NASA Astrophysics Data System (ADS)
Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan
2017-08-01
The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.
NASA Astrophysics Data System (ADS)
Quest, D.; Gayer, C.; Hering, P.
2012-01-01
Laser osteotomy is one possible method of preparing beds for dental implants in the human jaw. A major problem in using this contactless treatment modality is the lack of haptic feedback to control the depth while drilling the implant bed. A contactless measurement system called laser triangulation is presented as a new procedure to overcome this problem. Together with a tomographic picture the actual position of the laser ablation in the bone can be calculated. Furthermore, the laser response is sufficiently fast as to pose little risk to surrounding sensitive areas such as nerves and blood vessels. In the jaw two different bone structures exist, namely the cancellous bone and the compact bone. Samples of both bone structures were examined with test drillings performed either by laser osteotomy or by a conventional rotating drilling tool. The depth of these holes was measured using laser triangulation. The results and the setup are reported in this study.
Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun
2015-01-01
Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203
NASA Astrophysics Data System (ADS)
Holmgren, J.; Tulldahl, H. M.; Nordlöf, J.; Nyström, M.; Olofsson, K.; Rydell, J.; Willén, E.
2017-10-01
A system was developed for automatic estimations of tree positions and stem diameters. The sensor trajectory was first estimated using a positioning system that consists of a low precision inertial measurement unit supported by image matching with data from a stereo-camera. The initial estimation of the sensor trajectory was then calibrated by adjustments of the sensor pose using the laser scanner data. Special features suitable for forest environments were used to solve the correspondence and matching problems. Tree stem diameters were estimated for stem sections using laser data from individual scanner rotations and were then used for calibration of the sensor pose. A segmentation algorithm was used to associate stem sections to individual tree stems. The stem diameter estimates of all stem sections associated to the same tree stem were then combined for estimation of stem diameter at breast height (DBH). The system was validated on four 20 m radius circular plots and manual measured trees were automatically linked to trees detected in laser data. The DBH could be estimated with a RMSE of 19 mm (6 %) and a bias of 8 mm (3 %). The calibrated sensor trajectory and the combined use of circle fits from individual scanner rotations made it possible to obtain reliable DBH estimates also with a low precision positioning system.
ERIC Educational Resources Information Center
Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven
2013-01-01
The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…
Pre-Service Teachers' Free and Structured Mathematical Problem Posing
ERIC Educational Resources Information Center
Silber, Steven; Cai, Jinfa
2017-01-01
This exploratory study examined how pre-service teachers (PSTs) pose mathematical problems for free and structured mathematical problem-posing conditions. It was hypothesized that PSTs would pose more complex mathematical problems under structured posing conditions, with increasing levels of complexity, than PSTs would pose under free posing…
Creativity of Field-dependent and Field-independent Students in Posing Mathematical Problems
NASA Astrophysics Data System (ADS)
Azlina, N.; Amin, S. M.; Lukito, A.
2018-01-01
This study aims at describing the creativity of elementary school students with different cognitive styles in mathematical problem-posing. The posed problems were assessed based on three components of creativity, namely fluency, flexibility, and novelty. The free-type problem posing was used in this study. This study is a descriptive research with qualitative approach. Data collections were conducted through written task and task-based interviews. The subjects were two elementary students. One of them is Field Dependent (FD) and the other is Field Independent (FI) which were measured by GEFT (Group Embedded Figures Test). Further, the data were analyzed based on creativity components. The results show thatFD student’s posed problems have fulfilled the two components of creativity namely fluency, in which the subject posed at least 3 mathematical problems, and flexibility, in whichthe subject posed problems with at least 3 different categories/ideas. Meanwhile,FI student’s posed problems have fulfilled all three components of creativity, namely fluency, in which thesubject posed at least 3 mathematical problems, flexibility, in which thesubject posed problems with at least 3 different categories/ideas, and novelty, in which the subject posed problems that are purely the result of her own ideas and different from problems they have known.
Skill Levels of Prospective Physics Teachers on Problem Posing
ERIC Educational Resources Information Center
Cildir, Sema; Sezen, Nazan
2011-01-01
Problem posing is one of the topics which the educators thoroughly accentuate. Problem posing skill is defined as an introvert activity of a student's learning. In this study, skill levels of prospective physics teachers on problem posing were determined and their views on problem posing were evaluated. To this end, prospective teachers were given…
Espinosa, Felipe; Santos, Carlos; Marrón-Romera, Marta; Pizarro, Daniel; Valdés, Fernando; Dongil, Javier
2011-01-01
This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications. PMID:22164079
Espinosa, Felipe; Santos, Carlos; Marrón-Romera, Marta; Pizarro, Daniel; Valdés, Fernando; Dongil, Javier
2011-01-01
This paper describes a relative localization system used to achieve the navigation of a convoy of robotic units in indoor environments. This positioning system is carried out fusing two sensorial sources: (a) an odometric system and (b) a laser scanner together with artificial landmarks located on top of the units. The laser source allows one to compensate the cumulative error inherent to dead-reckoning; whereas the odometry source provides less pose uncertainty in short trajectories. A discrete Extended Kalman Filter, customized for this application, is used in order to accomplish this aim under real time constraints. Different experimental results with a convoy of Pioneer P3-DX units tracking non-linear trajectories are shown. The paper shows that a simple setup based on low cost laser range systems and robot built-in odometry sensors is able to give a high degree of robustness and accuracy to the relative localization problem of convoy units for indoor applications.
