Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyang, E-mail: chunyangliu@126.com; Sui, Xin; Yang, Fang
2014-03-15
A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of themore » microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.« less
Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres
NASA Astrophysics Data System (ADS)
Fowlkes, J. D.; Pedraza, A. J.; Lowndes, D. H.
2000-09-01
The microstructures formed at the surface of silicon during pulsed-laser irradiation in SF6-rich atmospheres consist of an array of microholes surrounded by microcones. It is shown that there is a dynamic interplay between the formation of microholes and microcones. Fluorine produced by the laser-induced decomposition of SF6 is most likely responsible for the etching/ablation process. It is proposed that silicon-rich molecules and clusters that form in and are ejected from the continually deepening microholes sustain the axial and lateral growth of the microcones. The laser-melted layer at the tip and sides of the cones efficiently collects the silicon-rich products formed upon ablation. The total and partial pressures of SF6 in the chamber play a major role in cone development, a clear indication that it is the laser-generated plasma that controls the growth of these cones.
NASA Astrophysics Data System (ADS)
Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.
2002-11-01
In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.
NASA Astrophysics Data System (ADS)
Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.
2017-09-01
We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices
NASA Astrophysics Data System (ADS)
Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.
2018-03-01
Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.
Femtosecond laser fabricating black silicon in alkaline solution
NASA Astrophysics Data System (ADS)
Meng, Jiao; Song, Haiying; Li, Xiaoli; Liu, Shibing
2015-03-01
An efficient approach for enhancing the surface antireflection is proposed, in which a black silicon is fabricated by a femtosecond laser in alkaline solution. In the experiment, 2 wt% NaOH solution is formulated at room temperature (22 ± 1 °C). Then, a polished silicon is scanned via femtosecond laser irradiation in 2 wt% NaOH solution. Jungle-like microstructures on the black silicon surface are characterized using an atomic force microscopy. The reflectance of the black silicon is measured at the wavelengths ranging from 400 to 750 nm. Compared to the polished silicon, the black silicon can significantly suppress the optical reflection throughout the visible region (<5 %). Meanwhile, we also investigated the factors of the black silicon, including the femtosecond laser pulse energy and the scanning speed. This method is simple and effective to acquire the black silicon, which probably has a large advantage in fast and cost-effective black silicon fabrication.
Laser ablation and column formation in silicon under oxygen-rich atmospheres
NASA Astrophysics Data System (ADS)
Pedraza, A. J.; Fowlkes, J. D.; Lowndes, D. H.
2000-11-01
The microstructure formed at the surface of silicon by cumulative pulsed-laser irradiation in oxygen-rich atmospheres consists of an array of microcolumns surrounded by microcanyons and microholes. Formation of SiOx at the exposed surface of silicon is most likely responsible for the occurrence of etching/ablation that causes the continuous deepening of canyons and holes. The growth mechanism of columns that is supported by the experimental evidence presented here is a process in which the columns are fed at their tips by the silicon-rich ablation plasma produced during pulsed-laser irradiation.
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Xie, Qian; Jiang, Lan; Han, Weina; Wang, Qingsong; Wang, Andong; Hu, Jie; Lu, Yongfeng
2017-05-01
In this study, silicon micro/nanostructures of controlled size and shape are fabricated by chemical-etching-assisted femtosecond laser single-pulse irradiation, which is a flexible, high-throughput method. The pulse fluence is altered to create various laser printing patterns for the etching mask, resulting in the sequential evolution of three distinct surface micro/nanostructures, namely, ring-like microstructures, flat-top pillar microstructures, and spike nanostructures. The characterized diameter of micro/nanostructures reveals that they can be flexibly tuned from the micrometer (˜2 μm) to nanometer (˜313 nm) scales by varying the laser pulse fluence in a wide range. Micro-Raman spectroscopy and transmission electron microscopy are utilized to demonstrate that the phase state changes from single-crystalline silicon (c-Si) to amorphous silicon (a-Si) after single-pulse femtosecond laser irradiation. This amorphous layer with a lower etching rate then acts as a mask in the wet etching process. Meanwhile, the on-the-fly punching technique enables the efficient fabrication of large-area patterned surfaces on the centimeter scale. This study presents a highly efficient method of controllably manufacturing silicon micro/nanostructures with different single-pulse patterns, which has promising applications in the photonic, solar cell, and sensors fields.
Makey, Ghaith; Elahi, Parviz; Çolakoğlu, Tahir; Ergeçen, Emre; Yavuz, Özgün; Hübner, René; Borra, Mona Zolfaghari; Pavlov, Ihor; Bek, Alpan; Turan, Raşit; Kesim, Denizhan Koray; Tozburun, Serhat; Ilday, Serim; Ilday, F. Ömer
2017-01-01
Silicon is an excellent material for microelectronics and integrated photonics1–3 with untapped potential for mid-IR optics4. Despite broad recognition of the importance of the third dimension5,6, current lithography methods do not allow fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realised with techniques like reactive ion etching. Embedded optical elements, like in glass7, electronic devices, and better electronic-photonic integration are lacking8. Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1 µm-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has a different optical index than unmodified parts, which enables numerous photonic devices. Optionally, these parts are chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface, i.e., “in-chip” microstructures for microfluidic cooling of chips, vias, MEMS, photovoltaic applications and photonic devices that match or surpass the corresponding state-of-the-art device performances. PMID:28983323
NASA Astrophysics Data System (ADS)
Tokel, Onur; Turnalı, Ahmet; Makey, Ghaith; Elahi, Parviz; ćolakoǧlu, Tahir; Ergeçen, Emre; Yavuz, Ã.-zgün; Hübner, René; Zolfaghari Borra, Mona; Pavlov, Ihor; Bek, Alpan; Turan, Raşit; Kesim, Denizhan Koray; Tozburun, Serhat; Ilday, Serim; Ilday, F. Ã.-mer
2017-10-01
Silicon is an excellent material for microelectronics and integrated photonics1-3, with untapped potential for mid-infrared optics4. Despite broad recognition of the importance of the third dimension5,6, current lithography methods do not allow the fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realized with techniques like reactive ion etching. Embedded optical elements7, electronic devices and better electronic-photonic integration are lacking8. Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1-µm-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has an optical index different to that in unmodified parts, enabling the creation of numerous photonic devices. Optionally, these parts can be chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface—that is, `in-chip'—microstructures for microfluidic cooling of chips, vias, micro-electro-mechanical systems, photovoltaic applications and photonic devices that match or surpass corresponding state-of-the-art device performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guk, I. V., E-mail: corchand@gmail.com; Shandybina, G. D.; Yakovlev, E. B.
2016-05-15
The results of quantitative evaluation of the heat accumulation effect during the femtosecond laser microstructuring of the surface of silicon are presented for discussion. In the calculations, the numerical–analytical method is used, in which the dynamics of electronic processes and lattice heating are simulated by the numerical method, and the cooling stage is described on the basis of an analytical solution. The effect of multipulse irradiation on the surface temperature is studied: in the electronic subsystem, as the dependence of the absorbance on the excited carrier density and the dependence of the absorbance on the electron-gas temperature; in the latticemore » subsystem, as the variation in the absorbance from pulse to pulse. It was shown that, in the low-frequency pulse-repetition mode characteristic of the femtosecond microstructuring of silicon, the heat accumulation effect is controlled not by the residual surface temperature by the time of the next pulse arrival, which corresponds to conventional concepts, but by an increase in the maximum temperature from pulse to pulse, from which cooling begins. The accumulation of the residual temperature of the surface can affect the microstructuring process during irradiation near the evaporation threshold or with increasing pulse-repetition rate.« less
NASA Astrophysics Data System (ADS)
Bao-Dian, Fan; Yu, Qiu; Rong, Chen; Miao, Pan; Li-Han, Cai; Jiang-Hui, Zheng; Chao, Chen
2016-02-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 61076056, and the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure of Shanghai Institute of Ceramics of Chinese Academy of Sciences under Grant No SKL201404SIC.
Short-pulse laser interactions with disordered materials and liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, L.M.; Goldman, C.H.; Longtin, J.P.
High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less
Material removal effect of microchannel processing by femtosecond laser
NASA Astrophysics Data System (ADS)
Zhang, Pan; Chen, Lei; Chen, Jianxiong; Tu, Yiliu
2017-11-01
Material processing using ultra-short-pulse laser is widely used in the field of micromachining, especially for the precision processing of hard and brittle materials. This paper reports a theoretical and experimental study of the ablation characteristics of a silicon wafer under micromachining using a femtosecond laser. The ablation morphology of the silicon wafer surface is surveyed by a detection test with an optical microscope. First, according to the relationship between the diameter of the ablation holes and the incident laser power, the ablation threshold of the silicon wafer is found to be 0.227 J/cm2. Second, the influence of various laser parameters on the size of the ablation microstructure is studied and the ablation morphology is analyzed. Furthermore, a mathematical model is proposed that can calculate the ablation depth per time for a given laser fluence and scanning velocity. Finally, a microchannel milling test is carried out on the micromachining center. The effectiveness and accuracy of the proposed models are verified by comparing the estimated depth to the actual measured results.
Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres
NASA Astrophysics Data System (ADS)
Pedraza, A. J.; Fowlkes, J. D.; Jesse, S.; Mao, C.; Lowndes, D. H.
2000-12-01
The formation mechanisms of cones and columns by pulsed-laser irradiation in reactive atmospheres were studied using scanning electron microscopy and profilometry. Deep etching takes place in SF6- and O2- rich atmospheres and consequently, silicon-containing molecules and clusters are released. Transport of silicon from the etched/ablated regions to the tip of columns and cones and to the side of the cones is required because both structures, columns and cones, protrude above the initial surface. The laser-induced micro-structure is influenced not only by the nature but also by the partial pressure of the reactive gas in the atmosphere. Irradiation in Ar following cone formation in SF6 produced no additional growth but rather melting and resolidification. Subsequent irradiation using again a SF6 atmosphere lead to cone restructuring and growth resumption. Thus the effects of etching plus re-deposition that produce column/cone formation and growth are clearly separated from the effects of just melting. On the other hand, irradiation continued in air after first performed in SF6 resulted in: (a) an intense etching of the cones and a tendency to transform them into columns; (b) growth of new columns on top of the existing cones and (c) filamentary nano-structures coating the sides of the columns and cones.
NASA Astrophysics Data System (ADS)
Bin, Wang; Dong, Shiyun; Yan, Shixing; Gang, Xiao; Xie, Zhiwei
2018-03-01
Picosecond laser has ultrashort pulse width and ultrastrong peak power, which makes it widely used in the field of micro-nanoscale fabrication. polydimethylsiloxane (PDMS) is a typical silicone elastomer with good hydrophobicity. In order to further improve the hydrophobicity of PDMS, the picosecond laser was used to fabricate a grid-like microstructure on the surface of PDMS, and the relationship between hydrophobicity of PDMS with surface microstructure and laser processing parameters, such as processing times and cell spacing was studied. The results show that: compared with the unprocessed PDMS, the presence of surface microstructure significantly improved the hydrophobicity of PDMS. When the number of processing is constant, the hydrophobicity of PDMS decreases with the increase of cell spacing. However, when the cell spacing is fixed, the hydrophobicity of PDMS first increases and then decreases with the increase of processing times. In particular, when the times of laser processing is 6 and the cell spacing is 50μm, the contact angle of PDMS increased from 113° to 154°, which reached the level of superhydrophobic.
Femtosecond Laser Microstructuring and Chalcogen Inclusion in Silicon
2011-02-12
a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...material a potential candidate for a variety of optoelectronic devices. In this report, we demonstrate the capability of chalcogen (S, Se, Te...the diffusion behavior of dopants in silicon matrix. Our findings contribute to a better understanding of the mechanism of infrared absorption in
Coucheron, David A.; Fokine, Michael; Patil, Nilesh; Breiby, Dag Werner; Buset, Ole Tore; Healy, Noel; Peacock, Anna C.; Hawkins, Thomas; Jones, Max; Ballato, John; Gibson, Ursula J.
2016-01-01
Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core. PMID:27775066
NASA Astrophysics Data System (ADS)
Coucheron, David A.; Fokine, Michael; Patil, Nilesh; Breiby, Dag Werner; Buset, Ole Tore; Healy, Noel; Peacock, Anna C.; Hawkins, Thomas; Jones, Max; Ballato, John; Gibson, Ursula J.
2016-10-01
Glass fibres with silicon cores have emerged as a versatile platform for all-optical processing, sensing and microscale optoelectronic devices. Using SiGe in the core extends the accessible wavelength range and potential optical functionality because the bandgap and optical properties can be tuned by changing the composition. However, silicon and germanium segregate unevenly during non-equilibrium solidification, presenting new fabrication challenges, and requiring detailed studies of the alloy crystallization dynamics in the fibre geometry. We report the fabrication of SiGe-core optical fibres, and the use of CO2 laser irradiation to heat the glass cladding and recrystallize the core, improving optical transmission. We observe the ramifications of the classic models of solidification at the microscale, and demonstrate suppression of constitutional undercooling at high solidification velocities. Tailoring the recrystallization conditions allows formation of long single crystals with uniform composition, as well as fabrication of compositional microstructures, such as gratings, within the fibre core.
Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses
NASA Astrophysics Data System (ADS)
Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.
2017-12-01
We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.
The microstructure of laterally seeded silicon-on-oxide
NASA Astrophysics Data System (ADS)
Pinizzotto, R. F.; Lam, H. W.; Vaandrager, B. L.
1982-03-01
The production of large scale integrated circuits in thin silicon films on insulating substrates is currently of much interest in the electronics industry. One of the most promising techniques of forming this composite structure is by lateral seeding. We have used optical microscopy and transmission electron microscopy to characterize the microstructure of silicon-on-oxide formed by scanning CW laser induced lateral epitaxy. The primary defects are dislocations. Dislocation rearrangement leads to the formation of both small angle boundaries (stable, regular dislocation arrays) and grain boundaries. The grains were found to be misoriented to the <100> direction perpendicular to the film plane by ≤ 4° and to the <100> directions in the plane of the film by ≤ 2°. Internal reflection twins are a common defect. Microtwinning was found to occur at the vertical step caused by the substrate-oxide interface if the substrate to oxide step height was > 120 nm. The microstructure is continuous across successive scan lines. Microstructural defects are found to initiate at the same topographical location in different oxide pads. We propose that this is due to the meeting of two crystallization growth fronts. The liquid silicon between the fronts causes large stresses in this area because of the 9% volume increase during solidification. The defects observed in the bulk may form by a similar mechanism or by dislocation generation at substrate-oxide interface irregularities. The models predict that slower growth leads to improved material quality. This has been observed experimentally.
NASA Astrophysics Data System (ADS)
Sateesh, N. H.; Kumar, G. C. Mohan; Krishna, Prasad
2015-12-01
Nickel based Inconel-625 (IN625) metal matrix composites (MMCs) were prepared using pre-heated nickel phosphide (Ni-P) coated silicon carbide (SiC) reinforcement particles by Direct Metal Laser Sintering (DMLS) additive manufacturing process under inert nitrogen atmosphere to obtain interface influences on MMCs. The distribution of SiC particles and microstructures were characterized using optical and scanning electron micrographs, and the mechanical behaviours were thoroughly examined. The results clearly reveal that the interface integrity between the SiC particles and the IN625 matrix, the mixed powders flowability, the SiC ceramic particles and laser beam interaction, and the hardness, and tensile characteristics of the DMLS processed MMCs were improved effectively by the use of Ni-P coated SiC particles.
Tailored laser beam shaping for efficient and accurate microstructuring
NASA Astrophysics Data System (ADS)
Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.
2018-02-01
Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.
The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziadoń, Andrzej
2016-08-15
The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, themore » following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.« less
Cutting of optical materials by using femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Nolte, Stefan; Will, Matthias; Augustin, Markus; Triebel, Peter; Zoellner, Karsten; Tuennermann, Andreas
2001-11-01
In the past years, ultrashort pulse lasers have been established as precise and universal tools for the microstructuring of solid materials. Since thermal and mechanical influences are minimized, the application of this technology is also suitable for the structuring of optical materials and opens new possibilities. In this paper, the influence of pulse duration, pulse energy (fluence) and polarization on the cutting quality for glass and silicon will be discussed. As a concrete application, the cutting and micromarking of dielectric coated mirrors for high power fiber lasers will be highlighted.
Fast and cheap fabrication of molding tools for polymer replication
NASA Astrophysics Data System (ADS)
Richter, Christiane; Kirschner, Nadine; Worgull, Matthias; Rapp, Bastian E.
2017-02-01
Polymer replication is a prerequisite for low-cost microstructure components for consumer and end user market. The production of cost-effective microstructure in polymers requires metal molding tools which are often fabricated by direct structuring methods like milling or laser machining both of which are time-consuming and cost-intensive. We present an alternative fabrication method based on replication processes which allows the cheap ( 50 €) and fast ( 12 h) replication of complex microstructures into metal. The process comprises three steps: 1. Generation of the microstructure in a photoresist via lithography. 2. Casting of the structure into a high-temperature silicone which serves as original mold for creation of the metal molding tool. 3. Melting of an eutectic alloy of Sn, Ag and Cu under light pressure directly inside of the silicone within an oven. After cooling to room temperature the metal molding tool can be used for polymer replication into conventional thermoplastic polymers. As a first example we structured polymethylmethacrylate (PMMA) foils with a thickness of 1 mm via hot embossing and feature sizes of 100 μm could be replicated with high fidelity.
Surface wettability of silicon substrates enhanced by laser ablation
NASA Astrophysics Data System (ADS)
Tseng, Shih-Feng; Hsiao, Wen-Tse; Chen, Ming-Fei; Huang, Kuo-Cheng; Hsiao, Sheng-Yi; Lin, Yung-Sheng; Chou, Chang-Pin
2010-11-01
Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9° on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light.
Corrosion Behavior of Heat-Treated AlSi10Mg Manufactured by Laser Powder Bed Fusion.
Cabrini, Marina; Calignano, Flaviana; Fino, Paolo; Lorenzi, Sergio; Lorusso, Massimo; Manfredi, Diego; Testa, Cristian; Pastore, Tommaso
2018-06-21
This experimental work is aimed at studying the effect of microstructural modifications induced by post-processing heat treatments on the corrosion behavior of silicon-aluminum alloys produced by means of laser powder bed fusion (LPBF). The manufacturing technique leads to microstructures characterized by the presence of melt pools, which are quite different compared to casting alloys. In this study, the behavior of an AlSi10Mg alloy was evaluated by means of intergranular corrosion tests according to ISO 11846 standard on heat-treated samples ranging from 200 to 500 °C as well as on untreated samples. We found that temperatures above 200 °C reduced microhardness of the alloy, and different corrosion morphologies occurred due to the modification of both size and distribution of silicon precipitates. Selective penetrating attacks occurred at melt pool borders. The intergranular corrosion phenomena were less intense for as-produced specimens without heat treatments compared to the heat-treated specimens at 200 and 300 °C. General corrosion morphologies were noticed for specimens heat treated at temperatures exceeding 400 °C.
Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.
Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R
2015-10-19
We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.
Deposition and micro electrical discharge machining of CVD-diamond layers incorporated with silicon
NASA Astrophysics Data System (ADS)
Kühn, R.; Berger, T.; Prieske, M.; Börner, R.; Hackert-Oschätzchen, M.; Zeidler, H.; Schubert, A.
2017-10-01
In metal forming, lubricants have to be used to prevent corrosion or to reduce friction and tool wear. From an economical and ecological point of view, the aim is to avoid the usage of lubricants. For dry deep drawing of aluminum sheets it is intended to apply locally micro-structured wear-resistant carbon based coatings onto steel tools. One type of these coatings are diamond layers prepared by chemical vapor deposition (CVD). Due to the high strength of diamond, milling processes are unsuitable for micro-structuring of these layers. In contrast to this, micro electrical discharge machining (micro EDM) is a suitable process for micro-structuring CVD-diamond layers. Due to its non-contact nature and its process principle of ablating material by melting and evaporating, it is independent of the hardness, brittleness or toughness of the workpiece material. In this study the deposition and micro electrical discharge machining of silicon incorporated CVD-diamond (Si-CVD-diamond) layers were presented. For this, 10 µm thick layers were deposited on molybdenum plates by a laser-induced plasma CVD process (LaPlas-CVD). For the characterization of the coatings RAMAN- and EDX-analyses were conducted. Experiments in EDM were carried out with a tungsten carbide tool electrode with a diameter of 90 µm to investigate the micro-structuring of Si-CVD-diamond. The impact of voltage, discharge energy and tool polarity on process speed and resulting erosion geometry were analyzed. The results show that micro EDM is a suitable technology for micro-structuring of silicon incorporated CVD-diamond layers.
Aluminium surface treatment with ceramic phases using diode laser
NASA Astrophysics Data System (ADS)
Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.
2016-07-01
Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.
New technique of skin embedded wire double-sided laser beam welding
NASA Astrophysics Data System (ADS)
Han, Bing; Tao, Wang; Chen, Yanbin
2017-06-01
In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.
New World Vistas: Air and Space Power for the 21st Century, Materials Volume.
1996-06-01
derivatives from niche (non-silicon) materials: IR sensors, radars, lasers, and high - temperature , adverse-environment electronics. Investment in these...Develop metastable interstitial composites to create extremely high temperatures for destroying chemical biological warfare agents. " Explosives: 1...synthesize of high temperature materials that will be tailored for specific applications/ components. These materials will tend to have microstructures on
Formation of aggregated nanoparticle spheres through femtosecond laser surface processing
NASA Astrophysics Data System (ADS)
Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.
2017-10-01
A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.
Supersoft lithography: Candy-based fabrication of soft silicone microstructures
Moraes, Christopher; Labuz, Joseph M.; Shao, Yue; Fu, Jianping; Takayama, Shuichi
2015-01-01
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based ‘hard candy’ recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893
Supersoft lithography: candy-based fabrication of soft silicone microstructures.
Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi
2015-01-01
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.
NASA Astrophysics Data System (ADS)
Varlamova, Olga; Hoefner, Kevin; Ratzke, Markus; Reif, Juergen; Sarker, Debasish
2017-12-01
We investigate the implication of modified surface morphology on wettability of stainless steel (AISI 304) and silicon (100) targets covered by laser-induced periodic surface structures (LIPSS) on extended areas (10 × 10 mm2). Using multiple pulses from a Ti: Sapphire laser (790 nm/100 fs/1 kHz) at a fluence in the range of 0.35-2.1 J/cm2 on a spot of 1.13 × 10- 4 cm2, we scanned the target under the spot to cover a large area. A systematical variation of the irradiation dose by changing the scanning speed and thus dwelling time per spot results in the formation of surface patterns ranging from very regular linear structures with a lateral period of about 500-600 nm to complex patterns of 3D microstructures with several-µm feature size, hierarchically covered by nano-ripples.
Manufacture of silicon-based devices having disordered sulfur-doped surface layers
Carey, III; Edward, James [Newton, MA; Mazur, Eric [Concord, MA
2008-04-08
The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.
2008-06-01
This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.
Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing
NASA Astrophysics Data System (ADS)
Sanza, F. J.; Laguna, M. F.; Casquel, R.; Holgado, M.; Barrios, C. A.; Ortega, F. J.; López-Romero, D.; García-Ballesteros, J. J.; Bañuls, M. J.; Maquieira, A.; Puchades, R.
2011-04-01
Cost-effective SU-8 micro-structures on a silicon substrate were developed using 248 nm excimer laser KrF projection, studying the influence of the different variables on the final pattern geometry, finding out that the most critical are exposure dose and post-bake condition. Also a novel and cost effective type of photomask based on commercial polyimide Kapton produced by 355 nm DPSS laser microprocessing was developed, studying the influence of the cutting conditions on the photomask. Finally, as a likely application the biosensing capability with a standard BSA/antiBSA immunoassay over a 10 × 10 micro-plates square lattice of around 10 μm in diameter, 15 μm of spacing and 400 nm in height was demonstrated, finding a limit of detection (LOD) of 33.4 ng/ml which is in the order of magnitude of bioapplications such as detection of cortisol hormone or insulin-like growth factor. Low cost fabrication and vertical interrogation characterization techniques lead to a promising future in the biosensing technology field.
Laser treatment of plasma-hydrogenated silicon wafers for thin layer exfoliation
NASA Astrophysics Data System (ADS)
Ghica, Corneliu; Nistor, Leona Cristina; Teodorescu, Valentin Serban; Maraloiu, Adrian; Vizireanu, Sorin; Scarisoreanu, Nae Doinel; Dinescu, Maria
2011-03-01
We have studied by transmission electron microscopy the microstructural effects induced by pulsed laser annealing in comparison with thermal treatments of RF plasma hydrogenated Si wafers aiming for further application in the smart-cut procedure. While thermal annealing mainly produces a slight decrease of the density of plasma-induced planar defects and an increase of the size and number of plasma-induced nanocavities in the Si matrix, pulsed laser annealing of RF plasma hydrogenated Si wafers with a 355 nm wavelength radiation results in both the healing of defects adjacent to the wafer surface and the formation of a well defined layer of nanometric cavities at a depth of 25-50 nm. In this way, a controlled fracture of single crystal layers of Si thinner than 50 nm is favored.
NASA Astrophysics Data System (ADS)
Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian
2016-03-01
A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.
Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy
NASA Astrophysics Data System (ADS)
Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo
2016-02-01
In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.
NASA Technical Reports Server (NTRS)
Klima, S. J.; Vary, A.
1986-01-01
Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.
NASA Astrophysics Data System (ADS)
Ten, Jyi Sheuan; Sparkes, Martin; O'Neill, William
2017-02-01
A rapid, mask-less deposition technique for the deposition of conductive tracks to nano- and micro-devices has been developed. The process uses a 405 nm wavelength laser diode for the direct deposition of tungsten tracks on silicon substrates via laser assisted chemical vapour deposition. Unlike lithographic processes this technique is single step and does not require chemical masks that may contaminate the substrate. To demonstrate the process, tungsten was deposited from tungsten hexacarbonyl precursors to produce conductive tracks with widths of 1.7-28 μm and heights of 0.05-35 μm at laser scan speeds up to 40 μm/s. The highest volumetric deposition rate achieved is 1×104 μm3/s, three orders of magnitude higher than that of focused ion beam deposition and on par with a 515 nm wavelength argon ion laser previously reported as the laser source. The microstructure and elemental composition of the deposits are comparable to that of largearea chemical vapour deposition methods using the same chemical precursor. The contact resistance and track resistance of the deposits has been measured using the transfer length method to be 205 μΩ cm. The deposition temperature has been estimated at 334 °C from a laser heat transfer model accounting for temperature dependent optical and physical properties of the substrate. The peak temperatures achieved on silicon and other substrates are higher than the thermal dissociation temperature of numerous precursors, indicating that this technique can also be used to deposit other materials such as gold and platinum on various substrates.
Silicone Polymer Composites for Thermal Protection System: Fiber Reinforcements and Microstructures
2010-01-01
angles were tested. Detailed microstructural, mass loss, and peak erosion analyses were conducted on the phenolic -based matrix composite (control) and...silicone-based matrix composites to understand their protective mechanisms. Keywords silicone polymer matrix composites, phenolic polymer matrix...erosion analyses were conducted on the phenolic -based matrix composite (control) and silicone-based matrix composites to understand their protective
Optimization of the performance of the polymerase chain reaction in silicon-based microstructures.
Taylor, T B; Winn-Deen, E S; Picozza, E; Woudenberg, T M; Albin, M
1997-01-01
We have demonstrated the ability to perform real-time homogeneous, sequence specific detection of PCR products in silicon microstructures. Optimal design/ processing result in equivalent performance (yield and specificity) for high surface-to-volume silicon structures as compared to larger volume reactions in polypropylene tubes. Amplifications in volumes as small as 0.5 microl and thermal cycling times reduced as much as 5-fold from that of conventional systems have been demonstrated for the microstructures. PMID:9224619
NASA Astrophysics Data System (ADS)
Cristoforetti, G.; Anzalone, A.; Baffigi, F.; Bussolino, G.; D'Arrigo, G.; Fulgentini, L.; Giulietti, A.; Koester, P.; Labate, L.; Tudisco, S.; Gizzi, L. A.
2014-09-01
One of the most interesting research fields in laser-matter interaction studies is the investigation of effects and mechanisms produced by nano- or micro-structured targets, mainly devoted to the enhancing of laser-target or laser-plasma coupling. In intense and ultra-intense laser interaction regimes, the observed enhancement of x-ray plasma emission and/or hot electron conversion efficiency is explained by a variety of mechanisms depending on the dimensions and shape of the structures irradiated. In the present work, the attention is mainly focused on the lowering of the plasma formation threshold which is induced by the larger absorptivity. Flat and nanostructured silicon targets were here irradiated with an ultrashort laser pulse, in the range 1 × 1017-2 × 1018 W µm2 cm-2. The effects of structures on laser-plasma coupling were investigated at different laser pulse polarizations, by utilizing x-ray yield and 3/2ω harmonics emission. While the measured enhancement of x-ray emission is negligible at intensities larger than 1018 W µm2 cm-2, due to the destruction of the structures by the amplified spontaneous emission (ASE) pre-pulse, a dramatic enhancement, strongly dependent on pulse polarization, was observed at intensities lower than ˜3.5 × 1017 W µm2 cm-2. Relying on the three-halves harmonic emission and on the non-isotropic character of the x-ray yield, induced by the two-plasmon decay instability, the results are explained by the significant lowering of the plasma threshold produced by the nanostructures. In this view, the strong x-ray enhancement obtained by s-polarized pulses is produced by the interaction of the laser pulse with the preplasma, resulting from the interaction of the ASE pedestal with the nanostructures.
NASA Astrophysics Data System (ADS)
Vijeesh, V.; Narayan Prabhu, K.
2017-01-01
The present work involves the study of the effect of varying concentration of Ce addition on microstructure and mechanical properties of Al-23%Si alloys. Melt-treated alloys were solidified in copper, brass, stainless steel molds to assess the effect of cooling rate. The effect on microstructure was assessed by measuring the fineness of primary silicon and eutectic silicon particle characteristics. The Ce melt treatment transformed the coarse and irregular primary silicon into refined polyhedral silicon crystals, and the effect was more significant at higher cooling rates. Although the melt treatment had refined the eutectic silicon at lower cooling rates, it did not show any considerable effect on the eutectic silicon at higher cooling rates. The mechanical properties of the alloy increased significantly with increase in cooling rates and cerium concentration. Analysis of the results and literature reveals that the refined primary silicon was formed as a result of an invariant reaction between Ce compounds and primary silicon at higher temperatures.
Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R.
1995-01-01
A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.
Effect of metallic coating on the properties of copper-silicon carbide composites
NASA Astrophysics Data System (ADS)
Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.
2017-11-01
In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.
Effect of shot peening on the microstructure of laser hardened 17-4PH
NASA Astrophysics Data System (ADS)
Wang, Zhou; Jiang, Chuanhai; Gan, Xiaoyan; Chen, Yanhua
2010-12-01
In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.
Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography
NASA Astrophysics Data System (ADS)
Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan
2017-11-01
It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.
Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography.
Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan
2017-11-17
It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.
Direct laser writing of microstructures on optically opaque and reflective surfaces
NASA Astrophysics Data System (ADS)
Rekštytė, S.; Jonavičius, T.; Malinauskas, M.
2014-02-01
Direct laser writing (DLW) based on ultra-localized polymerization is an efficient way to produce three-dimensional (3D) micro/nano-structures for diverse applications in science and industry. It is attractive for its flexibility to materialize CAD models out of wide spectrum of materials on the desired substrates. In case of direct laser lithography, photo-crosslinking can be achieved by tightly focusing ultrashort laser pulses to a photo- or thermo-polymers. Selectively exposing material to laser radiation allows creating fully 3D structures with submicrometer spatial resolution. In this paper we present DLW results of hybrid organic-inorganic material SZ2080 on optically opaque and reflective surfaces, such as silicon and various metals (Cr, Ti, Au). Our studies prove that one can precisely fabricate 2D and 3D structures with lower than 1 μm spatial resolution even on glossy or rough surfaces (surface roughness rms 0.068-0.670 μm) using sample translation velocities of up to 1 mm/s. Using femtosecond high pulse repetition rate laser, sample translation velocity can reach over 1 mm/s ensuring repeatable submicrometer structuring resolution.
NASA Astrophysics Data System (ADS)
Molaei, Roya
The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. NiO/c-YSZ/Si(100) heterostructures were used as template to grow fully relaxed VO2 thin films. The detailed x-ray diffraction, transmission electron microscopy (TEM), electrical characterization results for the deposited films will be presented. In the framework on domain matching epitaxy, epitaxial growth of VO2 (tetragonal crystal structure at growth temperature) on NiO has been explained. Our detailed phi-scan X-ray diffraction measurements corroborate our understanding of the epitaxial growth and in-plane atomic arrangements at the interface. It was observed that the transition characteristics (sharpness, over which electrical property changes are completed, amplitude, transition temperature, and hysteresis) are a strong function of microstructure, strain, and stoichiometry. We have shown that by the choosing the right template layer, strain in the VO2 thin films can be fully relaxed and near-bulk VO2 transition temperatures can be achieved. Finally, I will present my research work on modification of semiconductor-to-metal transition characteristics and effect on room temperature magnetic properties of VO2 thin films upon laser annealing. While the microstructure (epitaxy, crystalline quality etc.) and phase were preserved, we envisage these changes to occur as a result of introduction of oxygen vacancies upon laser treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazehrad, S., E-mail: vazehrad@kth.se; Elfsberg, J., E-mail: jessica.elfsberg@scania.com; Diószegi, A., E-mail: attila.dioszegi@jth.hj.se
An investigation on silicon segregation of lamellar, compacted and nodular graphite iron was carried out by applying a selective, immersion color etching and a modified electron microprobe to study the microstructure. The color etched micrographs of the investigated cast irons by revealing the austenite phase have provided data about the chronology and mechanism of microstructure formation. Moreover, electron microprobe has provided two dimensional segregation maps of silicon. A good agreement was found between the segregation profile of silicon in the color etched microstructure and the silicon maps achieved by electron microprobe analysis. However, quantitative silicon investigation was found to bemore » more accurate than color etching results to study the size of the eutectic colonies. - Highlights: • Sensitivity of a color etchant to silicon segregation is quantitatively demonstrated. • Si segregation measurement by EMPA approved the results achieved by color etching. • Color etched micrographs provided data about solidification mechanism in cast irons. • Austenite grain boundaries were identified by measuring the local Si concentration.« less
Study on Silicon Microstructure Processing Technology Based on Porous Silicon
NASA Astrophysics Data System (ADS)
Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing
2018-03-01
Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.
