Science.gov

Sample records for laser peening effects

  1. Effects of Laser Peening, and Shot Peening, on Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Hackel, Lloyd; Rankin, Jon; Truong, Chanh; Walter, Matt

    2006-01-01

    A viewgraph presentation describing the effects of laser peening and shot peening on friction stir welding is shown. The topics include: 1) Background; 2) Friction Stir Welding (FSW); 3) Microstructure; 4) Laser & Shot Peening; 5) Residual Stresses; 6) Tensile Behavior; 7) Fatigue Life & Surface Roughness; 8) Crack Growth; and 9) Benefits.

  2. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    SciTech Connect

    Zaleski, Tania M.

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  3. Laser Peening Effects on Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar

    2011-01-01

    Friction Stir Welding (FSW) is a welding technique that uses frictional heating combined with forging pressure to produce high strength bonds. It is attractive for aerospace applications. Although residual stresses in FSW are generally lower when compared to conventional fusion welds, recent work has shown that significant tensile residual stresses can be present in the weld after fabrication. Therefore, laser shock peening was investigated as a means of moderating the tensile residual stresses produced during welding. This slide presentation reviews the effect of Laser Peening on the weld, in tensile strength, strain, surface roughness, microhardness, surface wear/friction, and fatigue crack growth rates. The study concluded that the laser peening process can result in considerable improvement to crack initiaion, propagation and mechanical properties in FSW.

  4. Laser Peening and Shot Peening Effects on Fatigue Life and Surface Roughness of Friction Stir Welded 7075-T7351 Aluminum

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Lyons, Jed; Forman, Royce

    2006-01-01

    The effects of laser peening, shot peening, and a combination of both on the fatigue life of Friction Stir Welds (FSW) was investigated. The fatigue samples consisted of dog bone specimens and the loading was applied in a direction perpendicular to the weld direction. Several laser peening conditions with different intensities, durations, and peening order were tested to obtain the optimum peening parameters. The surface roughness resulting from various peening techniques was assessed and characterized. The results indicate a significant increase in fatigue life using laser peening compared to shot peened versus their native welded specimens.

  5. Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Forman, Royce; Lyons, Jed

    2006-01-01

    The effects of laser, and shot peening on the fatigue life of Friction Stir Welds (FSW) have been investigated. The surface roughness resulting from various peening techniques was assessed, and the fracture surfaces microstructure was characterized. Laser peening resulted in an increase in fatigue life approximately 60%, while shot peening resulted in 10% increase when compared to the unpeened material. The surface roughness of shot peening was significantly higher compared to the base material, while specimens processed with laser peening were relatively smooth.

  6. The Effects of Laser Peening and Shot Peening on Mechanical Properties in Friction Stir Welded 7075-T7351 Aluminum

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar

    2006-01-01

    Peening techniques like laser peening and shot peening were used to modify the surface of friction stir welded 7075-T7351 Aluminum Alloy specimens. The tensile coupons were machined such as the loading was applied in a direction perpendicular to the weld direction. The peening effects on the global and local mechanical properties through the different regions of the weld were characterized and assessed. The surface hardness levels resulting from various peening techniques were also investigated for both sides of the welds. Shot peening resulted in an increase to surface hardness levels, but no improvement was noticed on the mechanical properties. In contrast, mechanical properties were improved by laser peening when compared to the unpeened material.

  7. Laser Peening Effects on Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Hatameleh, Omar

    2009-01-01

    The laser peening process can result in considerable improvement to crack initiation, propagation, and mechanical properties in FSW which equates to longer hardware service life Processed hardware safety is improved by producing higher failure tolerant hardware, and reducing risk. Lowering hardware maintenance cost produces longer hardware service life, and lower hardware down time. Application of this proposed technology will result in substantial benefits and savings throughout the life of the treated components

  8. Effect of Treatment Area on Residual Stress and Fatigue in Laser Peened Aluminum Sheets

    NASA Astrophysics Data System (ADS)

    Toparli, M. Burak; Smyth, Niall; Fitzpatrick, Michael E.

    2017-01-01

    Two 2.0-mm-thick aluminum sheets were laser peened and the resulting residual stresses were measured using incremental hole drilling, surface X-ray diffraction, and synchrotron X-ray diffraction techniques. Laser peening was applied to two samples using the same laser peening parameters, but one of the samples has a larger peened area. The aim of this research was to discover the effect of peen area on residual stress, for application in aerospace structures for fatigue life enhancement. It was found that a larger peened area has higher and deeper compressive stresses in the crack-opening direction, leading to greater enhancement of fatigue life.

  9. Effect of Treatment Area on Residual Stress and Fatigue in Laser Peened Aluminum Sheets

    NASA Astrophysics Data System (ADS)

    Toparli, M. Burak; Smyth, Niall; Fitzpatrick, Michael E.

    2017-04-01

    Two 2.0-mm-thick aluminum sheets were laser peened and the resulting residual stresses were measured using incremental hole drilling, surface X-ray diffraction, and synchrotron X-ray diffraction techniques. Laser peening was applied to two samples using the same laser peening parameters, but one of the samples has a larger peened area. The aim of this research was to discover the effect of peen area on residual stress, for application in aerospace structures for fatigue life enhancement. It was found that a larger peened area has higher and deeper compressive stresses in the crack-opening direction, leading to greater enhancement of fatigue life.

  10. Effect of Laser Peening without Coating on 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; kalainathan, S.

    2015-02-01

    Laser Peening without Coating (LPwC) is an innovative surface modification technique used for the in-suit preventive maintenance of nuclear reactor components using frequency doubled (green) laser. The advantage of LPwC is that the laser required for this technique is in milli joule range and the processes can perform in aqueous environment. This paper discussed the effect of LPwC on 316L austenitic stainless steel using low energy Nd: YAG laser with various laser pulse density. The base specimen and laser peened specimen were subjected to surface residual stress, surface morphology, micro hardness and potentiodynamic polarization studies. The laser peened surface exhibit significant improvement in surface compressive residual stress. The depth profile of micro hardness revealed higher strain hardening on laser peened specimens. Though corrosion potential reported an anodic shift,current density is found to be increased after LPwC for the specimen peened with higher pulse density.

  11. Effect of high repetition laser shock peening on biocompatibility and corrosion resistance of magnesium

    NASA Astrophysics Data System (ADS)

    Caralapatti, Vinodh Krishna; Narayanswamy, Sivakumar

    2017-02-01

    Magnesium, as a biomaterial has the potential to replace conventional implant materials owing to its numerous advantages. However, high corrosion rate is a major obstacle that has to be addressed for its implementation as implants. This study aims to evaluate the feasibility and effects of High Repetition Laser Shock Peening (HRLSP) on biocompatibility and corrosion resistance of Mg samples and as well as to analyze the effect of operational parameters such as peening with overlap on corrosion rate. From the results obtained using hydrogen evolution and mass loss methods, it was found that corrosion rates of both 0% overlap and 66% overlap peened samples reduced by more than 50% compared to that of unpeened sample and sample peened with 66% overlap exhibited least corrosion. The biocompatibility of peened Mg samples was also enhanced as there was neither rapid pH variation nor large hydrogen bubble formation around samples.

  12. Analyzing the effect of high repetition laser shock peening on dynamic corrosion rate of magnesium

    NASA Astrophysics Data System (ADS)

    Caralapatti, Vinodh Krishna; Narayanswamy, Sivakumar

    2017-08-01

    Magnesium as implant material is being investigated extensively due to its superior suitability. With corrosion rate being the major obstacle, this paper aims to determine the effects of high repetition laser shock peening (HRLSP) on the dynamic corrosion rate of magnesium. While there is lot of research on corrosion of magnesium, in this work, a specially designed test bench was used for characterization of dynamic corrosion to mimic the physiological conditions experienced by the implant inside human body. From the results, it can be inferred that corrosion rate of peened samples reduced by at least 6 times compared to unpeened sample and sample peened with 66% overlap 1 scans exhibited the least corrosion. The wettability of the samples was also determined as a measure to analyze the effects of HRLSP on biocompatibility. In addition, peening is seen to induce surface corrosion, which minimizes the risks of implant failure.

  13. Effect of shot peening on the microstructure of laser hardened 17-4PH

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Jiang, Chuanhai; Gan, Xiaoyan; Chen, Yanhua

    2010-12-01

    In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.

  14. Effect of laser peening with different energies on fatigue fracture evolution of 6061-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Huang, S.; Zhou, J. Z.; Lu, J. Z.; Xu, S. Q.; Zhang, H. F.

    2016-03-01

    To deeply understand the effect of laser peening (LP) with different laser pulse energies on 6061-T6 aluminum alloy, the fatigue fracture morphologies evolution process at various fatigue crack growth (FCG) stages and the corresponding strengthen mechanism were investigated. At the initial stage of FCG, more fatigue micro-cliffs were found after LP, while the fatigue striation spacing simultaneously reduced. A "stop-continue" phenomenon of crack propagation was discovered for laser peened samples. The fatigue striation spacing at the middle stage of FCG increased significantly while compared with that at the initial stage, in addition, the fatigue striation spacing decreased with an increase in laser pulse energy. Fracture morphologies in transition region of laser peened samples exhibit a mixing fracture characteristic of striations and dimples. The laser peened sample with laser pulse energy of 7 J presents more circuitous growing paths. Due to the complex stress state induced by LP, dimples with different sizes appeared in the final fracture region.

  15. Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear

    NASA Astrophysics Data System (ADS)

    Peng, Chong; Xiao, Yuzhe; Wang, Yanzhong; Guo, Wei

    2017-09-01

    The effect of laser shock peening (LSP) on bending fatigue performance of AISI 9310 steel spur gear has been investigated in this study. To help to explain bending fatigue test results, residual stress distribution induced by LSP is studied by means of finite element modelling, results of which are verified by X-ray diffraction analysis. It is found that a compressive layer of desirable depth can be induced on the gear root fillet after LSP, and both magnitude and depth of compressive stress increase with laser energy. The bending fatigue test is conducted using the single-tooth bending method to compare fatigue performance of laser peened teeth and non-peened teeth, which is followed by relevant statistical analysis. S-N curves acquired from the fatigue test reveal that bending fatigue lives of gear teeth has been significantly improved after LSP in comparison with those non-peened teeth, and the bending fatigue limit is enhanced correspondingly. It is noticeable that higher laser energy does not necessarily lead to much better fatigue performance of test gears.

  16. Development in laser peening of advanced ceramics

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  17. The Effects of Shot and Laser Peening on Fatigue Life and Crack Growth in 2024 Aluminum Alloy and 4340 Steel

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Matthews, W. T.; Prabhakaran, R.; Newman, J. C., Jr.; Dubberly, M. J.

    2001-01-01

    Fatigue and crack growth tests have been conducted on 4340 steel and 2024-T3 aluminum alloy, respectively, to assess the effects of shot peening on fatigue life and the effects of shot and laser peening on crack growth. Two current programs involving fixed and rotary-wing aircraft will not be using shot peened structures. Since the shot peening compressive residual stress depth is usually less than the 0.05-inch initial damage tolerance crack size, it is believed by some that shot peening should have no beneficial effects toward retarding crack growth. In this study cracks were initiated from an electronic-discharged machining flaw which was cycled to produce a fatigue crack of approximately 0.05-inches in length and then the specimens were peened. Test results showed that after peening the crack growth rates were noticeably slower when the cracks were fairly short for both the shot and laser peened specimens resulting in a crack growth life that was a factor of 2 to 4 times greater than the results of the average unpeened test. Once the cracks reached a length of approximately 0.1-inches the growth rates were about the same for the peened and unpeened specimens. Fatigue tests on 4340 steel showed that the endurance limit of a test specimen with a 0.002-inch-deep machining-like scratch was reduced by approximately 40 percent. However, if the "scratched" specimen was shot peened after inserting the scratch, the fatigue life returned to almost 100 percent of the unflawed specimens original fatigue life.

  18. Energy Level Effects on Deformation Mechanism in Micro-scale Laser Peen Forming

    SciTech Connect

    Wang,Y.; Fan, Y.; Vukelic, S.; Yao, Y.

    2007-01-01

    Laser micro-scale peen forming attracts more and more attention recently as one of laser processing technology because it not only imparts desirable residual stress into target to improve the fatigue life of the material but also precisely deforms the target. In the present study, energy level effects on deformation mechanism in laser micro-scale peen forming was investigated by both numerical and experimental methods. Deformation curvatures and residual stress distributions of both sides, characterized by x-ray microdiffraction, were compared with the results obtained from FEM simulation. Forming mechanism of convex and concave phenomena was explained in terms of the resulting pressure, compressive stress distribution, and plastic strain. Difference of residual stress distribution patterns was also studied from the point of view of forming mechanism.

  19. Thermoelectric assessment of laser peening induced effects on a metallic biomaterial Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Barriuso, S.; Porro, J. A.; González-Carrasco, J. L.; Ocaña, J. L.

    2014-03-01

    Laser peening has recently emerged as a useful technique to overcome detrimental effects associated to another wellknown surface modification processes such as shot peening or grit blasting used in the biomedical field. It is worth to notice that besides the primary residual stress effect, thermally induced effects might also cause subtle surface and subsurface microstructural changes that might influence corrosion resistance. Moreover, since maximum loads use to occur at the surface, they could also play a critical role in the fatigue strength. In this work, plates of Ti-6Al-4V alloy of 7 mm in thickness were modified by laser peening without using a sacrificial outer layer. Irradiation by a Q-switched Nd-YAG laser (9.4 ns pulse length) working in fundamental harmonic at 2.8 J/pulse and with water as confining medium was used. Laser pulses with a 1.5 mm diameter at an equivalent overlapping density (EOD) of 5000 cm-2 were applied. Attempts to analyze the global induced effects after laser peening were addressed by using the contacting and non-contacting thermoelectric power (TEP) techniques. It was demonstrated that the thermoelectric method is entirely insensitive to surface topography while it is uniquely sensitive to subtle variations in thermoelectric properties, which are associated with the different material effects induced by different surface modification treatments. These results indicate that the stress-dependence of the thermoelectric power in metals produces sufficient contrast to detect and quantitatively characterize regions under compressive residual stress based on their thermoelectric power contrast with respect to the surrounding intact material. However, further research is needed to better separate residual stress effects from secondary material effects, especially in the case of low-conductivity engineering materials like titanium alloys.

  20. Effects of Different R ratios on Fatigue Crack Growth in Laser Peened Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Hackel, Lloyd; Forth, Scott

    2007-01-01

    The influence of laser peening on the fatigue crack growth behavior of friction stir welded (FSW) Aluminum Alloy (AA) 7075-T7351 sheets was investigated. The surface modification resulting from the peening process on the fatigue crack growth of FSW was assessed for two different R ratios. The investigation indicated a significant decrease in fatigue crack growth rates resulting from using laser shock peening compared with unpeened, welded and unwelded specimens. The slower fatigue crack growth rate was attributed to the compressive residual stresses induced by the peening.

  1. Laser peening of metals- enabling laser technology

    SciTech Connect

    Dane, C.B.; Hackel, L.A.; Daly, J.; Harrisson, J.

    1997-11-13

    Laser peening, a surface treatment for metals, employs laser induced shocks to create deep and intense residual stresses in critical components. In many applications this technology is proving to be superior to conventional treatments such as shot peening. The laser peening process has generated sufficiently impressive results to move it from a laboratory demonstration phase into a significant industrial process. However until now this evolution has been slowed because a laser system meeting the average power requirements for a high throughput process has been lacking.

  2. High-Performance Laser Peening for Effective Mitigation of Stress Corrosion Cracking

    SciTech Connect

    Hackel, L; Hao-Lin, C; Wong, F; Hill, M

    2002-10-02

    Stress corrosion cracking (SCC) in the Yucca Mountain waste package closure welds is believed to be the greatest threat to long-term containment. Use of stress mitigation to eliminate tensile stresses resulting from welding can prevent SCC. A laser technology with sufficient average power to achieve high throughput has been developed and commercially deployed with high peak power and sufficiently high average power to be an effective laser peening system. An appropriately applied version of this process could be applied to eliminate SCC in the waste package closure welds.

  3. Effect of laser shock peening on the compressive deformation and plastic behavior of Zr-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Fu, Jie; Zhu, Yunhu; Zheng, Chao; Liu, Ren; Ji, Zhong

    2016-11-01

    The compressive deformation and the plastic behavior of Zr35Ti30Cu8.25Be26.75 bulk metallic glass (BMG) in as-cast and laser peened state were investigated. It was found that as-cast sample displayed brittle fracture with an limited plastic strain of 0.22% and the fracture was mainly localized on one single shear band. For laser peened sample, an apparent plastic strain of 1.48% could be observed in the stress-strain curve, which was much greater than that of as-cast sample. Scanning electron microscope observations revealed that the normal fracture surfaces of both samples displayed a shear mode and consisted of vein-like structure. The relatively uniform distribution of multiple shear bands was observed on the side fracture surface of laser peened sample. Numerical simulation was performed to understand quantitatively the plasticity enhancement of laser peened sample. Under the effect of LSP induced residual stress, the laser peened sample exhibited a larger concentrated stress around the main shear stress plane which could promote the initiation of new shear bands. Besides, the increased free volume in main shear stress plane were beneficial for the generation of multiple shear bands which would probably improve the compressive plasticity of Zr-based BMG.

  4. EFFECTS OF LASER SHOCK PEENING ON SCC BEHAVIOR OF ALLOY 600

    SciTech Connect

    Abhishek Telang; Amrinder Gill; S.R.Mannava; Vijay K. Vasudevan; Dong Qian; Sebastien P. Teysseyre

    2013-08-01

    In this study, the effects of laser shock peening (LSP) on stress corrosion cracking (SCC) behavior of Alloy 600 in tetrathionate solution were investigated. The degree of sensitization was quantified using double loop electrochemical potentiokinetic reactivation (DLEPR) tests. The sensitized Alloy 600 was demonstrated to be susceptible to intergranular SCC in tetrathionate solution. Following LSP, residual stresses and the amount of plastic strain introduced in Alloy 600 were characterized. The effects of LSP on SCC susceptibility of Alloy 600 in tetrathionate solution were evaluated by slow strain rate tests and constant load tests. Results indicate a significant increase in resistance to crack initiation and decreased susceptibility to SCC after LSP.

  5. Characterization of laser peening-induced effects on a biomedical Ti6Al4V alloy by thermoelectric means

    NASA Astrophysics Data System (ADS)

    Carreón, Hector; Barriuso, Sandra; Porro, Juan Antonio; González-Carrasco, Jose Luis; Ocaña, José Luis

    2014-12-01

    Laser peening has recently emerged as a useful technique to overcome detrimental effects associated with other well-known surface modification processes such as shot peening or grit blasting used in the biomedical field. It is worthwhile to notice that besides the primary residual stress effect, thermally induced effects might also cause subtle surface and subsurface microstructural changes that might influence corrosion resistance and fatigue strength of structural components. In this work, plates of Ti-6Al-4V alloy of 7 mm in thickness were modified by laser peening without using a sacrificial outer layer. Irradiation by a Q-switched Nd-YAG laser (9.4-ns pulse length) working at the fundamental 1064-nm wavelength at 2.8 J/pulse and with water as a confining medium was used. Laser pulses with a 1.5-mm diameter at an equivalent overlapping density of 5000 cm-2 were applied. Attempts to analyze the global-induced effects after laser peening were addressed by using the contacting and noncontacting thermoelectric power techniques.

  6. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser

    NASA Astrophysics Data System (ADS)

    Sathyajith, S.; Kalainathan, S.

    2012-03-01

    Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm 2 and 32 pulses/mm 2. Residual stress evaluation based on X-ray diffraction sin 2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.

  7. Laser peening for reducing hydrogen embrittlement

    SciTech Connect

    Hackel, Lloyd A.; Zaleski, Tania M.; Chen, Hao-Lin; Hill, Michael R.; Liu, Kevin K.

    2010-05-25

    A laser peening process for the densification of metal surfaces and sub-layers and for changing surface chemical activities provides retardation of the up-take and penetration of atoms and molecules, particularly Hydrogen, which improves the lifetime of such laser peened metals. Penetration of hydrogen into metals initiates an embrittlement that leaves the material susceptible to cracking.

  8. Effect of power density and pulse repetition on laser shock peening of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Smith, P. R.; Shepard, M. J.; Prevéy, P. S.; Clauer, A. H.

    2000-02-01

    Laser shock peening (LSP) was applied to Ti-6Al-4V (wt. %) simulated airfoil specimens using a Nd:Glass laser. Laser shock peening processing parameters examined in the present study included power density (5.5, 7, and 9 GW/cm2) and number of laser pulses per spot (one and three pulses/spot). The LSP’d Ti-6Al-4V samples were examined using x-ray diffraction techniques to determine the residual stress distribution and percent cold work as a function of depth. It was found that the residual stress state and percent of cold work were relatively independent of LSP power density. However, the number of laser pulses per spot had a significant effect on both residual stress and percent of cold work for a given power density level. In addition, there was a strong correlation between the magnitude of residual compressive stresses generated and the percent cold work measured.

  9. Effect of power density and pulse repetition on laser shock peening of Ti-6Al-4V

    SciTech Connect

    Smith, P.R.; Shepard, M.J.; Prevey, P.S. III; Clauer, A.H.

    2000-02-01

    Laser shock peening (LSP) was applied to Ti-6Al-4V (wt.%) simulated airfoil specimens using a Nd:Glass laser. Laser shock peening processing parameters examined in the present study included power density (5.5, 7, and 9 GW/cm{sup 2}) and number of laser pulses per spot (one and three pulses/spot). The LSP's Ti-6Al-4V samples were examined using x-ray diffraction techniques to determine the residual stress distribution and percent cold work as a function of depth. It was found that the residual stress state and percent of cold work were relatively independent of LSP power density. However, the number of laser pulses per spot had a significant effect on both residual stress and percent of cold work for a given power density level. In addition, there was a strong correlation between the magnitude of residual compressive stresses generated and the percent cold work measured.

  10. Microscale Laser Peen Forming of Single Crystal

    SciTech Connect

    Wang,Y.; Fan, Y.; Kysar, J.; Vukelic, S.; Yao, Y.

    2008-01-01

    As the result of quickly increased requirement in many industrial products resulting from microtechnology, laser thermal microforming and microsurface treatment [microscale laser shock peening (?LSP)] have been well studied. By combining the beneficial effects of these two processes with a controlled bending deformation, microscale laser peen forming (?LPF) attracts more attention recently since it not only improves the fatigue life of the material but also shapes microscale metallic parts at the same time. In the present study, ?LSP of single crystal aluminum was presented to study anisotropic material response. Local plastic deformation was characterized by lattice rotation measured through electron backscatter diffraction. Residual stress distributions of both sides of a peened sample, characterized by x-ray microdiffraction, were compared with the results obtained from finite element method simulation. ?LPF anisotropic behavior was investigated in three effective slip systems via both the anisotropic slip line theory and numerical method. Also, the work hardening effect resulted from self-hardening, and latent hardening was analyzed through comparing the results with and without considering hardening.

  11. THE EFFECT OF LASER SHOCK PEENING ON THE LIFE AND FAILURE MODE OF A COLD PILGER DIE

    SciTech Connect

    Lavender, Curt A.; Hong, Sung-tae; Smith, Mark T.; Johnson, Robert T.; Lahrman, David

    2008-08-11

    The laser shock peening process was used to increase fatigue life of pilger dies made of A2 tool steel by imparting compressive residual stresses to fatigue prone areas of the dies. The result of X-Ray diffraction analysis indicated that deep, high- magnitude compressive residual stresses were generated by the laser shock peening process, and the peened dies exhibited a significant increase of in-service life. Fractography of the failed dies indicates that the fracture mechanism was altered by the peening process.

  12. Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6

    NASA Astrophysics Data System (ADS)

    Salimianrizi, A.; Foroozmehr, E.; Badrossamay, M.; Farrokhpour, H.

    2016-02-01

    The purpose of this study is to investigate the effects of Laser Shock Peening (LSP) on Al 6061-T6. The confined LSP regime using Nd: YAG laser with 1200 mJ of energy per pulse and 8 ns of pulse width were applied. The treated specimens were evaluated by means of surface integrity with optical microscopy, scanning electron microscope, microhardness, surface roughness and induced residual stress using an X-ray diffraction method. Results showed that by the use of LSP, compressive residual stress could effectively be induced on the surface of treated material. It was also revealed that the hardened depth of the material, up to a maximum depth of 1875 μm, could be achieved due to work hardening and grain refinement. In addition, surface roughness measurements showed that the LSP could deteriorate surface quality depending on the LSP parameters. The influences of beam overlap rates, number of laser shots and scanning pattern on microhardness as well as surface roughness are discussed.

  13. Laser shock peening effect on the dislocation transitions and grain refinement of Al–Mg–Si alloy

    SciTech Connect

    Trdan, U.; Skarba, M.; Grum, J.

    2014-11-15

    This paper systematically investigates the effect of laser shock peening without coating parameters on the microstructural evolution, and dislocation configurations induced by ultra-high plastic strains and strain rates. Based on an analysis of optical microscopy, polarized light microscopy, transmission electron microscopy observations and residual stress analysis, the significant influence of laser shock peening parameters due to the effect of plasma generation and shock wave propagation has been confirmed. Although the optical microscopy results revealed no significant microstructural changes after laser shock peening, i.e. no heat effect zone and differences in the distribution of second-phase particles, expressive influence of laser treatment parameters on the laser shock induced craters was confirmed. Moreover, polarized light microscopy results have confirmed the existence of well-defined longish grains up to 455 μm in length in the centre of the plate due to the rolling effect, and randomly oriented smaller grains (20 μm × 50 μm) in the surface due to the static recrystallization effect. Laser shock peening is reflected in an exceptional increase in dislocation density with various configurations, i.e. dislocation lines, dislocation cells, dislocation tangles, and the formation of dense dislocation walls. More importantly, the microstructure is considerably refined due to the effect of strain deformations induced by laser shock peening process. The results have confirmed that dense dislocation structures during ultra-high plastic deformation with the addition of shear bands producing ultra-fine (60–200 nm) and nano-grains (20–50 nm). Furthermore, dislocation density was increased by a factor of 2.5 compared to the untreated material (29 × 10{sup 13} m{sup −2} vs. 12 × 10{sup 13} m{sup −2}). - Highlights: • LSPwC imparts high compressive residual stresses up to − 362 ± 31 MPa. • After LSPwC the microstructure is considerably refined via

  14. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Lin, Dong; Suslov, Sergey; Cheng, Gary J.

    2012-08-01

    In this study, laser shock peening (LSP) was utilized to generate localized deformation induced martensite (DIM) in NiTi shape memory alloy. The DIM was investigated by x-ray diffraction and transmission electron microscopy. The effects of temperature and laser intensity on DIM transformation were investigated. It has been found that higher laser intensity and lower processing temperature leads to higher volume fraction of DIM. This is attributed to the increase of the chemical driving force and the increase in the density of potential martensite variant for martensite nucleation at low temperatures. The localized shape memory effect in micrometer scale after low temperature LSP has been evaluated.

  15. Recent development and future perspectives of low energy laser shock peening

    NASA Astrophysics Data System (ADS)

    Kalainathan, S.; Prabhakaran, S.

    2016-07-01

    The first part of the review involves the parameters controlling and optimization of low energy laser shock peening process. The second part presents the effect of laser peening without coating on ferrous, aluminum and titanium alloys. Therefore, the recently developed techniques and challenges on it are discussed. Opportunities to tackle the current challenges are overviewed. Finally, in the third part, the future perspectives of low energy laser peening on metal matrix composites and single crystals for several typical applications are deliberated.

  16. Laser Peening of Alloy 22 Welds

    SciTech Connect

    Stevens, D W; Hackel, L A; Lingenfelter, A C

    2002-10-03

    Stress corrosion cracking (SCC) of near-surface Alloy 22 metal can be propagated by yield-point levels (45 ksi) of residual weld tensile stresses. This is a serious concern for welds in the Alloy 22 canister employed in the Yucca Mountain Project (YMP) Waste Package, particularly in closure welds that cannot be stress relieved by conventional heat treating. This work shows that compressive shock waves, driven into a weldment by laser peening, replaces its detrimental tensile stresses of 30-80 ksi with compressive stresses of 2-25 ksi or better that retard SCC. This benefit occurs in the top 1.5 mm (or more) of the material without appreciable heating. It was also found that quenching after solution annealing and shot peening during production of Alloy 22 plate imparts compressive stresses of 35-105 ksi near the surface, a very large buffer against SCC. This means that if seam-welded hollow canisters likewise gain compressive stresses upon post-weld annealing and quenching, and if closure welds are laser peened, all surfaces of the canister would be under compression, thereby precluding SCC of the Alloy 22 canister. Laser peening may plastically deform as much as the top 10% of the metal (about 2 mm out of the 25-mm plate thickness), thereby changing the rate of general corrosion of waste package outer barrier. Long-term corrosion tests of laser peened Alloy 22 welds should be conducted. Present results show that laser peening, currently under development at LLNL using high-energy lasers, induces compressive residual stress on the near surface of the weld. This laser peening process is showing significant retardation of SCC and should be further characterized and assessed to preclude SCC in Alloy 22 canisters.

  17. Mitigation of Stress Corrosion Cracking Susceptibility of Machined 304L Stainless Steel Through Laser Peening

    NASA Astrophysics Data System (ADS)

    Sundar, R.; Ganesh, P.; Kumar, B. Sunil; Gupta, R. K.; Nagpure, D. C.; Kaul, R.; Ranganathan, K.; Bindra, K. S.; Kain, V.; Oak, S. M.; Singh, Bijendra

    2016-09-01

    The paper describes an experimental study aimed at suppressing stress corrosion cracking susceptibility of machined 304L stainless steel specimens through laser shock peening. The study also evaluates a new approach of oblique laser shock peening to suppress stress corrosion cracking susceptibility of internal surface of type 304L stainless steel tube. The results of the study, performed with an indigenously developed 2.5 J/7 ns Nd:YAG laser, demonstrated that laser shock peening effectively suppresses chloride stress corrosion cracking susceptibility of machined surface of type 304L stainless steel. In the investigated range of incident laser power density (3.2-6.4 GW/cm2), machined specimens peened with power density of 4.5 and 6.4 GW/cm2 displayed lower stress corrosion cracking susceptibility considerably than those treated with 3.2 and 3.6 GW/cm2 in boiling magnesium chloride test. Oblique laser shock peening, performed on machined internal surface of a type 304L stainless steel tube (OD = 111 mm; ID = 101 mm), was successful in introducing residual compressive surface stresses which brought about significant suppression of its stress corrosion cracking susceptibility. The technique of oblique laser shock peening, in spite of its inherent limitations on the length of peened region being limited by tube internal diameter and the need for access from both the sides, presents a simplified approach for peening internal surface of small tubular components.

  18. Laser Peening Of Components Of Thin Cross-Section

    DOEpatents

    Hackel, Lloyd A.; Halpin, John M.; Harris, Jr., Fritz B.

    2004-10-19

    The properties of a metal piece are altered by laser peening the piece on the first side using an acoustic coupling material operatively connected to the second side and subsequently laser peening the piece on the second side using an acoustic coupling material operatively connected to the first side.

  19. Laser peening of components of thin cross-section

    DOEpatents

    Hackel, Lloyd A.; Halpin, John M.; Harris, Jr., Fritz B.

    2003-12-02

    The properties of a metal piece are altered by laser peening the piece on the first side using an acoustic coupling material operatively connected to the second side and subsequently laser peening the piece on the second side using an acoustic coupling material operatively connected to the first side

  20. Analysis of Residual Stresses in Laser-Shock-Peened and Shot-Peened Marine Steel Welds

    NASA Astrophysics Data System (ADS)

    Ahmad, Bilal; Fitzpatrick, Michael E.

    2017-02-01

    Laser peening is now the preferred method of surface treatment in many applications. The magnitude and depth of the compressive residual stress induced by laser peening can be influenced strongly by the number of peen layers (the number of laser hits at each point) and by processing conditions including the use of a protective ablative layer. In this study, residual stresses have been characterized in laser and shot-peened marine butt welds with a particular focus at the fatigue crack initiation location at the weld toe. X-ray diffraction, synchrotron X-ray diffraction, incremental center-hole drilling, and the contour method were used for determination of residual stress. Results showed that the use of ablative tape increased the surface compressive stress, and the depth of compressive stress increased with an increase in number of peening layers. A key result is that variation of residual stress profile across laser peen spots was seen, and the residual stress magnitude varies between the center and edges of the spots.

  1. Ablation layers to prevent pitting in laser peening

    DOEpatents

    Hackel, Lloyd A

    2016-08-09

    A hybrid ablation layer that comprises a separate under layer is applied to a material to prevent pitting resulting from laser peening. The underlayer adheres to the surface of the workpiece to be peened and does not have bubbles and voids that exceed an acceptable size. One or more overlayers are placed over and in contact with the underlayer. Any bubbles formed under the over layers are insulated from the surface to be peened. The process significantly reduces the incidence of pits on peened surfaces.

  2. Laser Peening for U.S. Army Helicopters (Briefing Charts)

    DTIC Science & Technology

    2007-01-01

    initiation and propagation Resistance to fretting fatigue and wear Resistance to stress corrosion cracking Laser Shock Peening Laser Shock Peening...is an innovative process for introducing deep compressive residual stresses into the surface of metallic parts LASER BEAM SHOCK WAVE VAPOR PRESSURE...deep compressive residual stresses in the surface of a part with a shock wave created by high intensity laser pulses that mechanically cold-work the

  3. Identification marking by means of laser peening

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Harris, Fritz

    2002-01-01

    The invention is a method and apparatus for marking components by inducing a shock wave on the surface that results in an indented (strained) layer and a residual compressive stress in the surface layer. One embodiment of the laser peenmarking system rapidly imprints, with single laser pulses, a complete identification code or three-dimensional pattern and leaves the surface in a state of deep residual compressive stress. A state of compressive stress in parts made of metal or other materials is highly desirable to make them resistant to fatigue failure and stress corrosion cracking. This process employs a laser peening system and beam spatial modulation hardware or imaging technology that can be setup to impress full three dimensional patterns into metal surfaces at the pulse rate of the laser, a rate that is at least an order of magnitude faster than competing marking technologies.

  4. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling

    DOE PAGES

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; ...

    2015-05-20

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and excellent wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via themore » micro-slot cutting method, and then predict them using a three dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analysis of serrated flow reveals plentiful and useful information of the underlying deformation process. As a result, our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.« less

  5. Laser shock peening on Zr-based bulk metallic glass and its effect on plasticity: Experiment and modeling

    SciTech Connect

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-20

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and excellent wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analysis of serrated flow reveals plentiful and useful information of the underlying deformation process. As a result, our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  6. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling

    PubMed Central

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-01-01

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials. PMID:25991412

  7. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    NASA Astrophysics Data System (ADS)

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-11-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.

  8. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    PubMed Central

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  9. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening

    PubMed Central

    Gujba, Abdullahi K.; Medraj, Mamoun

    2014-01-01

    The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed. PMID:28788284

  10. Laser Peening - A Processing Tool to Strengthen Metals or Alloys

    SciTech Connect

    Chen, H-L; Hackel, L A

    2003-09-01

    Laser peening is an emerging modern process that impresses a compressive stress into the surfaces of metals or alloys. This treatment can reduce the rate of fatigue cracking and stress corrosion cracking in structural metals or alloys needed for aerospace, nuclear power plants, and military applications. Laser peening could also be used to form metals or alloys into precise shapes without their yielding, leaving their surfaces in a crack resistant compressive state.

  11. Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments

    NASA Astrophysics Data System (ADS)

    Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.

    2011-07-01

    Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.

  12. Development and Application of Laser Peening System for PWR Power Plants

    SciTech Connect

    Masaki Yoda; Itaru Chida; Satoshi Okada; Makoto Ochiai; Yuji Sano; Naruhiko Mukai; Gaku Komotori; Ryoichi Saeki; Toshimitsu Takagi; Masanori Sugihara; Hirokata Yoriki

    2006-07-01

    Laser peening is a process to improve residual stress from tensile to compressive in surface layer of materials by irradiating high-power laser pulses on the material in water. Toshiba has developed a laser peening system composed of Q-switched Nd:YAG laser oscillators, laser delivery equipment and underwater remote handling equipment. We have applied the system for Japanese operating BWR power plants as a preventive maintenance measure for stress corrosion cracking (SCC) on reactor internals like core shrouds or control rod drive (CRD) penetrations since 1999. As for PWRs, alloy 600 or 182 can be susceptible to primary water stress corrosion cracking (PWSCC), and some cracks or leakages caused by the PWSCC have been discovered on penetrations of reactor vessel heads (RVHs), reactor bottom-mounted instrumentation (BMI) nozzles, and others. Taking measures to meet the unconformity of the RVH penetrations, RVHs themselves have been replaced in many PWRs. On the other hand, it's too time-consuming and expensive to replace BMI nozzles, therefore, any other convenient and less expensive measures are required instead of the replacement. In Toshiba, we carried out various tests for laser-peened nickel base alloys and confirmed the effectiveness of laser peening as a preventive maintenance measure for PWSCC. We have developed a laser peening system for PWRs as well after the one for BWRs, and applied it for BMI nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. In this system, laser oscillators and control devices were packed into two containers placed on the operating floor inside the reactor containment vessel. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J

  13. A Study of the Effects of Laser Shock Peening on Residual Stress, Microstructure and Local Properties of IN718 Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Gill, Amrinder Singh

    In this project effects of Laser shock peening (LSP) on two aero engine alloys, IN718 and IN718 SPF were studied. The primary goal of the program was to secure required fundamental knowledge of e impact of LSP process parameters on these two aero engine alloys and thereby advance the science and application base of this process to other materials and parts. The research program designed accordingly includes the following key elements: 1) Developing LSP process parameters for typical Ni base aero engine alloys; (2) characterization of surface and sub-surface macro and micro residual strains/stresses a function of LSP process parameters (3) characterization of microstructural changes as a function of LSP process parameters and; (4) Study Thermal relaxation of residual stresses and understand the underlying kinetics. Firstly, different LSP process parameters including: Power density, impact overlaps, ablative overlays and coverage were studied to impart deep compressive residual stresses to the near surface regions of peened coupons. A host of different techniques were then used to characterize distribution of residual stresses/strains, roughness, hardness, plastic strains and microstructure. Role of ablative layer was also investigated. Samples were peened using an ablative layer different ablative layers (black vinyl tape, aluminum tape) and without an ablative layer and compared in terms of topography, residual stress fields and microstructure. Two different diffraction based techniques were used to characterize residual stress fields: conventional X-ray diffraction and Synchrotron X-ray diffraction (SXRD). Conventional X-ray coupled with electro polishing offers a fast means of analyzing residual stresses, while SXRD enables high resolution, non-destructive characterization of strains/stresses. Experiments showed that higher power density lead to compressive residual stresses which were higher in magnitude in near surface regions. There is a saturation power

  14. Influence of laser shock peening on irradiation defects in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Lu, Qiaofeng; Su, Qing; Wang, Fei; Zhang, Chenfei; Lu, Yongfeng; Nastasi, Michael; Cui, Bai

    2017-06-01

    The laser shock peening process can generate a dislocation network, stacking faults, and deformation twins in the near surface of austenitic stainless steels by the interaction of laser-driven shock waves with metals. In-situ transmission electron microscopy (TEM) irradiation studies suggest that these dislocations and incoherent twin boundaries can serve as effective sinks for the annihilation of irradiation defects. As a result, the irradiation resistance is improved as the density of irradiation defects in laser-peened stainless steels is much lower than that in untreated steels. After heating to 300 °C, a portion of the dislocations and stacking faults are annealed out while the deformation twins remain stable, which still provides improved irradiation resistance. These findings have important implications on the role of laser shock peening on the lifetime extension of austenitic stainless steel components in nuclear reactor environments.

  15. FEM simulation of residual stresses induced by laser Peening

    NASA Astrophysics Data System (ADS)

    Peyre, P.; Sollier, A.; Chaieb, I.; Berthe, L.; Bartnicki, E.; Braham, C.; Fabbro, R.

    2003-08-01

    Benefits from laser Peening have been demonstrated several times in fields like fatigue, wear or stress corrosion cracking. However, in spite of recent work on the calculation of residual stresses, very few authors have considered a finite element method (FEM) approach to predict laser-induced mechanical effect. This comes mainly from the high strain rates involved during LP (10^6 s^{-1}), that necessitate the precise determination of dynamic properties, and also from the possible combination of thermal and mechanical loadings in the case of LP without protective coatings. In this paper, we aim at presenting a global approach of the problem, starting from the determination of loading conditions and dynamic yield strengths, to finish with FEM calculation of residual stress fields induced on a 12% Cr martensitic stainless steel and a 7075 aluminium alloy.

  16. Laser Peening for Reliable Fatigue Life. Delivery Order 0025: Volume 1 - Simulation and Optimization of a Laser Peening Process

    DTIC Science & Technology

    2009-10-01

    techniques are shot peening, low plasticity burnishing, water jet peening, cold rolling , and case hardening. 4 In the case of thermal treatments, some form... rolling and plating are examples of thermo-mechanical treatment, a category that combines the effect of both mechanical and thermal treatments. In the case... rolling a high- modulus ball or roller over the intended surface of the component (Figure 2). Depending upon the controlling parameters, this process

  17. Mitigation of Tensile Weld Stresses in Alloy 22 Using Laser Peening

    SciTech Connect

    Chen, H L; Evans, K J; Hackel, L A; Rankin, J E; Yamamoto, R M; Demma, A G; Dewald, A T; Lee, M J; Hill, M R

    2002-11-27

    The goal of the Yucca Mountain Project (YMP) is safe permanent disposal of high-level nuclear waste. One of the many technical challenges to this plan is the design of the Engineered Barrier System (EBS) including the waste package that will contain the radioactive waste. One potential failure mode of the waste package is stress corrosion cracking (SCC), which occurs when three criteria simultaneously exist. These criteria are a potentially corrosive environment, a material susceptible to SCC, and the presence of tensile residual stresses at the surface of the material. While many design decisions have been made to attempt to minimize the occurrence of the first two conditions, it is necessary to control the third condition, the presence of tensile residual stresses. These stresses occur as a result of a variety of manufacturing techniques, including welding. While most of the residual stresses due to the welding of the waste package can be mitigated through solution heat-treating, the final closure weld, which occurs after the radioactive waste has been placed in the waste package, must be treated to eliminate the presence of tensile residual stress near the surface. Laser peening is a commercially proven technology that has been shown to create compressive residual stress in both unstressed materials, as well as materials containing tensile surface residual stresses generated by welding. Lawrence Livermore National Laboratory (LLNL) has developed the laser peening process and the associated hardware for use by the YMP. Upon completion of the testing and engineering phases, LLNL will transfer the laser peening technology to U.S. industry and assist DOE in developing vendors to supply production units to be installed at the YMP facilities. The overall testing effort is divided into-two phases. Phase I of this project consisted of a study into the effectiveness of laser peening in generating compressive stress in small Alloy 22 base metal coupons and converting

  18. Effect of laser shock peening without absorbent coating on the mechanical properties of Zr-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2015-12-01

    In this work, laser shock peening without absorbent coating (LSPwC) was employed to Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass in order to improve its mechanical properties. The phase structure and thermal properties of the as-cast and LSPwC treated samples were characterized by X-ray diffraction, transmission electron microscope and differential scanning calorimeter. Three-point bending fracture tests of vit1 were performed on universal testing machine at room temperature with loading rate of 0.1 mm/min. The results showed that LSPwC enhanced the plasticity of vit1, and the plastic deflection increased by 23%. This enhancement could be attributed to the generation of crystalline phase and more free volume as well as the complex residual stresses induced by LSPwC. The optical profiling test showed that the LSPwC increased the surface roughness of vit1. Scanning electron microscope measurements on the fracture surface of vit1 revealed that high dense vein patterns were formed on cross section of the LSPwC treated sample.

  19. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    NASA Astrophysics Data System (ADS)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-08-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  20. Improving friction performance of cast iron by laser shock peening

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Huang, Shu; Sheng, Jie; Mei, Yufen; Zhou, Hongda

    2015-05-01

    According to different purpose, some high or low friction coefficient of the material surface is required. In this study, micro-dent texture was fabricated on cast iron specimens by a set of laser shock peening (LSP) experiments under different laser energy, with different patterns of micro dimples in terms of the depth over diameter. The mechanism of LSP was discussed and surface morphology of the micro dimples were investigated by utilizing a Keyence KS-1100 3D optical surface profilometer. The tests under the conditions of dry and lubricating sliding friction were accomplished on the UMT-2 apparatus. The performance of treated samples during friction and wear tests were characterized and analyzed. Based on theoretical analysis and experimental study, friction performance of textured and untextured samples were studied and compared. Morphological characteristics were observed by scanning electron microscope (SEM) and compared after friction tests under dry condition. The results showed that friction coefficient of textured samples were obvious changed than smooth samples. It can be seen that LSP is an effective way to improve the friction performance of cast iron by fabricating high quality micro dimples on its surface, no matter what kind of engineering application mentioned in this paper.

  1. Material model validation for laser shock peening process simulation

    NASA Astrophysics Data System (ADS)

    Amarchinta, H. K.; Grandhi, R. V.; Langer, K.; Stargel, D. S.

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 106 s-1, which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic-plastic behavior of materials. Elastic perfectly plastic, Johnson-Cook and Zerilli-Armstrong models are used, and the performance of each model is compared with available experimental results.

  2. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement

    PubMed Central

    Khandaker, Morshed; Riahinezhad, Shahram; Sultana, Fariha; Vaughan, Melville B; Knight, Joshua; Morris, Tracy L

    2016-01-01

    Implant failure due to poor integration of the implant with the surrounding biomaterial is a common problem in various orthopedic and orthodontic surgeries. Implant fixation mostly depends upon the implant surface topography. Micron to nanosize circular-shaped groove architecture with adequate surface roughness can enhance the mechanical interlock and osseointegration of an implant with the host tissue and solve its poor fixation problem. Such groove architecture can be created on a titanium (Ti) alloy implant by laser peening treatment. Laser peening produces deep, residual compressive stresses in the surfaces of metal parts, delivering increased fatigue life and damage tolerance. The scientific novelty of this study is the controlled deposition of circular-shaped rough spot groove using laser peening technique and understanding the effect of the treatment techniques for improving the implant surface properties. The hypothesis of this study was that implant surface grooves created by controlled laser peen treatment can improve the mechanical and biological responses of the implant with the adjoining biomaterial. The objective of this study was to measure how the controlled laser-peened groove architecture on Ti influences its osteoblast cell functions and bonding strength with bone cement. This study determined the surface roughness and morphology of the peen-treated Ti. In addition, this study compared the osteoblast cell functions (adhesion, proliferation, and differentiation) between control and peen-treated Ti samples. Finally, this study measured the fracture strength between each kind of Ti samples and bone cement under static loading. This study found that laser peen treatment on Ti significantly changed the surface architecture of the Ti, which led to enhanced osteoblast cell adhesion and differentiation on Ti implants and fracture strength of Ti–bone cement interfaces compared with values of untreated Ti samples. Therefore, the laser peen treatment

  3. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  4. Surface nano-hardness and microstructure of a single crystal nickel base superalloy after laser shock peening

    NASA Astrophysics Data System (ADS)

    Lu, G. X.; Liu, J. D.; Qiao, H. C.; Zhou, Y. Z.; Jin, T.; Zhao, J. B.; Sun, X. F.; Hu, Z. Q.

    2017-06-01

    Nanoindention tests and SEM microstructure observations were conducted on a single crystal nickel base superalloy after laser shock peening (LSP). Distinct surface hardening behavior was found to occur under the selected LSP technology. A large discrepancy in γʹ areas happened on laser shocked regions and the large plastic deformation embodied in γʹ phases' deformation brought a significant hardening effect.

  5. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    SciTech Connect

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  6. Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Rivero, Iris V.; Lyons, Jed

    2007-01-01

    The effects of laser, and shot peening on the residual stresses in Friction Stir Welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, Laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.

  7. Self-seeded single-frequency laser peening method

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2009-08-11

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  8. Self-seeded single-frequency laser peening method

    DOEpatents

    DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  9. Contour forming of metals by laser peening

    DOEpatents

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  10. Laser shock peening of titanium 6-4 alloy

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Hopkins, A.; Laber, M. W.

    2000-04-01

    Laser shock peening of titanium 6-4 has been shown to improve its high cycle fatigue life. Residual compressive stresses generated on the surface of titanium 6-4, as a result of laser shocking, have shown dramatic improvement in the performance of aircraft turbine blades. Laser shocking of titanium was carried out with a 20 ns pulse width, 50 joule pulsed laser, operated by LSP Technologies, Columbus, OH. Titanium disks, 20-mm in diameter, and ranging in thicknesses from zero (bare LiF) to 3-mm were subjected to laser shock to monitor amplitude and temporal stress profiles of the pulsed laser. Laser shock stress amplitudes on the back of titanium disks were monitored with VISAR using LiF as the window material. The peak shock stress produced in LiF (titanium thickness zero) was measured to be 16±1 GPa. The laser shock amplitude decays to about 2.7 GPa while propagating through 3-mm thick disk of titanium 6-4.

  11. Laser Shock Peening of Titanium 6-4 Alloy

    NASA Astrophysics Data System (ADS)

    Hopkins, Alan; Laber, Mark; Brar, Nachhatter S.

    1999-06-01

    shock 99 Laser shock peening of titanium 6-4 has been shown to improve its high cycle fatigue life. Residual compressive stresses generated on the surface of titanium 6-4, as a result of laser shocking, have shown dramatic improvement in the performance of aircraft turbine blades. Laser shocking of titanium was carried out with a 20 ns pulse width, 50 joule pulsed laser, operated by LSP Technologies, Columbus, OH. Disks of titanium, 0 to 3-mm thick and 20-mm in diameter, were subjected to the pulsed laser to monitor amplitude and temporal stress profiles of laser shock. Laser shock stress amplitudes on the back of titanium disks were monitored with VISAR using LiF as the window material. The peak shock stress produced in LiF (titanium thickness zero) was measured to be 16±1 GPa. The laser shock amplitude decays to about 2.6 GPa while propagating through 3-mm thick disk of titanium 6-4. *Supported by the U.S. Air Force Research Laboratory

  12. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening

    SciTech Connect

    Ye, Chang Ren, Zhencheng; Zhao, Jingyi; Hou, Xiaoning; Dong, Yalin; Liu, Yang; Sang, Xiahan

    2015-10-07

    In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to the amorphization of pure nanocrystalline nickel.

  13. Cavitation bubble oscillation period as a process diagnostic during the laser shock peening process

    NASA Astrophysics Data System (ADS)

    Glaser, D.; Polese, C.

    2017-09-01

    Laser shock peening (LSP) technology is a laser-induced shock process implemented as a surface enhancement technique to introduce beneficial compressive residual stresses into metallic components. The process employs water to confine and enhance the pressure pulse delivered to the target. For thick water layers, or fully water immersed LSP, a cavitation bubble is generated by the surface vaporization of the LSP laser pulse. This research shows that the first bubble oscillation period of the cavitation bubble can be used to characterize effective and repeatable energy delivery to the target. High-speed shadowgraphy is implemented to show that variations in the bubble period occur before visual observations of dielectric breakdown in water. The diagnostic potential of the first bubble oscillation period is used to identify the dielectric breakdown threshold of water, which shows an increase with increasing water quality measured by water conductivity.

  14. Study to determine peening stress profile of rod peened aluminum structural alloys versus shot peened material

    NASA Technical Reports Server (NTRS)

    Rosas, R. E.; Calfin, B. G.

    1976-01-01

    The objective of this program was to determine the peening stress profiles of rod peened aluminum structural alloys versus shot peened material to define the effective depth of the compressed surface layer.

  15. A Novel Micro-Scale Plastic Deformation Feature on a Bulk Metallic Glass Surface under Laser Shock Peening

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Wei, Bing-Chen; Wang, Xi; Xu, Guang-Yue; Li, Lei; Wu, Xian-Qian; Song, Hong-Wei; Huang, Chen-Guang

    2013-03-01

    Laser shocking peening is a widely applied surface treatment technique that can effectively improve the fatigue properties of metal parts. We observe many micro-scale arc plastic steps on the surface of Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glass subjected to the ultra-high pressure and strain rate induced by laser shock peening. The scanning electronic microscopy and atomic force microscopy show that the arc plastic step (APS) has an arc boundary, 50-300 nm step height, 5-50 μm radius and no preferable direction. These APSs have the ability to accommodate plastic deformation in the same way as shear band. This may indicate a new mechanism to accommodate the plastic deformation in amorphous metallic glass under high pressure, ultra-high strain rates, and short duration.