Hand-Eye Calibration in Visually-Guided Robot Grinding.
Li, Wen-Long; Xie, He; Zhang, Gang; Yan, Si-Jie; Yin, Zhou-Ping
2016-11-01
Visually-guided robot grinding is a novel and promising automation technique for blade manufacturing. One common problem encountered in robot grinding is hand-eye calibration, which establishes the pose relationship between the end effector (hand) and the scanning sensor (eye). This paper proposes a new calibration approach for robot belt grinding. The main contribution of this paper is its consideration of both joint parameter errors and pose parameter errors in a hand-eye calibration equation. The objective function of the hand-eye calibration is built and solved, from which 30 compensated values (corresponding to 24 joint parameters and six pose parameters) are easily calculated in a closed solution. The proposed approach is economic and simple because only a criterion sphere is used to calculate the calibration parameters, avoiding the need for an expensive and complicated tracking process using a laser tracker. The effectiveness of this method is verified using a calibration experiment and a blade grinding experiment. The code used in this approach is attached in the Appendix.
Determining the Performances of Pre-Service Primary School Teachers in Problem Posing Situations
ERIC Educational Resources Information Center
Kilic, Cigdem
2013-01-01
This study examined the problem posing strategies of pre-service primary school teachers in different problem posing situations (PPSs) and analysed the issues they encounter while posing problems. A problem posing task consisting of six PPSs (two free, two structured, and two semi-structured situations) was delivered to 40 participants.…
Embedding Game-Based Problem-Solving Phase into Problem-Posing System for Mathematics Learning
ERIC Educational Resources Information Center
Chang, Kuo-En; Wu, Lin-Jung; Weng, Sheng-En; Sung, Yao-Ting
2012-01-01
A problem-posing system is developed with four phases including posing problem, planning, solving problem, and looking back, in which the "solving problem" phase is implemented by game-scenarios. The system supports elementary students in the process of problem-posing, allowing them to fully engage in mathematical activities. In total, 92 fifth…
Characteristics of Problem Posing of Grade 9 Students on Geometric Tasks
ERIC Educational Resources Information Center
Chua, Puay Huat; Wong, Khoon Yoong
2012-01-01
This is an exploratory study into the individual problem-posing characteristics of 480 Grade 9 Singapore students who were novice problem posers working on two geometric tasks. The students were asked to pose a problem for their friends to solve. Analyses of solvable posed problems were based on the problem type, problem information, solution type…
Detection of errant laser beams
NASA Astrophysics Data System (ADS)
Taylor, Arthur F. D. S.; Edwards, Stanley A.; Barrett, J. A.; Bandle, Anthony M.
1990-10-01
The new generation of automated laser machine tools poses problems for those responsible for setting safety standards. While traditional safeguarding will frustrate full exploitation of this hybrid technology, wholesale abandonment of effective containment in favour of safety monitoring and control systems is unlikely to be acceptable. Long term, quantitative risk assessment will resolve this dilemma. Short term, guide lines will have to be derived from practical considerations of the laser facility design, materials, primary safety devices and procedures. Earlier risk assessments are reviewed relative to the emerging perspective of high average power laser installations. Aspects of extended beam delivery systems and equipment utilization and maintenance are examined to assess possible interaction with operational safety and in particular the potential to adversely influence errant laser beam occurrances (ELBO). To satisfy international safety standards for a laser enclosure which offers flexibility and is cost effective a detection system is described which continuously surveys the inside of the enclosure. Extensive trials have been carried out with high average power lasers (up to 10kW) where a range of engineering materials has been exposed to a laser beam. It is shown that the ratio of detection and shut down time to the burn through time can be an acceptable risk and thus indicate which materials will prove adequate.
Problem Posing with the Multiplication Table
ERIC Educational Resources Information Center
Dickman, Benjamin
2014-01-01
Mathematical problem posing is an important skill for teachers of mathematics, and relates readily to mathematical creativity. This article gives a bit of background information on mathematical problem posing, lists further references to connect problem posing and creativity, and then provides 20 problems based on the multiplication table to be…
Investigation of Problem-Solving and Problem-Posing Abilities of Seventh-Grade Students
ERIC Educational Resources Information Center
Arikan, Elif Esra; Ünal, Hasan
2015-01-01
This study aims to examine the effect of multiple problem-solving skills on the problem-posing abilities of gifted and non-gifted students and to assess whether the possession of such skills can predict giftedness or affect problem-posing abilities. Participants' metaphorical images of problem posing were also explored. Participants were 20 gifted…
Laser Remediation of Threats Posed by Small Orbital Debris
NASA Technical Reports Server (NTRS)
Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.