Doping of silicon by carbon during laser ablation process
NASA Astrophysics Data System (ADS)
Raciukaitis, G.; Brikas, M.; Kazlauskiene, V.; Miskinis, J.
2007-04-01
Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.
Studies on the reactive melt infiltration of silicon and silicon-molybdenum alloys in porous carbon
NASA Technical Reports Server (NTRS)
Singh, M.; Behrendt, D. R.
1992-01-01
Investigations on the reactive melt infiltration of silicon and silicon-1.7 and 3.2 at percent molybdenum alloys into porous carbon preforms have been carried out by process modeling, differential thermal analysis (DTA) and melt infiltration experiments. These results indicate that the initial pore volume fraction of the porous carbon preform is a critical parameter in determining the final composition of the raction-formed silicon carbide and other residual phases. The pore size of the carbon preform is very detrimental to the exotherm temperatures due to liquid silicon-carbon reactions encountered during the reactive melt infiltration process. A possible mechanism for the liquid silicon-porous (glassy) carbon reaction has been proposed. The composition and microstructure of the reaction-formed silicon carbide has been discussed in terms of carbon preform microstructures, infiltration materials, and temperatures.
Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei
2010-01-01
This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too. PMID:21079695
Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei
2010-10-18
This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too.
Nanostructured Diamond Device for Biomedical Applications.
Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S
2015-02-01
Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.
Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Huang, Wanxia; Shi, Yi; Liu, Hong
2015-04-17
Integrating nanostructures onto optical fibers presents a promising strategy for developing new-fashioned devices and extending the scope of nanodevices' applications. Here we report the first fabrication of a composite silicon nanostructure on an optical fiber. Through direct chemical etching using an H2O2/HF solution, multicrystal silicon films with columnar microstructures are etched into a vertically aligned, inverted-cone-like nanorod array embedded in a nanocone array. A faster dissolution rate of the silicon at the void-rich boundary regions between the columns is found to be responsible for the separation of the columns, and thus the formation of the nanostructure array. The morphology of the nanorods primarily depends on the microstructure of the columns in the film. Through controlling the microstructure of the as-grown film and the etching parameters, the structural control of the nanostructure is promising. This fabrication method can be extended to a larger length scale, and it even allows roll-to-roll processing.
Doping of silicon with carbon during laser ablation process
NASA Astrophysics Data System (ADS)
Račiukaitis, G.; Brikas, M.; Kazlauskienė, V.; Miškinis, J.
2006-12-01
The effect of laser ablation on properties of remaining material in silicon was investigated. It was found that laser cutting of wafers in the air induced the doping of silicon with carbon. The effect was more distinct when using higher laser power or UV radiation. Carbon ions created bonds with silicon atoms in the depth of the material. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion to clarify its depth profile in silicon was performed. Photochemical reactions of such type changed the structure of material and could be the reason of the reduced machining quality. The controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.
NASA Astrophysics Data System (ADS)
Otterstrom, Nils T.; Behunin, Ryan O.; Kittlaus, Eric A.; Wang, Zheng; Rakich, Peter T.
2018-06-01
Brillouin laser oscillators offer powerful and flexible dynamics as the basis for mode-locked lasers, microwave oscillators, and optical gyroscopes in a variety of optical systems. However, Brillouin interactions are markedly weak in conventional silicon photonic waveguides, stifling progress toward silicon-based Brillouin lasers. The recent advent of hybrid photonic-phononic waveguides has revealed Brillouin interactions to be one of the strongest and most tailorable nonlinearities in silicon. In this study, we have harnessed these engineered nonlinearities to demonstrate Brillouin lasing in silicon. Moreover, we show that this silicon-based Brillouin laser enters a regime of dynamics in which optical self-oscillation produces phonon linewidth narrowing. Our results provide a platform to develop a range of applications for monolithic integration within silicon photonic circuits.
NASA Astrophysics Data System (ADS)
Lubner, Sean; Khan, Md. Imran; Dames, Chris
In the electronics and clean energy fields, it is increasingly necessary to reliably model the dissipation of heat from micro and nanostructures or nanostructured materials such as in batteries, computer chips, and thermoelectrics. In these regimes where length scales are comparable to the mean free paths (MFPs) of energy carriers, the diffusion law of heat conduction begins to break down. In this talk, I present our recent results from using a time domain thermoreflectance (TDTR) technique with laser spot 1/e-squared radii less than 2 microns to measure sub-diffusion thermal transport in silicon, nanograined-silicon (ng-Si), and silicon germanium (SiGe) alloys. Our results experimentally demonstrate that alloy scattering skews phonon spectra toward longer MFPs, while nanostructuring skews phonon spectra toward shorter MFPs. As a consequence, we show that a significant fraction of the heat-carrying phonons in SiGe have MFPs greater than 10 microns at room temperature, and that the thermal conductivity of ng-Si overtakes that of SiGe after microstructuring. NSF.
Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method*
Guo, Xing-zhong; Yang, Hui
2005-01-01
Silicon carbide (SiC) ceramic with YAG (Y3Al5O12) additive added by sol-gel method was liquid-phase sintered at different sintering temperatures, and the sintering mechanism and microstructural characteristics of resulting silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and elemental distribution of surface (EDS). YAG (yttrium aluminum garnet) phase formed before the sintering and its uniform distribution in the SiC/YAG composite powder decreased the sintering temperature and improved the densification of SiC ceramic. The suitable sintering temperature was 1860 °C with the specimen sintered at this temperature having superior sintering and mechanical properties, smaller crystal size and fewer microstructure defects. Three characteristics of improved toughness of SiC ceramic with YAG added by sol-gel method were microstructural densification, main-crack deflection and crystal ‘bridging’. PMID:15682507
Water-assisted pulsed Er:YAG laser interaction with silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaehun; Ki, Hyungson, E-mail: hski@unist.ac.kr
2015-07-07
Silicon is virtually transparent to the Er:YAG laser with a wavelength of 2.94 μm. In this study, we report that moderately doped silicon (1–10 Ω cm) can be processed by a pulsed Er:YAG laser with a pulse duration of 350 μs and a peak laser intensity of 1.7 × 10{sup 5} W/cm{sup 2} by applying a thin water layer on top of silicon as a light absorbing medium. In this way, water is heated first by strongly absorbing the laser energy and then heats up the silicon wafer indirectly. As the silicon temperature rises, the free carrier concentration and therefore the absorption coefficient of silicon willmore » increase significantly, which may enable the silicon to get directly processed by the Er:YAG laser when the water is vaporized completely. We also believe that the change in surface morphology after melting could contribute to the increase in the laser beam absorptance. It was observed that 525 nm-thick p-type wafer specimens were fully penetrated after 15 laser pulses were irradiated. Bright yellow flames were observed during the process, which indicates that the silicon surface reached the melting point.« less
Luo, Fangfang; Song, Juan; Hu, Xiao; Sun, Haiyi; Lin, Geng; Pan, Huaihai; Cheng, Ya; Liu, Li; Qiu, Jianrong; Zhao, Quanzhong; Xu, Zhizhan
2011-06-01
We report the formation of inverted microstructures inside glasses after femtosecond laser irradiation by tuning the refractive index contrast between the immersion liquid and the glass sample. By using water as well as 1-bromonaphthalene as immersion liquids, microstructures with similar shape but opposite directions are induced after femtosecond laser irradiation. Interestingly, the elemental distribution in the induced structures is also inverted. The simulation of laser intensity distribution along the laser propagation direction indicates that the interfacial spherical aberration effect is responsible for the inversion of microstructures and elemental distribution. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.
2014-02-01
Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.
Fabricating solar cells with silicon nanoparticles
Loscutoff, Paul; Molesa, Steve; Kim, Taeseok
2014-09-02
A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.
Research on non-direct reflection columnar microstructure
NASA Astrophysics Data System (ADS)
Wu, B. Q.; Wang, X. Z.; Dong, L. H.
2015-10-01
To minimize the risk of laser accidents, especially those involving eye and skin injuries, it is crucial to pay more attention to laser safety. To control the risk of injury, depending on the laser power and wavelength, a number of required safety measures have been put forward, such as specific protection walls, and wearing safety goggles when operating lasers. The direct reflection columnar microstructure can also be used for laser safety. Based on mathematical foundations , a columnar microstructure is designed by the optical design software LightTools. Simulation showed that there is a tilt angle between the emergent and incident light, the incident light being perpendicular to the microstructure, as well as the phenomenon of no direct reflection happened. A novel testing platform was built for the columnar microstructure after it was machined. The applied testing method can measure the angle between the emergent and incident light. The method lays the condition for the further research. It is shown that the columnar microstructure with no direct reflection can be utilized in laser protection systems.
Investigation of laser ablation of CVD diamond film
NASA Astrophysics Data System (ADS)
Chao, Choung-Lii; Chou, W. C.; Ma, Kung-Jen; Chen, Ta-Tung; Liu, Y. M.; Kuo, Y. S.; Chen, Ying-Tung
2005-04-01
Diamond, having many advanced physical and mechanical properties, is one of the most important materials used in the mechanical, telecommunication and optoelectronic industry. However, high hardness value and extreme brittleness have made diamond extremely difficult to be machined by conventional mechanical grinding and polishing. In the present study, the microwave CVD method was employed to produce epitaxial diamond films on silicon single crystal. Laser ablation experiments were then conducted on the obtained diamond films. The underlying material removal mechanisms, microstructure of the machined surface and related machining conditions were also investigated. It was found that during the laser ablation, peaks of the diamond grains were removed mainly by the photo-thermal effects introduced by excimer laser. The diamond structures of the protruded diamond grains were transformed by the laser photonic energy into graphite, amorphous diamond and amorphous carbon which were removed by the subsequent laser shots. As the protruding peaks gradually removed from the surface the removal rate decreased. Surface roughness (Ra) was improved from above 1μm to around 0.1μm in few minutes time in this study. However, a scanning technique would be required if a large area was to be polished by laser and, as a consequence, it could be very time consuming.
Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays
Vertes, Akos [Reston, VA; Chen, Yong [San Diego, CA
2011-12-27
The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.
Effects of laser fluence on silicon modification by four-beam laser interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Le; Li, Dayou; JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU
2015-12-21
This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm{sup 2}, 495 mJ/cm{sup 2}, and 637 mJ/cm{sup 2}, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, andmore » the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications.« less
Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM
2008-03-11
The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.
NASA Astrophysics Data System (ADS)
Wu, Mingtao; Guo, Bing; Zhao, Qingliang; Fan, Rongwei; Dong, Zhiwei; Yu, Xin
2018-06-01
Micro-structured surface on diamond is widely used in microelectronics, optical elements, MEMS and NEMS components, ultra-precision machining tools, etc. The efficient micro-structuring of diamond material is still a challenging task. In this article, the influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface were researched. At the beginning, the ablation threshold and its incubation effect of monocrystalline diamond were determined and discussed. As the accumulated laser pulses ranged from 40 to 5000, the laser ablation threshold decreased from 1.48 J/cm2 to 0.97 J/cm2. Subsequently, the variation of the ablation width and ablation depth in laser machining were studied. With enough pulse energy, the ablation width mainly depended on the laser propagation attributes while the ablation depth was a complex function of the focus position. Raman analysis was used to detect the variation of the laser machined diamond surface after the laser machining experiments. Graphite formation was discovered on the machined diamond surface and graphitization was enhanced after the defocusing quantity exceeded 45 μm. At last, several micro-structured surfaces were successfully fabricated on diamond surface with the defined micro-structure patterns and structuring ratios just by adjusting the defocusing quantity. The experimental structuring ratio was consistent with the theoretical analysis.
Laser Integration on Silicon Photonic Circuits Through Transfer Printing
2017-03-10
AFRL-AFOSR-UK-TR-2017-0019 Laser integration on silicon photonic circuits through transfer printing Gunther Roelkens UNIVERSITEIT GENT VZW Final...TYPE Final 3. DATES COVERED (From - To) 15 Sep 2015 to 14 Sep 2016 4. TITLE AND SUBTITLE Laser integration on silicon photonic circuits through...parallel integration of III-V lasers on silicon photonic integrated circuits. The report discusses the technological process that has been developed as
Laser beam joining of optical fibers in silicon V-grooves
NASA Astrophysics Data System (ADS)
Kaufmann, Stefan; Otto, Andreas; Luz, Gerhard
2000-06-01
The increasing use of optical data transmission systems and the development of new optical components require adjustment-insensitive and reliable joining and assembling techniques. The state of the art includes the utilization of silicon submounts with anisotropically etched V-grooves. Several glass fibers are fixed in these V-grooves with adhesive. Adhesive bonds tend towards degradation under the influence of temperature and moisture. For this reason, the alternative joining processes laser beam welding and laser beam soldering are relevant. The goal is a reliable joining of optical fibers in V-grooves without damage to the fibers or the silicon submount. Because of the anomaly of silicon during phase transformation, a positive joining can be realized by laser beam welding. A melt pool is created through the energy of a Nd:YAG-laser pulse. During solidification, the volume of silicon increases and a bump is formed in the center. Experiments have shown that this phenomenon can be used for joining optical fibers in silicon-V-grooves. With suitable parameters the silicon flows half around the fiber during solidification. For each fiber, several welding points are necessary. Another promising joining method is laser bema soldering. In this case, a second silicon sheet with a solder deposit is placed on the fibers which lie in the V-grooves of the metallized silicon submount. The laser heats the upper silicon until the solder metals by heat conduction.
NASA Technical Reports Server (NTRS)
Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.
1997-01-01
Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.
Microstructure and Mechanical Properties of Reaction-Formed Silicon Carbide (RFSC) Ceramics
NASA Technical Reports Server (NTRS)
Singh, M.; Behrendt, D. R.
1994-01-01
The microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics fabricated by silicon infiltration of porous carbon preforms are discussed. The morphological characterization of the carbon preforms indicates a very narrow pore size distribution. Measurements of the preform density by physical methods and by mercury porosimetry agree very well and indicate that virtually all of the porosity in the preforms is open to infiltrating liquids. The average room temperature flexural strength of the RFSC material with approximately 8 at.% free silicon is 369 +/- 28 MPa (53.5 +/- 4 ksi). The Weibull strength distribution data give a characteristic strength value of 381 MPa (55 ksi) and a Weibull modulus of 14.3. The residual silicon content is lower and the strengths are superior to those of most commercially available reaction-bonded silicon carbide materials.
Process for forming retrograde profiles in silicon
Weiner, K.H.; Sigmon, T.W.
1996-10-15
A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.
3D hybrid integrated lasers for silicon photonics
NASA Astrophysics Data System (ADS)
Song, B.; Pinna, S.; Liu, Y.; Megalini, L.; Klamkin, J.
2018-02-01
A novel 3D hybrid integration platform combines group III-V materials and silicon photonics to yield high-performance lasers is presented. This platform is based on flip-chip bonding and vertical optical coupling integration. In this work, indium phosphide (InP) devices with monolithic vertical total internal reflection turning mirrors were bonded to active silicon photonic circuits containing vertical grating couplers. Greater than 2 mW of optical power was coupled into a silicon waveguide from an InP laser. The InP devices can also be bonded directly to the silicon substrate, providing an efficient path for heat dissipation owing to the higher thermal conductance of silicon compared to InP. Lasers realized with this technique demonstrated a thermal impedance as low as 6.2°C/W, allowing for high efficiency and operation at high temperature. InP reflective semiconductor optical amplifiers were also integrated with 3D hybrid integration to form integrated external cavity lasers. These lasers demonstrated a wavelength tuning range of 30 nm, relative intensity noise lower than -135 dB/Hz and laser linewidth of 1.5 MHz. This platform is promising for integration of InP lasers and photonic integrated circuits on silicon photonics.
Directed dewetting of amorphous silicon film by a donut-shaped laser pulse.
Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim; Grigoropoulos, Costas P
2015-04-24
Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.
Method to fabricate multi-level silicon-based microstructures via use of an etching delay layer
Manginell, Ronald P.; Schubert, W. Kent; Shul, Randy J.
2005-08-16
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Structures having features with different depth can be formed thereby in a single etching step.
Microstructures of BN/SiC coatings on nicalon fibers
NASA Technical Reports Server (NTRS)
Dickerson, R. M.; Singh, M.
1995-01-01
The microstructures of Nicalon silicon carbide (SiC) fibers and layered coatings of boron nitride (BN) followed by chemical vapor infiltrated silicon carbide (CVI-SiC) were characterized using optical and electron microscopy. Two different precursors and reactions were used to produce the BN layers while the deposition of CVI silicon carbide was nearly identical. Coated tows were examined in cross-section to characterize the chemistry and structures of the constituents and the interfaces. One BN precursor yielded three sublayers while the other gave a relatively homogeneous nanocrystalline layer.
Silicon vertical microstructure fabrication by catalytic etching
NASA Astrophysics Data System (ADS)
Huang, Mao-Jung; Yang, Chii-Rong; Chang, Chun-Ming; Chu, Nien-Nan; Shiao, Ming-Hua
2012-08-01
This study presents an effective, simple and inexpensive process for forming micro-scale vertical structures on a (1 0 0) silicon wafer. Several modified etchants and micro-patterns including rectangular, snake-like, circular and comb patterns were employed to determine the optimum etching process. We found that an etchant solution consisting of 4.6 M hydrofluoric acid, 0.44 M hydrogen peroxide and isopropyl alcohol produces microstructures at an etching rate of 0.47 µm min-1 and surface roughness of 17.4 nm. All the patterns were transferred faithfully to the silicon substrate.
Quantitative-phase microscopy of nanosecond laser-induced micro-modifications inside silicon.
Li, Q; Chambonneau, M; Chanal, M; Grojo, D
2016-11-20
Laser-induced permanent modification inside silicon has been recently demonstrated by using tightly focused nanosecond sources at a 1550 nm wavelength. We have developed a quantitative-phase microscope operating in the near-infrared domain to characterize the laser-induced modifications deep into silicon. By varying the number of applied laser pulses and the energy, we observe porous and densified regions in the focal region. The observed changes are associated with refractive index variations |Δn| exceeding 10-3, enough to envision the laser writing of optical functionalities inside silicon.
NASA Astrophysics Data System (ADS)
Talbi, Abderazek; Kaya-Boussougou, Sostaine; Sauldubois, Audrey; Stolz, Arnaud; Boulmer-Leborgne, Chantal; Semmar, Nadjib
2017-07-01
This paper deals with the formation of laser-induced periodic surface structures (LIPSS) on mesoporous silicon thin films induced by two laser regimes in the UV range: picosecond and femtosecond. Different LIPSS formation mechanisms from nanoparticles, mainly coalescence and agglomeration, have been evidenced by scanning electron microscopy analysis. The apparition of a liquid phase during both laser interaction at low fluence (20 mJ/cm2) and after a large number of laser pulses (up to 12,000) has been also shown with 100 nm size through incubation effect. Transmission electron microscopy analyses have been conducted to investigate the molten phase structures below and inside LIPSS. Finally, it has shown that LIPSS are composed of amorphous silicon when mesoporous silicon is irradiated by laser beam in both regimes. Nevertheless, mesoporous silicon located between LIPSS stays crystallized.
NASA Astrophysics Data System (ADS)
Pan, An; Si, Jinhai; Chen, Tao; Li, Cunxia; Hou, Xun
2016-04-01
Two-dimensional (2D) periodic structures were fabricated on silicon surfaces by femtosecond laser irradiation in air and water, with the assistance of a microlens array (MLA) placed in the beam's path. By scanning the laser beam along the silicon surface, multiple grooves were simultaneously fabricated in parallel along with smaller laser-induced ripples. The 2D periodic structures contained long-periodic grooves and perpendicular short-periodic laser-induced ripples, which had periods of several microns and several hundred nanometers, respectively. We investigated the influence of laser power and scanning velocity on the morphological evolution of the 2D periodic structures in air and water. Large-area grid-like structures with ripples were fabricated by successively scanning once along each direction of the silicon's surface, which showed enhanced optical absorption. Hydrofluoric acid was then used to remove any oxygen and laser-induced defects for all-silicon structures.
Microstructure and Hardness Profiles of Bifocal Laser-Welded DP-HSLA Steel Overlap Joints
NASA Astrophysics Data System (ADS)
Grajcar, A.; Matter, P.; Stano, S.; Wilk, Z.; Różański, M.
2017-04-01
The article presents results related to the bifocal laser welding of overlap joints made of HSLA and DP high-strength steels. The joints were made using a disk laser and a head enabling the 50-50% distribution of laser power. The effects of the laser welding rates and the distance between laser spots on morphological features and hardness profiles were analyzed. It was established that the positioning of beams at angles of 0° or 90° determined the hardness of the individual zones of the joints, without causing significant differences in microstructures of the steels. Microstructural features were inspected using scanning electron microscopy. Both steels revealed primarily martensitic-bainitic microstructures in the fusion zone and in the heat-affected zone. Mixed multiphase microstructures were revealed in the inter-critical heat-affected zone of the joint. The research involved the determination of parameters making it possible to reduce the hardness of joints and prevent the formation of the soft zone in the dual-phase steel.
Dorairaj, Deivaseeno; Ismail, Mohd Razi
2017-01-01
Lodging is a phenomenon that affects most of the cereal crops including rice, Oryza sativa. This is due to the fragile nature of herbaceous plants whose stems are non-woody, thus affecting its ability to grow upright. Silicon (Si), a beneficial nutrient is often used to toughen and protect plants from biotic and abiotic stresses. Deposition of Si in plant tissues enhances the rigidity and stiffness of the plant as a whole. Silicified cells provide the much needed strength to the culm to resist breaking. Lignin plays important roles in cell wall structural integrity, stem strength, transport, mechanical support, and plant pathogen defense. The aim of this study is to resolve effects of Si on formation of microstructure and regulation of cinnamyl alcohol dehydrogenase (CAD), a key gene responsible for lignin biosynthesis. Besides evaluating silicon, paclobutrazol (PBZ) a plant growth retartdant that reduces internode elongation is also incorporated in this study. Hardness, brittleness and stiffness were improved in presence of silicon thus reducing lodging. Scanning electron micrographs with the aid of energy dispersive x-ray (EDX) was used to map silicon distribution. Presence of trichomes, silica cells, and silica bodies were detected in silicon treated plants. Transcripts of CAD gene was also upregulated in these plants. Besides, phloroglucinol staining showed presence of lignified vascular bundles and sclerenchyma band. In conclusion, silicon treated rice plants showed an increase in lignin content, silicon content, and formation of silicified microstructures. PMID:28747889
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.
2015-12-14
Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less
NASA Astrophysics Data System (ADS)
Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng
2016-02-01
This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.
Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael
2018-04-02
We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.
Fabrication of sinterable silicon nitride by injection molding
NASA Technical Reports Server (NTRS)
Quackenbush, C. L.; French, K.; Neil, J. T.
1982-01-01
Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.
1991-01-01
A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, S.M.; Tao, H.; Todd-Copley, J.A.
1991-06-11
A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.
NASA Astrophysics Data System (ADS)
Ocaña, Jose L.; Jagdheesh, R.; García-Ballesteros, J. J.
2016-02-01
The current availability of new advanced fiber and DPSS lasers with characteristic pulse lengths ranging from ns to fs has provided a unique frame in which the development of laser-generated microstructures has been made possible for very diverse kinds of materials and applications. At the same time, the development of the appropriate laser-processing workstations granting the appropriate precision and repeatability of the respective laser interaction processes in line with the characteristic dimension features required in the microstructured samples has definitively consolidated laser surface microstructuring as a reference domain, nowadays, unavoidable for the design and manufacturing of current use microsystem: MEMSs, fluidic devices, advanced sensors, biomedical devices and instruments, etc., are all among the most well-known developments of the micromanufacturing technology. Completing the broad spectrum of applications developed mostly involving the generation of geometrical features on a subtrate with specific functional purposes, a relatively new, emerging class of laser-microstructuring techniques is finding an important niche of application in the generation of physically structured surfaces (particularly of metallic materials) with specific contact, friction, and wear functionalities, for whose generation the concourse of different types of laser sources is being found as an appropriate tool. In this paper, the application of laser sources with emission in the UV and at ns time regime to the surface structuration of metal surfaces (specifically Al) for the modification of their wettability properties is described as an attractive application basis for the generation of self-cleaning properties of extended functional surfaces. Flat aluminum sheets of thickness 100 μm were laser machined with ultraviolet laser pulses of 30 ns with different laser parameters to optimize the process parameters. The samples produced at the optimum conditions with respect to contact angle measurement were subjected to microstructure and chemical analysis. The wetting properties were evaluated by static contact angle measurements on the laser-patterned surface. The laser-patterned microstructures exhibited superhydrophobicity with a maximum contact angle of 180° for the droplet volumes in the range of 8-12 μl.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...
2017-02-12
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru
2018-05-01
Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.
Morales, Alfredo M.; Gonzales, Marcela
2004-06-15
The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
Improved laser damage threshold for chalcogenide glasses through surface microstructuring
NASA Astrophysics Data System (ADS)
Florea, Catalin; Sanghera, Jasbinder; Busse, Lynda; Shaw, Brandon; Aggarwal, Ishwar
2011-03-01
We demonstrate improved laser damage threshold of chalcogenide glasses with microstructured surfaces as compared to chalcogenide glasses provided with traditional antireflection coatings. The surface microstructuring is used to reduce Fresnel losses over large bandwidths in As2S3 glasses and fibers. The treated surfaces show almost a factor of two of improvement in the laser damage threshold when compared with untreated surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemini, Laura; Department of Physics, Graduate School of Science, Kyoto University, 606-85802 Kyoto; FNSPE, Czech Technical University in Prague, 11519 Prague
Periodic structures were generated on Si and SiC surfaces by irradiation with femtosecond laser pulses. Self-organized structures with spatial periodicity of approximately 600 nm appear on silicon and silicon carbide in the laser fluence range just above the ablation threshold and upon irradiation with a large number of pulses. As in the case of metals, the dependence of the spatial periodicity on laser fluence can be explained by the parametric decay of laser light into surface plasma waves. The results show that the proposed model might be universally applicable to any solid state material.
NASA Astrophysics Data System (ADS)
Schulte-Huxel, H.; Blankemeyer, S.; Kajari-Schröder, S.; Brendel, R.
2014-03-01
We investigate a laser welding process for contacting aluminum metallized crystalline silicon solar cells to a 10-μm-thick aluminum layers on a glass substrate. The reduction of the solar cell metallization thickness is analyzed with respect to laser induced damage using SiNx passivated silicon wafers. Additionally, we measure the mechanical stress of the laser welds by perpendicular tear-off as well as the electrical contact resistance. We apply two types of laser processes; one uses one to eight 20-ns-laser pulses at 355 nm with fluences between 12 and 40 J/cm2 and the other single 1.2-μs-laser pulses at 1064 nm with 33 to 73 J/cm2. Ns laser pulses can contact down to 1-μm-thick aluminum layers on silicon without inducing laser damage to the silicon and lead to sufficient strong mechanical contact. In case of μs laser pulses the limiting thickness is 2 μm.
Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...
2016-06-02
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.
Microstructure and Mechanical Properties of Laser Welded Titanium 6Al-4V
NASA Astrophysics Data System (ADS)
Mazumder, J.; Steen, W. M.
1982-05-01
Laser butt welds were fabricated in a titanium alloy (Ti-6A1-4V, AMS 4911-Tal0 BSS, annealed) using a Control Laser 2 kW CW CO2 laser. The relationships between the weld microstructure and mechanical properties are described and compared to the theoretical thermal history of the weld zone as calculated from a three-dimensional heat transfer model of the process. The structure of the weld zone was examined by radiography to detect any gross porosity as well as by both optical and electron microscopy in order to identify the microstructure. The oxygen pick-up during gas shielded laser welding was analyzed to correlate further with the observed mechanical properties. It was found that optimally fabricated laser welds have a very good combination of weld microstructure and mechanical properties, ranking this process as one which can produce high quality welds.
NASA Astrophysics Data System (ADS)
Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.
2018-07-01
Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.
NASA Astrophysics Data System (ADS)
Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong
2018-06-01
A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.
Microstructural Development in a Laser-Remelted Al-Zn-Si-Mg Coating.
Godec, M; Podgornik, B; Nolan, D
2017-11-23
In the last five decades, there has been intense development in the field of Zn-Al galvanic coating modification. Recently, Mg was added to improve corrosion properties. Further improvements to the coating are possible with additional laser surface treatment. In this article, we focus on remelting the Al-Zn-Mg-Si layer, using a diode laser with a wide-beam format, concentrating on the microstructure development during extreme cooling rates. Laser remelting of the Al-Zn-Mg-Si coating and rapid self-quenching produces a finer grain size, and a microstructure that is substantially refined and homogenized with respect to the phase distribution. Using EBSD results, we are able to understand microstructure modification. The laser modified coating has some porosity and intergranular cracking which are difficult to avoid, however this does not seem to be detrimental to mechanical properties, such as ductility on bending. The newly developed technology has a high potential for improved corrosion performance due to highly refined microstructure.
NASA Astrophysics Data System (ADS)
Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang
2017-08-01
Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.
Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator.
Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C; Balgarkashi, Akshay; Huffaker, Diana L
2017-09-13
Semiconductor nanowire lasers are considered promising ultracompact and energy-efficient light sources in the field of nanophotonics. Although the integration of nanowire lasers onto silicon photonic platforms is an innovative path toward chip-scale optical communications and photonic integrated circuits, operating nanowire lasers at telecom-wavelengths remains challenging. Here, we report on InGaAs nanowire array lasers on a silicon-on-insulator platform operating up to 1440 nm at room temperature. Bottom-up photonic crystal nanobeam cavities are formed by growing nanowires as ordered arrays using selective-area epitaxy, and single-mode lasing by optical pumping is demonstrated. We also show that arrays of nanobeam lasers with individually tunable wavelengths can be integrated on a single chip by the simple adjustment of the lithographically defined growth pattern. These results exemplify a practical approach toward nanowire lasers for silicon photonics.
Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings
NASA Astrophysics Data System (ADS)
Moroz, N. A.; Umapathy, H.; Mohanty, P.
2010-01-01
The Anatase phase of Titania (TiO2) in nanocrystalline form is a well known photocatalyst. Photocatalysts are commercially used to accelerate photoreactions and increase photovoltaic efficiency such as in solar cells. This study investigates the in-flight synthesis of Titania and its doping into a Silicon matrix resulting in a catalyst-dispersed coating. A liquid precursor of Titanium Isopropoxide and ethanol was coaxially fed into the plasma gun to form Titania nanoparticles, while Silicon powder was externally injected downstream. Coatings of 75-150 μm thick were deposited onto flat coupons. Further, Silicon powder was alloyed with aluminum to promote crystallization and reduce the amorphous phase in the Silicon matrix. Dense coatings containing nano-Titania particles were observed under electron microscope. X-ray diffraction showed that both the Rutile and Anatase phases of the Titania exist. The influence of process parameters and aluminum alloying on the microstructure evolution of the doped coatings is analyzed and presented.
Single-crystal silicon optical fiber by direct laser crystallization
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...
2016-12-05
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
NASA Technical Reports Server (NTRS)
Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.
1993-01-01
Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.
Crystal structure of laser-induced subsurface modifications in Si
NASA Astrophysics Data System (ADS)
Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in't Veld, A. J.
2015-08-01
Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this work, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. In addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si -iii/Si -xii occur as a result of the laser irradiation.
Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser
NASA Astrophysics Data System (ADS)
Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan
2018-03-01
Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.
NASA Technical Reports Server (NTRS)
Heinrich, J.
1980-01-01
The microstructure of reaction sintered silicon nitride (RSSN) was changed over a wide range by varying the grain density, grain size of the silicon starting powder, nitriding conditions, and by introducing artificial pores. The influence of single microstructural parameters on mechanical properties like room temperature strength, creep behavior, and resistance to thermal shock was investigated. The essential factors influencing these properties were found to be total porosity, pore size distribution, and the fractions of alpha and beta Si3N4. In view of high temperature engineering applications of RSSN, potentials for optimizing the material's properties by controlled processing are discussed.
Thermal hysteresis measurement of the VO2 emissivity and its application in thermal rectification.
Gomez-Heredia, C L; Ramirez-Rincon, J A; Ordonez-Miranda, J; Ares, O; Alvarado-Gil, J J; Champeaux, C; Dumas-Bouchiat, F; Ezzahri, Y; Joulain, K
2018-05-31
Hysteresis loops in the emissivity of VO 2 thin films grown on sapphire and silicon substrates by a pulsed laser deposition process are experimentally measured through the thermal-wave resonant cavity technique. Remarkable variations of about 43% are observed in the emissivity of both VO 2 films, within their insulator-to-metal and metal-to-insulator transitions. It is shown that: i) The principal hysteresis width (maximum slope) in the VO 2 emissivity of the VO 2 + silicon sample is around 3 times higher (lower) than the corresponding one of the VO 2 + sapphire sample. VO 2 synthesized on silicon thus exhibits a wider principal hysteresis loop with slower MIT than VO 2 on sapphire, as a result of the significant differences on the VO 2 film microstructures induced by the silicon or sapphire substrates. ii) The hysteresis width along with the rate of change of the VO 2 emissivity in a VO 2 + substrate sample can be tuned with its secondary hysteresis loop. iii) VO 2 samples can be used to build a radiative thermal diode able to operate with a rectification factor as high as 87%, when the temperature difference of its two terminals is around 17 °C. This record-breaking rectification constitutes the highest one reported in literature, for a relatively small temperature change of diode terminals.