  16. Nanoindentation response of laser shock peened Ti-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wang, Lu; Xue, Yunfei; Zhang, Haifeng; Fu, Huameng

    2015-05-01

    The effect of laser shock peening (LSP) on mechanical properties of Ti-based bulk metallic glass (BMG) was investigated under nanoindentation. Two regions were generated within the specimen after the LSP: (I) the extremely thick softened region (˜300 µm) in which amounts of shear bands and excess free volume were generated; (II) the middle region where the free volume increased but nearly no shear bands were induced. The hardness decreased with the increase of the indenter depth (h), exhibiting indentation size effect (ISE). The ISE increased with the increase of the measured distance away from the laser shocked tip, indicating that the ISE was inhibited by the shear bands and excess free volume was generated by the LSP.

  17. Comparison of warm laser shock peening and laser shock peening techniques in lengthening the fatigue life of welded joints made of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Sheng, Jie

    2017-07-01

    Welded joints made of 6061-T6 Al alloy were studied to evaluate warm laser shock peening (WLSP) and laser shock peening (LSP) processes. The estimation model of laser-induced surface residual stress was examined by means of experiments and numerical analysis. The high-cycle fatigue lives of welded joint specimens treated with WLSP and LSP were estimated by conducting tensile fatigue tests. The fatigue fracture mechanisms of these specimens are studied by surface integrity and fracture surface tests. Experimental results and analysis indicated that the fatigue life of the specimens processed by WLSP was higher than that with LSP. The large increase in fatigue life appeared to be the result of the larger residual stress, more uniform microstructure refinement and the lower surface roughness of the WLSP specimens.

  18. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy.

    PubMed

    Sealy, M P; Guo, Y B

    2010-10-01

    Current permanent metallic biomaterials of orthopedic implants, such as titanium, stainless steel, and cobalt-chromium alloys, have excellent corrosive properties and superior strengths. However, their strengths are often too high resulting in a stress shielding effect that is detrimental to the bone healing process. Without proper healing, costly and painful revision surgeries may be required. The close Young's modulus between magnesium-based implants and cancellous bones has the potential to minimize stress shielding while providing both biocompatibility and adequate mechanical properties. The problem with Mg implants is how to control corrosion rates so that the degradation of Mg implants matches that of bone growth. Laser shock peening (LSP) is an innovative surface treatment method to impart compressive residual stress to a novel Mg-Ca implant. The high compressive residual stress has great potential to slow corrosion rates. Therefore, LSP was initiated in this study to investigate surface topography and integrity produced by sequential peening a Mg-Ca alloy. Also, a 3D semi-infinite simulation was developed to predict the topography and residual stress fields produced by sequential peening. The dynamic mechanical behavior of the biomaterial was modeled using a user material subroutine from the internal state variable plasticity model. The temporal and spatial peening pressure was modeled using a user load subroutine. The simulated dent agrees with the measured dent topography in terms of profile and depth. Sequential peening was found to increase the tensile pile-up region which is critical to orthopedic applications. The predicted residual stress profiles are also presented.

  19. Effects of shot peening pressure, media type and double shot peening on the microstructure, mechanical and tribological properties of low-alloy steel

    NASA Astrophysics Data System (ADS)

    Quang Trung, Pham; Win Khun, Nay; Butler, David Lee

    2016-12-01

    The effects of different shot peening conditions such as pressure (from 68.9-551.6 kPa), media type (media S230 and S110) and double shot peening on the microstructure, mechanical and tribological properties of shot peened AISI 4340 low-alloy steels, were systematically investigated. Their surface topography, hardness and roughness were analyzed by scanning electron microscopy, a Vickers micro-hardness tester and surface profilometer, respectively, while the cross-sectional sub-surface structures of the as-received and shot peened samples were characterized by means of optical microscopy and nanoindentation. The tribological properties were determined by using a ball-on-disc micro-tribological tester. It was shown that shot peening pressure and media type had a significant effect on the surface roughness, hardness, microstructure, wear resistance and friction of the shot peened AISI 4340 steel samples. It also indicated that the double shot peening process was a promising treatment, not only to reduce the surface roughness of the material after undergoing the first shot peening process with large media and high intensity, but to improve the tribological properties of the shot peened material.

  20. Laser Peening of Alloy 600 to Improve Intergranular Stress Corrosion Cracking Resistance in Power Plants

    SciTech Connect

    Chen, H; Rankin, J; Hackel, L; Frederick, G; Hickling, J; Findlan, S

    2004-04-20

    Laser peening is an emerging modern process that impresses a compressive stress into the surface of metals or alloys. This treatment can reduce the rate of intergranular stress corrosion cracking and fatigue cracking in structural metals or Alloy 600 needed for nuclear power plants.

  1. Influence of Laser Peening on Phase Transformation and Corrosion Resistance of AISI 321 steel

    NASA Astrophysics Data System (ADS)

    Karthik, D.; Swaroop, S.

    2016-07-01

    The objective of this study is to investigate the influence of laser peening without coating (LPwC) on austenitic to martensitic (γ → α') phase transformation and corrosion behavior of austenitic stainless steel AISI 321 in 3.5% NaCl environment. Results indicate that LPwC induces a large compressive residual stresses of nearly -854 MPa and γ → α' phase transformation of about 18% (volume fraction). Microstructures of peened surface confirmed the γ → α' phase transformation and showed no grain refinement. Hardness increased slightly with a case depth of 900 μm. Despite the smaller surface roughness introduced, corrosion resistance improved after peening due to compressive residual stresses.

  2. Thermal evolution of residual stress in IN718 alloy subjected to laser peening

    NASA Astrophysics Data System (ADS)

    Xu, Suqiang; Huang, Shu; Meng, Xiankai; Sheng, Jie; Zhang, Haifeng; Zhou, Jianzhong

    2017-07-01

    The thermal relaxation behaviors of residual stresses induced by laser peening (LP) in IN718 alloy were investigated using an integrated numerical simulation and experimental approach. LP and heat treatments (HT) were carried out after which the X-ray diffraction (XRD) technique was employed in measuring the residual stresses. Micro-structures were observed using an optic microscope (OM) and transmission electron microscope (TEM). Dislocations induced by LP were also observed by TEM and characterized using the XRD technique. The effects of the applied temperature and the exposure time on residual stress and micro-structures were investigated. The results show that the extent of the residual stresses relaxation increased accordingly with the increase in the applied temperature. The relaxation rate was initially high and tended to stabilize for a longer exposure time. Grain size evolution during the process was subsequently discussed. Furthermore, a conceivable mechanism of residual stresses thermal relaxation behavior was obtained.

  3. Fatigue crack growth rate characteristics of laser shock peened Ti-6Al-4V

    SciTech Connect

    Ruschau, J.J.; John, R.; Thompson, S.R.; Nicholas, T.

    1999-07-01

    The fatigue crack growth rate (FCGR) characteristics of Laser Shock Peened (LSP) titanium 6Al-4V were examined and compared to those of unprocessed material. The FCGR resistance of LSP processed material tested at low stress ratios (R) is shown to be significantly greater than for unprocessed, baseline material. The increased damage tolerance can be attributed to the large residual compressive stresses generated by the LSP process. Differences in the growth rate behavior due to LSP can be accounted for by using the closure corrected effective stress intensity range. {Delta}K{sub eff}, which takes into account only the portion of loading above the crack opening load. The rationale of using {Delta}K{sub eff} is also demonstrated through fractographic investigations.

  4. Anomalous shear band characteristics and extra-deep shock-affected zone in Zr-based bulk metallic glass treated with nanosecond laser peening

    PubMed Central

    Wei, Yanpeng; Xu, Guangyue; Zhang, Kun; Yang, Zhe; Guo, Yacong; Huang, Chenguang; Wei, Bingchen

    2017-01-01

    The effects of nanosecond laser peening on Zr41Ti14Cu12.5Ni10Be22.5 metallic glass were investigated in this study. The peening treatment produced an extra-deep shock-affected zone compared to crystal metal. As opposed to the conventional shear bands, numerous arc shear bands appeared and aggregated in the vertical direction of the laser beam, forming basic units for accommodating plastic deformation. The arc shear bands exhibited short and discrete features near the surface of the material, then grew longer and fewer at deeper peened layer depths, which was closely related to the laser shock wave attenuation. An energy dissipation model was established based on Hugoniot Elastic Limit and shear band characteristics to represent the formation of an extra-deep shock-affected zone. The results presented here suggest that the bulk modification of metallic glass with a considerable affected depth is feasible. Further, they reveal that nanosecond laser peening is promising as an effective approach to tuning shear bands for improved MGs ductility. PMID:28266649

  5. Anomalous shear band characteristics and extra-deep shock-affected zone in Zr-based bulk metallic glass treated with nanosecond laser peening

    NASA Astrophysics Data System (ADS)

    Wei, Yanpeng; Xu, Guangyue; Zhang, Kun; Yang, Zhe; Guo, Yacong; Huang, Chenguang; Wei, Bingchen

    2017-03-01

    The effects of nanosecond laser peening on Zr41Ti14Cu12.5Ni10Be22.5 metallic glass were investigated in this study. The peening treatment produced an extra-deep shock-affected zone compared to crystal metal. As opposed to the conventional shear bands, numerous arc shear bands appeared and aggregated in the vertical direction of the laser beam, forming basic units for accommodating plastic deformation. The arc shear bands exhibited short and discrete features near the surface of the material, then grew longer and fewer at deeper peened layer depths, which was closely related to the laser shock wave attenuation. An energy dissipation model was established based on Hugoniot Elastic Limit and shear band characteristics to represent the formation of an extra-deep shock-affected zone. The results presented here suggest that the bulk modification of metallic glass with a considerable affected depth is feasible. Further, they reveal that nanosecond laser peening is promising as an effective approach to tuning shear bands for improved MGs ductility.

  6. Surface roughness and friction coefficient in peened friction stir welded 2195 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Hatamleh, Omar; Smith, James; Cohen, Donald; Bradley, Robert

    2009-05-01

    The tribological properties of friction stir welded 2195 aluminum alloy joints were investigated for several laser- and shot-peened specimens. The first portion of this study assessed the surface roughness changes at different regions of the weld resulting from the various peening processes and included an atomic force microscopy (AFM) study to reveal fine structures. The second portion investigated the friction characteristics for various conditions when slid against a 440C ball slider. Shot peening resulted in significant surface roughness when compared to the unpeened and laser-peened samples. The initial friction for all types of specimens was highly variable. However, long-term friction was shown to be lowest for samples with no peening treatment. Laser peening caused the friction to increase slightly. The shot peening process on the other hand resulted in an increase of the long-term friction effects on both sides of the weld.

  7. Impact toughness of a gradient hardened layer of Cr5Mo1V steel treated by laser shock peening

    NASA Astrophysics Data System (ADS)

    Xia, Weiguang; Li, Lei; Wei, Yanpeng; Zhao, Aimin; Guo, Yacong; Huang, Chenguang; Yin, Hongxiang; Zhang, Lingchen

    2016-04-01

    Laser shock peening (LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts. Cr5Mo1V steel exhibits a gradient hardened layer after a LSP process. A new method is proposed to estimate the impact toughness that considers the changing mechanical properties in the gradient hardened layer. Assuming a linearly gradient distribution of impact toughness, the parameters controlling the impact toughness of the gradient hardened layer were given. The influences of laser power densities and the number of laser shots on the impact toughness were investigated. The impact toughness of the laser peened layer improves compared with an untreated specimen, and the impact toughness increases with the laser power densities and decreases with the number of laser shots. Through the fracture morphology analysis by a scanning electron microscope, we established that the Cr5Mo1V steel was fractured by the cleavage fracture mechanism combined with a few dimples. The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer.

  8. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy

    NASA Astrophysics Data System (ADS)

    Correa, C.; Peral, D.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; García-Beltrán, A.; Ocaña, J. L.

    2015-10-01

    Laser Shock Peening (LSP) is considered as an alternative technology to shot peening (SP) for the induction of compressive residual stresses in metallic alloys in order to improve their fatigue, corrosion and wear resistance. Since laser pulses generated by high-intensity laser systems cover only a small area, laser pulses are generally overlapped and scanned in a zigzag-type pattern to cover completely the surface to be treated. However, zigzag-type scanning patterns induce residual stress anisotropy as collateral effect. The purpose of this paper is to describe and explain, for the first time and with the aid of the numerical model developed by the authors, the influence of the scanning pattern directionality on the residual stress tensor. As an effective solution, the authors propose the application of random-type scanning patterns instead of zigzag-type in order to reduce the mentioned residual stress anisotropy.

  9. Electrochemical and pitting corrosion resistance of AISI 4145 steel subjected to massive laser shock peening treatment with different coverage layers

    NASA Astrophysics Data System (ADS)

    Lu, J. Z.; Han, B.; Cui, C. Y.; Li, C. J.; Luo, K. Y.

    2017-02-01

    The effects of massive laser shock peening (LSP) treatment with different coverage layers on residual stress, pitting morphologies in a standard corrosive solution and electrochemical corrosion resistance of AISI 4145 steel were investigated by pitting corrosion test, potentiodynamic polarisation test, and SEM observations. Results showed massive LSP treatment can effectively cause an obvious improvement of pitting corrosion resistance of AISI 4145 steel, and increased coverage layer can also gradually improve its corrosion resistance. Massive LSP treatment with multiple layers was shown to influence pitting corrosion behaviour in a standard corrosive solution.

  10. Influence of laser shock peening on morphology and mechanical property of Zr-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2015-11-01

    Laser shock peening (LSP) is a promising surface treatment technology which has been extensively employed to improve the fatigue life of many metallic components. Our works focused on LSP with Nd: glass laser system and circular laser spot diameter of 4 mm for Zr41.2Ti13.8Cu10Ni12.5Be22.5 (vit1) bulk metallic glass (BMG). LSP changed the surface morphology and mechanical properties of vit1. Optical profiles indicated that micro-indent would generate on the surface of BMG under the treatment of the higher intensity laser pulse. Detailed observation demonstrated that the surface roughness increased after laser treatment. Surface hardness decreased by up to 13% on the central region of micro-indent. The softening effect was attributed to the high density shear bands induced by the LSP technology.

  11. Laser Peening for Mitigation of Stress Corrosion Cracking at Welds in Marine Aluminum

    DTIC Science & Technology

    2011-06-01

    therefore leaving the welded area and the HAZ in tension and the surround base metal in compression [ 6 ]. Figure 4 shows the residual stress of a MIG...either by electropolishing or vibratory polishing. The samples were electropolished in a Buehler Electromet 4 Electropolisher using a solution of...REPORT TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE Laser Peening for Mitigation of Stress Corrosion Cracking at Welds in Marine

  12. Characterisation of Residual Stresses Generated by Laser Shock Peening by Neutron and Synchrotron Diffraction

    NASA Astrophysics Data System (ADS)

    Evans, Alexander Dominic; King, Andrew; Pirling, Thilo; Peyre, Patrice; Withers, Phillip John

    The fatigue behaviour of engineering alloys can be significantly improved through the application of mechanical surface treatments. These processes generate significant compressive residual stresses near surface by inhomogeneous plastic deformation. In the case of mechanical surface treatments such as laser shock peening, certain burnishing and rolling techniques and ultrasonic impact treatment (UIT), the compressive residual stress layer can extend to a depth of the order of millimeters, with balancing tensile stresses located deeper. Techniques to characterise the residual stresses generated by such mechanical surface treatments non-destructively are mainly limited to diffraction methods using penetrating neutron and synchrotron X-ray radiations. The application of these radiation sources is illustrated here by the characterisation of residual strain distributions in a two types of specimens treated with laser shock peening (LSP). Analyses of diffraction peak broadening provide qualitative information concerning the depth to which the plastic deformation of the treatments extends. Two case studies of laser shock peening of titanium and aluminium alloys is presented to demonstrate the capabilities of neutron and synchrotron diffraction techniques in the field of residual stress characterisation of surface engineered material non-destructively.

  13. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Chen, Yanhua; Jiang, Chuanhai

    2011-09-01

    In order to investigate the residual stress relaxations of shot peened layer, isothermal annealing treatments were carried out on tempered and laser hardened 17-4PH steel after shot peening with different temperatures from 300 °C to 600 °C. The results showed that the residual stresses were relaxed in the whole deformation layer especially under higher temperature. The maximum rates of stress relaxation took place at the initial stage of annealing process in all conditions. The relaxation process during isothermal annealing could be described by Zener-Wert-Avrami function. The thermal stability of residual stress in tempered 17-4PH was higher than that in laser hardened 17-4PH as well as that in α-iron, which was due to the pinning effects of ɛ-Cu precipitates on the dislocation movement. As massive ɛ-Cu precipitates formed in the temperature about 480 °C, the activation enthalpies for stress relaxation in laser hardened 17-4PH were the same as that in tempered 17-4PH in the conditions of isothermal annealing temperatures of 500 °C and 600 °C.

  14. Investigation of microstructures and residual stresses in laser peened Incoloy 800H weldments

    NASA Astrophysics Data System (ADS)

    Chen, Xizhang; Wang, Jingjun; Fang, Yuanyuan; Madigan, Bruce; Xu, Guifang; Zhou, Jianzhong

    2014-04-01

    Laser Shock Peening (LSP) is an advanced surface enhancement technique to improve the mechanical properties of engineering materials. In the present study, LSP was performed on Incoloy 800H laser weldments. The microstructure and residual stress, two key factors for application of weldments, were investigated via optical and transmission electron microscopy and crystallographic and residual stress X-ray diffraction analysis. Micro-hardness tests were also used to evaluate mechanical properties. Results show that significant grain refinement occurs in the LSP-treated zone where original lath structures are refined to equiaxed grains, and dislocation density increases significantly. Because of the high strain rates produced by LSP, grain deformation by slip is limited, and therefore deformation by grain twinning occurs. The micro-hardness of weld joint increased after LSP with a hardened depth of about 1.2 mm. LSP processed welded joints exhibited high compressive residual stress, and the residual stress distribution was uniform. It is shown that LSP is an effective way to refine microstructure, increase strength and rebalance residual stress which will improve fatigue life and corrosion cracking resistance of Incoloy 800H weldments.

  15. Effect of Shot Peening on Surface Chracteristics of Carbon Steel with Different Heat Treatments

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori; Yakura, Ryota

    2011-01-01

    The shot peening process is one of the surface treatments. The peening effects are characterized by the fact that the surface layer undergoes large plastic deformation due to the collision of shots. This action imparts compressive residual stress on the surface, thus improving the fatigue life of the component. Therefore, this process has been utilized in order to improve the performance of engineering components. Researchers have been found a number of new phenomena in the shot peening process. It is well known that the peening effects are greatly influenced by the processing history or the thermal history of material. The hardness near the surface of the deformed material or heat treated material was often decreased by shot peening. Presently, little is known about the relation between hardness of the shot peened surface and the processing history of materials. In the present study, the effects of shot peening conditions on the surface characteristics of medium carbon steels with different heat treatments were investigated. In the experiment, the shot peening process was performed with an air-type machine using cast steel balls. Air pressure is in the range from 0.4 to 0.8 MPa and coverage is from 200 to 2000%. The workpiece was used the commercial medium carbon steel JIS-S45C. These are annealed at 900° C for 7.2 ks and quenched and tempered from 850° C in oil. Hardness, surface roughness, and compressive residual stress in the peened workpieces were measured. When the tempered workpiece was shot peened, the hardness of the surface was considerably lowered. The hardness distribution shows work softening near the surface. This amount increases with increasing coverage. This is due to the influence of processing heat generated by the plastic deformation during shot peening. The maximum residual stress appears about 840 MPa at about 0.180 mm in depth from the surface. It was found that the difference of the thermal history of the workpiece influences the hardness

  16. Development and applications of laser peening without coating as a surface enhancement technology

    NASA Astrophysics Data System (ADS)

    Sano, Yuji; Mukai, Naruhiko; Yoda, Masaki; Uehara, Takuya; Chida, Itaru; Obata, Minoru

    2006-09-01

    Laser peening without coating (LPwC) is an innovative surface enhancement technology to mitigate fatigue and stress corrosion of metallic materials by imparting a compressive residual stress. Toshiba has established a process without coating, whereas the coating is inevitably required in conventional process of laser peening to protect the surface from melting. Since the energy of laser pulses in LPwC is significantly small compared to that in the conventional process, a commercially available Nd:YAG laser can be used, and moreover, an optical fiber can be utilized to deliver the laser pulses. Compressive residual stress nearly equal to the yield strength of the materials was introduced on the surface after LPwC. The depth of the compressive residual stress reaches 1 mm or more from the surface. High-cycle fatigue tests proved that LPwC significantly prolonged the fatigue lives despite the increase in surface roughness due to ablative interaction of laser pulses with material surface. Accelerating stress corrosion cracking (SCC) tests showed that LPwC completely prevents SCC of sensitized austenitic stainless steels, nickel-base alloys and their weld metals. LPwC has been used since 1999 to prevent SCC of core shrouds or nozzle welds of ten nuclear power reactors of both boiling water reactor (BWR) and pressurized water reactor (PWR) types, already covering nearly one fifth of the existing nuclear power plants (NPPs) in Japan.

  17. Structural and mechanical modifications induced on Zr-based bulk metallic glass by laser shock peening

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2016-12-01

    In this study, surface modification of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass (BMG) has been studied in an effort to improve the mechanical properties by laser shock peening (LSP) treatment. The phase structure, mechanical properties, and microstructural evolution of the as-cast and LSP treated specimens were systematically investigated. It was found that the vit1 BMG still consisted of fully amorphous structure after LSP treatment. Measurements of the heat relaxation indicate that a large amount of free volume is introduced into vit1 BMG during LSP process. LSP treatment causes a decrease of hardness attributable to generation of free volume. The plastic deformation ability of vit1 BMG was investigated under three-point bending conditions. The results demonstrate that the plastic strain of LSP treated specimen is 1.83 times as large as that of the as-cast specimen. The effect of LSP technology on the hardness and plastic deformation ability of vit1 BMG is discussed on the basis of free volume theory. The high dense shear bands on the side surface, the increase of striations and critical shear displacement on the tensile fracture region, and more uniform dimples structure on the compressive fracture region also demonstrate that the plasticity of vit1 BMG can be enhanced by LSP.

  18. Numerical Research on the Effect of Boundary Constraint in Shot Peen Forming

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Tong, Xin; Li, Yan; Yang, Mingshun; Gao, Guoqiang

    2017-06-01

    Shot peen forming is widely used in aerospace industry to form the thin components with complex contour by introducing compressive stresses. The compressive stresses are hypothetically introduced into a perfectly constrained target in conventional researches. However, the desired curvatures are obtained incrementally in actual forming process. In this paper, a stepping numerical model is proposed to study the effect of boundary constraints on the peening stresses and resulting curvatures. First, axisymmetric simulations are carried out to determine optimal mesh sizes. Then, simulations with a three-dimensional target subjected to 65 shot impacts step by step are carried out with applying different intermittently released boundary constraints. It is found that the boundary constraints can significantly influence the evolutions of peening stress and curvature. Finally, comparison of numerical and experimental results shows that actually obtained peen forming curvatures lie between the numerical results with perfectly constraints and that with relatively loose constrains.

  19. Numerical Research on the Effect of Boundary Constraint in Shot Peen Forming

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Tong, Xin; Li, Yan; Yang, Mingshun; Gao, Guoqiang

    2017-08-01

    Shot peen forming is widely used in aerospace industry to form the thin components with complex contour by introducing compressive stresses. The compressive stresses are hypothetically introduced into a perfectly constrained target in conventional researches. However, the desired curvatures are obtained incrementally in actual forming process. In this paper, a stepping numerical model is proposed to study the effect of boundary constraints on the peening stresses and resulting curvatures. First, axisymmetric simulations are carried out to determine optimal mesh sizes. Then, simulations with a three-dimensional target subjected to 65 shot impacts step by step are carried out with applying different intermittently released boundary constraints. It is found that the boundary constraints can significantly influence the evolutions of peening stress and curvature. Finally, comparison of numerical and experimental results shows that actually obtained peen forming curvatures lie between the numerical results with perfectly constraints and that with relatively loose constrains.

  20. Effect of shot peening on the oxidation behavior of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Karaoglanli, Abdullah Cahit; Doleker, Kadir Mert; Demirel, Bilal; Turk, Ahmet; Varol, Remzi

    2015-11-01

    A conventional thermal barrier coating (TBC) system is made up of a multilayered coating system that comprises a metallic bond coat including oxidation-resistant MCrAlY and a thermally insulating ceramic top coat including yttria stabilized zirconia (YSZ). In this study, in order to improve the oxidation behavior in conventionally produced TBC systems, shot peening process is applied for modification of surface layer structure of atmospheric plasma spray (APS) bond coats. The oxidation behavior of TBCs, produced by the APS process and subjected to shot peening, was investigated. Oxidation tests were performed under isothermal conditions at 1000 °C for different time periods. The coatings produced by the APS process include high porosity and oxide content due to atmospheric production conditions as well as exposure to very high temperature. In this study, the coatings, produced by the APS process, subsequently subjected to shot-peening, were compared with the ones which were not shot peened. Following the application of the shot peening process, a dense structure is obtained due to the plastic deformation effect in the metallic bond coating structure at a certain distance from the surface. To this end, the effects of the shot-peening on the high temperature oxidation behavior of the coatings are investigated and evaluated.

  1. High-Throughput Laser Peening of Metals Using a High-Average-Power Nd: Glass Laser System

    SciTech Connect

    Dane, C.B.; Hackel, L.A.; Halpin, J.; Daly, J.; Harrisson, J.; Harris, J.

    1999-11-01

    Laser shot peening, a surface treatment for metals, is known to induce residual compressive stresses to depths of over 1 mm providing improved component resistance to various forms of failure. Recent information also suggests that thermal relaxation of the laser induced stress is significantly less than that experienced by other forms of surface stressing that involve significantly higher levels of cold work. We have developed a unique solid state laser technology employing Nd:glass amplifier slabs and SBS phase conjugation that enables this process to move into high throughput production processing.

  2. Improving tribological performance of gray cast iron by laser peening in dynamic strain aging temperature regime

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Mei, Yufen; Huang, Shu; Sheng, Jie; Zhu, Weili

    2015-09-01

    A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400°C with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method.

  3. Enhanced plasticity of bulk metallic glass in different aspect ratios via laser shock peening with multiple impacts

    NASA Astrophysics Data System (ADS)

    Fu, Jie; Zhu, Yunhu; Zheng, Chao; Liu, Ren; Ji, Zhong

    2016-09-01

    In this study laser shock peening (LSP) with multiple laser impacts was used to improve the mechanical properties especially the plasticity of Zr35Ti30Cu8.25Be26.75 bulk metallic glass (BMG) pillars in two aspect ratios (1:1 and 2:1). It was found that, with increasing laser impacts up to 5, the compression plastic strain of BMG pillar with aspect ratio of 1:1 increased from 0 to 1.48% and the compression strength increased significantly from 1569 MPa to 1721 MPa. With further laser impacts beyond 5, the changes in the plasticity and the compression strength were observed to be insignificant. Considering the effect of sample geometry at the same laser impacts, it could be concluded that the BMG pillars with smaller aspect ratio of 1:1 had better mechanical properties than that of the lager BMG pillars with aspect ratio of 2:1. Besides, the elastic strain limit of BMG pillars with LSP was not only independent of the laser impacts, but also irrelevant to the aspect ratio. At last, we discussed the reason for the increase of plasticity in view of the creation of excess free volume during LSP.

  4. Laser Peening--Strengthening Metals to Improve Fatigue Lifetime and Retard Stress-Induced Corrosion Cracking in Gears, Bolts and Cutter

    SciTech Connect

    Hackel, L A; Chen, H-L

    2003-08-20

    Laser peening is an emerging modern process that impresses a compressive stress into the surfaces of metals. Treatment can reduce the rate of fatigue cracking and stress-corrosion-cracking in metals (such as gears, bolts and cutters) needed for tunnel boring and other construction & mining applications. Laser peening could also be used to form metals or alloys into a precise shape without yielding and leaving both sulfates in a crack resistant compressive state.

  5. Experimental and Numerical Study of Needle Peening Effects in Aluminium Alloy 2024-T3 Sheets

    NASA Astrophysics Data System (ADS)

    Mendez Romero, Julio Alberto

    Peening of metallic components is an effective treatment used in aerospace and automotive applications to improve fatigue properties or to blend and repair localized damage. This process is typically carried out using metallic airborne media, called shot. However, different processes make use of different media, such is the case of hard, pneumatically powered needles of needle peening equipment. In order to obtain a better understanding of the effects of needle peening in the same context as shot peening, this research work had as an objective to study in detail the behavior of the needle peening equipment in order to characterize the process, design an experimental campaign to measure the effects of needle peening on AA2024-T3 and to develop and validate a Finite Element (FE) model capable of replicating the results of needle peening. The needle peening equipment prototype, called SPIKERRTM, was developed by Shockform Aeronautique Inc. The equipment was characterized by utilizing high-speed camera recording in order to study its behaviour by varying the operating pressure. The obtained collection of images was ran through a newly developed digital image algorithm, so as to quantify the needles' velocity and frequency. The impact velocity and impact frequency were determined for different equipment operating parameters. It was concluded that both the average impact velocity and the impact frequency increase as the pressure becomes larger. Behaviour anomalies among the different needles, such as frequency and velocity variations, were brought to light; these conclusions could be of interest to the manufacturer. Ideally, all of the needles should behave as similarly as possible so as to produce a more uniform process. The response to needle peening of AA2024-T3 in 1.6 mm thick sheet form was studied by needle peening test specimens with dimensions of an Almen strips using the SPIKERRTM. AA2024-T3 was selected since it was extensively studied at Ecole Polytechnique de

  6. Mechanism of fatigue performance enhancement in a laser sintered superhard nanoparticles reinforced nanocomposite followed by laser shock peening

    NASA Astrophysics Data System (ADS)

    Lin, Dong; Ye, Chang; Liao, Yiliang; Suslov, Sergey; Liu, Richard; Cheng, Gary J.

    2013-04-01

    This study investigates the fundamental mechanism of fatigue performance enhancement during a novel hybrid manufacturing process, which combines laser sintering of superhard nanoparticles integrated nanocomposites and laser shock peening (LSP). Through laser sintering, TiN nanoparticles are integrated uniformly into iron matrix to form a nanocomposite layer near the surface of AISI4140 steel. LSP is then performed on the nanocomposite layer to generate interaction between nanoparticles and shock waves. The fundamental mechanism of fatigue performance enhancement is discussed in this paper. During laser shock interaction with the nanocomposites, the existence of nanoparticles increases the dislocation density and also helps to pin the dislocation movement. As a result, both dislocation density and residual stress are stabilized, which is beneficial for fatigue performance.

  7. Effect of shot peening on hydrogen embrittlement of high strength steel

    NASA Astrophysics Data System (ADS)

    Li, Xin-feng; Zhang, Jin; Ma, Ming-ming; Song, Xiao-long

    2016-06-01

    The effect of shot peening (SP) on hydrogen embrittlement of high strength steel was investigated by electrochemical hydrogen charging, slow strain rate tensile tests, and hydrogen permeation tests. Microstructure observation, microhardness, and X-ray diffraction residual stress studies were also conducted on the steel. The results show that the shot peening specimens exhibit a higher resistance to hydrogen embrittlement in comparison with the no shot peening (NSP) specimens under the same hydrogen-charging current density. In addition, SP treatment sharply decreases the apparent hydrogen diffusivity and increases the subsurface hydrogen concentration. These findings are attributed to the changes in microstructure and compressive residual stress in the surface layer by SP. Scanning electron microscope fractographs reveal that the fracture surface of the NSP specimen exhibits the intergranular and quasi-cleavage mixed fracture modes, whereas the SP specimen shows only the quasi-cleavage fractures under the same hydrogen charging conditions, implying that the SP treatment delays the onset of intergranular fracture.

  8. Relative Defect Density Measurements of Laser Shock Peened 316L Stainless Steel Using Positron Annihilation Spectroscopy

    SciTech Connect

    Marcus A. Gagliardi; Bulent H. Sencer; A. W. Hunt; Stuart A. Maloy; George T. Gray III

    2011-12-01

    The surface of an annealed 316L stainless steel coupon was laser shock peened and Vickers hardness measurements were subsequently taken of its surface. This Vickers hardness data was compared with measurements taken using the technique of positron annihilation Doppler broadening spectroscopy. When compared, a correlation was found between the Vickers hardness data measurements and those made using Doppler broadening spectroscopy. Although materials with a high defect density can cause the S-parameter measurements to saturate, variations in the Sparameter measurements suggest that through further research the Doppler broadening technique could be used as a viable alternative to measuring a material's hardness. In turn, this technique, could be useful in industrial settings where surface hardness and surface defects are used to predict lifetime of components.

  9. Stress Corrosion Cracking Behavior of Peened Friction Stir Welded 2195 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Hatamleh, Omar; Singh, Preet M.; Garmestani, Hamid

    2009-06-01

    The surface treatment techniques of laser and shot peening were used to investigate their effect on stress corrosion cracking (SCC) in friction stir welded (FSW) 2195 aluminum alloy joints. The investigation consisted of two parts: the first part explored the peening effects on slow strain rate testing (SSRT) in a 3.5% NaCl solution, while the second part investigated the effects of peening on corrosion while submerged in a 3.5% NaCl solution with no external loads applied. For the SSRT, the laser-peened samples demonstrated superior properties to the other samples, but no signs of corrosion pitting or SCC were evident on any of the samples. For the second part of the study, the FSW plates were inspected periodically for signs of corrosion. After 60 days there were signs of corrosion pitting, but no stress corrosion cracking was noticed in any of the peened and unpeened samples.

  10. Shot and bead peening control

    NASA Astrophysics Data System (ADS)

    John, R.

    The merits of the peening effect in improving the fatigue resistance of ferrous and non-ferrous media is discussed. The machines that perform the peening task are also discussed, including the rotating-wheel plant, pressure-type air-assisted peening machines, and suction systems. The peening process itself is discussed briefly, and an outline of the parameters that affect the product specification is presented. The merits of the Almen test strip as a measure of correct treatment are evaluated, and the two types of devices are discussed for monitoring the flow of peening media. The two types of feed control devices (one for ferrous media and the other for non-ferrous media) for accurately controlling the feed of peening media are also briefly examined.

  11. Shock pressure induced by glass-confined laser shock peening: Experiments, modeling and simulation

    SciTech Connect

    Wu Xianqian; Song Hongwei; Wei Yanpeng; Wang Xi; Huang Chenguang; Duan Zhuping

    2011-09-01

    The shock pressure generated by the glass confined regime in laser shock peening and its attenuation in the target material are investigated. First, the particle velocity of the target back free surface induced by laser generated shock pressure of this regime is measured using a photonic Doppler velocimetry system. The temporal profile of the particle velocity at the back free surface, where the elastic precursor is captured, manifests a powerful diagnostic capability of this newly developed photonic Doppler velocimetry system for tracking the velocity on short time scales in shock-wave experiments. Second, a coupling pressure analytical model, in which the material constitutive models of confined layers and target material are considered, is proposed to predict the plasma pressure profile at the surface of target. Furthermore, using the predicted shock pressure profile as the input condition, the dynamic response of the target under the shock pressure is simulated by LS-DYNA. The simulated back free surface velocity profile agrees well with that measured by the photonic Doppler velocimetry system. Finally, the attenuation behavior of stress waves and particle velocities in the depth of the target is analyzed, and it indicates an exponential decay. The corresponding empirical formulas for the attenuation behavior are given based on the numerical results.

  12. Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Ning, Chengyi; Huang, Yihui; Cao, Zhenya; Chen, Xiaoxiao; Zhang, Wenwu

    2017-03-01

    As 7075 aluminum alloy is widely used in a humid environment, in order to enhance its abrasion resistance and electrochemical corrosion resistance, the paper studied the effect of laser shock peening on abrasion resistance in artificial seawater and corrosion resistance in 3.5% NaCl solution of 7075 aluminum alloy. Result shows that when specimens were treated once and twice with 7.17 GW/cm2 the abrasion loss would be reduced by 43.75% and 46.09% compare to untreated respectively, and the corrosion rate of 7075 aluminum alloy could be reduced as much as 50.32% by LSP treatment with 7.17 GW/cm2. What's more, the effects on the microhardness, microstructure and residual stress with different LSP impacts and power density were investigated to find out strengthening mechanism of laser shock peening, which were observed and measured by microhardness tester, optical microscope and X-ray diffraction (XRD) residual stress tester. In the entire laboratory tests, it is considered that LSP is a practical option to improve abrasion resistance in seawater and corrosion resistance of 7075 aluminum alloy.

  13. Effect of Shot Peening on the High-Cycle Fatigue Behavior of High-Strength Cast Iron with Nodular Graphite

    NASA Astrophysics Data System (ADS)

    Benam, Amir Sadighzadeh

    2017-01-01

    The effect of shot peening treatment on high-cycle fatigue of high-strength cast iron with globular graphite is studied. The fatigue curves are plotted, the microhardness and the surface roughness are measured. An analysis of fracture surfaces is performed, and the thickness of the hardened layer is determined. The shot peening is shown to affect favorably the fatigue resistance of the iron but to worsen the condition of the surface.

  14. The effects of shot-peening residual stresses on the fracture and crack growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1973-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that the shot-peening residual stresses influence the fracture and crack-growth properties of the material. The analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions are presented.

  15. Effects of shot-peening residual stresses on the fracture and crack-growth properties of D6AC steel

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1974-01-01

    The fracture strength and cyclic crack-growth properties of surface-flawed, shot-peened D6AC steel plate were investigated. For short crack lengths (up to 1.5 mm) simple linear elastic fracture mechanics - based only on applied loading - did not predict the fracture strengths. Also, Paris' Law for cyclic crack growth did not correlate the crack-growth behavior. To investigate the effect of shot-peening, additional fracture and crack-growth tests were performed on material which was precompressed to remove the residual stresses left by the shot-peening. Both tests and analysis show that shot-peening residual stresses influence the fracture and crack-growth properties of the material. This report presents the analytical method of compensating for residual stresses and the fracture and cyclic crack-growth test results and predictions.

  16. Evolution of residual stress, free volume, and hardness in the laser shock peened Ti-based metallic glass

    SciTech Connect

    Wang, Liang; Wang, Lu; Nie, Zhihua; Ren, Yang; Xue, Yunfei; Zhu, Ronghua; Zhang, Haifeng; Fu, Huameng

    2016-12-05

    Laser shock peening (LSP) with different cycles was performed on the Ti-based bulk metallic glasses (BMGs). The sub-surface residual stress of the LSPed specimens was measured by high-energy X-ray diffraction (HEXRD) and the near-surface residual stress was measured by scanning electron microscope/focused ion beam (SEM/FIB) instrument. The sub-surface residual stress in the LSP impact direction (about-170MPa) is much lower than that perpendicular to the impact direction (about -350 MPa), exhibiting anisotropy. The depth of the compressive stress zone increases from 400 mu m to 500 mu m with increasing LSP cycles. The highest near-surface residual stress is about -750 MPa. LSP caused the free volume to increase and the maximum increase appeared after the first LSP process. Compared with the hardness (567 +/- 7 HV) of the as-cast BMG, the hardness (590 +/- 9 HV) on the shocked surface shows a hardening effect due to the hardening mechanism of compressive residual stress; and the hardness (420 +/- 9 HV) on the longitudinal section shows a softening effect due to the softening mechanism of free volume.

  17. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime

    PubMed Central

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-01-01

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin2ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement. PMID:28773920

  18. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.

    PubMed

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-09-26

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin²ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement.

  19. Effects of creep damage, shot peening, and case hardening on magnetic Barkhausen noise analysis

    SciTech Connect

    Sipahi, L.B. Iowa State Univ., Ames, IA . Inst. for Physical Research and Technology)

    1994-11-01

    The micromagnetic emissions, commonly known as Barkhausen noise, are very sensitive to variations in the microstructure and sub-surface stress states of magnetic materials. Steel pipelines at power plants often have creep damage due to microstructural changes in their service life. Early detection of this damage will prevent costly failures. There is also an increasing demand to characterize the sub-surface stress states in structural materials such as high strength materials used in landing gear components in the aerospace industry. Shot peening is used to improve the fatigue strength of these components by the introduction of residual compressive stresses to the surface. Because the magnitude of Barkhausen noise varies with the magnitude of compressive stress, these noise measurements can be used for in-situ evaluation of the effectiveness of the shot peening process. Furthermore, surface modification such as case hardened magnetic samples can be easily observed using micromagnetic Barkhausen noise (MBE) to determine further modification needs.

  20. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Dong, Ziqiang; Liu, Zhe; Li, Ming; Luo, Jing-Li; Chen, Weixing; Zheng, Wenyue; Guzonas, Dave

    2015-02-01

    Ferritic-Martensitic (F/M) steels are important candidate alloys to be used in the next generation (Generation-IV) SCWRs. In this work, two F/M steels with the same Cr content of around 12 wt.% and varied Si content from 0.6 wt.% to 2.2 wt.% were evaluated in supercritical water (SCW) at 500 °C and 25 MPa for up to 1000 h. The effect of ultrasonic shot peening on the oxidation behavior of these F/M steels have been investigated. The results showed that the oxidation was affected by the Si content as well as the surface modification. The F/M steel with low Si concentration exhibited higher corrosion resistance than that of the alloy with high Si content. Shot peening, which could modify the microstructure at the surface, showed significantly beneficial effect to improving the oxidation resistance. A thin, uniform oxide layer formed on the peened sample could be attributed to the enhanced diffusion of Cr induced by the surface modification.

  1. Finite element analysis of residual stress field induced by laser shock peening

    NASA Astrophysics Data System (ADS)

    Nam, Taeksun

    The finite element method is applied to analyze the laser shock peening process (LSP) for thick parts (considered as a semi-infinite half space) and thin parts (finite thickness domain). The technology of LSP is used to enhance mechanical properties such as fatigue life, fretting fatigue life, resistance to stress corrosion cracking and surface hardness. These enhanced material properties are directly related to the magnitude and distribution of the plastic strain and associated residual stresses due to shockwaves induced by LSP. To reduce the process development cost and time, the prediction of residual stress field is very useful to provide a base design guideline for selecting appropriate LSP conditions for evaluation. An axisymmetric Finite Element Analysis (FEA) code, named SHOCKWAVE, is developed in order to complement shortcomings of applying commercial FEA codes at extremely high strain rates (as high as 104 -106/sec). The rate dependent plasticity theory is applied along with the small strain assumption. The solution process consists of an explicit dynamic loading analysis for shock loading stage and a static unloading analysis (implicit) to determine the equilibrium state for the residual stress and plastic strain fields. Some of the highlights explored in this investigation entail: (i) overstress power law models for the rate dependence, (ii) various hardening models, (iii) a second-order accurate implicit algorithm for the plastic consistency condition, (iv) an adaptively expanding domain scheme to trace the stress-free boundary condition in a simple way, (v) a special uniform meshing scheme to avoid the usual assembly process and repeated calculations for the stiffness matrix, (vi) mesh sensitivity study, (vii) comparisons with measured data provided and supported by the LSP Technologies, Inc. The dynamic behavior of Ti-6Al-4V at high strain rates can be investigated by using the split torsional Hopkinson bar experiment and by a longitudinal shock

  2. A study on single-crystal alloy surface's structure and performance of laser shock peening without absorbent coating

    NASA Astrophysics Data System (ADS)

    Xin, Wang; Zhihui, Tang; Chenguang, Liu; ChunZhi, Li; Zhenye, Zhao

    2016-11-01

    in order to determine how the laser shock peening without absorbent coating (LSPwC) affects Ni-base single-crystal superalloy, DD11, the surface structure and hardness gradient of single-crystal alloy after LSPwC of two pulse energies. The result shows that the width of linear structure is in direct proportion to the laser impact energy by observing the "linear" deformed structure through the scanning electron microscope, and the linear structure's length increases when the pulse energy increases from 3J to 5J; the observation by the transmission electron microscope at ×10 000 show s that the linear structure is actually the "line cluster" formed by more than one parallel "fine lines", and the fine lines are along the the [111] direction; the observation under a high resolution shows that fine lines are the single-crystal structure, the twinning plane is (1-11), and the twinning direction is [1-1-2].

  3. Fatigue Crack Growth in Peened Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Hatamleh, Omar

    2008-01-01

    Friction stir welding induces residual stresses that accelerates fatigue crack growth in the weld nugget. Shot peening over the weld had little effect on growth rate. Laser peening over the weld retarded the growth rate: Final crack growth rate was comparable to the base, un-welded material. Crack tunneling evident from residual compressive stresses. 2195-T8 fracture surfaces were highly textured. Texturing makes comparisons difficult as the material system is affecting the data as much as the processing. Material usage becoming more common in space applications requiring additional work to develop useful datasets for damage tolerance analyses.

  4. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.

    2016-12-01

    The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.

  5. Target isolation system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  6. A study of Laser Shock Peening on Fatigue behavior of IN718Plus Superalloy: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Chaswal, Vibhor

    Laser shock peening (LSP) for improving fatigue life of IN718Plus superalloy is investigated. Fatigue geometry and LSP parameters were optimized using finite element method (FEM). Residual stress distributions estimated by FEM were validated using Synchrotron XRD and line focus lab XRD, and correlated with microhardness. An eigenstrain analysis of LSP induced edge deflections (measured with optical interferometry) was also conducted. Transmission electron microscopy (TEM) of single-spot LSP coupons shows sudden increase in dislocation density under LSP treated region. Total life fatigue was conducted at R=0.1 at 298K and 923K, with and without LSP. S-N curve endurance limit increases at both temperatures with FEM optimized LSP samples. Based on TEM of fatigue microstructure and LSP coupons, a mechanistic description of observed fatigue improvement is attempted. Often need arises to weld components, and weld heat-affected-zone reaches near-solvus temperatures. To simulate this treatment, sub-solvus hot-rolled IN718Plus is aged at 923K. We observe precipitation of thin eta-Ni3(Al, Ti) plates after 1000 hours, making the material susceptible to cracks, and lowering fatigue life. Effect of LSP on fatigue crack growth (FCG) is studied following ASTM guidelines on M(T) geometry at R=0.1. Acceleration in FCG rate with LSP is observed for this geometry and LSP condition. Prior FEM optimization was not conducted for FCG tests, and may account for lower FCG resistance after LSP. FCG results were corroborated with COD compliance based analysis. Crack measurements were done using potential drop method, and crack closure was analyzed. Effect of LSP on overload FCG was investigated by single-cycle 100% overload followed by single-spot LSP on the crack-tip plastic zone. Crack retardation occurs after application of overload+LSP. Effective contribution of overload+LSP to crack retardation is estimated. Fractographic analysis of LSP treated fatigue samples suggests sub

  7. Effectiveness of Shot Peening in Suppressing Fatigue Cracking at Non-Metallic Inclusions in Udimet(trademark) 720

    NASA Technical Reports Server (NTRS)

    Barrie, Robert L.; Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Prescenzi, Anthony; Biles, Tiffany; Bonacuse, Peter J.

    2005-01-01

    The fatigue lives of modern powder metallurgy disk alloys can be reduced by over an order of magnitude by surface cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens at 427 and 650 C in peened and unpeened conditions. Analyses were performed to compare the low cycle fatigue lives and failure initiation sites as a function of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. The inclusions could reduce fatigue life by up to 100X. Large inclusions had the greatest effect on life in tests at low strain ranges and high strain ratios. Shot peening can be used to improve life in these conditions by reducing the most severe effects of inclusions.

  8. Effectiveness of Shot Peening In Suppressing Fatigue Cracking At Non-Metallic Inclusions In Udimet(Registered Trademark)720

    NASA Technical Reports Server (NTRS)

    Barrie, Robert L.; Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Prescenzi, Anthony; Biles, T.; Bonacuse, P. J.

    2006-01-01

    The fatigue lives of modern powder metallurgy disk alloys can be reduced over an order of magnitude by cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens with and without shot peened test sections at 427 C and 650 C. The low cycle fatigue lives and failure initiation sites varied as functions of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with the introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. These inclusions reduced fatigue life by up to 100X, when compared to lives of material without inclusions residing at specimen surface. Large inclusions produced the greatest reductions in life for tests at low strain ranges and high strain ratios. Shot peening improved life in many cases by reducing the most severe effects of inclusions.

  9. Overall evaluation of the effect of residual stress induced by shot peening in the improvement of fatigue fracture resistance for metallic materials

    NASA Astrophysics Data System (ADS)

    Wang, Renzhi; Ru, Jilai

    2015-03-01

    Before 1980s, the circular suspension spring in automobile subjected to torsion fatigue load, under the cyclic normal tensile stresses, the majority of fatigue fracture occurred was in normal tensile fracture mode(NTFM) and the fracture surface was under 45° diagonal. Because there exists the interaction between the residual stresses induced by shot peening and the applied cyclic normal tensile stresses in NTFM, which represents as "stress strengthening mechanism", shot peening technology could be used for improving the fatigue fracture resistance(FFR) of springs. However, since 1990s up to date, in addition to regular NTFM, the fatigue fractures occurred of peened springs from time to time are in longitudinal shear fracture mode(LSFM) or transverse shear fracture mode(TSFM) with the increase of applied cyclic shear stresses, which leads to a remarkable decrease of FFR. However, LSFM/TSFM can be avoided effectively by means of shot peening treatment again on the peened springs. The phenomena have been rarely happened before. At present there are few literatures concerning this problem. Based upon the results of force analysis of a spring, there is no interaction between the residual stresses by shot peening and the applied cyclic shear stresses in shear fracture. This means that the effect of "stress strengthening mechanism" for improving the FFR of LSFM/TSFM is disappeared basically. During shot peening, however, both of residual stress and cyclic plastic deformed microstructure are induced synchronously like "twins" in the surface layer of a spring. It has been found for the first time by means of force analysis and experimental results that the modified microstructure in the "twins" as a "structure strengthening mechanism" can improve the FFR of LSFM/TSFM. At the same time, it is also shown that the optimum technology of shot peening strengthening must have both "stress strengthening mechanism" and "structure strengthening mechanism" simultaneously so that the

  10. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  11. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: Effect of machine hammer peening

    SciTech Connect

    2013-12-01

    The effect of surface modifications induced by machine hammer peening on pitting corrosion behavior of nickel-base alloy 718 in a 3.5 wt.% NaCl solution is investigated. Severe work hardening and high compressive residual stress are generated with surface smoothing and microstructure evolution in terms of formation of nano-grains and nano-twins in the near surface region after machine hammer peening. Electrochemical tests results show that machine hammer peening has a beneficial influence on the corrosion resistance, indicated by a significant increase of the critical pitting potential (+134 mV) accompanied with lower corrosion current density and higher polarization resistance.

  12. Development of new duplex treatments on 100Cr6steel combining Thermochemical Treatments, Laser Shock Peening and Physical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Osés, J.; Fuentes, G. G.; Santo Domingo, S.; Miguel, I.; Gimeno, S.; Carreras, L.; Peyre, P.; Gorny, C.

    2017-05-01

    100Cr6 steel (AISI 52100) is one of the most used steel grades in the manufacturing of through hardening bearings mainly due to its properties: controlled impurities during steel making process, high hardenability and well known mechanical properties such as wear and fatigue resistance on clean environments. These characteristics play an important role on the performance of a bearing together with the bearing design, loads and environment. However, there is an increasing set of demanding applications where the above mentioned steel does not fulfil the required needs and thus, bearing manufacturers continuously work on the development of technologies to improve the bearing performance. Nowadays thermochemical treatments (TCT), such as carbonitriding are being applied to this steel in order to enhance the performance of such pieces in contaminated environment, where particles can produce defects on the raceway, increasing the onset of defects that eventually lead to premature fail. These treatments induce the formation of carbides and nitrides which are directly related to the enhancement of the wear resistance and also to increasing the amount of Retained Austenite (RA) in the surface which may have a beneficial effect as it delays the crack propagation on subsurface regions, then increasing bearing fatigue life. In this work, different TCTs have been applied to 100Cr6 steel flat samples. Using a tribometer (ball-on-disc configuration) and a grinding machine, surface and in-depth wear resistance measurements have been carried out, obtaining wear resistance profiles that have been correlated with the microstructure, microhardness profiles and RA content. The most promising TCT has been combined either with Laser Shock Peening (LSP) treatments or carbonaceous Physical Vapour Deposition (PVD) coatings with the aim of improving not only the wear resistance but also the CoF of the duplex treated sample. The results obtained on flat samples are promising; the combination

  13. Effect of multiple passes treatment in waterjet peening on fatigue performance

    NASA Astrophysics Data System (ADS)

    Azhari, Azmir; Schindler, Christian; Godard, Claudia; Gibmeier, Jens; Kerscher, Eberhard

    2016-12-01

    The influence of waterjet peening on the residual stresses and fatigue performance of AISI 304 is investigated. The specimen surfaces were treated with multiple jet passes. The fatigue strength was evaluated using an alternating bending fatigue tester. The results of XRD measurements showed that a higher amount of compressive residual stresses is induced in the treated specimens. This strengthening layer is limited within the first 100 μm below the surface, which had been confirmed by micro hardness measurements. Even though the treated specimens showed compressive residual stresses the fatigue limit is lower than that of the untreated specimens. The roughness of the surface and the resulting notch effect seems to be stronger than the positive effect of the hardened layer.

