provides deflection noise densities of less than 11fm/√Hz in air and 16fm/√Hz in water. In particular, a cantilever with a length of 50μm gives the minimum deflection noise density of 5.7fm/√Hz in air and 7.3fm/√Hz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water.

  20. In Situ Observation of Kinetic Processes of Lath Bainite Nucleation and Growth by Laser Scanning Confocal Microscope in Reheated Weld Metals

    NASA Astrophysics Data System (ADS)

    Mao, Gaojun; Cao, Rui; Guo, Xili; Jiang, Yong; Chen, Jianhong

    2017-12-01

    The kinetic processes of nucleation and growth of bainite laths in reheated weld metals are observed and analyzed by a combination of a laser confocal scanning microscope and an electron backscattering diffraction with a field emission scanning electron microscope. The results indicate that the surface relief induced by phase transformation is able to reveal the real microstructural morphologies of bainite laths when viewed from various angles. Five nucleation modes and six types of growth behaviors of bainite laths are revealed. The bainite lath growth rates are measured to vary over a wide range, from 2 μm/s to higher than 2000 μm/s. The orientations of the bainite laths within a prior austenite grain are examined and denoted as different variants. On the basis of variant identification, the reason is analyzed for various growth rates which are demonstrated to be affected by (1) the density of the high-angle misorientation in it, (2) the included angle between habit planes of different variants, and (3) the direction of lath growth with respect to the free (polished) surface.

Top