NASA Astrophysics Data System (ADS)
Elmlinger, Philipp; Schreivogel, Martin; Schmid, Marc; Kaiser, Myriam; Priester, Roman; Sonström, Patrick; Kneissl, Michael
2016-04-01
The suitability of materials for deep ultraviolet (DUV) waveguides concerning transmittance, fabrication, and coupling properties is investigated and a fused silica core/ambient air cladding waveguide system is presented. This high refractive index contrast system has far better coupling efficiency especially for divergent light sources like LEDs and also a significantly smaller critical bending radius compared to conventional waveguide systems, as simulated by ray-tracing simulations. For the fabrication of 300-ffm-thick multimode waveguides a hydrouoric (HF) acid based wet etch process is compared to selective laser etching (SLE). In order to fabricate thick waveguides out of 300-ffm-thick silica wafers by HF etching, two masking materials, LPCVD silicon nitride and LPCVD poly silicon, are investigated. Due to thermal stress, the silicon nitride deposited wafers show cracks and even break. Using poly silicon as a masking material, no cracks are observed and deep etching in 50 wt% HF acid up to 180 min is performed. While the masked and unmasked silica surface is almost unchanged in terms of roughness, notching defects occur at the remaining polysilicon edge leading to jagged sidewalls. Using SLE, waveguides with high contour accuracy are fabricated and the DUV guiding properties are successfully demonstrated with propagation losses between 0.6 and 0:8 dB=mm. These values are currently limited by sidewall scattering losses.
Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy
Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.
2015-01-01
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096
Boron Partitioning Coefficient above Unity in Laser Crystallized Silicon.
Lill, Patrick C; Dahlinger, Morris; Köhler, Jürgen R
2017-02-16
Boron pile-up at the maximum melt depth for laser melt annealing of implanted silicon has been reported in numerous papers. The present contribution examines the boron accumulation in a laser doping setting, without dopants initially incorporated in the silicon wafer. Our numerical simulation models laser-induced melting as well as dopant diffusion, and excellently reproduces the secondary ion mass spectroscopy-measured boron profiles. We determine a partitioning coefficient k p above unity with k p = 1 . 25 ± 0 . 05 and thermally-activated diffusivity D B , with a value D B ( 1687 K ) = ( 3 . 53 ± 0 . 44 ) × 10 - 4 cm 2 ·s - 1 of boron in liquid silicon. For similar laser parameters and process conditions, our model predicts the anticipated boron profile of a laser doping experiment.
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.
Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo
2015-04-20
A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.
NASA Astrophysics Data System (ADS)
Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding
2018-01-01
In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by femtosecond laser were realized effectively.
NASA Astrophysics Data System (ADS)
Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice
2016-06-01
A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.
Undistorted 3D microstructures in SU8 formed through two-photon polymerization
NASA Astrophysics Data System (ADS)
Ohlinger, Kris; Lin, Yuankun; Poole, Zsolt; Chen, Kevin P.
2011-09-01
This paper presents the wavelength dependence of two-photon polymerization in SU-8 between 720-780 nm. The study is performed by microstructuring SU-8 through a single-shot exposure of SU-8 to 140 fs tunable laser pulses with 80 MHz repetition rate, or by laser direct writing. Two-photon absorption is closely related to one-photon absorption in pristine SU-8. By careful design of the neighboring micro-structures, or by varying wet-processing parameters during development, undistorted and unbended 3D micro-structures have been fabricated through direct laser writing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, K. P.; Wu, Z.; Cowan, B. M.
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.
Laser ablation of single-crystalline silicon by radiation of pulsed frequency-selective fiber laser
NASA Astrophysics Data System (ADS)
Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.
2015-07-01
We have studied the process of destruction of the surface of a single-crystalline silicon wafer scanned by the beam of a pulsed ytterbium-doped fiber laser radiation with a wavelength of λ = 1062 nm. It is established that the laser ablation can proceed without melting of silicon and the formation of a plasma plume. Under certain parameters of the process (radiation power, beam scan velocity, and beam overlap density), pronounced oxidation of silicon microparticles with the formation of a characteristic loose layer of fine powdered silicon dioxide has been observed for the first time. The range of lasing and beam scanning regimes in which the growth of SiO2 layer takes place is determined.
Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics
Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN
2011-06-28
A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.
Dynamic Behavior and Optimization of Advanced Armor Ceramics: January-December 2012 Annual Report
2015-03-01
tasks are reviewed: Nanostructured Armor Ceramics: Focus on Boron Carbide; The Role of Microstructure in the Impact Resistance for Silicon Carbide...Task 2: The Role of Microstructure in the Impact Resistance for Silicon Carbide (SiC), Core Program 22 3.1 Long-Range Goals 22 3.2 Background 22 3.3...from a 2-gr drop test using corn starch as a C source; D(0.9) = 1.27 μm ....................................................................12 Fig
NASA Technical Reports Server (NTRS)
Roth, Don J.; Carney, Dorothy V.; Baaklini, George Y.; Bodis, James R.; Rauser, Richard W.
1998-01-01
Ultrasonic velocity/time-of-flight imaging that uses back surface reflections to gauge volumetric material quality is highly suited for quantitative characterization of microstructural gradients including those due to pore fraction, density, fiber fraction, and chemical composition variations. However, a weakness of conventional pulse-echo ultrasonic velocity/time-of-flight imaging is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this imaging method's usefulness in practical applications. Prior studies have described a pulse-echo time-of-flight-based ultrasonic imaging method that requires using a single transducer in combination with a reflector plate placed behind samples that eliminates the effect of thickness variation in the image. In those studies, this method was successful at isolating ultrasonic variations due to material microstructure in plate-like samples of silicon nitride, metal matrix composite, and polymer matrix composite. In this study, the method is engineered for inspection of more complex-shaped structures-those having (hollow) tubular/curved geometry. The experimental inspection technique and results are described as applied to (1) monolithic mullite ceramic and polymer matrix composite 'proof-of-concept' tubular structures that contain machined patches of various depths and (2) as-manufactured monolithic silicon nitride ceramic and silicon carbide/silicon carbide composite tubular structures that might be used in 'real world' applications.
Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers.
Wang, Ruijun; Malik, Aditya; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Roelkens, Gunther
2016-12-12
2.0x µm widely tunable external cavity lasers realized by combining a GaSb gain chip with a silicon photonics waveguide circuit for wavelength selection are demonstrated. Wavelength tuning over 58 nm from 2.01 to 2.07 µm is demonstrated. In the silicon photonic integrated circuit, laser feedback is realized by using a silicon Bragg grating and continuous tuning is realized by using two thermally tuned silicon microring resonators (MRRs) and a phase section. The uncooled laser has maximum output power of 7.5 mW and threshold current density of 0.8 kA/cm2. The effect of the coupling gap of the MRRs on tunable laser performance is experimentally assessed. A side mode suppression ratio better than 52 dB over the full tuning range and in the optimum operation point of more than 60 dB is achieved for the laser with weakly coupled MRRs.
Quantum cascade lasers grown on silicon.
Nguyen-Van, Hoang; Baranov, Alexei N; Loghmari, Zeineb; Cerutti, Laurent; Rodriguez, Jean-Baptiste; Tournet, Julie; Narcy, Gregoire; Boissier, Guilhem; Patriarche, Gilles; Bahriz, Michael; Tournié, Eric; Teissier, Roland
2018-05-08
Technological platforms offering efficient integration of III-V semiconductor lasers with silicon electronics are eagerly awaited by industry. The availability of optoelectronic circuits combining III-V light sources with Si-based photonic and electronic components in a single chip will enable, in particular, the development of ultra-compact spectroscopic systems for mass scale applications. The first circuits of such type were fabricated using heterogeneous integration of semiconductor lasers by bonding the III-V chips onto silicon substrates. Direct epitaxial growth of interband III-V laser diodes on silicon substrates has also been reported, whereas intersubband emitters grown on Si have not yet been demonstrated. We report the first quantum cascade lasers (QCLs) directly grown on a silicon substrate. These InAs/AlSb QCLs grown on Si exhibit high performances, comparable with those of the devices fabricated on their native InAs substrate. The lasers emit near 11 µm, the longest emission wavelength of any laser integrated on Si. Given the wavelength range reachable with InAs/AlSb QCLs, these results open the way to the development of a wide variety of integrated sensors.
NASA Astrophysics Data System (ADS)
Pan, A. F.; Wang, W. J.; Mei, X. S.; Zheng, B. X.; Yan, Z. X.
2016-11-01
This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm2 to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm2, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm2, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm2 and the sharp sub-5 μm microstructures with nanostructures covered was obtained at spot overlap number of 3720.
Crystal structure of laser-induced subsurface modifications in Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.
2015-06-04
Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less
Hybrid integrated single-wavelength laser with silicon micro-ring reflector
NASA Astrophysics Data System (ADS)
Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian
2018-02-01
A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.
NASA Astrophysics Data System (ADS)
Ingle, Ninad; Gu, Ling; Mohanty, Samarendra K.
2011-03-01
Here, we report in situ formation of microstructures from the regular constituents of culture media near live cells using spatially-structured near infrared (NIR) laser beam. Irradiation with the continuous wave (cw) NIR laser microbeam for few seconds onto the regular cell culture media containing fetal bovine serum resulted in accumulation of dense material inside the media as evidenced by phase contrast microscopy. The time to form the phase dense material was found to depend on the laser beam power. Switching off the laser beam led to diffusion of phase dark material. However, the proteins could be stitched together by use of carbon nanoparticles and continuous wave (cw) Ti: Sapphire laser beam. Further, by use of spatially-structured beam profiles different structures near live cells could be formed. The microfabricated structure could be held by the Gravito-optical trap and repositioned by movement of the sample stage. Orientation of these microstructures was achieved by rotating the elliptical laser beam profile. Thus, multiple microstructures were formed and organized near live cells. This method would enable study of response of cells/axons to the immediate physical hindrance provided by such structure formation and also eliminate the biocompatibility requirement posed on artificial microstructure materials.
Twin-spot laser welding of advanced high-strength multiphase microstructure steel
NASA Astrophysics Data System (ADS)
Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian
2017-07-01
The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.
NASA Astrophysics Data System (ADS)
Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie
2010-03-01
Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.
Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito
2015-03-16
We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.
Characterization of Novel Plasmonic, Photonic, and Semiconductor Microstructures
NASA Astrophysics Data System (ADS)
Sears, Jasmine Soria
The fields of telecommunications and optoelectronics are under constant pressure to shrink devices and reduce power consumption. Micro-scale photonic and plasmonic structures can trap light and enhance the brightness of active emitters; thus, these types of structures are promising avenues to accomplishing the goals of miniaturization and efficiency. A deeper understanding of specific structures is important in order to gauge their suitability for specific applications. In this dissertation, two types of microstructures are explored: one-dimensional silicon photonic crystals and self-assembled indium islands. This dissertation will provide novel characterization of these structures and a description of how to utilize or compensate for the observed features. A photonic crystal can act as a tiny resonator for certain wavelengths, making it a promising structure for applications that require extremely small lasers. However, because of silicon’s indirect bandgap, a silicon photonic crystal cavity would require the addition of an active emitter to function as a light source. Attempts to incorporate erbium into these cavities, and the observation of an unusual coupling phenomenon, will be discussed. Self-assembled indium islands are plasmonic structures that can be grown via molecular beam epitaxy. In theory, these islands should be pure indium nanoantennas on top of a smooth gallium arsenide substrate. In practice, the component materials are less segregated than predicted, giving rise to unexpected hollow dome shapes and a sub-surface indium layer. Although these features were not an intended result of indium island growth, they provide information regarding the island formation process and potentially contribute additional applications.
NASA Astrophysics Data System (ADS)
Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.
2016-11-01
In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.
NASA Astrophysics Data System (ADS)
Thanawala, Sachin
Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.
Bachman, Daniel; Chen, Zhijiang; Wang, Christopher; ...
2016-11-29
Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less
Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay
2008-06-27
Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO₂ laser system which help exposing the optical fiber core to the measurand. The direct-write CO₂ laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO₂ laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.
Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System
Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay
2008-01-01
Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures. PMID:19662114
NASA Astrophysics Data System (ADS)
junfeng, Li; zhengying, Wei
2017-11-01
Process optimization and microstructure characterization of Ti6Al4V manufactured by selective laser melting (SLM) were investigated in this article. The relative density of sampled fabricated by SLM is influenced by the main process parameters, including laser power, scan speed and hatch distance. The volume energy density (VED) was defined to account for the combined effect of the main process parameters on the relative density. The results shown that the relative density changed with the change of VED and the optimized process interval is 55˜60J/mm3. Furthermore, compared with laser power, scan speed and hatch distance by taguchi method, it was found that the scan speed had the greatest effect on the relative density. Compared with the microstructure of the cross-section of the specimen at different scanning speeds, it was found that the microstructures at different speeds had similar characteristics, all of them were needle-like martensite distributed in the β matrix, but with the increase of scanning speed, the microstructure is finer and the lower scan speed leads to coarsening of the microstructure.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Baaklini, George Y.
1987-01-01
Acoustic images of a silicon carbide ceramic disk were obtained using a precision scanning contact pulse echo technique. Phase and cross-correlation velocity, and attenuation maps were used to form color images of microstructural variations. These acoustic images reveal microstructural variations not observable with X-ray radiography.
NASA Astrophysics Data System (ADS)
Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz
2018-01-01
Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.
Effect of processing parameters on reaction bonding of silicon nitride
NASA Technical Reports Server (NTRS)
Richman, M. H.; Gregory, O. J.; Magida, M. B.
1980-01-01
Reaction bonded silicon nitride was developed. The relationship between the various processing parameters and the resulting microstructures was to design and synthesize reaction bonded materials with improved room temperature mechanical properties.
Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.
Kannegulla, Akash; Cheng, Li-Jing
2016-08-01
We theoretically demonstrate the subwavelength focusing of terahertz (THz) waves in a hyperbolic metamaterial (HMM) based on a two-dimensional subwavelength silicon pillar array microstructure. The silicon microstructure with a doping concentration of at least 1017 cm-3 offers a hyperbolic dispersion at terahertz frequency range and promises the focusing of terahertz Gaussian beams. The results agree with the simulation based on effective medium theory. The focusing effect can be controlled by the doping concentration, which determines the real part of the out-of-plane permittivity and, therefore, the refraction angles in HMM. The focusing property in the HMM structure allows the propagation of terahertz wave through a subwavelength aperture. The silicon-based HMM structure can be realized using microfabrication technologies and has the potential to advance terahertz imaging with subwavelength resolution.
NASA Astrophysics Data System (ADS)
Shim, Hyun-Woo; Lee, Ji-Hye; Choi, Chang-Hyoung; Song, Hwan-Moon; Kim, Bo-Yeol; Kim, Dong-Pyo; Lee, Chang-Soo
2007-12-01
The patterning of biomolecules in well-defined microstructures is critical issue for the development of biosensors and biochips. However, the fabrication of microstructures with well-ordered and spatially discrete forms to provide the patterned surface for the immobilization of biomolecules is difficult because of the lack of distinct physical and chemical barriers separating patterns. This study present rapid biomolecule patterning using micromolding in capillaries (MIMIC), soft-lithographic fabrication of PEG microstructures for prevention of nonspecific binding as a biological barrier, and self assembled polymeric thin film for efficient immobilization of proteins or cells. For the proof of concept, protein (FITC-BSA), bacteria (E.coli BL21-pET23b-GFP) were used for biomolecules patterning on polyelectrolyte coated surface within PEG microstructures. The novel approach of MIMIC combined with LbL coating provides a general platform for patterning a broad range of materials because it can be easily applied to various substrates such as glass, silicon, silicon dioxide, and polymers.
Studies of thin-film growth of sputtered hydrogenated amorphous silicon
NASA Astrophysics Data System (ADS)
Moustakas, T. D.
1982-11-01
The anticipated potential use of hydrogenated amorphous silicon (a-SiHx), or related materials, for large area thin film device applications has stimulated extensive research. Studies conducted by Ross and Messier (1981) have shown that the growth habit of the sputtered a-SiHx films is columnar. It is found that films produced at high argon pressure have columnar microstructure, while those produced at low argon pressure show no noticeable microstructure. The preferred interpretation for the lack of microstructure for the low argon pressure films is bombardment of the films by positive Ar(+) ions due to the substrate negative floating potential. Anderson et al. (1979) attribute the microstructural changes to the bombardment of the film by the neutral sputtered Si species from which the film grows. In connection with the present investigation, data are presented which clearly indicate that charged particle bombardment rather than neutral particle bombardment is the cause of the observed microstructural changes as a function of argon pressure.
In Vitro Spoilation of Silicone-Hydrogel Soft Contact Lenses in a Model-Blink Cell.
Peng, Cheng-Chun; Fajardo, Neil P; Razunguzwa, Trust; Radke, Clayton J
2015-07-01
We developed an in vitro model-blink cell that reproduces the mechanism of in vivo fouling of soft contact lenses. In the model-blink cell, model tear lipid directly contacts the lens surface after forced aqueous rupture, mirroring the pre-lens tear-film breakup during interblink. Soft contact lenses are attached to a Teflon holder and immersed in artificial tear solution with protein, salts, and mucins. Artificial tear-lipid solution is spread over the air/tear interface as a duplex lipid layer. The aqueous tear film is periodically ruptured and reformed by withdrawing and reinjecting tear solution into the cell, mimicking the blink-rupture process. Fouled deposits appear on the lenses after cycling, and their compositions and spatial distributions are subsequently analyzed by optical microscopy, laser ablation electrospray ionization mass spectrometry, and two-photon fluorescence confocal scanning laser microscopy. Discrete deposit (white) spots with an average size of 20 to 300 μm are observed on the studied lenses, confirming what is seen in vivo and validating the in vitro model-blink cell. Targeted lipids (cholesterol) and proteins (albumin from bovine serum) are identified in the discrete surface deposits. Both lipid and protein occur simultaneously in the surface deposits and overlap with the white spots observed by optical microscopy. Additionally, lipid and protein penetrate into the bulk of tested silicone-hydrogel lenses, likely attributed to the bicontinuous microstructure of oleophilic silicone and hydrophilic polymer phases of the lens. In vitro spoilation of soft contact lenses is successfully achieved by the model-blink cell confirming the tear rupture/deposition mechanism of lens fouling. The model-blink cell provides a reliable laboratory tool for screening new antifouling lens materials, surface coatings, and care solutions.
The outgassing characteristic research of the silicone rubber in high power laser system
NASA Astrophysics Data System (ADS)
Wu, Qipeng; Lv, Haibing; Dong, Meng; Fu, Zhaohui
2016-11-01
The outgassing characteristic of the silicone rubber which is the main material of non-metallic materials in high power laser system was studied outgassing rates of the silicone rubber and the baked-out silicone rubber which was performed at 80°C4 hours were measured by the constant volume process method and outgassing properties of them were analyzed by the quadrupole mass spectrometer. The results show that the outgassing rate of the silicone rubber and the baked-out silicone rubber is 2.69×10-7 Pa·m3s-1cm-2 and 6.47×10-8 Pa·m3s-1cm-2 respectively. All of them give out condensable volatile matter in vacuum. The outgassing rate and condensable volatile matter of the baked-out silicone rubber are less an order of magnitude compared with the silicone rubber, and the outgassing rate of the silicone rubber is less than 1×10-7 Pa·m3s-1cm-2, which is fit for non-metallic material of the high power laser system. This paper also discusses the method of reducing the outgassing rate and condensable volatile matter of the silicone rubber in high power laser system.
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung
2007-11-01
In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.
NASA Astrophysics Data System (ADS)
Voronin, S. V.; Gureev, D. M.; Zolotarevskiĭ, A. V.
1990-06-01
An investigation was made of some characteristics of the formation of the structure of Al-Si alloys containing 10%, 12% and 20 % Si, and also of the commercial alloy V124 under conditions of surface fusion by laser-arc and laser sources. It was established that as a result of local fusion there was a change in the silicon deposition morphology, the α solid solution became oversaturated, and the eutectic point was shifted toward high silicon concentrations. It was found that the hardened layer retained its high hardness when treated at temperatures up to 250 °C. The commercial alloy V124 was used as an example to show that an alloyed layer with a controlled silicon concentration can be obtained on the surface by using a laser-arc or laser source.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Verrilli, Michael J.; Bhatt, Ramakrishna T.
2004-01-01
Ceramic matrix composites (CMCs) are being developed for advanced aerospace propulsion applications to save weight, improve reuse capability, and increase performance. However, mechanical and environmental loads applied to CMCs can cause discrete flaws and distributed microdamage, significantly reducing desirable physical properties. Such microdamage includes fiber/matrix debonding (interface failure), matrix microcracking, fiber fracture and buckling, oxidation, and second phase formation. A recent study (ref. 1) of the durability of a C/SiC CMC discussed the requirement for improved nondestructive evaluation (NDE) methods for monitoring degradation in these materials. Distributed microdamage in CMCs has proven difficult to characterize nondestructively because of the complex microstructure and macrostructure of these materials. This year, an ultrasonic guided-wave scan system developed at the NASA Glenn Research Center was used to characterize various microstructural and flaw conditions in SiC/SiC (silicon carbide fiber in silicon carbide matrix) and C/SiC (carbon fiber in silicon carbide matrix) CMC samples.
Effect of High Si Content on U3Si2 Fuel Microstructure
NASA Astrophysics Data System (ADS)
Rosales, Jhonathan; van Rooyen, Isabella J.; Meher, Subhashish; Hoggan, Rita; Parga, Clemente; Harp, Jason
2018-02-01
The development of U3Si2 as an accident-tolerant nuclear fuel has gained research interest because of its promising high uranium density and improved thermal properties. In the present study, three samples of U3Si2 fuel with varying silicon content have been fabricated by a conventional powder metallurgical route. Microstructural characterization via scanning and transmission electron microscopy reveals the presence of other stoichiometry of uranium silicide such as USi and UO2 in both samples. The detailed phase analysis by x-ray diffraction shows the presence of secondary phases, such as USi, U3Si, and UO2. The samples with higher concentrations of silicon content of 7.5 wt.% display additional elemental Si. These samples also possess an increased amount of the USi phase as compared to that in the conventional sample with 7.3 wt.% silicon. The optimization of U3Si2 fuel performance through the understanding of the role of Si content on its microstructure has been discussed.
Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther
2016-09-05
Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range.
NASA Astrophysics Data System (ADS)
Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.
2018-05-01
The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.
Ultra-Sensitive Magnetoresistive Displacement Sensing Device
NASA Technical Reports Server (NTRS)
Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)
2003-01-01
An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.
NASA Astrophysics Data System (ADS)
Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen
2018-06-01
In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.
NASA Astrophysics Data System (ADS)
Wei, Pei; Wei, Zhengying; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong
2017-06-01
This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
NASA Astrophysics Data System (ADS)
Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong
2018-05-01
The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.
Monolithically Integrated High-β Nanowire Lasers on Silicon.
Mayer, B; Janker, L; Loitsch, B; Treu, J; Kostenbader, T; Lichtmannecker, S; Reichert, T; Morkötter, S; Kaniber, M; Abstreiter, G; Gies, C; Koblmüller, G; Finley, J J
2016-01-13
Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III-V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs-AlGaAs core-shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (β = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input-output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects.
NASA Astrophysics Data System (ADS)
Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.
2014-05-01
The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.
Laser-induced Self-organizing Microstructures on Steel for Joining with Polymers
NASA Astrophysics Data System (ADS)
van der Straeten, Kira; Burkhardt, Irmela; Olowinsky, Alexander; Gillner, Arnold
The combination of different materials such as thermoplastic composites and metals is an important way to improve lightweight construction. As direct connections between these materials fail due to their physical and chemical properties, other joining techniques are required. A new joining approach besides fastening and adhesive joining is a laser-based two-step process. Within the first step the metal surface is modified by laser-microstructuring. In order to enlarge the boundary surface and create undercuts, random self-organizing microstructures are generated on stainless steel substrates. In a second process step both joining partners, metal and composite, are clamped together, the steel surface is heated up with laser radiation and through heat conduction the thermoplastic matrix is melted and flows into the structures. After cooling-down a firm joint between both materials is created. The presented work shows the influence of different laser parameters on the generation of the microstructures. The joint strength is investigated through tensile shear strength tests.
Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing
NASA Astrophysics Data System (ADS)
Choi, Young-Hwan; Ryu, Han-Youl
2018-04-01
We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.
Patterned microstructures formed with MeV Au implantation in Si(1 0 0)
NASA Astrophysics Data System (ADS)
Rout, Bibhudutta; Greco, Richard R.; Zachry, Daniel P.; Dymnikov, Alexander D.; Glass, Gary A.
2006-09-01
Energetic (MeV) Au implantation in Si(1 0 0) (n-type) through masked micropatterns has been used to create layers resistant to KOH wet etching. Microscale patterns were produced in PMMA and SU(8) resist coatings on the silicon substrates using P-beam writing and developed. The silicon substrates were subsequently exposed using 1.5 MeV Au 3+ ions with fluences as high as 1 × 10 16 ions/cm 2 and additional patterns were exposed using copper scanning electron microscope calibration grids as masks on the silicon substrates. When wet etched with KOH microstructures were created in the silicon due to the resistance to KOH etching cause by the Au implantation. The process of combining the fabrication of masked patterns with P-beam writing with broad beam Au implantation through the masks can be a promising, cost-effective process for nanostructure engineering with Si.
NASA Technical Reports Server (NTRS)
Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.
1977-01-01
Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.
NASA Astrophysics Data System (ADS)
Tian, C. Y.; Jiang, H.
2018-01-01
Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.
Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials
NASA Astrophysics Data System (ADS)
Ma, Teng
In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ˜100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications.
Effect of Sr Additive Amount and Holding Time on Microstructure of A390 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Zhang, J. H.; Xing, S. M.; Han, Q. Y.; Guo, Q.; Wang, R. F.
2017-11-01
The microstructure of A390 alloy under different Sr additive amounts and holding times was studied by means of direct reading spectrum analysis, energy spectrum analysis, optical microscope and electron microscope. The results show that Sr has a good modification to eutectic Si, while it has a negative effect on primary silicon. The Sr addition will increase the size of primary silicon. When the addition amount of Al-10Sr alloy is 0.6%, the modification of eutectic silicon is the optimum. The Sr has a short incubation period and a fine modification at 10min, but it is more serious burning rate in small furnace smelting, and the modification effect disappears basically after 100min.
Process for forming a chromium diffusion portion and articles made therefrom
Helmick, David Andrew; Cavanaugh, Dennis William; Feng, Ganjiang; Bucci, David Vincent
2012-09-11
In one embodiment, a method for forming an article with a diffusion portion comprises: forming a slurry comprising chromium and silicon, applying the slurry to the article, and heating the article to a sufficient temperature and for a sufficient period of time to diffuse chromium and silicon into the article and form a diffusion portion comprising silicon and a microstructure comprising .alpha.-chromium. In one embodiment, a gas turbine component comprises: a superalloy and a diffusion portion having a depth of less than or equal to 60 .mu.m measured from the superalloy surface into the gas turbine component. The diffusion portion has a diffusion surface having a microstructure comprising greater than or equal to 40% by volume .alpha.-chromium.
Modeling of microstructure evolution in direct metal laser sintering: A phase field approach
NASA Astrophysics Data System (ADS)
Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev
2017-02-01
Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.
Copper-silicon-magnesium alloys for latent heat storage
Gibbs, P. J.; Withey, E. A.; Coker, E. N.; ...
2016-06-21
The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.
2012-01-01
An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.
Microstructural analysis of W-SiCf/SiC composite
NASA Astrophysics Data System (ADS)
Yoon, Hanki; Oh, Jeongseok; Kim, Gonho; Kim, Hyunsu; Takahashi, Heishichiro; Kohyama, Akira
2015-03-01
Continuous silicon carbide fiber-reinforced silicon carbide (SiCf/SiC) composites are promising structure candidates for future fusion power systems such as gas coolant fast channels, extreme high temperature reactor and fusion reactors, because of their intrinsic properties such as excellent mechanical properties, high thermal conductivity, good thermal-shock resistance as well as excellent physical and chemical stability in various environments under elevated temperature conditions. In this study, bonding of tungsten and SiCf/SiC was produced by hot-press method. Microstructure analyses were performed using SEM and TEM.
Parametric study of laser photovoltaic energy converters
NASA Technical Reports Server (NTRS)
Walker, G. H.; Heinbockel, J. H.
1987-01-01
Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.
NASA Astrophysics Data System (ADS)
Choi, Tae-Youl
Ultra-short pulsed laser radiation has been shown to be effective for precision materials processing and surface micro-modification. One of advantages is the substantial reduction of the heat penetration depth, which leads to minimal lateral damage. Other advantages include non-thermal nature of ablation process, controlled ablation and ideal characteristics for precision micro-structuring. Yet, fundamental questions remain unsolved regarding the nature of melting and ablation mechanisms in femtosecond laser processing of materials. In addition to micro engineering problems, nano-structuring and nano-fabrication are emerging fields that are of particular interest in conjunction with femtosecond laser processing. A comprehensive experimental study as well as theoretical development is presented to address these issues. Ultra-short pulsed laser irradiation was used to crystallize 100 nm amorphous silicon (a-Si) films. The crystallization process was observed by time-resolved pump-and-probe reflection imaging in the range of 0.2 ps to 100 ns. The in-situ images in conjunction with post-processed SEM and AFM mapping of the crystallized structure provide evidence for non-thermal ultra-fast phase transition and subsequent surface-initiated crystallization. Mechanisms of ultra-fast laser-induced ablation on crystalline silicon and copper are investigated by time-resolved pump-and-probe microscopy in normal imaging and shadowgraph arrangements. A one-dimensional model of the energy transport is utilized to predict the carrier temperature and lattice temperature as well as the electron and vapor flux emitted from the surface. The temporal delay between the pump and probe pulses was set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. The ejection of material was observed at several picoseconds to tens of nanoseconds after the main (pump) pulse by high-resolution, ultra-fast shadowgraphs. The ultrashort laser pulse accompanied by the pre-pulse induces air breakdown that can be detrimental to materials processing. A time-resolved pump-and-probe experiment provides distinct evidence for the occurrence of an air plasma and air breakdown. This highly nonlinear phenomenon takes place before the commencement of the ablation process, which is traced beyond elapsed time of the order of 10 ps with respect to the ablating pulse. The nonlinear refractive index of the generated air plasma is calculated as a function of electron density. The self-focusing of the main pulse is identified by the third order nonlinear susceptibility. A crystalline silicon sample is subjected to two optically separated ultra-fast laser pulses of full-width-half-maximum (FWHM) duration of about 80 femtoseconds. These pulses are delivered at wavelength, lambda = 800 nm. Femtosecond-resolved imaging pump-and-probe experiments in reflective and Schlieren configurations have been performed to investigate plasma dynamics and shock wave propagation during the sample ablation process. By using a diffractive optical element (DOE) for beam shaping, microchannels were fabricated. A super-long working distance objective lens was used to machine silicon materials in the sub-micrometer scale. As an extension of micro-machining, the finite difference time domain (FDTD) method is used to assess the feasibility of using near-field distribution of laser light. Gold coated films were machined with nano-scale dimensions and characterized with atomic force microscopy (AFM).
NASA Astrophysics Data System (ADS)
Chen, Yong; Luo, Guanghong; Diao, Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos
2007-04-01
Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3×ω Nd:YAG laser in air, SF6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ~2 µm in SF6 gas and to ~5 µm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (~10×) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.
Bian, Hao; Yang, Qing; Liu, Hewei; Chen, Feng; Du, Guangqing; Si, Jinhai; Hou, Xun
2013-03-01
Netlike or porous microstructures are highly desirable in metal implants and biomedical monitoring applications. However, realization of such microstructures remains technically challenging. Here, we report a facile and environmentally friendly method to prepare netlike microstructures on a stainless steel by taking the full advantage of the liquid-mediated femtosecond laser ablation. An unordered netlike structure and a quasi-ordered array of holes can be fabricated on the surface of stainless steel via an ethanol-mediated femtosecond laser line-scan method. SEM analysis of the surface morphology indicates that the porous netlike structure is in the micrometer scale and the diameter of the quasi-ordered holes ranges from 280 nm to 320 nm. Besides, we find that the obtained structures are tunable by altering the laser processing parameters especially scanning speed. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, H.; Yang, Z. Y.; Lu, Y. F.
2007-02-01
Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.
Cryogenic Laser Calorimetry for Impurity Analysis
NASA Technical Reports Server (NTRS)
Swimm, R. T.
1985-01-01
The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.
Method of making self-aligned lightly-doped-drain structure for MOS transistors
Weiner, Kurt H.; Carey, Paul G.
2001-01-01
A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.
Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi
2018-03-13
Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Direct laser writing for micro-optical devices using a negative photoresist.
Tsutsumi, Naoto; Hirota, Junichi; Kinashi, Kenji; Sakai, Wataru
2017-12-11
Direct laser writing (DLW) via two-photon absorption (TPA) has attracted much attention as a new microfabrication technique because it can be applied to fabricate complex, three-dimensional (3D) microstructures. In this study, 3D microstructures and micro-optical devices of micro-lens array on the micrometer scale are fabricated using the negative photoresist SU-8 through TPA with a femtosecond laser pulse under a microscope. The effects of the irradiation conditions on linewidths, such as laser power, writing speed, and writing cycles (a number of times a line is overwritten), are investigated before the fabrication of the 3D microstructures. Various microstructures such as woodpiles, hemisphere and microstructures, 3D micro-lens and micro-lens array for micro-optical devices are fabricated. The shape of the micro-lens is evaluated using the shape analysis mode of a laser microscope to calculate the working distance of the fabricated micro-lenses. The calculated working distance corresponds well to the experimentally measured value. The focusing performance of the fabricated micro-lens is confirmed by the TPA fluorescence of an isopropyl thioxanthone (ITX) ethanol solution excited by a Ti:sapphire femtosecond laser at 800 nm. Micro-lens array (assembled 9 micro-lenses) are fabricated. Nine independent woodpile structures are simultaneously manufactured by DLW via TPA to confirm the multi-focusing ability using the fabricated micro-lens array.