  14. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  15. Structural Technology Evaluation Analysis Program (STEAP). Delivery Order 0025: Laser Peening for Reliable Fatigue Life

    DTIC Science & Technology

    2010-12-01

    6 ]. Shot peening is a cold working process in which the surface of the 4 Approved for public release; distribution unlimited...for the ZA Model Parameter Value σa 945.1961MPa B 246.6467MPa β0 1.1636×10− 6 β1 0.1065 B0 1481.249 MPa εr 0.0538 α0 10− 6 α1 3.1564×10− 4 Figures 15 and...16 show the strain rate dependence curves at different strains for the JC and ZA models. 10 − 6 10 − 4 10 −2 10 0 10 2 10 4 10 6 1000 1100 1200

  16. Effect of shot peening on surface fatigue life of carburized and hardened AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.

    1982-01-01

    Surface fatigue tests were conducted on two groups of AISI 9310 spur gears. Both groups were manufactured with standard ground tooth surfaces, with the second group subjected to an additional shot peening process on the gear tooth flanks. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a gear temperature of 350 K (170 F), a maximum Hertz stress of 1.71 billion N/sq m (248,000 psi), and a speed of 10,000 rpm. The shot peened gears exhibited pitting fatigue lives 1.6 times the life of standard gears without shot peening. Residual stress measurements and analysis indicate that the longer fatigue life is the result of the higher compressive stress produced by the shot peening. The life for the shot peened gear was calculated to be 1.5 times that for the plain gear by using the measured residual stress difference for the standard and shot peened gears. The measured residual stress for the shot peened gears was much higher than that for the standard gears.

  17. Finite element modelling of shot peening and peen forming processes and characterisation of peened AA2024-T351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Gariepy, Alexandre

    incremental nature of peen forming in a computationally efficient manner. The process was therefore simulated as a series of springback analyses. This approach was first validated using data from small-scale experimental trials. The potential effect of sheet orthotropy was then investigated numerically and experimentally. This factor could have a significant influence in industrial applications since peen formed components usually originate from rolled sheets and plates. The orientation of the rolling direction was found to have a significant effect on resulting curvatures for small AA2024-T3 sheets. The experimentally determined orthotropic elastic properties and initial stress state of the samples were input into forming simulations and numerical results correlated well with small-scale experimental data for one of the two sets of peening parameters under study. The modelling methodology was improved further so as to take into account the trajectory of the peening nozzle. This led to a more realistic representation of actual peen forming procedures used for large components, which require moving peening equipment over the surfaces. The peening trajectory and boundary conditions considered in small-scale tests led to complex distributions of radius of curvature and FE simulations correctly predicted the experimentally observed trends. Finally, the potential applications of the novel simulation strategy were demonstrated by simulating peen forming of typical wing skin panels. The modelled components had realistic features such as variable thicknesses and integral stiffeners and were subjected to multiple representative peen forming treatments using different shot types. (Abstract shortened by UMI.)

  18. Effects of WC-17Co Coating Combined with Shot Peening Treatment on Fatigue Behaviors of TC21 Titanium Alloy

    PubMed Central

    Du, Dongxing; Liu, Daoxin; Zhang, Xiaohua; Tang, Jingang; Meng, Baoli

    2016-01-01

    The improvement and mechanism of the fatigue resistance of TC21 high-strength titanium alloy with a high velocity oxygen fuel (HVOF) sprayed WC-17Co coating was investigated. X-ray diffraction (XRD) and the corresponding stress measurement instrument, a surface roughness tester, a micro-hardness tester, and a scanning electron microscope (SEM) were used to determine the properties of the HVOF WC-17Co coating with or without shot peening. The fatigue behavior of the TC21 titanium alloy with or without the WC-17Co coating was determined by using a rotating bending fatigue testing machine. The results revealed that the polished HVOF sprayed WC-17Co coating had almost the same fatigue resistance as the TC21 titanium alloy substrate. This resulted from the polishing-induced residual surface compressive stress and a decrease in the stress concentration on the surface of the coating. Moderate-intensity shot peening of the polished WC-17Co coatings resulted in significant improvement of the fatigue resistance of the alloy. Furthermore, the fatigue life was substantially higher than that of the substrate, owing to the deep distribution of residual stress and high compressive stress induced by shot peening. The improved surface toughness of the coating can effectively delay the initiation of fatigue crack propagation. PMID:28773984

  19. Development of a fracture mechanics/threshold behavior model to assess the effects of competing mechanisms induced by shot peening on cyclic life of a nickel-base superalloy, Rene 88DT

    NASA Astrophysics Data System (ADS)

    Tufft, Marsha Klopmeier

    This research establishes an improved lower-bound predictive method for the cyclic life of shot peened specimens made from a nickel-base superalloy, Rene 88DT. Based on previous work, shot peening is noted to induce the equivalent of fatigue damage, in addition to the beneficial compressive residual stresses. The ability to quantify the relative effects of various shot peening treatments on cyclic life capability provides a basis for more economic use of shot peening, and selection of shot peening parameters to meet design and life requirements, while minimizing production costs. The predictive method developed consists of two major elements: (1) a Fracture Mechanics Model, which accounts for changes in microstructure, residual stress and topography induced by shot peening, and (2) a Threshold Behavior Map which identifies both crack nucleation and crack propagation thresholds. When both thresholds are crossed, life capability can be evaluated using the Fracture Mechanics model developed. When the crack propagation threshold is exceeded but the crack nucleation threshold is not, the FM method produces a conservative lower-bound estimate of life capability. A unique contribution is the characterization of damage induced by peening by an initial flaw size from microstructural observations of slip depth. Observations of crack formation along slip band in a model disk provide reinforcement for defining a flaw size from slip measurements. Supporting research includes: (1) metallurgical and microstructural evaluation of single impact dimples and production peened coupons, (2) instrumented Single Particle Impact Tests, characterizing changes in material response due to variations in impact conditions (particle size, incidence angle, velocity), (3) duplication of 16 peening conditions used in a designed experiment, characterizing slip depth, residual stress profiles, surface roughness and velocity measurements taken during production peening conditions.

  20. A review on the application of peening processes for surface treatment

    NASA Astrophysics Data System (ADS)

    Azhari, A.; Sulaiman, S.; Prasada Rao, A. K.

    2016-02-01

    In today's practice, mechanical surface treatments have been widely applied particularly in the automotive and aerospace industries. It was realized that the failure due to fatigue depends on many factors, and very often it develops from particular surface areas of engineering parts. So, it seems possible to improve the fatigue strength of metallic components by the application of suitable mechanical surface strengthening processes. Peening processes are widely employed in industry for inducing compressive stresses on the metallic surfaces. The present work discusses the basic concepts and their applications of main peening processes namely the shot peening and the laser shock peening. Also, a recently introduced liquid jet peening is discussed.

  1. Dynamic response and residual stress fields of Ti6Al4V alloy under shock wave induced by laser shock peening

    NASA Astrophysics Data System (ADS)

    Sun, Rujian; Li, Liuhe; Zhu, Ying; Zhang, Lixin; Guo, Wei; Peng, Peng; Li, Bo; Guo, Chao; Liu, Lei; Che, Zhigang; Li, Weidong; Sun, Jianfei; Qiao, Hongchao

    2017-09-01

    Laser shock peening (LSP), an innovative surface treatment technique, generates compressive residual stress on the surface of metallic components to improve their fatigue performance, wear resistance and corrosion resistance. To illustrate the dynamic response during LSP and residual stress fields after LSP, this study conducted FEM simulations of LSP in a Ti6Al4V alloy. Results showed that when power density was 7 GW cm-2, a plastic deformation occurred at 10 ns during LSP and increased until the shock pressure decayed below the dynamic yield strength of Ti6Al4V after 60 ns. A maximum tensile region appeared beneath the surface at around 240 ns, forming a compressive-tensile-compressive stress sandwich structure with a thickness of 98, 1020 and 606 μm for each layer. After the model became stabilized, the value of the surface residual compressive stress was 564 MPa at the laser spot center. Higher value of residual stress across the surface and thicker compressive residual stress layers were achieved by increasing laser power density, impact times and spot sizes during LSP. A ‘Residual stress hole’ occurred with a high laser power density of 9 GW cm-2 when laser pulse duration was 10 ns, or with a long laser pulse duration of 20 ns when laser power density was 7 GW cm-2 for Ti6Al4V. This phenomenon occurred because of the permanent reverse plastic deformation generated at laser spot center.

  2. The Effect of Ultrasonic Peening Treatment on Fatigue Performance of Welded Joints

    PubMed Central

    Zhao, Xiaohui; Wang, Mingyi; Zhang, Zhiqiang; Liu, Yu

    2016-01-01

    Ultrasonic peening treatment (UPT) as a method of severe plastic deformation was used to treat cruciform welded joints of Q345 steel. The application of UPT achieves material surface nanocrystallization of the peening zone, reduces stress concentration, and produces residual compressive stresses at the welded toe. Micro-structure, hardness, stress relief, S-N curve, and the fatigue fracture mechanism of cruciform welded joint of Q345 steel, both before and after UPT, were analyzed in detail. The main results show that: stress concentration and residual tensile stress are the main reasons to reduce fatigue strength of cruciform welded joints. The fatigue life of cruciform welded joints is improved for surface hardening, compressive stress, and grain refinement by UPT. Residual compressive stress caused by UPT is released with the increase of fatigue life. A very significant fatigue strength improvement happens when UPT is replenished repeatedly after a certain number of cycles. PMID:28773589

  3. Effect of Fine Particle Peening on Oxidation Resistance of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoichi; Yasutake, Yujiro; Komotori, Jun

    Fine particle peening (FPP) treatment was introduced to improve the oxidation resistance of austenitic stainless steel. After FPP treatment, oxidation tests were performed at 700 and 800 °C for 1, 4 and 12 h in an atmospheric environment. The surface microstructures of the oxidized specimens were observed using optical microscopy, scanning electron microscopy (SEM), glow discharge optical emission spectroscopy (GD-OES), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The amount of oxygen diffused into the FPP-treated specimens was significantly less than that into un-peened specimens. Iron oxides were formed in the un-peened specimens as a result of the oxidation tests. In contrast, a protective chromium oxide layer was created on the FPP-treated surface, because the fine grains and dislocations induced by FPP treatment accelerated the diffusion of chromium during the subsequent oxidation tests. These results indicate that FPP treatment is a very efficient process to improve the atmospheric oxidation resistance of austenitic stainless steel.

  4. Effect of Decarburization on the Residual Stresses Produced by Shot Peening in Automotive Leaf Springs

    NASA Astrophysics Data System (ADS)

    De la Rosa, Claudia E. Flores; Trejo, Martin Herrera; Román, Manuel Castro; López, Eddy Alfaro

    2016-07-01

    The shot peening is used in the leaf springs manufacturing process for producing a compressive residual stress field (CRSF) at and near the surface that improves the fatigue resistance. The resulting CRSF is influenced by the surface ferrite thickness associated with the decarburization. Hence, this work aims to extend the knowledge on the influence of the decarburization on the CRSF for the given shot peening conditions. A study on the laboratory scale was conducted for an SAE 5160 steel grade used in the automotive industry. Next, specimens with different decarburization depths were treated using industrial shot peening, and the resulting CRSF was characterized. The CRSF was found to be influenced by the decarburization depth. It is assumed that the elastic deformation mechanism is predominant at low decarburization depths, followed by a zone in which both the elastic and plastic deformation have competing mechanisms that contribute to the CRSF, and at higher decarburization depths, the dominant mechanism is plastic deformation. The values for σsrs and σmcrs decrease as the decarburized depth increases, and suitable CRSFs were obtained below a decarburization depth of 120 µm in industrial leaves. Furthermore, the prediction based on expressions correlating the measured variables was good in these leaves.

  5. An investigation of the properties of conventional and severe shot peened low alloy steel

    NASA Astrophysics Data System (ADS)

    Quang Trung, Pham; Butler, David Lee; Win Khun, Nay

    2017-07-01

    The effects of the conventional shot peening and severe shot peening process on the mechanical and tribological properties of shot peened AISI 4340 high strength steel were systematically investigated. Compared with the conventional shot peened sample, the ultrafine grain surface layer with a depth of about 20 µm generated by the severe shot peening process can enhance the hardness and wear resistance of the treated material. However, deeper dimples generated by the high media velocity in the severe shot peening process resulted in a higher surface roughness, which is considered as a side effect of this method reducing the fatigue life of the material. Applying a smaller shot size with an appropriate intensity can be used to peen the severe shot peened samples to not only reduce the surface roughness and friction coefficient but also improve the wear resistance for these samples. This work was presented in the shot peening section during ‘The 30th International Conference on Surface Modification Technologies, 2016, Milan, Italy’ (SMT30, ID 61, entitled ‘Comparison of the effects of conventional shot peening and severe shot peening processes on the mechanical and tribological properties of shot peened AISI 4340’) and the authors were encouraged to submit a manuscript to the Materials Research Express journal after adding some nessesary information.

  6. The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes

    NASA Astrophysics Data System (ADS)

    Daavari, Morteza; Vanini, Seyed Ali Sadough

    2015-09-01

    Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.

  7. High Cycle Fatigue Behavior of Shot-Peened Steels

    NASA Astrophysics Data System (ADS)

    Mirzazadeh, M. M.; Plumtree, A.

    2012-08-01

    The uniaxial fully reversed (R = -1) long life fatigue behavior of four shot-peened engineering steels with approximately the same hardness was investigated. Shot-peening, air-cooled forged AISI 1141 and crackable AISI 1070 steels had little effect on their fatigue limits (+2.5 and -2.0 pct, respectively). In the case of a powder forged 0.5 pct C steel, an increase in the fatigue limit of 10.4 pct was observed, albeit with a large standard deviation. Shot-peening quench and tempered AISI 1151 steel decreased its fatigue limit 12.0 pct, as a result of cyclic softening. In general, the beneficial effects of shot-peening these smooth specimens were relatively small. Neither cyclic softening nor hardening occurred in the non-shot-peened steels cycled under the same conditions.

  8. Rolling Contact Fatigue Life of Steel Rollers Treated by Cavitation Peening and Shot Peening

    NASA Astrophysics Data System (ADS)

    Seki, Masanori; Soyama, Hitoshi; Kobayashi, Yuji; Gowa, Daisuke; Fujii, Masahiro

    The purpose of this study is to investigate the influence of peening on the rolling contact fatigue (RCF) life of steel rollers. First, steel rollers were treated by three types of peenings to ensure the same surface roughness of peened rollers. One is the cavitation peening (CP) used a cavitating jet in water with an injection pressure of 30 MPa, and the others are the fine particle peening (FPP) with a shot diameter of 0.1 mm and the normal shot peening (NSP) with a shot diameter of 0.3 mm. The surface hardness and the surface compressive residual stress of the steel rollers were increased by all the peenings. In particular, they were most increased by the FPP. On the other hand, the work-hardened depth due to the CP and the NSP was larger than that due to the FPP. As a result of the RCF tests, the RCF lives of the steel rollers were improved by all the peenings, and they were most improved by the NSP. Judging from the pmax - N curves and the [A(σy/√3 HV)]max - N curves, the improvement in RCF lives due to the FPP depended heavily on the increase in surface hardness due to that, and the effects of the CP and the NSP on the RCF were equivalent under the same surface roughness and the same surface hardness. It follows from these that the surface treatment condition should be selected according to the rolling contact conditions and the failure modes of machine elements.

  9. High spatial resolution, high energy synchrotron x-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy

    NASA Astrophysics Data System (ADS)

    Gill, Amrinder S.; Zhou, Zhong; Lienert, Ulrich; Almer, Jonathan; Lahrman, David F.; Mannava, S. R.; Qian, Dong; Vasudevan, Vijay K.

    2012-04-01

    Laser shock peening (LSP) is an advanced surface enhancement technique used to enhance the fatigue strength of metal parts by imparting deep compressive residual stresses. In the present study, LSP was performed on IN718 SPF alloy, a fine grained nickel-based superalloy, with three different power densities and depth resolved residual strain and stress characterization was conducted using high energy synchrotron x-ray diffraction in beam line 1-ID-C at the Advanced Photon Source at the Argonne National laboratory. A fine probe size and conical slits were used to non-destructively obtain data from specific gauge volumes in the samples, allowing for high-resolution strain measurements. The results show that LSP introduces deep compressive residual stresses and the magnitude and depth of these stresses depend on the energy density of the laser. The LSP induced residual stresses were also simulated using three-dimensional nonlinear finite element analysis, with employment of the Johnson-Cook model for describing the nonlinear materials constitutive behavior. Good agreement between the experimental and simulated data was obtained. These various results are presented and discussed.

  10. Laser beam temporal and spatial tailoring for laser shock processing

    DOEpatents

    Hackel, Lloyd; Dane, C. Brent

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  11. Effect of Shot Peening on the Intergranular Corrosion Susceptibility of a Novel Super304H Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Rui Kun; Zheng, Zhi Jun; Gao, Yan

    2016-01-01

    The surface phase constituent of Super304H austenitic stainless steel, after shot peening and sensitization treatment at 600, 650, and 700 °C for 2 h, was characterized using x-ray diffraction method. The degree of sensitization (DOS) was investigated by means of double-loop electrochemical potentiokinetic reactivation (DL-EPR) test, and the morphology after DL-EPR test was observed by scanning electron microscopy (SEM). The results showed that nano-sized grains and strain-induced martensite together with compressive residual stress formed on the surface of Super304H steel after shot peening. Surface compressive residual stresses relaxed greatly after being sensitized at 600-700 °C for 2 h, and no systematic correlation was observed between the compressive residual stresses developed and the intergranular corrosion susceptibility (IGCS). Because of the occurrence of strain-induced martensite in the shot-peened specimens, their IGCS is much higher than that of the as-received specimen when being sensitized at 600-650 °C for 2 h. Besides, the DOS increased with the increasing of shot peening time and the content of strain-induced martensite. On the contrary, the IGCS of Super304H stainless steels subjected to shot peening was eliminated when being sensitized at 700 °C for 2 h because of the reverse transformation of strain-induced martensite and faster diffusion rate of Cr at higher temperature in ultrafine-grained austenite which had helped healing the chromium depletion zone in a very short time. In a word, shot peening promoted desensitization of Super304H steel in a time shorter than 2 h at higher temperature up to 700 °C.

  12. Quantitative study of fretting fatigue damage in shot peened titanium-aluminum-vanadium

    NASA Astrophysics Data System (ADS)

    Martinez, Sonia A.

    Fretting fatigue damage has been known to be the origin of premature failure in some of the aerospace engine components. The blade/disk assemblies, for example have been particularly susceptible to fretting induced failure. Several nondestructive evaluation techniques are being used to detect the cracks due to fretting fatigue damage. Although partial success has been achieved in detection of cracks, research is lacking in the area of detection of precursors to the development of cracks due fretting fatigue damage. The goal of the research presented in this thesis is to develop a methodology based on x-ray diffraction residual stress measurements for quantitative nondestructive characterization of accumulated fretting fatigue damage. To achieve the goal a systematic experimental study of the characteristics of the residual stress due to surface treatments of shot peening (SP), Laser Shock Peening (LSP) and Low Plasticity Burnishing (LPB), used in the aerospace industry was conducted. The residual stress in LSP and LPB was found to be complex involving shear stress and spatial non-uniformity. On the other hand in shot peening it was found to be least complex. More over it is the most cost effective and hence often used surface treatment in the industry. In order to gain an understanding of the effect of shot peening parameters on the fretting fatigue life, experiments were conducted on samples with four different peening intensities (0, 4, 7 and 10 A) and two surface coverage (100% and 400%). It was observed that the fretting fatigue life increases with the increasing peening intensity, and increase in surface coverage beyond 100% has virtually no effect. Scanning Electron Microscopic (SEM) observation of fractured surface was utilized to identify crack initiation. On all of the fretting fatigued specimens relaxation of residual stress was observed and it increased with increasing number of cycles. A complete relaxation was observed before failure. To obtain an

  13. Ultrasonic measurement of residual stress in shot peened aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Anton I.; Veronesi, William A.

    2001-04-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to non-destructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper addresses issues encountered in near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth inversely related to the excitation frequency, by making measurements at different frequencies, the method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity from 4A-16A. Several factors were found to contribute to the measured responses: surface roughness, near surface texture change, dislocation density increase and residual stress. In this paper, the contributions of residual stress, dislocation density and surface roughness to the overall effect are separately estimated. It is shown that the experimentally observed velocity change in shot peened samples is dominated by the effect of surface roughness while the role of residual stress is much smaller.

  14. Research on deformation of 7050 aluminum alloy panels with stiffeners by pre-stress shot peen forming

    NASA Astrophysics Data System (ADS)

    Wang, Mingtao; Zeng, Yuansong; Huang, Xia; Lv, Fenggong

    2016-10-01

    Pre-stress shot peen forming is an effective plastic forming method for integral panels with stiffeners used in aeronautical industry. 7050 aluminum alloy panels with stiffeners were pre-stress peen formed in an orthogonal experiment. The deformation rule of those workpieces whose exterior surfaces were convex bending was investigated. The results show that the contribution of peening parameters on workpiece deformation is in following order: air pressure, pre-load stress and moving velocity of workpiece. The deformation of workpiece whose merely exterior surface is peened is much lower than that whose two side-faces of stiffener are also peened. The decreasing rate is changed from 13% to 39% by means of parameters variation. Moreover, the regression formulas about the quantitative relationships between radius of curvature and peening parameters have been established. The results could offer some basic reference to peen forming aluminum alloy panels of future aircrafts.

  15. Joining of Thin Metal Sheets by Shot Peening

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori

    2011-01-01

    In shot peening the substrate undergoes large plastic deformation near the surface due to the hit with shots. The plastic flow areas formed by cold working may form the surface layer. Authors have recently proposed new joining methods using shot peening, shot lining and shot caulking. Our approach has been applied to the butt joining of the dissimilar metal sheets. In the present study, joining of thin metal sheets using a shot peening process was investigated to improve the joinability. In the joined section, the edge of sheets is the equally-spaced slits. In this method, the convex edges of the sheet are laid on top of the other sheet. Namely, the two sheets are superimposed in the joining area. When the connection is shot-peened, the material of the convex area undergoes large plastic deformation near the surface due to the collision of shots. In this process, particularly noteworthy is the plastic flow near surface layer. The convex edges of the sheet can be joined to the other sheet, thus two sheets are joined each other. In the experiment, the shot peening treatment was performed by using an air-type peening machine. The shots used were made of high carbon cast steel. Air pressure was 0.6 MPa and peening time was in the range of 30-150s. The peening conditions were controlled in the experiment. The thin sheets were commercial low-carbon steel, stainless steel, pure aluminum, and aluminium alloy. The effects of processing conditions on the joinability were mainly examined. The joint strength increased with the kinetic energy of shots. It was found that the present method was effective for joining of thin metal sheets.

  16. Rapidly solidified metal coatings by peen plating

    NASA Technical Reports Server (NTRS)

    Chu, H. P.

    1987-01-01

    Specimens of 7075-T6 aluminum alloy were peen plated with rapidly solidified tin-lead and aluminum powders, and the cross-sections of the coated specimens were examined by light and electron microscopy. The properties of the peen plated specimens were also compared with those of shot peened specimens without any coating. It is found that peen plating with rapidly solidified metals improves the fatigue properties of the coated samples to a greater extent than shot peening alone. Specimens of 7075-T6 alloy peen plated with rapidly solidified tin-lead and aluminum exhibited better fatigue resistance than shot peened specimens in both air and salt water.

  17. Effect of shot peening and grain refinement on the fatigue life and strength of commercially pure Al and two of its alloys: Al-2024-T3 and Al-7075-T6

    NASA Astrophysics Data System (ADS)

    Qandil, A.; Zaid, Adnan I. O.

    2016-08-01

    Aluminum and its alloys are widely used materials in automobile, aircraft and space craft industries due to their high strength- to- weight ratio and corrosion resistance beside their other useful properties. They are the second materials in use after steel alloys. Most of the failures in parts of aircrafts and space vehicles are mainly caused by fatigue and stress corrosion cracking. In this paper, the effect of shot peening on the fatigue life of commercially pure aluminumand two of its alloys namely:Al-2024 and Al-7075-T6 is presented and discussed. Furthermore, the effect of addition of vanadium to Al and Al grain refined by Ti and Ti+Bon Its fatigue life and strengthis also presented and discussed using scanning electron microscope, SEM. It was that shot peening and the addition of V toAl and Al onAl grain refined by Ti and Ti+B have resulted in enhancement of the fatigue life and strength. Ffinally, the effect of shot peening on the surface quality of the peened parts is also presented and discussed.

  18. Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Ahmed, Aymen A.; Mhaede, Mansour; Wollmann, Manfred; Wagner, Lothar

    2016-02-01

    Titanium alloys continue to be used extensively for the fabrication of surgical implants due to their excellent mechanical, physical and biological performance. The surface modification is the main technique to maintain a relatively good mechanical properties and biocompatibility. In this study, a surface modification through micro shot peening (SP) using different ceramic shot (850, 450 and 125-250 μm) at 0.22 mmA have been done on two microstructures Ti-6Al-4V alloy. The effect of this treatment on the corrosion behavior, surface roughness, microhardness profiles, and residual stresses were investigated. In addition, the corrosion behavior of the ultra-fine grain of Ti-6Al-4V materials produced by rotary swaging (RS) deformation has been investigated and compared with the duplex (DU) and globular (GL) microstructures. The corrosion behavior was studied using potentiodynamic polarization and electro impedance spectroscopy techniques. The electrochemical tests were performed in Ringer's solution at 37 °C. The results show that shot peening resulted in near-surface maximum hardness and residual stresses values. Increasing the shot size led to a lower surface roughness and an improved corrosion resistance. However, SP reduces the corrosion resistance compared with the untreated materials. The globular microstructure shows high corrosion rate compared with the duplex and nanostructured materials.

  19. Glass-bead peen plating

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  20. Ultrasonic characterization of shot-peened metal surfaces

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Anton I.; Veronesi, William A.

    2001-08-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stresses. The capability to nondestructively evaluate near-surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper describes our work on near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth is inversely related to the excitation frequency, the method has the potential to provide the stress-depth profile. The paper presents results from an ultrasonic characterization study of shot peened Al-7075 and Waspaloy surfaces. Rayleigh wave velocity measurements by a V(z)-curve method were made on smooth and shot peened samples using line-focus ultrasonic transducers. Several factors were found to contribute to the surface wave velocity measurements: surface roughness, near-surface grain reorientation (texture), dislocation density increase, and residual stress. In this paper we estimate quantitatively the effects of each factor and discuss how these effects can be separated and accounted for during residual stress measurement.

  1. Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Yu, Shouming; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing

    2015-10-01

    A plasma chromizing treatment was conducted on Ti6Al4V samples by employing the recently developed double glow plasma surface alloying technology. The Cr-alloyed layer consisted of four sub-layers, namely the Cr deposition, Cr2Ti, CrTi4, and Cr-Ti solid-solution layers. The local hardness and moduli were determined via nanoindentation. In addition, the fatigue properties of the samples were evaluated by using a rotating-bending fatigue machine under a given load. The results showed that the hardness or elastic moduli of the adjacent sub-layers differed significantly and the fatigue properties of the Ti6Al4V alloy deteriorated with the plasma chromizing treatment. This deterioration stemmed mainly from cracks initiated at the interfaces between the sub-layers and the microstructural changes of the substrate; these changes were induced by the high temperature used in the plasma chromizing process. However, the fatigue life of the plasma-chromized samples was increased by a shot peening post-treatment. The fatigue life of the samples resulting from this combination of treatments was slightly higher than that of the single-shot-peened Ti6Al4V substrate. In fact, the sample retaining only the Cr-Ti solid-solution layer (that is, the first three sub-layers were removed), when shot-peened, exhibited the highest fatigue life among all the tested samples; this was attributed to that sample having the highest residual compressive stress, the significant work hardening, and the good hardness to toughness balance.

  2. Fatigue Behavior of Oil Jet Peened Aluminum Alloy, AA 6063-T6

    NASA Astrophysics Data System (ADS)

    Grinspan, Alphonse Sahaya; Gnanamoorthy, Rajappa

    Oil jet peening is a new surface modification process developed for the introduction of compressive residual stresses. This paper describes the effect of oil jet peening on the fatigue performance of aluminum alloy, AA 6063-T6. Specimens were peened at an oil injection pressure of 40 MPa with various nozzle-traveling velocities. Each impact of oil droplet generates an indentation on the surface of specimen. The surface roughness increases with decreasing nozzle-traveling velocity. The maximum compressive residual stress developed is about 75% of yield strength. Fatigue life depends on the compressive residual stress as well as surface roughness of oil jet peened specimens. Fracture mechanism of unpeened and oil jet peened specimens were studied using optical and scanning electron microscopes.

  3. Study of the effects produced by shot peening on the surface of quenched and tempered steels: roughness, residual stresses and work hardening

    NASA Astrophysics Data System (ADS)

    Llaneza, V.; Belzunce, F. J.

    2015-11-01

    Shot peening induces important effects on the surface of materials, both positive and negative, the correct balance between them being the key to success. Roughness, impact mark size, compressive residual stress and work hardening of six steel grades obtained from an AISI 4340 steel were studied to explain their evolution according to the Almen intensity and their mechanical properties. A linear relationship between the impact diameter, the kinetic energy of the balls and the Almen intensity was found. Moreover, under full coverage, the surface and the maximum compressive stresses only depend on the mechanical properties of the steels, whereas the depth subjected to high compressive residual stresses and the total depth subjected to compressive residual stresses depend on the mechanical properties of the steel and the Almen intensity. Furthermore, several mathematic expressions were formulated to predict the residual stress profiles using the Almen intensity and the mechanical properties of the steels.

  4. On the impact of rolling direction and tool orientation angle in Rotary Peen Forming

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Hirt, G.

    2016-10-01

    Shot Peen Forming processes are suitable to produce surface curvatures that are commonly required for aircraft fuselage as well as structural components. The so called Rotary Peen Forming is an alternative process for manufacturing sheet metals with slight curvature. The forming tool consists of impactors which are connected flexibly to a rotating hub and thus moving on a circular trajectory. An industrial robot guides the Rotary Peen Forming tools. As a result, the machine design is more compact compared to traditional Shot Peen Forming. In the present work, the impact of both, the tool orientation angle and the rolling direction, on the curvature of aluminum AA5083 samples is examined. By means of a point laser measurement, the set-up enables a distance control to adjust a determined indentation depth. It can be shown, that the highest curvature is achieved when the tool is orientated parallel and when the rolling direction of the sheet metal is transversal to the curvature plane.

  5. Shot peening for Ti-6Al-4V alloy compressor blades

    NASA Technical Reports Server (NTRS)

    Carek, Gerald A.

    1987-01-01

    A text program was conducted to determine the effects of certain shot-peening parameters on the fatigue life of the Ti-6Al-4V alloys as well as the effect of a demarcation line on a test specimen. This demarcation line, caused by an abrupt change from untreated surface to shot-peened surface, was thought to have caused the failure of several blades in a multistage compressor at the NASA Lewis Research Center. The demarcation line had no detrimental effect upon bending fatigue specimens tested at room temperature. Procedures for shot peening Ti-6Al-4V compressor blades are recommended for future applications.

  6. Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Chen, Guoxing; Tan, Ziming; Wu, Shuhui

    2015-11-01

    Shot peening is an effective process to enhance the fatigue performance of turbine blades. In this study, the effect of peening pressures was discussed in terms of the residual stress distribution and the surface morphology. Shot peening processes were designed at varying pressures on a 17-4 PH martensitic stainless steel. The profiles of hardness and residual stress were characterized in the cross section. The thermal stress relaxation was further carried out to evaluate the stability of the compressive residual stress under service temperatures of turbine blades. Results show that a maximum stress depth is obtained with peening pressure of 0.40 MPa, and the residual stress can be maintained up to 400 °C, which ensures the service in low-pressure turbine blades.

  7. Experimental Study on Fatigue Behaviour of Shot-Peened Open-Hole Steel Plates

    PubMed Central

    Wang, Zhi-Yu; Wang, Qing-Yuan; Cao, Mengqin

    2017-01-01

    This paper presents an experimental study on the fatigue behaviour of shot-peened open-hole plates with Q345 steel. The beneficial effects induced by shot peening on the fatigue life improvement are highlighted. The characteristic fatigue crack initiation and propagation modes of open-hole details under fatigue loading are revealed. The surface hardening effect brought by the shot peening is analyzed from the aspects of in-depth micro-hardness and compressive residual stress. The fatigue life results are evaluated and related design suggestions are made as a comparison with codified detail categories. In particular, a fracture mechanics theory-based method is proposed and demonstrated its validity in predicting the fatigue life of studied shot-peened open-hole details. PMID:28841160

  8. Rotary peening with captive shot

    SciTech Connect

    1998-02-01

    Roto Peen with captive shot removes coatings and surface contamination from concrete floors. The objective of treating radioactively contaminated concrete floors during the Deactivation and Decommissioning (D and D) process is to reduce the surface contamination levels to meet regulatory criteria for unrestricted use. The US Department of Energy (DOE) Chicago Operations office and DOE`s Federal Energy Technology Center (FETC) jointly sponsored a Large-Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial D and D technologies in comparison with current baseline technologies. As part of the LSDP, roto Peen with captive shot was demonstrated March 17--20, 1997, to treat a 20 x 25 ft area of radioactively contaminated concrete floor on the service level of the CP-5 building.

  9. Quantification of the Effects of Various Levels of Several Critical Shot Peen Process Variables on Workpiece Surface Integrity and the Resultant Effect on Workpiece Fatigue Life Behavior. Phase 2

    DTIC Science & Technology

    1988-10-31

    ALUMIUM FIGURE 34: FATIZUE RULTS VERSUS IFýTENSITY, PYMING PARAMETERS ARD •-2 FRACTU•E SITE DETERMINATION FOR 7075-T6 .aLUMINUM P.Q--RE 35: jATXGUR...large increases in fatigue life and reduction of scatter from the unpeened state are possible when peening is closely controlled within process...Shot PeeninW Shot peening was performed on three identical contractor designed, computer controlled shot peening machines using parameter tolerance

  10. Optimal Shot Peening Treatments to Maximize the Fatigue Life of Quenched and Tempered Steels

    NASA Astrophysics Data System (ADS)

    Llaneza, V.; Belzunce, F. J.

    2015-07-01

    The search for the optimal Almen intensity to use in shot peening treatments to maximize the fatigue life of industrial steel components involves many different variables and physical phenomena. In this paper, the optimal peening intensity of different steel grades obtained from an AISI 4340 steel through heat treatments has been determined. Six different steel grades were subjected to shot peening treatments, which were performed under full coverage, but employing diverse Almen intensities, shot sizes and air pressures. The role of the mechanical properties of the treated steel and the applied Almen intensity on the shot peening effects were studied to understand the results obtained by means of rotating bending fatigue tests. Each steel has a specific Almen intensity value able to optimize its fatigue life, thereby allowing an optimal balance between the positive and negative effects induced by shot peening. This value, or range of values, is dependent on the mechanical properties of the treated steel, increasing with increasing steel properties up to a certain point and then decreasing for stronger steels. In these cases, over peening treatments produce sufficiently large surface defects to induce relaxation of the surface residual stress and facilitate the initiation of surface fatigue cracks.

  11. Simulation on Residual Stress of Shot Peening Based on a Symmetrical Cell Model

    NASA Astrophysics Data System (ADS)

    WANG, Cheng; HU, Jiacheng; GU, Zhenbiao; XU, Yangjian; WANG, Xiaogui

    2017-03-01

    The symmetrical cell model is widely used to study the residual stress induced by shot peening. However, the correlation between the predicted residual stresses and the shot peening coverage, which is a big challenge for the researchers of the symmetrical cell model, is still not established. Based on the dynamic stresses and the residual stresses outputted from the symmetrical cell model, the residual stresses corresponding to full coverage are evaluated by normal distribution analysis. The predicted nodal dynamic stresses with respect to four corner points indicate that the equi-biaxial stress state exists only for the first shot impact. Along with the increase of shot number, the interactions of multiple shot impacts make the fluctuation of the nodal dynamic stresses about an almost identical value more and more obvious. The mean values and standard deviations of the residual stresses gradually tend to be stable with the increase of the number of shot peening series. The mean values at each corner point are almost the same after the third peening series, which means that an equi-biaxial stress state corresponding to the full coverage of shot peening is achieved. Therefore, the mean values of the nodal residual stresses with respect to a specific transverse cross-section below the peened surface can be used to correlate the measured data by X-ray. The predicted residual stress profile agrees with the experimental results very well under 200% peening coverage. An effective correlation method is proposed for the nodal residual stresses predicted by the symmetrical cell model and the shot peening coverage.

  12. Large scale, highly dense nanoholes on metal surfaces by underwater laser assisted hydrogen etching near nanocrystalline boundary

    NASA Astrophysics Data System (ADS)

    Lin, Dong; Zhang, Martin Yi; Ye, Chang; Liu, Zhikun; Liu, C. Richard; Cheng, Gary J.

    2012-03-01

    A new method to generate large scale and highly dense nanoholes is presented in this paper. By the pulsed laser irradiation under water, the hydrogen etching is introduced to form high density nanoholes on the surfaces of AISI 4140 steel and Ti. In order to achieve higher nanohole density, laser shock peening (LSP) followed by recrystallization is used for grain refinement. It is found that the nanohole density does not increase until recrystallization of the substructures after laser shock peening. The mechanism of nanohole generation is studied in detail. This method can be also applied to generate nanoholes on other materials with hydrogen etching effect.

  13. Analysis of Pneumatic Fine Particle Peening Process by Using a High-Speed

    NASA Astrophysics Data System (ADS)

    Ito, Tatsuya; Kikuchi, Shoichi; Hirota, Yo; Sasago, Atsushi; Komotori, Jun

    In this study, the peening behavior of shot particles in a fine particle peening (FPP) process such as velocity and impact angles were analyzed by using a high-speed-camera. Results showed that the velocity of shot particles depended on a peening pressure; the higher the peening pressure, the higher the particle velocity. The particle velocity measured in this study was approximately 120 m/s; this was much higher than that of the conventional shot peening (SP) process. This was because the air resistance of shot particles in the FPP process was higher than that of shot particles in the SP process. In order to discuss the surface modification effect of the FPP process, commercial-grade pure iron treated by the FPP process was characterized by micro-Vickers hardness tester and scanning electron microscope (SEM). Thickness of hardened layer treated with higher peening pressure was much higher than that of the lower pressure treated one. The unique microstructure with stratification patterns, which was harder than that of the other part, was observed near the specimen surface. The reason for the microstructural changes by the FPP treatment was discussed based on the kinetic energy of shot particles.

  14. Experimental Investigation on Surface Quality Processed by Self-Excited Oscillation Pulsed Waterjet Peening.

    PubMed

    Ding, Xiaolong; Kang, Yong; Li, Deng; Wang, Xiaochuan; Zeng, Dongping

    2017-08-25

    High-speed waterjet peening technology has attracted a lot of interest and is now being widely studied due to its great ability to strengthen metal surfaces. In order to further improve the mechanical properties of metals, self-excited oscillation pulsed waterjets (SOPWs) were used for surface peening with an experimental investigation focused on the surface topography and properties. By impinging the aluminum alloy (5052) specimens with SOPWs issuing from an organ-pipe oscillation nozzle, the hardness and roughness at various inlet pressures and stand-off distances were measured and analyzed, as well as the residual stress. Under the condition of optimum stand-off distances, the microscopic appearances of peened specimens obtained by SEM were displayed and analyzed. Results show that self-excited oscillation pulsed waterjet peening (SOPWP) is capable of improving the surface quality. More specifically, compared with an untreated surface, the hardness and residual stress of the peened surfaces were increased by 61.69% and 148%, respectively. There exists an optimal stand-off distance and operating pressure for creating the highest surface quality. SOPWP can produce almost the same enhancement effect as shot peening and lead to a lower surface roughness. Although such an approach is empirical and qualitative in nature, this procedure also generated information of value in guiding future theoretical and experimental work on the application of SOPWP in the industry practice.

  15. Influence of Shot Peening on Surface Characteristics of High-Speed Steels

    NASA Astrophysics Data System (ADS)

    Harada, Yasunori; Fukaura, Kenzo

    High-speed steels are generally used for the cutting of other hard materials. These are hard materials, and can be used at high temperatures. Therefore, some of them are used for warm metal forming such as forging. However, in the tools used in hot working, an excellent hot hardness and long-life fatigue are strongly required. In the present study, the influence of shot peening on the surface characteristics of high-speed steels was investigated. Shot peening imparts compressive residual stresses on the metal surface, thus improving the fatigue life of the machine parts. In the experiment, the shot peening treatment was performed using an air-type shot peening machine. The shots made of cemented carbide were used. The workpieces were two types, W-type and Mo-type alloys. Surface roughness, compressive residual stress, and hardness of the peened workpieces were measured. It was found that shot peening using the hard shot media was effective in improving the surface characteristics of high-speed steels.

  16. Experimental Investigation on Surface Quality Processed by Self-Excited Oscillation Pulsed Waterjet Peening

    PubMed Central

    Ding, Xiaolong; Kang, Yong; Li, Deng; Wang, Xiaochuan; Zeng, Dongping

    2017-01-01

    High-speed waterjet peening technology has attracted a lot of interest and is now being widely studied due to its great ability to strengthen metal surfaces. In order to further improve the mechanical properties of metals, self-excited oscillation pulsed waterjets (SOPWs) were used for surface peening with an experimental investigation focused on the surface topography and properties. By impinging the aluminum alloy (5052) specimens with SOPWs issuing from an organ-pipe oscillation nozzle, the hardness and roughness at various inlet pressures and stand-off distances were measured and analyzed, as well as the residual stress. Under the condition of optimum stand-off distances, the microscopic appearances of peened specimens obtained by SEM were displayed and analyzed. Results show that self-excited oscillation pulsed waterjet peening (SOPWP) is capable of improving the surface quality. More specifically, compared with an untreated surface, the hardness and residual stress of the peened surfaces were increased by 61.69% and 148%, respectively. There exists an optimal stand-off distance and operating pressure for creating the highest surface quality. SOPWP can produce almost the same enhancement effect as shot peening and lead to a lower surface roughness. Although such an approach is empirical and qualitative in nature, this procedure also generated information of value in guiding future theoretical and experimental work on the application of SOPWP in the industry practice. PMID:28841184

  17. Attaching Thermocouples by Peening or Crimping

    NASA Technical Reports Server (NTRS)

    Murtland, Kevin; Cox, Robert; Immer, Christopher

    2006-01-01

    Two simple, effective techniques for attaching thermocouples to metal substrates have been devised for high-temperature applications in which attachment by such conventional means as welding, screws, epoxy, or tape would not be effective. The techniques have been used successfully to attach 0.005- in. (0.127-mm)-diameter type-S thermocouples to substrates of niobium alloy C-103 and stainless steel 416 for measuring temperatures up to 2,600 F (1,427 C). The techniques are equally applicable to other thermocouple and substrate materials. In the first technique, illustrated in the upper part of the figure, a hole slightly wider than twice the diameter of one thermocouple wire is drilled in the substrate. The thermocouple is placed in the hole, then the edge of the hole is peened in one or more places by use of a punch (see figure). The deformed material at the edge secures the thermocouple in the hole. In the second technique a hole is drilled as in the first technique, then an annular relief area is machined around the hole, resulting in structure reminiscent of a volcano in a crater. The thermocouple is placed in the hole as in the first technique, then the "volcano" material is either peened by use of a punch or crimped by use of sidecutters to secure the thermocouple in place. This second technique is preferable for very thin thermocouples [wire diameter .0.005 in. (.0.127 mm)] because standard peening poses a greater risk of clipping one or both of the thermocouple wires. These techniques offer the following advantages over prior thermocouple-attachment techniques: . Because these techniques involve drilling of very small holes, they are minimally invasive . an important advantage in that, to a first approximation, the thermal properties of surrounding areas are not appreciably affected. . These techniques do not involve introduction of any material, other than the substrate and thermocouple materials, that could cause contamination, could decompose, or oxidize

  18. Laser-Induced Spall in Silicon Carbide

    DTIC Science & Technology

    2007-04-01

    the Laser Shock Peening (LSP) process [2, 3] to produce the impact conditions for spall. The LSP process was originally developed for the aerospace...inexpensively. Figure 1. Initial test configuration and loading process for the Laser Shock Peening (LSP) test. Figure 2. Actual and...Strain-Rate Phenomina in Metals, edited by M. Meyers and L. Murr, Plenum Publishing, Corp. New York, NY (1981) [3] A. H. Clauer, Laser shock peening

  19. Increase in Strength of Partially Stabilized Zirconia After Shot Peening

    NASA Astrophysics Data System (ADS)

    Takahashi, Koji; Iwanaka, Kae; Osada, Toshio; Koike, Hitonobu

    2015-09-01

    The effects of shot peening (SP) on the strength of partially stabilized zirconia (PSZ) were studied. The compressive residual stress, apparent fracture toughness ( K C), and bending strength values of specimens subjected to SP were investigated. Results of x-ray diffraction analyses showed that SP introduced large compressive residual stress in specimens. As a result, the K C and bending strength values of specimens having semi-elliptical pre-cracks on their surfaces increased significantly. Shot-peened specimens having surface pre-cracks with lengths less than 140 µm exhibited strength comparable to that of smooth specimens and fractured outside the pre-crack zone, indicating that the pre-cracks were rendered harmless by SP. Thus, the introduction of a compressive residual stress by SP is an effective technique for increasing the strength of PSZ.

  20. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    NASA Astrophysics Data System (ADS)

    Yang, R.; Zhang, X.; Mallipeddi, D.; Angelou, N.; Toftegaard, H. L.; Li, Y.; Ahlström, J.; Lorentzen, L.; Wu, G.; Huang, X.

    2017-07-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 °C for 2h and at ∼ 750 °C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel was shot peened using 1.5 mm steel shots at a speed of 50 m/s in an in-house developed shot peening machine. The shot speeds in the conventional shot peening machine were measured using an in-house lidar set-up. The microstructure of each sample was characterized by optical and scanning electron microscopy, and the mechanical properties examined by microhardness and tensile testing. The residual stresses were measured using an Xstress 3000 G2R diffractometer equipped with a Cr Kα x-ray source. The correspondence between the residual stress profile and the gradient structure produced by shot peening, and the relationship between the microstructure and strength, are analyzed and discussed.

  1. Plating by glass-bead peening

    NASA Technical Reports Server (NTRS)

    Babecki, A. J.; Haehner, C. L.

    1971-01-01

    Technique permits plating of primarily metallic substrates with either metals or nonmetals at normal temperature. Peening uses compressed air to apply concurrent streams of small glass beads and powdered plating material to the substrate.

  2. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting.

    PubMed

    Benedetti, M; Torresani, E; Leoni, M; Fontanari, V; Bandini, M; Pederzolli, C; Potrich, C

    2017-03-28

    Fatigue resistance and biocompatibility are key parameters for the successful implantation of hard-tissue prostheses, which nowadays are more and more frequently manufactured by selective laser melting (SLM). For this purpose, the present paper is aimed at investigating the effect of post-sintering treatments on the fatigue behavior and biological properties of Ti samples produced by SLM. After the building process, all samples are heat treated to achieve a complete stress relief. The remaining ones are tribofinished with the aim of reducing the surface roughness of the as-sintered condition. Part of the tribofinished samples are then subjected to one of the following post-sintering treatments: (i) shot peening, (ii) hot isostatic pressing (HIP), and (iii) electropolishing. It is found that shot peening and HIP are the most effective treatments to improve the high and the very-high cycle fatigue resistance, respectively. At the same time, they preserve the good biocompatibility ensured by the biomedical Titanium Grade 23.

  3. Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving.

    PubMed

    Jindal, Shitu; Bansal, Rajesh; Singh, Bijay P; Pandey, Rajiv; Narayanan, Shankar; Wani, Mohan R; Singh, Vakil

    2014-07-01

    This investigation was carried out to study the effect of a novel process of surface modification, surface nanostructuring by ultrasonic shot peening, on osteoblast proliferation and corrosion behavior of commercially pure titanium (c p-Ti) in simulated body fluid. A mechanically polished disc of c p-Ti was subjected to ultrasonic shot peening with stainless steel balls to create nanostructure at the surface. A nanostructure (<20 nm) with inhomogeneous distribution was revealed by atomic force and scanning electron microscopy. There was an increase of approximately 10% in cell proliferation, but there was drastic fall in corrosion resistance. Corrosion rate was increased by 327% in the shot peened condition. In order to examine the role of residual stresses associated with the shot peened surface on these aspects, a part of the shot peened specimen was annealed at 400°C for 1 hour. A marked influence of annealing treatment was observed on surface structure, cell proliferation, and corrosion resistance. Surface nanostructure was much more prominent, with increased number density and sharper grain boundaries; cell proliferation was enhanced to approximately 50% and corrosion rate was reduced by 86.2% and 41% as compared with that of the shot peened and the as received conditions, respectively. The highly significant improvement in cell proliferation, resulting from annealing of the shot peened specimen, was attributed to increased volume fraction of stabilized nanostructure, stress recovery, and crystallization of the oxide film. Increase in corrosion resistance from annealing of shot peened material was related to more effective passivation. Thus, the surface of c p-Ti, modified by this novel process, possessed a unique quality of enhancing cell proliferation as well as the corrosion resistance and could be highly effective in reducing treatment time of patients adopting dental and orthopedic implants of titanium and its alloys.

  4. Lasershot peening--a means to strengthen metals

    SciTech Connect

    Chen, H-L

    2000-03-01

    Lasershot peening is an emerging modern process that impresses a compressive stress into the surfaces of metals, improving their operational lifetime. Almost everyone is familiar with taking a strip of metal or a wire and bending it multiple times until it breaks. In this situation, when the metal is bent, the surface of outer radius is stretched into a tensile state. Under tension, any flaw or micro-crack will grow in size with each bending of the metal until the crack grows through the entire strip, breaking it into two pieces. Flexure of metal components occurs in most applications. The teeth of a transmission gear flex as they deliver torque in a vehicle. Springs and valves flex every time they transfer loads. If fatigue failure from flexing occurs in the tooth of a transmission gear of light or heavy vehicles, in a fan blade of a diesel engine, in shock-absorbers or safety-related supporting structures, significant loss of assets and potentially loss of human life occurs. Lasershot peening, better than any other technique, has the potential to extend the fatigue lifetime of metal components. In the process, the laser generates a high intensity shock wave at the surface of the metal, straining the metal and leaving a residual compressive stress. If the compressive stress is intense and deep enough, when the gear tooth or component flexes under load, the surface remains in compression and a micro-crack or flaw on the surface cannot grow. Test data on gears are showing lifetime improvements up to 6 times. Tests on structural aluminum components, such as used in the transportation vehicle are showing 10 to 15 times lifetime improvement. As shown in the Figure below, recent fatigue tests on 2024 T3 aluminum under various stress load conditions, show more than 50 times improvement in fatigue lifetime for structural aluminum test plates when compared to unpeened components and 10 times when compared to conventionally shot-peened components.

  5. A review of inducing compressive residual stress - shot peening; on structural metal and welded connection

    NASA Astrophysics Data System (ADS)

    Kanchidurai, S.; Krishanan, P. A.; Baskar, K.; Saravana Raja Mohan, K.

    2017-07-01

    Shot peening treatment (SPT) is a significant mechanical method to enhance the surface of the material by inducing compressive residual stress on the layer. This study provides a review of prominent improvement in fatigue life on high strength aluminium alloy, steel and welded connection by SPT. Compressive residual stress measurement and its factors data are extracted from assorted literature, optimized peening process commented in this paper, also different types of mechanical peening methods and its effectiveness are mentioned. Fatigue life improvement is focused commented to welded structural connections. The extracted results shows significant changes in the surface layer of metals, aluminium alloy 15 - 250% of fatigue life improvement, steel plain members 6-200% of fatigue life improvement, welded connections 50-75% of fatigue life improvement and significant improvement in mechanical properties like roughness reduction, wear, hardness, tensile strength, corrosion and scuffing.

  6. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy

    PubMed Central

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-01-01

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr–Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy. PMID:28773345

  7. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy.

    PubMed

    Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming

    2016-03-23

    A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.

  8. Effects of Shot-Peening on High Cycle Fretting Fatigue Behavior of Ti-6Al-4V

    DTIC Science & Technology

    2007-11-02

    fatigue technique, Coffin [18] and Manson [19] showed the relation of the strain and number of cycles to failure as follows 10 (∆ε / 2 )p...Criteria, 1995, Wear, Vol. 185, 35-46. 18. L. Coffin , Jr., A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Trans...ASME, 1954, Vol. 76, 931-950. 19. S. Manson , Behavior of Materials Under Conditions of Thermal Stress, NACA Technical Report TN 2933, 1953

  9. Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD).

    PubMed

    Mhaede, Mansour; Pastorek, Filip; Hadzima, Branislav

    2014-06-01

    Magnesium alloys are promising materials for biomedical applications because of many outstanding properties like biodegradation, bioactivity and their specific density and Young's modulus are closer to bone than the commonly used metallic implant materials. Unfortunately their fatigue properties and low corrosion resistance negatively influenced their application possibilities in the field of biomedicine. These problems could be diminished through appropriate surface treatments. This study evaluates the influence of a surface pre-treatment by shot peening and shot peening+coating on the corrosion properties of magnesium alloy AZ31. The dicalcium phosphate dihydrate coating (DCPD) was electrochemically deposited in a solution containing 0.1M Ca(NO3)2, 0.06M NH4H2PO4 and 10mL/L of H2O2. The effect of shot peening on the surface properties of magnesium alloy was evaluated by microhardness and surface roughness measurements. The influence of the shot peening and dicalcium phosphate dihydrate layer on the electrochemical characteristics of AZ31 magnesium alloy was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy in 0.9% NaCl solution at a temperature of 22±1°C. The obtained results were analyzed by the Tafel-extrapolation method and equivalent circuit method. The results showed that the application of shot peening process followed by DCPD coating improves the properties of the AZ31 surface from corrosion and mechanical point of view.

  10. A Multi-Frequency Eddy Current Inversion Method for Characterizing Conductivity Gradients on Water Jet Peened Components

    NASA Astrophysics Data System (ADS)

    Sundararaghavan, V.; Balasubramaniam, K.; Babu, N. R.

    2004-02-01

    This paper describes a multi-frequency eddy current inversion procedure for characterizing specimens that are water jet peened. Multi-frequency inductance data was obtained by using well-characterized eddy current probes. The inversion uses a multi-layer axi-symmetric finite element model as the forward model and the conductivity of each layer is found through interpolation of the inductance-conductivity data generated by the forward model. Skin depth approximation was used to isolate the integral effects of the conductivity variation on the inductance signal. Inverted conductivity profiles of the water jet peened specimens was found to resemble the predicted profiles. Information regarding the shape of residual stress gradients and relative intensities of peening were inferred from the conductivity profiles.

  11. 3M heavy duty roto peen: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The roto peen scaler allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy duty flexible flap. The peens are coupled with a commercially available piece of equipment that is used to scabble or remove the concrete. The scabbled debris is then collected into 55 gallon drums by means of a vacuum system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  12. An in situ transmission electron microscopy study of the thermalstability of near-surface microstructures induced by deep rolling andlaser-shock peening

    SciTech Connect

    Altenberger, I.; Stach, E.A.; Liu, G.Y.; Nalla, R.K.; Ritchie, R.O.

    2003-02-24

    Mechanical surface treatments are known to be effective at improving the fatigue resistance of metallic alloys at elevated temperatures ({approx}550-600 C), even though the near-surface compressive residual stress fields have been annealed out. We have investigated the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening in an austentic stainless steel (AISI 304) and a titanium alloy (Ti-6Al-4V) using in situ hot-stage transmission electron microscopy. It is found that the improvements in fatigue resistance at elevated temperature are related to the high-temperature stability of the work-hardened near-surface microstructure in each case.

  13. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy

    NASA Astrophysics Data System (ADS)

    Tang, Chang-bin; Liu, Dao-xin; Tang, Bin; Zhang, Xiao-hua; Qin, Lin; Liu, Cheng-song

    2016-12-01

    Effect of plasma molybdenizing and shot-peening on fretting wear and fretting fatigue behaviors of Ti6Al4V alloy was investigated. The plasma molybdenized layer composed of a dense molybdenum deposition layer and a Mo-Ti solid-solution layer can increase surface hardness by 2.8 times and cause its volume loss by fretting wear to decrease to 1/14 compared with that of the substrate. Plasma molybdenized treatment results in a significant decrease in resistance of the substrate to fretting fatigue. It is ascribed that the molybdenized layer with high hardness yields a low toughness, and its high surface roughness leads to a micro-notched effect. However, proper combination plasma molybdenizing and subsequent shot-peening may enhance the simultaneous fretting fatigue and fretting wear resistance of Ti6Al4V significantly, which can decrease the fretting wear volume loss to 1/27, and may increase the fretting fatigue life by more than 69 times. A synergistic improvement in fretting fatigue of the titanium alloy by combining surface alloying with shot-peening can be achieved. The results indicate that a beneficial residual compressive stress distribution, high surface hardness with suitable hardness gradient distribution, good apparent toughness, relatively low surface roughness, and excellent surface integrity are achieved.

  14. Improvement of torsional fatigue limit and rendering surface defect harmless by shot peening for spring steel

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Nakagawa, M.; Koike, H.; Okada, H.

    2017-05-01

    The effects of shot peening (SP) on the torsional fatigue limit of spring steel (SUP7) were investigated for specimens with Vickers hardness values of 460, 540, and 670 HV containing a semicircular surface slit. SP was conducted on smooth specimens and specimens containing a semicircular surface slit with a depth of 0.15 or 0.3 mm. Compressive residual stress was introduced into the specimens by SP. Torsional fatigue tests were carried out under a stress ratio of R = -1. The torsional fatigue limits of the shot peened specimens with Vickers hardness values of 460, 540, and 670 HV increased by 8%-67%, 33%-143%, and 36%-127%, respectively, in comparison with the non-shot peened specimens. The maximum depth of the slit that could be rendered harmless by SP was 0.15 mm for the 460 and 670 HV specimens. However, even a slit with a depth of less than 0.15 mm could not be rendered harmless by SP for the 540 HV specimen. Considering the improvement in the torsional fatigue limit and the size of the surface defect that could be rendered harmless by SP, the 670 HV specimen is optimal for practical use.

  15. 3M heavy duty roto peen: Baseline report; Greenbook (chapter)

    SciTech Connect

    1997-07-31

    The heavy-duty roto peen technology is being evaluated at Florida International University (FIU) as a baseline technology. It is a commercially available technology and has been used for various projects at locations throughout the country. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the human factors assessment for safety and health issues. The heavy-duty roto peen allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy-duty flexible flap. The shot rivet is kept captive to the tool by mounting the roto peen in a slotted hub. The heavy-duty roto peen is designed to be used with several commercially available pieces of equipment. The equipment being used will determine the width of each pass. The equipment being used with the roto peen is then connected to a vacuum system for dust collection during scabbling. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  16. 3M heavy duty roto peen: Baseline report

    SciTech Connect

    1997-07-31

    The heavy-duty roto peen technology was being evaluated at Florida International University (FIU) as a baseline technology. It is a commercially available technology and has been used for various projects at locations throughout the country. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the human factors assessment for safety and health issues. The heavy-duty roto peen allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy-duty flexible flap. The shot rivet is kept captive to the tool by mounting the roto peen in a slotted hub. The heavy-duty roto peen is designed to be used with several commercially available pieces of equipment. The equipment being used will determine the width of each pass. The equipment being used with the roto peen is then connected to a vacuum system for dust collection during scabbling. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  17. Histologic effects of resurfacing lasers.

    PubMed

    Freedman, Joshua R; Greene, Ryan M; Green, Jeremy B

    2014-02-01

    By utilizing resurfacing lasers, physicians can significantly improve the appearance of sun-damaged skin, scars, and more. The carbon dioxide and erbium:yttrium-aluminum-garnet lasers were the first ablative resurfacing lasers to offer impressive results although these earlier treatments were associated with significant downtime. Later, nonablative resurfacing lasers such as the neodymium:yttrium-aluminum-garnet laser proved effective, after a series of treatments with less downtime, but with more modest results. The theory of fractional photothermolysis has revolutionized resurfacing laser technology by increasing the safety profile of the devices while delivering clinical efficacy. A review of the histologic and molecular consequences of the resurfacing laser-tissue interaction allows for a better understanding of the devices and their clinical effects.

  18. Investigation on Residual Stress Induced by Shot Peening

    NASA Astrophysics Data System (ADS)

    Zhao, Chunmei; Gao, Yukui; Guo, Jing; Wang, Qiang; Fu, Lichao; Yang, Qingxiang

    2015-03-01

    The high strength steel widely used in the aviation industry was chosen in this paper. The shot peening (SP) tests with different technical parameters were carried out, and compressive residual stress (CRS) distribution along the depth was determined. The phase structures before and after SP were analyzed by XRD and TEM. Microhardness and fatigue life were measured, and the morphology of fatigue fracture was also observed. The effects of different technical parameters on CRS field were investigated, and the CRS features with the characteristic parameters were analyzed deeply to summarize the rules. The results show that the CRS field induced by SP can be expressed by four characteristic parameters: the surface CRS σsrs, the maximum CRS σmrs, the depth of maximum CRS ξm and the depth of CRS (strengthened depth) ξ0. Martensite matrix is not changed by SP, while its boundary changes ambiguous with the formation of dislocations. After SP, the microhardness of the specimen increase, and the fatigue crack source moves inwards. The SP saturated time is 1 min. With the increase of SP intensity, σsrs, σmrs, ξm, and ξ0 all increase. While with the increase of SP angle, ξ0 grows gradually. The strengthen effect behaves more obviously as the shot size increases, and the shot material with larger hardness cause higher level of CRS field. Dual SP mainly increases σsrs value.

  19. Competition Effects in Lasers.

    DTIC Science & Technology

    1980-11-01

    Laser", L. Mandel, in Optica Hoy Y Manana-ICO-ll, eds. J. Bescos, A. Hidalgo, L. Plaza and J. Santamaria ( Sociedad Espanola de Optica, Madrid, 1979) pp...previously derived equations for two-mode lasers. 24. " Inversion Problem in Photon Counting with Dead Time", L. Mandel, J. Opt. Soc. Am. 70, 873-874 (1980...temporal variation of atomiz inversion on the fluctuation proper- ties have been investigated in the coherent state diagonal representation of the

  20. Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy

    NASA Astrophysics Data System (ADS)

    Yao, Changfeng; Wu, Daoxia; Ma, Lufei; Tan, Liang; Zhou, Zheng; Zhang, Jiyin

    2016-11-01

    Surface integrity is closely related to the service life of parts and components. Effects of four kinds of integration processes on surface integrity and fatigue life are studied. These four integration processes are M (milling), MP (milling and polishing), MPS (milling, polishing and shot-peening), and MPSP (milling, polishing, shot-peening and polishing). When roughness, micro-hardness, residual stress, micro-structure and fatigue were considered after the four integration processes, research results show that MPSP process can obtain the best surface topography and roughness, micro-hardness, and residual stress field distribution; MPSP process has the longest fatigue life, and the fatigue life of MPSP process is about 68 times of M process, 56 times of MP process, and 48 times of MPS process; The fatigue fracture of the specimen after MPSP process is flat, and the depth of the crack initiation site for MPSP specimen is approximately 150 μm below the surface.

  1. Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Stráský, Josef; Havlíková, Jana; Bačáková, Lucie; Harcuba, Petr; Mhaede, Mansour; Janeček, Miloš

    2013-09-01

    Presented work aims at multi-method characterization of combined surface treatment of Ti-6Al-4V alloy for biomedical use. Surface treatment consists of consequent use of electric discharge machining (EDM), acid etching and shot peening. Surface layers are analyzed employing scanning electron microscopy and energy dispersive X-ray spectroscopy. Acid etching by strong Kroll's reagent is capable of removing surface layer of transformed material created by EDM. Acid etching also creates partly nanostructured surface and significantly contributes to the enhanced proliferation of the bone cells. The cell growth could be positively affected by the superimposed bone-inspired structure of the surface with the morphological features in macro-, micro- and nano-range. Shot peening significantly improves poor fatigue performance after EDM. Final fatigue performance is comparable to benchmark electropolished material without any adverse surface effect. The proposed three-step surface treatment is a low-cost process capable of producing material that is applicable in orthopedics.

  2. Nominal vs Local Shot-Peening Effects on Fatigue Lifetime in Ti-6Al-2Sn-4Zr-6Mo at Elevated Temperature

    DTIC Science & Technology

    2009-11-01

    surface. there is no clear rela tionship of the depth of initiation with lifetime. Furt hermore. Figure 8(b) indica tes that the retained nomina l...probabilistic description of the fa tigue response tha t integrates the nomina lly dri ven V.I" the locally con tro lled effects may provide a...faceting a nd wi ll be discussed in detail in another article. D. Nomina / l’s L~ll.·-Ljmiljllg Failure Mechani.m rs lIIula SP Typical crack initia

  3. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.

    PubMed

    Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J

    2015-12-01

    Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram

  4. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated SteelWebs.

    PubMed

    Wang, Zhi-Yu; Wang, Qing-Yuan; Liu, Yong-Jie

    2015-08-19

    Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates.

  5. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated Steel Webs

    PubMed Central

    Wang, Zhi-Yu; Wang, Qing-Yuan; Liu, Yong-Jie

    2015-01-01

    Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates. PMID:28793509

  6. Laser effects on osteogenesis

    NASA Astrophysics Data System (ADS)

    Freitas, I. G. F.; Baranauskas, V.; Cruz-Höfling, M. A.

    2000-02-01

    The traumatic or surgical cutting of a long bone is immediately followed by a sequence of repair processes in which the osteogenic cells of the periosteum start to proliferate and differentiate in osteoblast cells. In this work, we explored the influence of a He-Ne laser on osteogenesis after a controlled surgical fracture. We used young male adult Wistar rats (of mass between 250 and 300 g). The fracture was provoked by piercing a 2-mm-diameter hole in just one cortical tibia surface. Laser treatment was started 24 h after the surgery. The animals were separated into three groups, for different radiation doses, and after daily applications, they were sacrificed at 8 or 15 days. Light and electron microscopies revealed that the laser treatment of the lesion with doses of 31.5 and 94.7 J cm -2 resulted in the formation of thicker bony trabeculae, which indicates a greater synthesis of collagen fibers and therefore that the osteoblastic activity was increased by the low-energy laser radiation.

  7. Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Trško, Libor; Guagliano, Mario; Bokůvka, Otakar; Nový, František; Jambor, Michal; Florková, Zuzana

    2017-04-01

    The ever more pressing and concurrent requirements of light design, increased performances and reliability, energy savings together with acceptable costs, is always pushing researchers and engineers toward the definition and application of new materials and treatments, able to guarantee superior properties and adequate repeatability and reliability. This means that one step beyond the definition of a potentially successful solution, a complete characterization of the new materials is needed, in order to get the right data and use them in the design process. A promising severe plastic deformation surface treatment to improve the fatigue properties of materials and metal parts is considered in this paper. The used treatment is called the severe shot peening, and it is derived from the conventional shot peening but with use of unusually high peening parameters. It was proven that it is able to generate a nanostructured surface layer of material, which results in superior fatigue properties when applied to many structural materials. The severe shot peening is applied to an AW 7075 Al alloy, widely used in mechanical and aeronautic constructions and the effects of such a treatment on this material are investigated in this paper, with particular emphasis on the ultra-high-cycle fatigue behavior. The results address the choice of the correct treatment parameters for getting an evaluable advantage of this treatment and are critically discussed for a complete understanding of the mechanisms leading to the modified fatigue behavior, in view of the future developments and research in the field.

  8. Competition Effects in Lasers.

    DTIC Science & Technology

    1981-11-01

    Colloquium of the Departments of Physics, University of Waterloo and University of Guelph , at University of Waterloo, Canada, November 6, 1980. S. "Laser Phase...Transitions", L. Mandel, Joint Colloquium of the Departments of Physics, University of Waterloo and University of Guelph at University of Waterloo...THE UNIVERSITY OF ROCHESTER aDEPARTMENT O.1F PHYSICS AND ASTRONOMY ROCHESTER, NEW YORK- 81 12 140 0 &cw,76l I, SECURITY CLASSIFICATION OF THIS PAGE

  9. Correlation Between Eddy Current Signal Noise and Peened Surface Roughness

    SciTech Connect

    Wendt, S. E.; Hentscher, S. R.; Raithel, D. C.; Nakagawa, N.

    2007-03-21

    For advanced uses of eddy current (EC) NDE models in, e.g., model-assisted POD, there is a need to understand the origin of EC noise sources so that noise estimations can be made for a given set of inspection conditions, in addition to defect signal predictions. This paper focuses on the material-oriented noise sources that exhibit some universality when isolated from electrical and mechanical noises. Specifically, we report on experimental measurements that show explicit correlations between surface roughness and EC noise as seen in post-peen EC measurements of shot-peened roughness specimens. The samples are 3''-by-3'' Inconel 718 and Ti-6A1-4V blocks, pre-polished and shot-peened at Almen intensities ranging from a low of 4N to as high as 16A, created by smaller ({approx}350 {mu}m) and larger ({approx}1 mm) diameter zirconium oxide shots. Strong correlations are observed between the Almen intensities and the measured surface roughness. The EC noise correlates equally strongly with the Almen intensities for the superalloy specimens. The correlation for the Ti-alloy samples is only apparent at higher intensities, while being weak for lower intensities, indicating the grain noise dominance for smoother surfaces.

  10. Effects of Lasers on Driving (Briefing Charts)

    DTIC Science & Technology

    2010-11-15

    primary finding of the work was the importance of ambient light in determining effectiveness of green laser distractor in suppressing driver approach. While...effectiveness metrics, driving, lasers, green laser distractor , optical suppression , human behavior, checkpoint, ambient light, driver suppression , human...second experiment assessed the relative effectiveness of optical suppression . Subjects drove a straight course which dead ended, forcing the subject

  11. Principles of lasers and biophotonic effects.

    PubMed

    Knappe, Verena; Frank, Frank; Rohde, Ewa

    2004-10-01

    In this review, we discuss how, due to a variety of different interactions between laser radiation and biological tissue, the laser has become an established instrument in most medical fields. Depending on the interaction time and the effective power density, three types of laser tissue interaction can be distinguished: photochemical effects, photothermal effects, and photomechanical and photoionizing effects. After a description of the physical mechanisms, the typical parameters, and the medical applications of these effects, a review of the laser types used in medicine is given. For percutaneous laser disc decompression (PLDD), lasers in the near-infrared region (Nd:YAG, Ho:YAG, and diode lasers) and with visible green radiation (frequency doubled Nd:YAG, called "KTP laser") were reported to be effective.

  12. Laser irradiation effects on gold

    NASA Astrophysics Data System (ADS)

    Khaleeq-Ur-Rahman, M.; Bhatti, K. A.; Rafique, M. S.; Latif, A.; Lee, P.; Mahmood, S.

    2007-12-01

    Investigations on the laser irradiation effects on gold are explored in terms of plasma-plume dynamics and morphological and crystallographic changes. Annealed 4N gold samples were irradiated with a Q-switched Nd:YAG laser (53 mJ, 21 MW, 532 nm, and pulse width 6-8 ns) for plume dynamics using 10-ns gated fast photography. A Q-switched pulsed Nd:YAG laser (10 mJ, 1.1 MW, 1064 nm, and pulse width 9 ns) was used to irradiate the surface of the samples for morphological and crystallographic studies of laser-irradiated gold in a vacuum ˜10-3 Torr. The annealed samples were exposed to 50 shots of a Nd:YAG laser (10 mJ, 1.1 MW, 1064 nm, and pulse width 9 ns). The investigation on the plume was done by using an intensified charged-couple device ICCD-5760/IR-UV camera. The morphological investigation of the irradiated surface was carried out by analyzing micrographs obtained using an Hitachi S 3000 H scanning-electron microscope (SEM). The crystallographic studies of the irradiated samples were performed by analyzing the XRD patterns obtained using an X’ Pert Pro Pan Analytical X-ray diffractometer. The investigation on gated ICCD images of the plume reveal that, at very earlier times, the plasma-plume expansion has a linear trend, whereas, at later times, the plasma-plume expansion is nonuniform. SEM micrographs exhibit the primary mechanisms of pulsed-laser ablation (PLA), such as hydrodynamic sputtering, thermal sputtering, exfoliation sputtering, and splashing. The surface morphology was explained in terms of crater formation, swelling, burning, nucleation, grain growth, and nonsymmetric heat conduction. The nonuniform thermal expansion of gold due to thermal-energy transfer is also studied by SEM micrographs, which was supported by XRD analysis. The structural analysis on the basis of XRD shows that the composition of the irradiated samples is not disturbed even after laser irradiation. The grain sizes also changed due to laser irradiation.

  13. Effective temperatures of polymer laser ablation

    NASA Astrophysics Data System (ADS)

    Furzikov, Nickolay P.

    1991-09-01

    Effective temperatures of laser ablation of certain polymers are extracted from experimental dependences of ablation depths on laser fluences. Dependence of these temperatures on laser pulse durations is established. Comparison with the known thermodestruction data shows that the effective temperature corresponds to transient thermodestruction proceeding by the statistically most probable way.

  14. [Effects in eyes, caused by laser rays emitted by laser-beam projectors].

    PubMed

    Mal'kova, N Iu; Ushkova, I N; Romanenko, E I

    2014-01-01

    Health assessment of laser radiation emitted by laser-beam projectors used for laser shows in concert and theatrical events was carried out. The effects of various laser radiation wavelengths and regimes on functional state of eye retina were studied.

  15. Nondestructive evaluation of near-surface residual stress in shot-peened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Yu, Feng

    Surface enhancement methods, which produce beneficial compressive residual stresses and increased hardness in a shallow near-surface region, are widely used in a number of industrial applications, including gas-turbine engines. Nondestructive evaluation of residual stress gradients in surface-enhanced materials has great significance for turbine engine component life extension and their reliability in service. It has been recently found that, in sharp contrast with most other materials, shot-peened nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, which can be exploited for nondestructive residual stress assessment. The primary goal of this research is to develop a quantitative eddy current method for nondestructive residual stress profiles in surface-treated nickel-base superalloys. Our work have been focused on five different aspects of this issue, namely, (i) validating the noncontacting eddy current technique for electroelastic coefficients calibration, (ii) developing inversion procedures for determining the subsurface residual stress profiles from the measured apparent eddy current conductivity (AECC), (iii) predicting the adverse effect of surface roughness on the eddy current characterization of shot-peened metals, (iv) separating excess AECC caused by the primary residual stress effect from intrinsic conductivity variations caused by material inhomogeneity, and (v) investigating different mechanisms through which cold work could influence the AECC in surface-treated nickel-base superalloys. The results of this dissertation have led to a better understanding of the underlying physical phenomenon of the measured excess AECC on nickel-base engine alloys, and solved a few critical applied issues in eddy current nondestructive residual stress assessment in surface-treated engine components and, ultimately, contributed to the better utilization and safer operation of the Air Force's aging

  16. On the Eigenstrain Application of Shot-Peened Residual Stresses Within a Crystal Plasticity Framework: Application to Ni-Base Superalloy Specimens (Postprint)

    DTIC Science & Technology

    2016-01-06

    APPLICATION OF SHOT-PEENED RESIDUAL STRESSES WITHIN A CRYSTAL PLASTICITY FRAMEWORK: APPLICATION TO NI-BASE SUPERALLOY SPECIMENS (POSTPRINT) 5a...expansion eigenstrain as a function of depth from the specimen surface. Two different material models are used, a J2 plasticity and a crystal ...distribution of quasi-thermal expansion eigenstrain is then used within a crystal plasticity framework to model the effect of microstructure

  17. Effects of radiation on laser diodes.

    SciTech Connect

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  18. Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wei, Ying-Kang; Luo, Xiao-Tao; Li, Cheng-Xin; Li, Chang-Jiu

    2017-01-01

    Magnesium-based alloys have excellent physical and mechanical properties for a lot of applications. However, due to high chemical reactivity, magnesium and its alloys are highly susceptible to corrosion. In this study, Al6061 coating was deposited on AZ31B magnesium by cold spray with a commercial Al6061 powder blended with large-sized stainless steel particles (in-situ shot-peening particles) using nitrogen gas. Microstructure and corrosion behavior of the sprayed coating was investigated as a function of shot-peening particle content in the feedstock. It is found that by introducing the in-situ tamping effect using shot-peening (SP) particles, the plastic deformation of deposited particles is significantly enhanced, thereby resulting in a fully dense Al6061 coating. SEM observations reveal that no SP particle is deposited into Al6061 coating at the optimization spraying parameters. Porosity of the coating significantly decreases from 10.7 to 0.4% as the SP particle content increases from 20 to 60 vol.%. The electrochemical corrosion experiments reveal that this novel in-situ SP-assisted cold spraying is effective to deposit fully dense Al6061 coating through which aqueous solution is not permeable and thus can provide exceptional protection of the magnesium-based materials from corrosion.

  19. The application for controlled shot peening for the prevention of stress corrosion cracking (SCC)

    SciTech Connect

    Daly, J.

    1995-12-31

    Shot peening is a cold working process where spherical media called shot bombards the surface of a part. Each piece of shot acts as a tiny peening hammer imparting to the surface a small dimple. In the process, the surface fibers of the material are yielded in tension. Below the surface, the fibers try to restore the surface to its original shape thereby producing a hemisphere of cold worked material highly stressed in compression. Complete overlapping dimples develop an even layer of residual compressive stress. SCC is a progressive fracture mechanism that is caused by the simultaneous interaction of a corrodent and a sustained tensile stress. The tensile stresses necessary for SCC are static and they may be residual and/or applied. Compressive residual stresses such as those induced by controlled shot peening can be used to prevent or delay SCC. This paper will deal with the theory, applications and controls of the shot peening process.

  20. Effect of Laser Irradiation on Enzyme Activity

    NASA Astrophysics Data System (ADS)

    Murakami, Satoshi; Kashii, Masafumi; Kitano, Hiroshi; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Doi, Masaaki; Sugamoto, Kazuomi; Yoshikawa, Hideki; Sasaki, Takatomo

    2005-11-01

    We previously developed a protein crystallization technique using a femtosecond laser and protein crystal processing and detaching techniques using a pulsed UV laser. In this study, we examine the effect of laser irradiation on protein integrity. After several kinds of laser were irradiated on part of a solution of glycerol-6-phosphate dehydrogenase from Leuconostoc mesenteroides, we measured the enzyme activity. Femtosecond and deep-UV laser irradiations have little influence on the whole enzyme activity, whereas the enzyme lost its activity upon high-power near-infrared laser irradiation at a wavelength of 1547 nm. These results suggest that suitable laser irradiation has no remarkable destructive influence on protein crystallization or crystal processing.

  1. Cavitation and Electrochemical Characteristics in Seawater by Water Cavitation Peening of 5083-O al Alloy for Ships

    NASA Astrophysics Data System (ADS)

    Hyun, Koangyong; Kim, Seong-Jong

    Aluminum (Al) alloy ships are vulnerable to both damage from chlorine ions in seawater environments and cavitation-erosion due to fast relative motion of metal and liquid resulting from lightweight and high-speed vessels moving through seawater. These corrosive processes cause damage to the hulls of ships, resulting in large economic losses. Recently, cavitation peening technology to improve the durability of a material has been in development. The technology works by forming compressive residual stress on the surface layer of the material in order to improve fatigue strength and fatigue life. In this study, we performed a water cavitation peening (WCP) on a 5083-O Al alloy for ships by applying an ultrasonic piezoelectric effect and cavitation effect, as described in ASTM-G32. From these experiments, we determined an optimum WCP duration, 2.5min, for sufficient cavitation resistance characteristics. This timing improved cavitation resistance by 48.68% compared to the untreated condition. A comprehensive comparison of all of results revealed that the optimum WCP duration was 3min with respect to the point of cavitation and corrosion resistance.

  2. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  3. Laser tattoo removal, precautions, and unwanted effects.

    PubMed

    Eklund, Yvonne; Rubin, Agneta Troilius

    2015-01-01

    Laser tattoo removal uses the physical properties of photoselective thermolysis in order to remove tattoo pigment. The technique has gradually improved over the years with the development of Q-switched lasers, with overall good results and a relatively low degree of adverse effects. However, lasers cannot always erase the unwanted tattoo completely, and there are still risks of unwanted effects such as scarring, pigment changes, ink darkening, and potential aggravation of latent skin conditions. This chapter will discuss the precautions that have to be taken and what pitfalls to avoid before starting the procedure of laser tattoo removal.

  4. Lasers effects on enamel for caries prevention

    NASA Astrophysics Data System (ADS)

    Ana, P. A.; Bachmann, L.; Zezell, D. M.

    2006-05-01

    The aim of this study was to ascertain whether laser irradiation is able to reduce caries incidence. For this purpose, the effects of laser on enamel and on fluoride uptake were discussed. Current literature regarding the preventive effect of laser irradiation on dental hard tissue has been reviewed. An evaluation of the results of the available in vitro and in vivo studies on the efficacy of anticaries and induced changes on enamel by laser irradiation were also performed. Articles were selected using the Medline, Web of Science, Embase, and Cochrane databases, and the results of these studies were described. The most common lasers employed for caries prevention on enamel are Nd:YAG; CO2; Er:YAG; Er,Cr:YSGG; and argon. The percentage of inhibition of dental caries varied from 30 to 97.2%, and the association with fluoride has demonstrated the best results on inhibition of caries development. Laser irradiation under specific conditions can change the crystallographic properties of apatite crystals, increasing the acid resistance of lased enamel. The combined treatment of laser irradiation with fluoride propitiates an expressive fluoride uptake, reducing the progression of carieslike lesions, and this treatment is more effective than laser or fluoride alone. Available data suggest that lasers combined with fluoride is a promising treatment in caries prevention.

  5. Plasma heating effects during laser welding

    NASA Astrophysics Data System (ADS)

    Lewis, G. K.; Dixon, R. D.

    Laser welding is a relatively low heat input process used in joining precisely machined components with minimum distortion and heat affects to surrounding material. The CO2 (10.6 (MU)m) and Nd-YAG (1.06 (MU)m) lasers are the primary lasers used for welding in industry today. Average powers range up to 20 kW for CO2 and 400 W for Nd-YAG with pulse lengths of milliseconds to continuous wave. Control of the process depends on an understanding of the laser-plasma-material interaction and characterization of the laser beam being used. Inherent plasma formation above the material surface and subsequent modulation of the incident laser radiation directly affect the energy transfer to the target material. The temporal and spatial characteristics of the laser beam affect the available power density incident on the target, which is important in achieving repeatability in the process. Other factors such as surface texture, surface contaminants, surface chemistry, and welding environment affect plasma formation which determines the weld penetration. This work involves studies of the laser-plasma-material interaction process and particularly the effect of the plasma on the coupling of laser energy to a material during welding. A pulsed Nd-YAG laser was used with maximum average power of 400 W.

  6. [Laser trabeculoplasty: therapeutic options and adverse effects].

    PubMed

    Wacker, T; Eckert, S

    2010-01-01

    Laser trabeculoplasty is a simple method for treating glaucoma and ocular hypertension and has few adverse effects. There are different laser systems for reducing the intraocular pressure of patients with glaucoma and ocular hypertension. Complications include transient intraocular pressure elevation, iritis, and anterior synechiae.

  7. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  8. Laser Pointer and the Tyndall Effect

    NASA Astrophysics Data System (ADS)

    Thomas, Eugene

    1996-05-01

    Laser pointers provide a convenient way to demonstrate the Tyndall effect to beginning students. Since my class is at 8:00 a.m. I like to use coffee and milky water parts as part of the demonstration.

  9. Zeeman effect induced by intense laser light.

    PubMed

    Stambulchik, E; Maron, Y

    2014-08-22

    We analyze spectral line shapes of hydrogenlike species subjected to fields of electromagnetic waves. It is shown that the magnetic component of an electromagnetic wave may significantly influence the spectra. In particular, the Zeeman effect induced by a visible or infrared light can be experimentally observed using present-day powerful lasers. In addition, the effect may be used for diagnostics of focused beam intensities achieved at existing and newly built laser facilities.

  10. Characterization of mechanical shock waves in aluminum 6061-T6 using a high power laser pulse

    NASA Astrophysics Data System (ADS)

    Gonzalez Romero, J. R.; García-Torales, G.; Gómez Rosas, G.; Ocaña, J. L.; Flores, Jorge L.

    2016-09-01

    Strengthening techniques allows enhance metal physical properties. Laser shock peening (LSP) technique consist in a surface treatment which a high power laser pulse induces a compressive residual stress field through mechanical shock waves, increasing hardness, corrosion resistance, fatigue resistance. In comparison with the shot peening technique, LSP is a method that allows precision controlling the laser incidence on the surface under treatment increasing the surface quality in the surface under treatment. In this work, mechanical shock waves are induced in aluminum and measure using two different experimental approaches. First, using a PVDZ sensors and secondly, strain gauges are used. Experimental results are presented.

  11. Retention of Compressive Residual Stresses Introduced by Shot Peening in a Powder Metal Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Danetti, Andrew; Draper, Susan L.; Locci, Ivan E.; Telesman, Jack

    2016-01-01

    The fatigue lives of disk superalloys can be increased by shot peening their surfaces, to induce compressive residual stresses near the surface that impede cracking there. As disk application temperatures increase for improved efficiency, the persistence of these beneficial stresses could be impaired, especially with continued fatigue cycling. The objective of this work was to study the retention of residual stresses introduced by shot peening, when subjected to fatigue and high temperatures. Fatigue specimens of powder metallurgy processed nickel-base disk superalloy ME3 were prepared with consistent processing and heat treatment. They were then shot peened using varied conditions. Strain-controlled fatigue cycles were run at room temperature and 704 C, to allow re-assessment of residual stresses.

  12. Laser wavelength effect on nanosecond laser light reflection in ablation of metals

    NASA Astrophysics Data System (ADS)

    Benavides, O.; de la Cruz May, L.; Mejia, E. B.; Ruz Hernandez, J. A.; Flores Gil, A.

    2016-12-01

    Reflection of nanosecond laser pulses with different wavelengths (1.06 and 0.69 µm) in ablation of titanium in air is studied experimentally. The laser wavelength effect on reflection is essential at low laser fluence values. However, it becomes negligible for laser fluence values by about an order of magnitude higher than the plasma ignition threshold. We speculate that the disappearance of the wavelength effect is explained by counter-acting processes of the laser light absorption in plasma, which increases with laser wavelength, and absorption in the surface layer, which decreases with increasing laser wavelength.

  13. Residual Stress Reversal in Highly Strained Shot Peened Structural Elements. Degree awarded by Florida Univ.

    NASA Technical Reports Server (NTRS)

    Mitchell, William S.; Throckmorton, David (Technical Monitor)

    2002-01-01

    The purpose of this research was to further the understanding of a crack initiation problem in a highly strained pressure containment housing. Finite Element Analysis methods were used to model the behavior of shot peened materials undergoing plastic deformation. Analytical results are in agreement with laboratory tensile tests that simulated the actual housing load conditions. These results further validate the original investigation finding that the shot peened residual stress had reversed, changing from compressive to tensile, and demonstrate that analytical finite element methods can be used to predict this behavior.

  14. ROTO PEEN Scalar and VAC-PAC{reg_sign} system

    SciTech Connect

    1998-02-01

    The Pentek, Inc., milling technology, comprising the ROTO PEEN Scaler and the VAC-PAC{reg_sign} waste collection system, is a fully developed and commercialized technology used to remove hazardous coatings from concrete and steel floors, walls, ceilings, and structural components. This report describes a demonstration of the Pentek, Inc., milling system to remove the paint coating from 650 ft{sup 2} of concrete flooring on the service floor of the Chicago Pile-5 (CP-5) Research Reactor. CP-5 is a heavy-water moderated and cooled, highly enriched, uranium-fueled thermal reactor designed to supply neutrons for research. The reactor had a thermal-power rating of 5 megawatts and was operated continuously for 25 years until its final shutdown in 1979. These 25 years of operation produced activation and contamination characteristics representative of other nuclear facilities within the Department of Energy (DOE) complex and the commercial nuclear sector. CP-5 contains many of the essential features of other DOE and commercial nuclear facilities and can be used safely as a demonstration facility for the evaluation of innovative technologies for the future D and D of much larger, more highly contaminated facilities.

  15. Ultrasonic impact peening for the surface properties’ management

    NASA Astrophysics Data System (ADS)

    Mordyuk, Bohdan N.; Prokopenko, Georgiy I.

    2007-12-01

    It is demonstrated that the ultrasonic impact peening (UIP) technique is a beneficial method for essential increase in the fatigue durability of metallic materials due to the surface nanocrystallization and hardening process provided for severe plastic deformation of surface via multiple impacts of high velocity impact pins. Nano-scale grain structures were obtained in the surface layers of stainless steel, low carbon steel weld and different titanium alloys using developed equipment for the UIP. Both the surface nanostructure and compressive residual stresses are shown to attribute to the essential hardness increase. It is revealed experimentally using profilometry that new modification of the UIP apparatus providing high velocity "sliding" impacts leads to marked diminution of the surface roughness, which is another important factor affecting to the fatigue cracks initiation process. The two-dimensional finite element model is used to simulate the indent formation process during single impaction. The solid steel pin and the Al alloy plate are modeled as a rigid material and an elasto-plastic material, respectively. It is shown that the surface roughness magnitude depends on the correlation of the vertical and lateral load components.

  16. Optoelectronic Effect in Laser Transmitter Modules

    NASA Astrophysics Data System (ADS)

    Luc, V. V.; Mien, V. D.; Eliseev, P. G.

    2001-04-01

    Optoelectronic signals in laser transmitter modules based on the voltage saturation effect of laser diode have been experimentally studied for the GaAlAs/GaAs (λ = 830 nm) and InGaAsP/InP (λ= 1310 nm) structures. The behavior of the observed optoelectronic signals has been explained as the changing of the relative position of carrier quazi-Fermi levels. The experimental method for definition of the density inversion threshold in the active region of laser diodes has been established as well as the active region internal gain has been measured. These results give the possibility of using laser transmitter modules at the same time as an amplifier and optical switch.

  17. EXPERIMENTAL-BASED DISCUSSION FOR THE SEPARATION OF RESIDUAL STRESSES AND COLD WORK IN SHOT PEENED IN718 USING HIGH FREQUENCY EDDY CURRENT SPECTROSCOPY

    SciTech Connect

    Hillmann, S.; Heuer, H.; Robbert, A.; Meyendorf, N.; Baron, H.-U.; Bamberg, J.

    2010-02-22

    Typical aero engine alloys, such as IN718, can be surface-treated by shot peening to induce near-surface compressive strains. To calculate the remaining operation time for those critical aero engine components, a quantitative nondestructive determination of near-surface strain gradients has to be developed. We have demonstrated in the past, that it is possible to obtain a characteristic depth profile (surface and sub-surface) of the electrical conductivity of shot peened specimen by using high-frequency eddy current techniques. The measured conductivity profile is resulting from residual stresses, cold work, surface roughness, and the microstructure of the material. The objective is to measure residual stresses (separately from other material properties) in such components after a defined life time. It can be assumed, that surface roughness and microstructure remain unchanged in IN718 materials over their lifetime, but cold work and residual stresses can change independently. Consequently, there is a need to clearly separate the information from both material properties of received eddy current conductivity signals in order to obtain specific information related to residual stresses. This paper presents results acquired from different experiments, conducted to separate both effects by using the eddy current technique on shot peened IN718 materials. We present different physical approaches and illustrate the experiments to solve them. In addition, we will demonstrate that there is a need to use additional techniques, for example ultrasonic time-of-flight measurements, to separate the effects of residual stresses from compound (mixed) signals obtained on cold work samples.

  18. Experimental-Based Discussion for the Separation of Residual Stresses and Cold Work in Shot Peened IN718 Using High Frequency Eddy Current Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillmann, S.; Heuer, H.; Robbert, A.; Baron, H.-U.; Bamberg, J.; Meyendorf, N.

    2010-02-01

    Typical aero engine alloys, such as IN718, can be surface-treated by shot peening to induce near-surface compressive strains. To calculate the remaining operation time for those critical aero engine components, a quantitative nondestructive determination of near-surface strain gradients has to be developed. We have demonstrated in the past, that it is possible to obtain a characteristic depth profile (surface and sub-surface) of the electrical conductivity of shot peened specimen by using high-frequency eddy current techniques. The measured conductivity profile is resulting from residual stresses, cold work, surface roughness, and the microstructure of the material. The objective is to measure residual stresses (separately from other material properties) in such components after a defined life time. It can be assumed, that surface roughness and microstructure remain unchanged in IN718 materials over their lifetime, but cold work and residual stresses can change independently. Consequently, there is a need to clearly separate the information from both material properties of received eddy current conductivity signals in order to obtain specific information related to residual stresses. This paper presents results acquired from different experiments, conducted to separate both effects by using the eddy current technique on shot peened IN718 materials. We present different physical approaches and illustrate the experiments to solve them. In addition, we will demonstrate that there is a need to use additional techniques, for example ultrasonic time-of-flight measurements, to separate the effects of residual stresses from compound (mixed) signals obtained on cold work samples.

  19. The incidence of side effects after laser hair removal

    NASA Astrophysics Data System (ADS)

    Lanigan, Sean W.

    2004-09-01

    Despite the widespread use of lasers for hair removal there is little data published on the incidence of side effects from this treatment. We aimed to generate data on a large number of patients receiving laser hair removal to obtain an accurate assessment of the incidence and type of side effects resulting from treatment. A multicentre prospective study of patients attending for laser hair removal was conducted to determine incidence of side effects in relation to skin type and laser(s) used. Laser hair removal is associated with a low incidence of side effects which are self-limiting in the majority of cases. Highest incidence of side effects was seen in darker skinned patients treated with the long pulsed ruby laser. Laser hair removal is inherently safe. For darker Fitzpatrick skin types the long pulsed Nd:YAG laser is preferred to the ruby laser.

  20. Transient effects in laser cooling

    SciTech Connect

    Padua, S.; Xie, C.; Gupta, R.; Batelaan, H.; Bergeman, T.; Metcalf, H.

    1993-05-01

    Transient laser cooling (TLC) can produce cooling and heating, but often with the opposite detuning from that found in steady state. In TLC the time scale is set by the optical pumping (OP) rate to a state not coupled by the laser field. The combination of such OP processes and the conservative light shift potential U{sub o}sin{sup 2}kz leads to TLC. The average PE of atoms entering a standing wave is U{sub o}/2. They experience the optical force until undergoing OP to an uncoupled state, which is more likely to happen at high light intensity, near an antinode. For {delta} > 0 this means higher PE and thus lower KE, and conversely for {delta} < 0. In TLC there is no final {open_quotes}temperature{close_quotes} resulting from competition between a damping force and diffusive heating. Instead the changes in KE are bounded by U{sub o} so that the signal widths decrease with intensity. This can result in sub-Doppler widths. We have made two independent theoretical studies of these experiments. In a semiclassical calculation we evolve the motion for a calculated OP time and calculate the velocity distribution. We have also performed fully quantum mechanical calculations of the motion of atoms in the standing wave whose basis set consists of product states of internal and external atomic coordinates.

  1. Laser-assisted photoelectric effect from surfaces.

    PubMed

    Miaja-Avila, L; Lei, C; Aeschlimann, M; Gland, J L; Murnane, M M; Kapteyn, H C; Saathoff, G

    2006-09-15

    We report the first observation of the laser-assisted photoelectric effect from a solid surface. By illuminating a Pt(111) sample simultaneously with ultrashort 1.6 eV and 42 eV pulses, we observe sidebands in the extreme ultraviolet photoemission spectrum. The magnitude of these sidebands as a function of time delay between the laser and extreme ultraviolet pulses represents a cross-correlation measurement of the extreme ultraviolet pulse. This effect promises to be useful to extend extreme ultraviolet pulse duration measurements to higher photon energies, as well as opening up femtosecond-to-attosecond time-scale electron dynamics in solid and surface-adsorbate systems.

  2. X-ray Diffraction as a Means to Assess Fatigue Performance of Shot-Peened Materials

    DTIC Science & Technology

    2012-06-01

    titanium 6 - 4 fatigue data exhibited similar trends to the 9310 steel material. Low shot- peening intensities (4A and 8A) improved fatigue performance... 6 Figure 4 ...7 Figure 4 . Residual stress and diffraction peak width data from the beta-STOA titanium 6Al-4V disks. attributed to the hardness of the

  3. Effect of laser irradiation of donor blood on erythrocyte shape.

    PubMed

    Baibekov, I M; Ibragimov, A F; Baibekov, A I

    2012-04-01

    Changes in erythrocyte shape in donor blood during storage and after irradiation with He-Ne laser and infrared laser were studied by scanning electron microscopy, thick drop express-method, and morphometry. It was found that laser irradiation delayed the appearance of erythrocytes of pathological shapes (echinocytes, stomatocytes, etc.) in the blood; He-Ne laser produced a more pronounced effect.

  4. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO2 laser.

    PubMed

    Lee, Teaghee; Choi, Jong Woon; Kim, Yong Pyung

    2012-09-01

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO(2) laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  5. Effects of laser fluence on silicon modification by four-beam laser interference

    SciTech Connect

    Zhao, Le; Li, Dayou; Wang, Zuobin Yue, Yong; Zhang, Jinjin; Yu, Miao; Li, Siwei

    2015-12-21

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm{sup 2}, 495 mJ/cm{sup 2}, and 637 mJ/cm{sup 2}, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications.

  6. Laser radiation effects on Mycoplasma agalactiae

    NASA Astrophysics Data System (ADS)

    Dinu, Cerasela Z.; Grigoriu, Constantin; Dinescu, Maria; Pascale, Florentina; Popovici, Adrian; Gheorghescu, Lavinia; Cismileanu, Ana; Avram, Eugenia

    2002-08-01

    The biological effects of the laser radiation emitted by the Nd:YAG laser (second harmonic, wavelength 532 nm /fluence 32 mJ/cm2/pulse duration 6 ns) on the Mycoplasma agalactiae bacterium were studied. The radiation was found to intensify the multiplication of the bacteria irradiated in TRIS buffer (0.125 M), without however affecting the proteinic composition of the cell membrane. When the bacteria were irradiated in their growth medium (PPLO broth) being later cultivated on a solid medium (PPLO agar), the exclusive presence of the atypical colonies (granular and T-like ones) was noticed.

  7. Inertial effects in laser-driven ablation

    SciTech Connect

    Harrach, R.J.; Szeoke, A.; Howard, W.M.

    1983-07-15

    The gasdynamic partial differential equations (PDE's) governing the motion of an ablatively accelerated target (rocket) contain an inertial force term that arises from acceleration of the reference frame in which the PDE's are written. We give a simple, intuitive description of this effect, and estimate its magnitude and parametric dependences by means of approximate analytical formulas inferred from our computer hydrocode calculations. Often this inertial term is negligible, but for problems in the areas of laser fusion and laser equation of state studies we find that it can substantially reduce the attainable hydrodynamic efficiency of acceleration and implosion.

  8. Green laser irradiation effects on buffalo semen.

    PubMed

    Abdel-Salam, Z; Dessouki, S H M; Abdel-Salam, S A M; Ibrahim, M A M; Harith, M A

    2011-04-01

    The overall objective of this paper is to develop a more sensitive and less costly technique of laser irradiation of spermatozoa at certain wavelengths and exposure times suitable for improvement of buffalo semen quality. A 532 nm continuous wave (CW) DPSS laser light has been used to irradiate buffalo semen for different time intervals. Three semen pools from three different bulls (Bubalus bubalis) were used in the experiment, each pool was divided into six groups : control (not irradiated), and the other five were exposed to laser light for 1, 2, 3, 4 and 5 minutes with fluencies of 0.076, 0.15, 0.23, 0.31, and 0.38 Joule/cm² respectively at an output power 1mW. The results show that the semen quality parameters increase under the effect of laser irradiation. Maximum improvement in the semen quality has been reached after 4 minutes of exposure. Such results indicate the possibility of adopting laser irradiation as an easy and straightforward technique for in situ improvement of the semen quality to optimize the artificial insemination conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Ocular effects of relatively eye safe lasers

    NASA Astrophysics Data System (ADS)

    Stuck, B. E.; Lund, D. J.; Beatrice, E. S.

    1982-06-01

    Laser devices are an important part of current and future Army systems. Laser rangefinders, designators, communicators, and training devices are currently deployed or are in some stage of development. Most current laser rangefinders and designators, which enhance the effectiveness of the modern Army weapon systems, operate in the visible and near infrared region of the electromagnetic spectrum. The eye is particularly vulnerable in this wavelength region. The collimated laser radiation collected by the eye is transmitted by the ocular media with little attenuation and focused to a small spot on the sensory retina. The retinal irradiance is several orders of magnitude greater than that incident on the cornea; therefore, the total intraocular energy required to produce a retinal lesion is small. Lasers with output characteristic similar to those being fielded are capable of producing serious retinal injury at ranges that are tactically significant (1). The use of binoculars or magnifying optics increases the range at which these injuries can occur. Such devices cannot be used in training exercises without appropriate control restrictions or the use of protective devices. In some cases, training with the actual system in a realistic scenario is inhibited by these restrictions and troop proficiency may never be attained.

  10. Effect of excimer laser on microbiological organisms

    SciTech Connect

    Keates, R.H.; Drago, P.C.; Rothchild, E.J.

    1988-10-01

    The effect of radiation emitted from an excimer laser filled with argon fluoride gas at 193 nm on Serratia marcescens, Pseudomonas aeruginosa, Staphylococcus aureus, streptococcus faecalis, Hemophilus influenzae, Candida albicans, and Aspergillus niger (collectively labeled the microorganisms) was examined. Colonies were subjected to a variable number of radiation pulses from the excimer laser applied after a 36-hour period of incubation at 37 degrees C, at which time the colonies were fully grown and showed no viability. The lack of viability was confirmed with a subculture from each area that received radiation; all subcultures were negative. The characteristics of the radiation paralleled those used by Serdavic, Darrell, Krueger, et al in 1985. This radiation treatment is believed to be within a therapeutic range, which suggests that the excimer laser, pending further investigation, may be useful in the treatment of corneal infections.

  11. Inverse Vernier effect in coupled lasers

    NASA Astrophysics Data System (ADS)

    Ge, Li; Türeci, Hakan E.

    2015-07-01

    In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the "supermodes" formed at overlapping resonances of these two cavities have the lowest thresholds as previously found, leading to lasing at these overlapping resonances and a manifestation of the typical Vernier effect, but also they can have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. The inverse Vernier effect can also lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings in several previous studies. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

  12. Calculation and comparison of thermal effect in laser diode pumped slab lasers with different pumping structures

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Jiang, Nan; Wang, Yuefeng; Dong, Wei; Niu, Yanxiong

    2008-03-01

    Laser diode (LD) pumped slab laser, as an important high average power solid-state laser, is a promising laser source in military and industrial fields. The different laser diode pumping structures lead to different thermal effect in the slab gain medium. The thermal and stress analysis of slab laser with different pumping structure are performed by finite element analysis (FEA) with the software program ANSYS. The calculation results show that the face pumped and cooled laser results in a near one-dimension temperature distribution and eliminates thermal stress induced depolarization. But the structure is low pump efficiency due to the small thickness of slabs and the requirement to cool and pump through the same faces. End-pumped slab laser is high pump efficiency and excellent mode match, but its pumping arrangement is fairly complicated. The edge-pumped face-cooling slab laser's pump efficiency is better than face-pumping, and its pumping structure is simpler than end-pumped laser, but the tensile stress on surfaces may initiate failure of the gain medium so it is important to design so that the stress is well below the stress fracture limit. The comparison of the thermal effects with different pumping structure shows that, the edge-pumped slab laser has engineering advantages in high power slab laser's application. Furthermore, the end-pumped slab laser tends to get the best beam quality, so it is fit for the application which has a special requirement on laser beam quality.