Research on laser direct metal deposition
NASA Astrophysics Data System (ADS)
Zhang, Yongzhong; Shi, Likai
2003-03-01
Laser direct deposition of metallic parts is a new manufacturing technology, which combines with computer-aided design, laser cladding and rapid prototyping. Fully dense metallic parts can be directly obtained through melting the coaxially fed powders with a high-power laser in a layer-by-layer manner. The process characteristics, system composition as well as some research and advancement on laser direct deposition are presented here. The microstructure and properties observation of laser direct formed 663 copper alloy, 316L stainless steel and Rene'95 nickel super alloy samples indicate that, the as-deposited microstructure is similar to rapidly solidified materials, with homogenous composition and free of defects. Under certain conditions, directionally solidified microstructure can be obtained. The as-formed mechanical properties are equal to or exceed those for casting and wrought annealed materials. At the same time, some sample parts with complicate shape are presented for technology demonstration. The formed parts show good surface quality and dimensional accuracy.
NASA Astrophysics Data System (ADS)
Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo
2018-02-01
Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.
NASA Technical Reports Server (NTRS)
Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.
2007-01-01
Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.
NASA Astrophysics Data System (ADS)
Lim, Daniel J.; Ki, Hyungson; Mazumder, Jyoti
2006-06-01
A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 108-109 W cm-2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases.
Bachman, Daniel; Chen, Zhijiang; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien
2013-05-06
We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15 µm radius were irradiated with single 400 nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J · cm(-2)with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of -1.7 nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.
NASA Astrophysics Data System (ADS)
Polyakov, D. S.; Yakovlev, E. B.
2018-03-01
We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.
NASA Astrophysics Data System (ADS)
Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.
2018-04-01
Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.
Ghosh, Siddharth; Ananthasuresh, G K
2016-01-04
We report microstructures of SU-8 photo-sensitive polymer with high-aspect-ratio, which is defined as the ratio of height to in-plane feature size. The highest aspect ratio achieved in this work exceeds 250. A multi-layer and single-photon lithography approach is used in this work to expose SU-8 photoresist of thickness up to 100 μm. Here, multi-layer and time-lapsed writing is the key concept that enables nanometer localised controlled photo-induced polymerisation. We use a converging monochromatic laser beam of 405 nm wavelength with a controllable aperture. The reflection of the converging optics from the silicon substrate underneath is responsible for a trapezoidal edge profile of SU-8 microstructure. The reflection induced interfered point-spread-function and multi-layer-single-photon exposure helps to achieve sub-wavelength feature sizes. We obtained a 75 nm tip diameter on a pyramid shaped microstructure. The converging beam profile determines the number of multiple optical focal planes along the depth of field. These focal planes are scanned and exposed non-concurrently with varying energy dosage. It is notable that an un-automated height axis control is sufficient for this method. All of these contribute to realising super-high-aspect-ratio and 3D micro-/nanostructures using SU-8. Finally, we also address the critical problems of photoresist-based micro-/nanofabrication and their solutions.
Microstructure and Corrosion Behavior of Laser Melted 304L SS Weldment in Nitric Acid Medium
NASA Astrophysics Data System (ADS)
Suresh, Girija; Kishor, P. S. V. R. A.; Dasgupta, Arup; Upadhyay, B. N.; Mallika, C.; Kamachi Mudali, U.
2017-02-01
The manuscript presents the effect of laser surface melting on the corrosion property of 304L SS weldment in nitric acid medium. 304L SS weldment was prepared by gas tungsten arc welding process and subsequently laser surface melted using Nd:YAG laser. The microstructure and corrosion resistance of laser surface melted 304L SS weldment was evaluated and compared with that of 304L SS as-weldment and 304L SS base. Microstructural evaluation was carried out using optical and scanning electron microscopes attached with energy-dispersive x-ray spectroscopy. Corrosion investigations were carried out in 4 and 8 M nitric acid by potentiodynamic polarization technique. From the results, it was found that laser surface melting of the weldment led to chemical and microstructural homogeneities, accompanied by a substantial decrease in delta ferrite content, that enhanced the corrosion resistance of the weldment in 4 and 8 M nitric acid. However, the enhancement in the corrosion resistance was not substantial. The presence of small amount of delta ferrite (2-4 wt.%) in the laser surface melted specimens was found to be detrimental in nitric acid. X-ray photoelectron spectroscopy studies were carried out to investigate the composition of the passive film.
NASA Astrophysics Data System (ADS)
Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan
2014-04-01
Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.
NASA Astrophysics Data System (ADS)
Cottam, Ryan; Brandt, Milan
The laser cladding of Ti-6Al-4 V powder on Ti-6Al-4 V substrate has been investigated to determine laser parameters that could be used as a repair technology for Ti-6Al-4 V components. The parameters chosen for the investigation were developed by an analytical laser cladding model. Holding clad height and melt pool depth constant, the traversing speed was varied between 300 mm/min and 1500 mm/min, an associated power for the given speed was calculated by the model. Two different melt pool depths were used in the calculation of laser power for a given process velocity. The resulting microstructures in the clad zone varied from a relatively thin martensitic structure to a dendritic/thick martensitic structure. The heat affected zone (HAZ) showed a refinement of the Widmanstatten microstructure with a decreasing laser traversing speed and a coarser martensitic structure for the sample prepared with a deeper melt pool.
Process for forming a chromium diffusion portion and articles made therefrom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmick, David Andrew; Cavanaugh, Dennis William; Feng, Ganjiang
In one embodiment, a method for forming an article with a diffusion portion comprises: forming a slurry comprising chromium and silicon, applying the slurry to the article, and heating the article to a sufficient temperature and for a sufficient period of time to diffuse chromium and silicon into the article and form a diffusion portion comprising silicon and a microstructure comprising .alpha.-chromium. In one embodiment, a gas turbine component comprises: a superalloy and a diffusion portion having a depth of less than or equal to 60 .mu.m measured from the superalloy surface into the gas turbine component. The diffusion portionmore » has a diffusion surface having a microstructure comprising greater than or equal to 40% by volume .alpha.-chromium.« less
Lithium concentration dependent structure and mechanics of amorphous silicon
NASA Astrophysics Data System (ADS)
Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Zhang, S.; Yan, C.
2016-06-01
A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.
Surface modification of titanium nitride film by a picosecond Nd:YAG laser
NASA Astrophysics Data System (ADS)
Gakovic, B.; Trtica, M.; Batani, D.; Desai, T.; Panjan, P.; Vasiljevic-Radovic, D.
2007-06-01
The interaction of a picosecond Nd:YAG laser (wavelength 532 nm, pulse duration 40 ps) with a polycrystalline titanium nitride (TiN) film was studied. The TiN thin film was deposited by physical vapour deposition on a silicon substrate. The titanium nitride/silicon system was modified with an energy fluence from 0.2 to 5.9 J cm-2. Multi-pulse irradiation was performed in air by a focused laser beam. Surface modifications were analysed after 1 100 successive laser pulses. Depending on the laser pulse energy and pulse count, the following phenomena were observed: (i) increased surface roughness, (ii) titanium nitride film cracking, (iii) silicon substrate modification, (iv) film exfoliation and (v) laser-induced periodical surface structures on nano- (NPSS) and micro-dimensions (MPSS).
Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics.
Fegadolli, William S; Kim, Se-Heon; Postigo, Pablo Aitor; Scherer, Axel
2013-11-15
We report on a hybrid InP/Si photonic crystal nanobeam laser emitting at 1578 nm with a low threshold power of ~14.7 μW. Laser gain is provided from a single InAsP quantum well embedded in a 155 nm InP layer bonded on a standard silicon-on-insulator wafer. This miniaturized nanolaser, with an extremely small modal volume of 0.375(λ/n)(3), is a promising and efficient light source for silicon photonics.
Microstructure formation on liquid metal surface under pulsed action
NASA Astrophysics Data System (ADS)
Genin, D. E.; Beloplotov, D. V.; Panchenko, A. N.; Tarasenko, V. F.
2018-04-01
Experimental study and theoretical analysis of growth of microstructures (microtowers) on liquid metals by fs laser pulses have been carried out. Theoretical analysis has been performed on the basis of the two-temperature model. Compared to ns laser pulses, in fs irradiation regimes the heat-affected zone is strongly localized resulting in much larger temperatures and temperature gradients. In the experimental irradiation regimes, the surface temperature of liquid metals studied may reach or even exceed a critical level that culminates in phase explosion or direct atomization of a metal surface layer. However, before explosive ablation starts, a stress wave with an amplitude up to several GPa is formed which demolishes oxide covering. Moreover, at high laser fluences laser-induced breakdown is developed in oxide layer covering the metal surface that leads to destruction/ablation of oxide without damaging metal underneath. An overall scenario of microstructure growth with fs laser pulses is similar to that obtained for ns irradiation regimes though the growth threshold is lower due to smaller heat-conduction losses. Also we managed to obtain microstructures formation by the action of spark discharge.
NASA Astrophysics Data System (ADS)
Ventura, Anthony Patrick
Selective Laser Melting (SLM) is an additive manufacturing technology that utilizes a high-power laser to melt metal powder and form a part layer-by-layer. Over the last 25 years, the technology has progressed from prototyping polymer parts to full scale production of metal component. SLM offers several advantages over traditional manufacturing techniques; however, the current alloy systems that are researched and utilized for SLM do not address applications requiring high electrical and thermal conductivity. This work presents a characterization of the microstructural evolution and mechanical property development of two copper alloys fabricated via SLM and post-process heat treated to address this gap in knowledge. Tensile testing, conductivity measurement, and detailed microstructural characterization was carried out on samples in the as-printed and heat treated conditions. A single phase solid solution strengthened binary alloy, Cu-4.3Sn, was the first alloy studied. Components were selectively laser melted from pre-alloyed Cu-4.3Sn powder and heat treated at 873 K (600 °C) and 1173 K (900 °C) for 1 hour. As-printed samples were around 97 percent dense with a yield strength of 274 MPa, an electrical conductivity of 24.1 %IACS, and an elongation of 5.6%. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a sub-micron cellular solidification sub-structure. Nanometer scale tin dioxide particles identified via XRD were found throughout the structure in the tin-rich intercellular regions. The second alloy studied was a high-performance precipitation hardening Cu-Ni-Si alloy, C70250. Pre-alloyed powder was selectively laser melted to produce components around 98 percent dense with high mechanical strength and electrical conductivity. Aging heat treatments were carried out at 723 K (450 °C) directly on as-printed samples up to 128 hours. A peak yield strength of around 590 MPa could be attained with an electrical conductivity of 34.2 %IACS after 8 hours of aging. Conductivity continues to increase with further aging while the peak strength appears to be less sensitive to aging time exhibiting a broad range of time where near-peak properties exist. Nanometer-scale silicon-rich oxide particles exist throughout the material and persist during aging. Deformation twinning is observed in the peak age condition after tensile testing and several strengthening mechanisms appear to be active to varying degrees throughout aging, which accounts for the broad range of aging time where nearly the peak mechanical properties exist. The findings of this research are integral to understanding SLM copper alloys and serve as a foundation for future development of new copper alloys tailored to the SLM process.
Method for forming silicon on a glass substrate
McCarthy, Anthony M.
1995-01-01
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.
Method for forming silicon on a glass substrate
McCarthy, A.M.
1995-03-07
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.
NASA Astrophysics Data System (ADS)
Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.
2018-05-01
High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.
NASA Astrophysics Data System (ADS)
Harshith, H. S.; Hemanth, Joel
2018-04-01
This research work aims at developing and mechanical characterization of aluminium (LM13) based metal matrix composite reinforced with varying percentage of fused SiO2 (3%,6%,9%,12%). The mechanical properties are completely dependent on the microstructural parameters of the system. Also the microstructure further depends on the cooling rates during solidification process. Various Chills like Silicon carbide, Mild steel, Copper were used during the casting process to increase the rate of solidification, which enhances the mechanical properties of the composite. The chill casted specimens were subjected to tensile and hardness tests followed by microstructure studies. A casting produced using mild steel chill exhibited higher young's modulus and was found to be maximum at 9% reinforcement. Finer microstructure and better UTS were seen for specimen's casted using copper chills, whereas silicon carbide and mild steel chills gave rise to very coarse structure with reduced UTS values compared to copper chills.
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa
2016-09-01
Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2011-01-01
Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.
Laser etching of austenitic stainless steels for micro-structural evaluation
NASA Astrophysics Data System (ADS)
Baghra, Chetan; Kumar, Aniruddha; Sathe, D. B.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd
2015-06-01
Etching is a key step in metallography to reveal microstructure of polished specimen under an optical microscope. A conventional technique for producing micro-structural contrast is chemical etching. As an alternate, laser etching is investigated since it does not involve use of corrosive reagents and it can be carried out without any physical contact with sample. Laser induced etching technique will be beneficial especially in nuclear industry where materials, being radioactive in nature, are handled inside a glove box. In this paper, experimental results of pulsed Nd-YAG laser based etching of few austenitic stainless steels such as SS 304, SS 316 LN and SS alloy D9 which are chosen as structural material for fabrication of various components of upcoming Prototype Fast Breeder Reactor (PFBR) at Kalpakkam India were reported. Laser etching was done by irradiating samples using nanosecond pulsed Nd-YAG laser beam which was transported into glass paneled glove box using optics. Experiments were carried out to understand effect of laser beam parameters such as wavelength, fluence, pulse repetition rate and number of exposures required for etching of austenitic stainless steel samples. Laser etching of PFBR fuel tube and plug welded joint was also carried to evaluate base metal grain size, depth of fusion at welded joint and heat affected zone in the base metal. Experimental results demonstrated that pulsed Nd-YAG laser etching is a fast and effortless technique which can be effectively employed for non-contact remote etching of austenitic stainless steels for micro-structural evaluation.
Laser damage threshold measurements of microstructure-based high reflectors
NASA Astrophysics Data System (ADS)
Hobbs, Douglas S.
2008-10-01
In 2007, the pulsed laser induced damage threshold (LIDT) of anti-reflecting (AR) microstructures built in fused silica and glass was shown to be up to three times greater than the LIDT of single-layer thin-film AR coatings, and at least five times greater than multiple-layer thin-film AR coatings. This result suggested that microstructure-based wavelength selective mirrors might also exhibit high LIDT. Efficient light reflection over a narrow spectral range can be produced by an array of sub-wavelength sized surface relief microstructures built in a waveguide configuration. Such surface structure resonant (SSR) filters typically achieve a reflectivity exceeding 99% over a 1-10nm range about the filter center wavelength, making SSR filters useful as laser high reflectors (HR). SSR laser mirrors consist of microstructures that are first etched in the surface of fused silica and borosilicate glass windows and subsequently coated with a thin layer of a non-absorbing high refractive index dielectric material such as tantalum pent-oxide or zinc sulfide. Results of an initial investigation into the LIDT of single layer SSR laser mirrors operating at 532nm, 1064nm and 1573nm are described along with data from SEM analysis of the microstructures, and spectral reflection measurements. None of the twelve samples tested exhibited damage thresholds above 3 J/cm2 when illuminated at the resonant wavelength, indicating that the simple single layer, first order design will need further development to be suitable for high power laser applications. Samples of SSR high reflectors entered in the Thin Film Damage Competition also exhibited low damage thresholds of less than 1 J/cm2 for the ZnS coated SSR, and just over 4 J/cm2 for the Ta2O5 coated SSR.
Study of cylindrical optical micro-structure technology used in infrared laser protection
NASA Astrophysics Data System (ADS)
Sun, Yanjun; Liu, Shunrui; Wang, Zhining; Zhao, Yixuan; Wu, Boqi; Leng, Yanbing; Wang, Li
2016-10-01
The paper aimed at the problem that strong absorption in visible wavelengths and equipment or operator injury caused by specular reflection exist in infrared laser protection technology to propose an infrared laser non-specular reflection optical micro-structure formed from optical window surface. It has the function of little effect on visible light transmission and large-angle scattering to 1064nm infrared laser in order to enable laser protection. The paper uses light track method to design double-side micro-cylindrical lens arrays with dislocation construction. Array period T and curvature radius of lens units R should meet the condition:0
NASA Astrophysics Data System (ADS)
Olakanmi, E. O.; Tlotleng, M.; Meacock, C.; Pityana, S.; Doyoyo, M.
2013-06-01
Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.
Microstructure and corrosion behavior of laser processed NiTi alloy.
Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K
2015-12-01
Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.
A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeslack, W.A. III; Hurley, J.; Paskell, T.
1994-12-31
Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less
Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation.
Chen, Charlton J; Zheng, Jiangjun; Gu, Tingyi; McMillan, James F; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee Wei
2011-06-20
We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×10(5) to 1.2×10(5). Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.
Monolithic microchannel heatsink
Benett, W.J.; Beach, R.J.; Ciarlo, D.R.
1996-08-20
A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density. 9 figs.
Monolithic microchannel heatsink
Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.
1996-01-01
A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.
NASA Astrophysics Data System (ADS)
Farrokhi, H.; Gruzdev, V.; Zheng, H. Y.; Rawat, R. S.; Zhou, W.
2016-06-01
A constant magnetic field can significantly improve the quality and speed of ablation by nanosecond laser pulses. These improvements are usually attributed to the confinement of laser-produced plasma by the magnetic field and specific propagation effects in the magnetized plasma. Here we report a strong influence of constant axial magnetic field on the ablation of silicon by 20-ns laser pulses at wavelength 355 nm, which results in an increase of ablation depth by a factor of 1.3 to 69 depending on laser parameters and magnitude of the magnetic field. The traditional plasma effects do not explain this result, and magneto-absorption of silicon is proposed as one of the major mechanisms of the significant enhancement of ablation.
Chao, Yonglie; Du, Li; Yang, Ling
2005-05-01
Information regarding the merits and problems associated with connecting a keeper to a dowel and coping using a laser welding technique has not been explored extensively in the dental literature. This in vitro study compared the surface characteristics, microstructure, and magnetic retentive forces for a dowel and coping-keeper mechanism fabricated using a laser welding process and a cast-to casting technique. Five cast-to and 6 laser-welded dowel and coping-keeper specimens were tested. Using 5 freestanding keepers as the control group, the surface characteristics and microstructures of the specimens were examined by means of stereomicroscopy, metallographic microscopy, and scanning electron microscopy (SEM). Energy-dispersive spectroscopic (EDS) microanalysis with SEM provided elemental concentration information for the test specimens. The vertical magnetic retentive forces (N) of the 3 groups were measured using a universal testing machine. The results were statistically compared using 1-way analysis of variance and the Newman-Keuls multiple range test (alpha =.05). The laser-welded dowel-keeper generally maintained its original surface smoothness as well as the original microstructure. Elements diffused readily through the fusion zone. The surface of the cast dowel-keeper became rough with the formation of an oxide layer, the microstructure changed, and there was only limited elemental diffusion in the fusion zone. The average vertical magnetic retentive force of the laser-welded group, the cast group, and the control group were 4.2 +/- 0.2 N, 3.8 +/- 0.3 N, and 5.6 +/- 0.3 N, respectively. Statistically significant differences in vertical magnetic retentive force were found between the control group and both the laser-welded and cast groups (P <.01). Compared with the cast dowel-keepers, the average vertical magnetic retentive force of the laser-welded dowel-keepers was significantly higher (P <.05). The laser welding technique had less influence on the surface characteristics, the microstructure, and the magnetic retentive forces of keepers relative to techniques that incorporate a keeper at the time of cast dowel and coping fabrication.
A cascaded silicon Raman laser
NASA Astrophysics Data System (ADS)
Rong, Haisheng; Xu, Shengbo; Cohen, Oded; Raday, Omri; Lee, Mindy; Sih, Vanessa; Paniccia, Mario
2008-03-01
One of the major advantages of Raman lasers is their ability to generate coherent light in wavelength regions that are not easily accessible with other conventional types of lasers. Recently, efficient Raman lasing in silicon in the near-infrared region has been demonstrated, showing great potential for realizing low-cost, compact, room-temperature lasers in the mid-infrared region. Such lasers are highly desirable for many applications, ranging from trace-gas sensing, environmental monitoring and biomedical analysis, to industrial process control, and free-space communications. Here we report the first experimental demonstration of cascaded Raman lasing in silicon, opening the path to extending the lasing wavelength from the near- to mid-infrared region. Using a 1,550-nm pump source, we achieve stable, continuous-wave, second-order cascaded lasing at 1,848 nm with an output power exceeding 5 mW. The laser operates in single mode, and the laser linewidth is measured to be <2.5 MHz.
Quantum dynamics of charge state in silicon field evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp
2016-08-15
The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less
Rhea, Antonette; Ahila, S C; Kumar, B Muthu
2017-01-01
Maxillofacial prosthesis are supported by implants, require a retentive matrix to retain the suprastructure. The retentive matrix is made up of acrylic resin to which the silicone prostheses are anchored by micro-mechanical bond. The delamination of silicone away from the retentive matrix is a persisting problem in implant-supported maxillofacial prosthesis. This study aimed to evaluate the effect of laser etching on the shear bond strength (BS) between acrylic resin and maxillofacial silicone, after 24 h of fabrication and after 200 h of accelerated aging. The samples were prepared according to ISO/TR 11405:1994 in maxillofacial silicone and polymethyl methacrylate resin. The untreated samples were Group A (control), Group B (silicon carbide [SiC] paper abrasion 80 grit size), and Group C (erbium-doped yttrium aluminum garnet laser etching). Then, the samples were coated with primer and bonded to maxillofacial silicone. The samples were subjected to shear BS test in an universal testing machine after 24 h of fabrication and after 200 h of accelerated aging. The results were statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test. The shear BS test after 24 h of fabrication showed better BS in SiC paper abrasion. The shear BS test after 200 h of accelerated aging showed better BS in laser etching compared to SiC abrasion. Laser etching produced better shear BS compared to conventional SiC paper abrasion after 200 h of accelerated aging process.
Microstructure and Corrosion Resistance of Laser-Welded Crossed Nitinol Wires.
Dong, Peng; Yao, Runhua; Yan, Zheng; Yan, Zhifeng; Wang, Wenxian; He, Xiuli; Zhou, Jun
2018-05-18
Laser welding has been considered to be one of the most promising joining processes for Nitinol medical device manufacturing. Presently, there is still a limited understanding about how laser welding affects the microstructure and the resultant corrosion behaviors. This work aimed to reveal the microstructural factors that influence the corrosion resistance of laser-welded crossed Nitinol joints. The microstructures within various zones of the joints were characterized by using transmission electron microscopy (TEM), and the corrosion behaviors of the joints in 0.9% NaCl and Hank's solutions were studied. The base metal exhibits a single austenite (B2) phase and the highest corrosion resistance. The phase constituent of the fusion zone is the coexistence of the B2 matrix and some precipitates (T₂Ni, TiNi 3, and Ti₃Ni₄ particles), resulting in a slight decrease in corrosion resistance. The heat affected zone (HAZ) shows the austenite matrix but with the precipitation of R-phase, which considerably reduces the corrosion potential, making it the weakest zone.
NASA Astrophysics Data System (ADS)
Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.
2016-05-01
Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.
Femtosecond laser fabricated spike structures for selective control of cellular behavior.
Schlie, Sabrina; Fadeeva, Elena; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris N
2010-09-01
In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.
Wang, Yadong; Wei, Yongqiang; Huang, Yingyan; Tu, Yongming; Ng, Doris; Lee, Cheewei; Zheng, Yunan; Liu, Boyang; Ho, Seng-Tiong
2011-01-31
We have demonstrated a heterogeneously integrated III-V-on-Silicon laser based on an ultra-large-angle super-compact grating (SCG). The SCG enables single-wavelength operation due to its high-spectral-resolution aberration-free design, enabling wavelength division multiplexing (WDM) applications in Electronic-Photonic Integrated Circuits (EPICs). The SCG based Si/III-V laser is realized by fabricating the SCG on silicon-on-insulator (SOI) substrate. Optical gain is provided by electrically pumped heterogeneous integrated III-V material on silicon. Single-wavelength lasing at 1550 nm with an output power of over 2 mW and a lasing threshold of around 150 mA were achieved.
Laser wafering for silicon solar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell
2011-03-01
Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurfacemore » damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.« less
NASA Astrophysics Data System (ADS)
Gnanasekaran, S.; Padmanaban, G.; Balasubramanian, V.
2017-12-01
In this present work, nickel based alloy was deposited on 316 LN austenitic stainless steel (ASS) by a laser hardfacing technique to investigate the influence of laser power on macrostructure, microstructure, microhardness, dilution and wear characteristics. The laser power varied from 1.1 to 1.9 kW. The phase constitution, microstructure and microhardness were examined by optical microscope, scanning electron microscopy, energy dispersion spectroscopy and Vickers microhardness tester. The wear characteristics of the hardfaced surfaces and substrate were evaluated at room temperature (RT) under dry sliding wear condition (pin-on-disc). The outcome demonstrates that as the laser power increases, dilution increases and hardness of the deposit decreases. This is because excess heat melts more volume of substrate material and increases the dilution; subsequently it decreases the hardness of the deposit. The microstructure of the deposit is characterized by Ni-rich carbide, boride and silicide.
He, Wanlin; Yang, Jianjun; Guo, Chunlei
2017-03-06
The control of laser-induced periodic ripple microstructures on 4H-SiC crystal surface is studied using temporally delayed collinear three femtosecond laser pulse trains linearly polarized in different directions. The ripple orientation appears to develop independent of the individual laser polarizations and exhibits non-monotonical change with variable time delays, whose variation tendency is also affected by the polarization intersection angles. Remarkably, the ripple period is observed to transfer from high- to low-spatial-frequency regions, accompanied by distinctly improved morphological uniformity and clearness. The results are satisfactorily interpreted based on a physical model of the surface wave excitation on a transient index metasurface, which is confirmed by further experiments. Our investigations indicate that transient noneqilibrium dynamics of the material surface provides an effective way to manipulate the laser-induced microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganin, D V; Lapshin, K E; Obidin, A Z
2015-11-30
We present the result of the experiments on producing graphite-like cylindrical microstructures by focusing single femtosecond laser pulses into the bulk of a transparent polymer (polycarbonate). The microstructures are embedded in a cladding with a modified refractive index, possessing waveguide properties. In the experiments with nontransparent screens and diaphragms, placed in the laser beam in front of the entrance pupil of the objective with a large numerical aperture, we have found that the paraxial rays are blocked by the peripheral ones, which reduces the length of the destruction region in the pre-focal zone. In the experiments with transparent screens andmore » diaphragms, introducing optical delays τ{sub d} between the paraxial and peripheral rays, the quantitative dependence of the destruction region length in the pre-focal zone on the value of τ{sub d} is determined. (interaction of laser radiation with matter. laser plasma)« less
Microstructured silicon radiation detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okandan, Murat; Derzon, Mark S.; Draper, Bruce L.
2017-03-14
A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 .mu.m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.
Probabilistic Methods for Image Generation and Encoding.
1993-10-15
video and graphics lab at Georgia Tech, linking together Silicon Graphics workstations, a laser video recorder, a Betacam video recorder, scanner...computer laboratory at Georgia Tech, based on two Silicon Graphics Personal Iris workstations, a SONY laser video recorder, a SONY Betacam SP video...laser disk in component RGB form, with variable speed playback. From the laser recorder the images can be dubbed to the Betacam or the VHS recorder in
Quantum dot SOA/silicon external cavity multi-wavelength laser.
Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael
2015-02-23
We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.
Nilsen, Joseph
1991-01-01
An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.
Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers
Haller, Eugene E.; Brundermann, Erik
2000-01-01
A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.
Laser-induced phase separation of silicon carbide
Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae
2016-01-01
Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachman, Daniel; Chen, Zhijiang; Wang, Christopher
Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less
NASA Astrophysics Data System (ADS)
Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.
2009-06-01
The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy deposition. These findings may suggest a role of the modifier as a moderator in the energy dissipation and relaxation process. The relatively low internal energy content of SPALDI-produced ions indicates that this is a "soft" desorption technique, with potential advantages in the analysis of labile compounds.
Experiment and simulation study of laser dicing silicon with water-jet
NASA Astrophysics Data System (ADS)
Bao, Jiading; Long, Yuhong; Tong, Youqun; Yang, Xiaoqing; Zhang, Bin; Zhou, Zupeng
2016-11-01
Water-jet laser processing is an internationally advanced technique, which combines the advantages of laser processing with water jet cutting. In the study, the experiment of water-jet laser dicing are conducted with ns pulsed laser of 1064 nm irradiating, and Smooth Particle Hydrodynamic (SPH) technique by AUTODYN software was modeled to research the fluid dynamics of water and melt when water jet impacting molten material. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablating silicon in liquids with nanosecond pulse laser of 1064 nm irradiating. Self-focusing phenomenon was found and its causes are analyzed. Smooth Particle Hydrodynamic (SPH) modeling technique was employed to understand the effect of water and water-jet on debris removal during water-jet laser machining.
Hao, Liang
2014-01-01
In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879
Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martín, Guillermo; Martínez, Javier; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc
2017-02-20
We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.
NASA Astrophysics Data System (ADS)
Jin, Hyun-Chul
This work demonstrates possible routes for fabricating large-area electronic devices on glass or plastic substrates using low-temperature materials deposition and soft lithographic device patterning. Hydrogenated amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) have been extensively studied as the semiconducting material for flat panel displays and solar cells. On glass substrates, we have deposited a-Si:H films at a temperature lower than 125°C, and we have used pulsed excimer laser crystallization in the sequential lateral solidification (SLS) regime to fabricate poly-Si films. We use micromolding in capillaries (MIMIC), a form of soft lithography involving micrometer-scale polymer molding, as a means to fabricate amorphous silicon thin-film transistors (TFTs), and photoconductive sensor arrays on both planar and curved substrates. The use of non-planar substrates has captured considerable attention in the field because it would open up new applications and new designs. Field-effect transistors made by SLS poly-Si show excellent mobility and on/off current ratio; however, the microstructure of the material had never been well documented. We determined the microtexture using electron backscattering diffraction (EBSD): the first crystallites formed in the a-Si layer are random; along the direction of the solidification, a strong <100> in-plane orientation quickly develops due to competitive growth and occlusion. The misorientation angle between neighboring grains is also analyzed. A large fraction of the boundaries within the material are low-angle and coincidence site lattice (CSL) types. We discuss the implications of the findings on the defect generation mechanism and on the electrical properties of the films. We have analyzed the electrical properties of SLS poly-Si films on oxidized Si wafer using the pseudo-MOSFET geometry; the majority carrier mobility is extracted from the transconductance. However, the data are non-ideal due to large contact resistance and current spreading. We discuss the future use of these electrical characterization techniques to analyze the properties of individual grain boundaries in thin film Si bicrystals formed by SLS.
Phosphorus out-diffusion in laser molten silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köhler, J. R.; Eisele, S. J.
2015-04-14
Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ionmore » mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].« less
IIIV/Si Nanoscale Lasers and Their Integration with Silicon Photonics
NASA Astrophysics Data System (ADS)
Bondarenko, Olesya
The rapidly evolving global information infrastructure requires ever faster data transfer within computer networks and stations. Integrated chip scale photonics can pave the way to accelerated signal manipulation and boost bandwidth capacity of optical interconnects in a compact and ergonomic arrangement. A key building block for integrated photonic circuits is an on-chip laser. In this dissertation we explore ways to reduce the physical footprint of semiconductor lasers and make them suitable for high density integration on silicon, a standard material platform for today's integrated circuits. We demonstrated the first room temperature metalo-dielectric nanolaser, sub-wavelength in all three dimensions. Next, we demonstrated a nanolaser on silicon, showing the feasibility of its integration with this platform. We also designed and realized an ultracompact feedback laser with edge-emitting structure, amenable for in-plane coupling with a standard silicon waveguide. Finally, we discuss the challenges and propose solutions for improvement of the device performance and practicality.
Characterization of Subsurface Defects in Ceramic Rods by Laser Scattering and Fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. M.; Sun, J. G.; Andrews, M. J.
2006-03-06
Silicon nitride ceramics are leading materials being evaluated for valve train components in diesel engine applications. The surface and subsurface defects and damage induced by surface machining can significantly affect component strength and lifetime. In this study, a nondestructive evaluation (NDE) technique based upon laser scattering has been utilized to analyze eight transversely ground silicon nitride cylindrical rods before fracture tests. The fracture origins (machining cracks or material-inherent flaws) identified by fractography after fracture testing were correlated with laser scattering images. The results indicate that laser scattering is able to identify possible fracture origin in the silicon nitride subsurface withoutmore » the need for destructive fracture tests.« less
NASA Astrophysics Data System (ADS)
Gnilitskyi, Iaroslav; Gruzdev, Vitaly; Bulgakova, Nadezhda M.; Mocek, Tomáš; Orazi, Leonardo
2016-10-01
Silicon is one of the most abundant materials which is used in many areas of modern research and technology. A variety of those applications require surface nanopatterning with minimum structure defects. However, the high-quality nanostructuring of large areas of silicon surface at industrially acceptable speed is still a challenge. Here, we report a rapid formation of highly regular laser-induced periodic surface structures (HR-LIPSS) in the regime of strong ablation by infrared femtosecond laser pulses at sub-MHz repetition rate. Parameters of the laser-surface interactions and obtained experimental results suggest an important role of electrostatically assisted bond softening in initiating the HR-LIPSS formation.
NASA Astrophysics Data System (ADS)
Liu, Manyu; Hu, Youwang; Sun, Xiaoyan; Wang, Cong; Zhou, Jianying; Dong, Xinran; Yin, Kai; Chu, Dongkai; Duan, Ji'an
2017-01-01
Sapphire, with extremely high hardness, high-temperature stability and wear resistance, often corroded in molten KOH at 300 °C after processing. The fabrication of microstructures on sapphire substrate performed by femtosecond laser irradiation combined with KOH solution chemical etching at room temperature is presented. It is found that this method reduces the harsh requirements of sapphire corrosion. After femtosecond irradiation, the sapphire has a high corrosion speed at room temperature. Through the analysis of Raman spectrum and XRD spectrum, a novel insight of femtosecond laser interaction with sapphire (α-Al2O3) is proposed. Results indicated that grooves on sapphire surface were formed by the lasers ablation removal, and the groove surface was modified in a certain depth. The modified area of the groove surface was changed from α-Al2O3 to γ-Al2O3. In addition, the impacts of three experimental parameters, laser power, scanning velocities and etching time, on the width and depth of microstructures are investigated, respectively. The modified area dimension is about 2 μm within limits power and speed. This work could fabricate high-quality arbitrary microstructures and enhance the performance of sapphire processing.
Structure of deformed silicon and implications for low cost solar cells
NASA Technical Reports Server (NTRS)
Mardesich, N.; Leipold, M. H.; Turner, G. B.; Digges, T. G., Jr.
1978-01-01
The microstructure and minority carrier lifetime of silicon were investigated in uniaxially compressed silicon samples. The objective of the investigation was to determine if it is feasible to produce silicon solar cells from sheet formed by high temperature rolling. The initial structure of the silicon samples ranged from single crystal to fine-grained polycrystals. The samples had been deformed at strain rates of 0.1 to 8.5/sec and temperatures of 1270-1380 C with subsequent annealing at 1270-1380 C. The results suggest that high temperature rolling of silicon to produce sheet for cells of high efficiency is not practical.
Pankove, J.I.; Wu, C.P.
1982-03-30
A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gassing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen. 2 figs.
Pankove, Jacques I.; Wu, Chung P.
1982-01-01
A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.
NASA Astrophysics Data System (ADS)
Okoshi, Masayuki; Iyono, Minako; Inoue, Narumi
2009-12-01
Photoluminescence spectra of silicone rubber ([SiO(CH3)2]n) photochemically modified by a 193 nm ArF excimer laser was found to be controllable. Compared with the modification in air, the photoluminescence spectra could be blueshifted by the modification in vacuum or the additional irradiation of ArF excimer laser in vacuum after the modification in air. To redshift, on the other hand, the additional irradiation of a 157 nm F2 laser in air after the modification in air, the modification in oxygen gas, or the postannealing after the modification in oxygen gas was effective. The blue and redshifts of the photoluminescence were essentially due to the acceleration of reduction and oxidation reactions of silicone rubber, respectively, because the photoluminescence derives its origin from oxygen deficiency centers and peroxy centers of the silica structure in the modified silicone rubber. On the basis of the spectra changes, colorful light-guiding sheets made of silicone rubber under illumination of a 375 nm light-emitting diode were successfully fabricated for cellular phone use.
Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy
NASA Astrophysics Data System (ADS)
Zhang, Yaocheng; Yang, Li; Chen, Tingyi; Zhang, Weihui; Huang, Xiwang; Dai, Jun
2017-12-01
The laser fabricated IN718 alloys were prepared by laser cladding system. The microstructure and microhardness of laser fabricated IN718 alloys were investigated after heat treatment. The microstructure and the elevated temperature mechanical properties of laser fabricated IN718 alloys were analyzed. The results showed that the microstructure of laser fabricated IN718 alloy consisted of austenitic matrix and dendritic Laves/γ eutectic. Most all Laves/γ eutectic was dissolved into austenitic matrix, and the complete recrystallization and the large grains occurred in the laser fabricated IN718 alloy after homogenization at 1080-1140 °C for 1 h, the dendritic Laves/γ eutectic was refined and the partial recrystallization occurred during the solid solution at 940-1000 °C for 1.5 h, the microhardness of the double aging (DA) alloys was about more than twice that of as-fabricated IN718 alloy. The recrystallized microstructure was obtained in the heat-treated laser fabricated IN718 alloy after 1100 °C/1 h air cooling (AC), 980 °C/1.5 h (AC), 700 °C/8 h furnace cooling (FC, 100 °C/h) to 600 °C/8 h (AC). The microhardness and the elevated temperature tensile strength were more than twice that of as-fabricated IN718 alloy due to a large concentration of γ″ phase precipitation to improve the transgranular strength and large grain to guarantee the grain boundary strength. The fracture morphologies of as-fabricated and heat-treated laser fabricated IN718 alloys were presented as the fiber dimples, the fracture mechanism of as-fabricated and heat-treated laser fabricated IN718 alloys was ductile fracture.
Melting of SiC powders preplaced duplex stainless steel using TIG welding
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Afiq, M.
2018-01-01
TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.
NASA Astrophysics Data System (ADS)
Arias-González, Felipe; del Val, Jesús; Comesaña, Rafael; Penide, Joaquín; Lusquiños, Fernando; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Gil, Francisco Javier; Pou, Juan
2018-01-01
In this paper, the microstructure and crystallographic texture of pure Ti thin walls generated by Additive Manufacturing based on Laser Cladding (AMLC) are analyzed in depth. From the results obtained, it is possible to better understand the AMLC process of pure titanium. The microstructure observed in the samples consists of large elongated columnar prior β grains which have grown epitaxially from the substrate to the top, in parallel to the building direction. Within the prior β grains, α-Ti lamellae and lamellar colonies are the result of cooling from above the β-transus temperature. This transformation follows the Burgers relationship and the result is a basket-weave microstructure with a strong crystallographic texture. Finally, a thermal treatment is proposed to transform the microstructure of the as-deposited samples into an equiaxed microstructure of α-Ti grains.
NASA Astrophysics Data System (ADS)
Da-Ming, Chen; Yuan-Xun, Li; Li-Kun, Han; Chao, Long; Huai-Wu, Zhang
2016-06-01
Barium ferrite (BaM) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition (PLD). The effects of deposition substrate temperature on the microstructure, magnetic and microwave properties of BaM thin films are investigated in detail. It is found that microstructure, magnetic and microwave properties of BaM thin film are very sensitive to deposition substrate temperature, and excellent BaM thin film is obtained when deposition temperature is 910 °C and oxygen pressure is 300 mTorr (1 Torr = 1.3332 × 102 Pa). X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology, and the crystallographic alignment degree can be calculated to be 0.94. Hysteresis loops reveal that the squareness ratio (M r/M s) is as high as 0.93, the saturated magnetization is 4004 Gs (1 Gs = 104 T), and the anisotropy field is 16.5 kOe (1 Oe = 79.5775 A·m-1). Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe, and the ferromagnetic resonance linewith is 108 Oe at 50 GHz, which means that this thin film has low microwave loss. These properties make the BaM thin films have potential applications in microwave devices. Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201506), the Scientific Research Starting Foundation of Hainan University (Grant No. kyqd1539), and the Natural Science Foundation of Hainan Province (Grant No. 20165187).
NASA Astrophysics Data System (ADS)
Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.
2018-04-01
We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.
NASA Astrophysics Data System (ADS)
Zhao, W.; Zha, G. C.; Xi, M. Z.; Gao, S. Y.
2018-03-01
A synchronous rolling method was proposed to assist laser multilayer cladding, and the effects of this method on microstructure, microhardness, and wear resistance were studied. Results show that the microstructure and mechanical properties of the traditional cladding layer exhibit periodic inhomogeneity. Synchronous rolling breaks the columnar dendrite crystals to improve the uniformity of the organization, and the residual plastic energy promotes the precipitation of strengthening phases, as CrB, M7C3, etc. The hardness and wear resistance of the extruded cladding layer increase significantly because of the grain refinement, formation of dislocations, and dispersion strengthening. These positive significances of synchronous rolling provide a new direction for laser cladding technology.
Femtosecond laser pulse modification of amorphous silicon films: control of surface anisotropy
NASA Astrophysics Data System (ADS)
Shuleiko, D. V.; Potemkin, F. V.; Romanov, I. A.; Parhomenko, I. N.; Pavlikov, A. V.; Presnov, D. E.; Zabotnov, S. V.; Kazanskii, A. G.; Kashkarov, P. K.
2018-05-01
A one-dimensional surface relief with a 1.20 ± 0.02 µm period was formed in amorphous hydrogenated silicon films as a result of irradiation by femtosecond laser pulses (1.25 µm) with a fluence of 0.15 J cm‑2. Orientation of the formed structures was determined by the polarization vector of the radiation and the number of acting pulses. Nanocrystalline silicon phases with volume fractions from 40 to 67% were detected in the irradiated films according to the analysis of Raman spectra. Observed micro- and nanostructuring processes were caused by surface plasmon–polariton excitation and near-surface region nanocrystallization, respectively, in the high-intensity femtosecond laser field. Furthermore, the formation of Si-III and Si-XII silicon polymorphous modifications was observed after laser treatment with a large exposure dose. The conductivity of the film increased by three orders of magnitude at proper conditions after femtosecond laser nanocrystallization compared to the conductivity of the untreated amorphous surface. The conductivity anisotropy of the irradiated regions was also observed due to the depolarizing contribution of the surface structure, and the non-uniform intensity distribution in the cross-section of the laser beam used for modification.
Nie, Jinfang; Liang, Yuanzhi; Zhang, Yun; Le, Shangwang; Li, Dunnan; Zhang, Songbai
2013-01-21
In this paper, we report a simple, low-cost method for rapid, highly reproductive fabrication of paper-based microfluidics by using a commercially available, minitype CO(2) laser cutting/engraving machine. This method involves only one operation of cutting a piece of paper by laser according to a predesigned pattern. The hollow microstructures formed in the paper are used as the 'hydrophobic barriers' to define the hydrophilic flowing paths. A typical paper device on a 4 cm × 4 cm piece of paper can be fabricated within ∼7-20 s; it is ready for use once the cutting process is finished. The main fabrication parameters such as the applied current and cutting rate of the laser were optimized. The fabrication resolution and multiplexed analytical capability of the hollow microstructure-patterned paper were also characterized.
NASA Technical Reports Server (NTRS)
Singh, M.
2002-01-01
Environment-conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). These materials have tailorable properties with numerous potential applications. Silicon carbide-based ecoceramics have been fabricated by the infiltration of wood-derived carbonaceous preforms with oxide and silicon based materials. The wood-derived carbonaceous preforms have been shown to be quite useful in producing porous or dense materials with different microstructures and compositions. The microstructure and mechanical properties (flexural strength, fracture toughness, elastic modulus, and compressive strength) of a wide variety of Sic-based ecoceramics have been measured. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. In this presentation the fabrication approach, microstructure, and thermomechanical properties of a wide variety of Sic-based Ecoceramics will be reported.
NASA Astrophysics Data System (ADS)
Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan
2018-03-01
Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.
NASA Astrophysics Data System (ADS)
Yang, Jun; Ran, Qincui; Wei, Dapeng; Sun, Tai; Yu, Leyong; Song, Xuefen; Pu, Lichun; Shi, Haofei; Du, Chunlei
2017-03-01
We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the aid of nanofabrication technology. Then a stamping transfer method was used to replicate the micropattern of the unpolished silicon wafer. Due to the large contact interface between the 3D graphene network and the PDMS, this type of E-skin worked under a stretching ratio of nearly 100%, and showed excellent mechanical strength and high sensitivity, with a change in relative resistance of up to 6500% and a gauge factor of 65.9 at 99.64% strain. Furthermore, the E-skin exhibited an obvious highly sensitive response to joint movement, eye movement and sound vibration, demonstrating broad potential applications in healthcare, body monitoring and wearable devices.
NASA Astrophysics Data System (ADS)
Wang, L.; Ma, C.; Huang, J.; Ding, H. Y.; Chu, M. Q.
2017-11-01
Selective laser melting (SLM) is a precise additive manufacturing process that the metallic powders without binder are melted layer by layer to complex components using a high bright fiber laser. In the paper, Ti-6Al-4V alloy was fabricated by SLM and its microstructure and mechanical properties were investigated in order to evaluate the SLM process. The results show that the microstructure exists anisotropy between the horizontal and vertical section due to the occurrence of epitaxial growth, and the former microstructure seems equal-axis and the latter is column. Moreover, there is little difference in tensile test between the horizontal and vertical sections. Furthermore, the tensile properties of fabricated Ti-6Al-4V alloy by SLM are higher than the forged standard ones. However, the fatigue results show that there are some scatters, which need further investigation to define the fatigue initiation.
Temperature-feedback direct laser reshaping of silicon nanostructures
NASA Astrophysics Data System (ADS)
Aouassa, M.; Mitsai, E.; Syubaev, S.; Pavlov, D.; Zhizhchenko, A.; Jadli, I.; Hassayoun, L.; Zograf, G.; Makarov, S.; Kuchmizhak, A.
2017-12-01
Direct laser reshaping of nanostructures is a cost-effective and fast approach to create or tune various designs for nanophotonics. However, the narrow range of required laser parameters along with the lack of in-situ temperature control during the nanostructure reshaping process limits its reproducibility and performance. Here, we present an approach for direct laser nanostructure reshaping with simultaneous temperature control. We employ thermally sensitive Raman spectroscopy during local laser melting of silicon pillar arrays prepared by self-assembly microsphere lithography. Our approach allows establishing the reshaping threshold of an individual nanostructure, resulting in clean laser processing without overheating of the surrounding area.
NASA Astrophysics Data System (ADS)
Park, Kwan-Woo; Na, Suck-Joo
2010-06-01
A computational model for UV pulsed-laser scribing of silicon target is presented and compared with experimental results. The experiments were performed with a high-power Q-switched diode-pumped solid state laser which was operated at 355 nm. They were conducted on n-type 500 μm thick silicon wafers. The scribing width and depth were measured using scanning electron microscopy. The model takes into account major physics, such as heat transfer, evaporation, multiple reflections, and Rayleigh scattering. It also considers the attenuation and redistribution of laser energy due to Rayleigh scattering. Especially, the influence of the average particle sizes in the model is mainly investigated. Finally, it is shown that the computational model describing the laser scribing of silicon is valid at an average particle size of about 10 nm.
NASA Astrophysics Data System (ADS)
Peng, Edwin; Bell, Ryan; Zuhlke, Craig A.; Wang, Meiyu; Alexander, Dennis R.; Gogos, George; Shield, Jeffrey E.
2017-10-01
Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or super-hydrophobicity/-hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser ablation is the primary formation mechanism. However, the underlying microstructure of mounds produced using higher fluence values was composed of a distinct smaller-grained α-Ti region adjacent to the original larger Ti grains remaining deeper beneath the surface. This layer was attributed to resolidification of molten Ti from the hydrodynamic Marangoni effect driven fluid flow of molten Ti, which is the result of the femtosecond pulse interaction with the material.
NASA Astrophysics Data System (ADS)
Song, Hui; Dai, Ye; Song, Juan; Ma, Hongliang; Yan, Xiaona; Ma, Guohong
2017-04-01
In this paper, we report a non-reciprocal writing process for inducing asymmetric microstructure using a femtosecond laser with tilted pulse fronts in fused silica. The shape of the induced microstructure at the focus closely depends on the laser scan direction. An elongated end is observed as a kind of structural difference between the written lines with two reverse scans along + x and - x, which further leads to a birefringence intensity difference. We also find a bifurcation in the head region of the induced microstructure between the written lines along x and y. That process results from the focal intensity distortion caused by the pulse front tilt by comparing the simulated intensity distribution with the experimental results. The current results demonstrate that the pulse front tilt not only affects the free electron excitation at the focus but also further distorts the shape of the induced microstructure during a high-energy femtosecond laser irradiation. These results offer a route to fabricate optical elements by changing the spatiotemporal characteristics of ultrashort pulses.
Method to control artifacts of microstructural fabrication
Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.
2006-09-12
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.
Lithium concentration dependent structure and mechanics of amorphous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitinamaluwa, H. S.; Wang, M. C.; Will, G.
2016-06-28
A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of Li{sub x}Si alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus ofmore » elasticity and fracture strength but increase in ductility in tension. For a Li{sub x}Si system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.« less
CVD of silicon carbide on structural fibers - Microstructure and composition
NASA Technical Reports Server (NTRS)
Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.
1992-01-01
Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.
CVD of silicon carbide on structural fibers: Microstructure and composition
NASA Technical Reports Server (NTRS)
Veitch, Lisa C.; Terepka, Francis M.; Gokoglu, Suleyman A.
1992-01-01
Structural fibers are currently being considered as reinforcements for intermetallic and ceramic materials. Some of these fibers, however, are easily degraded in a high temperature oxidative environment. Therefore, coatings are needed to protect the fibers from environmental attack. Silicon carbide (SiC) was chemically vapor deposited (CVD) on Textron's SCS6 fibers. Fiber temperatures ranging from 1350 to 1500 C were studied. Silane (SiH4) and propane (C2H8) were used for the source gases and different concentrations of these source gases were studied. Deposition rates were determined for each group of fibers at different temperatures. Less variation in deposition rates were observed for the dilute source gas experiments than the concentrated source gas experiments. A careful analysis was performed on the stoichiometry of the CVD SiC coating using electron microprobe. Microstructures for the different conditions were compared. At 1350 C, the microstructures were similar; however, at higher temperatures, the microstructure for the more concentrated source gas group were porous and columnar in comparison to the cross sections taken from the same area for the dilute source gas group.
NASA Technical Reports Server (NTRS)
Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.
2016-01-01
Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.
TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers
NASA Technical Reports Server (NTRS)
Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.
2017-01-01
Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.
Characterization of nuclear graphite elastic properties using laser ultrasonic methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Fan W; Han, Karen; Olasov, Lauren R
2015-01-01
Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less
Hou, Weixin; Mu, Bo; Wang, Qihua
2008-11-01
A polypropylene/methyl-silicone superhydrophobic surface was prepared using a simple casting method. Varying the ratio of polypropylene and methyl-silicone results in different surface microstructure. The wetting behavior of the as-prepared surface was investigated. A polypropylene monolithic material was also prepared. Its superhydrophobicity still retains when the material was cut or abraded. The as-prepared material can also be used to separate some organic solvents from water.
Crystallization of the glassy grain boundary phase in silicon nitride ceramics
NASA Technical Reports Server (NTRS)
Drummond, Charles H., III
1991-01-01
The role was studied of the intergranular glassy phase in silicon nitride as-processed with yttria as a sintering aid. The microstructure, crystallization, and viscosity of the glassy phase were areas studied. Crystallization of the intergranular glassy phase to more refractory crystalline phases should improve the high temperature mechanical properties of the silicon nitride. The addition of a nucleating agent will increase the rate of crystallization. The measurement of the viscosity of the glassy phase will permit the estimation of the high temperature deformation of the silicon nitride.
NASA Astrophysics Data System (ADS)
Suliyanti, Maria M.; Hidayah, Affi Nur; Kurniawan, K. H.
2012-06-01
Study about thin film production using technique pulsed laser deposition have been done. The Pulsed Laser Deposition (PLD) method has been used for growing thin film of ZrO2 on silicon wafer substrate (111 single crystal, thickness 400μm and diameter 7.5 cm). The target made from Zirconia oxide powder mixing with PVA and press using pressure 100kgN. The laser beam was focused by a lens (f = 100mm) through a quartz window onto the sample surface and the substrate was placed in parallel line with target. The distance between the target and the substrate is about 1 cm. The early results of this synthesis using 75 mJ Nd-YAG second harmonic laser pulse (532 nm Nd-YAG) and low pressure chamber surrounding gas 5 Torr. The irradiation of laser take around 6000 shoots or 10 minutes using frequencies laser 10 Hz. The micro thickness of film can be produced on silicon wafer using this technique. The results of ZrO2 thin film on substrate about 26.92%.
NASA Astrophysics Data System (ADS)
Devojno, O. G.; Feldshtein, E.; Kardapolava, M. A.; Lutsko, N. I.
2018-07-01
In the present paper, the influence of laser cladding conditions on the powder flow conditions, as well as the microstructure, phases and microhardness of an Ni-based self-fluxing alloy coating are described. The optimal granulations of a self-fluxing alloy powder and the relationship between the flow of powder of various fractions and the flow rate and pressure of the transporting gas have been determined. The laser beam speed, track pitch and the distance from the nozzle to the coated surface influence the height and width of single tracks. Regularities in the formation of microstructure under different cladding conditions are defined, as well as regularity of distribution of elements over the track depth and in the transient zone. The patterns of microhardness distribution over the track depth for different cladding conditions are found. These patterns as well as the optimal laser spot pitch allowed obtaining a uniform cladding layer.
Microreplication of laser-fabricated surface and three-dimensional structures
NASA Astrophysics Data System (ADS)
Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.
2010-12-01
The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.
Microstructure and properties of laser-clad high-temperature wear-resistant alloys
NASA Astrophysics Data System (ADS)
Yang, Yongqiang
1999-02-01
A 2-kW CO 2 laser with a powder feeder was used to produce alloy coatings with high temperature-wear resistance on the surface of steel substrates. To analyze the microstructure and microchemical composition of the laser-clad layers, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray microanalysis system was employed. X-ray diffraction techniques were applied to characterize the phases formed during the cladding process. The results show that the microstructure of the cladding alloy consists mainly of many dispersed particles (W 2C, (W,Ti)C 1- x, WC), a lamellar eutectic carbide M 12C, and an (f.c.c) matrix. Hardness tested at room and high temperature showed that the laser-clad zone has a moderate room temperature hardness and relatively higher elevated temperature hardness. The application of the laser-clad layer to a hot tool was very successful, and its operational life span was prolonged 1 to 4 times.
NASA Astrophysics Data System (ADS)
Mertens, Anne; Contrepois, Quentin; Dormal, Thierry; Lemaire, Olivier; Lecomte-Beckers, Jacqueline
2012-07-01
In this study, samples of alloy Ti-6Al-4V have been processed by Selective Laser Melting (SLM) and by Laser Cladding (LC), two layer-by-layer near-net-shape processes allowing for economic production of complex parts. The resulting microstructures have been characterised in details, so as to allow for a better understanding of the solidification process and of the subsequent phase transformations taking place upon cooling for both techniques. On the one hand, a new “MesoClad” laser with a maximum power of 300 W has been used successfully to produce thin wall samples by LC. On the other hand, the influence of processing parameters on the mechanical properties was investigated by means of uniaxial tensile testing performed on samples produced by SLM with different orientations with respect to the direction of mechanical solicitation. A strong anisotropy in mechanical behaviour was thus interpreted in relations with the microstructures and processing conditions.
Microstructured fibres: a positive impact on defence technology?
NASA Astrophysics Data System (ADS)
O'Driscoll, E. J.; Watson, M. A.; Delmonte, T.; Petrovich, M. N.; Feng, X.; Flanagan, J. C.; Hayes, J. R.; Richardson, D. J.
2006-09-01
In this paper we seek to assess the potential impact of microstructured fibres for security and defence applications. Recent literature has presented results on using microstructured fibre for delivery of high power, high quality radiation and also on the use of microstructured fibre for broadband source generation. Whilst these two applications may appear contradictory to one another the inherent design flexibility of microstructured fibres allows fibres to be fabricated for the specific application requirements, either minimising (for delivery) or maximising (for broadband source generation) the nonlinear effects. In platform based laser applications such as infrared counter measures, remote sensing and laser directed-energy weapons, a suitable delivery fibre providing high power, high quality light delivery would allow a laser to be sited remotely from the sensor/device head. This opens up the possibility of several sensor/device types sharing the same multi-functional laser, thus reducing the complexity and hence the cost of such systems. For applications requiring broadband source characteristics, microstructured fibres can also offer advantages over conventional sources. By exploiting the nonlinear effects it is possible to realise a multifunctional source for applications such as active hyperspectral imaging, countermeasures, and biochemical sensing. These recent results suggest enormous potential for these novel fibre types to influence the next generation of photonic systems for security and defence applications. However, it is important to establish where the fibres can offer the greatest advantages and what research still needs to be done to drive the technology towards real platform solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taheri, M; Teslich, N; Lu, J P
An in situ method for studying the role of laser energy on the microstructural evolution of polycrystalline Si is presented. By monitoring both laser energy and microstructural evolution simultaneously in the dynamic transmission electron microscope, information on grain size and defect concentration can be correlated directly with processing conditions. This proof of principle study provides fundamental scientific information on the crystallization process that has technological importance for the development of thin film transistors. In conclusion, we successfully developed a method for studying UV laser processing of Si films in situ on nanosecond time scales, with ultimate implications for TFT applicationmore » improvements. In addition to grain size distribution as a function of laser energy density, we found that grain size scaled with laser energy in general. We showed that nanosecond time resolution allowed us to see the nucleation and growth front during processing, which will help further the understanding of microstructural evolution of poly-Si films for electronic applications. Future studies, coupled with high resolution TEM, will be performed to study grain boundary migration, intergranular defects, and grain size distribution with respect to laser energy and adsorption depth.« less
Micro benchtop optics by bulk silicon micromachining
Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.
2000-01-01
Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.
Improvements of high-power diode laser line generators open up new application fields
NASA Astrophysics Data System (ADS)
Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.
2009-02-01
Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.
NASA Astrophysics Data System (ADS)
Huynh, T. T. D.; Semmar, N.
2017-09-01
The melting process and nanostructure formation induced by nanosecond and picosecond laser pulses on bulk silicon and copper thin film were studied by ex situ analysis and in situ real time reflectivity. Three different probing wavelengths (633, 473 and 326 nm) were used during the pump laser processing and were correlated to the beam parameters (pulse duration, laser fluence and number of laser shots) and copper thin film thickness. On a silicon surface using a KrF laser beam (27 ns, 1 Hz, 248 nm), the melting threshold was determined close to 700 mJ cm-2 and the melting duration increased from 10 to 130 ns as the fluence increased from 700 to 1750 mJ cm-2. Nanostructures with a spatial period close to the laser wavelength were formed on both copper thin film and silicon substrate after nanosecond Nd:YAG laser (10 ns, 266 nm, 1 Hz) irradiation. In the picosecond regime, using an Nd:YAG laser (40 ps, 266 nm, 1 Hz), different nanostructures, from spikes to laser-induced periodic surface structures, were formed on 500 nm copper thin film and were analyzed with respect to the drop in dynamic reflectivity changes versus the number of laser shots.
Kang, Minjung; Han, Heung Nam; Kim, Cheolhee
2018-04-23
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.
Kang, Minjung; Han, Heung Nam
2018-01-01
Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630
Decal transfer microfabrication
Nuzzo, Ralph G.; Childs, William Robert
2004-10-19
A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvan, J.S.; Subramanian, K.; Nath, A.K.
Surface nitriding of commercially pure (CP) titanium was carried out using high power CO{sub 2} laser at pure nitrogen and dilute nitrogen (N{sub 2} + Ar) environment. The hardness, microstructure, and melt pool configuration of the laser melted titanium in helium and argon atmosphere was compared with laser melting at pure and dilute nitrogen environment. The hardness of the nitrided layer was of the order of 1000 to 1600 HV. The hardness of the laser melted titanium in the argon and helium atmosphere was 500 to 1000 HV. Using x-ray analysis of the formation of TiN and Ti{sub 2}N phasemore » was identified in the laser nitrided titanium. The presence of nitrogen in the nitrided zone was confirmed using secondary ion mass spectroscopy (SIMS) analysis. The microstructures revealed densely populated dendrites in the sample nitrided at 100% N{sub 2} environment and thinly populated dendrites in dilute environment. The crack intensity was large in the nitrided sample at pure nitrogen, and few cracks were observed in the 50% N{sub 2} + 50% Ar environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Pei-quan; Li, Leijun, E-mail: leijun.li@ualberta.ca; Zhang, Chunbo
The as-welded microstructure of laser-welded Ti-6Al-4V is characterized as a function of CO2 key-hole mode laser welding speed. Martensitic α′ is the predominant phase, with some α and retained β. Phase transformation is affected by the cooling rate through laser welding speed. A higher welding speed of 1.6 to 2.0 m/min produced more martensite α′ and less retained β in the welds. 1.4 m/min welding speed produced small amounts of α, besides the martensite α′. A trace of δ titanium hydride phase seems to have formed in the weld fusion zone. Moiré fringes are a common feature in the TEMmore » microstructure, due to abundance of multi-phase interfaces. Tensile twins and clusters of dislocations indicate that plastic deformation has happened in the as-welded microstructure, indicating the local stress levels to be approaching the yield stress on-cooling during laser welding.« less
NASA Astrophysics Data System (ADS)
Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.
2015-07-01
This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.
NASA Astrophysics Data System (ADS)
Özel, Tuğrul; Arısoy, Yiğit M.; Criales, Luis E.
Computational modelling of Laser Powder Bed Fusion (L-PBF) processes such as Selective laser Melting (SLM) can reveal information that is hard to obtain or unobtainable by in-situ experimental measurements. A 3D thermal field that is not visible by the thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructural modelling can be used to predict the quality and mechanical properties of the product. In this paper, a nonlinear 3D Finite Element Method based computational code is developed to simulate the SLM process with different process parameters such as laser power and scan velocity. The code is further improved by utilizing an in-situ thermal camera recording to predict spattering which is in turn included as a stochastic heat loss. Then, thermal gradients extracted from the simulations applied to predict growth directions in the resulting microstructure.
Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.
Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy
2017-10-24
We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.
NASA Astrophysics Data System (ADS)
Sun, Binhan; Fazeli, Fateh; Scott, Colin; Yue, Stephen
2016-10-01
Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement with the experimental results for the 7Mn steel compared with the existing commercial TCFE database; however, some discrepancy in the predicted phase fractions and compositions still existed. The phase transformation behavior of the two steels during annealing and its implication on the design of high aluminum-silicon medium manganese steels were discussed in detail.
Development of Matrix Microstructures in UHTC Composites
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael
2012-01-01
One of the major issues hindering the use of ultra high temperature ceramics for aerospace applications is low fracture toughness. There is considerable interest in developing fiber-reinforced composites to improve fracture toughness. Considerable knowledge has been gained in controlling and improving the microstructure of monolithic UHTCs, and this paper addresses the question of transferring that knowledge to composites. Some model composites have been made and the microstructures of the matrix developed has been explored and compared to the microstructure of monolithic materials in the hafnium diboride/silicon carbide family. Both 2D and 3D weaves have been impregnated and processed.
Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses.
Zywietz, Urs; Evlyukhin, Andrey B; Reinhardt, Carsten; Chichkov, Boris N
2014-03-04
Silicon nanoparticles with sizes of a few hundred nanometres exhibit unique optical properties due to their strong electric and magnetic dipole responses in the visible range. Here we demonstrate a novel laser printing technique for the controlled fabrication and precise deposition of silicon nanoparticles. Using femtosecond laser pulses it is possible to vary the size of Si nanoparticles and their crystallographic phase. Si nanoparticles produced by femtosecond laser printing are initially in an amorphous phase (a-Si). They can be converted into the crystalline phase (c-Si) by irradiating them with a second femtosecond laser pulse. The resonance-scattering spectrum of c-Si nanoparticles, compared with that of a-Si nanoparticles, is blue shifted and its peak intensity is about three times higher. Resonant optical responses of dielectric nanoparticles are characterized by accumulation of electromagnetic energy in the excited modes, which can be used for the realization of nanoantennas, nanolasers and metamaterials.
Low-reflectance laser-induced surface nanostructures created with a picosecond laser
NASA Astrophysics Data System (ADS)
Sarbada, Shashank; Huang, Zhifeng; Shin, Yung C.; Ruan, Xiulin
2016-04-01
Using high-speed picosecond laser pulse irradiation, low-reflectance laser-induced periodic surface structures (LIPSS) have been created on polycrystalline silicon. The effects of laser fluence, scan speed, overlapping ratio and polarization angle on the formation of LIPSS are reported. The anti-reflective properties of periodic structures are discussed, and the ideal LIPSS for low surface reflectance is presented. A decrease of 35.7 % in average reflectance of the silicon wafer was achieved over the wavelength range of 400-860 nm when it was textured with LIPSS at high scan speeds of 4000 mm/s. Experimental results of broadband reflectance of silicon wafers textured with LIPSS have been compared with finite difference time domain simulations and are in good agreement, showing high predictability in reflectance values for different structures. The effects of changing the LIPSS profile, fill factor and valley depth on the surface reflectance were also analyzed through simulations.
Silicon wafer temperature monitoring using all-fiber laser ultrasonics
NASA Astrophysics Data System (ADS)
Alcoz, Jorge J.; Duffer, Charles E.
1998-03-01
Laser-ultrasonics is a very attractive technique for in-line process control in the semiconductor industry as it is compatible with the clean room environment and offers the capability to inspect parts at high-temperature. We describe measurements of the velocity of laser-generated Lamb waves in silicon wafers as a function of temperature using fiber- optic laser delivery and all-fiber interferometric sensing. Fundamental anti-symmetric Lamb-wave modes were generated in 5 inches < 111 > silicon wafers using a Nd:YAG laser coupled to a large-core multimode fiber. Generation was also performed using an array of sources created with a diffraction grating. For detection a compact fiber-optic sensor was used which is well suited for industrial environments as it is compact, rugged, stable, and low-cost. The wafers were heated up to 1000 degrees C and the temperature correlated with ultrasonic velocity measurements.
Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin
2017-10-01
Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.
Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing.
Yao, Chuanfei; He, Chunfeng; Jia, Zhixu; Wang, Shunbin; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2015-10-15
Holmium (Ho3+)-doped fluorotellurite microstructured fibers based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. By using a 1.992 μm fiber laser as the pump source, lasing at 2.077 μm is obtained from a 27 cm long Ho3+-doped fluorotellurite microstructured fiber. The maximum unsaturated power is about 161 mW and the corresponding slope efficiency is up to 67.4%. The influence of fiber length on lasing at 2.1 μm is also investigated. Our results show that Ho3+-doped fluorotellurite microstructured fibers are promising gain media for 2.1 μm laser applications.
Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. I - Microstructure evolution
NASA Technical Reports Server (NTRS)
Sircar, S.; Chattopadhyay, K.; Mazumder, J.
1992-01-01
The evolution of the microstructure in NbAl3 synthesized by a laser cladding technique (a rapid solidification process, with cooling rates up to 10 exp 6 C/sec) is investigated, and the phases are identified using convergent beam electron diffraction. Two new metastable phases were identified and characterized in detail. The effect of adding V on the final microstructure was also investigated, and the various phase chemistries and the partitioning of different elements into different phases were studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.
2015-03-14
In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less
Schuettler, M; Stiess, S; King, B V; Suaning, G J
2005-03-01
A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.
Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication
NASA Astrophysics Data System (ADS)
Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.
2017-10-01
A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.
NASA Technical Reports Server (NTRS)
Singh, M.
1998-01-01
A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.
Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide
NASA Astrophysics Data System (ADS)
Akinlabi, E. T.; Erinosho, M. F.