  13. Misalignment Effects in Laser-Induced Grating Experiments.

    PubMed

    Kiefer, Johannes; Sahlberg, Anna-Lena; Hot, Dina; Aldén, Marcus; Li, Zhongshan

    2016-12-01

    Laser-induced grating spectroscopy (LIGS) is an experimental method in which two pulsed laser beams and a continuous-wave laser beam have to be superimposed under well-defined angles to generate a coherent signal beam. In this Note, the possible effects of different forms of misalignment are examined. This includes the overlap of the pump lasers as well as the influence of the probe laser alignment on the temporal profile of the signal.

  14. Laser intensity effects in noncommutative QED

    SciTech Connect

    Heinzl, Thomas; Ilderton, Anton; Marklund, Mattias

    2010-03-01

    We discuss a twofold extension of QED assuming the presence of strong external fields provided by an ultraintense laser and noncommutativity of spacetime. While noncommutative effects leave the electron's intensity induced mass shift unchanged, photons change significantly in character: they acquire a quasimomentum that is no longer lightlike. We study the consequences of this combined noncommutative strong-field effect for the basic lepton-photon interactions.

  15. Laser-jamming effectiveness analysis of combined-fiber lasers for airborne defense systems.

    PubMed

    Jie, Xu; Shanghong, Zhao; Rui, Hou; Shengbao, Zhan; Lei, Shi; Jili, Wu; Shaoqiang, Fang; Yongjun, Li

    2008-12-20

    The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming.

  16. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  17. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  18. Schwinger effect at modern laser facilities

    NASA Astrophysics Data System (ADS)

    Blaschke, D.; Gevorgyan, N. T.; Panferov, A. D.; Smolyansky, S. A.

    2016-01-01

    The theoretical and experimental investigation of physical processes in strong fields of different nature (electromagnetic, gravitational, etc.) is one of the important directions of modern physics. Particular interest is devoted to the area of extremely strong fields, in which qualitatively new effects become important due to the restructuring of the physical vacuum which accompanies the creation of matter from the vacuum at modern laser facilities. Such kind of time-dependent strong field vacuum effects can be appropriately described within a kinetic theory approach as an effective instrument of theoretical investigations. A short review of recent achievements in the direction of the dynamical Schwinger effect is given in this contribution.

  19. Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes.

    PubMed

    Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2013-06-01

    To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was

  20. Laser interference effect evaluation method based on character of laser-spot and image feature

    NASA Astrophysics Data System (ADS)

    Tang, Jianfeng; Luo, Xiaolin; Wu, Lingxia

    2016-10-01

    Evaluating the laser interference effect to CCD objectively and accurately has great research value. Starting from the change of the image's feature before and after interference, meanwhile, considering the influence of the laser-spot distribution character on the masking degree of the image feature information, a laser interference effect evaluation method based on character of laser-spot and image feature was proposed. It reflected the laser-spot distribution character using the distance between the center of the laser-spot and center of the target. It reflected the change of the global image feature using the changes of image's sparse coefficient matrix, which was obtained by the SSIM-inspired orthogonal matching pursuit (OMP) sparse coding algorithm. What's more, the assessment method reflected the change of the local image feature using the changes of the image's edge sharpness, which could be obtained by the change of the image's gradient magnitude. Taken together, the laser interference effect can be evaluated accurately. In terms of the laser interference experiment results, the proposed method shows good rationality and feasibility under the disturbing condition of different laser powers, and it can also overcome the inaccuracy caused by the change of the laser-spot position, realizing the evaluation of the laser interference effect objectively and accurately.

  1. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  2. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  3. Laser method for simulating the transient radiation effects of semiconductor

    NASA Astrophysics Data System (ADS)

    Li, Mo; Sun, Peng; Tang, Ge; Wang, Xiaofeng; Wang, Jianwei; Zhang, Jian

    2017-05-01

    In this paper, we demonstrate the laser simulation adequacy both by theoretical analysis and experiments. We first explain the basic theory and physical mechanisms of laser simulation of transient radiation effect of semiconductor. Based on a simplified semiconductor structure, we describe the reflection, optical absorption and transmission of laser beam. Considering two cases of single-photon absorption when laser intensity is relatively low and two-photon absorption with higher laser intensity, we derive the laser simulation equivalent dose rate model. Then with 2 types of BJT transistors, laser simulation experiments and gamma ray radiation experiments are conducted. We found good linear relationship between laser simulation and gammy ray which depict the reliability of laser simulation.

  4. Long-Lifetime Laser Materials For Effective Diode Pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Long quantum lifetimes reduce number of diodes required to pump. Pumping by laser diodes demonstrated with such common Nd laser materials as neodymium:yttrium aluminum garnet (Nd:YAG) and Nd:YLiF4, but such materials as Nd:LaF3, Nd:NaF.9YF3, and possibly Nd:YF3 more useful because of long lifetimes of their upper laser energy levels. Cost effectiveness primary advantage of solid-state laser materials having longer upper-laser-level lifetimes. Because cost of diodes outweighs cost of laser material by perhaps two orders of magnitude, cost reduced significantly.

  5. Laser-Assisted Photoelectric Effect from Liquids.

    PubMed

    Arrell, C A; Ojeda, J; Mewes, L; Grilj, J; Frassetto, F; Poletto, L; van Mourik, F; Chergui, M

    2016-09-30

    The laser-assisted photoelectric effect from liquid surfaces is reported for the first time. Photoelectrons generated by 35.6 eV radiation from a liquid microjet of water under vacuum are dressed with a ℏω=1.55  eV laser field. The subsequent redistribution of the photoelectron energies consists in the appearance of sidebands shifted by energies equivalent to ℏω, 2ℏω, and 3ℏω. The response has been modeled to the third order and combined with energy-resolved measurements. This result opens the possibility to investigate the dynamics at surfaces of liquid solutions and provide information about the electron emission process from a liquid.

  6. Laser-Assisted Photoelectric Effect from Liquids

    NASA Astrophysics Data System (ADS)

    Arrell, C. A.; Ojeda, J.; Mewes, L.; Grilj, J.; Frassetto, F.; Poletto, L.; van Mourik, F.; Chergui, M.

    2016-09-01

    The laser-assisted photoelectric effect from liquid surfaces is reported for the first time. Photoelectrons generated by 35.6 eV radiation from a liquid microjet of water under vacuum are dressed with a ℏω =1.55 eV laser field. The subsequent redistribution of the photoelectron energies consists in the appearance of sidebands shifted by energies equivalent to ℏω , 2 ℏω , and 3 ℏω . The response has been modeled to the third order and combined with energy-resolved measurements. This result opens the possibility to investigate the dynamics at surfaces of liquid solutions and provide information about the electron emission process from a liquid.

  7. Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening

    PubMed Central

    Guo, Yongyuan; Hu, Beibei; Tang, Chu; Wu, Yunpeng; Sun, Pengfei; Zhang, Xianlong; Jia, Yuhua

    2015-01-01

    Surface topography has significant influence on good and fast osseointegration of biomedical implants. In this work, ultrasonic shot peening was conducted to modify titanium to produce nanograined (NG) surface. Its ability to induce new bone formation was evaluated using an in vivo animal model. We demonstrated that the NG surface enhanced osteoblast adhesion, proliferation, differentiation, and mineralization in in vitro experiments compared to coarse-grained titanium surface. Push-out test, histological observations, fluorescent labeling, and histomorphometrical analysis consistently indicated that the NG surfaces developed have the higher osseointegration than coarse-grained surfaces. Those results suggest that ultrasonic shot peening has the potential for future use as a surface modification method in biomedical application. PMID:26229463

  8. Third order elastic constants and Rayleigh wave dispersion of shot-peened aero-engine materials

    NASA Astrophysics Data System (ADS)

    Rjelka, M.; Barth, M.; Reinert, S.; Koehler, B.; Bamberg, J.; Baron, H.-U.

    2012-05-01

    Mechanically high stressed components used in aero-engines are made of highstrength alloys like IN718 and Ti6246. Additionally, they are surface treated by shot-peening. This introduces compressive residual stress to minimize the material's sensitivity to fatigue or stress corrosion failure mechanisms, resulting in improved performance and increased lifetime of components. Besides that, cold work is introduced in an amount depending on the peening parameters. To determine the remaining lifetime of critical aero engine components, a quantitative non-destructive determination of compressive stresses is required. It was shown that the surface treatment of aero engine alloys can be characterized by broadband Rayleigh wave dispersion but the relative contributions of compressive stress and cold work remained an open point. The present paper presents measurements of the second and third order elastic constants (TOEC) of IN718 and Ti6246. By that the stress contribution to the surface wave dispersion can be estimated.

  9. Influence of water cavitation peening with aeration on fatigue behaviour of SAE1045 steel

    NASA Astrophysics Data System (ADS)

    Han, B.; Ju, D. Y.; Jia, W. P.

    2007-10-01

    Water cavitation peening (WCP) with aeration is a recent potential method in the surface enhancement techniques. In this method, a ventilation nozzle is adopted to improve the process capability of WCP by increasing the impact pressure, which is induced by the bubble collapse on the surface of components in the similar way as conventional shot peening. In this paper, fatigue tests were conducted on the both-edge-notched flat tensile specimens to assess the influences of WCP on fatigue behaviour of SAE1045 steel. The notched specimens were treated by WCP, and the compressive residual stress distributions in the superficial layer were measured by X-ray diffraction method. The tension-tension ( R = Smin/ Smax = 0.1, f = 10 Hz) fatigue tests and the fracture surfaces observation by scan electron microscopy (SEM) were conducted. The experimental results show that WCP can improve the fatigue life by inducing the residual compressive stress in the superficial layer of mechanical components.

  10. Effect of Laser wavelength on delivering appropriate laser burns through the opaque lens using a pattern scan laser.

    PubMed

    Hirano, Takao; Iesato, Yasuhiro; Imai, Akira; Toriyama, Yuichi; Kikushima, Wataru; Murata, Toshinori

    2014-01-01

    We evaluated the effects of pattern scan laser (PSL) wavelength in delivering appropriate laser burns to the retina of eyes with an opaque lens. Sixteen shots of 2 × 2 square grids (64 laser spots) were delivered using green (532-nm), yellow (577-nm) and red (647-nm) lasers to the retinas of mice with mild cataract induced by chloral hydrate (400 mg/kg). Three eyes with clear lenses served as controls. One week after laser coagulation, the ratio of appropriate burns, defined as coagulation restricted to the outer half of the retina without retinal or choroidal hemorrhage, was investigated histologically. With the green laser, we confirmed only 3.0 ± 2.0 appropriate burns in eyes with an opaque lens, in contrast to 13.7 ± 4.0 effective burns in eyes with a clear lens. On the other hand, the yellow and red lasers produced 18 ± 5.2 and 13 ± 1.5 appropriate burns, respectively, in eyes with an opaque lens. Although all three PSL wavelengths successfully delivered appropriate burns restricted to the outer half of the retina in eyes with an opaque lens, the longer-wavelength yellow and red lasers were significantly more effective than the green laser. PSL may be a treatment option to accompany anti-vascular endothelial growth factor drug therapy. © 2014 S. Karger AG, Basel.

  11. Shot-Peening Intensities VS. Eddy Current Signals as Seen in Iterative Treatment-Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Nakagawa, N.; Frishman, A. M.; Shen, Y.; Lo, C. C. H.

    2009-03-01

    We report on progress in a swept high frequency eddy current (SHFEC) technique for characterization of surface residual stress on shot-peened superalloy surfaces. Our aim here is to demonstrate the sensitivity of our measurement for practical shot peening intensities, i.e. at 4˜6 A. First, we present our improved probe and instrumentation being sufficiently sensitive to resolve the surface conditions at these low Almen intensities, where our earlier measurements encountered noise problems. The previous coil was also larger (18 mm in diameter) than desirable. Our new probe integrates smaller coils (12 mm in diameter, forming an AC bridge) and on-board electronics on a common printed circuit board, mutually connected at the shortest possible distance. The operational-amplifier-based electronics acts as impedance buffers, and maintains the cabling impedance at the characteristic 50 Ω between the probe board and the instruments. We have thus reduced the instrumentation noises. Second, we present the result of an iterative treatment-measurement experiment, performed on a 2"-by-3" Inconel 718 block specimen, initially polished to a mirror finish. After an initial baseline SHFEC measurement, we performed shot peening, an Almen strip deflection measurement, and a SHFEC measurement as one iteration cycle, and repeated the cycles multiple times at predetermined intervals. We will show the resulting SHFEC signals (i.e. lift-off normalized vertical-component signals) plotted against the Almen intensities. We then draw several conclusions from the experimental data, including a) the SHFEC signals increase monotonically in correlation with the Almen intensity increase, and b) the SHFEC signals exhibit sufficient deviations to resolve 4˜6 A intensities, while c) the SHFEC signals indicate saturation of the Inconel 718 response against peening, but the saturation occurs later in the iteration than indicated by the A-series Almen strip.

  12. Conductivity Profile Determination by Eddy Current for Shot Peened Superalloy Surfaces Toward Residual Stress Assessment

    SciTech Connect

    Shen, Y.; Lo, C. C. H.; Frishman, A. M.; Lee, C.; Nakagawa, N.

    2007-03-21

    This paper describes an eddy current model-based method for inverting near-surface conductivity deviation profiles of surface treated materials from swept-high frequency eddy current (SHFEC) data. This work forms part of our current research directed towards the development of an electromagnetic nondestructive technique for assessing residual stress of shot-peened superalloy components. The inversion procedure is based on the use of a parameterized function to describe the near-surface conductivity as a function of depth for a shot-peened surface, and the laterally uniform multi-layer theory of Cheng, Dodd and Deeds to calculate the resulting coil impedance deviations. The convergence of the inversion procedure has been tested against synthesized eddy current data. As a demonstration, the conductivity deviation profiles of a series of Inconel 718 specimens, shot peened at various Almen intensities, have been obtained by inversion. Several consistency tests were conducted to examine the reliability of the inverted conductivity profiles. The results show that conductivity deviation profiles can be reliably determined from SHFEC data within the accuracy of the current measurement system.

  13. Fatigue Life Improvement for Cruciform Welded Joint by Mechanical Surface Treatment using Hammer Peening and UNSM

    NASA Astrophysics Data System (ADS)

    Han, Seung-Ho; Han, Jeong-Woo; Nam, Yong-Yun; Cho, In-Ho

    For the improvement of fatigue strength of welded structures, mechanical post treatments have been applied in various industrial fields and have in most cases been founded to give substantial increases in their fatigue lives. These methods, generally, consist of the modification of weld toe geometry and the introduction of compressive residual stresses. In mechanical surface treatments, e.g. PHP (pneumatic hammer peening) and UNSM (ultrasonic nano-crystal surface modification), the weld profile is modified due to remove or reduce minute crack-like flaws, and compressive residual stresses are also induced. In this study, a pneumatic hammer peening procedure and a UNSM device were introduced, and a quantitative measure of fatigue strength improvement was performed. The fatigue strength at 2 × 106 cycles of hammer-peened and UNSM treated on a non-load carrying cruciform welded joint shows 220 and 260MPa, respectively, which are more than two times higher than that of as-welded specimen. Especially, the surface layer in the vicinity weld toe treated by the UNSM provides nano-crystal structure created by an ultrasonic cold forging and introduces very high welding residual stress in compression.

  14. Laser effects on yeast cell suspensions

    NASA Astrophysics Data System (ADS)

    Grigorovici, A.; Despa, Sanda I.; Paunescu, Teodor G.

    1995-03-01

    The aim of this paper is to determine the effects produced by coherent electromagnetic radiation in the ultraviolet and visible range on the growth of a Saccharomyces cerevisiae cell suspension. There were made several experiments in which we used different irradiation parameters (power, irradiation time, wavelength) for pointing out those that produce the stimulation or inhibition of the cellular culture growth. Beyond the modifications that appeared in the culture evolution we investigated other physical and chemical changes induced by the laser light on yeast cell suspensions.

  15. Effects of hydration on laser soldering

    NASA Astrophysics Data System (ADS)

    Chan, Eric K.; Brown, Dennis T.; Kovach, Ian S.; Welch, Ashley J.

    1997-05-01

    Laser welding with albumin-based tissue solder has been investigated as an alternative to surgical suturing. Many surgical procedures require the soldered tissues to be in a hydrated environment. We have studied the effects of hydration on laser soldered rat dermis and baboon articular cartilage in vitro. The solder is composed of human serum albumin, sodium hyaluronate and indocyanine green. We used a micro-pipette to deposit 2 (mu) l of solder on each tissue specimen. An 808 nm cw laser beam with irradiance of 27 W/cm2 was scanned 4 times over the same solder area at a constant speed of 0.84 mm/sec. After photo-coagulation, each tissue specimen was cut into two halves at the center of the solder, perpendicular to the direction of the scanning laser beam. One half was reserved as control while the other half was soaked in phosphate buffered saline for a designated hydration period. The hydration periods were 1 hr, 1, 2, and 7 days. All tissue specimens were fixed in glutaraldahyde, then prepared for scanning electron microcopy analysis. For most of the specimens, there was non-uniform coagulation across the thickness of the solder. Closer to the laser beam, the upper solder region formed a more dense coagulum. While the region closer to solder-tissue interface, the solder aggregated into small globules. This non-uniform coagulation was likely caused by non-uniform energy distribution during photocoagulation. The protein globules and coagulum seem to be responsible for the solder attachment from the specimen surface. However, we have noted that the solder detached from the cartilage substrate as early as after 1 hr of hydration. On the other hand, the solder attached to the dermis much better than to cartilage. This may be explained by the difference in surface roughness of the two tissue types. The dermal layer of the skin is composed of collagen matrix which may provide a better entrapment of the solder than the smooth surface of articular cartilage.

  16. Laser Doppler velocimetry based on the photoacoustic effect in a CO{sub 2} laser

    SciTech Connect

    Choi, Jong-woon; Yu, Moon-jong; Kopica, Mirek; Woo, Sam-yong; Choi, Yong-Seok

    2005-02-01

    We report a simple laser Doppler velocimeter in which the photoacoustic effect was used to measure the rotation wheel speed. A Doppler signal, caused by mixing a returning wave with an originally existing wave inside the CO{sub 2} laser cavity, was detected using a microphone in the laser tube. Frequency of the microphone output was in proportion to the rotation speed of a wheel and is dependent on the cosine of the angle between the direction of the laser beam and tangent of wheel velocity. A Doppler-shifted frequency as high as 34 kHz was detected using this method. A frequency response of a few megahertz is expected from the laser Doppler velocimeter based on the photoacoustic effect in a CO{sub 2} laser by using a wider bandwidth microphone.

  17. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  18. Surface topography evolution of Ni-based single crystal superalloy under laser shock: Formation of the nano-scale surface reliefs

    NASA Astrophysics Data System (ADS)

    Lu, G. X.; Liu, J. D.; Qiao, H. C.; Zhou, Y. Z.; Jin, T.; Sun, X. F.; Hu, Z. Q.

    2017-03-01

    The aim of the study was to investigate the effect of laser shock peening (LSP) on surface topography evolution of metallic targets. Samples manufactured by a Ni-based single crystal superalloy with polished finish were treated by LSP, and the surface topographies before and after LSP were examined by non-contact White-Light Interferometer (WLI). Results showed the following three aspects: (a) By taking advantage of WLI, the shrinkage porosities and the interdendritic structures were observed simultaneously. (b) With the increasing impact times, the round pit induced by laser shock became deeper. (c) The nano-scale surface reliefs were found on the bottom of round pit induced by LSP, and the specific plastic flow of metallic materials under the action of compressive stresses was deemed as the primary contributor to the formation of surface reliefs. It revealed a novel microscale plastic deformation phenomenon of metallic materials in surface strengthening.

  19. A dynamic finite element simulation of the shot-peening process

    NASA Astrophysics Data System (ADS)

    Zion, Howard Lewis

    The process of shot peening has been widely used for more than 70 years to improve fatigue life as well as corrosion and wear resistance in metallic components. The basic mechanism involves repetitive stretching and unloading of the surface by bombarding it with small spherical shot media so that a uniform residual compressive stress is eventually created. Historically the implementation of shot-peering has relied on empiricism for its control and only recently have there been attempts to develop a better analytical understanding of the mechanics of the process. High-strength steel is often the material of choice for certain aircraft components, such as aircraft landing gear, that must be able to withstand infrequent occurrences of very high limit loads in addition to more frequent applications of fatigue loads of much lower amplitude. In order to obtain reasonable fatigue life it is essential that these components be shot-peered with the utmost quality assurance. High-strength steel (300M) represents a somewhat unique material, in this regard, due to its very high yield and ultimate strengths, thereby translating directly into a surface that is extremely hard. The mechanics of shot-peered 300M were investigated analytically using a 2D axisymmetric finite element model to consider material and process variation during a single shot impact. This investigation demonstrated that elasto-plastic representation of the shot particle was essential to achieving accurate results for shot that was nominally either 15% harder or softer than the 300M target. This contrasted previous finite element investigations of the shot-peered high-strength steel that utilized a rigid particle. It was also demonstrated that the effect of process variation on residual stress state response could be well characterized by a linear combination of shot diameter and velocity, target thickness and the presence of friction or lack thereof along with their first-order interactions using a

  20. Laser wavelength effect on laser-induced photo-thermal sintering of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Paeng, Dongwoo; Yeo, Junyeob; Lee, Daeho; Moon, Seung-Jae; Grigoropoulos, Costas P.

    2015-09-01

    This work is concerned with the laser wavelength effect on the electrical properties and surface morphology of laser-sintered nanoparticle thin films. Silver nanoparticle thin films spin-coated on soda lime glass substrates were irradiated with lasers of three different wavelengths (near ultraviolet 405 nm, green 514.5 nm, near infrared 817 nm) at varied laser intensities and scanning speeds. Scanning electron microscopy images and ex situ resistivity measurements show that the photo-thermal sintering alters significantly the film surface morphology and electrical properties, depending on the processing parameters (laser wavelength, laser intensities and scanning speed). While the optical response of the material is determined largely by the processing laser wavelength, the laser beam intensity and scanning speed regulate the induced temperature field. Examination of the optical properties of as-deposited silver nanoparticle thin film in conjunction with scanning electron microscopy images taken from the laser-sintered lines helps elucidate how the processing laser wavelength modulates the optical response of silver nanoparticle thin film and therefore affects the thermal response.

  1. Effects of laser immunotherapy on tumor microenvironment

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Wood, Ethan W.; Hasanjee, Aamr; Chen, Wei R.; Vaughan, Melville B.

    2014-02-01

    The microenvironments of tumors are involved in a complex and reciprocal dialog with surrounding cancer cells. Any novel treatment must consider the impact of the therapy on the microenvironment. Recently, clinical trials with laser immunotherapy (LIT) have proven to effectively treat patients with late-stage, metastatic breast cancer and melanoma. LIT is the synergistic combination of phototherapy (laser irradiation) and immunological stimulation. One prominent cell type found in the tumor stroma is the fibroblast. Fibroblast cells can secrete different growth factors and extracellular matrix modifying molecules. Furthermore, fibroblast cells found in the tumor stroma often express alpha smooth muscle actin. These particular fibroblasts are coined cancer-associated fibroblast cells (CAFs). CAFs are known to facilitate the malignant progression of tumors. A collagen lattice assay with human fibroblast cells is used to elucidate the effects LIT has on the microenvironment of tumors. Changes in the contraction of the lattice, the differentiation of the fibroblast cells, as well as the proliferation of the fibroblast cells will be determined.

  2. Effects of aging on laser evoked potentials.

    PubMed

    Creac'H, Christelle; Bertholon, Alexandre; Convers, Philippe; Garcia-Larrea, Luis; Peyron, Roland

    2015-05-01

    Aging has been reported to reduce the amplitude of laser evoked potentials. However, it is unknown whether this effect depends on the length of the sensory fibers. This is an important issue, because most painful neuropathies are length-dependent. We conducted a study of 40 healthy subjects, half of whom were older than age 50 years. Nociceptive stimuli were delivered to the feet and thighs using a CO2 laser stimulator. Detection and pain perception thresholds did not correlate with age. Latencies of N1, N2, and P2 correlated positively with age on the feet but not on the thighs, whereas the amplitude of N2-P2 decreased with age for both areas. The effects of aging on latencies may reflect a distal loss of peripheral inputs and a length-dependent de-synchronization of the ascending nociceptive volley. Additional changes in peripheral and central processes may explain the diffuse decrease of N2-P2 amplitudes observed with aging. © 2014 Wiley Periodicals, Inc.

  3. Photophysiology of Surface Phytoplankton Communities in a Transect from the Mouth of the Peene-Strom to the Arkona Sea (Baltic)

    NASA Astrophysics Data System (ADS)

    Müller, Anna Maria; Wasmund, Norbert

    2003-09-01

    The potential of surface phytoplankton to withstand photostress was investigated in August 1998 along a transect from the mouth of the Peene-Strom (Pomeranian Bight) to the open Arkona Sea (Baltic). Photosynthetic efficiency, algal class composition and pigment pattern were determined. Algae were photoinhibited by artificial illumination and the kinetics of recovery were recorded. Under photoinhibitory treatment, algae from the estuary showed a low effective quantum yield but a high potential to recover their maximum photosynthetic efficiency. Contrary to this, the relatively high effective quantum yield of open sea algae under photoinhibitory treatment is accompanied by a low final recovery of maximum photosynthetic efficiency. These phenomena are discussed with respect to nutrient supply, algal class composition and to different strategies of algae to react to light stress. Literature data of summer primary productivity of open sea and coastal algae are compared with our data on electron transport rates. This revealed a low influence of photoinhibitory effects on productivity.

  4. [Use of the thermal laser effect of laser irradiation for cardiovascular applications exemplified by the Nd:YAG laser].

    PubMed

    Ischinger, T; Coppenrath, K; Weber, H; Enders, S; Unsöld, E; Hessel, S

    1989-11-01

    Techniques of percutaneous transluminal application of laser energy for vessel recanalization have been used clinically since 1983. The commonly used Nd:YAG and argon lasers achieve ablation of atherosclerotic plaques by thermal action (vaporization). In order to reduce undesirable thermal damage in the neighborhood of the target tissue and to avoid vessel perforation, optimal irradiation parameters, modified (atraumatic) fiber tips (hot tips, sapphires), and steerable catheter systems needed to be implemented. Favorable results from peripheral application have encouraged use in the coronary circulation. More recently, coagulative tissue effects of circumferential irradiation of the vessel wall during balloon dilatation have been used for stabilization of acute and late results after mechanical balloon angioplasty. Enhancement of the differential light absorption of atherosclerotic plaque by use of biological dyes may further improve selective intravascular laser application. Intraoperative ECG-guided laser coagulation of arrhythmogenic areas of myocardium is a method for treatment of malignant arrhythmias. Transluminal non-operative application of myocardial laser photocoagulation has now been tested experimentally and shown to be safe and effective. There was no arrhythmogenicity or thermal damage of coronary arteries associated with this method. Innovative techniques such as nanosecond pulsed excimer lasers (athermal action) and development of "intelligent" lasers--which are equipped with spectroscopy-guided feedback systems for plaque recognition--have opened new perspectives and will further improve safety and efficacy of clinical laser application. However, according to current experience, the thermally acting Nd:YAG laser is an effective and versatile mode of laser therapy for selected cardiovascular indications.

  5. Experimental and theoretical investigation of the effect of laser parameters on laser ablation and laser-induced plasma formation

    NASA Astrophysics Data System (ADS)

    Stancalie, Andrei; Ciobanu, Savu-Sorin; Sporea, Dan

    2016-04-01

    We report results from a wide range of laser operating conditions, typical for laser induced breakdown spectroscopy (LIBS) and laser ablation (LA) experiments on copper metallic target, which form the basis of further systematically investigation of the effect of laser irradiance, pulse duration and wavelength, on the target, plume and plasma behavior, during and after laser-solid interaction. In the LA experiment, the laser beam was focused through a 25 cm focal length convergent lens on a plane copper target in air, at atmospheric pressure. The target was rotated in order to have fresh areas under laser irradiance. In the LIBS experiment, the Applied Photonics LIBS-6 instrument allowed modifying the laser irradiance at the sample surface by changing the pulse energy or the laser focusing distance. For the duration of the laser pulse, the power density at the surface of the target material exceeds 109 W/cm2 using only a compact laser device and simple focusing lenses. The plasma parameters were experimentally estimated from spectroscopic data generated by the plasma itself, namely by the line intensities and their ratio which reflect the relative population of neutral or ionic excited species in the plasma. The fitting of the Saha-Boltzmann plot to a straight line provides an apparent ionization temperature, whose value depends on the lines used in the plots. For the typical conditions of LA and LIBS, the temperature can be so high that Cu+ ions are formed. The first-order ionization of Cu (i.e., the ratio of Cu+/Cu0 ) is calculated.

  6. Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air

    SciTech Connect

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P. E-mail: prem@uohyd.ac.in

    2016-06-07

    The studies on the effect of input laser intensity, through the variation of laser focusing geometry, on radio frequency (RF) emissions, over 30–1000 MHz from nanosecond (ns) and picosecond (ps) laser induced breakdown (LIB) of atmospheric air are presented. The RF emissions from the ns and ps LIB were observed to be decreasing and increasing, respectively, when traversed from tight to loose focusing conditions. The angular and radial intensities of the RF emissions from the ns and ps LIB are found to be consistent with sin{sup 2}θ/r{sup 2} dependence of the electric dipole radiation. The normalized RF emissions were observed to vary with incident laser intensity (Iλ{sup 2}), indicating the increase in the induced dipole moment at moderate input laser intensities and the damping of radiation due to higher recombination rate of plasma at higher input laser intensities.

  7. Effects of laser source parameters on the generation of narrow band and directed laser ultrasound

    NASA Technical Reports Server (NTRS)

    Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.

    1992-01-01

    Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.

  8. Guiding effect of quantum wells in semiconductor lasers

    SciTech Connect

    Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N

    2013-05-31

    The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)

  9. Shape memory effect of laser welded NiTi plates

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Fernandes, F. M. Braz; Schell, N.; Miranda, R. M.

    2015-07-01

    Laser welding is a suitable joining technique for shape memory alloys (SMAs). This paper reports the existence of shape memory effect (SME) on laser welded NiTi joints, subjected to bending tests, and correlates this effect with the microstructural analysis performed with X-ray diffraction (XRD). All welded samples were able to recover their initial shape after bending to 180°, which is a remarkable result for industrial applications of NiTi involving laser welding.

  10. Effects of laser ablation on cemented tungsten carbide surface quality

    NASA Astrophysics Data System (ADS)

    Tan, J. L.; Butler, D. L.; Sim, L. M.; Jarfors, A. E. W.

    2010-11-01

    Although laser micromachining has been touted as being the most promising way to fabricate micro tools, there has been no proper evaluation of the effects of laser ablation on bulk material properties. The current work demonstrates the effects of laser ablation on the properties of a cemented tungsten carbide surface. Of particular interest is the resultant increase in compressive residual stresses in the ablated surface. From this study it is seen that there are no adverse effects from laser ablation of cemented tungsten carbide that would preclude its use for the fabrication of micro-tools but a finishing process may not be avoidable.

  11. Collisional redistribution effects on x-ray laser saturation behavior

    SciTech Connect

    Koch, J.A.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.J.; Lee, R.W.; London, R.A.; Mrowka, S.; Underwood, J.H.; Batson, P.J.

    1994-06-01

    We recently published a detailed summary of our experimental and theoretical research on Ne-like Se x-ray laser line widths, and one of our conclusions was that collisional redistribution rates are likely to have an effect on the saturation behavior of the 206.4 {angstrom} Se x-ray laser. In this paper we focus on the effects of collisional redistribution on x-ray laser gain coefficients, and discuss ways of including these effects in existing laser line- transfer models.

  12. The Role of Cold Work in Eddy Current Residual Stress Measurements in Shot-Peened Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Yu, F.; Nagy, P. B.

    2006-03-01

    Recently, it was shown that eddy current methods can be adapted to residual stress measurement in shot-peened nickel-base superalloys. However, experimental evidence indicates that the piezoresistivity effect is simply not high enough to account for the observed apparent eddy current conductivity (AECC) increase. At the same time, X-ray diffraction data indicates that "cold work" lingers even when the residual stress is fully relaxed and the excess AECC is completely gone. It is impossible to account for both observations with a single coherent explanation unless we assume that instead of a single "cold work" effect, there are two varieties of cold work; type-A and type-B. Type-A cold work (e.g., changes in the microscopic homogeneity of the material) is not detected by X-ray diffraction as it does not significantly affect the beam width, but causes substantial conductivity change and exhibits strong thermal relaxation. Type-B cold work (e.g., dislocations) is detected by X-ray, but causes little or no conductivity change and exhibits weak thermal relaxation. Based on the assumption of two separate cold-work variables and that X-ray diffraction results indicate the presence of type-B, but not type-A, all observed phenomena can be explained. If this working hypothesis is proven right, the separation of residual stress and type-A cold work is less critical because they both relax much earlier and much faster than type-B cold work.

  13. Micro-structuring of CIGS thin-film coated on Mo back contact by ultrafast laser 'rail-roading' patterning.

    PubMed

    Jeoung, Sae Chae; Lee, Heung-Soon; Yahng, Ji Sang; Lee, Hyun Kyu; Moon, Heh Young; Kim, Kyoun Joon; Lee, Dong Geun; Park, Duck Hoon; Yu, Young Sam; Ji, Suk-Jae

    2011-08-29

    We report selective patterning process, laser 'rail-roading' scribing method, of which operating principle is based on transient force balance between the material properties including cohesion and adhesion forces subjected to underlying substrate and laser-induced shock compression and shear forces. By using dual fs-laser beam lines with an interval larger than laser spot size, we provide a proof of the concept by patterning the photovoltaic modules based on CIGS (Cu(In,Ga)Se2) coated on Mo electrode. With varying the interval between the two laser beam tracks, we can provide intact Mo back contact surface without any residues in a manner of more facile, high-speed and high scribing efficiency. We have interpreted the effect of the ambient gases and grooving width on the scribing performance in terms of the cohesion forces between the grains of CIGS thin films as well as adhesion force between underlying Mo layer and CIGS, which are mainly governed by local laser ablation and peening process followed by laser-induced shock compression, respectively.

  14. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Surface effects in laser diodes

    NASA Astrophysics Data System (ADS)

    Beister, G.; Maege, J.; Richter, G.

    1988-11-01

    Changes in the current-voltage characteristics below the threshold current were observed in gain-guided stripe laser diodes after preliminary lasing. This effect was not fully understood. Similar changes in the laser characteristics appeared as a result of etching in a gaseous medium. The observed changes were attributed tentatively to surface currents.

  15. Is the KTP laser effective in tonsillectomy?

    PubMed

    Auf, I; Osborne, J E; Sparkes, C; Khalil, H

    1997-04-01

    Thirty-eight patients underwent a randomized double-blind trial using the KTP laser for tonsillectomy on one tonsil and standard dissection tonsillectomy on the other tonsil. Blood loss was less on the laser side. However, pain though initially slightly less on the laser side (days 1 and 2 post-operation) was worse on the laser side at 2 weeks due to delayed healing of the tonsillar bed. There were no primary or reactionary haemorrhages but a 15% incidence of secondary haemorrhage on the laser side.

  16. Categorizing High Energy Laser Effects for the Joint Munitions Effectiveness Manual

    DTIC Science & Technology

    2005-06-01

    CATEGORIZING HIGH ENERGY LASER EFFECTS FOR THE JOINT MUNITIONS EFFECTIVENESS MANUAL THESIS...AFIT/GOR/ENS/05-11 CATEGORIZING HIGH ENERGY LASER EFFECTS FOR THE JOINT MUNITIONS EFFECTIVENESS MANUAL THESIS Presented to the Faculty...Captain, USAF June 2005 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GOR/ENS/05-11 CATEGORIZING HIGH ENERGY LASER EFFECTS FOR

  17. On the fatigue behavior of medical Ti6Al4V roughened by grit blasting and abrasiveless waterjet peening.

    PubMed

    Lieblich, M; Barriuso, S; Ibáñez, J; Ruiz-de-Lara, L; Díaz, M; Ocaña, J L; Alberdi, A; González-Carrasco, J L

    2016-10-01

    Flat fatigue specimens of biomedical Ti6Al4V ELI alloy were surface-processed by high pressure waterjet peening (WJP) without abrasive particles using moderate to severe conditions that yield roughness values in the range of those obtained by commercial grit blasting (BL) with alumina particles. Fatigue behavior of WJP and BL specimens was characterized under cyclical uniaxial tension tests (R=0.1). The emphasis was put on a comparative analysis of the surface and subsurface induced effects and in their relevance on fatigue behavior. Within the experimental setup of this investigation it resulted that blasting with alumina particles was less harmful for fatigue resistance than abrasiveless WJP. BL specimens resulted in higher subsurface hardening and compressive residual stresses. Specimens treated with more severe WJP parameters presented much higher mass loss and lower compressive residual stresses. From the analysis performed in this work, it follows that, in addition to roughness, waviness emerges as another important topographic parameter to be taken into account to try to predict fatigue behavior. It is envisaged that optimization of WJP parameters with the aim of reducing waviness and mass loss should lead to an improvement of fatigue resistance.

  18. Effect of Moisture Content of Paper Material on Laser Cutting

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  19. Temperature and pressure effects during erbium laser stapedotomy.

    PubMed

    Pratisto, H; Frenz, M; Ith, M; Romano, V; Felix, D; Grossenbacher, R; Altermatt, H J; Weber, H P

    1996-01-01

    Laser-assisted stapedotomy has become a well-established alternative to the mechanical drilling method. The goal of this study is to quantify the mechanical and thermal tissue effects and to determine optimum erbium laser parameters for safe clinical treatment. On an inner ear model, time-resolved pressure measurements and Schlieren optical flash photography were performed during the perforation of the stapes foot plate using an erbium laser at 2.79 microns. The laser radiation was transmitted via an optical zirconium fluoride fiber. The laser-treated foot plates were investigated by light microscopy and scanning electron microscopy to visualise the laser-induced tissue effects. Perforation of the stapes foot plate can be performed with a few erbium laser pulses with high precision and a thermal damage zone of < 10 microns. Strong pressure transients were found to be generated by the bone ablation process and the collapse of a vapor channel created in the perilymph after fenestration. From the comparison of the laser-induced pressure with the limit graph to avoid hearing defects published by Pfander, an unobjectionable use of the erbium laser is deduced for fluences < 10 J/cm2. The erbium laser seems to represent an ideal instrument for middle ear surgery with all the advantages (precision, fiber optic transportable, high ablation efficiency, safety) desired for clinical application.

  20. Effects of methylprednisolone on laser-induced retinal injuries

    NASA Astrophysics Data System (ADS)

    Rosner, Mordechai; Tchirkov, Marina; Dubinski, Galina; Solberg, Yoram; Belkin, Michael

    1997-05-01

    Methylprednisolone have been demonstrated to ameliorate retinal photic injury. In the current study we examined its effect on laser induced retinal injury. Retinal lesions were inflicted by argon laser in 36 pigmented DA rats. The treated groups received intra-peritoneally methylprednisolone in saline, injected 3 times a day for 2 days, starting immediately after exposure. The controls received the vehicle on the same schedule. The rats were sacrificed 3, 20 or 60 days after laser exposure and the lesions were evaluated by light microscopy and morphometric measurements. Laser injuries were associated with disruption of the outer retinal layers. Three and 20 days after exposure, the loss of the photoreceptor-cell nuclei was significantly milder in the treated groups as compared with controls. There was no difference 60 days after exposure. In conclusion, methylprednisolone reduced temporarily the photoreceptor cell loss in argon laser induced retinal injury, when treatment was started immediately after laser exposure. There was no long term effect.

  1. Effects of low-power laser radiation on mice immunity.

    PubMed

    Novoselova, E G; Glushkova, O V; Cherenkov, D A; Chudnovsky, V M; Fesenko, E E

    2006-02-01

    Because of large interest in biological effects of laser radiation used in laser therapy, the effect of extremely low-level red laser light intensity on the immune cell activity has been studied in the animal model with well-characterized macrophage and T cell populations as responder cells producing cytokines, protective proteins, active oxygen, and nitric compounds. To study of the possible side effects of laser immunotherapy we monitored the productions of cytokines, nitric oxide (NO), and heat shock protein 70 (Hsp70) in mice subjected to a periodic laser exposure for 1 month. Helium-neon laser radiation with the power of 0.2 mW/cm2 and wavelength of 632.8 nm was applied on two different mouse skin surfaces, i.e. a thymus projection area or a hind limb. Healthy NMRI male mice were irradiated repeatedly with laser light for 1 min with 48-h intervals for 30 days. The animals were divided into three groups of 25 mice. The first and the second groups were exposed to laser light, on the thymus and hind limb area, respectively. The third, sham-irradiated group served as a control. Early and prolonged effects of laser radiation on the levels of NO (by Griess assay), Hsp70 (by Western blot assay), tumor necrosis factors (TNF-alpha and TNF-beta) (by cytotoxic assay using L929 cells as targets), and interleukin-2 (IL-2) (by ELISA assay) were determined. The dynamics of immune responses to low-power laser light intensity was shown to be dependent on two factors, i.e. the cumulative dose and the localization of the irradiated surface. Besides, various populations of cells demonstrated different sensitivity to laser radiation, with T cells being more responsive among examined populations of the cells. Low intensity laser light induced an immune cell activity when the exposure duration did not exceed 10 days, while a more prolonged period of treatment generated more severe changes in the immune system, up to immunosuppression. The treatment of the thymus zone resulted in

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spectral and temporal characteristics of a laser plasma

    NASA Astrophysics Data System (ADS)

    Lipchak, A. I.; Solomonov, V. I.; Tel'nov, V. A.; Osipov, V. V.

    1995-04-01

    An experimental investigation was made of the spectral and temporal characteristics of a laser plasma formed by the interaction of a CO2 laser pulse with a target in atmospheric air. The results obtained indicate that the main role in the process of filling the excited states in a laser plasma is played by a recombination cascade and that both atoms and molecules of the atmospheric gases are excited. The result also show that a laser plasma can be used in spectroscopic analysis of multicomponent samples. The solution of the thermophysical problem of heating of a target by laser radiation supports the existing ideas on the process of formation of a plasma near the target surface in air.

  3. Effects of Different Polarization Strategies on Laser Cutting with Direct Diode Lasers

    NASA Astrophysics Data System (ADS)

    Rodrigues, G. Costa; Duflou, J. R.

    As Direct Diode Lasers are introduced as an emerging technology for laser cutting of metal sheets, new challenges arise. The relatively low beam quality remains a limitation to the maximum cutting speed. One way to balance this may be a strategic use of laser polarization in order to influence laser material interaction in the cutting kerf. In this paper the effects of cross-, linear-, radial- and azimuthal- laser beam polarization arrangements are studied with both Fusion and Flame cutting at an output power of approximately 750W. Different combinations of materials and thicknesses were cut and the maximum cutting speed and edge quality analyzed. It is found that at similar cutting edge quality, improvements in cutting speed can go up to 40% with an inert gas, such as Nitrogen, and up to 20% with a reactive gas, such as Oxygen, in agreement with analytical models for absorption previously developed by the authors.

  4. Numerical Analysis of Effects of Incident Laser Wavelength on Thermal Nonequilibrium Laser-supported Detonation Wave

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki; Koide, Takuya; Nakamori, Manabu

    Laser-supported detonation (LSD) waves are important because they can generate the high pressures and high temperatures necessary for laser propulsion systems. Although CO2 laser beams, which have a wavelength of 10.6 μm, have been considered to be one of the most powerful sources of LSD waves, a glass laser beam (1.053μm), for example, also have high power. In this study, we numerically simulated LSD waves propagating through a diatomic gas, in order to evaluate the effects of incident laser wavelength on the construction of the LSD wave. We used the physical-fluid dynamics scheme, which has been developed for simulating unsteady and nonequilibrium LSD waves propagating through hydrogen gas.

  5. Effect of different laser irradiation on the dysentery bacilli

    NASA Astrophysics Data System (ADS)

    Ou, Lin; Chen, Rong; Chen, Yanjiao; Li, Depin; Wen, Caixia

    1998-08-01

    The S. flexnesi, which have high drug-resistance especially in Cm, Sm, Tc, SD, were irradiated by Ar+ laser at 488 nm and semiconductor laser at 808 nm. The experiment results have shown that both Ar+ laser and semiconductor laser with power density of 1.7 w/cm2 and irradiation dose of 2000 J/cm2 can conduce to the bacterial lethality and increase the mutation rates of the bacterial drug-sensitivity, and 'Colony Count' method have the superiority over the 'Inhibacteria Ring' method. At the mean time it further indicate that the high power semiconductor laser would play an important role in the sciences of laser biological medicine. But the effect of the near infrared semiconductor laser is far lower than that of Ar+ laser of shorter wavelength at the same irradiation dose. It is clear that the output and irradiation dose of near infrared semiconductor laser shall be increased in order to get the same rates of the bacterial lethality and the drug-sensitivity mutation as Ar+ laser's.

  6. Atomic level observations of mechanical damage in shot peened TiAl

    NASA Astrophysics Data System (ADS)

    Appel, Fritz

    2013-01-01

    High-resolution transmission microscopy has been used to reveal the defect processes occurring during shot peening of a high-strength titanium aluminide alloy with a nearly lamellar microstructure. Deformation is characterised by intensive dislocation glide and mechanical twinning, involving all potential slip systems available in the α2(Ti3Al) and γ(TiAl) phases. The outermost surface layer consists of extremely fine crystals that are probably a contaminant titanium nitride phase, embedded into an amorphous phase. The mechanisms involved in this mechanically driven solid state transformation will be elucidated. Particular emphasis is paid on the thermodynamic and kinetic factors involved in the amorphisation reaction.

  7. Effects of malicious ocular laser exposure in commercial airline pilots.

    PubMed

    Palakkamanil, Mathew M; Fielden, Michael P

    2015-12-01

    Intentional malicious laser strikes on commercial pilots are committed by individuals who target a laser into airplane cockpits during takeoff and landing. Because laser exposure to pilots is a relatively new but growing occurrence, our study investigates the ocular effect of this laser exposure in pilots. Retrospective chart review by a single ophthalmologist. All commercial airline pilots (58 male, 3 female) who experienced a laser strike while flying between April 2012 and November 2014 who presented to our clinic were included. A retrospective chart review was performed in a retinal specialist's practice. Ocular assessment was performed within 3 days of laser exposure. A complete ophthalmic evaluation was conducted, including Early Treatment Diabetic Retinopathy Study visual acuity, colour vision, visual fields, intraocular pressure, slit-lamp examination, dilated fundus examination, colour fundus photographs, and ocular coherence tomography. Sixty-four laser strike incidents involving commercial pilots were included. All pilots in the study experienced some degree of immediate ocular irritation or light sensitivity. No definite cases of ocular damage were attributed to laser strikes. No pilot had any functional ocular deficits. Our study revealed that laser strikes on aircraft did not result in permanent visual functional or structural deficits. However, laser strikes cause immediate visual effects, including glare, flash blindness, and ocular irritation that can interfere with a pilot's visual function. Given the widespread accessibility of high-power lasers and the rapid increase in incidents, laser strikes threaten to jeopardize aviation safety unless effective preventative measures are put in place. Copyright © 2015 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  8. A fiberoptic compatible midinfrared laser with CO2 laser-like effect: application to atherosclerosis.

    PubMed

    Oz, M C; Treat, M R; Trokel, S L; Andrew, J E; Nowygrod, R

    1989-12-01

    In theory, pulses of laser light in the 2-microns range should ablate tissue in a manner similar to that of the 10.6-microns CO2 laser with the added advantage of efficient transmission through flexible quartz fibers. Using 200-microseconds pulses of 2.15-microns thulium-holmium-chromium:YAG (THC:YAG) laser light, we were able to create 700-microns-diameter holes through calcific atherosclerosis in vitro. In vivo evaluation of thrombogenicity and healing was accomplished by exposing the luminal surface of rabbit aortas to the THC:YAG laser. Serial histologic examinations of laser-treated rabbit aortae revealed a time course of resolution of the lesions which was very similar to that observed with like-sized lesions created with the same amount of continuous wave CO2 energy. No significant differences in thrombogenicity nor healing response were noted. The excellent in vivo response observed is due in part to the pulsed nature of the THC:YAG laser output as well as to the efficient tissue absorption at the 2.15-microns wavelength. We feel that excellent ablative effects with minimal collateral thermal damage can be obtained through fiberoptic delivery systems by taking advantage of laser wavelengths corresponding to the infrared absorption peak of water in the 2-microns region and pulsed delivery of the laser energy.

  9. Biomedical effects of low-power laser controlled by electroacupuncture

    NASA Astrophysics Data System (ADS)

    Kalenchits, Nadezhda I.; Nicolaenko, Andrej A.; Shpilevoj, Boris N.

    1997-12-01

    The methods and technical facilities of testing the biomedical effects caused by the influence of low-power laser radiation in the process of laser therapy are presented. Described studies have been conducted by means of the complex of fireware facilities consisting of the system of electroacupuncture diagnostics (EA) and a system of laser therapy on the basis of multichannel laser and magneto-laser devices. The task of laser therapy was concluded in undertaking acupuncture anaesthetization, achievement of antioedemic and dispersional actions, raising tone of musculus and nervous system, normalization of immunity factors under the control of system EA. The 82 percent to 95 percent agreement of the result of an electroacupuncture diagnostics with clinical diagnoses were achieved.

  10. Effects of laser polarization in the expansion of plasma waveguides

    NASA Astrophysics Data System (ADS)

    Lemos, N.; Grismayer, T.; Cardoso, L.; Geada, J.; Figueira, G.; Dias, J. M.

    2013-10-01

    We experimentally demonstrate that a column of hydrogen plasma generated by an ultra-short (sub-picosecond), moderate intensity (˜1015-16 W.cm-2) laser, radially expands at a higher velocity when using a circularly polarized laser beam instead of a linearly polarized beam. Interferometry shows that after 1 ns there is a clear shock structure formed, that can be approximated to a cylindrical blast wave. The shock velocity was measured for plasmas created with linearly and circularly polarized laser beams, indicating an approximately 20% higher velocity for plasmas generated with a circularly polarized laser beam, thus implying a higher plasma electron temperature. The heating mechanism was determined to be the Above Threshold Ionization effect. The calculated electrum energy spectrum for a circularly polarized laser beam was broader when compared to the one generated by a linearly polarized laser beam, leading to a higher plasma temperature.

  11. Fractional nonablative laser resurfacing: is there a skin tightening effect?

    PubMed

    Kauvar, Arielle N B

    2014-12-01

    Fractional photothermolysis, an approach to laser skin resurfacing that creates microscopic thermal wounds in skin separated by islands of spared tissue, was developed to overcome the high incidence of adverse events and prolonged healing times associated with full coverage ablative laser procedures. To examine whether fractional nonablative laser resurfacing induces skin tightening. A literature review was performed to evaluate the clinical and histologic effects of fractional nonablative laser resurfacing and full coverage ablative resurfacing procedures. Fractional nonablative lasers produce excellent outcomes with minimal risk and morbidity for a variety of clinical conditions, including photodamaged skin, atrophic scars, surgical and burn scars. Efforts to induce robust fibroplasia in histologic specimens and skin tightening in the clinical setting have yielded inconsistent results. A better understanding of the histology of fractional laser resurfacing will help to optimize clinical outcomes.

  12. Stark effect in optically pumped molecular submillimeter lasers

    NASA Astrophysics Data System (ADS)

    Rak, V. G.; Dyubko, S. F.

    1980-06-01

    A theoretical analysis is made of the effects which take place in optically pumped lasers whose active medium is subjected to a dc electric Geld. The possibilities are discussed of tuning the frequency and modulating the intensity of the radiation emitted by a laser. The gain characteristics of an active medium in an electric field are calculated for a CH3F laser operating on a wavelength of 496 μ. It is shown that the frequency tuning limits of the output radiation of such a laser can reach 3 GHz, if the active medium allows electric fields of up to 30 kV/cm to be applied.