2017-11-01
Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.
Melt infiltration of silicon carbide compacts. II - Evaluation of solidification microstructures
NASA Technical Reports Server (NTRS)
Asthana, Rajiv; Rohatgi, Pradeep K.
1993-01-01
Microstructural aspects of alloy solidification within the interstices of porous compacts of platelet-shaped single crystals of alpha-SiC, when the latter are infiltrated with a hot metal under pressure, have been described. Microstructural evidence is presented of selective reorientation of platelets and nonhomogeneous solute distribution under shear of pressurized melt, of constrained growth of primary solid within finite width zones, and of the modulation of coring due to microsegregation as a result of variations in the pore size of compacts.
Role of laser beam radiance in different ceramic processing: A two wavelengths comparison
NASA Astrophysics Data System (ADS)
Shukla, Pratik; Lawrence, Jonathan
2013-12-01
Effects of laser beam radiance (brightness) of the fibre and the Nd3+:YAG laser were investigated during surface engineering of the ZrO2 and Si3N4 advanced ceramics with respect to dimensional size and microstructure of both of the advanced ceramics. Using identical process parameters, the effects of radiance of both the Nd3+:YAG laser and a fibre laser were compared thereon the two selected advanced ceramics. Both the lasers showed differences in each of the ceramics employed in relation to the microstructure and grain size as well as the dimensional size of the laser engineered tracks-notwithstanding the use of identical process parameters namely spot size; laser power; traverse speed; Gaussian beam modes; gas flow rate and gas composition as well the wavelengths. From this it was evident that the difference in the laser beam radiance between the two lasers would have had much to do with this effect. The high radiance fibre laser produced larger power per unit area in steradian when compared to the lower radiance of the Nd3+:YAG laser. This characteristically produced larger surface tracks through higher interaction temperature at the laser-ceramic interface. This in turn generated bigger melt-zones and different cooling rates which then led to the change in the microstructure of both the Si3N4 and ZrO2 advance ceramics. Owing to this, it was indicative that lasers with high radiance would result in much cheaper and cost effective laser assisted surface engineering processes, since lower laser power, faster traverse speeds, larger spot sizes could be used in comparison to lasers with lower radiance which require much slower traverse speed, higher power levels and finer spot sizes to induce the same effect thereon materials such as the advanced ceramics.
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.
1976-01-01
The objective of this research is to fully investigate the Ribbon-To-Ribbon (R-T-R) approach to silicon ribbon growth. Initial work has concentrated on modification and characterization of an existing R-T-R apparatus. In addition, equipment for auxiliary heating of the melt is being evaluated and acquired. Modification of the remote viewing system and mechanical staging are nearly complete. Characterization of the laser and other components is in progress and several auxiliary heating techniques are being investigated.
Method utilizing laser-processing for the growth of epitaxial p-n junctions
Young, R.T.; Narayan, J.; Wood, R.F.
1979-11-23
This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.
High Surface Area of Porous Silicon Drives Desorption of Intact Molecules
Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary
2007-01-01
The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachman, D., E-mail: bachman@ualberta.ca; Fedosejevs, R.; Tsui, Y. Y.
An optical damage threshold for crystalline silicon from single femtosecond laser pulses was determined by detecting a permanent change in the refractive index of the material. This index change could be detected with unprecedented sensitivity by measuring the resonant wavelength shift of silicon integrated optics microring resonators irradiated with femtosecond laser pulses at 400 nm and 800 nm wavelengths. The threshold for permanent index change at 400 nm wavelength was determined to be 0.053 ± 0.007 J/cm{sup 2}, which agrees with previously reported threshold values for femtosecond laser modification of crystalline silicon. However, the threshold for index change at 800 nm wavelength was found to be 0.044 ± 0.005 J/cm{supmore » 2}, which is five times lower than the previously reported threshold values for visual change on the silicon surface. The discrepancy is attributed to possible modification of the crystallinity of silicon below the melting temperature that has not been detected before.« less
A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.
Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I
2017-06-15
Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abo, Satoshi; Nishikawa, Kazuhisa; Ushigome, Naoya
2011-01-07
Local resistance profiles of ultra shallow boron and arsenic implanted into silicon with energies of 2.0 and 4.0 keV and doses of 2.0x10{sup 15} and 1.0x10{sup 15} ions/cm{sup 2} activated by a combination of conventional spike lamp and laser annealing processes were measured by scanning spreading resistance microscope (SSRM) with a depth resolution of less than 10 nm. The lowest local resistance at the low resistance region in 2.0 keV boron implanted silicon with 1050 deg. C spike lamp annealing followed by 0.35 kW/mm{sup 2} laser annealing was half of that without laser annealing. The lowest local resistance at themore » low resistance region in the arsenic implanted silicon activated by 1050 deg. C spike lamp annealing followed by 0.39 kW/mm{sup 2} laser annealing was 74% lower than that followed by 0.36 kW/mm{sup 2} laser annealing. The lowest local resistances at the low resistance regions in the arsenic implanted silicon with 0.36 and 0.39 kW/mm{sup 2} laser annealing followed by 1050 deg. C spike lamp annealing were 41 and 33% lower than those with spike lamp annealing followed by laser annealing. Laser annealing followed by spike lamp annealing could suppress the diffusion of the impurities and was suitable for making the ultra shallow and low resistance regions.« less
Liu, Wenzhu; Meng, Fanying; Zhang, Xiaoyu; Liu, Zhengxin
2015-12-09
The interface microstructure of a silicon heterojunction (SHJ) solar cell was investigated. We found an ultrathin native oxide layer (NOL) with a thickness of several angstroms was formed on the crystalline silicon (c-Si) surface in a very short time (∼30 s) after being etched by HF solution. Although the NOL had a loose structure with defects that are detrimental for surface passivation, it acted as a barrier to restrain the epitaxial growth of hydrogenated amorphous silicon (a-Si:H) during the plasma-enhanced chemical vapor deposition (PECVD). The microstructure change of the NOL during the PECVD deposition of a-Si:H layers with different conditions and under different H2 plasma treatments were systemically investigated in detail. When a brief H2 plasma was applied to treat the a-Si:H layer after the PECVD deposition, interstitial oxygen and small-size SiO2 precipitates were transformed to hydrogenated amorphous silicon suboxide alloy (a-SiO(x):H, x ∼ 1.5). In the meantime, the interface defect density was reduced by about 50%, and the parameters of the SHJ solar cell were improved due to the post H2 plasma treatment.
Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia
2016-01-01
Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767
Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J Antonio; Tagüeña-Martínez, Julia
2016-04-21
Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.
Squeezing of Light via Reflection from a Silicon Micromechanical Resonator
2013-03-14
Hz. Laser phase noise on the signal beam can be converted to intensity noise by reflection from the dispersive cavity or due to frequency dependent...Figure A6: Experimental setup for characterization of intensity and phase noise. The laser is amplitude stabilized and an attenuator is used to select...nm thick silicon de- vice layer of a silicon-on-insulator microchip (see Fig. 1a). The in-plane differential motion of the two beams at a fundamental
Harrison, R K; Ben-Yakar, Adela
2010-10-11
We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.
Lasers in energy device manufacturing
NASA Astrophysics Data System (ADS)
Ostendorf, A.; Schoonderbeek, A.
2008-02-01
Global warming is a current topic all over the world. CO II emissions must be lowered to stop the already started climate change. Developing regenerative energy sources, like photovoltaics and fuel cells contributes to the solution of this problem. Innovative technologies and strategies need to be competitive with conventional energy sources. During the last years, the photovoltaic solar cell industry has experienced enormous growth. However, for solar cells to be competitive on the longer term, both an increase in efficiency as well as reduction in costs is necessary. An effective method to reduce costs of silicon solar cells is reducing the wafer thickness, because silicon makes up a large part of production costs. Consequently, contact free laser processing has a large advantage, because of the decrease in waste materials due to broken wafers as caused by other manufacturing processes. Additionally, many novel high efficiency solar cell concepts are only economically feasible with laser technology, e.g. for scribing silicon thin-film solar cells. This paper describes laser hole drilling, structuring and texturing of silicon wafer based solar cells and describes thin film solar cell scribing. Furthermore, different types of lasers are discussed with respect to processing quality and time.
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.; ...
2018-06-06
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
The influence of various cooling rates during laser alloying on nodular iron surface layer
NASA Astrophysics Data System (ADS)
Paczkowska, Marta; Makuch, Natalia; Kulka, Michał
2018-06-01
The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in the alloyed zone formed at higher cooling rates. The hardness of nodular iron surface layer, alloyed with cobalt, was up to 4-times higher than the hardness of core material. The hardness of alloyed zones strongly depended on laser treatment conditions. In the case of lower cooling rate, lower hardness was observed due to more coarse-grained microstructure and a presence of pearlite. The hardness of the alloyed zone increased (from 850 to 950HV0.1) together with the increasing cooling rate (from 2 · 103 to nearly 9 · 103 °C/s). Laser treatment enabled a formation of surface layers on nodular iron, alloyed with cobalt. The microstructure of such a surface layer could be controlled by the laser processing parameters. High hardness and fine microstructure of the laser-alloyed nodular iron with cobalt should result in higher resistance to wear, corrosion and even (due to effect of cobalt addition) elevated temperatures during operation conditions of machine parts.
Hybrid Silicon Photonic Integration using Quantum Well Intermixing
NASA Astrophysics Data System (ADS)
Jain, Siddharth R.
With the push for faster data transfer across all domains of telecommunication, optical interconnects are transitioning into shorter range applications such as in data centers and personal computing. Silicon photonics, with its economic advantages of leveraging well-established silicon manufacturing facilities, is considered the most promising approach to further scale down the cost and size of optical interconnects for chip-to-chip communication. Intrinsic properties of silicon however limit its ability to generate and modulate light, both of which are key to realizing on-chip optical data transfer. The hybrid silicon approach directly addresses this problem by using molecularly bonded III-V epitaxial layers on silicon for optical gain and absorption. This technology includes direct transfer of III-V wafer to a pre-patterned silicon-on-insulator wafer. Several discrete devices for light generation, modulation, amplification and detection have already been demonstrated on this platform. As in the case of electronics, multiple photonic elements can be integrated on a single chip to improve performance and functionality. However, scalable photonic integration requires the ability to control the bandgap for individual devices along with design changes to simplify fabrication. In the research presented here, quantum well intermixing is used as a technique to define multiple bandgaps for integration on the hybrid silicon platform. Implantation enhanced disordering is used to generate four bandgaps spread over 120+ nm. By combining these selectively intermixed III-V layers with pre-defined gratings and waveguides on silicon, we fabricate distributed feedback, distributed Bragg reflector, Fabry-Perot and mode-locked lasers along with photodetectors, electro-absorption modulators and other test structures, all on a single chip. We demonstrate a broadband laser source with continuous-wave operational lasers over a 200 nm bandwidth. Some of these lasers are integrated with modulators with a 3-dB bandwidth above 25 GHz, thus demonstrating coarse wavelength division multiplexing transmitter on silicon.
Realistic micromechanical modeling and simulation of two-phase heterogeneous materials
NASA Astrophysics Data System (ADS)
Sreeranganathan, Arun
This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry on the mechanical behavior of materials.
Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel
NASA Astrophysics Data System (ADS)
Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon
2018-05-01
The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.
Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther
2017-08-04
The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.
Wang, Ruijun; Vasiliev, Anton; Muneeb, Muhammad; Malik, Aditya; Sprengel, Stephan; Boehm, Gerhard; Amann, Markus-Christian; Šimonytė, Ieva; Vizbaras, Augustinas; Vizbaras, Kristijonas; Baets, Roel; Roelkens, Gunther
2017-01-01
The availability of silicon photonic integrated circuits (ICs) in the 2–4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III–V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III–V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy. PMID:28777291
Laser-induced Greenish-Blue Photoluminescence of Mesoporous Silicon Nanowires
Choi, Yan-Ru; Zheng, Minrui; Bai, Fan; Liu, Junjun; Tok, Eng-Soon; Huang, Zhifeng; Sow, Chorng-Haur
2014-01-01
Solid silicon nanowires and their luminescent properties have been widely studied, but lesser is known about the optical properties of mesoporous silicon nanowires (mp-SiNWs). In this work, we present a facile method to generate greenish-blue photoluminescence (GB-PL) by fast scanning a focused green laser beam (wavelength of 532 nm) on a close-packed array of mp-SiNWs to carry out photo-induced chemical modification. The threshold of laser power is 5 mW to excite the GB-PL, whose intensity increases with laser power in the range of 5–105 mW. The quenching of GB-PL comes to occur beyond 105 mW. The in-vacuum annealing effectively excites the GB-PL in the pristine mp-SiNWs and enhances the GB-PL of the laser-modified mp-SiNWs. A complex model of the laser-induced surface modification is proposed to account for the laser-power and post-annealing effect. Moreover, the fast scanning of focused laser beam enables us to locally tailor mp-SiNWs en route to a wide variety of micropatterns with different optical functionality, and we demonstrate the feasibility in the application of creating hidden images. PMID:24820533
NASA Astrophysics Data System (ADS)
Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun
2018-07-01
In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.
NASA Astrophysics Data System (ADS)
Denisova, K. N.; Il'in, A. S.; Martyshov, M. N.; Vorontsov, A. S.
2018-04-01
A comparative analysis of the effect of femtosecond laser irradiation on the structure and conductivity of undoped and boron-doped hydrogenated amorphous silicon ( a-Si: H) is performed. It is demonstrated that the process of nanocrystal formation in the amorphous matrix under femtosecond laser irradiation is initiated at lower laser energy densities in undoped a-Si: H samples. The differences in conductivity between undoped and doped a-Si: H samples vanish almost completely after irradiation with an energy density of 150-160 mJ/cm2.
Design of hybrid laser structures with QD-RSOA and silicon photonic mirrors
NASA Astrophysics Data System (ADS)
Gioannini, Mariangela; Benedetti, Alessio; Bardella, Paolo; Bovington, Jock; Traverso, Matt; Siriani, Dominic; Gothoskar, Prakash
2018-02-01
We compare the design of three different single mode laser structures consisting in a Reflective Semiconductor Optical Amplifier coupled to a silicon photonic external cavity mirror. The three designs differ for the mirror structure and are compared in terms of SOA power consumption and side mode suppression ratio (SMSR). Assuming then a Quantum Dot active material, we simulate the best laser design using a numerical model that includes the peculiar physical characteristics of the QD gain medium. The simulated QD laser CW characteristics are shown and discussed.
The Effect of Aging on the Microstructure of Selective Laser Melted Cu-Ni-Si
NASA Astrophysics Data System (ADS)
Ventura, Anthony P.; Marvel, Christopher J.; Pawlikowski, Gregory; Bayes, Martin; Watanabe, Masashi; Vinci, Richard P.; Misiolek, Wojciech Z.
2017-12-01
Precipitation hardening copper alloy C70250 was selectively laser melted to successfully produce components around 98 pct dense with high mechanical strength and electrical conductivity. Aging heat treatments were carried out at 723 K (450 °C) directly on as-printed samples up to 128 hours. Mechanical testing found that peak yield strength of around 590 MPa could be attained with an electrical conductivity of 34.2 pct IACS after 8 hours of aging. Conductivity continues to increase with further aging while the peak strength appears to be less sensitive to aging time exhibiting a broad range of time where near-peak properties exist. After aging for 128 hours, there is a drop in yield strength to 546 MPa with an increase in conductivity to 43.2 pct IACS. Electron microscopy analysis revealed nanometer-scale silicon-rich oxide particles throughout the material that persist during aging. Deformation twinning is observed in the peak-age condition after tensile testing and several strengthening mechanisms appear to be active to varying degrees throughout aging which account for the broad range of aging time where nearly the peak mechanical properties exist.
1991-09-01
9H and tungsten silicides may also be present in the microstructure. The non-SiC eiemental concentrations for NC-203 would not be expected to exceed...lesser amounts of yttrium silicate and tungsten silicide . Trace amounts of a-Si 3N4 , silicon oxynitride, tungsten-iron- silicide , and yttrium silicon...SiC ESK On this sample, we detect Silicon, Carbon, and also Oxygen and Nitrogen, as well as Calcium and Sodium traces. After ionic etching up to about
Preparation and Characterization of Ceramizable Kaolin/VMQ and Kaolin/ZB/VMQ Composites
NASA Astrophysics Data System (ADS)
Zhang, X.; Qin, Y.; Pei, Y.; Huang, Z. X.
Ceramizable silicone-based composite was prepared by using methyl vinyl silicone rubber (VMQ) as matrix, calcined Kaolin and zinc borate (ZB) as additives. This composition can form interpenetrating network structures after crosslinking, and then improve heat-resistant properties by firing in air. The results of different formulations were investigated by FTIR. TG-DTG SEM and XRD. It showed that when the temperature above 600°C. the fillers and silicon rubber started to transform from organic to inorganic and internal microstructure became denser.
Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, M.
2001-01-01
Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machida, Emi; Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472; Horita, Masahiro
2012-12-17
We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.
Laser-based microstructuring of materials surfaces using low-cost microlens arrays
NASA Astrophysics Data System (ADS)
Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.
2012-03-01
Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Tuissi, A.
2017-03-01
Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.
NASA Astrophysics Data System (ADS)
Ma, Shengchong; Zhao, Yong; Zou, Jiasheng; Yan, Keng; Liu, Chuan
2017-11-01
This study aimed to explore the electrochemical properties and microstructure of friction stir welds to understand the correlation between their properties and processing. Friction stir welding is a promising solid-state joining process for high-strength aluminum alloys (AA). Although friction stir welding (FSW) eliminates the problems of fusion welding due to the fact that it is performed below Tm, it causes severe plastic deformation in the material. Some AA welded by FSW exhibit relatively poor corrosion resistance. In this research, the corrosion resistance of such welds was enhanced through laser surface melting. A friction stir weld of AA 2219 was laser melted. The melt depth and microstructure were observed using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. The redistribution of elemental composition was analyzed using energy-dispersive spectroscopy. The anticorrosion properties of both laser-melted and original welds were studied in aqueous 3.5% NaCl solution using cyclic potentiodynamic polarization. The results indicated a noticeable increase in the pitting corrosion resistance after the laser treatment on the surface. The repassivation potential was nobler than the corrosion potential after the laser treatment, confirming that the resistance to pitting growth improved.
Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program
NASA Astrophysics Data System (ADS)
Hassell, Frank R.; Groark, Frank M.
1995-10-01
Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.
Feng, Pin; Jiang, Lan; Li, Xin; Rong, Wenlong; Zhang, Kaihu; Cao, Qiang
2015-02-20
A simple, repeatable approach is proposed to fabricate large-area, uniform periodic surface structures by a femtosecond laser. 20 nm gold films are coated on semiconductor surfaces on which large-area, uniform structures are fabricated. In the case study of silicon, cross-links and broken structures of laser induced periodic surface structures (LIPSSs) are significantly reduced on Au-coated silicon. The good consistency between the scanning lines facilitates the formation of large-area, uniform LIPSSs. The diffusion of hot electrons in the Au films increases the interfacial carrier densities, which significantly enhances interfacial electron-phonon coupling. High and uniform electron density suppresses the influence of defects on the silicon and further makes the coupling field more uniform and thus reduces the impact of laser energy fluctuations, which homogenizes and stabilizes large-area LIPSSs.
Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian
2017-09-15
In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.
Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian
2017-01-01
In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding. PMID:28914825
Microstructure and inclusion of Ti-6Al-4V fabricated by selective laser melting
NASA Astrophysics Data System (ADS)
Huang, Qianli; Hu, Ningmin; Yang, Xing; Zhang, Ranran; Feng, Qingling
2016-12-01
Selective laser melting (SLM) was used in fabricating the dense part from pre-alloyed Ti-6Al-4V powder. The microstructural evolution and inclusion formation of as-fabricated part were characterized in depth. The microstructure was characterized by features of columnar prior β grains and acicular martensite α'. High density defects such as dislocations and twins can be produced in SLM process. Investigations on the inclusions find out that hard alpha inclusion, amorphous CaO and microcrystalline Al2O3 are three main inclusions formed in SLM. The inclusions formed at some specific sites on melt pool surface. The microstructural evolution and inclusion formation of as-fabricated material are closely related to the SLM process.
Shen, Mengyan; Carey, James E; Crouch, Catherine H; Kandyla, Maria; Stone, Howard A; Mazur, Eric
2008-07-01
We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 mum width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and normal to the surface of the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, roughness-enhanced optical absorptance, and capillary instabilities.
Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon
NASA Astrophysics Data System (ADS)
Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.
2018-01-01
We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.
1977-01-01
A ribbon-to-ribbon process was used for routine growth of samples for analysis and fabrication into solar cells. One lot of solar cells was completely evaluated: ribbon solar cell efficiencies averaged 9.23% with a highest efficiency of 11.7%. Spherical reflectors have demonstrated significant improvements in laser silicon coupling efficiencies. Material analyses were performed including silicon photovoltage and open circuit photovoltage diffusion length measurements, crystal morphology studies, modulus of rupture measurements, and annealing/gettering studies. An initial economic analysis was performed indicating that ribbon-to-ribbon add-on costs of $.10/watt might be expected in the early 1980's.
Barriobero-Vila, Pere; Gussone, Joachim; Haubrich, Jan; Sandlöbes, Stefanie; Da Silva, Julio Cesar; Cloetens, Peter; Schell, Norbert; Requena, Guillermo
2017-01-01
Selective laser melting is a promising powder-bed-based additive manufacturing technique for titanium alloys: near net-shaped metallic components can be produced with high resource-efficiency and cost savings. For the most commercialized titanium alloy, namely Ti-6Al-4V, the complicated thermal profile of selective laser melting manufacturing (sharp cycles of steep heating and cooling rates) usually hinders manufacturing of components in a one-step process owing to the formation of brittle martensitic microstructures unsuitable for structural applications. In this work, an intensified intrinsic heat treatment is applied during selective laser melting of Ti-6Al-4V powder using a scanning strategy that combines porosity-optimized processing with a very tight hatch distance. Extensive martensite decomposition providing a uniform, fine lamellar α + β microstructure is obtained along the building direction. Moreover, structural evidence of the formation of the intermetallic α2-Ti3Al phase is provided. Variations in the lattice parameter of β serve as an indicator of the microstructural degree of stabilization. Interconnected 3D networks of β are generated in regions highly affected by the intensified intrinsic heat treatment applied. The results obtained reflect a contribution towards simultaneous selective laser melting-manufacturing and heat treatment for fabrication of Ti-6Al-4V parts. PMID:28772630
Effect of microstructure on transformation-induced plasticity of silicon-containing low-alloy steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomita, Yoshiyuki; Morioka, Kojiro
1997-04-01
Fe-0.6C-1.5Si-0.8Mn steel was studied to determine the effect of the microstructure on transformation-induced plasticity (TRIP) of silicon-containing low-alloy steel. A remarkable increase in elongation through TRIP can develop in the steel subjected to the following heat treatments: (1) austemper combined with subcritical annealing (SA Aus-T): subcritical annealing at 993K followed by austempering at 673K and then light tempering (after austenitization at 1173K); (2) austemper coupled with interrupted quenching (IQ Aus-T): interrupted quenching at 533K followed by austempering at 673K and light tempering (after austenization at 1,173K). The SA Aus-T treatment produced the triple structures of carbide-free upper bainite, retained austenitemore » ({gamma}R), and free ferrite. As a result of the IQ Aus-T treatment, the triple structures of carbide-free upper bainite, {gamma}R, and tempered martensite appeared. The results are described and microstructural factors in TRIP are discussed.« less
Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding
NASA Astrophysics Data System (ADS)
Shayganmanesh, Mahdi; Khoshnoud, Afsaneh
2016-03-01
In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.
Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sang-gil; Kim, Eunpa; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu
2016-08-15
We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ∼10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystalmore » growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.« less
Electrically tunable liquid crystal photonic bandgap fiber laser
NASA Astrophysics Data System (ADS)
Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders
2010-02-01
We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.
Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate
NASA Astrophysics Data System (ADS)
Hongo, Motoharu; Matsuo, Shigeki
2016-06-01
Laser-induced periodic surface structures (LIPSS) were fabricated on a prescratched silicon surface by irradiation with subnanosecond laser pulses. Low-spatial-frequency LIPSS (LSFL) were observed in the central and peripheral regions; both had a period Λ close to the laser wavelength λ, and the wavevector orientation was parallel to the electric field of the laser beam. The LSFL in the peripheral region seemed to be growing, that is, expanding in length with increasing number of pulses, into the outer regions. In addition, high-spatial-frequency LIPSS, Λ ≲ λ /2, were found along the scratches, and their wavevector orientation was parallel to the scratches.
Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water
NASA Astrophysics Data System (ADS)
Charee, Wisan; Tangwarodomnukun, Viboon
2018-03-01
Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yuming; Liu Liang; Fan Shoushan
2005-02-07
Self-organized conical microstructures are fabricated by 308 nm XeCl excimer laser irradiation of cyanoacrylate-carbon nanotube composites in air. The morphology of the surface on the composite films is studied, varying the total number and fluence of the applied laser pulses. A simple mechanism of the fabrication based on the evaporation of cyanoacrylate and the burning of carbon nanotubes is proposed. The conical peak structures of cyanoacrylate-carbon nanotube composite films show good field-emission properties. Similar structures are also observed on carbon nanotube arrays.
Single-Track Melt-Pool Measurements and Microstructures in Inconel 625
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.
2018-06-01
We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.
Single-Track Melt-Pool Measurements and Microstructures in Inconel 625
NASA Astrophysics Data System (ADS)
Ghosh, Supriyo; Ma, Li; Levine, Lyle E.; Ricker, Richard E.; Stoudt, Mark R.; Heigel, Jarred C.; Guyer, Jonathan E.
2018-02-01
We use single-track laser melting experiments and simulations on Inconel 625 to estimate the dimensions and microstructure of the resulting melt pool. Our work is based on a design-of-experiments approach which uses multiple laser power and scan speed combinations. Single-track experiments generated melt pools of certain dimensions that showed reasonable agreement with our finite-element calculations. Phase-field simulations were used to predict the size and segregation of the cellular microstructure that formed along the melt-pool boundaries for the solidification conditions that changed as a function of melt-pool dimensions.
Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding
NASA Astrophysics Data System (ADS)
Zhang, Wei
The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.
Akin, Hakan; Tugut, Faik; Mutaf, Burcu; Akin, Gulsah; Ozdemir, A Kemal
2011-11-01
Failure of the bond between the acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to investigate the effect of different surface treatments (sandblasting, Er:YAG, Nd:YAG, and KTP lasers) on tensile bond strength of silicone-based soft denture liner. Polymethyl methacrylate test specimens were fabricated and each received one of eight surface treatments: untreated (control), sandblasted, Er:YAG laser irradiated, sandblasted + Er:YAG laser irradiated, Nd:YAG laser irradiated, sandblasted + Nd:YAG laser irradiated, KTP laser irradiated, and sandblasted + KTP laser irradiated. The resilient liner specimens (n = 15) were processed between two polymethyl methacrylate (PMMA) blocks. Bonding strength of the liners to PMMA were compared by tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Kruskal-Wallis and Wilcoxon tests were used to analyze the data (α = 0.05). Altering the polymethyl methacrylate surface by Er:YAG laser significantly increased the bond strengths in polymethyl methacrylate/silicone specimens, however, sandblasting before applying a lining material had a weakening effect on the bond. In addition, Nd:YAG and KTP lasers were found to be ineffective for increasing the strength of the bond.
Gradient boride layers formed by diffusion carburizing and laser boriding
NASA Astrophysics Data System (ADS)
Kulka, M.; Makuch, N.; Dziarski, P.; Mikołajczak, D.; Przestacki, D.
2015-04-01
Laser boriding, instead of diffusion boriding, was proposed to formation of gradient borocarburized layers. The microstructure and properties of these layers were compared to those-obtained after typical diffusion borocarburizing. First method of treatment consists in diffusion carburizing and laser boriding only. In microstructure three zones are present: laser borided zone, hardened carburized zone and carburized layer without heat treatment. However, the violent decrease in the microhardness was observed below the laser borided zone. Additionally, these layers were characterized by a changeable value of mass wear intensity factor thus by a changeable abrasive wear resistance. Although at the beginning of friction the very low values of mass wear intensity factor Imw were obtained, these values increased during the next stages of friction. It can be caused by the fluctuations in the microhardness of the hardened carburized zone (HAZ). The use of through hardening after carburizing and laser boriding eliminated these fluctuations. Two zones characterized the microstructure of this layer: laser borided zone and hardened carburized zone. Mass wear intensity factor obtained a constant value for this layer and was comparable to that-obtained in case of diffusion borocarburizing and through hardening. Therefore, the diffusion boriding could be replaced by the laser boriding, when the high abrasive wear resistance is required. However, the possibilities of application of laser boriding instead of diffusion process were limited. In case of elements, which needed high fatigue strength, the substitution of diffusion boriding by laser boriding was not advisable. The surface cracks formed during laser re-melting were the reason for relatively quickly first fatigue crack. The preheating of the laser treated surface before laser beam action would prevent the surface cracks and cause the improved fatigue strength. Although the cohesion of laser borided carburized layer was sufficient, the diffusion borocarburized layer showed a better cohesion.
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos
2016-01-01
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
Shi, Feifei; Song, Zhichao; Ross, Philip N.; ...
2016-06-14
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural pathmore » for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.« less
Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos
2016-06-01
Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.
Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garratt, Elias; AlFaify, Salem; Yoshitake, T.
2013-01-11
This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less
Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1998-01-01
The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vol% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 mm layer of boron nitride (BN) followed by a 0.2 mm layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties w en compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.
Tensile Properties and Microstructural Characterization of Hi-Nicalon SiC/RBSN Composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
1998-01-01
The room temperature physical and mechanical properties of silicon carbide fiber-reinforced reaction-bonded silicon nitride matrix composites (SiC/RBSN) were measured, and the composite microstructure was analyzed. The composites consist of nearly 24 vol% of aligned Hi-Nicalon SiC fiber yarns in a approx. 30 vo1% porous silicon nitride matrix. The fiber yarns were coated by chemical vapor deposition with a 0.8 micron layer of boron nitride (BN) followed by a 0.2 micron layer of SiC. In the as-fabricated condition, both 1-D and 2-D composites exhibited high strength and graceful failure, and showed improved properties when compared with unreinforced matrix of comparable density. No indication of reaction between the SiC fiber and BN coating was noticed, but the outer SiC layer reacted locally with the nitridation enhancing additive in the RBSN matrix. A comparison is made between the predicted and measured values of matrix cracking strength.
NASA Astrophysics Data System (ADS)
Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang
2017-08-01
Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.
NASA Astrophysics Data System (ADS)
Stoldt, Conrad R.; Bright, Victor M.
2006-05-01
A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.
Microstructural Effects on the Corrosion Behavior of Alloys and Ceramics
2008-06-30
Cr ferritic- martensitic steel HCMI2A, and silicon carbide fabricated by means of chemical vapor deposition (CVD). The study focused on the effect of...12%Cr ferritic- martensitic steel HCM12A, and silicon carbide fabricated by means of chemical vapor deposition (CVD). The study focused on the effect...3 1.4.3. Ferritic/ martensitic steel H CM 12A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivyakin, G. K.; Volodin, V. A., E-mail: volodin@isp.nsc.ru; Kochubei, S. A.
Silicon nanocrystals are formed in the i layers of p–i–n structures based on a-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm{sup 2} (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR)more » range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.« less
Transparent silicon strip sensors for the optical alignment of particle detector systems
NASA Astrophysics Data System (ADS)
Blum, W.; Kroha, H.; Widmann, P.
1996-02-01
Modern large-area precision tracking detectors require increasing accuracy for the alignment of their components. A novel multi-point laser alignment system has been developed for such applications. The position of detector components with respect to reference laser beams is monitored by semi-transparent optical position sensors which work on the principle of silicon strip photodiodes. Two types of custom designed transparent strip sensors, based on crystalline and on amorphous silicon as active material, have been studied. The sensors are optimized for the typical diameters of collimated laser beams of 3-5 mm over distances of 10-20 m. They provide very high position resolution, on the order of 1 μm, uniformly over a wide measurement range of several centimeters. The preparation of the sensor surfaces requires special attention in order to achieve high light transmittance and minimum distortion of the traversing laser beams. At selected wavelengths, produced by laser diodes, transmission rates above 90% have been achieved. This allows to position more than 30 sensors along one laser beam. The sensors will be equipped with custom designed integrated readout electronics.
Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik
2016-01-01
Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems. PMID:27431769
Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine
2003-06-10
Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.
He, Z.-H.; Beaurepaire, B.; Nees, J. A.; Gallé, G.; Scott, S. A.; Pérez, J. R. Sánchez; Lagally, M. G.; Krushelnick, K.; Thomas, A. G. R.; Faure, J.
2016-01-01
Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes. PMID:27824086
He, Z. -H.; Beaurepaire, B.; Nees, J. A.; ...
2016-11-08
Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here in this paper, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scalemore » by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.« less
NASA Astrophysics Data System (ADS)
Kreitcberg, A.; Brailovski, V.; Sheremetyev, V.; Prokoshkin, S.
2017-12-01
The effect of different laser powder bed fusion (L-PBF) parameters on the phase composition, microstructure, and crystallographic texture of Ti-18Zr-14Nb alloy was studied. Two levels of laser power, scanning speed, and hatching space were used, while the layer thickness was kept constant. The resulting volume energy density was ranged from 20 to 60 J/mm3, and the build rate, from 12 to 36 cm3/h. The manufactured coupons were analyzed by X-ray diffractometry, transmission, and scanning electron microscopy. It was found that the greater influence observed on the microstructure and texture development was caused by the value of laser power, while the lowest, by that of hatching space. Based on the results obtained, the processing optimization strategy aimed at improving the density, superelastic, and fatigue properties of the L-PBF manufactured Ti-18Zr-14Nb alloy was proposed.
Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance
NASA Astrophysics Data System (ADS)
Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.
2012-06-01
The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.
NASA Astrophysics Data System (ADS)
Mahanthesha, P.; Mohankumar, G. C.
2018-04-01
Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.
Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G
2015-05-18
Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.
Recycling of silicon: from industrial waste to biocompatible nanoparticles for nanomedicine
NASA Astrophysics Data System (ADS)
Kozlov, N. K.; Natashina, U. A.; Tamarov, K. P.; Gongalsky, M. B.; Solovyev, V. V.; Kudryavtsev, A. A.; Sivakov, V.; Osminkina, L. A.
2017-09-01
The formation of photoluminescent porous silicon (PSi) nanoparticles (NPs) is usually based on an expensive semiconductor grade wafers technology. Here, we report a low-cost method of PSi NPs synthesis from the industrial silicon waste remained after the wafer production. The proposed method is based on metal-assisted wet-chemical etching (MACE) of the silicon surface of cm-sized metallurgical grade silicon stones which leads to a nanostructuring of the surface due to an anisotropic etching, with subsequent ultrasound fracturing in water. The obtained PSi NPs exhibit bright red room temperature photoluminescence (PL) and demonstrate similar microstructure and physical characteristics in comparison with the nanoparticles synthesized from semiconductor grade Si wafers. PSi NPs prepared from metallurgical grade silicon stones, similar to silicon NPs synthesized from high purity silicon wafer, show low toxicity to biological objects that open the possibility of using such type of NPs in nanomedicine.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Keller, L. P.; Baragiola, R. A.
2016-01-01
The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical SEM and TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation.
Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers
NASA Astrophysics Data System (ADS)
Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca
2014-08-01
Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.
Development of refractory armored silicon carbide by infrared transient liquid phase processing
NASA Astrophysics Data System (ADS)
Hinoki, Tatsuya; Snead, Lance L.; Blue, Craig A.
2005-12-01
Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m 2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m 2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.
NASA Astrophysics Data System (ADS)
Klusemann, Benjamin; Bambach, Markus
2018-05-01
Processing conditions play a crucial role for the resulting microstructure and properties of the material. In particular, processing materials under non-equilibrium conditions can lead to a remarkable improvement of the final properties [1]. Additive manufacturing represents a specific process example considered in this study. Models for the prediction of residual stresses and microstructure in additive manufacturing processes, such as laser metal deposition, are being developed with huge efforts to support the development of materials and processes as well as to support process design [2-4]. Since the microstructure predicted after each heating and cooling cycle induced by the moving laser source enters the phase transformation kinetics and microstucture evolution of the subsequent heating and cooling cycle, a feed-back loop for the microstructure calculation is created. This calculation loop may become unstable so that the computed microstructure and related properties become very sensitive to small variations in the input parameters, e.g. thermal conductivity. In this paper, a model for phase transformation in Ti-6Al-4V, originally proposed by Charles Murgau et al. [5], is adopted and minimal adjusted concerning the decomposition of the martensite phase are made. This model is subsequently used to study the changes in the predictions of the different phase volume fractions during heating and cooling under the conditions of laser metal deposition with respect to slight variations in the thermal process history.
Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng
2014-08-07
Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.
Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2015-10-01
Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality. Copyright © 2015 Elsevier B.V. All rights reserved.
Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther
2014-11-15
We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.
Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.
2012-10-01
The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorona, I O; Yavetskiy, R P; Tolmachev, A V
2015-09-30
The optical properties and microstructure of transparent Nd{sup 3+}:Y{sub 3}Al{sub 5}O{sub 12} ceramics synthesised by different reactive sintering routes are studied. It is found that the residual porosity of optical ceramics is directly related to the homogeneity of the microstructure of initial compacts, which can be estimated by the existence of particle agglomerates larger than 1 mm in initial nanopowders. A qualitative correlation is established between the residual porosity, the optical losses and the lasing slope efficiency of Nd{sup 3+}:Y{sub 3}Al{sub 5}O{sub 12} ceramics. The maximum laser efficiency (η = 49%) was observed in the samples with the lowest porositymore » (2.3 × 10{sup -3} vol %). (lasers)« less
SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution
NASA Astrophysics Data System (ADS)
Voorkamp, R.; Verschuuren, M. A.; van Brakel, R.
2016-10-01
Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 - 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and yield. Soft stamps, usually based on silicone rubber, behave fundamentally different compared to rigid stamps on the macro-, micro- and nanometer level. The main limitation of traditional silicones is that they are too soft to support sub-micron features against surface tension based stamp deformation and collapse [4] and handling a soft stamp to achieve accurate feature placement on wafer scales to allow overlay alignment with sub-100nm overlay accuracy.
Wædegaard, Kristian J; Balling, Peter
2011-02-14
An infrared femtosecond laser has been used to write computer-generated holograms directly on a silicon surface. The high resolution offered by short-pulse laser ablation is employed to write highly detailed holograms with resolution up to 111 kpixels/mm2. It is demonstrated how three-dimensional effects can be realized in computer-generated holograms. Three-dimensional effects are visualized as a relative motion between different parts of the holographic reconstruction, when the hologram is moved relative to the reconstructing laser beam. Potential security applications are briefly discussed.
Yang, Ming; Wu, Qiang; Chen, Zhandong; Zhang, Bin; Tang, Baiquan; Yao, Jianghong; Drevensek-Olenik, Irena; Xu, Jingjun
2014-01-15
We experimentally show that the generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon inducted by irradiation with a single laser pulse (800 nm, 120 fs, linear polarization) depend on the pulse fluence. We propose that this is due to competition between periodic surface structuring originating from the interference of incident light with surface plasmon polaritons and surface smoothing associated with surface melting. Experimental results are supported by theoretical analysis of transient surface modifications based on combining the two-temperature model and the Drude model.
Integration of hybrid silicon lasers and electroabsorption modulators.
Sysak, Matthew N; Anthes, Joel O; Bowers, John E; Raday, Omri; Jones, Richard
2008-08-18
We present an integration platform based on quantum well intermixing for multi-section hybrid silicon lasers and electroabsorption modulators. As a demonstration of the technology, we have fabricated discrete sampled grating DBR lasers and sampled grating DBR lasers integrated with InGaAsP/InP electroabsorption modulators. The integrated sampled grating DBR laser-modulators use the as-grown III-V bandgap for optical gain, a 50 nm blue shifted bandgap for the electrabosprtion modulators, and an 80 nm blue shifted bandgap for low loss mirrors. Laser continuous wave operation up to 45 ?C is achieved with output power >1.0 mW and threshold current of <50 mA. The modulator bandwidth is >2GHz with 5 dB DC extinction.
High speed analog-to-digital conversion with silicon photonics
NASA Astrophysics Data System (ADS)
Holzwarth, C. W.; Amatya, R.; Araghchini, M.; Birge, J.; Byun, H.; Chen, J.; Dahlem, M.; DiLello, N. A.; Gan, F.; Hoyt, J. L.; Ippen, E. P.; Kärtner, F. X.; Khilo, A.; Kim, J.; Kim, M.; Motamedi, A.; Orcutt, J. S.; Park, M.; Perrott, M.; Popovic, M. A.; Ram, R. J.; Smith, H. I.; Zhou, G. R.; Spector, S. J.; Lyszczarz, T. M.; Geis, M. W.; Lennon, D. M.; Yoon, J. U.; Grein, M. E.; Schulein, R. T.; Frolov, S.; Hanjani, A.; Shmulovich, J.
2009-02-01
Sampling rates of high-performance electronic analog-to-digital converters (ADC) are fundamentally limited by the timing jitter of the electronic clock. This limit is overcome in photonic ADC's by taking advantage of the ultra-low timing jitter of femtosecond lasers. We have developed designs and strategies for a photonic ADC that is capable of 40 GSa/s at a resolution of 8 bits. This system requires a femtosecond laser with a repetition rate of 2 GHz and timing jitter less than 20 fs. In addition to a femtosecond laser this system calls for the integration of a number of photonic components including: a broadband modulator, optical filter banks, and photodetectors. Using silicon-on-insulator (SOI) as the platform we have fabricated these individual components. The silicon optical modulator is based on a Mach-Zehnder interferometer architecture and achieves a VπL of 2 Vcm. The filter banks comprise 40 second-order microring-resonator filters with a channel spacing of 80 GHz. For the photodetectors we are exploring ion-bombarded silicon waveguide detectors and germanium films epitaxially grown on silicon utilizing a process that minimizes the defect density.
1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si
NASA Astrophysics Data System (ADS)
Shi, Bei; Zhu, Si; Li, Qiang; Tang, Chak Wah; Wan, Yating; Hu, Evelyn L.; Lau, Kei May
2017-03-01
Miniaturized laser sources can benefit a wide variety of applications ranging from on-chip optical communications and data processing, to biological sensing. There is a tremendous interest in integrating these lasers with rapidly advancing silicon photonics, aiming to provide the combined strength of the optoelectronic integrated circuits and existing large-volume, low-cost silicon-based manufacturing foundries. Using III-V quantum dots as the active medium has been proven to lower power consumption and improve device temperature stability. Here, we demonstrate room-temperature InAs/InAlGaAs quantum-dot subwavelength microdisk lasers epitaxially grown on (001) Si, with a lasing wavelength of 1563 nm, an ultralow-threshold of 2.73 μW, and lasing up to 60 °C under pulsed optical pumping. This result unambiguously offers a promising path towards large-scale integration of cost-effective and energy-efficient silicon-based long-wavelength lasers.
A temperature microsensor for measuring laser-induced heating in gold nanorods.
Pacardo, Dennis B; Neupane, Bhanu; Wang, Gufeng; Gu, Zhen; Walker, Glenn M; Ligler, Frances S
2015-01-01
Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.
Excimer laser annealing: A gold process for CZ silicon junction formation
NASA Technical Reports Server (NTRS)
Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul
1987-01-01
A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.
Ownby, G.W.; White, C.W.; Zehner, D.M.
1979-12-28
This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an atomically clean region. This can be accomplished in a system at a pressure below 10-/sup 8/ Torr, using Q-switched ruber-laser pulses having an energy density in the range of from about 60 to 190 MW/cm/sup 2/.
Ownby, Gary W.; White, Clark W.; Zehner, David M.
1981-01-01
This invention relates to a new method for removing surface impurities from crystalline silicon or germanium articles, such as off-the-shelf p- or n-type wafers to be doped for use as junction devices. The principal contaminants on such wafers are oxygen and carbon. The new method comprises laser-irradiating the contaminated surface in a non-reactive atmosphere, using one or more of Q-switched laser pulses whose parameters are selected to effect melting of the surface without substantial vaporization thereof. In a typical application, a plurality of pulses is used to convert a surface region of an off-the-shelf silicon wafer to an automatically clean region. This can be accomplished in a system at a pressure below 10.sup.-8 Torr, using Q-switched ruby-laser pulses having an energy density in the range of from about 60 to 190 MW/cm.sup.2.
High strength, high ductility low carbon steel
Koo, Jayoung; Thomas, Gareth
1978-01-01
A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.
NASA Astrophysics Data System (ADS)
Jansen, Florian; Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk
2018-02-01
In this work we present an ultrafast laser system distinguished by its industry-ready reliability and its outstanding flexibility that allows for real-time process-inherent parameter. The robust system design and linear amplifier architecture make the all-fiber series TruMicro 2000 ideally suited for passive coupling to hollow-core delivery fibers. In addition to details on the laser system itself, various application examples are shown, including welding of different glasses and ablation of silicon carbide and silicon.
Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector
NASA Astrophysics Data System (ADS)
Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.
2016-01-04
Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon Article in Scientific Reports · January 2016 DOI : 10.1038/srep18860 CITATIONS 5 READS...1Scientific RepoRts | 6:18860 | DOI : 10.1038/srep18860 www.nature.com/scientificreports Printed Large-Area Single-Mode Photonic Crystal Bandedge...bandgap group III-V materials on Si1,4–11 through wafer bonding, printing, and direct-growth. Most lasers demonstrated so far are edge-emitting
Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shou, Wan; Pan, Heng, E-mail: hp5c7@mst.edu
2016-05-23
We report direct printing of micro/sub-micron structures by femtosecond laser excitation of semiconductor nanocrystals (NCs) in solution. Laser excitation with moderate intensity (10{sup 11}–10{sup 12} W/cm{sup 2}) induces 2D and 3D deposition of CdTe nanocrystals in aqueous solution, which can be applied for direct printing of microstructures. It is believed that laser irradiation induces charge formation on nanocrystals leading to deposition. Furthermore, it is demonstrated that the charged nanocrystals can respond to external electrical bias, enabling a printing approach based on selective laser induced electrophoretic deposition. Finally, energy dispersive X-ray analysis of deposited structures shows oxidation occurs and deposited structure mainlymore » consists of Cd{sub x}O.« less
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Orishich, A. M.; Malikov, A. G.; Ryashin, N. S.; Golyshev, A. A.
2017-10-01
In the present work, a combined method is considered for the production of a metal-matrix composite coating based on Ni and B4C. The coating is created by consistently applied methods: cold spray and laser cladding. Main focus of this work aimed to microstructure of coatings, element content and morphology of laser tracks. At this stage, the authors focused on the interaction of the laser unit with the substance without affecting the layer-growing technology products. It is shown that coating has deformed particles of nickel and the significantly decreased content of ceramic particles B4C after cold spray. After laser cladding there are no boundaries between nickel and dramatically changes in ceramic particles.
Ródenas, Airán; Nejadmalayeri, Amir H; Jaque, Daniel; Herman, Peter
2008-09-01
We report on the confocal Raman characterization of the micro-structural lattice changes induced during the high-repetition rate ultrafast laser writing of buried optical waveguides in lithium niobate (LiNbO(3)) crystals. While the laser beam focal volume is characterized by a significant lattice expansion together with a high defect concentration, the adjacent waveguide zone is largely free of defects, undergoing only slight rearrangement of the oxygen octahedron in the LiNbO(3) lattice. The close proximity of these two zones has been found responsible for the propagation losses of the guided light. Subjacent laser-induced periodic micro-structures have been also observed inside the laser focal volume, and identified with a strong periodic distribution of lattice defects.
NASA Astrophysics Data System (ADS)
Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.
2018-02-01
Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.
NASA Astrophysics Data System (ADS)
Bayati, Mohammad Reza
The main focus of this study was placed on structure-property correlation in TiO2 and VO2 based epitaxial heterostructures where the photochemical and electrical properties were tuned through microstructural engineering. In the framework of domain matching epitaxy, epitaxial growth of TiO2 and VO2 heterostructures on different substrates were explained. The theta-2theta and ϕ scan X-ray diffraction measurements and detailed high resolution electron microscopy studies corroborated our understanding of the epitaxial growth and the crystallographic arrangement across the interfaces. The influence of the laser and substrate variables on structural characteristics of the films was investigated using X-ray photoelectron spectroscopy, room temperature photoluminescence spectroscopy, and UV-Vis spectrophotometry. In addition, morphological studies were performed by atomic force microscopy. Photochemical properties of the heterostructures were assessed through measuring surface wettability characteristics and photocatalytic reaction rate constant of degradation of 4-chlorophenol under ultraviolet and visible irradiations. We also studied electrical properties employing 4-probe measurement technique. The effect of post treatment processes, such as vacuum annealing and laser treatment, on structure and properties was investigated as well. The role of point defects and deviation from the stoichiometry on photochemical and electrical properties was addressed. In this research, TiO2 epilayers with controlled phase structure, defect content, and crystallographic alignments were grown on sapphire and silicon substrates. Integration with silicon was achieved using cubic and tetragonal yttria-stabilized zirconia buffer layers. I was able to tune the phase structure of the TiO2 based heterostructures from pure rutile to pure anatase and establish an epitaxial relationship across the interfaces in each case. These heterostructures were used for two different purposes. First, their application in environmental remediation was taken into account. The photochemical efficiency of the samples was evaluated under ultraviolet and visible illuminations. I was able to establish a correlation between the growth conditions and the photocatalytic activity of single crystalline TiO 2 thin films. Visible-light-responsive TiO2 films were fabricated via vacuum annealing of the samples where point defects, namely oxygen vacancies and titanium interstitial, are surmised to play a critical role. An ultrafast switching was observed in wetting characteristics of the single crystalline rutile TiO2 films from a hydrophobic state to a superhydrophilic state by single pulsed excimer laser annealing. It was observed that the laser annealing almost doubles the photocatalytic efficiency of the anatase epitaxial thin films. I was able to measure the photochemical properties of the rutile and the anatase TiO2 heterostructures in a controlled way due to the single crystalline nature of the films. Second, the rutile TiO2 epilayers with different out-of-plane orientations were deposited and used as a platform for VO2 based epitaxial heterostructures with the aim of manipulating of microstructure and electrical properties of the VO 2 films. Vanadium dioxide (VO2) is an interesting material due to the abrupt change in electrical resistivity and infrared transmittance at about 68 °C. The transition temperature can be tuned through microstructural engineering. It was the idea behind using rutile TiO2 with different crystallographic orientations as a template to tune the semiconductor to metal transition characteristics of the VO2 top layer. I successfully grew VO2(001), VO2(100), and VO2(2¯01) epitaxial thin films on TiO2(100)/c-sapphire, TiO2(101)/r-sapphire, and TiO2(001)/ m-sapphire platforms, respectively. It was observed that tetragonal phase of VO2 was stabilized at lower temperatures leading to a significant decrease in the semiconductor to metal transition temperature. In other words, we were able to tune the transition temperature of the VO 2 epitaxial heterostructures. This achievement introduces the VO 2 based single crystalline heterostructures as a promising candidate for a wide range of applications where different transition temperatures are required. The epitaxial relationships were established and atomic arrangement across the interfaces was studied in detail.
Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin
2015-05-13
Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.
Method for making defect-free zone by laser-annealing of doped silicon
Narayan, Jagdish; White, Clark W.; Young, Rosa T.
1980-01-01
This invention is a method for improving the electrical properties of silicon semiconductor material. The method comprises irradiating a selected surface layer of the semiconductor material with high-power laser pulses characterized by a special combination of wavelength, energy level, and duration. The combination effects melting of the layer without degrading electrical properties, such as minority-carrier diffusion length. The method is applicable to improving the electrical properties of n- and p-type silicon which is to be doped to form an electrical junction therein. Another important application of the method is the virtually complete removal of doping-induced defects from ion-implanted or diffusion-doped silicon substrates.
Radiographic and ultrasonic characterization of sintered silicon carbide
NASA Technical Reports Server (NTRS)
Baaklini, G. Y.; Abel, P. B.
1988-01-01
The capabilities were investigated of projection microfocus X-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.
Flaw imaging and ultrasonic techniques for characterizing sintered silicon carbide
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Abel, Phillip B.
1987-01-01
The capabilities were investigated of projection microfocus x-radiography, ultrasonic velocity and attenuation, and reflection scanning acoustic microscopy for characterizing silicon carbide specimens. Silicon carbide batches covered a range of densities and different microstructural characteristics. Room temperature, four point flexural strength tests were conducted. Fractography was used to identify types, sizes, and locations of fracture origins. Fracture toughness values were calculated from fracture strength and flaw characterization data. Detection capabilities of radiography and acoustic microscopy for fracture-causing flaws were evaluated. Applicability of ultrasonics for verifying material strength and toughness was examined.
NASA Astrophysics Data System (ADS)
Pekkarinen, J.; Kujanpää, V.
This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.
Heterogeneous processes in CF4/O2 plasmas probed using laser-induced fluorescence of CF2
NASA Astrophysics Data System (ADS)
Hansen, S. G.; Luckman, G.; Nieman, George C.; Colson, Steven D.
1990-09-01
Laser-induced fluorescence of CF2 is used to monitor heterogeneous processes in ≊300 mTorr CF4/O2 plasmas. CF2 is rapidly removed at fluorinated copper and silver surfaces in 13.56-MHz rf discharges as judged by a distinct dip in its spatial distribution. These metals, when employed as etch masks, are known to accelerate plasma etching of silicon, and the present results suggest catalytic dehalogenation of CF2 is involved in this process. In contrast, aluminum and silicon dioxide exhibit negligible reactivity with CF2, which suggests that aluminum masks will not appreciably accelerate silicon etching and that ground state CF2 does not efficiently etch silicon dioxide. Measurement of CF2 decay in a pulsed discharge coupled with direct laser sputtering of metal into the gas phase indicates the interaction between CF2 and the active metals is purely heterogeneous. Aluminum does, however, exhibit homogeneous reactivity with CF2. Redistribution of active metal by plasma sputtering readily occurs; silicon etch rates may also be enhanced by the metal's presence on the silicon surface. Polymers contribute CF2 to the plasma as they etch. The observation of an induction period suggests fluorination of the polymer surface is the first step in its degradation. Polymeric etch masks can therefore depress the silicon etch rate by removal of F atoms, the primary etchants.
Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation.
Yuan, Yanping; Chen, Jimin
2016-02-24
In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm²) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C-C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si-N and Si-C achieve the welding between the MWCNTs and silicon. Vibration modes of Si₃N₄ appear at peaks of 363 cm -1 and 663 cm -1 . There are vibration modes of SiC at peaks of 618 cm -1 , 779 cm -1 and 973 cm -1 . The experimental observation proves chemical reactions and the formation of Si₃N₄ and SiC by laser irradiation.
Laser-assisted patterning of double-sided adhesive tapes for optofluidic chip integration
NASA Astrophysics Data System (ADS)
Zamora, Vanessa; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Havlik, George; Queisser, Marco; Schröder, Henning
2018-02-01
Portable high-sensitivity biosensors exhibit a growing demand in healthcare, food industry and environmental monitoring sectors. Optical biosensors based on photonic integration platforms are attractive candidates due to their high sensitivity, compactness and multiplexing capabilities. However, they need a low-cost and reliable integration with the microfluidic system. Laser-micropatterned double-sided biocompatible adhesive tapes are promising bonding layers for hybrid integration of an optofluidic biochip. As a part of the EU-PHOCNOSIS project, double-sided adhesive tapes have been proposed to integrate the polymer microfluidic system with the optical integrated waveguide sensor chip. Here the adhesive tape should be patterned in a micrometer scale in order to create an interaction between the sample that flows through the polymer microchannel and the photonic sensing microstructure. Three laser-assisted structuring methods are investigated to transfer microchannel patterns to the adhesive tape. The test structure design consists of a single channel with 400 μm wide, 30 mm length and two circular receivers with 3 mm radius. The best structuring results are found by using the picosecond UV laser where smooth and straight channel cross-sections are obtained. Such patterned tapes are used to bond blank polymer substrates to blank silicon substrates. As a proof of concept, the hybrid integration is tested using colored DI-water. Structuring tests related to the reduction of channel widths are also considered in this work. The use of this technique enables a simple and rapid manufacturing of narrow channels (50-60 μm in width) in adhesive tapes, achieving a cheap and stable integration of the optofluidic biochip.
Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application.
Zou, Meng; Dai, Yutang; Zhou, Xian; Dong, Ke; Yang, Minghong
2016-12-01
A composite microstructure in fiber Bragg grating (FBG) with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd-Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.
Electrically induced formation of uncapped, hollow polymeric microstructures
NASA Astrophysics Data System (ADS)
Lee, Sung Hun; Kim, Pilnam; Jeong, Hoon Eui; Suh, Kahp Y.
2006-11-01
Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (~20 µm). Upon exposure to an external electric field (1.0-3.0 V µm-1), the hollow microstructures were destabilized and stretched by the well-known electrohydrodynamic instability, resulting in contact of the top polymer surface with the mask. Subsequently, detachment of the capping layer occurred upon removal of the mask due to larger adhesion forces at the polymer/mask interface than cohesion forces of the polymer. These hollow microstructures were tested to capture the budding yeast, Saccharomyces cerevisiae, for shear protection.
Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
NASA Astrophysics Data System (ADS)
Trelewicz, Jason R.; Halada, Gary P.; Donaldson, Olivia K.; Manogharan, Guha
2016-03-01
Additive manufacturing (AM) of metal alloys to produce complex part designs via powder bed fusion methods such as laser melting promises to be a transformative technology for advanced materials processing. However, effective implementation of AM processes requires a clear understanding of the processing-structure-properties-performance relationships in fabricated components. In this study, we report on the formation of micro and nanoscale structures in 316L stainless steel samples printed by laser AM and their implications for general corrosion resistance. A variety of techniques including x-ray diffraction, optical, scanning and transmission electron microscopy, x-ray fluorescence, and energy dispersive x-ray spectroscopy were employed to characterize the microstructure and chemistry of the laser additively manufactured 316L stainless steel, which are compared with wrought 316L coupons via electrochemical polarization. Apparent segregation of Mo has been found to contribute to a loss of passivity and an increased anodic current density. While porosity will also likely impact the environmental performance (e.g., facilitating crevice corrosion) of AM alloys, this work demonstrates the critical influence of microstructure and heterogeneous solute distributions on the corrosion resistance of laser additively manufactured 316L stainless steel.
Liu, Qibin; Zhu, Weidong; Zou, Longjiang; Zheng, Min; Dong, Chuang
2005-12-01
The gradient bioceramics coating was prepared on the surface of Ti-6Al-4V alloy by using wide-band laser cladding. And the effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating was studied. The experimental results indicated that in the circumstances of size of laser doze D and scanning velocity V being fixed, with the increasement of power P, the density of microstructure in bioceramics coating gradually degraded; with the increasement of power P, the pore rate of bioceramics gradually became high. While P = 2.3 KW, the bioceramics coating with dense structure and lower pore rate (5.11%) was obtained; while P = 2.9 KW, the bioceramics coating with disappointing density was formed and its pore rate was up to 21.32%. The microhardness of bioceramics coating demonstrated that while P = 2.3 KW, the largest value of microhardness of bioceramics coating was 1100 HV. Under the condition of our research work, the optimum technological parameters for preparing gradient bioceramics coating by wide-band laser cladding are: P = 2.3 KW, V = 145 mm/min, D = 16 mm x 2 mm.
Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion
NASA Astrophysics Data System (ADS)
Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.
2017-12-01
Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.
Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography
NASA Technical Reports Server (NTRS)
Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W. G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V.
2001-01-01
The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 micrometers by the use of different photomasks, while height varied from 3 to 12 micrometers, depending on the molecular weight of the PEG macromer. In the case of 7 micrometers diameter elements, as many as 400 elements were reproducibly generated in a 1 mm2 square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine.
Toet, Daniel; Sigmon, Thomas W.
2004-12-07
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2005-08-23
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2003-01-01
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.
Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang
2015-11-13
The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.
Laser annealing of ion implanted CZ silicon for solar cell junction formation
NASA Technical Reports Server (NTRS)
Katzeff, J. S.
1981-01-01
The merits of large spot size pulsed laser annealing of phosphorus implanted, Czochralski grown silicon for function formation of solar cells are evaluated. The feasibility and requirements are also determined to scale-up a laser system to anneal 7.62 cm diameter wafers at a rate of one wafer/second. Results show that laser annealing yields active, defect-free, shallow junction devices. Functional cells with AM 1 conversion efficiencies up to 15.4% for 2 x 2 cm and 2 x 4 cm sizes were attained. For larger cells, 7.62 cm dia., conversion efficiencies ranged up to 14.5%. Experiments showed that texture etched surfaces are not compatible with pulsed laser annealing due to the surface melting caused by the laser energy. When compared with furnace annealed cells, the laser annealed cells generally exhibited conversion efficiencies which were equal to or better than those furnace annealed. In addition, laser annealing has greater throughput potential.
Robbiano, Valentina; Paternò, Giuseppe M; La Mattina, Antonino A; Motti, Silvia G; Lanzani, Guglielmo; Scotognella, Francesco; Barillaro, Giuseppe
2018-05-22
Silicon photonics would strongly benefit from monolithically integrated low-threshold silicon-based laser operating at room temperature, representing today the main challenge toward low-cost and power-efficient electronic-photonic integrated circuits. Here we demonstrate low-threshold lasing from fully transparent nanostructured porous silicon (PSi) monolithic microcavities (MCs) infiltrated with a polyfluorene derivative, namely, poly(9,9-di- n-octylfluorenyl-2,7-diyl) (PFO). The PFO-infiltrated PSiMCs support single-mode blue lasing at the resonance wavelength of 466 nm, with a line width of ∼1.3 nm and lasing threshold of 5 nJ (15 μJ/cm 2 ), a value that is at the state of the art of PFO lasers. Furthermore, time-resolved photoluminescence shows a significant shortening (∼57%) of PFO emission lifetime in the PSiMCs, with respect to nonresonant PSi reference structures, confirming a dramatic variation of the radiative decay rate due to a Purcell effect. Our results, given also that blue lasing is a worst case for silicon photonics, are highly appealing for the development of low-cost, low-threshold silicon-based lasers with wavelengths tunable from visible to the near-infrared region by simple infiltration of suitable emitting polymers in monolithically integrated nanostructured PSiMCs.
Laser shape setting of superelastic nitinol wires: Functional properties and microstructure
NASA Astrophysics Data System (ADS)
Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto
Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.
NASA Astrophysics Data System (ADS)
Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle
2017-12-01
Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.
10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration.
Zhang, Jing; Liow, Tsung-Yang; Lo, Guo-Qiang; Kwong, Dim-Lee
2010-03-01
A new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU) are proposed, eliminating the need for an internal laser source in ONU. The Si transceiver is fully monolithic, includes integrated wavelength division multiplexing (WDM) filters, modulators (MOD) and photo-detectors (PD), and demonstrates low-cost high volume manufacturability.
Laser ablation mechanism of transparent layers on semiconductors with ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Rublack, Tino; Hartnauer, Stefan; Mergner, Michael; Muchow, Markus; Seifert, Gerhard
2011-12-01
Transparent dielectric layers on semiconductors are used as anti-reflection coatings both for photovoltaic applications and for mid-infrared optical elements. We have shown recently that selective ablation of such layers is possible using ultrashort laser pulses at wavelengths being absorbed by the semiconductor. To get a deeper understanding of the ablation mechanism, we have done ablation experiments for different transparent materials, in particular SiO2 and SixNy on silicon, using a broad range of wavelengths ranging from UV to IR, and pulse durations between 50 and 2000 fs. The characterization of the ablated regions was done by light microscopy and atomic force microscopy (AFM). Utilizing laser wavelengths above the silicon band gap, selective ablation of the dielectric layer without noticeable damage of the opened silicon surface is possible. In contrast, ultrashort pulses (1-2 ps) at mid-infrared wavelengths already cause damage in the silicon at lower intensities than in the dielectric layer, even when a vibrational resonance (e.g. at λ = 9.26 μm for SiO2) is addressed. The physical processes behind this, on the first glance counterintuitive, observation will be discussed.
NASA Astrophysics Data System (ADS)
Chen, Lin; Bai, Shu-Lin
2018-04-01
Hastelloy C22 coating was prepared on substrate of Q235 steel by high power multilayer laser cladding. The microstructure, hardness and anti-corrosion properties of coating were investigated. The corrosion tests in 3.5% NaCl solution were carried out with variation of impingement angle and velocity, and vibration frequency of sample. The microstructure of coating changes from equiaxed grain at the top surface to dendrites oriented at an angle of 60° to the substrate inside the coating. The corrosion rate of coating increases with the increase of impingement angle and velocity, and vibrant frequency of sample. Corrosion mechanisms relate to repassivation and depassivation of coating according to electrochemical measurements. Above results show that multilayer laser cladding can endow Hastelloy C22 coating with fine microstructures, high hardness and good anti-corrosion performances.
Premnath, P.; Tan, B.; Venkatakrishnan, K.
2015-01-01
Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009
Optothermal response of a single silicon nanotip
NASA Astrophysics Data System (ADS)
Vella, A.; Shinde, D.; Houard, J.; Silaeva, E.; Arnoldi, L.; Blum, I.; Rigutti, L.; Pertreux, E.; Maioli, P.; Crut, A.; Del Fatti, N.
2018-02-01
The optical properties and thermal dynamics of conical single silicon nanotips are experimentally and theoretically investigated. The spectral and spatial dependencies of their optical extinction are quantitatively measured by spatial modulation spectroscopy (SMS). A nonuniform optical extinction along the tip axis and an enhanced near-infrared absorption, as compared to bulk crystalline silicon, are evidenced. This information is a key input for computing the thermal response of single silicon nanotips under ultrafast laser illumination, which is investigated by laser assisted atom probe tomography (La-APT) used as a highly sensitive temperature probe. A combination of these two experimental techniques and comparison with modeling also permits us to elucidate the impact of thermal effects on the laser assisted field evaporation process. Extension of this coupled approach opens up future perspectives for the quantitative study of the optical and thermal properties of a wide class of individual nano-objects, in particular elongated ones such as nanotubes, nanowires, and nanocones, which constitute promising nanosources for electron and/or ion emission.
Characterization of silicon detectors through TCT at Delhi University
NASA Astrophysics Data System (ADS)
Jain, G.; Lalwani, K.; Dalal, R.; Bhardwaj, A.; Ranjan, K.
2016-07-01
Transient Current Technique (TCT) is one of the important methods to characterize silicon detectors and is based on the time evolution of the charge carriers generated when a laser light is shone on it. For red laser, charge is injected only to a small distance from the surface of the detector. For such a system, one of the charge carriers is collected faster than the readout time of the electronics and therefore, the effective signal at the electrodes is decided by the charge carriers that traverse throughout the active volume of the detector, giving insight to the electric field profile, drift velocity, effective doping density, etc. of the detector. Delhi University is actively involved in the silicon detector R&D and has recently installed a TCT setup consisting of a red laser system, a Faraday cage, a SMU (Source Measuring Unit), a bias tee, and an amplifier. Measurements on a few silicon pad detectors have been performed using the developed system, and the results have been found in good agreement with the CERN setup.
Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width
NASA Astrophysics Data System (ADS)
Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.
2016-06-01
Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.
NASA Astrophysics Data System (ADS)
Zisis, G.; Martinez-Jimenez, G.; Franz, Y.; Healy, N.; Masaud, T. M.; Chong, H. M. H.; Soergel, E.; Peacock, A. C.; Mailis, S.
2017-08-01
We report laser-induced poling inhibition and direct poling in lithium niobate crystals (LiNbO3), covered with an amorphous silicon (a-Si) light-absorbing layer, using a visible (488 nm) continuous wave laser source. Our results show that the use of the a-Si overlayer produces deeper poling inhibited domains with minimum surface damage, as compared to previously reported UV laser writing experiments on uncoated crystals, thus increasing the applicability of this method in the production of ferroelectric domain engineered structures for nonlinear optical applications. The characteristics of the poling inhibited domains were investigated using differential etching and piezoresponse force microscopy.