  13. Design of a cost-effective laser spot tracker

    NASA Astrophysics Data System (ADS)

    Artan, Göktuǧ Gencehan; Sari, Hüseyin

    2017-05-01

    One of the most important aspects of guided systems is detection. The most convenient detection in the sense of precision can be achieved with a laser spot tracker. This study deals with a military grade, high performance and cost-effective laser spot tracker for a guided system. The aim is to develop a high field of view system that will detect a laser spot from a distance of 3 kilometers in which the target is designated from 3 kilometers with a laser. The study basically consists of the system design, modeling, producing and the conducting performance tests of the whole system.

  14. [Effect of surgical laser on collagen-rich tissue].

    PubMed

    Gebauer, D; Constantinescu, M A

    2000-01-01

    The goal of this ex-vivo study was a controlled macroscopical and microscopical comparison of the immediate effects of surgical lasers on dense collagenous tissues. The investigation of the exact denaturizing effects following tissue interaction between lasers and collagenous fibers are of importance for a better understanding of the observed and described healing process. Partial tenotomies were performed ex vivo on sixty tendons of the flexor digitorum profundus muscle of New Zealand White Rabbits using four surgical lasers (Holmium:YAG-, Erbium:YAG-, Neodym:YAG-, and CO2-Laser). The tendons were evaluated macroscopically, histologically and observations were made on the surgical handling of the lasers during the procedure. The choice of lasers allowed the comparison of a wide spectrum of wavelengths (gamma = 1.0 to 10.6 microns). In addition, beam delivery modalities were compared to each other (focus vs. contact). The pulse (frequency and power) was varied within each laser. Other parameters including focus size, absorption, dispersion, and thermal tissue conductivity were maintained constant in this test arrangement in order to allow a later comparison between the observed areas of denaturated collagen. The macroscopical and histological results showed great differences in the effects of the four lasers. Even within each single laser group, the results varied greatly with the choice of variable parameters. Holmium:YAG- and CO2-Laser can produce similar areas of collagen denaturation. When comparing specimens with similar areas of collagen denaturation induced by different laser types, different amounts of charring were observed. Erbium:YAG-Laser tenotomies showed generally inhomogeneous denaturation areas, while tenotomies with Neodym: YAG-Laser used in continuous mode resulted in significant charring and tissue retraction in the area of interaction. These observations help in defining the combination of parameters with which Holmium:YAG-, Erbium:YAG-, and CO2

  15. Thermal effect control for biomedical tissue by free electron laser

    NASA Astrophysics Data System (ADS)

    Yoshihashi-Suzuki, Sachiko; Kanai, Taizo; Awazu, Kunio

    2007-02-01

    An absorption characteristic and a thermal relaxation time of a target biomedical tissue is an important parameter for development of low-invasive treatment that considers of interaction between biomedical tissue and laser. Laser irradiations with a wavelength corresponding to the absorption characteristics of tissue enable selective treatment. Furthermore, the thermal effect to tissue can be controlled at the laser irradiation time which depends on the laser pulse width and reception rate. A free electron laser (FEL) can continuously vary the wavelength in the mid-infrared region, has a unique pulse structure; the structure at the Institute of the Free Electron Laser (iFEL) consist of train of macropulses with a 15 μs pulse width, and each macropulse contained a train of 300-400 ultrashort micropulse with a 5 ps pulse width. In a previous report, we have proposed a novel laser treatment such as soft tissue cutting, dental treatment and laser angioplasty using the tenability of the FEL. To investigate the thermal effect to the biomedical tissue, we developed a FEL pulse control system using an acousto-optic modulator (AOM). The AOM commonly are used the Q-switch for the pulse laser generation, has a high pulse control efficiency and good operationally. The system can control the FEL macropulse width from 200 ns. This system should be a novel tool for investigating the interaction between the FEL and biomedical tissue. In this report, the interaction between FEL pulse width and biomedical tissue will be discussed.

  16. EFFECT OF LASER LIGHT ON LASER PLASMAS: Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskiĭ, Yu M.; Moiseev, V. N.; Rovinskiĭ, R. E.; Tsenina, I. S.

    1993-01-01

    The dynamic and optical characteristics of the laser plasma produced during the application of a CO2 laser pulse to a target have been studied as a function of the ambient air pressure. The changes in the surface roughness of the sample after bombardment were studied as a function of the air pressure. It is concluded from the results that a transition from an air plasma to an erosion plasma occurs at a residual air pressure on the order of 1 torr. The experiment data support the existing picture of the process by which a plasma is produced near the surface of a target in air by laser pulses.

  17. Space charge effect simulation at electrons channeling in laser fields

    NASA Astrophysics Data System (ADS)

    Frolov, E. N.; Dik, A. V.; Dabagov, S. B.

    2017-07-01

    In this work we present simulation results for electron beam channeling in ponderomotive potential of laser fields, calculated with a newly created code for electron beam dynamics taking into account space charge effect. It is shown that the use of laser field allows the electron beam to be shaped including focusing and collimation.

  18. Time-resolved imaging of cavitation effects during laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Siano, Salvatore; Pini, Roberto; Salimbeni, Renzo; Vannini, Matteo

    1995-01-01

    We devised a diagnostic technique based on a pump-and-probe scheme that provided time- resolved imaging of photofragmentation effects during laser lithotripsy. The evolution of the cavitation bubble induced on kidney stone samples by underwater irradiation with a XeCl excimer laser is presented and analyzed.

  19. Effects of different IR laser systems on the tympanic membrane

    NASA Astrophysics Data System (ADS)

    Sedlmaier, Benedikt W.; Bloedow, Alexander; Jovanovic, Sergije; Nagli, Lev; Eberle, Hans-Georg

    1997-05-01

    Lasers suitable for myringotomy are the erbium:YAG laser (2940 nm) and the carbon-dioxide laser (10600 nm). The study examines the laser-tissue interaction with tympanic membranes of guinea-pigs, horses and formalin-fixed human tympanic membranes and the effects demonstrated by light-microscopy and scanning-electron-microscopy. The minimum energy densities for a perforation with the erbium:YAG laser in guinea-pig ear drums and formalin-fixed human tympanic membranes are 8 J/cm2 and 16 J/cm2 respectively. There are no thermic side effects. With the carbon-dioxide laser thermic side effects only occur with energy transmission via silver halide polycrystalline fiber. The minimum power density for perforation is 400 W/cm2 (pulse duration 50 ms). With the microslad 719 micromanipulator (Sharplan, Israel, Tel Aviv), the minimum power densities for perforation of guinea-pig and horse eardrums and for formalin-fixed human tympanic membranes are 150 W/cm2, 300 W/cm2 and 600 W/cm2 (pulse duration: 50 ms) respectively. The minimum power density to achieve a perforation with the SwiftLaseTM 757 scanner (Sharplan, Israel, Tel Aviv), is 250 W/cm2 in guinea-pig eardrums (pulse duration: 100 ms). A prototype of a hand-held carbon-dioxide laser otoscope is suitable for performing laser myringotomies in formalin-fixed human tympanic membranes.

  20. Simulation and characterization of laser induced deformation processes

    NASA Astrophysics Data System (ADS)

    Fan, Yajun

    2006-04-01

    Laser induced deformation processes include laser forming (LF) and laser shock processing. LF is a recently developed and highly flexible thermal forming technique, and laser shock processing is an innovative mechanical process in which shock waves up to 10GPa are generated by a confined laser ablation process. The generated high pressure imparts beneficial residual stress into the surface layer of metal parts as well as shapes thin metal parts. In laser forming, it has been known that microstructural evolution has an important effect on the deformation process, and that the typical thermal cycles in laser forming are much steeper than those in other thermal mechanical processes like welding and hot rolling. In this study, microstructural evolution in laser forming has been investigated, and a thermal-microstructural-mechanical model is developed to predict microstructural changes (phase transformations and recrystallization) and their effects on flow behavior and deformation. Grain structure and phase transformation in heat affected zone (HAZ) is experimentally characterized, and measurement of bending curvature also helps to validate the proposed model. Based on the similar methodology, two different materials have been studied: AISI 1010 low carbon steel and Ti-6Al-4V alloy. In the case of Ti-6A1-4V alloy, the initial phase ratio of Ti-alpha and Ti-beta need to be measured by X-ray diffraction. In laser shock processing, under shock loading solid material behavior is fluidlike and shock-solid interactions play a key role in determining the induced residual stress distributions and the final deformed shape. In this work shock-solid interactions under high pressure and thus high strain rate in laser shock processing are studied and simulated based on conservation's law, equation of state and elastoplasticity of material. A series of carefully controlled experiments, including spatially resolved residual stress measurement by synchrotron X-ray diffraction and

  1. Effect of low-level laser stimulation on EEG.

    PubMed

    Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan

    2012-01-01

    Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  2. Thermal effects in laser-assisted embryo hatching

    NASA Astrophysics Data System (ADS)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2000-08-01

    Diode lasers [(lambda) equals 1480 nm] are used with in-vitro fertilization [IVF] as a promoter of embryo hatching. A focused laser beam is applied in vitro to form a channel in the zona pellucida (shell) of the pre-embryo. After transfer into the uterus, the embryo hatches: it extrudes itself through the channel and implants into the uterine wall. Laser-assisted hatching can result in improving implantation and pregnancy success rates. We present examples of zone pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g. by overheating. In order to define safe regimes we have derived some thermal side-effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed-beam experiment a HeNe laser probe detects the temperature-induced change in refractive index. We find that the diode laser beam produces superheated water approaching 200 C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration laser power approximately 100 mW.

  3. Classical effect for enhanced high harmonic yield in ultrashort laser pulses with a moderate laser intensity

    NASA Astrophysics Data System (ADS)

    Shi, Y. Z.; Wang, S.; Dong, F. L.; Li, Y. P.; Chen, Y. J.

    2017-03-01

    We study the influence of pulse duration on high harmonic generation (HHG) by exploring a wide laser-parameter region theoretically. Previous studies have shown that for high laser intensities close to saturation ionization intensity, the HHG inversion efficiency is higher for shorter pulses since the ground-state depletion is weaker in short pulses. Our simulations show that this high efficiency also appears for a moderate laser intensity at which the ionization is not very strong. A classical effect relating to shorter travel distances of the rescattering electron in shorter pulses is shown to contribute importantly to this high efficiency. The effect can be amplified significantly if a two-color laser field is used, suggesting a potential approach to increasing the HHG yield and generating short and bright attosecond pulses.

  4. Laser Doppler velocimetry based on the optoacoustic effect in a RF-excited CO{sub 2} laser

    SciTech Connect

    Lee, Teaghee; Choi, Jong Woon; Kim, Yong Pyung

    2012-09-15

    We present a compact optoacoustic laser Doppler velocimetry method that utilizes the self-mixing effect in a RF-excited CO{sub 2} laser. A portion of a Doppler-shifted laser beam, produced by irradiating a single wavelength laser beam on a moving object, is mixed with an originally existing laser beam inside a laser cavity. The fine change of pressure in the laser cavity modulated by the Doppler-shifted frequency is detected by a condenser microphone in the laser tube. In our studies, the frequency of the Doppler signal due to the optoacoustic effect was detected as high as 50 kHz. Our measurements also confirmed that the signal varied linearly with the velocity of the external scatterer (the moving object) and the cosine of the angle between the laser beam and the velocity vector of the object.

  5. Atmospheric effects on eye-safe airborne laser radar

    NASA Astrophysics Data System (ADS)

    Leslie, Daniel H.; Youmans, Douglas G.

    1995-04-01

    Basing laser radar systems aboard aircraft provides capability for accurate tracking of ground, airborne, and ballistic missile targets from long range. The atmospheric effects of long propagation paths impact the performance of laser radar systems in two important ways -- molecular and aerosol extinction and optical turbulence. This paper provides quantitative assessment of the impact of these effects for laser radar wavelengths beyond 1.4 microns. The treatment of round-trip turbulence on direct detection systems is believed to be the first estimate of this effect. A more complete system analysis is underway and will be described in a forthcoming paper.

  6. Perspectives of holmium laser resection of the prostate: cutting effects with the holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Eichenauer, Rolf H.; Droege, Gerit; Brinkmann, Ralf; Neuss, Malte; Gafumbegete, Evariste; Jocham, Dieter

    1998-07-01

    Laser prostatectomy shows an improvement in peak urinary flow rates, in post-void residual urine volumes and also a symptomatic improvement when compared to the transurethral resection of the prostate (TUR-P). Time to achieve symptomatic improvement is delayed with many established laser procedures compared to standard resection. However, this disadvantage can be solved with a new resection technique using a pulsed holmium laser. Nevertheless, this advanced technique shows a few problems in a first clinical trial. Besides this clinical study, in vitro experiments were carried out in order to determine the optimal irradiation parameters with respect to resection rate, incision/ablation quality and handling. Prostate tissue of radical prostatectomies and chicken breast as model were irradiated with a pulsed holmium-laser in vitro with different laser parameters using a bare fiber in contact to tissue. The incision quality (depths and coagulation/vaporization effects) was analyzed with regard to pulse energy (speed of incision, angle of incision) and fiber diameter. Fast flash photography was performed to analyze thermo-mechanical side-effects. Fast flash photography reveals cavitation bubble up to 7 mm length in water and dissections in tissue. The ablation rate increases proportional to the laser pulse energy. The Holmium Laser Resection of the Prostate (HOLRP) in humans with available instrumentation right now shows equieffective results compared to the transurethral resection, no need for transfusion, no transurethral resection syndrome, short time for catheterization. Further technical approvement may significantly improve holmium laser prostate resection. We present a new application system for the laser resection.

  7. Optogalvanic effect in a self-terminating copper atomic laser

    SciTech Connect

    Yudin, Nikolai A; Klimkin, V M; Prokop'ev, V E

    1999-09-30

    The optogalvanic effect in a copper-vapour pulsed laser as well as the optothermal effects due to a hysteresis of the optogalvanic effect were observed for the first time. The generalised rate constant for the deexcitation of a resonant level to the ionisation state of the active medium was estimated to be <{sigma}{nu}>{approx}(3 {+-} 1) x 10{sup -7} cm{sup 3} s{sup -1} . (laser applications and other topics in quantum electronics)

  8. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    radiation for radiography, particle beam generation and eventually for a new class of fusion experiments call fast ignition. We have also built a record setting 50 watts of average output from a picosecond class laser and are using this technology for materials processing such as fine hole drilling and safe cutting of munitions. The laser science and technology program has developed and deployed a laser guide star on the Lick telescope on Mt. Hamilton and most recently on the Keck telescope in Hawaii. Our current development work in this area is focused on developing a much more compact all solid state diode pumped laser fiber system. Finally in a program originally initiated by DARPA we have developed a phase conjugated Nd:glass laser system with record setting performance and successfully deployed it for Navy and Air Force satellite imaging applications and have more recently successfully transferred it to industry for use in an emerging technology called laser peening. This laser technology is capable of 25 J to 100 J per pulse, 10 ns to 1000 ns pulse duration, 5 Hz laser. The technology has been industrially deployed and is proving to be highly effective in generating high intensity shocks that induce compressive residual stress into metal components. The compressive stress retards fatigue and stress corrosion cracking and is proving to extend the lifetime of high value components by factors of ten. This processing adds lifetime, enhances safety and can improve performance of aircraft systems. Laser peening is now being evaluated to reduce the weight of aircraft and may play a major role in the future combat system and its air transport by enabling lighter craft, longer range and greater payload. The laser peening technology is also being moved forward in NRC license application as the means to eliminate stress corrosion cracking for Yucca Mountain nuclear waste disposal canisters as well as a broad range of other applications.

  9. Atmospheric effects on CO2 laser propagation

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.; Bilbro, J. W.

    1978-01-01

    An investigation was made of the losses encountered in the propagation of CO2 laser radiation through the atmosphere, particularly as it applies to the NASA/Marshall Space Flight Center Pulsed Laser Doppler System. As such it addresses three major areas associated with signal loss: molecular absorption, refractive index changes in a turbulent environment, and aerosol absorption and scattering. In particular, the molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated for various laser lines in the region of 10.6 mu m as a function of various pressures and temperatures. The current status in the physics of low-energy laser propagation through a turbulent atmosphere is presented together with the analysis and evaluation of the associated heterodyne signal power loss. Finally, aerosol backscatter and extinction coefficients are calculated for various aerosol distributions and the results incorporated into the signal-to-noise ratio equation for the Marshall Space Flight Center system.

  10. Effect of baking and pulsed laser irradiation on the bulk laser damage threshold of potassium dihydrogen phosphate crystals

    SciTech Connect

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.

    1982-07-01

    We increased the bulk laser damage threshold of potassium dihydrogen phosphate crystals by as much as a factor of 5 by first baking the crystals at 140 /sup 0/C for 24 h and then irradiating them with laser pulses of increasing fluence. The combination of baking and subthreshold laser irradiation was more effective in improving bulk damage thresholds than either process alone. The combined process was effective for all laser pulse durations from 1 to 20 ns.

  11. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  12. Pulsed excimer laser processing for cost-effective solar cells

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1984-01-01

    The goal was to demonstrate the cost effectiveness feasibility of fabricating 16% efficient solar cells on 125 mm diameter Cz wafers using pulsed excimer laser for junction formation, surface passivation, and front metallization.

  13. Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars.

    PubMed

    Marc, Fabien; Guillet de Chatellus, Hugues; Pique, Jean-Paul

    2009-03-30

    The possibility to produce diffraction-limited images by large telescopes through Adaptive Optics is closely linked to the precision of measurement of the position of the guide star on the wavefront sensor. In the case of laser guide stars, many parameters can lead to a strong distortion on the shape of the LGS spot. Here we study the influence of both the saturation of the sodium layer excited by different types of lasers, the spatial quality of the laser mode at the ground and the influence of the atmospheric turbulence on the upward propagation of the laser beam. Both shape and intensity of the LGS spot are found to depend strongly on these three effects with important consequences on the precision on the wavefront analysis.

  14. Bactericidal effect of the Nd:YAG lasers in laser-supported curettage

    NASA Astrophysics Data System (ADS)

    Gutknecht, Norbert; Fischer, Julia; Conrads, Georg; Lampert, Friedrich

    1997-05-01

    In this study, the efficacy of laser-supported curettage was examined with relation to the periodontitis-reference germs. Initially, a manual subgingival curettage followed by irradiation using the Nd:YAG-laser was carried out on 18 diseased periodontia. At two further appointments with weekly intervals, only laser irradiation was performed. Prior to and upon completion of therapy, subgingival plaque samples were taken at each appointment from all the treated periodontia. These were then examined microbiologically to establish the number of prevotella intermedia. A distinct bacterial reduction as well as a decrease in recolonization was shown. In conclusion the application of the Nd:YAG laser with a 400 micron fiber and an energy setting of 2 watts, 20 pps is beneficial when used in conjunction with manual periodontal treatment because of its disinfecting effect.

  15. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Thermocapillary instability in deep weld keyholes

    NASA Astrophysics Data System (ADS)

    Ledenev, V. I.; Mirzoev, F. Kh

    1993-12-01

    A theory is derived for the onset of a thermocapillary instability at the wall of the vapor-gas cavity formed during deep-penetration welding of metals by intense laser radiation. The basic physical factors causing the instability are identified. The quantitative conditions for its occurrence are derived. The curve of neutral (monotonic) stability is derived analytically. This curve relates the critical Marangoni number (or the intensity of the laser radiation) to the parameters of the wave perturbations and properties of the medium. When the thermocapillary effect and capillary perturbations of the free surface are taken into account simultaneously, the threshold for stability of the melt with respect to monotonic perturbations is lowered, particularly at small wave numbers. Estimates of the critical intensities of the laser radiation found here lie in the range (3-6) · 109 W/m2. This range corresponds roughly to the conditions prevailing during the laser processing of metals under deep penetration conditions.

  16. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  17. Clinical effects of CO2 laser on equine diseases

    NASA Astrophysics Data System (ADS)

    Lindholm, Arne; Svensson, Ulf; Collinder, Eje

    2002-10-01

    CO2 lasers has been used for five years at Malaren Equine Hospital, as an alternative treatment of some equine diseases. The application of CO2 laser has been studied for evaluation of its appropriateness for treatment of the equine diseases sarcoids, lameness in fetlock joints or pulmonary haemorrhage. During the last five years, above 100 equine sarcoids have been removed by laser surgery (CO2 laser) and so far resulting in significantly few recurrences compared with results from usual excision surgery. In one study, acute traumatic arthritis in fetlock joints was treated three times every second day with defocalised CO2 laser. The therapeutic effectiveness of CO2 laser in this study was better than that of the customary therapy with betamethasone plus hyaluronan. During one year, chronic pulmonary bleeders, namely exercise induced pulmonary haemorrhage, has been treated with defocalised CO2 laser. Six race horses have been treated once daily during five days. Until now, three of these horses have subsequently been successfully racing and no symptoms of pulmonary haemorrhage have been observed. These studies indicate that CO2 laser might be an appropriate therapy on sarcoids and traumatic arthritis, and probably also on exercise induced pulmonary haemorrhage. Other treatments for this pulmonary disease are few.

  18. Effect of low power laser irradiation on macrophage phagocytic capacity

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Song, Sheng; Tang, Yu; Zhou, Feifan

    2011-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with immunological functions. However, the effects of laser on the immune response have not been extensively characterized. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages by using flow cytometry (FCM). After irradiating at fluence of 0, 1, 2 J/cm2 with He-Ne laser (632.8 nm, 3mw), the cells were incubated with microsphere and then subjected to FACS analysis. The results showed that Low-power laser irradiation (LPLI) leads to an increase in phagocytosis on both mouse peritoneal macrophages and the murine macrophage-like cell line RAW264.7. In addition, we demonstrated that LPLI increased phagocytosis of microsphere in a dose-dependent manner, reaching a maximum at fluence of 2 J/cm2. Taken together, our results indicated that Low-power laser irradiation with appropriate dosage can enhance the phagocytosis of macrophage, and provided a theoretical base for the clinical use of the He-Ne laser.

  19. Study of the laser cleaning on plaster sculptures. The effect of laser irradiation on the surfaces

    NASA Astrophysics Data System (ADS)

    Pelosi, C.; Fodaro, D.; Sforzini, L.; Rubino, A. R.; Falqui, A.

    2013-06-01

    The focus of this paper is to study the effects caused by the laser irradiation on nineteenth and twentieth century plaster sculptures. Before applying the laser cleaning on the sculptures, it was tested on samples prepared in laboratory according to the results of the scientific investigation carried out on the selected works of art. The characterization of the surface finishing materials of the sculptures was performed by Fourier Transform Infrared spectrometry (FTIR), X-ray Fluorescence spectroscopy (XRF), UV fluorescence photography, and internal micro stratigraphic analysis. Regarding the finishing materials, shellac, zinc white, siccative oil and proteins were found on the surfaces. The results of the scientific investigation, together with the examination of the ancient technical manuals, were used to create the laboratory samples to carry out the irradiation tests with laser. The laser irradiation and cleaning tests were carried out with a Q-switched Nd:YAG system. The irradiated surfaces were analyzed before and after the laser tests with the aid of a video microscope and a reflectance spectrophotometer, in order to evaluate the color changes of the surfaces. The possible morphological modifications caused by laser irradiation were also investigated by Scanning Electron Microscopy (SEM) together with ancillary Energy Dispersive Spectroscopy (EDS) elemental analysis. Concerning the laser cleaning test on the samples, in general little color changes were observed both with the 532 and 1064 nm wavelength. Total color changes, expressed as Δ E*, are always small apart from the samples made of shellac and zinc white in linseed oil, as finishing layer. As regards these samples the surface irradiated with the laser greyed lightly, corresponding to a decrease of L* parameter (lightness). SEM imaging of the treated and not-treated samples, both at low and high magnification, does not show evidence of significant morphological differences due to the laser beam

  20. Investigation on the Tribological Behavior of Arc-Sprayed and Hammer-Peened Coatings Using Tungsten Carbide Cored Wires

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Hagen, L.; Schröder, P.

    2017-01-01

    Due to their outstanding properties, WC-W2C iron-based cermet coatings are widely used in the field of wear protection. Regarding commonly used WC-W2C reinforced coating systems, it has been reported that their tribological behavior is mainly determined by the carbide grain size fraction. Although the manufacturing route for arc-sprayed WC-W2C cermet coatings is in an advanced state, there is still a lack of knowledge concerning the performance of cored wires with tungsten carbides as filling material and their related coating properties when post-treatment processes are used such as machine hammer peening (MHP). A major objective was to characterize WC-W2C FeCMnSi coatings, deposited with different carbide grain size fractions as a filling using cored wires, with respect to their tribological behavior. Moreover, deposits derived from cored wires with a different amount of hard phases are investigated. According to this, polished MHP surfaces are compared to as-sprayed and polished samples by means of metallographic investigations. With the use of ball-on-disk and dry rubber wheel tests, dry sliding and rolling wear effects on a microscopic level are scrutinized. It has been shown that the MHP process leads to a densification of the microstructure formation. For dry sliding experiments, the MHP coatings obtain lower wear resistances, but lower coefficients of friction than the conventional coatings. In view of abrasion tests, the MHP coatings possess an improved wear resistance. Strain hardening effects at the subsurface area were revealed by the mechanical response using nanoindentation. However, the MHP process has caused a cracking of embedded carbides, which favor breakouts, leading to advanced third-body wear.

  1. Laser plasma as an effective ion source

    NASA Astrophysics Data System (ADS)

    Masek, Karel; Krasa, Josef; Laska, Leos; Pfeifer, Miroslav; Rohlena, Karel; Kralikova, Bozena; Skala, Jiri; Woryna, Eugeniusz; Farny, J.; Parys, Piotr; Wolowski, Jerzy; Mraz, W.; Haseroth, H.; Sharkov, B.; Korschinek, G.

    1998-09-01

    Ions in different charge state and with different energy distribution are generated in the process of interaction of intense laser radiation with solid targets. Multiply charged ions of medium- and high-Z elements (Al, Co, Ni, Cu, Sn, Ta, W, Pt, Au, Pb, Bi), produced by photodissociation iodine laser system PERUN ((lambda) equals 1.315 micrometer, EL approximately 40 J, (tau) approximately 500 ps) are reported. Corpuscular diagnostics based on time-of-flight method (ion collectors and a cylindrical electrostatic ion energy analyzer) as well as Thomson parabola spectrometer were used in the experiments. The ions in maximum charge state up to about 55+ and with energies of several MeV were registered at a distance of about 2 m from the plasma plume. Measured ion current densities higher than 10 mA/cm2 in about 1 m from the target demonstrate the performance of laser ion source. A theoretical interpretation of ion spectra is attempted.

  2. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study.

    PubMed

    Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie

    2017-01-18

    The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.

  3. Analysis of Ultraviolet and Visible Laser Effects

    DTIC Science & Technology

    1981-01-01

    Schriempf, J.T., Cronburg, T.L., Eninger , J.E., and Woodroffe, J.A., "Pulsed CO 2 Laser Interaction with a Metal Surface at Oblique Incidence," Appl...REFERENCES 1. McKay, J.A., Schriempf, J.T., Cronburg, T.L., Eninger , J.E., and Woodroffe, J.A., "Pulsed CO2 Laser Interaction with a Metal Surface at...McKay, J.A., Schriempf, J.T., Cronburg, T.L., Eninger , J.E., and Woodroffe, J.A., Appi. Phys. Lett. 36, 125 (1980). 2. Jacob, J.H., Hsia, J.C., Mangano

  4. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    NASA Astrophysics Data System (ADS)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-09-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Effects of laser radiation on immobile and fast-moving targets

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Lisenkov, V. V.; Shitov, V. A.; Luk'yashin, K. E.

    2009-04-01

    We have studied the effects of laser pulses up to 50 J in energy and up to 1100 μs in duration, with a rise time of ~300 μs, on immobile and moving (linear velocity of up to 104 cm s-1) stainless steel targets. The results indicate that, in the vapour above an immobile target, optical breakdown develops at a spot-averaged power density of 5.5×106 W cm-2, against 7.3×106 W cm-2 in air. This undesirable effect can be eliminated even at an order of magnitude higher incident power density by rapidly rotating the target (linear velocity of ~50 cm s-1 relative to the laser beam). At incident power densities in the range (0.6-1.2)×107 W cm-2 (incident powers from 12 to 24 kW), evaporation from a rotating target is intermittent. To interpret this effect, a numerical model is developed which takes into account the influence of target burning. Its predictions agree with the evaporation behaviour observed in our experiments. The thicknesses of the evaporated and molten layers are evaluated as functions of laser beam parameters and target velocity, with reference to the optimisation of laser surface processing conditions.

  6. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    NASA Astrophysics Data System (ADS)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  7. Simulation of laser radiation effects on low dimensionality structures.

    PubMed

    Ramírez, Iliana María; Usma, Jorge Iván; López, Francisco Eugenio

    2013-05-01

    This paper presents a study on a system comprised of a low-dimensional structure (Ga1-xAlxAs and GaAs quantum well wire), an intense laser field and an applied magnetic field in axial direction, resulting in a modified structure by interaction with the laser field. A variation of the concentration of aluminum is considered. So, the characteristics of the semiconductor such as the effective mass and width of the forbidden band vary due to the aluminum concentration. The electronic Landé factor control by changing of both intensity and frequency of a laser field on cylindrical quantum well wire was also reported. We use the laser dressed approximation for the treated "quantum wire + laser" system as quantum wire in the absence of radiation but with parameter (electronic barrier height and electronic effective mass) renormalized by laser effects. We consider a magnetic field applied in the parallel direction of symmetric axis of the quantum well wire. We take into account non-parabolicity and anisotropy effects on the conduction band by Ogg-McCombe Hamiltonian.

  8. Laser pyrolysis products: sampling procedures, cytotoxic and genotoxic effects.

    PubMed

    Stocker, B; Meier, T; Fliedner, T M; Plappert, U

    1998-01-30

    The use of lasers in medical applications has grown enormously in the last few years. Recent chemical analysis of the laser pyrolysis products revealed that aerosols generated by pyrolytic decomposition of tissue could be health hazards. Therefore we analysed the genotoxic and mutagenic effects of laser pyrolysis products from different types of porcine tissue. The tissues were irradiated with a surgical CO2 laser and the generated aerosols were sampled as particulate fractions as well as low and highly volatile fractions. Then human leukocytes were incubated with the pyrolysis products and subjected to the comet assay. The results of the comet assay indicated the pyrolysis products being inducers of DNA damage. The ability to induce genotoxic effects turned out to be strongly dependent on the type of tissue that had been irradiated during laser treatment. To check whether the pyrolysis products also have mutagenic properties the Salmonella mutagenicity assay was performed. The particulate aerosol fractions of skin, muscle tissue and liver tissue clearly proved to be mutagenic in TA98 in the presence of S9 mix. There was no mutagenic effect detectable without metabolic activation. In conclusion, our experiments showed that the laser pyrolysis products originating from porcine tissues induced very potent genotoxic as well as mutagenic effects and therefore they could be potential health hazards for humans.

  9. Single event effects and laser simulation studies

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H.; Mccarty, K.; Coss, J.; Barnes, C.

    1993-01-01

    The single event upset (SEU) linear energy transfer threshold (LETTH) of radiation hardened 64K Static Random Access Memories (SRAM's) was measured with a picosecond pulsed dye laser system. These results were compared with standard heavy ion accelerator (Brookhaven National Laboratory (BNL)) measurements of the same SRAM's. With heavy ions, the LETTH of the Honeywell HC6364 was 27 MeV-sq cm/mg at 125 C compared with a value of 24 MeV-sq cm/mg obtained with the laser. In the case of the second type of 64K SRAM, the IBM640lCRH no upsets were observed at 125 C with the highest LET ions used at BNL. In contrast, the pulsed dye laser tests indicated a value of 90 MeV-sq cm/mg at room temperature for the SEU-hardened IBM SRAM. No latchups or multiple SEU's were observed on any of the SRAM's even under worst case conditions. The results of this study suggest that the laser can be used as an inexpensive laboratory SEU prescreen tool in certain cases.

  10. Effects of Near-Infrared Laser on Neural Cell Activity

    NASA Astrophysics Data System (ADS)

    Mochizuki-Oda, Noriko; Kataoka, Yosky; Yamada, Hisao; Awazu, Kunio

    2004-08-01

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19 % higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5 - 5.0 °C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  11. Prepulse effect on intense femtosecond laser pulse propagation in gas

    SciTech Connect

    Giulietti, Antonio; Tomassini, Paolo; Galimberti, Marco; Giulietti, Danilo; Gizzi, Leonida A.; Koester, Petra; Labate, Luca; Ceccotti, Tiberio; D'Oliveira, Pascal; Auguste, Thierry; Monot, Pascal; Martin, Philippe

    2006-09-15

    The propagation of an ultrashort laser pulse can be affected by the light reaching the medium before the pulse. This can cause a serious drawback to possible applications. The propagation in He of an intense 60-fs pulse delivered by a Ti:sapphire laser in the chirped pulse amplification (CPA) mode has been investigated in conditions of interest for laser-plasma acceleration of electrons. The effects of both nanosecond amplified spontaneous emission and picosecond pedestals have been clearly identified. There is evidence that such effects are basically of refractive nature and that they are not detrimental for the propagation of a CPA pulse focused to moderately relativistic intensity. The observations are fully consistent with numerical simulations and can contribute to the search of a stable regime for laser acceleration.

  12. New approach to determining laser effects on bone

    NASA Astrophysics Data System (ADS)

    Christ, Matthias; Barton, Thomas G.; Hoermann, Karl; Foth, Hans-Jochen; Stasche, Norbert

    1994-12-01

    Dealing with laser-tissue interaction, it is essential to investigate both the morphology of laser- induced effects and the ablation rate. The conventional methods, like HE-stained histological sections, have various disadvantages as regards artifacts or spatial crater morphology assessment. A confocal laserscanning microscope was applied to investigate the laser effects of a Ho:YAG laser on bovine bone. With this instrument it is possible to scan the object both along the xy-plane and the z-axis, thus `optically cut' the specimen without damaging them, yielding exact crater profiles, 3D images, and crater volume calculations. In the delicate region of the skull base area it is of fundamental importance to know exactly which kind of affect will take place regarding both ablation rate and morphology.

  13. Biological effects on canine bladder by Nd:YAP laser

    NASA Astrophysics Data System (ADS)

    Zhang, Hui-Guo; Zhang, Mei-Jue; Zhu, Jing

    2005-07-01

    Objective: To observe the difference of biological effects on canine bladder by Nd:YAP laser with different power and different irradiation time. Methods: The canine bladder was irradiated with different power and different irradiation time. The effects of ablation and thermal coagulation in different laser settings were observed. The damage scale was evaluated macroscopically, with microscope and with electroscope. Results: The thermal coagulation effects is mostly and ablation effects is subordinate on the canine bladder by irradiation of Nd:YAP laser on. Pathology vision shows the thermal coagulation dose on perforation is 10W、6s;20W、4s;30W、3s;40W、2s;50-60W、1s;the dose of whole audience wear through is 10W、6s 20W、4s 30W、3s;40W、2s;50-60W、1s. Conclusions: The thermal coagulation effects is mostly and ablation effects is subordinate on biological effect of Nd:YAP laser on canine bladder. The better safety dose is power 10W、duration time less than 6s; power 20W、duration time less than 4s. power 30W、time less than 3s. power 40W、time less than 2s. The ablation and thermal coagulation effects of Nd:YAP laser on canine bladder is homocercal of power and time.

  14. Effect of low-level laser irradiating point on immunity

    NASA Astrophysics Data System (ADS)

    Cai, ChangSong; Qi, Qiong-fang; Xin, Jiang

    1993-03-01

    This paper reports that cellular immune function was observed when He-Ne laser was used to irradiate `zusanli' point in rats using various power, time, and periods. The indicator was a lymphocyte transformation test (LTT) by MTT colorimetric analysis. The best irradiating condition was determined, the effect and both virtues and defects of the laser were compared with those of electropuncture. The results show (1) LTT was enhanced in the group of laser irradiating point, but LTT was not enhanced in non-point (t' test, P < 0.01). (2) Lower power -- 2 mW or 5 mW of irradiating for 15 - 20 min, was better; 10 mW or 20 mW of irradiating for 10 - 15 min was suitable. Prolonged irradiating time did not enhance the immune function of the rats. On the contrary, immune function was inhibited. (3) A 7-day period of irradiating was best (once a day, 10 mW for 10 min). Enhanced LTT was not seen when irradiation days were added (SNK, P > 0.05). (4) Laser irradiation point and electropuncture were compared with vehicle control, LTT in the former two groups was enhanced significantly (ANOVA, P < 0.01), and laser irradiating point and electropuncture had the same effect (SNK, P > 0.05). The data suggest that laser irradiating point was able to enhance cell immunity and the enhancement of LTT had a point specific characteristic. The best condition of laser irradiating point was 2 mW for 15 - 20 min, and 10 mW or 20 mW for 10 - 15 min. The best period was 7-day irradiation. The results show laser irradiating the point may activate the main and collateral channels system, then modify the immune function of the body. Our observations provide experimental evidence for proper clinical application of laser irradiating points. The paper theoretically discusses and analyzes the experiment results in detail.

  15. Laser effect in photodynamic therapy of tumors

    NASA Astrophysics Data System (ADS)

    Ion, Rodica-Mariana; Brezoi, Dragos-Viorel; Neagu, Monica; Manda, Gina; Constantin, Carolina

    2007-03-01

    Photodynamic therapy is a method that provides a reasonable alternative to other treatment modalities for patients with certain cancers, and in some cases may be the preferred treatment. The therapy implies the intravenous administration of a light-sensitive substance, the photosensitizer. The used sensitizer must absorb at long wavelength. For these purposes, the carbon dioxide laser, He-Ne and the argon laser are particularly suitable. In this study we evaluate in vitro the cytotoxic activity of three synthesized metallo-phthalocyanines with absorption bands in the red part of the spectrum: zinc-di-sulphonated phthalocyanine (ZnS IIPc), zinc-tri-sulphonated phthalocyanine (ZnS 3Pc) and zinc-tetrasulphonated phthalocyanine (ZnS 4Pc). Some cellular models have been used in this paper, in order to optimize the conditions of this method, as we are presenting in this paper (LSR-SF(SR) - transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin; LSCC-SF(Mc29) - transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, MCF-7 cell line (human breast adenocarcinoma) derived from a patient with metastatic breast cancer, 8-MG-BA - glioblastoma multiforme 8-MG-BA, K562 - lymphoblastic human cell line, LLC-WRC 256 - Walker epithelial carcinoma. Activation of these photosensitizers retained in the cancerous cells, by red light emitted from a He-Ne laser at λ= 632.8 nm laser system, or by a diode laser emitting at 672 nm, produces a photochemical reaction that results in the selective destruction of tumor cells.

  16. Feedback and Acousto Optic Isolation Effects on Laser Stability.

    DTIC Science & Technology

    1977-03-01

    This paper analyzes the effect of optical feedback on laser frequency stability and the acousto optic isolator concept, which was demonstrated...nonlinearity such as saturation in the laser medium. The analysis mathematically corroborates the initial acousto optic isolator concept and the...limited experimental data available. In the study of the acousto optic isolator, it was determined that an acceptable analytic expression for the

  17. Research on the Ocular Effects of Laser Radiation. Executive Summary

    DTIC Science & Technology

    1988-09-01

    of the overall effect of the laser insult on macular function. Experiments were conducted while the animals were maintained at a surgical plane of...apparent spreading of blood away from lesion site). One exposure depositing 40 #J in the para- macular region resulted in a spreading hemorrhage into...without the complication of additional retinal pathology, but also of off-axis (para- macular ) laser lesions on central retinal function, we examined the

  18. Excimer laser corneal ablation: absence of a significant "incubation" effect.

    PubMed

    Pettit, G H; Ediger, M N; Weiblinger, R P

    1991-01-01

    Pulse-to-pulse consistency of excimer laser etching of cornea has been examined via two noncontact techniques: photoacoustic probe beam deflection, and time-resolved excimer pulse reflectometry. These methods clearly document the incubation phenomenon accompanying excimer laser ablation of polymethyl-methacrylate and the absence of the effect during polyimide ablation. In comparison, results for corneal ablation indicate consistent tissue etching over a train of pulses. Consequently, incubation appears to have negligible impact on corneal ablation.

  19. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.

    PubMed

    Lee, D G; Kim, D K; Moon, Y J; Moon, S-J

    2013-07-05

    Laser sintering of metal nanoparticles is a key technology for high-performance printed electronics fabricated on heat-sensitive substrates such as glass or plastic. Although laser-sintered electronic devices have been successfully fabricated, the role of the induced temperature field in the laser sintering process has not been reported thus far. In this work, the effect of temperature on the laser sintering process is described for the first time using a two-dimensional transient heat conduction equation for inkjet-printed silver nanoparticle ink. The in situ electrical resistance was measured to estimate the transient thermal conductivity and hence the temperature of the sintered ink during the laser sintering process. To verify the estimated laser sintering temperature, the morphology of furnace-sintered silver nanoparticle ink was compared with that of laser-sintered ink. The electrical characteristics and surface morphology of laser-sintered ink are found to be related to the process temperature.

  20. Portable Fiber Laser System and Method to Remove Pits and Cracks on Sensitized Surfaces of Aluminum Alloys

    DTIC Science & Technology

    2015-08-01

    and Cracks on Sensitized Surfaces of Aluminum Alloys Prepared for DEPARTMENT OF THE NAVY Office of Naval Research For the period July 1, 2015... Cracks on Sensitized Surfaces of Aluminum Alloys 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...laser repair system integrated with the capabilities of surface cleaning, local heating, and peening using a single laser to remove pits and cracks in

  1. Effects of pulsed CO2 laser in caries selective ablation

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; David, Ion; Marinovici, Mariana

    1995-03-01

    We have evaluated the effect of pulsed carbon dioxide laser in the treatment for deep carious decay. The so called `caries profonda' is still a problem for conservative dentistry. A `Valvfivre' Master 20S carbon dioxide laser was pulsed to determine the effects on dentine and for testing the properties of softened dentine in selective ablation. Laser treatment parameters were from 1 to 2 W, 50 to 150 ms, 200 to 320 Hz. Fifteen human teeth samples were exposed to irradiation: extracted third molar were exposed to CO2 pulsed laser to determine in vitro the effects on pulp morphology. The tissue samples were analyzed histologically and by means of scanning electron microscopy for evidence of thermal damage. Next, we have evaluated the morphologic changes in vivo on 10 cases in patients with deep carious decay. Pulsed infrared lasers are capable of inducing physical and chemical changes in dentine structure. The results showed an artificially sclerosing and micro-hardness on the remaining dentine. CO2 laser can vaporized carious dentine.

  2. Use of a macroscopic model for describing the effects of porosity on shock wave propagation

    SciTech Connect

    Arrigoni, M.; Boustie, M.; Resseguier, T. de; Pons, F.; He, H. L.; Seaman, L.; Bolis, C.; Berthe, L.; Barradas, S.; Jeandin, M.

    2007-04-15

    Materials are manufactured by sintering involve porosity. Some material processes, like laser peening, consist in applying shocks onto the surface of a porous material surface to induce permanent densification that will increase its resistance to corrosion and wear. An estimation of the residual compaction and stresses within the material after treatment requires a good knowledge of shock wave propagation in such media. To investigate the effects of porosity on this propagation, we have performed velocity interferometer system for any reflectors measurements on laser shock-loaded samples of sintered steels with 10%-28% porosity. The records do not agree with the predictions of a simple P-{alpha} model from the literature. Hence, a formulation of the compaction process is proposed to improve the correlation between experimental and simulated velocity profile.

  3. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    NASA Astrophysics Data System (ADS)

    Amano, Y.; Nanbu, H.; Kameyama, Y.; Komotori, J.

    2010-06-01

    In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP) treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  4. Optimum Corrosion Protection Potential for Water Cavitation Peening-Processed Al-Mg Alloy in Seawater

    NASA Astrophysics Data System (ADS)

    Hyun, Koangyong; Kim, Seong-Jong

    Chloride ions in seawater can destroy the passive state films on the exposed surface of aluminum (Al) alloy ships. This shortens hull lifespan and increases the maintenance costs of ships. Recently, the water cavitation peening (WCP) technology has been adopted to form compressive residual stress on surfaces to improve resistance to cavitation. This study was conducted to investigate corrosion damage prevention by applying the WCP technology to 5083-O Al alloy for ships; the optimum WCP duration and corrosion protection potential range for maintaining corrosion resistance were determined. We found that the optimum WCP duration was 2.5min by performing a potentiostatic experiment, and the optimum corrosion protection potential range was -1.30V--0.75V for ICCP system.

  5. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    NASA Astrophysics Data System (ADS)

    Michalski, J.; Pawlus, P.; Żelasko, W.

    2011-08-01

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  6. Effects of laser irradiation on the morphology of Cu(110)

    SciTech Connect

    Brandstetter, T.; Draxler, M.; Hohage, M.; Zeppenfeld, P.; Stehrer, T.; Heitz, J.; Georgiev, N.; Martinotti, D.; Ernst, H.-J.

    2008-07-15

    The effects of pulsed laser irradiation on the morphology of the Cu(110) surface were investigated by means of reflectance difference spectroscopy (RDS) and spot profile analysis low-energy electron diffraction (SPA-LEED). The laser light induces surface defects (adatoms and islands) as well as subsurface dislocation lines. The high surface mobility leads to efficient annealing of the surface defects even at room temperature, whereas the subsurface dislocation lines persist up to temperatures T>800 K. SPA-LEED profiles of the (00) diffraction spot from the laser irradiated surface suggest an anisotropic distribution of the subsurface line defects related to the geometry of the fcc easy glide system, which is corroborated by STM measurements. Comparative experiments using conventional Ar ion bombardment point out the distinctiveness of the morphological changes induced by laser irradiation.

  7. Stark effect applicable to optically pumped far-infrared laser

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Koo, K. P.

    1976-01-01

    Absorption measurements at CO2 laser frequencies were carried out as a function of Stark fields and CH3OH gas pressures to assess the effect of low electric field Stark tuning on methanol absorption at the P(12) 9.4 micron CO2 laser line, in a continuing search for coherent emitters at submillimeter wavelengths (far infrared). The line center absorption coefficient is found to increase five-fold with a 2.3 kV/cm Stark field at the 220 mtorr methanol pressure optimal for methanol far infrared lasing. The low electric field Stark tuning encourages efforts to enhance the pumping efficiency of a methanol far infrared laser at its normal optimum operating pressure, and suggests that significant Stark field induced frequency modulation of the far IR laser output is feasible.

  8. Effects of a superpulsed CO2 laser on human teeth

    NASA Astrophysics Data System (ADS)

    Murgo, Dirian O. A.; Cerruti, Blanche; Redigolo, Marcela L.; Chavantes, Maria C.

    2001-10-01

    The effects of laser exposure on mineralized tissues like enamel have been explored for years as a technique to remove caries and for dental hard-tissue preparation. However the efficiency of this technique has been questioned. In this work, six freshly-extracted third molars were irradiated by a superpulse of CO2 laser, generally used in Transmyocardio Revascularization, and submitted to Scanning Electron Microscopy (SEM) analyzes. The cavities caused by laser irradiation on the dental tissues were analyzed considering its shape and depth. The CO2 superpulse presented a high efficiency in the removal of dental mass and no sign of carbonized tissue was found on the ablated surface. All cavities generated by laser irradiation presented a conic shape with average depth depending on energy density applied.

  9. Using X-ray Diffraction to Assess Residual Stresses in Laser Peened and Welded Aluminum

    DTIC Science & Technology

    2011-12-01

    4 4 5 5 6 6 ’ 33 ’ 1 1 1 1 1 1 11 33 2 2 2 2 2 2 12 ’ 33 133 3 3 3 3 3 ’ 224 4 4 4 4 433 235 5 5 5 5 5’ 33 336 6 6 6 6 6 ’ 33 a b c...29.5  14    29.5  45  24.5  9    24.5  40  22  6.5    22  37.5  19.5  4     19.5  35  14.5  ‐1    14.5  30  9.5  ‐ 6     9.5  25  ‐14.5  ‐30...centerline for all four data sets. Data set one measured the bi-axial residual

  10. Laser-induced thermoelastic effects can evoke tactile sensations

    NASA Astrophysics Data System (ADS)

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-06-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli.

  11. Effectiveness of laser sources for contactless sampling of explosives

    NASA Astrophysics Data System (ADS)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.

    2016-05-01

    A mass-spectrometric study of photo processes initiated by ultraviolet (UV) laser radiation in explosives adsorbed on metal and dielectric substrates has been performed. A calibrated quadrupole mass spectrometer was used to determine a value of activation energy of desorption and a quantity of explosives desorbed by laser radiation. A special vacuumoptical module was elaborated and integrated into a vacuum mass-spectrometric system to focus the laser beam on a sample. It has been shown that the action of nanosecond laser radiation set at q= 107 - 108 W/cm2, λ=266 nm on adsorbed layers of molecules of trinitrotoluene (TNT ) and pentaerytritoltetranitrate (PETN) leads not only to an effective desorption, but also to the non-equilibrium dissociation of molecules with the formation of nitrogen oxide NO. The cyclotrimethylenetrinitramine (RDX) dissociation products are observed only at high laser intensities (q> 109 W/cm2) thus indicating the thermal nature of dissociation, whereas desorption of RDX is observed even at q> 107 W/cm2 from all substrates. Desorption is not observed for cyclotetramethylenetetranitramine (HMX) under single pulse action: the dissociation products NO and NO2 are registered only, whereas irradiation at 10Hz is quite effective for HMX desorption. The results clearly demonstrate a high efficiency of nanosecond laser radiation with λ = 266 nm, q ~ 107 - 108 W/cm2, Epulse= 1mJ for desorption of molecules of explosives from various surfaces.

  12. Laser-induced thermoelastic effects can evoke tactile sensations

    PubMed Central

    Jun, Jae-Hoon; Park, Jong-Rak; Kim, Sung-Phil; Min Bae, Young; Park, Jang-Yeon; Kim, Hyung-Sik; Choi, Seungmoon; Jung, Sung Jun; Hwa Park, Seung; Yeom, Dong-Il; Jung, Gu-In; Kim, Ji-Sun; Chung, Soon-Cheol

    2015-01-01

    Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5 °C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli. PMID:26047142

  13. Effect of nonablative laser energy on joint capsular properties

    NASA Astrophysics Data System (ADS)

    Hayashi, Kei; Markel, Mark D.; Thabit, George, III; Bogdanske, John J.; Thielke, Robert J.

    1995-05-01

    Recent scientific studies evaluating laser energy for tissue welding and thermokeratoplasty have demonstrated that the application of laser energy at non-ablative levels can alter collagen's structural and biochemical properties. The application of non-ablative laser to the human shoulder joint capsule in patients with glenohumeral instability has been found to enhance stability of the joint. Based on the collective findings of these studies, we hypothesized that thermal modification of dense collagenous tissues such as joint capsule, ligament, and tendon can be achieved by applying non-ablative laser energy. The purpose of this study was to evaluate the effect of laser energy at non-ablative levels on joint capsular mechanical properties in an in vitro rabbit model. Twelve mature New Zealand white rabbits, ranging from 3.73 to 5.33 kg (4.49 +/- 0.44; mean +/- SD), were used for this experiment. Animals were euthanized and two 5 mm X 20 mm specimens were collected from the medial and lateral portion of the femoropatellar joint of each rabbit under a dissecting microscope; therefore four specimens were collected from each rabbit (right medial, right lateral, left medial, left lateral). Specimens were divided into four groups using a randomized block design; a control group and 3 laser power settings (5 watts (5 W), 10 watts (10 W), 15 watts (15 W)). Laser energy was applied using the Ho:YAG laser in four transverse passes across the tissue at a velocity of 2 mm/sec and distance from the tip of the handpiece to the synovial surface of the specimen set at 1.5 mm in a 37 degree(s)C tissue bath of lactated Ringer's solution. Forty-eight specimens (n equals 12) were mechanically tested to determine single cycle structural properties (stiffness) and viscoelastic properties (% relaxation) before and after laser treatment. Shrinkage of the tissue and the loads required to return specimens to their original length were recorded after laser treatment. The application of laser

  14. Effects of laser polarization on photoelectron angular distribution through laser-induced continuum structure

    SciTech Connect

    Buica, Gabriela; Nakajima, Takashi

    2005-11-15

    We theoretically investigate the effects of laser polarization on the photoelectron angular distribution through laser-induced continuum structure. We focus on a polarization geometry where the probe and dressing lasers are both linearly polarized and change the relative polarization angle between them. We find that the total ionization yield and the branching ratio into different ionization channels change as a function of the relative polarization angle, and accordingly the photoelectron angular distribution is altered. We present specific results for the 4p{sub 1/2}-6p{sub 1/2} and 4p{sub 3/2}-6p{sub 3/2} systems of the K atom and show that the change of the polarization angle leads to a significant modification of the photoelectron angular distribution.