Laser-fiber coupling by means of a silicon micro-optical bench and a self-aligned soldering process
NASA Astrophysics Data System (ADS)
Schmidt, Jan P.; Cordes, A.; Mueller, Joerg; Burkhardt, Hans
1995-02-01
The alignment of laser diodes to monomode fibers has to meet extremely close tolerances for a low coupling loss. Typically < 0.5 micrometers in lateral and vertical direction and less than two degrees in angle deviation are allowed for a coupling loss below 2 dB. Presently such close tolerances can only be met by gluing or soldering both components on separate base plates and combining them via piezoactivated alignment monitoring the output of the circuit and then gluing them using UV-hardening epoxies. Such a procedure is not very economical and not useful for mass applications. This paper presents the principle and realization of a silicon micro-optical bench for laser-fiber-coupling, which avoids the above mentioned disadvantages. The micro-optical bench is realized using well controlled plasma etching processes to transfer the guiding patterns for the laser and the fiber into the silicon substrate, keeping geometry tolerances below +/- 0.5 micrometers in lateral and vertical direction. Mounting the laser diode by means of a self-aligned soldering process, an additional contribution to the precise alignment of the laser is further improved.
Fabrication of multi-functional silicon surface by direct laser writing
NASA Astrophysics Data System (ADS)
Verma, Ashwani Kumar; Soni, R. K.
2018-05-01
We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.
NASA Astrophysics Data System (ADS)
Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang
2015-12-01
Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.
Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam
2016-03-01
We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.
NASA Astrophysics Data System (ADS)
Zhang, L.; Gao, J. H.; Xiao, J. Q.; Wen, L. S.; Gong, J.; Sun, C.
2012-01-01
Hydrogenated nanocrystalline silicon (nc-Si:H) films were prepared using diluted tetrachlorosilane (SiCl4) with various hydrogen flow rates (Hf) by plasma enhanced chemical vapor deposition (PECVD) at a constant substrate temperature (Ts) as low as 120 °C. Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), infrared spectra (IR) and spectroscopic ellipsometry (SE) were employed to investigate the microstructure and hydrogen bonding of the nc-Si:H films. Our results showed that the microstructure and hydrogen content of the films could be effectively tailored by the hydrogen flow rates, and a distinct transition from amorphous to nanocrystalline phase was observed with an increase of Hf. At an optimal preparation condition, a deposition rate was as high as 3.7 nm/min and the crystallinity reached up to 64.1%. In addition, the effect of hydrogen on the low-temperature growth of nc-Si:H film was proposed in relation to the surface reaction of radicals and the hydrogen diffusion in the surface growing region.
Pressureless sintered beta prime-Si3N4 solid solution: Fabrication, microstructure, and strength
NASA Technical Reports Server (NTRS)
Dutta, S.
1977-01-01
Si3N4, AlN, and Al2O3 were used as basic constituents in a study of the pressureless sintering of beta prime-Si3N4 solid solution as a function of temperature. Y2O3-SiO2 additions were used to promote liquid-phase sintering. The sintered specimens were characterized with respect to density, microstructure, strength, oxidation, and thermal shock resistance. Density greater than 98 percent of theoretical was achieved by pressureless sintering at 1750 C. The microstructure consisted essentially of fine-grained beta prime-Si3N4 solid solution as the major phase. Modulus of rupture strengths up to 483 MPa were achieved at moderate temperature (1000 C), but decreased to 228 MPa at 1380 C. This substantial strength loss was attributed to a glassy grain boundary phase formed during cooling from the sintering temperature. The best oxidation resistance was exhibited by a composition containing 3 mol % Y2O3-SiO2 additives. Water quench thermal shock resistance was equivalent to that of reaction sintered silicon nitride but lower than hot-pressed silicon nitride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astrova, E. V., E-mail: east@mail.ioffe.ru; Rumyantsev, A. M.; Li, G. V.
The anisotropy of lithium intercalation into the silicon anodes of Li-ion batteries is studied on microstructures having the form of a grid with 0.5-μm-thick vertical walls and on silicon wafers of varied orientation. Electrochemical lithiation is performed at room temperature in the galvanostatic mode. The charging curves of the microstructure and flat Si anodes are examined. Secondary-ion mass spectroscopy is used to determine the distribution of intercalated Li atoms across the wafer thickness. The experimental data are analyzed in terms of the two-phase model in which the lithiation process is limited by the propagation velocity of the front between themore » amorphous alloy with a high Li content and the crystalline Si substrate. The relationship between the rates of Li intercalation into different crystallographic planes: (110), (111), and (100), is found to be V{sub 110}: V{sub 111}: V{sub 100} = 3.1: 1.1: 1.0. It is demonstrated that microstructure anodes with (110) walls have the highest cycle life and withstand ~600 cycles when charged and discharged at a rate of 0.36 C.« less
NASA Astrophysics Data System (ADS)
Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao
2016-08-01
Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.
Zhang, Chunyang; Chen, Lingzhi; Zhu, Yingjie; Guan, Zisheng
2018-04-03
This paper reports inverted pyramid microstructure-based single-crystalline silicon (sc-Si) solar cell with a conversion efficiency up to 20.19% in standard size of 156.75 × 156.75 mm 2 . The inverted pyramid microstructures were fabricated jointly by metal-assisted chemical etching process (MACE) with ultra-low concentration of silver ions and optimized alkaline anisotropic texturing process. And the inverted pyramid sizes were controlled by changing the parameters in both MACE and alkaline anisotropic texturing. Regarding passivation efficiency, the textured sc-Si with normal reflectivity of 9.2% and inverted pyramid size of 1 μm was used to fabricate solar cells. The best batch of solar cells showed a 0.19% higher of conversion efficiency and a 0.22 mA cm -2 improvement in short-circuit current density, and the excellent photoelectric property surpasses that of the same structure solar cell reported before. This technology shows great potential to be an alternative for large-scale production of high efficient sc-Si solar cells in the future.
Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng
2014-01-01
Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561
Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys
NASA Astrophysics Data System (ADS)
Takahashi, H.; Garner, F. A.
1992-10-01
Additions of silicon and aluminum suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminum on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminum segregates away from these boundaries. Whereas the formation of the Ni 3Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation.
A racetrack mode-locked silicon evanescent laser.
Fang, Alexander W; Koch, Brian R; Gan, Kian-Giap; Park, Hyundai; Jones, Richard; Cohen, Oded; Paniccia, Mario J; Blumenthal, Daniel J; Bowers, John E
2008-01-21
By utilizing a racetrack resonator topography, an on-chip mode locked silicon evanescent laser (ML-SEL) is realized that is independent of facet polishing. This enables integration with other devices on silicon and precise control of the ML-SEL's repetition rate through lithographic definition of the cavity length. Both passive and hybrid mode-locking have been achieved with transform limited, 7 ps pulses emitted at a repetition rate of 30 GHz. Jitter and locking range are measured under hybrid mode locking with a minimum absolute jitter and maximum locking range of 364 fs, and 50 MHz, respectively.
Dynamic Modulus and Damping of Boron, Silicon Carbide, and Alumina Fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Williams, W.
1980-01-01
The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide coated boron fibers were measured from-190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamics fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron based fibers are strongly anelastic, displaying frequency dependent moduli and very high microstructural damping. Ths single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.
High-power laser interaction with low-density C–Cu foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, F.; Colvin, J. D.; May, M. J.
2015-11-15
We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.
High-power laser interaction with low-density C–Cu foams
Pérez, F.; Colvin, J. D.; May, M. J.; ...
2015-11-19
Here, we study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.
Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition
NASA Astrophysics Data System (ADS)
Ye, Xiaoyang
Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.
In vitro laser decomposition of silicone fluid used in detachment of the retina.
Huy, C P; Larricart, P; Warnet, J M; Haut, J
1992-01-01
The in vitro exposure of the silicone fluid Dimethicone 1,000 to radiation from the Nd:YAG laser results in the formation of transient breakdown gases which are composed mainly of methane, ethylene and traces of ethane, as identified by head-space gas chromatography. These hydrocarbons may interfere with the intra-ocular environment in the management of retinal detachment.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Hu, Shengsun; Shen, Junqi; Li, Dalong; Bu, Xianzheng
2015-11-01
Laser beam welding was used to weld dissimilar joints in BTi-6431S/TA15 titanium alloys. The effect of laser beam offset on microstructural characterizations and mechanical properties of the joints were investigated. Microstructural evolution of the joints was characterized by optical microscopy (OM) and X-ray diffraction (XRD). Tensile testing was conducted at room temperature and at 550 °C. The results demonstrated that with the exception of some porosity, a good quality joint could be achieved. Martensite α' and acicular α structures were present in the fusion zone (FZ). The amount of martensite α' present with the -0.2 mm beam offset was less than that with the 0.2 mm beam offset. Acicular α and martensite α' transformations occurred in the high temperature heat-affected zone (HT-HAZ) of both the BTi-6431S and TA15 alloys. In the low-temperature heat-affected zone (LT-HAZ), the BTi-6431S and TA15 alloy microstructures exhibited a mixture of secondary α, primary α, and prior β phases. The microhardness values in the FZ followed the order: -0.2 mm> 0 mm> 0.2 mm. Tensile testing at room temperature and at 550 °C resulted in fracture of the TA15 alloy base metal. The fracture morphology exhibited a ductile dimple feature.
Fabrication of locally micro-structured fiber Bragg gratings by fs-laser machining
NASA Astrophysics Data System (ADS)
Dutz, Franz J.; Stephan, Valentin; Marchi, Gabriele; Koch, Alexander W.; Roths, Johannes; Huber, Heinz P.
2018-06-01
Here, we describe a method for producing locally micro-structured fiber Bragg gratings (LMFGB) by fs-laser machining. This technique enables the precise and reproducible ablation of cladding material to create circumferential grooves inside the claddings of optical fibers. From initial ablation experiments we acquired optimized process parameters. The fabricated grooves were located in the middle of uniform type I fiber Bragg gratings. LMFBGs with four different groove widths of 48, 85, 135 and 205 μ { {m}} were produced. The grooves exhibited constant depths of about 30 μ {m} and steep sidewall angles. With the combination of micro-structures and fiber Bragg gratings, fiber optic sensor elements with enhanced functionalities can be achieved.
NASA Technical Reports Server (NTRS)
Salama, A. M.
1980-01-01
Microstructural and electrical evaluation tests were performed on nickel-doped p-type silicon wafers before and after solar cell fabrication. The concentration levels of nickel in silicon were 5 x 10 to the 14th power, 4 x 10 to the 15th power, and 8 x 10 to the 15th power atoms/cu cm. It was found that nickel precipitated out during the growth process in all three ingots. Clumps of precipitates, some of which exhibited star shape, were present at different depths. If the clumps are distributed at depths approximately 20 micron apart and if they are larger than 10 micron in diameter, degradation occurs in solar cell electrical properties and cell conversion efficiency. The larger the size of the precipitate clump, the greater the degradation in solar cell efficiency. A large grain boundary around the cell effective area acted as a gettering center for the precipitates and impurities and caused improvement in solar cell efficiency. Details of the evaluation test results are given.
NASA Astrophysics Data System (ADS)
Talbi, A.; Petit, A.; Melhem, A.; Stolz, A.; Boulmer-Leborgne, C.; Gautier, G.; Defforge, T.; Semmar, N.
2016-06-01
In this study, laser induced periodic surface structures were formed on mesoporous silicon by irradiation of Nd:YAG picosecond pulsed laser beam at 266 nm wavelength at 1 Hz repetition rate and with 42 ps pulse duration. The effects of laser processing parameters as laser beam fluence and laser pulse number on the formation of ripples were investigated. Scanning electron microscopy and atomic force microscopy were used to image the surface morphologies and the cross section of samples after laser irradiation. At relatively low fluence ∼20 mJ/cm2, ripples with period close to the laser beam wavelength (266 nm) and with an always controlled orientation (perpendicular to the polarization of ps laser beam) appeared after a large laser pulse number of 12,000. It has been found that an initial random distribution of SiOx nanoparticles is periodically structured with an increase of the laser pulse number. Finally, it is experimentally demonstrated that we formed a 100 nm liquid phase under the protusion zones including the pores in the picosecond regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuladeep, Rajamudili; Sahoo, Chakradhar; Narayana Rao, Desai, E-mail: dnrsp@uohyd.ernet.in, E-mail: dnr-laserlab@yahoo.com
Laser-induced ripples or uniform arrays of continuous near sub-wavelength or discontinuous deep sub-wavelength structures are formed on single-crystalline silicon (Si) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Si wafers at normal incidence in air and by immersing them in dimethyl sulfoxide using linearly polarized Ti:sapphire fs laser pulses of ∼110 fs pulse duration and ∼800 nm wavelength. Morphology studies of laser written surfaces reveal that sub-wavelength features are oriented perpendicular to laser polarization, while their morphology and spatial periodicity depend on the surrounding dielectric medium. The formation mechanism of the sub-wavelength features is explained by interferencemore » of incident laser with surface plasmon polaritons. This work proves the feasibility of fs laser direct writing technique for the fabrication of sub-wavelength features, which could help in fabrication of advanced electro-optic devices.« less
Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation
Yuan, Yanping; Chen, Jimin
2016-01-01
In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation. PMID:28344293
Grayscale photomask fabricated by laser direct writing in metallic nano-films.
Guo, Chuan Fei; Cao, Sihai; Jiang, Peng; Fang, Ying; Zhang, Jianming; Fan, Yongtao; Wang, Yongsheng; Xu, Wendong; Zhao, Zhensheng; Liu, Qian
2009-10-26
The grayscale photomask plays a key role in grayscale lithography for creating 3D microstructures like micro-optical elements and MEMS structures, but how to fabricate grayscale masks in a cost-effective way is still a big challenge. Here we present novel low cost grayscale masks created in a two-step method by laser direct writing on Sn nano-films, which demonstrate continuous-tone gray levels depended on writing powers. The mechanism of the gray levels is due to the coexistence of the metal and the oxides formed in a laser-induced thermal process. The photomasks reveal good technical properties in fabricating 3D microstructures for practical applications.
Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf
2011-03-01
We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions.
InP on SOI devices for optical communication and optical network on chip
NASA Astrophysics Data System (ADS)
Fedeli, J.-M.; Ben Bakir, B.; Olivier, N.; Grosse, Ph.; Grenouillet, L.; Augendre, E.; Phillippe, P.; Gilbert, K.; Bordel, D.; Harduin, J.
2011-01-01
For about ten years, we have been developing InP on Si devices under different projects focusing first on μlasers then on semicompact lasers. For aiming the integration on a CMOS circuit and for thermal issue, we relied on SiO2 direct bonding of InP unpatterned materials. After the chemical removal of the InP substrate, the heterostructures lie on top of silicon waveguides of an SOI wafer with a separation of about 100nm. Different lasers or photodetectors have been achieved for off-chip optical communication and for intra-chip optical communication within an optical network. For high performance computing with high speed communication between cores, we developed InP microdisk lasers that are coupled to silicon waveguide and produced 100μW of optical power and that can be directly modulated up to 5G at different wavelengths. The optical network is based on wavelength selective circuits with ring resonators. InGaAs photodetectors are evanescently coupled to the silicon waveguide with an efficiency of 0.8A/W. The fabrication has been demonstrated at 200mm wafer scale in a microelectronics clean room for CMOS compatibility. For off-chip communication, silicon on InP evanescent laser have been realized with an innovative design where the cavity is defined in silicon and the gain localized in the QW of bonded InP hererostructure. The investigated devices operate at continuous wave regime with room temperature threshold current below 100 mA, the side mode suppression ratio is as high as 20dB, and the fibercoupled output power is {7mW. Direct modulation can be achieved with already 6G operation.
Processing study of injection molding of silicon nitride for engine applications
NASA Technical Reports Server (NTRS)
Rorabaugh, M. E.; Yeh, H. C.
1985-01-01
The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.
Metal-assisted chemical etching using sputtered gold: a simple route to black silicon
NASA Astrophysics Data System (ADS)
Kurek, Agnieszka; Barry, Seán T.
2011-08-01
We report an accessible and simple method of producing 'black silicon' with aspect ratios as high as 8 using common laboratory equipment. Gold was sputtered to a thickness of 8 nm using a low-vacuum sputter coater. The structures were etched into silicon substrates using an aqueous H2O2/HF solution, and the gold was then removed using aqua regia. Ultrasonication was necessary to produce columnar structures, and an etch time of 24 min gave a velvety, non-reflective surface. The surface features after 24 min etching were uniformly microstructured over an area of square centimetres.
Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures
Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie
2016-01-01
We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse (FΣpulse) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low FΣpulse resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing FΣpulse, the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold FΣpulse values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold FΣpulse on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing FΣpulse. However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter. PMID:28774143
Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing
NASA Astrophysics Data System (ADS)
Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier
2017-10-01
Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.
NASA Astrophysics Data System (ADS)
Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang
2015-10-01
Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.
NASA Astrophysics Data System (ADS)
Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.
2013-11-01
In this work, we report an observation of process of local destruction monocrystalline silicon with a scanning beam irradiation of pulse ytterbium fiber laser with a wavelength λ= 1062 nm, accompanied by the oxidation of ablation microparticles. It is shown that depending on the power density of irradiation was observed a large scatter size of the microparticles. From a certain average power density is observed beginning oxidation particulate emitted from the surface of the irradiated area. By varying the parameters of the laser beam such as scanning speed, pulse repetition rate, overlap of laser spot, radiation dose can be achieved almost complete oxidation of all formed during the ablation of microparticles.
Mechanical strength and microstructure of laser-welded Ti-6Al-7Nb alloy castings.
Srimaneepong, Viritpon; Yoneyama, Takayuki; Kobayashi, Equo; Doi, Hisashi; Hanawa, Takao
2005-12-01
Mechanical properties of laser-welded castings of Ti-6Al-7Nb alloy, CP Ti, and Co-Cr alloy were investigated and compared to the unwelded castings using a tensile test. Dumbbell-shaped specimens were cut at the center, and two halves of the specimens were welded with an Nd:YAG laser welding machine at 220 or 260 V of laser voltage. The mechanical strength of 260 V groups was higher than that of 220 V groups for Ti-6Al-7Nb and Co-Cr alloys except for CP Ti. All 260 V laser-welded castings of Ti-6Al-7Nb alloy and CP Ti, which fractured outside the welded joints, exhibited ductile characteristics, while all laser-welded Co-Cr alloy castings, which fractured within the welded joints, showed brittle characteristics. This study proved that the mechanical strength of laser-welded Ti-6Al-7Nb alloy and CP Ti castings was as high as that of unwelded castings, while the mechanical properties of laser-welded alloy joints were influenced by microstructural changes.
NASA Astrophysics Data System (ADS)
Xu, H.; Wen, C.; Liu, H.; Li, Z. P.; Shen, W. Z.
2013-03-01
We have fully investigated the correlation of microstructure properties and oxygen impurities in hydrogenated nanocrystalline silicon photovoltaic films. The achievement has been realized through a series of different hydrogen dilution ratio treatment by plasma enhanced chemical vapor deposition system. Raman scattering, x-ray diffraction, and ultraviolet-visible transmission techniques have been employed to characterize the physical structural characterization and to elucidate the structure evolution. The bonding configuration of the oxygen impurities was investigated by x-ray photoelectron spectroscopy and the Si-O stretching mode of infrared-transmission, indicating that the films were well oxidized in SiO2 form. Based on the consistence between the proposed structure factor and the oxygen content, we have demonstrated that there are two dominant disordered structure regions closely related to the post-oxidation contamination: plate-like configuration and clustered microvoids.
NASA Astrophysics Data System (ADS)
Becker, C.; Ruske, F.; Sontheimer, T.; Gorka, B.; Bloeck, U.; Gall, S.; Rech, B.
2009-10-01
Polycrystalline silicon (poly-Si) thin films have been prepared by electron-beam evaporation and thermal annealing for the development of thin-film solar cells on glass coated with ZnO:Al as a transparent, conductive layer. The poly-Si microstructure and photovoltaic performance were investigated as functions of the deposition temperature by Raman spectroscopy, scanning and transmission electron microscopies including defect analysis, x-ray diffraction, external quantum efficiency, and open circuit measurements. It is found that two temperature regimes can be distinguished: Poly-Si films fabricated by deposition at low temperatures (Tdep<400 °C) and a subsequent thermal solid phase crystallization step exhibit 1-3 μm large, randomly oriented grains, but a quite poor photovoltaic performance. However, silicon films deposited at higher temperatures (Tdep>400 °C) directly in crystalline phase reveal columnar, up to 300 nm big crystals with a strong ⟨110⟩ orientation and much better solar cell parameters. It can be concluded from the results that the electrical quality of the material, reflected by the open circuit voltage of the solar cell, only marginally depends on crystal size and shape but rather on the intragrain properties of the material. The carrier collection, described by the short circuit current of the cell, seems to be positively influenced by preferential ⟨110⟩ orientation of the grains. The correlation between experimental, microstructural, and photovoltaic parameters will be discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Quan, E-mail: wangq@mail.ujs.edu.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Zhang, Yanmin
2013-11-14
Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructuremore » after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.« less
Laser Brazing of High Temperature Braze Alloy
NASA Technical Reports Server (NTRS)
Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.
2000-01-01
The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of the braze materials and tube substrate. Metallography of the laser braze joint was compared to the furnace braze. SEM Energy Disperse X-Ray Spectra (EDX) and back scattered imaging were used to analyze braze alloy segregation. Although all of the laser systems, CO2, ND:YAG, and direct diode laser produced good braze joint, the direct diode laser was selected for its system simplicity, compactness and portability. Excellent laser and braze alloy coupling is observed with powder alloy compared to braze alloy wire. Good wetting is found with different gold based braze alloys. The laser brazing process can be optimized so that the adverse affect on the parent materials can be eliminated. Metallography of the laser braze joint has shown that quality braze joint was produced with laser brazing process. Penetration of the laser braze to the substrate is at neglectable level. Zero penetration is observed. Microstructure examinations shown that no observable changes of the microstructure (grain structure and precipitation) in the HAZ area between laser braze and furnace braze. Wide gaps can be laser brazed with single pass for up to 0.024 inches. Finer dendritic structure is observed in laser brazing compared with equiaxial and coarser grain of the furnace brazing microstructure. Greater segregation is also found in the furnace braze. Higher hardness of the laser braze joint comparing to furnace braze is observed due to the fast cooling rate and Finer microstructure in the laser brazing. Laser braze joint properties meet or exceed the furnace joint properties. Direct diode laser for thin section tube brazing with high temperature braze alloys have been successfully demonstrated. The laser's high energy density and precise control has shown significant advantages in reducing process heat input to the substrates and provide high quality braze joints comparing to other localized braze process such as torch, TIG, and MPTA processes. Significant cost savings can be realized particularly with localized braze comparing to a full furnace braze cycle.
NASA Astrophysics Data System (ADS)
Erinosho, Mutiu F.; Akinlabi, Esther T.
2016-03-01
Titanium alloy (Ti-6Al-4V) Grade 5 has been regarded as the most useful alloy for the aerospace applications, due to their light weight properties. Today, laser technology is an energetic process in which the beam ejected can travel a longer distance and spot on the focused surface. The combination of metallic powder and laser beam has been used concurrently to form a solid figure. However, this combination has generated a permanently solidified metallurgical bonding between the laser-deposited metallic powders. Several research works have been conducted to improve the mechanical properties of the primary alloy, Ti-6Al-4V. This article conversely highlights the series of work that have been conducted on improving the mechanical properties and microstructures of the primary alloy with the addition of titanium carbide (TiC). The Ti-6Al-4V alloy has been widely selected in most critical part of a component. Their reinforcement with TiC composite particle has been achieved successfully through the optimal usage of laser technology. The characteristics of the reinforced component have vehemently improved the mechanical properties such as the tensile strength, wear resistance, fracture toughness and hardness; as well as the morphologies and phases of the microstructures.
Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205
NASA Astrophysics Data System (ADS)
Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.
Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.
Corrosion Behavior of Aqua-Blasted and Laser-Engraved Type 316L Stainless Steel
NASA Astrophysics Data System (ADS)
Krawczyk, B.; Cook, P.; Hobbs, J.; Engelberg, D. L.
2017-12-01
The effect of aqua blasting and laser engraving on surface microstructure development, residual stress and corrosion resistance of type 316L stainless steel has been investigated. Aqua blasting resulted in a deformed near-surface microstructure containing compressive residual stresses. Subsequent laser engraving produced a surface layer with tensile residual stresses reaching to a depth of 200 microns. Changes of surface roughness topography were accompanied by the development of a thick oxide/hydroxide film after laser engraving. The atmospheric corrosion behavior of all surfaces with MgCl2-laden droplets was compared to their electrochemical response in 1M NaCl and 0.7 M HCl aqueous solutions. The measured total volume loss after atmospheric corrosion testing was similar for all investigated surface conditions. Laser-engraved surface exhibited the smallest number of corrosion sites, but the largest mean corrosion depth.
Research on Microstructure and Properties of Welded Joint of High Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai
2018-01-01
BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.
Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.
Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun
2014-01-01
The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.
Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser
Liu, Dan; Shi, Yongjun
2014-01-01
The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230
Laser surface alloying on aluminum and its alloys: A review
NASA Astrophysics Data System (ADS)
Chi, Yiming; Gu, Guochao; Yu, Huijun; Chen, Chuanzhong
2018-01-01
Aluminum and its alloys have been widely used in aerospace, automotive and transportation industries owing to their excellent properties such as high specific strength, good ductility and light weight. Surface modification is of crucial importance to the surface properties of aluminum and its alloys since high coefficient of friction, wear characteristics and low hardness have limited their long term performance. Laser surface alloying is one of the most effective methods of producing proper microstructure by means of non-equilibrium solidification which results from rapid heating and cooling. In this paper, the influence of different processing parameters, such as laser power and scanning velocity is discussed. The developments of various material systems including ceramics, metals or alloys, and metal matrix composites (MMCs) are reviewed. The microstructure, hardness, wear properties and other behaviors of laser treated layer are analyzed. Besides, the existing problems during laser surface treatment and the corresponding solutions are elucidated and the future developments are predicted.
NASA Astrophysics Data System (ADS)
Bartkowska, Aneta; Przestacki, Damian; Chwalczuk, Tadeusz
2016-12-01
The paper presents the studies' results of microstructure, microhardness, cohesion, phase composition and the corrosion resistance analysis of C45 steel after laser alloying with nickel oxide (Ni2O3). The aim of the laser alloying was to obtain the surface layer with new properties through covering C45 steel by precoat containing modifying compound, and then remelting this precoat using laser beam. As a result of this process the surface layer consisting of remelted zone and heat affected zone was obtained. In the remelted zone an increased amount of modifying elements was observed. It was also found that the surface layer formed during the laser alloying with Ni2O3 was characterized by good corrosion resistance. This property has changed depending on the thickness of the applied precoat. It was observed that the thickness increase of nickel oxides precoat improves corrosion resistance of produced coatings.
Direct femtosecond laser surface structuring of crystalline silicon at 400 nm
NASA Astrophysics Data System (ADS)
Nivas, Jijil JJ; Anoop, K. K.; Bruzzese, Riccardo; Philip, Reji; Amoruso, Salvatore
2018-03-01
We have analyzed the effects of the laser pulse wavelength (400 nm) on femtosecond laser surface structuring of silicon. The features of the produced surface structures are investigated as a function of the number of pulses, N, and compared with the surface textures produced by more standard near-infrared (800 nm) laser pulses at a similar level of excitation. Our experimental findings highlight the importance of the light wavelength for the formation of the supra-wavelength grooves, and, for a large number of pulses (N ≈ 1000), the generation of other periodic structures (stripes) at 400 nm, which are not observed at 800 nm. These results provide interesting information on the generation of various surface textures, addressing the effect of the laser pulse wavelength on the generation of grooves and stripes.
Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings
NASA Astrophysics Data System (ADS)
Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin
2018-03-01
Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.
Development in laser peening of advanced ceramics
NASA Astrophysics Data System (ADS)
Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan
2015-07-01
Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.
Chalcogenide Glass Lasers on Silicon Substrate Integrated Photonics
2016-07-08
AFRL-AFOSR-UK-TR-2016-0013 Chalcogenide glass lasers on silicon substrate integrated photonics Clara Dimas MASDAR INSTITUTE OF SCIENCE & TECHNOLOGY...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) MASDAR INSTITUTE OF SCIENCE & TECHNOLOGY - MIST...communication by reducing coupling losses, chip size, energy requirements and manufacturing cost. Chalcogenide glass (ChG) light sources doped with rare earth
NASA Astrophysics Data System (ADS)
Chen, Tong; Wang, Wenjun; Tao, Tao; Mei, Xuesong; Pan, Aifei
2018-04-01
This study reported the fabrication of a large area of micro/nano structures with different morphologies and sizes by the deposition of ablated material and melting of material on silicon through a line-shaped femtosecond laser beam irradiation. The evolution of micro/nano structures on the silicon surface was demonstrated with the laser fluence of 0.64 J/cm2. It was found that the melting of material was responsible for the formation of the micro-protrusions from laser-induced periodic surface structures (LIPSSs). Additionally, the deposition fell on the surface of the micro-protrusions in oblique incidence way, causing LIPSSs obscure and even invisible. As a consequence, those micro-protrusions gradually evolved into the micro-spikes with the ladder-like surface. Then, various laser fluences were applied to regulate the deposition and melting behaviors of silicon, to obtain the micro/nano structures with different morphologies and sizes. The formation mechanism of these micro/nano structures was analyzed. On this basis, the optical properties test showed that best anti-reflectivity was referred to the sample full of micro-spikes with the ladder-like surface, and the average reflectance has decreased from ∼38.17% of the planar silicon to∼4.75% in the waveband between 300 and 1000 nm.
NASA Astrophysics Data System (ADS)
Klocke, Fritz; Arntz, Kristian; Klingbeil, Nils; Schulz, Martin
2017-02-01
The wire-based laser metal deposition (LMD-W) is a new technology which enables to produce complex parts made of titanium for the aerospace and automotive industry. For establishing the LMD-W as a new production process it has to be proven that the properties are comparable or superior to conventional produced parts. The mechanical properties were investigated by analysis of microstructure and tensile test. Therefore, specimens were generated using a 4.5 kW diode laser cladding system integrated in a 5-Axis-machining center. The structural mechanical properties are mainly influence by crystal structure and thereby the thermal history of the work piece. Especially the high affinity to oxide, distortion and dual phase microstructure make titanium grade 5 (TiAl6V4) one of the most challenging material for additive manufacturing. By using a proper local multi-nozzle shielding gas concept the negative influence of oxide in the process could be eliminated. The distortion being marginal at a single bead, accumulated to a macroscopic effect on the work piece. The third critical point for additive processing of titanium, the bimodal microstructure, could not be cleared by the laser process alone. All metallurgical probes showed α-martensitic-structure. Therefore, a thermal treatment became a necessary production step in the additive production chain. After the thermal treatment the microstructure as well as the distortion was analyzed and compared with the status before. Although not all technical issues could be solved, the investigation show that LMD-W of titanium grade 5 is a promising alternative to other additive techniques as electronic beam melting or plasma deposition welding.
NASA Astrophysics Data System (ADS)
Alubaidy, Mohammed-Amin
A new method has been introduced for the formation of microfeatures made of nanofibers reinforced polymer, using femtosecond laser material processing. The Femtosecond laser is used for the generation of three-dimensional interweaved nanofibers and the construction of microfeatures, like microchannels and voxels, through multi photon polymerization of nanofiber dispersed polymer resin. A new phenomenon of multiphoton polymerization induced by dual wavelength irradiation was reported for the first time. A significant improvement in the spatial resolution, compared to the two photon absorption (2PA) and the three photon absorption (3PA) processes has been achieved. Conductive polymer microstructures and magnetic polymer microstructures have been fabricated through this method. The mechanical properties of nanofiber reinforced polymer microstructures has been investigated by means of nanoindentation and the volume fraction of the generated nanofibers in the nanocomposite was calculated by using nanoindentation analysis. The results showed significant improvement in strength of the material. The electrical conductivity of the two photon polymerization (TPP) generated microfeatures was measured by a two-probe system at room temperature and the conductivity-temperature relationship was measured at a certain temperature range. The results suggest that the conductive polymer microstructure is reproducible and has a consistent conductivity-temperature relation. The magnetic strength has been characterized using Guassmeter. To demonstrate the potential application of the new fabrication method, a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes were fabricated. The developed nanofibrous DNA biosensor has been characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Results showed that the probe--target recognition has been improved. This research demonstrated that femtosecond laser materials processing is a viable tool of the construction of naomaterial- reinforced polymer microfeatures with tailored properties.
Nuzzo, Ralph G.; Childs, William R.; Motala, Michael J.; Lee, Keon Jae
2010-02-16
A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zihao; Preble, Stefan F.; Yao, Ruizhe
2015-12-28
InAs quantum dot (QD) laser heterostructures have been grown by molecular beam epitaxy system on GaAs substrates, and then transferred to silicon substrates by a low temperature (250 °C) Pd-mediated wafer bonding process. A low interfacial resistivity of only 0.2 Ω cm{sup 2} formed during the bonding process is characterized by the current-voltage measurements. The InAs QD lasers on Si exhibit comparable characteristics to state-of-the-art QD lasers on silicon substrates, where the threshold current density J{sub th} and differential quantum efficiency η{sub d} of 240 A/cm{sup 2} and 23.9%, respectively, at room temperature are obtained with laser bars of cavity length and waveguide ridgemore » of 1.5 mm and 5 μm, respectively. The InAs QD lasers also show operation up to 100 °C with a threshold current density J{sub th} and differential quantum efficiency η{sub d} of 950 A/cm{sup 2} and 9.3%, respectively. The temperature coefficient T{sub 0} of 69 K from 60 to 100 °C is characterized from the temperature dependent J{sub th} measurements.« less