  15. The effect of laser environment on the characteristics of ZnO nanoparticles by laser ablation

    NASA Astrophysics Data System (ADS)

    Farahani, Sahar Varvani; Mahmoodi, Azam; Goranneviss, Mahmood

    2016-11-01

    In this paper, zinc oxide (ZnO) nanoparticles were prepared by laser ablation of Zinc (purity of 99/99 %) target. The effect of solvents, methanol and distilled water on the characterization of ZnO has been investigated. The beam of a Q-switched Nd: Yag laser with the length wave of 1064 nm and pulse duration of 6 ns was used. ZnO nanoparticles which were produced in distilled water and methanol were characterized by transmission electron microscopy, X-ray diffraction (XRD) and the optical absorption spectroscopy-ultraviolet (UV-VIS-IR). The XRD results showed that the ZnO nanoparticles have a hexagonal crystal structure. Different size of ZnO nanoparticles were formed because of different environment of laser pulse generated.

  16. The effect of laser wavelength on laser-induced carbon plasma

    SciTech Connect

    Moscicki, T.; Hoffman, J.; Szymanski, Z.

    2013-08-28

    The effect of laser wavelength on parameters of laser-ablated carbon plume is studied. A theoretical model is applied, which describes the target heating and formation of the plasma and its expansion, and calculations are made for the fundamental and third harmonic of a Nd:YAG laser. The calculated distributions of plasma temperature and electron density in the early phase of expansion show that plasma temperatures are higher in the case of 1064 nm but the electron densities are higher in the case of 355 nm, which is in agreement with experimental findings. It has been shown that while a higher plasma temperature in the case of 1064 nm is the result of stronger plasma absorption, the greater ablation rate in the case of 355 nm results in larger mass density of the ablated plume and hence, in higher electron densities. An additional consequence of a higher ablation rate is slower expansion and smaller dimensions of the plume.

  17. Theory of laser chirp effects on instabilities in laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Schroeder, C.; Esarey, E.; van Tilborg, J.; Leemans, W. P.; Shadwick, B. A.; Trines, R.; Cary, J. R.; Giacone, R.

    2001-10-01

    Experimentally, laser chirp is found to be an important parameter affecting electron output from self-modulated laser wakefield accelerators (SMLWFAs). In SMLWFAs, electrons are accelerated to high energies by plasma wakefields generated by the self-modulation instability and forward Raman scattering, whereas the initial trapping and heating of the electrons is strongly affected by backward and sideways Raman scattering. The effect of laser frequency chirp on self-modulation and Raman instabilities is analyzed theoretically. Expressions for chirp-modified growth rates are presented. Theoretical results are compared to results from various simulation models, including time-averaged quasi-static envelope fluid codes, full fluid codes, and particle-in-cell codes. In addition, comparison is made to recent experimental results obtained at LBNL.(W.P. Leemans et al., Phys. Plasmas 8), 2510 (2001).

  18. INTERACTION OF LASER RADIATION WITH MATTER: Effect of the pulse duration on graphitisation of diamond during laser ablation

    NASA Astrophysics Data System (ADS)

    Kononenko, Vitalii V.; Kononenko, Taras V.; Pimenov, S. M.; Sinyavskii, M. N.; Konov, Vitalii I.; Dausinger, F.

    2005-03-01

    Processes of graphitisation of laser-irradiated polycrystalline diamond surface exposed to multipulse irradiation are studied experimentally. The thickness of the laser-modified layer as a function of the laser-pulse duration ranging from 100 fs to 1.5 μs and the effect of the radiation wavelength on this thickness are studied. It is shown that the diamond graphitisation during multipulse laser ablation is a thermally stimulated process. The dependences of the diamond-ablation rates on the radiation energy density under the action of laser pulses of various durations are presented.

  19. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Recoil momentum at a solid surface during developed laser ablation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, L. I.

    1993-12-01

    The recoil momentum from a laser light pulse in the intensity range 105-107 W/cm2 is experimentally investigated for dielectric and metallic targets as a function of the pressure of the surrounding medium and angle of illumination. An equation with empirical coefficients is obtained for the recoil momentum of illuminated targets. Effects of the screening properties of the erosion jet and the back pressure on the recoil momentum are analyzed as the external pressure is varied.

  20. Effects of optical backscattering on silicon photonic hybrid laser performance

    NASA Astrophysics Data System (ADS)

    Pacradouni, V.; Klein, J.; Pond, J.

    2016-04-01

    We present numerical results on the effect of backscattering at the junctions of double bus ring resonators in a Vernier ring hybrid laser design. The structure is comprised off a pair of III-V gain media evanescently coupled to a silicon on insulator racetrack comprised of a pair of double bus ring resonators coupled together through straight and flared waveguide sections. We show how the small backscattering at the ring resonator junctions has the effect of splitting and shifting the resonances off the clockwise and counter clockwise propagating modes thereby modifying the feedback spectrum from the ideal case. We then simulate results such as light current (LI) curves, relative intensity noise (RIN) and laser spectrum, and compare the laser performance including backscattering effects with the ideal case.

  1. Simple and effective graphene laser processing for neuron patterning application

    PubMed Central

    Lorenzoni, Matteo; Brandi, Fernando; Dante, Silvia; Giugni, Andrea; Torre, Bruno

    2013-01-01

    A straightforward fabrication technique to obtain patterned substrates promoting ordered neuron growth is presented. Chemical vapor deposition (CVD) single layer graphene (SLG) was machined by means of single pulse UV laser ablation technique at the lowest effective laser fluence in order to minimize laser damage effects. Patterned substrates were then coated with poly-D-lysine by means of a simple immersion in solution. Primary embryonic hippocampal neurons were cultured on our substrate, demonstrating an ordered interconnected neuron pattern mimicking the pattern design. Surprisingly, the functionalization is more effective on the SLG, resulting in notably higher alignment for neuron adhesion and growth. Therefore the proposed technique should be considered a valuable candidate to realize a new generation of highly specialized biosensors. PMID:23739674

  2. Simple and effective graphene laser processing for neuron patterning application

    NASA Astrophysics Data System (ADS)

    Lorenzoni, Matteo; Brandi, Fernando; Dante, Silvia; Giugni, Andrea; Torre, Bruno

    2013-06-01

    A straightforward fabrication technique to obtain patterned substrates promoting ordered neuron growth is presented. Chemical vapor deposition (CVD) single layer graphene (SLG) was machined by means of single pulse UV laser ablation technique at the lowest effective laser fluence in order to minimize laser damage effects. Patterned substrates were then coated with poly-D-lysine by means of a simple immersion in solution. Primary embryonic hippocampal neurons were cultured on our substrate, demonstrating an ordered interconnected neuron pattern mimicking the pattern design. Surprisingly, the functionalization is more effective on the SLG, resulting in notably higher alignment for neuron adhesion and growth. Therefore the proposed technique should be considered a valuable candidate to realize a new generation of highly specialized biosensors.

  3. Effects of clinical infrared laser on superficial radial nerve conduction

    SciTech Connect

    Greathouse, D.G.; Currier, D.P.; Gilmore, R.L.

    1985-08-01

    The purposes of this study were to demonstrate the effects of infrared laser radiation on the sensory nerve conduction of a specified peripheral nerve in man and determine temperature changes in the tissue surrounding the treated nerve. Twenty healthy adults were divided into three groups: control (n = 5); experimental (n = 10), infrared laser radiation at 20 sec/cm2; and experimental (n = 5), infrared laser radiation treatment at 120 sec/cm2. Antidromic sensory nerve conduction studies were performed on the superficial radial nerve of each subject's right forearm. The infrared laser radiation was applied at a fixed intensity for five 1-cm2 segments. Latency, amplitude, and temperature measurements were recorded pretest; posttest; and posttest intervals of 1, 3, 5, 10, and 15 minutes. An analysis of variance with repeated measures was used to examine the data. No significant change was noted in the distal sensory latency or amplitude of the evoked sensory potential in either experimental or control groups as a result of the applications of the infrared laser radiation treatment. This study demonstrates that infrared laser used at clinically applied intensities does not alter conduction of sensory nerves nor does it elevate the subcutaneous temperature.

  4. Effects of low-power diode lasers on flap survival

    SciTech Connect

    Kami, T.; Yoshimura, Y.; Nakajima, T.; Ohshiro, T.; Fujino, T.

    1985-03-01

    The authors investigated the effect of low-power laser irradiation on the survival of experimental skin flaps in rats. A gallium-aluminum-arsenide diode laser that was developed by the Japan Medical Laser Laboratory was used. The laser power was 15 mW and the wavelength 830 nm. Irradiation was carried out, either before or after flap elevation, in two groups of 20 Wistar strain rats. A third group of 20 rats served as controls. A caudally based skin flap, 3 X 9 cm, was designed on the back of each rat. Laser irradiation therapy was performed for 5 consecutive days for 6 minutes per flap per day, preoperatively in one group and postoperatively in the other. Seven days postoperatively, the survival areas of the flaps were measured and compared. The survival area was increased significantly in both groups receiving laser therapy, probably due to the observed proliferation of blood vessels around the irradiated points and an increase in blood flow.

  5. Laser phase noise effects on the dynamics of optomechanical resonators

    SciTech Connect

    Phelps, Gregory A.; Meystre, Pierre

    2011-06-15

    We investigate theoretically the influence of laser phase noise on the cooling and heating of a generic cavity optomechanical system. We derive the back-action damping and heating rates and the mechanical frequency shift of the radiation-pressure-driven oscillating mirror, and derive the minimum phonon occupation number for small laser linewidths. We find that, in practice, laser phase noise does not pose serious limitations to ground-state cooling. Additionally, we explore the regime of parametric amplification where coherent oscillations of the mirror are realizable. It is found that heating from laser phase noise is of significance and can cause the onset of instabilities. We then consider the effects of laser phase noise in a parametric cavity driving scheme that minimizes the back-action heating of one of the quadratures of the mechanical oscillator motion. Laser linewidths, narrow compared to the decay rate of the cavity field, do not pose any significant problems in an experimental setting, but broader linewidths limit the practicality of this back-action evasion method.

  6. The effects of laser immunotherapy on cancer cell migration

    NASA Astrophysics Data System (ADS)

    Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; Layton, Elivia; Lam, Anh; Chen, Wei R.; Vaughan, Melville B.

    2016-03-01

    Laser immunotherapy (LIT) uses laser irradiation and immunological stimulation to target all types of metastases and creates a long-term tumor resistance. Glycated chitosan (GC) is the immunological stimulant used in LIT. Interestingly, GC can act as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. One essential aspect of understanding this immune response is knowing how laser irradiation affects cancer cells' ability to metastasize. In this experiment, a cell migration assay was performed. A 2mm circular elastomer plugs were placed at the bottom of multi-well dishes. Pre-cancerous keratinocytes, different tumor cells, and fibroblasts were then plated separately in treated wells. Once the cells reached 100% confluence, they were irradiated by either a 980nm or 805nm wavelength laser. The goal was to determine the effects of laser irradiation and immunological stimulation on cancer cell migration in vitro, paying the way to understand the mechanism of LIT in treating metastatic tumors in cancer patients.

  7. Antibacterial effects of laser ablated Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Shamaila, S.; Wali, H.; Sharif, R.; Nazir, J.; Zafar, N.; Rafique, M. S.

    2013-10-01

    The interaction of nickel nanoparticles with Escherichia coli (E. coli) bacteria has been studied. The nickel nanoparticles have been fabricated by continuous wave laser ablation of nickel target and their properties are studied using different characterization techniques. The antibacterial activity of nickel nanoparticles was checked against E. coli bacteria. Escherichia coli were cultured in nutrients broth and different concentrations of nickel nanoparticles were added to bacterial culture solution to investigate the interaction of nickel nanoparticles with bacteria and to check toxicity of the nickel nanoparticles against E. coli. The fabricated Ni nanoparticles have exhibited considerable antimicrobial activity against E. coli.

  8. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Laser—ultrasonic formation of melts of high-speed tool steels

    NASA Astrophysics Data System (ADS)

    Gureev, D. M.

    1994-09-01

    A study was made of the influence of ultrasonic vibrations on the processes of heat and mass transfer, and of structure formation during ultrafast crystallisation of laser melts of T1 high-speed tool steel. Acoustic flows which appeared in laser melts effectively smoothed out the temperature inhomogeneities and flattened the relief of the molten surface even when the laser radiation acted for just ~1 ms. The transformation of the mechanical energy of ultrasonic vibrations into heat increased the depth of the laser melt baths and suppressed crack formation. The observed changes in the structural and phase composition appeared as a change in the microhardness of the solidified laser melts. The geometry of coupling of ultrasound into a laser melt influenced the changes in the microhardness, suggesting a need for a more detailed analysis of the structure formation processes in the course of ultrafast crystallisation of laser melts in an ultrasonic field.

  9. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  10. Confocal scanning laser ophthalmoscopic imaging resolution of secondary retinal effects induced by laser radiation

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Lund, David J.; Stuck, Bruce E.; Zuclich, Joseph A.; Elliot, Rowe; Schuschereba, Steven T.; Gagliano, Donald A.; Belkin, M.; Glickman, Randolph D.

    1996-02-01

    We have evaluated secondary laser induced retinal effects in non-human primates with a Rodenstock confocal scanning laser ophthalmoscope. A small eye animal model, the Garter snake, was employed to evaluate confocal numerical aperture effects in imaging laser retinal damage in small eyes vs. large eyes. Results demonstrate that the confocal image resolution in the Rhesus monkey eye is sufficient to differentiate deep retinal scar formation from retinal nerve fiber layer (NFL) damage and to estimate the depth of the NFL damage. The best comparison with histological depth was obtained for the snake retina, yielding a ratio close to 1:1 compared to 2:1 for the Rhesus. Resolution in the Garter snake allows imaging the photoreceptor matrix and therefore, evaluation of the interrelationship between the primary damage site (posterior retina), the photoreceptor matrix, and secondary sites in the anterior retina such as the NFL and the epiretinal vascular system. Alterations in both the retinal NFL and epiretinal blood flow rate were observed within several minutes post Argon laser exposure. Unique aspects of the snake eye such as high tissue transparency and inherently high contrast cellular structures, contribute to the confocal image quality. Such factors may be nearly comparable in primate eyes suggesting that depth of resolution can be improved by smaller confocal apertures and more sensitive signal processing techniques.

  11. Laser irradiation effects: A functional assessment

    NASA Astrophysics Data System (ADS)

    Robbins, David O.

    1994-08-01

    Specification of damage criteria and establishment of morphological data resulting from laser exposure has been an important mission for biomedical researchers and strategic planners. Equally important, however, from a military standpoint is the impact that this alteration, whether temporary or permanent, has on the ability of a soldier to complete a visually guided mission. Furthermore, while permanent visual loss associated with distinct morphological damage is of course serious it must also be recognized that temporary shifts in visual acuity or contrast sensitivity can occur at energy densities below those associated with distinct tissue damage. These temporary visual performance shifts could themselves be life threatening and may be the result of reversible or minute physical changes that are undetectable using current damage criteria. Our result suggests that significant shifts in visual sensitivity does occur at or below the ED50 level and that these shifts can be long lasting. Using a behavioral technique to measure on-going visual acuity, we have exposed awake, task-oriented rhesus monkeys to a variety of laser exposures which vary in energy density and temporal and spatial distribution on the retina. Our preliminary results in this project are consistent with the results of our previous studies and have extended the various exposure and performance criteria already established.

  12. Spatial confinement effects in laser-induced breakdown spectroscopy

    SciTech Connect

    Shen, X. K.; Sun, J.; Ling, H.; Lu, Y. F.

    2007-08-20

    The spatial confinement effects in laser-induced breakdown of aluminum (Al) targets in air have been investigated both by optical emission spectroscopy and fast photography. A KrF excimer laser was used to produce plasmas from Al targets in air. Al atomic emission lines show an obvious enhancement in the emission intensity when a pair of Al-plate walls were placed to spatially confine the plasma plumes. Images of the Al plasma plumes showed that the plasma plumes evolved into a torus shape and were compressed in the Al walls. The mechanism for the confinement effects was discussed using shock wave theory.

  13. Studies of atmospheric refraction effects on laser data

    NASA Technical Reports Server (NTRS)

    Dunn, P. J.; Pearce, W. A.; Johnson, T. S.

    1982-01-01

    The refraction effect from three perspectives was considered. An analysis of the axioms on which the accepted correction algorithms were based was the first priority. The integrity of the meteorological measurements on which the correction model is based was also considered and a large quantity of laser observations was processed in an effort to detect any serious anomalies in them. The effect of refraction errors on geodetic parameters estimated from laser data using the most recent analysis procedures was the focus of the third element of study. The results concentrate on refraction errors which were found to be critical in the eventual use of the data for measurements of crustal dynamics.

  14. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    NASA Astrophysics Data System (ADS)

    Safdar, Shakeel; Li, Lin; Sheikh, M. A.

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data.

  15. Satellite Power System (SPS) laser studies. Volume 2: Meteorological effects on laser beam propagation and direct solar pumped lasers for the SPS

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The primary emphasis of this research activity was to investigate the effect of the environment on laser power transmission/reception from space to ground. Potential mitigation techniques to minimize the environment effect by a judicious choice of laser operating parameters was investigated. Using these techniques, the availability of power at selected sites was determined using statistical meteorological data for each site.

  16. Target transverse size and laser polarization effects on pair production during ultra-relativistic-intense laser interaction with solid targets

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Chen, M.; Yu, J. Y.; Liu, W. Y.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2017-06-01

    Pair production from the Breit-Wheeler process in ultra-intense laser pulse interactions with solid targets are studied by particle-in-cell simulations using the EPOCH code including the quantum electrodynamics module. We find that the pair yield depends on both the target transverse size and the laser pulse duration. For a short laser pulse, the highest pair yield is achieved with a target as wide as the laser spot size. For a long laser pulse, however, the optimal target size for the pair production increases with the pulse duration due to a self-generated cone by the hole-boring process. The effect of laser polarization upon the pair production is also studied. It is found that a circularly polarized laser pulse is more efficient in the ion acceleration rather than in the pair production. With the same laser energy, we find that a linearly polarized laser pulse can generate two times more positrons than the circularly polarized laser pulse does. These findings may benefit the future researches on the laser plasma based electron-positron production.

  17. Effect of interstitial low level laser stimulation in skin density

    NASA Astrophysics Data System (ADS)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  18. Laser shock processing induced residual compression: Impact on predicted crack growth threshold performance

    NASA Astrophysics Data System (ADS)

    Shepard, M. J.

    2005-08-01

    Design credit is not currently taken for laser shock processing (LSP) induced compressive residual stresses in damage tolerant design. The inclusion of these and other compressive stresses in design practice has the potential to dramatically increase predicted fatigue crack growth threshold performance and damage tolerant design life. In the current effort, Ti-6Al-4V coupons will be subjected to shot peening, glass bead peening, and high intensity laser shock processing. The in-depth residual stresses due to processing will be analyzed and then input into a linear elastic fracture mechanics analysis code to predict fatigue crack growth threshold performance. This analysis establishes both the utility and feasibility of incorporating LSP-induced compressive residual stresses into damage tolerant design practice.

  19. Effects of CO2 laser energy on dentin permeability.

    PubMed

    Pashley, E L; Horner, J A; Liu, M; Kim, S; Pashley, D H

    1992-06-01

    The effect of a CO2 laser on the structure and permeability of smear layer-covered human dentin was evaluated in vitro. Three different energy levels were used (11, 113, and 566 J/cm2). The lowest exposure to the laser energy increased dentin permeability, measured as a hydraulic conductance, due to partial measured as a hydraulic conductance, due to partial loss of the superficial smear layer and smear plugs. The intermediate energy level also increased dentin permeability by crater formation, making the dentin thinner. The lack of uniform glazing of the surface of the crater, leaving its surface porous and in communication with the underlying dentinal tubules also contributed to the increase in dentin permeability seen with the intermediate laser energy. The highest laser energy produced complete glazing of the crater surfaces and sealed the dentinal tubules beneath the crater. However, it also completely removed the smear layer in a halo zone about 100-microns wide around each crater which increased the permeability of the pericrater dentin at the same time it decreased the permeability of the dentin within the crater. The combined use of scanning electron microscopy and permeability measurements provides important complementary information that is essential in evaluating the effects of lasers on dentin.

  20. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering

    NASA Astrophysics Data System (ADS)

    He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang

    2017-01-01

    Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.

  1. Laser-Induced Thermomechanical Effects in Nematic Liquid-Crystal

    NASA Astrophysics Data System (ADS)

    Aleksanyan, A. K.; Gevorgyan, G. S.; Hakobyan, R. S.; Alaverdyan, R. B.

    As we know there are several mechanisms allowing us to convert absorbed energy by liquid crystal (LC) to the energy of reorientation of director. One of them is the third thermomechanical effect. Third thermomechanical effect induced by Gaussian beam was recently studied both theoretically and experimentally. It was shown that thermomechanical effects can decrease the threshold of Fréedericksz transition in dye-doped nematic liquid crystal (NLC). One of the big advantages of thermomechanical effect compared with other mechanisms (for instance giant optical nonlinearity (GON)), which are absent in the case of normal incidence of laser beam, is that it emerges at any angle of incidence of laser beam. Thermomechanical effects were also studied in NLC, containing azobenzene in their molecular structure. It was suggested that one of the mechanisms of optical nonlinearity observed in the experiment in such medium may be the thermomechanical effect.

  2. Effects of laser smoke on the lungs of rats

    SciTech Connect

    Baggish, M.S.; Elbakry, M.

    1987-05-01

    The sequelae of long-term inhalation of carbon dioxide laser smoke on 10 white rats were studied in a three-phase experiment. The fine particulate matter resulting from tissue vaporization was deposited in the animals' alveoli, which produced congestive interstitial pneumonia, bronchiolitis, and emphysema. The pathologic findings induced by laser plume are not dissimilar to those resulting from the long-term inhalation of other types of particulate matter. Use of an efficient smoke evacuator should offer substantial protection against these normal effects.

  3. Effects of quantum noise in a dye-laser model

    NASA Astrophysics Data System (ADS)

    Jia, Ya; Li, Jia-Rong

    1997-03-01

    The steady-state properties of a dye laser model with white quantum noise and strongly colored pump noise are investigated. An effective diffusion coefficient in the steady state is presented. Our coefficient differs from that of Fox and Roy [Phys. Rev. A 35, 1838 (1987)]. We compare our results with the measurements and simulations of Lett, Short, and Mandel [Phys. Rev. Lett. 52, 341 (1984)], and the results of Fox and Roy, respectively. We find that the quantum noise plays an important role in the steady-state analysis of laser fluctuations below and near threshold.

  4. Evaluation of the effect of laser tooth whitening.

    PubMed

    Lin, Chia-Huei; Chou, Tsau-Mau; Chen, Jen-Hao; Chen, Jheng-Huei; Chuang, Fu-Hsiung; Lee, Huey-Er; Coluzzi, Donald J

    2008-01-01

    This study aimed to determine whether gender, age, and initial tooth hue impacted the effect of laser tooth whitening. Ninety-one subjects were enrolled in a laser tooth whitening study at Kaohsiung Medical University. Sensitivity was evaluated by asking the patients about any tooth sensitivity they experienced after the whitening procedures were performed. The LaserSmile tooth whitener, containing 35% hydrogen peroxide, was applied to the tooth surfaces of both arches from the central incisor to the second premolar, and the LaserSmile Twilite diode laser was applied to the same maxillary and mandibular teeth. After removal of the whitening gel, shade matching was immediately performed with the ShadeEye NCC Dental Chroma Meter. Patients were classified into the following groups: tetracycline stain, gender, age, and initial tooth hue. Only 5 of the 91 individuals had tetracycline staining. The initial tooth shade and the amount of shade change showed no significant differences between female and male patients, but a significant difference was found between hue and age group. Teeth with hue A showed greater shade improvement than teeth with hue C and hue D. Whitening response was better in younger individuals, and gender was not a factor that affected the whitening response. Sensitivity is common during the whitening procedure but can be tolerated by the patients.

  5. Effects of argon laser curing on dentin shear bond strengths

    NASA Astrophysics Data System (ADS)

    Powell, G. L.; Blankenau, Richard J.

    1996-04-01

    Previous studies have demonstrated the ability of the argon laser to polymerize light activated materials and improve enamel shear bond strengths. This study was conducted to evaluate the effects of the argon laser on dentin shear bond strengths of current dentin bonding systems. Argon laser (HGM Model 8) at 231 mw and 280 mw, 5 second bonding agent, 10 seconds composite and a conventional curing light (Translux EC/Kulzer) at 10 seconds bonding agent, 20 second composite were used to polymerize samples of dentin bonding systems: Scotchbond Multi-Purpose Plus (3M) and Prime Bond (Dentsply/Caulk), both with TPH (Dentsply/Caulk) composite. A flat dentin bonding site (600 grit) was prepared on the buccal surface of extracted human teeth. Twelve samples were made for each set of parameters for both laser and conventional light totaling 60 samples. Samples were stored in distilled water in light- proof containers for 24 hours at 37 degree(s)C. Shear bond strengths (MPa) were determined for each sample on the Instron testing machine. Mean values were calculated for each set of data and ANOVA with Fisher PLSD were used for statistical analysis. The argon laser provided bond strengths that were 21 - 24% greater than those of the conventional curing light system.

  6. Radiation Effects in Semiconducting Laser Materials.

    DTIC Science & Technology

    Cd(S,Se) crystals; Effects of neutron bombardment of luminescense of CdSe; Effects of neutron bombardment of luminescense of CdSe; Effects of chemical doping and neutron bombardment of doped crystals.

  7. Semiconductor laser theory with many-body effects

    SciTech Connect

    Haug, H.; Gayg, G.; Koch, S.W.

    1989-02-15

    A description of the electron-hole plasma of a semiconductor laser is developed that includes the many-body effects due to the Coulomb interactions. In particular, the plasma density-dependent band-gap renormalization, the broadening due to intraband scattering, and the Coulomb enhancement are included and evaluated for three- and two-dimensional semiconductor structures. Because of the short intraband scattering relaxation time one can eliminate the interband polarization adiabatically and at the same time introduce a hydrodynamic description of the interband kinetics. From this general formulation a diffusion equation for the carrier density is derived. The resulting ambipolar diffusion coefficient decreases with the laser intensity due to the reduction of the electron drift. The present semiclassical theory is completed by the laser field equations and by the addition of Langevin fluctuations.

  8. Photodestructive effect of IR laser radiation on the cornea

    NASA Astrophysics Data System (ADS)

    Podol'Tsev, A. S.; Zheltov, G. I.

    2007-01-01

    A mathematical model of the photodestructive effect of high-power IR laser radiation on cornea tissues is presented. The threshold energy exposure is calculated as a function of the wavelength and the laser pulse duration in the range 10-5-10-1 s under the assumption that the irreversible primary changes in the structure of tissues have a thermochemical nature. The adequacy of the model is supported by comparison of the results of calculations with a great body of experimental data available in the literature. The model is oriented for use in designing medical equipment (for example, for the refraction correction by the thermal keratoplasty method) and in refining the operating laser safety standards.

  9. Aggregation effect on absorbance spectrum of laser ablated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Isnaeni; Irmaniar; Herbani, Y.

    2017-04-01

    Plasmon of gold nanoparticles is one of the hot topics nowadays due to various possible applications. The application is determined by plasmon peak in absorbance spectrum. We have fabricated gold nanoparticles using laser ablation technique and studied the influence of CTAB (Cetyl trimethylammonium bromide) effect on the optical characterization of fabricated gold nanoparticles. We ablated a gold plate using NdYAG pulsed laser at 1064 nm wavelength, 10 Hz pulse frequency at low energy density. We found there are two distinctive plasmon peaks, i.e., primary and secondary peaks, where the secondary peak is the main interests of this work. Our simulation results have revealed that the secondary plasmon peak is affected by random aggregation of gold nanoparticles. Our research leads to good techniques on fabrication of colloidal gold nanoparticles in aqueous solution using laser ablation technique.

  10. Effects of CO/sub 2/ laser irradiation on gingiva

    SciTech Connect

    Rossmann, J.A.; Gottlieb, S.; Koudelka, B.M.; McQuade, M.J.

    1987-06-01

    A CO/sub 2/ laser (Coherent Medical Model 400) was used to irradiate the gingival tissue of a cynomolgous monkey to determine laser effects on the epithelium and underlying connective tissue. A focal length of 400 mm and a 10-watt power setting at 0.2- and 0.5-second exposure was used. Biopsy results indicated that a 0.2-second duration of CO/sub 2/ laser irradiation was inadequate to completely de-epithelialize the gingival tissue. A 0.5-second exposure exhibited complete epithelial destruction with little or no disturbance of the underlying connective tissue layer and viable connective tissue 1.0 mm below the impact site.

  11. Effect of intense laser IR fields on triatomic molecules

    NASA Astrophysics Data System (ADS)

    Ivanov, S. V.; Panchenko, V. Ia.; Chugunov, A. V.

    1986-04-01

    Theoretical and experimental results on the effect of intense laser IR fields on triatomic molecular gases are presented with particular emphasis on ozone. Experiments were conducted in single- and double-frequency IR fields at power densities ranging from 10 to the -6th to 10 GW/sq cm in the pulsed regime and 0.001 to 100 W/sq cm in the CW regime; studies were performed using a TEA CO2 laser system. Attention is given to: the nonlinear absorption spectrum; the dependence of absorption in ozone on the power density of incident radiation; results of numerical solutions; the analytical solution; two-photon resonances in the ozone absorption spectrum; the spectrum of double-frequency IR-IR absorption; cascade-excitation channels; and laser-stimulated explosion in ozone.

  12. Direct observation of resonance effects in laser cluster interactions

    SciTech Connect

    Zweiback, J. S.

    1999-06-01

    Time resolved dynamics of high intensity laser interactions with atomic clusters have been studied with both theoretical analysis and experiment. A short-pulse Ti:sapphire laser system, which could produce 50 mJ of energy in a 50 fs pulse, was built to perform these experiments. The laser used a novel single grating stretcher and was pumped, in part, by a custom Nd:YLF laser system, including 19 mm Nd:YLF amplifiers. It was found that there is an optimal pulse width to maximize absorption for a given cluster size. This optimal pulse width ranged from 400 fs for 85 A radius xenon clusters to 1.2 ps for 205 {angstrom} radius xenon clusters. Using a pump-probe configuration, the absorption of the probe radiation was observed to reach a maximum for a particular time delay between pump and probe, dependent on the cluster size. The delay for peak absorption was 800, 1400, and 2100 fs for 85 Å, 130 Å, and 170 Å radius xenon clusters respectively. Model calculations suggest that these effects are due to resonant heating of the spherical plasma in agreement with the hydrodynamic interpretation of cluster interactions. While this simple hydrodynamic code produces reasonable agreement with data, it does not include bulk plasma or non-linear propagation effects and is limited to the regime where resonant behavior dominates. We also measured the scattered laser light from the laser-cluster interaction. Similar to the absorption measurements, there is an optimal pulse width which maximizes the scattered signal. This pulse width is larger than the optimal pulse width for absorption. This disagrees with model calculations which show both pulse widths being similar. Further experiments measuring the scattered light in a pump-probe configuration should help to resolve this disagreement.

  13. Cellular immunological effects of laser irradiation and immunoadjuvant application

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Mohamed, Abdiwahab; Naylor, Mark F.; Bartels, Kenneth E.; Ritchey, Jerry W.; Liu, Hong; Nordquist, Robert E.

    2007-02-01

    Immune system is critical in the fight against cancer. Particular important is the responses through immune cells that regulate immunological functions. Certain cytokines enhance cancer immunity (such as IL12 and interferon gamma) and others interfere or impede cancer immunity (such as IL10). The clinical outcome can be linked to the balance of these cytokines, such as IL10 to IL12 ratio. Effective treatments often reduce the IL10:IL12 ratio, indicating higher levels of the cancer fighting IL12. To enhance immune responses, a combination of laser irradiation and concurrent use of immunostimulants has been applied for the treatment of tumors. In a recent study, an 805-nm laser in conjunction with indocyanine green (ICG) has been used to treat EMT6 mammary tumors in mice. An immunoadjuvant, glycated chitosan (GC), was intratumoral injected after the laser irradiation. Our preliminary results showed that tumor-bearing mice treated either with the immunoadjuvant alone or with the combination of laser and immunoadjuvant had lower IL10:IL12 ratios than animals that received no treatment. This may play an important in the treatment to decrease tumor size and to increase survival times of mice. Cellular activities after laser-ICG-GC treatment of DBMA-4 mammary tumors in rats also showed infiltration of immune cells to the treatment sites, indicating a possible induced immunity. The combination of laser treatment and immunotherapy has been used to treat late-stage melanoma patients; the responses, both treated primary tumors and the metastases, to the treatment have been promising. The histology of two patients, before and after treatment, is presented to show the effects of this novel treatment method.

  14. Low-energy laser radioprotective effects on animal models

    NASA Astrophysics Data System (ADS)

    Gomberg, Vladimir G.; Boiko, Vladimir A.; Pavlova, Rimma N.; Pupkova, Ludmila S.; Dadali, Vladimir A.; Bell, Hobart; Reznikov, Leonid L.

    1997-05-01

    The ability of low-energy laser radiation (LLR) to counteract the detrimental effects of gamma radiation was studied with a murine model. Three control and two experimental groups of mice were used. Control group I consisted of animals unexposed to either gamma or laser irradiation. Group II consisted of mice exposed solely to gamma radiation. Control group III consisted of mice exposed solely to LLR. Experimental group I included mice exposed to gamma radiation initially, followed by LLR for three days. In experimental group II, LLR was applied each of three days prior to gamma irradiation. Gamma radiation was produced by 137 Cs with a total dose of 8.75 Gr (0.02 Gr/min). The source of laser radiation was He-Ne (632.8 nm), and a power density of 0.5 Wt/cm2. Irradiation was performed once every three days for 15 sec. In an additional set of experiments, the effect of LLR in various doses on survival of gamma-irradiated mice was examined. The effects of laser exposure prior to and after gamma radiation, percent survival, changes in lipid peroxidation in serum and liver, the concentration of S-H groups in serum, and catalase activity in erythrocytes were obtained. LLR reduced average lethality. Successful results were achieved in all sets of experiments and were dependent mostly on the dose of LLR. The biochemical tests exhibited the ability of LLR to modify the damaging effects of gamma radiation when laser is applied prior to or after gamma radiation. However, the protective effect of LLR was greater in the group with exposure before gamma radiation.

  15. Effect of CO2 laser amputation on hydra regeneration

    NASA Astrophysics Data System (ADS)

    De Petrocellis, L.; Finizio, Andrea; Minei, R.; Mormile, Pasquale; Pierattini, Giovanni

    1994-08-01

    In order to investigate laser effects on biological specimens, Hydra, a coelenterate with high regeneration rate, was observed for ten days during regeneration after CO2 laser cutting. Control animals were cut with a razor blade immediately below the tentacle whorl under a dissecting microscope while they were in small glass petri dishes. They regenerated tentacles completely 8 to 10 days from the cutting. Hydra were cut in the same position with CO2 laser. As a first step, we studied the effect of the laser beam on the normal behaviour of hydra. For the cutting, we used four different power intensities: 0.5, 1.0, 1.5 and 2.0 W. At different power intensities the animals regenerated the tentacles. However in about 20% of the animals the amputation performed with 1 and 1.5 W originated a quicker regeneration of tentacles. No effect was observed on asexual reproduction of the polyps and therefore also no change of the bud index.

  16. Effects of laser power on the microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zheng, Zeng; Wang, Lianfeng; Yan, Biao

    2017-07-01

    Selective laser melting (SLM) was used to prepare 316L stainless steel parts and the effects of laser power on the microstructure and mechanical properties of the final products were studied. With increasing applied laser power, the defects of as-built parts were reduced greatly and the as-built parts presented a highest relative density of 99.1%. The tensile strength of samples was significantly improved from 321 ± 10 MPa to 722 ± 10 MPa. The microhardness was homogeneous; the residual stresses in the samples were tensile, which were higher in the section perpendicular to the laser scanning strategy. The probable reasons for this phenomenon were proposed.

  17. Optimization of plasma effect in laser drilling of high aspect ratio microvias

    NASA Astrophysics Data System (ADS)

    Tokarev, V. N.; Cheshev, E. A.; Bezotosnyi, V. V.; Khomich, V. Yu; Mikolutskiy, S. I.; Vasil'yeva, N. V.

    2015-05-01

    The simple theoretical model of heating side walls by laser plasma in the laser drilling of high aspect ratio microvias in metals and semiconductors is proposed. According to this model the recommendations are given on how to avoid the undesirable effect of melting side walls by laser plasma, strongly deteriorating microdrilling quality. The obtained results constitute a physical basis for the development of clean laser microdrilling. Particular estimations are given for the laser drilling of silicon wafers.

  18. Laser-matter Interaction with Submerged Samples

    SciTech Connect

    Mariella, R; Rubenchik, A; Norton, M; Donohue, G; Roberts, K

    2010-03-25

    With the long-term goal in mind of investigating if one could possibly design a 'universal solid-sample comminution technique' for debris and rubble, we have studied pulsed-laser ablation of solid samples that were contained within a surrounding fluid. Using pulses with fluences between 2 J and 0.3 J, wavelengths of 351 and 527 nm, and samples of rock, concrete, and red brick, each submerged in water, we have observed conditions in which {micro}m-scale particles can be preferentially generated in a controlled manner, during the laser ablation process. Others have studied laser peening of metals, where their attention has been to the substrate. Our study uses non-metallic substrates and analyzes the particles that are ablated from the process. The immediate impact of our investigation is that laser-comminution portion of a new systems concept for chemical analysis has been verified as feasible.

  19. Comparison of Efficacy and Side Effects of Multispot Lasers and Conventional Lasers for Diabetic Retinopathy Treatment

    PubMed Central

    Çeliker, Hande; Erdağı Bulut, Azer; Şahin, Özlem

    2017-01-01

    Panretinal photocoagulation (PRP) is a standard treatment for proliferative diabetic retinopathy. Conventional laser (CL) therapy is performed in one or more sessions in single spot mode. Visual disabilities have been reported after treatment with CL, including central vision loss due to macular edema and peripheral visual field loss resulting from extensive inner retinal scarring. Multispot laser (MSL) photocoagulation has recently been introduced to clinical practice. Studies comparing PRP conducted with MSL and CL have reported that MSLs resulted in less retinal tissue damage and pain, and greater patient comfort compared to CL. The aim of this review was to compare the efficacy and side effects of MSLs and CLs for diabetic retinopathy treatment. PMID:28182169

  20. Effect of Grain Size on Modal Structure and Polarization Properties of Laser-Diode-Pumped Miniature Ceramic Lasers

    NASA Astrophysics Data System (ADS)

    Ohtomo, Takayuki; Kamikariya, Koji; Otsuka, Kenju

    2007-11-01

    The effect of average grain size on oscillation properties is studied in laser-diode-pumped miniature ceramic lasers. The inherent segregation of lasing patterns into local modes is found to be prevented in the case of ceramics with grains of micrometer size, resulting in linearly polarized TEM00 transverse-mode oscillations.

  1. Imaging laser-induced thermal fields and effects

    NASA Astrophysics Data System (ADS)

    Verdaasdonck, Rudolf M.

    1995-05-01

    Laser light interaction with biological tissues is a combination of optical, thermal and mechanical effects depending on the energy applied per unit of volume per unit of time. Visualization of the phenomena with a high temporal and spatial resolution, contributes to a better understanding of the mechanism of action, especially when pulsed lasers are involved. For this goal, setups were developed based on Schlieren techniques to image the interaction of pulsed (CO2, Holmium and Excimer) and CW (CO2, Nd:YAG, Cu-vapor) lasers with physiological media and biological tissues. In a 'fast' Schlieren setup, images of shock waves and fast expanding and imploding vapor bubbles were captured using very short light flashes (10 ns-10 microseconds). These recordings suggest that these explosive vapor bubbles seem to be the main dynamism for tissue ablation. In a 'color' Schlieren setup, very small changes in optical density of the media induced by temperature gradients, were color coded. Calibration of the color images to absolute temperatures were performed by using calculated temperature distributions and by thermocouple measurements. Cameras with high speed shutters (0.1-50 ms) enabled the recording of dynamic images of the thermal relaxation and heat diffusion in tissues during variation of pulse length and repetition rate. Despite pulse lengths < ms, heat generation in tissue was considerable already at pulse repetition rates above a few Hz. Similar Schlieren techniques were applied to study the thermal characteristics of laser probes, e.g. for the treatment of Benign Prostatic Hyperplasia (BPH). In combination with thermal modeling an optimal therapy might be predicted. Schlieren techniques, generating high-speed and 'thermal' images, can provide a good understanding of the ablation mechanism and the thermo-dynamics during laser-tissue interaction with continuous wave and pulse lasers.

  2. Effect of laser parameters and mode on pulp surgery outcome

    NASA Astrophysics Data System (ADS)

    Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.; Peavy, George M.; Kurosaki, Tom

    1997-05-01

    The objective of this study was to determine the effectiveness of localized laser pulp surgery in the canine model. Effects of laser parameters on treatment outcome were also investigated. Pulpal exposure 3 mm in diameter were prepared in healthy teeth and left open to infection from the oral cavity for 72 hours. Pulpal tissue was then removed using high speed handpiece with sterile irrigation, or a CO2 laser. Teeth were monitored clinically, radiographically for 3 months. Results for each criterion were evaluated on a scale of 0-(-2). After sacrifice, histological assessment was made soft and hard tissue response. Results for each category were evaluated on a standard scale of 0-(-2). All evaluations were performed by 1 blinded, pre-standardized clinician. Statistical assessment using the chi-square test and Fisher's Exact Test associated laser treatment with a significantly better clinical, radiographic and histological treatment outcome. NIH RRO1192, seed grant funding form Loma Linda University, the Edna P. Jacobsen Charitable Trust for Animals, Inc.

  3. The Lensing Effect of CO(2) Laser Plasma.

    PubMed

    Lotsch, H K; Davis, W C

    1970-12-01

    An unexpected phenomenon has been observed which triggered an investigation into the lensing effect of a CO(2) laser plasma. This effect, so far thought to be negligible in a conventional CO(2) laser of, for example, 2-m length, produces a focal length in the order of magnitude of - 20 m. In view of this experimental observation, the focal length of the plasma lens, as well as the stability condition for an optical resonator with a plasma lens within its plane concave mirror system, are determined and expressed in terms of plasma and resonator characteristics as well as of the electrical power dissipated in the plasma. The analysis reveals that the semiconfocal configuration is most adverse for a frequency-stabilized laser. The overall result of this investigation suggests that the optimum configuration of a conventional CO(2) laser for maximum output power is obtained when the negative focal power of the plasma lens precisely compensates for the positive focal power of the slightly curved mirror.

  4. Effect of helium-neon laser on musculoskeletal trigger points

    SciTech Connect

    Snyder-Mackler, L.; Bork, C.; Bourbon, B.; Trumbore, D.

    1986-07-01

    Cold lasers have been proposed recently as a therapeutic tool for treating a wide variety of pathological conditions, including wounds, arthritis, orthopedic problems, and pain. These proposed therapeutic effects largely have been unsubstantiated by research. A randomized, double blind study was undertaken to ascertain the effect of a helium-neon (He-Ne) laser on the resistance of areas of skin overlying musculoskeletal trigger points. These areas usually demonstrate decreased skin resistance when compared with the surrounding tissue. Thirty patients with musculoskeletal trigger points were assigned randomly to either an experimental or a placebo group. In addition to standard physical therapy, each patient received three 15-second applications of a He-Ne laser or placebo stimulation from an identical unit that did not emit a laser. The results of a two-way analysis of covariance with one repeated measure showed a statistically significant increase (p less than .007) in skin resistance. This increase in an abnormal skin resistance pattern may accompany the resolution of pathological conditions.

  5. Experimental determination of gravitomagnetic effects by means of ring lasers

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    2013-08-01

    A new experiment aimed to the detection of the gravito-magnetic Lense-Thirring effect at the surface of the Earth will be presented; the name of the experiment is GINGER. The proposed technique is based on the behavior of light beams in ring-lasers, also known as gyrolasers. A three-dimensional array of ringlasers will be attached to a rigid "monument"; each ring will have a different orientation in space. Within the space-time of a rotating mass the propagation of light is indeed anisotropic; part of the anisotropy is purely kinematical (Sagnac effect), part is due to the interaction between the gravito-electric field of the source and the kinematical motion of the observer (de Sitter effect), finally there is a contribution from the gravito-magnetic component of the Earth (gravito-magnetic frame dragging or Lense-Thirring effect). In a ring-laser a light beam traveling counterclockwise is superposed to another beam traveling in the opposite sense. The anisotropy in the propagation leads to standing waves with slightly different frequencies in the two directions; the final effect is a beat frequency proportional to the size of the instrument and its effective rotation rate in space, including the gravito-magnetic drag. Current laser techniques and the performances of the best existing ring-lasers allow at the moment a sensitivity within one order of magnitude of the required accuracy for the detection of gravito-magnetic effects, so that the objective of GINGER is in the range of feasibility and aims to improve the sensitivity of a couple of orders of magnitude with respect to present. The experiment will be underground, probably in the Gran Sasso National Laboratories in Italy, and is based on an international collaboration among four Italian groups, the Technische Universität München and the University of Canterbury in Christchurch (NZ).

  6. Improvement in surface fatigue life of hardened gears by high-intensity shot peening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1992-01-01

    Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.

  7. Improvement in surface fatigue life of hardened gears by high-intensity shot peening

    SciTech Connect

    Townsend, D.P.

    1992-01-01

    Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.

  8. Comparison of effects of diode laser and CO2 laser on human teeth and their usefulness in topical fluoridation.

    PubMed

    González-Rodríguez, Alberto; de Dios López-González, Juan; del Castillo, Juan de Dios Luna; Villalba-Moreno, Juan

    2011-05-01

    Various authors have reported more effective fluoridation from the use of lasers combined with topical fluoride than from conventional topical fluoridation. Besides the beneficial effect of lasers in reducing the acid solubility of an enamel surface, they can also increase the uptake of fluoride. The study objectives were to compare the action of CO(2) and GaAlAs diode lasers on dental enamel and their effects on pulp temperature and enamel fluoride uptake. Different groups of selected enamel surfaces were treated with amine fluoride and irradiated with CO(2) laser at an energy power of 1 or 2 W or with diode laser at 5 or 7 W for 15 s each and compared to enamel surfaces without treatment or topical fluoridated. Samples were examined by means of environmental scanning electron microscopy (ESEM). Surfaces of all enamel samples were then acid-etched, measuring the amount of fluoride deposited on the enamel by using a selective ion electrode. Other enamel surfaces selected under the same conditions were irradiated as described above, measuring the increase in pulp temperature with a thermocouple wire. Fluorination with CO(2) laser at 1 W and diode laser at 7 W produced a significantly greater fluoride uptake on enamel (89 ± 18 mg/l) and (77 ± 17 mg/l) versus topical fluoridation alone (58 ± 7 mg/l) and no treatment (20 ± 1 mg/l). Diode laser at 5 W produced a lesser alteration of the enamel surface compared to CO(2) laser at 1 W, but greater pulp safety was provided by CO(2) laser (ΔT° 1.60° ± 0.5) than by diode laser (ΔT° 3.16° ± 0.6). Diode laser at 7 W and CO(2) laser at 2 W both caused alterations on enamel surfaces, but great pulp safety was again obtained with CO(2) (ΔT° 4.44° ± 0.60) than with diode (ΔT° 5.25° ± 0.55). Our study demonstrates that CO(2) and diode laser irradiation of the enamel surface can both increase fluoride uptake; however, laser energy parameters must be carefully

  9. Modulatory frequency of lasers in connection to laser beam therapeutic effect

    NASA Astrophysics Data System (ADS)

    Kucerova, Hana; Bartova, Jirina; Himmlova, Lucia; Dostalova, Tatjana; Mazanek, Jiri

    1998-04-01

    The subject of this work follows changes of the sIgA and albumin levels in the saliva of 48 patients treated after the extraction of their lower molars with either diode or He-Ne biostimulatory laser, using different modulatory frequencies (5 Hz, 292 Hz, 9000 Hz). The results were compared to the sIgA and albumin levels in the saliva of the control, i.e. not- treated group. For the tests radial immunodiffusion (RID) method was used (commercial RID kit of the Binding Site, Birmingham, Great Britain). Appropriately chosen laser beam modulatory frequency should influence the increase in the sIgA and albumin levels against the base level. In our study, this hypothesis was confirmed in the group treated with the frequency of 292 Hz and 9000 Hz (both diode GaAIAs, 670 nm, red, 20 mW, energy density 1.5 Jcm2) on albumin levels and 9000 Hz on sIgA levels. The changes of the levels of the watched markers versus the control group were at this frequencies (292 Hz and 9000 Hz) statistically significant. At the others used frequencies (5 Hz diode laser and 5 Hz He-Ne laser) the changes of the levels of the watched markers versus control group were statistically insignificant. The aim of this study was to contribute to the evaluation of specific modulatory frequencies (5 Hz, 292 Hz, 9000 Hz) for therapeutical use in a given pathological case of the oral cavity. We can conclude that using frequency 9000 Hz had best immunomodulatory effect.

  10. Modeling of the shrinking process of a bubble induced by laser metal ablation in water and experimental verification

    NASA Astrophysics Data System (ADS)

    Dabir-Moghaddam, Navid; Liu, Ze; Wu, Benxin

    2017-01-01

    Laser ablation of a solid target immersed in liquid (such as water) has many important applications such as laser synthesis of nanoparticles, laser micromachining in water, and laser shock peening. Laser ablation of a solid target in water involves complicated physical processes. One important process often involved is the generation and evolution of a bubble in water and attached to the target surface, which may have significant effects on the target and the ambient water, and hence may greatly affect the relevant practical applications. Some experimental studies were reported in the literature on bubble evolutions induced by laser ablation of a solid target in water. However, the reported previous relevant physics-based modeling work is not sufficient. A physics-based model may help improve the process fundamental understanding and generate valuable information to related applications. In this paper, physics-based modeling work has been performed on the shrinking process of a bubble induced by laser metal ablation in water, together with time-resolved shadowgraph imaging experiments to verify the model. The model-predicted bubble evolution agrees reasonably well with the experimental measurement shown in the paper. Under the studied conditions, it has been found that near the bubble collapse moment (i.e., the moment when the bubble shrinks to a minimum size): (1) the bubble shrinks very fast, and the peak fluid velocity magnitude occurs inside the bubble and can exceed ˜550 m/s; (2) the temperature inside the bubble increases very quickly and approaches ˜2000 K; and (3) the pressure inside the bubble becomes very high, and can reach a peak magnitude of ˜380 MPa at the collapse moment at the bubble center. During the shrinking process, a high-pressure region outside and near the bubble wall is generated near the collapse moment, but the temperature of the region outside the bubble mostly remains low.

  11. Effective observation of treatment of chronic pharyngitis with semiconductor laser irradiation at acupuncture points

    NASA Astrophysics Data System (ADS)

    Li, Suxian; Wang, Xiaoyan; Wang, Yanrong

    1993-03-01

    The treatment of this disease with laser such as He-Ne laser, Nd:YAG laser, and CO2 laser, etc., has been applied in our country, but application of the semiconductor laser therapy has received few reports. It has many advantages, such as ting volume, steady function, simple operation (the patient can operate it by himself), no side effects, remarkable results, and it is very convenient. So the semiconductor laser can be used to treat the chronic pharyngitis with irradiation on acupunctural points. One-hundred-twenty chronic pharyngitis patients were divided into 2 groups, a laser group and a medicine group, 60 cases for each. The effective rate is 91.6% and 66.6%, respectively. Obviously the treatment of chronic pharyngitis with semiconductor laser is valuable for widespread use. The principle of the laser therapy is discussed in the last part of this paper.

  12. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Selective metallisation of diamonds with the aid of laser radiation

    NASA Astrophysics Data System (ADS)

    Shafeev, Georgii A.; Pimenov, S. M.; Lubnin, Evgenii N.; Smolin, A. A.; Konov, Vitalii I.; Laptev, V. A.

    1995-02-01

    An experimental investigation was made of laser activation of diamond surfaces (single crystals and polycrystalline diamond films) prior to electroless before catalytic deposition of metals from solutions. The activation was carried out by a copper vapour laser or a KrF excimer laser in two ways: decomposition of a thin film of palladium acetylacetonate and local laser stimulated modification of the diamond surface by laser evaporation. An ohmic contact (Cu or Ni) with an adhesive strength of 3 N mm-2 was formed and the spatial resolution achieved was 10 μm.

  13. Effect of surface-breakdown plasma on metal drilling by pulsed CO2-laser radiation

    NASA Astrophysics Data System (ADS)

    Arutiunian, P. V.; Baranov, V. Iu.; Bobkov, I. V.; Bol'Shakov, L. A.; Dolgov, V. A.

    1988-03-01

    The effect of low-threshold surface breakdown produced by short (5-microsec) CO2-laser pulses on the metal drilling process is investigated. Data on the interaction of metals with laser pulses having the same duration but different shape are shown to be different. The effect of the ambient atmospheric pressure on the laser drilling process is investigated.

  14. Comparing mechanical effects and sound production of KTP, thulium, and CO2 laser in stapedotomy.

    PubMed

    Kamalski, Digna M A; Verdaasdonk, Rudolf M; de Boorder, Tjeerd; Vincent, Robert; Versnel, Huib; Grolman, Wilko

    2014-08-01

    The mechanical and acoustic effects that occur during laser-assisted stapedotomy differ among KTP, CO2, and thulium lasers. Making a fenestration in stapedotomy with a laser minimizes the risk of a floating footplate caused by mechanical forces. Theoretically, the lasers used in stapedotomy could inflict mechanical trauma because of absorption in the perilymph, causing vaporization bubbles. These bubbles can generate a shock wave, when imploding. In an inner ear model, we made a fenestration in a fresh human stapes with KTP, CO2, and thulium laser. During the fenestration, we performed high-speed imaging from different angles to capture mechanical effects. The sounds produced by the fenestration were recorded simultaneously with a hydrophone; these recordings were compared with acoustics produced by a conventional microburr fenestration. KTP laser fenestration showed little mechanical effects, with minimal sound production. With CO2 laser, miniscule bubbles arose in the vestibule; imploding of these bubbles corresponded to the acoustics. Thulium laser fenestration showed large bubbles in the vestibule, with a larger sound production than the other two lasers. Each type of laser generated significantly less noise than the microburr. The microburr maximally reached 95 ± 7 dB(A), compared with 49 ± 8 dB(A) for KTP, 68 ± 4 dB(A) for CO2, and 83 ± 6 dB(A) for thulium. Mechanical and acoustic effects differ among lasers used for stapedotomy. Based on their relatively small effects, KTP and CO2 lasers are preferable to thulium laser.

  15. Low-power laser therapy for carpal tunnel syndrome: effective optical power.

    PubMed

    Chen, Yan; Zhao, Cheng-Qiang; Ye, Gang; Liu, Can-Dong; Xu, Wen-Dong

    2016-07-01

    Low-power laser therapy has been used for the non-surgical treatment of mild to moderate carpal tunnel syndrome, although its efficacy has been a long-standing controversy. The laser parameters in low-power laser therapy are closely related to the laser effect on human tissue. To evaluate the efficacy of low-power laser therapy, laser parameters should be accurately measured and controlled, which has been ignored in previous clinical trials. Here, we report the measurement of the effective optical power of low-power laser therapy for carpal tunnel syndrome. By monitoring the backside reflection and scattering laser power from human skin at the wrist, the effective laser power can be inferred. Using clinical measurements from 30 cases, we found that the effective laser power differed significantly among cases, with the measured laser reflection coefficient ranging from 1.8% to 54%. The reflection coefficient for 36.7% of these 30 cases was in the range of 10-20%, but for 16.7% of cases, it was higher than 40%. Consequently, monitoring the effective optical power during laser irradiation is necessary for the laser therapy of carpal tunnel syndrome.

  16. Laser phase noise effects on the dynamics of optomechanical resonators

    NASA Astrophysics Data System (ADS)

    Phelps, Gregory; Meystre, Pierre

    2011-05-01

    We present a theoretical analysis of the effects of laser phase noise on the sideband cooling of opto-mechanical oscillators, demonstrating how it limits the minimum occupation number of the phonon mode being cooled and how it modifies optical cooling rate and mechanical frequency shift of the mechanical element. We also comment on the effects of laser phase noise on coherent oscillations of the mechanical element in the blue detuned regime and on the back-action evasion detection method where an additional drive is used to prevent heating of one quadrature of motion of the oscillator. This work was supported by the US Office of Naval Research, the US National Science Foundation, the US Army Research Office and the DARPA ORCHID program through a grant from AFOSR.

  17. Inhomogeneous broadening effects in multimode CW chemical lasers

    NASA Astrophysics Data System (ADS)

    Mirels, H.

    1981-01-01

    The performance of a multiple longitudinal mode CW chemical laser is investigated with reference to the effects of inhomogeneous broadening for the case where the longitudinal mode spacing is small compared with the characteristic Doppler and homogeneous widths of the lasing medium. Both a Fabry-Perot resonator and a saturated amplifier are considered, using a two-vibrational-level model. Closed form solutions are obtained which are shown to be in good agreement with the numerical results of Bullock and Lipkis (1979).

  18. Thermal effects in IR-laser-irradiated living cells

    NASA Astrophysics Data System (ADS)

    Meier, Thomas H.; Rueck, Angelika C.; Scalfi-Happ, Claudia; Hug, Hubert; Schneider, Marion E.

    2003-10-01

    Irradiation of cell-layers with focussed 2.8 μm ir-laser allows to control the cell temperature from room temperature up to 100°C. Temperatures were calculated for a cell culture model and verified experimentally by thermal mapping of the cell-surrounding medium by means of thermochromic liquid crystals (TLC). Irradiation power and time were varied and associated biological effects like necrosis and apoptosis were observed with respect to the irradiation dosis.

  19. Laser wavelength effects in ultrafast near-field laser nanostructuring of Si

    SciTech Connect

    Zormpa, Vasileia; Mao, Xianglei; Russo, Richard E.

    2010-03-18

    We study the effect of laser wavelength (400 nm and 800 nm) on the near-field processing of crystalline silicon (Si) in the femtosecond (fs) pulse duration regime through sub-wavelength apertures. Distinct differences in the obtained nanostructures are found in each case both in terms of their physical sizes as well as their structure which can be tuned between craters and protrusions. A single or a few fs pulses can deliver enough energy on the substrate to induce sub-diffraction limited surface modification, which is among the smallest ever reported in sub-wavelength apertured Near-field Scanning Optical Microscope (NSOM) schemes.

  20. LASER BIOLOGY AND MEDICINE: Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2009-03-01

    The thermomechanical effect of 1.56-μm fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs.

  1. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    NASA Astrophysics Data System (ADS)

    Belghit, Slimen; Sid, Abdelaziz

    2016-06-01

    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.

  2. Measuring Gravitomagnetic Effects by Means of Ring Lasers

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    Light is a good probe for general relativistic effects. Exploiting the asymmetry of the propagation in the vicinity of a central rotating mass it is possible to use a ring laser in order to measure the frame dragging of the reference frames by the gravitational field of the Earth (Lense-Thirring effect). I shall present the G-GranSasso experiment whose objective is precisely to measure the Lense-Thirring and the de Sitter effects in a terrestrial laboratory. The experimental apparatus will be made of a set of at least three, differently oriented, ring lasers rigidly attached to a central "monument". The signal will be in the form of the beat frequency produced in the annular cavity of each laser by the rotational anisotropy. The laboratory will be located underground in the Laboratori Nazionali del Gran Sasso facility, in Italy. The required sensitivity is just one order of magnitude below the performance of the best existing instruments and the new design will attain it.

  3. Effects of 810 nm laser on mouse primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-03-01

    In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from mouse embryonic brains. Neurons were irradiated with light dose of 0.03, 0.3, 3, 10 and 30 J/cm2 and intracellular levels of reactive oxygen species, nitric oxide and calcium were measured. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluence. ROS was induced significantly by light at all light doses. Nitric oxide levels also showed an increase on treatment with light. The results of the present study suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling process which in turn may be responsible for the biomodulatory effects of the low level laser. At higher fluences beneficial mediators are reduced but potentially harmful mediators are increased thus offering an explanation for the biphasic dose response.

  4. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    SciTech Connect

    Belghit, Slimen Sid, Abdelaziz

    2016-06-15

    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.

  5. Effectiveness of low-level laser on carpal tunnel syndrome

    PubMed Central

    Li, Zhi-Jun; Wang, Yao; Zhang, Hua-Feng; Ma, Xin-Long; Tian, Peng; Huang, Yuting

    2016-01-01

    Abstract Background: Low-level laser therapy (LLLT) has been applied in the treatment of carpal tunnel syndrome (CTS) for an extended period of time without definitive consensus on its effectiveness. This meta-analysis was conducted to evaluate the effectiveness of low-level laser in the treatment of mild to moderate CTS using a Cochrane systematic review. Methods: We conducted electronic searches of PubMed (1966–2015.10), Medline (1966–2015.10), Embase (1980–2015.10), and ScienceDirect (1985–2015.10), using the terms “carpal tunnel syndrome” and “laser” according to the Cochrane Collaboration guidelines. Relevant journals or conference proceedings were searched manually to identify studies that might have been missed in the database search. Only randomized clinical trials were included, and the quality assessments were performed according to the Cochrane systematic review method. The data extraction and analyses from the included studies were conducted independently by 2 reviewers. The results were expressed as the mean difference (MD) with 95% confidence intervals (CI) for the continuous outcomes. Results: Seven randomized clinical trials met the inclusion criteria; there were 270 wrists in the laser group and 261 wrists in the control group. High heterogeneity existed when the analysis was conducted. Hand grip (at 12 weeks) was stronger in the LLLT group than in the control group (MD = 2.04; 95% CI: 0.08–3.99; P = 0.04; I2 = 62%), and there was better improvement in the visual analog scale (VAS) (at 12 weeks) in the LLLT group (MD = 0.97; 95% CI: 0.84–1.11; P < 0.01; I2 = 0%). The sensory nerve action potential (SNAP) (at 12 weeks) was better in the LLLT group (MD = 1.08; 95% CI: 0.44–1.73; P = 0.001; I2 = 0%). However, 1 included study was weighted at >95% in the calculation of these 3 parameters. There were no statistically significant differences in the other parameters between the 2 groups. Conclusion

  6. 2D imaging of laser wing effects and of soot sublimation in laser-induced incandescence measurements

    NASA Astrophysics Data System (ADS)

    Delhay, J.; Bouvier, Y.; Therssen, E.; Black, J. D.; Desgroux, P.

    2005-07-01

    The distribution of Laser-Induced Incandescence (LII) signal in sooting flames along the laser beam is imaged using two directions of observation: one counter to the propagation direction of the incident laser (backward LII) and one at right angles. It is shown that the effective probe volume, in which the LII signal is observed, is highly dependent on the laser irradiance profile. At high fluence, the LII from the central part of the beam decreases because of soot sublimation. This decrease can be compensated by an increase in the LII from the wings of the laser beam. This interaction is particularly important in the extraction of quantitative information in the backward LII case, which is the configuration best suited to the practical application of LII for in-situ particle concentration measurements in the exhaust of aero-engines.

  7. The effect of laser contrast on generation of highly charged Fe ions by ultra-intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Faenov, Anatoly Ya.; Alkhimova, Maria A.; Pikuz, Tatiana A.; Skobelev, Igor Yu.; Nishiuchi, Mamiko; Sakaki, Hironao; Pirozhkov, Alexander S.; Sagisaka, Akito; Dover, Nicholas P.; Kondo, Kotaro; Ogura, Koichi; Fukuda, Yuji; Kiriyama, Hiromitsu; Andreev, Alexander; Nishitani, Keita; Miyahara, Takumi; Watanabe, Yukinobu; Pikuz, Sergey A.; Kando, Masaki; Kodama, Ruosuke; Kondo, Kiminori

    2017-07-01

    Experimental studies on the formation of highly charged ions of medium-Z elements using femtosecond laser pulses with different contrast levels were carried out. Multiply charged Fe ions were generated by laser pulses with 35 fs duration and an intensity exceeding 1021 W/cm2. Using high-resolution X-ray spectroscopic methods, bulk electron temperature of the generated plasma has been identified. It is shown that the presence of a laser pre-pulse at a contrast level of 105-106 with respect to the main pulse drastically decreases the degree of Fe ionization. We conclude that an effective source of energetic, multiply charged moderate and high- Z ions based on femtosecond laser-plasma interactions can be created only using laser pulses of ultra-high contrast.

  8. Effects of laser interaction with living human tissues

    NASA Astrophysics Data System (ADS)

    Molchanova, O. E.; Protasov, E. A.; Protasov, D. E.; Smirnova, A. V.

    2016-09-01

    With the help of a highly sensitive laser device with the wavelength λ = 0.808 pm, which is optimal for deep penetration of the radiation into biological tissues, the effects associated with the appearance of uncontrolled human infrasonic vibrations of different frequencies were investigated. It was established that the observed fluctuations are associated with the vascular system which is characterized by its own respiratory movements, occurring synchronously with the movements of the respiratory muscles, the operation of the heart muscle, and the effect of compression ischemia. The effect of “enlightenment” of a tissue is observed with stopping of blood flow in vessels by applying a tourniquet on the wrist.

  9. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    DOE PAGES

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; ...

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygenmore » concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.« less

  10. [Effect and impact of holmium laser versus thulium laser enucleation of the prostate on erectile function].

    PubMed

    Hong, Kai; Liu, Yu-qing; Lu, Jian; Xiao, Chun-lei; Huang, Yi; Ma, Lu-lin

    2015-03-01

    To compare the effect and impact of holmium laser enucleation of the prostate (HoLEP) and 120-W thulium: YAG vapoenucleation of the prostate (ThuVEP) on erectile function in the treatment of benign prostatic hyperplasia (BPH). We retrospectively analyzed 93 cases of symptomatic BPH treated by HoLEP or 120 W ThuVEP. We made comparisons between the two groups of patients in the baseline and postoperative clinical and surgical indexes as well as their IPSS, quality of life (QOL), maximum flow rate (Qmax), postvoid residual urine volume (PVR), and IIEF-EF scores before surgery and during the 12-month follow-up. ThuVEP, in comparison with HoLEP, achieved a significantly shorter operation time ([57.6 +/- 12. 8] vs. [70.4 +/- 21.8] min, P = 0.001) and a higher laser efficiency ([0.71 +/- 0.18] vs. [0.62 +/- 0.19] g/min, P = 0. 021). At 1, 6, or 12 months of follow-up, no significant differences were observed in IPSS, OOL, Omax, and PVR between the two groups (P > 0.05). Both the HoLEP and ThuVEP groups showed low incidences of complications and remarkably improved IIEF-EF scores at 12 months postoperatively, but with no significant differences (both P > 0.05). However, in those with relatively normal erectile functions before operation, the mean IIEF-EF score was reduced from 22.8 +/- 2.2 preoperatively to 21.0 +/- 2.7 after HoLEP, (P = 0.036). Both HoLEP and 120W ThuVEP are effective and safe in the treatment of BPH. Compared with HoLEP, 120 W ThuVEP has even a higher laser efficiency. However, neither can significantly improve erectile function, and HoLEP may have a short-term negative impact on the relatively normal erectile function of the patient.

  11. Systematic Effects in Laser Scanning and Visualization by Confidence Regions

    NASA Astrophysics Data System (ADS)

    Koch, Karl-Rudolf; Brockmann, Jan Martin

    2016-12-01

    A new method for dealing with systematic effects in laser scanning and visualizing them by confidence regions is derived. The standard deviations of the systematic effects are obtained by repeatedly measuring three-dimensional coordinates by the laser scanner. In addition, autocovariance and cross-covariance functions are computed by the repeated measurements and give the correlations of the systematic effects. The normal distribution for the measurements and the multivariate uniform distribution for the systematic effects are applied to generate random variates for the measurements and random variates for the measurements plus systematic effects. Monte Carlo estimates of the expectations and the covariance matrix of the measurements with systematic effects are computed. The densities for the confidence ellipsoid for the measurements and the confidence region for the measurements with systematic effects are obtained by relative frequencies. They only depend on the size of the rectangular volume elements for which the densities are determined. The problem of sorting the densities is solved by sorting distances together with the densities. This allows a visualization of the confidence ellipsoid for the measurements and the confidence region for the measurements with systematic effects.

  12. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Effect of optical aberrations on the output quality of a two-element laser

    NASA Astrophysics Data System (ADS)

    Malashin, P. O.; Silichev, O. O.

    1993-04-01

    The effect of slight aberrations of an intracavity lens on the mode structure and the quality of the output from a two-element multimode laser is examined theoretically. The coefficients of the mode distortion due to optical aberrations of the intracavity elements are derived by perturbation theory. A general condition for the dynamic stability of the cavity of a two-element laser with respect to small fluctuations of the lens power of the active-element thermal lens is proposed. Recommendations are offered for optimizing the optical layout of the cavity of a two-element solid state laser. These recommendations are aimed at reducing the effect of aberrations on the quality of the transverse structure of the output. The procedure for designing an effective layout for a cavity of a two-element, solid-state industrial laser is illustrated.

  13. Effect of Pulsed Laser Ablation and Continuous Laser Heating on the Adhesion and Cohesion of Cold Sprayed Ti-6Al-4V Coatings

    NASA Astrophysics Data System (ADS)

    Perton, M.; Costil, S.; Wong, W.; Poirier, D.; Irissou, E.; Legoux, J.-G.; Blouin, A.; Yue, S.

    2012-12-01

    The individual and cumulative effects of in situ pulsed laser ablation and continuous laser pre-heating on adhesion and cohesion strength of cold sprayed Ti-6Al-4V coatings are investigated. Laser beams were coupled to a cold spray gun in order to ablate and pre-heat the substrate surface a few milliseconds prior to the impact of the spray particles. Cohesion and adhesion strength were evaluated by scratch test, standard ASTM C633 pull test and laser shock (LASAT) technique. The effects of laser ablation before and during cold spray operations were investigated. Results demonstrate that laser ablation of the substrate before cold spraying led to a smooth surface which improved adhesion strength. However, when laser ablation was maintained throughout the cold spray process, i.e., in between the coating layers, a reduction of cohesion and adhesion was observed. These negative effects were circumvented when laser ablation and laser pre-heating were combined.

  14. Pulsed laser interactions with space debris: Target shape effects

    DOE PAGES

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; ...

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  15. Pulsed laser interactions with space debris: Target shape effects

    SciTech Connect

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; Nikolaev, S.; Phipps, C. R.

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.

  16. The motional Stark effect with laser-induced fluorescence diagnostic

    NASA Astrophysics Data System (ADS)

    Foley, Elizabeth; Levinton, Fred

    2007-11-01

    Traditional motional Stark effect (MSE) diagnostics exploit the polarization properties of light generated from a neutral hydrogenic beam via collisionally-induced fluorescence (CIF). MSE uses this information to determine a spatially resolved profile of the magnetic field pitch angle in a magnetized plasma. The use of laser-induced fluorescence with MSE on a dedicated diagnostic neutral beam enables an MSE pitch angle measurement at fields as low as 0.001 T, which cannot be achieved by CIF systems. The LIF system also affords the option of very precisely measuring the magnetic field magnitude as well as direction. The MSE-LIF diagnostic is under development in our laboratory, where we have a diagnostic neutral beam system, a dye laser, and a helicon plasma source. This poster will present the latest results relating to MSE-LIF measurements in plasma, as well as an analysis of the relative utility of magnetic field magnitude vs pitch angle measurements for equilibrium reconstruction.

  17. Atmospheric effects and ultimate ranging accuracy for lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Currie, Douglas G.; Prochazka, Ivan

    2014-10-01

    The deployment of next generation lunar laser retroreflectors is planned in the near future. With proper robotic deployment, these will support single shot single photo-electron ranging accuracy at the 100 micron level or better. There are available technologies for the support at this accuracy by advanced ground stations, however, the major question is the ultimate limit imposed on the ranging accuracy due to the changing timing delays due to turbulence and horizontal gradients in the earth's atmosphere. In particular, there are questions of the delay and temporal broadening of a very narrow laser pulse. Theoretical and experimental results will be discussed that address estimates of the magnitudes of these effects and the issue of precision vs. accuracy.

  18. Effect of Heat Treatment on Microstructure Characteristics of Laser Composites

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Yuanbin; Li, Yajiang; Yang, Qingqing; Liu, Yan; Ren, Guocheng

    2014-12-01

    In this paper, effect of heat treatment on the microstructures and wear properties of laser alloying (LA) composites is investigated. LA of the T-Co50/FeSi/TiC/TiN/CeO2 mixed powders on substrate of 45 steel can form the hard composites, which increased the wear resistance of substrate greatly. Such LA composites were investigated by means of a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The tempering promoted the growth of the block-shape hard phases, favoring an enhancement of the integrity of block-shape hard phases; and tempering also improved greatly the formation mechanism, guarantying the composites to have enough ability of intensity transfer. This research provided essential experiment and theoretical basis to promote the application of the laser and heat treatment technologies in the field of surface modification.

  19. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Hardening of aluminium by YAG : Nd laser radiation with an average power of 0.8 kW

    NASA Astrophysics Data System (ADS)

    Kovsh, Ivan B.; Strekalova, M. S.

    1994-02-01

    An investigation is reported of the effects of a surface heat treatment of aluminium by a YAG : Nd laser beam with a power up to 0.8 kW. In particular, a study was made of the influence of the treatment conditions on the microhardness, as well as on the residual stresses and their sign in hardened surface layers of aluminium. The efficiency of aluminium hardening by radiation from a cw YAG : Nd laser was found to be considerably higher than in the case of a cw CO2 laser.

  20. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Microwave generation in an optical breakdown plasma created by modulated laser radiation

    NASA Astrophysics Data System (ADS)

    Antipov, A. A.; Grasyuk, Arkadii Z.; Losev, Leonid L.; Soskov, V. I.

    1990-06-01

    It was established that when laser radiation, intensity modulated at a frequency of 2.2 GHz, interacted with an optical breakdown plasma which it had created, a microwave component appeared in the thermal emf of the plasma. The amplitude of the microwave thermal emf reached 0.7 V for a laser radiation intensity of 6 GW/cm2. Laser radiation with λL = 1.06 μm was converted to the microwave range with λmω = 13 cm in the optical breakdown plasma. A microwave signal power of ~ 0.5 W was obtained from a laser power of ~ 5 MW.

  1. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of investigation of optical breakdown statistics using multifrequency lasers

    NASA Astrophysics Data System (ADS)

    Ulanov, S. F.

    1990-06-01

    A method proposed for investigating the statistics of bulk optical breakdown relies on multifrequency lasers, which eliminates the influence of the laser radiation intensity statistics. The method is based on preliminary recording of the peak intensity statistics of multifrequency laser radiation pulses at the caustic using the optical breakdown threshold of K8 glass. The probability density distribution function was obtained at the focus for the peak intensities of the radiation pulses of a multifrequency laser. This method may be used to study the self-interaction under conditions of bulk optical breakdown of transparent dielectrics.

  2. Effect of topical anti-inflammatory treatment on the outcome of laser trabeculoplasty. The Fluorometholone-Laser Trabeculoplasty Study Group.

    PubMed

    Shin, D H; Frenkel, R E; David, R; Cheetham, J K

    1996-09-01

    We investigated the effect of anti-inflammatory treatment on the outcome of argon laser trabeculoplasty. In this multicenter, double-masked, randomized, placebo-controlled, parallel comparison study, 140 chronic open-angle glaucoma patients received either 0.25% fluorometholone or vehicle four times a day unilaterally, beginning 24 hours before and continuing one week after argon laser trabeculoplasty. The laser surgeon placed 50 to 60 burns over the inferior 180 degrees of the trabecular meshwork. The patients were followed up frequently for five weeks after the procedure. Following argon laser trabeculoplasty, signs of anterior chamber inflammation were significantly lower in the fluorometholone group. However, there was no significant difference between the fluorometholone and the vehicle groups in the incidence of increased intraocular pressure in the immediate post-argon laser trabeculoplasty period. Intraocular pressure decreased significantly in both groups from day 1 throughout the follow-up period. A significant between-group difference in intraocular pressure decrease was found only at week 5 (7.83 +/- 6.27 [S.D.] mm Hg for the fluorometholone group vs 6.63 +/- 5.79 mm Hg for the vehicle group, P = .046). No drug-related clinically significant adverse events were observed. Use of fluorometholone is effective in attenuating inflammation and has no clinically significant impact on the outcome of argon laser trabeculoplasty or on the incidence of intraocular pressure spikes during the immediate post-argon laser trabeculoplasty period.

  3. Simulation study on thermal effect of long pulse laser interaction with CFRP material

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Jin, Guangyong; Yuan, Boshi

    2016-10-01

    Laser machining is one of most widely used technologies nowadays and becoming a hot industry as well. At the same time, many kinds of carbon fiber material have been used in different area, such as sports products, transportation, microelectronic industry and so on. Moreover, there is lack of the combination research on the laser interaction with Carbon Fiber Reinforced Polymer (CFRP) material with simulation method. In this paper, the temperature status of long pulse laser interaction with CFRP will be simulated and discussed. Firstly, a laser thermal damage model has been built considering the heat conduction theory and thermal-elasto-plastic theory. Then using COMSOL Multiphysics software to build the geometric model and to simulate the mathematic results. Secondly, the functions of long pulse laser interaction with CFRP has been introduced. Material surface temperature increased by time during the laser irradiating time and the increasing speed is faster when the laser fluence is higher. Furthermore, the peak temperature of the center of material surface is increasing by enhanced the laser fluence when the pulse length is a constant value. In this condition, both the ablation depth and the Heat Affected Zone(HAZ) is larger when increased laser fluence. When keep the laser fluence as a constant value, the laser with shorter pulse length is more easier to make the CFRP to the vaporization material. Meanwhile, the HAZ is becoming larger when the pulse length is longer, and the thermal effect depth is as the same trend as the HAZ. As a result, when long pulse laser interaction with CFRP material, the thermal effect is the significant value to analysis the process, which is mostly effect by laser fluence and pulse length. For laser machining in different industries, the laser parameter choose should be different. The shorter pulse length laser is suitable for the laser machining which requires high accuracy, and the longer one is better for the deeper or larger

  4. The shape effect of space debris on recoil impulse by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Wang, Chenglin; Zhang, Yan; Wang, Kunpeng

    2016-10-01

    Removing space debris by high-energy pulsed laser may be the most effective way to mitigate the threat posed by the increasing space debris. Laser ablation of a thin surface layer causes recoil impulse, which will lower the orbit perigee of space debris and accelerate the atmospheric capture. When the laser beam vertically irradiates a flat debris, it requires a certain laser fluence to reach the optimal impulse coupling, and the recoil impulse is parallel to the laser beam. However, the incident laser fluence varies in different parts of a non-flat surface. We have taken the shape effect into account to propose a numerical method of calculating the recoil impulse. Taking cylinder debris as the target, we have compared the recoil impulse in different laser fluences through simulation experiments, which implies that a higher laser fluence than the optimal one is needed to obtain a larger recoil impulse for irregularly shaped space debris.

  5. Laser Flash Effects: A Non-Visual Phenomenon.

    DTIC Science & Technology

    1982-06-18

    A)All49 LETERMAN ARMY INST OF RESEARCH PRESIDIO OF SAN FRANC--ETC F/ 611 LASEk FLASH EFFECTS: A NON-VISUAL PHENOMENON U) 0l’LA’SJ~rD Uf 82 D I...optical sighting devices in the combat environment would receive a laser flash directly in the fovea. Research on flash effects with human subjects has...the paralysis was reversed with neostigmine and atropine. Apparatus: Figure 1A is a diagram of the system used in this study. A Holobeam Series 300 Q

  6. Study of the effects of semiconductor laser irradiation on peripheral nerve injury

    NASA Astrophysics Data System (ADS)

    Xiong, G. X.; Li, P.

    2012-11-01

    In order to study to what extent diode laser irradiation effects peripheral nerve injury, the experimental research was made on rabbits. Experimental results show that low-energy semiconductor laser can promote axonal regeneration and improve nervous function. It is also found that simultaneous exposure of the injured peripheral nerve and corresponding spinal segments to laser irradiation may achieve the most significant results.

  7. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Effect of compression of a laser plasma on the generation of harmonics and hard x radiation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    A compression of a plasma produced at a conical target by a low-intensity beam (q≲10 GW/cm2) from a CO2 laser has been studied. The effect of this compression on the onset of the parametric instability responsible for the generation of harmonics and of hard x radiation has also been studied. A qualitative interpretation of the results is offered.

  8. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  9. Angular effect of optical fiber movement on endoscopic laser prostatectomy.

    PubMed

    Rajabhandharaks, Danop; Kang, Hyun Wook; Oh, Junghwan

    2012-10-01

    The optimal fiber manipulation during laser prostatectomy has been highlighted as a critical element to achieve desirable clinical outcomes. However, scientific understanding of the physical interplay between fiber movement and ablative tissue response is still lacking. The objective of this study was to quantitatively investigate the effect of angular movement of an optical fiber on tissue ablation performance. Porcine kidney was employed as a tissue model in vitro. A 180 W 532 nm surgical laser with 750 µm side-firing fibers was utilized to mimic clinical laser prostatectomy. The effect of fiber manipulation parameters on the tissue such as irradiance, number of overlapping pulses (OP), and beam path length (BPL) was assessed at various fiber sweeping (rotational) angles ranging from 0° to 120°. Morphological properties of the post-irradiated tissue were also evaluated in light of ablation depth, coagulative necrosis, and volumetric ablation density (VAD). As sweeping angle (SA) increased, both laser irradiance and number of OP decreased but BPL increased. Ablation depth was maximized (5.4 ± 1.0 mm) at SAs less than 30° but decreased at higher SAs. The SAs of 15° and 30° demonstrated the minimal thickness of denaturized tissue (0.74 ± 0.14 mm) and VAD (total laser energy/ablation volume (AV) ≈ 4.6 ± 0.46 J/mm(3) ). Decreasing depth and increasing tissue coagulation associated with increasing SA resulted from substantial reduction in both beam irradiance and number of OP, eventually impeding ablation process. Excessive tissue denaturation also occurred when no rotational motion was applied to the fiber possibly due to plume shielding. Inefficient tissue ablation could lead to adverse post-operative complications due to unwanted thermal injury to peripheral tissue. A SA of 30° was found to be desirable for effective tissue ablation, and further clinical investigations will validate the current findings. Copyright © 2012

  10. Effect of epidermal pigmentation on selective vascular effects of pulsed laser

    SciTech Connect

    Tan, O.T.; Kerschmann, R.; Parrish, J.A.

    1984-01-01

    The effect of epidermal pigmentation on the threshold exposure dose for inducing purpura with a tunable dye laser at 577 nm, 1.5 microseconds pulse duration, was studied in 21 human volunteers with varied genetically determined amounts of melanin. More laser energy was required to produce purpura as constitutive skin pigmentation increased. Histology showed that, in lighter skin, the laser threshold dose produced the most specific vascular injury with no disruption of surrounding structures. In more pigmented skin, damage occurred in the epidermal basal layer and very few changes were seen in blood vessels below.

  11. The effect of laser wavelength in the simulation of laser generated surface waves in human skin model.

    PubMed

    L'Etang, Adéle; Huang, Zhihong

    2006-01-01

    A finite element (FE) simulation of the thermoelastic laser generated surface waves in a 3-layered model of human skin is presented. Commercial finite element code ANSYS is used to study the effects of changing laser wavelength and hence the optical absorption has on the generated surface waves. The FE model consists of a thermal analysis with a volumetric heat generation boundary condition to simulate the thermal effect of the laser source penetrating into the skin. The results from the thermal analysis are then subsequently applied as a load in a mechanical analysis where the out-of plane displacement histories and temperature fields are analysed using two different laser sources to generate the ultrasonic waves.

  12. Diode-laser frequency stabilization based on the resonant Faraday effect

    NASA Technical Reports Server (NTRS)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    The authors present the results of a method for frequency stabilizing laser diodes based on the resonant Faraday effects. A Faraday cell in conjunction with a polarizer crossed with respect to the polarization of the laser diode comprises the intracavity frequency selective element. In this arrangement, a laser pull-in range of 9 A was measured, and the laser operated at a single frequency with a linewidth less than 6 MHz.

  13. Observation of coherent effects using a mode-locked rubidium laser

    NASA Astrophysics Data System (ADS)

    Zhang, Aihua; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Welch, George R.

    2017-02-01

    We study a diode-pumped alkaline rubidium laser operating at the D 1-line transition. The mode-locked regime of laser operation using an active technique inside the laser cavity has been demonstrated. We have also experimentally shown that the mode-locked laser radiation can be used to observe coherent effects: the electromagnetically induced transparency and the nonlinear Faraday rotation in Rb vapor.

  14. Study on elucidation of bactericidal effects induced by laser beam irradiation Measurement of dynamic stress on laser irradiated surface

    NASA Astrophysics Data System (ADS)

    Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi

    2010-09-01

    In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.

  15. The Effects of the ND:YAG Laser on In vitro Fibroblast Attachment to Endotoxin Treated Root Surfaces

    DTIC Science & Technology

    1991-05-01

    of Lasers in Dentistry .................... 7 Pulpal Effects of the Laser ................... 8 Hard Tissue Effects of the Laser .............. 9... Lasers in Dentistry The word laser is an acronym for "Light Amplification by Stimulated Emission of Radiation" (Peck and Peck, 1967). Maiman (1960...medicine and dentistry . The laser has been advocated to have potential in practically all fields of dentistry (Myers, 1991). The current potential

  16. Thermal effects of pulsed pumping in semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Dai, Teli; Liang, Yiping; Fan, Siqiang; Zhang, Yu

    2012-11-01

    It has been demonstrated experimentally that pulsed pumping can significantly improve the thermal management in an optically-pumped semiconductor disk laser, and the output power of semiconductor disk lasers under pulsed pumping can be upgraded to times of those under continuous pumping. This paper presents numerical analysis of the thermal effects of pulsed pumping in semiconductor disk lasers, so to theoretically disclose the details of the thermal processes of pulsed pumping. In the simulation, the parabolic heat conduction equation, which is widely employed to describe the transient thermal transfer processes, is solved under cylindrical coordinates by the use of the finite element method, a periodic pump pulses train is assumed, and the maximum temperature rise in the multiple quantum wells active region is focused. The influences of the duty cycle, the repetition rate, and the pulse width of the pump pulses on the maximum temperature rise are investigated, and the results are compared with the case of continuous-wave pumping. Some simulation results are compared with reported data, and the theoretical results are in good agreement with the experiments.

  17. Effect of interstitial low level laser therapy on tibial defect

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeob; Ha, Myungjin; Hwang, Donghyun; Yu, Sungkon; Jang, Seulki; Park, Jihoon; Radfar, Edalat; Kim, Hansung; Jung, Byungjo

    2016-03-01

    Tibial defect is very common musculoskeletal disorder which makes patient painful and uncomfortable. Many studies about bone regeneration tried to figure out fast bone healing on early phase. It is already known that low level laser therapy (LLLT) is very convenient and good for beginning of bone disorder. However, light scattering and absorption obstruct musculoskeletal therapy which need optimal photon energy delivery. This study has used an interstitial laser probe (ILP) to overcome the limitations of light penetration depth and scattering. Animals (mouse, C57BL/6) were divided into three groups: laser treated test group 1 (660 nm; power 10 mW; total energy 5 J) and test group 2 (660 nm; power 20 mW; total energy 10 J); and untreated control group. All animals were taken surgical operation to make tibial defect on right crest of tibia. The test groups were treated every 48 hours with ILP. Bone volume and X-ray attenuation coefficient were measured on 0, 14th and 28th day with u-CT after treatment and were used to evaluate effect of LLLT. Results show that bone volume of test groups has been improved more than control group. X-ray attenuation coefficients of each groups have slightly different. The results suggest that LLLT combined with ILP may affect on early phase of bone regeneration and may be used in various musculoskeletal disease in deep tissue layer.

  18. Laser speckle effects on hard target differential absorption lidar

    SciTech Connect

    MacKerrow, E.P.; Tiee, J.J.; Fite, C.B.

    1996-04-01

    Reflection of laser light from a diffuse surface exhibits a complex interference pattern known as laser speckle. Measurement of the reflected intensity from remote targets, common to ``hard-target`` differential absorption lidar (DIAL) requires consideration of the statistical properties of the reflected light. The authors have explored the effects of laser speckle on the noise statistics for CO{sub 2} DIAL. For an ensemble of independent speckle patterns it is predicted that the variance for the measured intensity is inversely proportional to the number of speckle measured. They have used a rotating drum target to obtain a large number of independent speckle and have measured the predicted decrease in the variance after correlations due to system drifts were accounted for. Measurements have been made using both circular and linear polarized light. These measurements show a slight improvement in return signal statistics when circular polarization is used. The authors have conducted experiments at close range to isolate speckle phenomena from other phenomena, such as atmospheric turbulence and platform motion thus allowing them to gain a full understanding of speckle. They have also studied how to remove correlation in the data due to albedo inhomogeneities producing a more statistically independent ensemble of speckle patterns. They find that some types of correlation are difficult to remove from the data.

  19. The effect of low-level laser therapy on hearing.

    PubMed

    Goodman, Shawn S; Bentler, Ruth A; Dittberner, Andrew; Mertes, Ian B

    2013-01-01

    One purported use of low-level laser therapy (LLLT) is to promote healing in damaged cells. The effects of LLLT on hearing loss and tinnitus have received some study, but results have been equivocal. The purpose of this study was to determine if LLLT improved hearing, speech understanding, and/or cochlear function in adults with hearing loss. Using a randomized, double-blind, placebo-controlled design, subjects were assigned to a treatment, placebo, or control group. The treatment group was given LLLT, which consisted of shining low-level lasers onto the outer ear, head, and neck. Each laser treatment lasted approximately five minutes. Three treatments were applied within the course of one week. A battery of auditory tests was administered immediately before the first treatment and immediately after the third treatment. The battery consisted of pure-tone audiometry, the Connected Speech Test, and transient-evoked otoacoustic emissions. Data were analyzed by comparing pre- and posttest results. No statistically significant differences were found between groups for any of the auditory tests. Additionally, no clinically significant differences were found in any individual subjects. This trial is registered with ClinicalTrials.gov (NCT01820416).

  20. Effects of a laser acupuncture therapy on treating pain

    NASA Astrophysics Data System (ADS)

    Wong, Wai-on; Xiao, Shaojun; Ip, Wing-Yuk; Guo, Xia

    2001-10-01

    Laser acupuncture (LA) has been utilized as a combined approach of Chinese traditional acupuncture and low-level laser therapy since its emergence in 1973. Its mechanisms are not well understood and the standardization of clinical protocols has not been established. In this study, we used a diode laser to irradiate on four acupuncture points for normal subjects to investigate the effect of LA. For each point, the irradiation lasted for three minutes. The median nerve conduction velocity was measured within a 30 minutes interval at day 1, day 5, and day 10 respectively. Patients with chronic carpal tunnel syndrome (CTS) were given LA therapy for three stages at most with a one-week interval between two stages. Treatment outcome measurements included patients' subjective feedback (McGill pain questionnaire, VAS) and objective measurements (physical examination, kinesiological properties and NCSs). It was a randomized single-blind controlled trial. For normal subjects, motor nerve fiber was sensitive to LA and the motor conduction velocity was decreased very significantly (p < 0.001). Besides, it was found that LA resulted that sensory nerve conduction velocity was decreased significantly when it was measured 30 minutes after the subject had received LA application. For CTS patients, the outcomes except pinch test indicated that LA could improve patient's conduction. These results suggested that LA could cause the change of nerve conduction.

  1. Wavelength tuning of fiber lasers using multimode interference effects.

    PubMed

    Selvas, R; Torres-Gomez, I; Martinez-Rios, A; Alvarez-Chavez, J; May-Arrioja, D; Likamwa, P; Mehta, A; Johnson, E

    2005-11-14

    We report on a novel scheme to fabricate a simple, cheap, and compact tunable fiber laser. The tuning is realized by splicing a piece of single-mode fiber to one end of an active double-clad fiber, while the other end of the single-mode fiber is spliced to a 15 mm long section of 105/125 multimode fiber. The fluorescence signal entering into the multimode fiber will be reproduced as single images at periodic intervals along the propagation direction of the fiber. The length of the multimode fiber is chosen to be slightly shorter than the first re-imaging point, such that the signal coming out from the single mode fiber is obtained in free space, where a broadband mirror retroreflects the fluorescence signal. Since the position of the re-imaging point is wavelength dependent, different wavelengths will be imaged at different positions. Therefore, wavelength tuning is easily obtained by adjusting the distance between the broadband mirror and the multimode fiber facet end. Using this principle, the tunable fiber laser revealed a tunability of 8 nm, ranging from 1088-1097 nm, and an output power of 500 mW. The simplicity of the setup makes this a very cost-effective tunable fiber laser.

  2. Reflection Effects in Multimode Fiber Systems Utilizing Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Bates, Harry E.

    1991-01-01

    A number of optical communication lines are now in use at NASA-Kennedy for the transmission of voice, computer data, and video signals. Now, all of these channels use a single carrier wavelength centered near 1300 or 1550 nm. Engineering tests in the past have given indications of the growth of systematic and random noise in the RF spectrum of a fiber network as the number of connector pairs is increased. This noise seems to occur when a laser transmitter is used instead of a LED. It has been suggested that the noise is caused by back reflections created at connector fiber interfaces. Experiments were performed to explore the effect of reflection on the transmitting laser under conditions of reflective feedback. This effort included computer integration of some of the instrumentation in the fiber optic lab using the Lab View software recently acquired by the lab group. The main goal was to interface the Anritsu Optical and RF spectrum analyzers to the MacIntosh II computer so that laser spectra and network RF spectra could be simultaneously and rapidly acquired in a form convenient for analysis. Both single and multimode fiber is installed at Kennedy. Since most are multimode, this effort concentrated on multimode systems.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Measurements of laser-induced shock waves in aluminium

    NASA Astrophysics Data System (ADS)

    Werdiger, M.; Arad, B.; Moshe, E.; Eliezer, S.

    1995-02-01

    A simple optical method for measurements of high-irradiance (3×1013 W cm-2) laser-induced shock waves is described. The shock wave velocity (~13 km s-1) was measured with an error not exceeding 5%. The laser-induced one-to-two-dimensional (1D-to-2D) shock wave transition was studied.

  4. Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser's effect on short- and long-term development

    PubMed Central

    Kohli, Vikram; Elezzabi, Abdulhakem Y

    2008-01-01

    Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185

  5. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  6. Fiber based mode locked fiber laser using Kerr effect

    NASA Astrophysics Data System (ADS)

    Wang, Long

    This dissertation reports on the research to design and build a pulsed fiber laser with the Er doped fiber based on a new mode locking technique. The numerical simulations begin by launching an optical wave in a fiber which will be amplified during propagation. The device to mode-lock the waves is outside the fiber, but connecting to fibers at both ends; it is a nonlinear optical material that can reshape the beam as it propagates using a nonlinear change of the refractive index, which is called a Kerr effect. The device is made with a nonlinear material sandwiched between two fiber ends; it takes an optical field from one end of the fiber and propagates it to the other fiber end. In between the two ends, a nonlinear medium will be used to balance the diffraction through Kerr effect (which can lead to Self-focusing of the optical beam). With the second fiber end working as a soft aperture, the combination of the self-focusing effect through the nonlinear medium and the aperture will act as an intensity dependent coupling loss; this effect is referred to as a fast saturable absorber which means that higher intensity corresponds to higher coupling efficiency and thus the cavity modes will be gradually phase locked together to form pulses. The saturable absorber action is calculated using different nonlinear mediums (CS2, As2S2 and As 40Se60) and the fibers used are assumed to be of the same size. Whole cavity simulation is then conducted using the proposed SA design and the pulse energy produced from the laser cavity is generally below 1 nJ. In those simulations the pulse peak power is weak and the saturable absorber action is not strong. Experiments are designed to test the mode locking idea with the chalcogenide glass plate (As40Se60). Firstly, a mode locked laser is constructed from a ring fiber laser cavity with an Er doped fiber as the gain fiber. Three modes from this cavity are routinely generated. Two modes have pulse durations of 220 fs and 160 fs with

  7. Biophysical basis of low-power-laser effects

    NASA Astrophysics Data System (ADS)

    Karu, Tiina I.

    1996-06-01

    Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These actions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation for some clinical effects of irradiation, for example the positive

  8. Effect of Water-Cooled Nd:YAG Laser on Dentinal Tubule Occlusion In Vitro.

    PubMed

    Xiao, Shimeng; Liang, Kunneng; Liu, Hongling; Zhang, Manling; Yang, Heng; Guo, Shujuan; Ding, Yi

    2017-02-01

    The objective of this study was to investigate the effect of a new water-cooled Nd:YAG laser on dentinal tubule occlusion. The effect of water-cooled Nd:YAG laser on dentinal tubule occlusion has not been reported. Acid-etched dentin samples were randomly divided into three groups: (1) dentin control, (2) dentin treated by Nd:YAG laser, (3) dentin treated by water-cooled Nd:YAG laser. After laser irradiation, half of the samples were immersed in a 6 wt% citric acid (pH 1.5) solution for 1 min to evaluate the acid resistance. The morphologies of dentin surfaces were characterized by scanning electron microscopy. The number and diameters of the open dentinal tubules were analyzed by one-way and two-way analyses of variance. Both the Nd:YAG laser and water-cooled Nd:YAG laser melted the superficial layer of dentin, which caused dentinal tubule occlusion in most areas and diameter reduction of the rest open tubules. Microcracks on the dentin surface were only observed in the Nd:YAG laser group. The tubule occlusion induced by the two lasers showed a good acid resistance. The effect of water-cooled Nd:YAG laser on dentinal tubule occlusion is similar to that of the Nd:YAG laser. The dentinal tubule occlusion induced by the two lasers could resist acid challenge to some extent.

  9. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy.

    PubMed

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean

    2017-08-01

    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies.

  10. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean

    2017-01-01

    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies. PMID:28856046

  11. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Effect of pulsed laser target cleaning on ionisation and acceleration of ions in a plasma produced by a femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Volkov, Roman V.; Vorobiev, A. A.; Gordienko, Vyacheslav M.; Dzhidzhoev, M. S.; Lachko, I. M.; Mar'in, B. V.; Savel'ev, Andrei B.; Uryupina, D. S.

    2005-10-01

    The impurity layer on the surface of a solid target is shown to exert a significant effect on the characteristics of the ion current of the laser plasma produced under the action of ultrahigh-intensity femtosecond radiation on the surface of this target. The application of pulsed laser cleaning gives rise to an additional high-energy component in the ion spectrum of the target material. It is shown that the ion current parameters of the laser plasma such as the average and highest ion charge, the highest ion energy of the target material, etc., can be controlled by varying the lead time of the cleaning laser radiation.

  12. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    NASA Astrophysics Data System (ADS)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  13. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Sorouri, Milad

    2015-01-01

    Objectives: Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Materials and Methods: Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. Results: The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. Conclusion: The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake. PMID:27123018

  14. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth.

    PubMed

    Bahrololoomi, Zahra; Fotuhi Ardakani, Faezeh; Sorouri, Milad

    2015-08-01

    Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake.

  15. The relative effects of CW and RP lasers on composites and metals

    NASA Astrophysics Data System (ADS)

    Mueller, George P.

    1995-09-01

    DoD aircraft structural materials include both metals, primarily aluminum, and composites, primarily graphite/epoxy. The effect of lasers on these two materials is considerably different because of the large differences in some of their thermal properties. There are also significant differences depending on whether the laser irradiation is due to a continuous wave (CW) laser or a repetitively pulsed (RP) laser. Using the one-dimensional thermal response code FLIKER the effects of both CW and Rp irradiations on aluminum and graphit/epoxy were modelled. Two classes of effects were examined: the immediate effects during the irradiations and the post irradiation damage effects.

  16. Bibliography of Soviet Laser Developments, Number 88, March - April 1987.

    DTIC Science & Technology

    1988-03-03

    Effects ; Laser Communications,’ Laser Beam Propagation; Adaptive Optics,’ Laser Computer Technology; Holography,; Laser Chemical Effects ; Laser...Parameters, Laser Measuremen Applications; Laser4Excited Optical Effects , Laser Spectroscopy, Laser Be :Target Interaction; Laser Plasma , 20. ABSTRACT This...theoretical aspects of advanced lasers; and general laser theory. Laser applications are listed under biological effects ; communications systems; beam

  17. Multielectron effects in molecular dynamics driven by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Xia, Yuqing; Cajiao-Velez, Felipe; Jaron-Becker, Agnieszka

    2014-05-01

    Using time-dependent density functional theory, we study multi-electron effects on high harmonic generation (HHG) and strong field ionization (SFI) from molecules. Both HHG and SFI although related to extreme distortion of an electron wave function in a system in the presence of a strong laser field, were so far successfully studied with theories based on `single active electron' (SAE) approximation such as `Strong Field Approximation'. We show several examples of novel resonant coupling, when the SAE description is not sufficient and analyze situations when it can be observed in experiment. Supported by the NSF (grant number PHY-1068706).

  18. Transverse-longitudinal coupling effect in laser bunch slicing.

    PubMed

    Shimada, M; Katoh, M; Adachi, M; Tanikawa, T; Kimura, S; Hosaka, M; Yamamoto, N; Takashima, Y; Takahashi, T

    2009-10-02

    We report turn-by-turn observation of coherent synchrotron radiation (CSR) produced by the laser bunch slicing technique at an electron storage ring operated with a small momentum compaction factor. CSR emission was intermittent, and its interval depended strongly on the betatron tune. This peculiar behavior of the CSR could be interpreted as a result of coupling between the transverse and longitudinal motion of the electrons. This is the first observation of such an effect, which would be important not only for controlling the CSR emission but also for generating and transporting ultrashort electron bunches or electron bunches with microdensity structures in advanced accelerators.

  19. Spinor condensates with a laser-induced quadratic Zeeman effect

    SciTech Connect

    Santos, L.; Fattori, M.; Stuhler, J.; Pfau, T.

    2007-05-15

    We show that an effective quadratic Zeeman effect for trapped atoms can be generated by proper laser configurations and, in particular, by the dipole trap itself. The induced quadratic Zeeman effect leads to a rich ground-state phase diagram, e.g., for a degenerate {sup 52}Cr gas, can be used to induce topological defects by controllably quenching across transitions between phases of different symmetries, allows for the observability of the Einstein-de Haas effect for relatively large magnetic fields, and may be employed to create S=1/2 systems with spinor dynamics. Similar ideas could be explored in other atomic species opening an exciting new control tool in spinor systems.

  20. Modeling Laser Effects on Imaging Spacecraft Using the SSM

    NASA Astrophysics Data System (ADS)

    Buehler, P.; Smith, J.; Farmer, J.; Bonn, D.

    The Satellite Survivability Module (SSM) is an end-to-end, physics-based, performance prediction model for directed energy engagement of orbiting spacecraft. Two engagement types are currently supported: laser engagement of the focal plane array of an imaging spacecraft; and Radio Frequency (RF) engagement of spacecraft components. For laser engagements, the user creates a spacecraft, its optical system, any protection techniques used by the optical system, a laser threat, and an atmosphere through which the laser will pass. For RF engagements, the user creates a spacecraft (as a set of subsystem components), any protection techniques, and an RF source. SSM then models the engagement and its impact on the spacecraft using four impact levels: degradation, saturation, damage, and destruction. Protection techniques, if employed, will mitigate engagement effects. SSM currently supports several two laser and three RF protection techniques. SSM allows the user to create and implement a variety of "what if" scenarios. Satellites can be placed in a variety of orbits. Threats can be placed anywhere on the Earth. Satellites and threats can be mixed and matched to examine possibilities. Protection techniques for a particular spacecraft can be turned on or off individually; and can be arranged in any order to simulate more complicated protection schemes. Results can be displayed as 2-D or 3-D visualizations, or as textual reports. In order to test SSM capabilities, the Ball team used it to model engagement scenarios for a space experiment scheduled for the 2011 time frame. SSM was created by Ball Aerospace & Technologies Corp. Systems Engineering Solutions in Albuquerque, New Mexico as an add-on module for the Satellite Tool Kit (STK). The current version of SSM (1.0) interfaces with STK through the Programmer's Library (STK/PL). Future versions of SSM will employ STK/Connect to provide the user access to STK functionality. The work is currently funded by the Air Force