2012-01-01
The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.
D Point Cloud Model Colorization by Dense Registration of Digital Images
NASA Astrophysics Data System (ADS)
Crombez, N.; Caron, G.; Mouaddib, E.
2015-02-01
Architectural heritage is a historic and artistic property which has to be protected, preserved, restored and must be shown to the public. Modern tools like 3D laser scanners are more and more used in heritage documentation. Most of the time, the 3D laser scanner is completed by a digital camera which is used to enrich the accurate geometric informations with the scanned objects colors. However, the photometric quality of the acquired point clouds is generally rather low because of several problems presented below. We propose an accurate method for registering digital images acquired from any viewpoints on point clouds which is a crucial step for a good colorization by colors projection. We express this image-to-geometry registration as a pose estimation problem. The camera pose is computed using the entire images intensities under a photometric visual and virtual servoing (VVS) framework. The camera extrinsic and intrinsic parameters are automatically estimated. Because we estimates the intrinsic parameters we do not need any informations about the camera which took the used digital image. Finally, when the point cloud model and the digital image are correctly registered, we project the 3D model in the digital image frame and assign new colors to the visible points. The performance of the approach is proven in simulation and real experiments on indoor and outdoor datasets of the cathedral of Amiens, which highlight the success of our method, leading to point clouds with better photometric quality and resolution.
Some Reflections on Problem Posing: A Conversation with Marion Walter
ERIC Educational Resources Information Center
Baxter, Juliet A.
2005-01-01
Marion Walter, an internationally acclaimed mathematics educator discusses about problem posing, focusing on both the merits of problem posing and techniques to encourage problem posing. She believes that playful attitude toward problem variables is an essential part of an inquiring mind and the more opportunities that learners have, to change a…
Optical Extinction Measurements of Dust Density in the GMRO Regolith Test Bin
NASA Technical Reports Server (NTRS)
Lane, J.; Mantovani, J.; Mueller, R.; Nugent, M.; Nick, A.; Schuler, J.; Townsend, I.
2016-01-01
A regolith simulant test bin was constructed and completed in the Granular Mechanics and Regolith Operations (GMRO) Lab in 2013. This Planetary Regolith Test Bed (PRTB) is a 64 sq m x 1 m deep test bin, is housed in a climate-controlled facility, and contains 120 MT of lunar-regolith simulant, called Black Point-1 or BP-1, from Black Point, AZ. One of the current uses of the test bin is to study the effects of difficult lighting and dust conditions on Telerobotic Perception Systems to better assess and refine regolith operations for asteroid, Mars and polar lunar missions. Low illumination and low angle of incidence lighting pose significant problems to computer vision and human perception. Levitated dust on Asteroids interferes with imaging and degrades depth perception. Dust Storms on Mars pose a significant problem. Due to these factors, the likely performance of telerobotics is poorly understood for future missions. Current space telerobotic systems are only operated in bright lighting and dust-free conditions. This technology development testing will identify: (1) the impact of degraded lighting and environmental dust on computer vision and operator perception, (2) potential methods and procedures for mitigating these impacts, (3) requirements for telerobotic perception systems for asteroid capture, Mars dust storms and lunar regolith ISRU missions. In order to solve some of the Telerobotic Perception system problems, a plume erosion sensor (PES) was developed in the Lunar Regolith Simulant Bin (LRSB), containing 2 MT of JSC-1a lunar simulant. PES is simply a laser and digital camera with a white target. Two modes of operation have been investigated: (1) single laser spot - the brightness of the spot is dependent on the optical extinction due to dust and is thus an indirect measure of particle number density, and (2) side-scatter - the camera images the laser from the side, showing beam entrance into the dust cloud and the boundary between dust and void. Both methods must assume a mean particle size in order to extract a number density. The optical extinction measurement yields the product of the 2nd moment of the particle size distribution and the extinction efficiency Qe. For particle sizes in the range of interest (greater than 1 micrometer), Qe approximately equal to 2. Scaling up of the PES single laser and camera system is underway in the PRTB, where an array of lasers penetrate a con-trolled dust cloud, illuminating multiple targets. Using high speed HD GoPro video cameras, the evolution of the dust cloud and particle size density can be studied in detail.
NASA Astrophysics Data System (ADS)
Hasanah, N.; Hayashi, Y.; Hirashima, T.
2017-02-01
Arithmetic word problems remain one of the most difficult area of teaching mathematics. Learning by problem posing has been suggested as an effective way to improve students’ understanding. However, the practice in usual classroom is difficult due to extra time needed for assessment and giving feedback to students’ posed problems. To address this issue, we have developed a tablet PC software named Monsakun for learning by posing arithmetic word problems based on Triplet Structure Model. It uses the mechanism of sentence-integration, an efficient implementation of problem-posing that enables agent-assessment of posed problems. The learning environment has been used in actual Japanese elementary school classrooms and the effectiveness has been confirmed in previous researches. In this study, ten Indonesian elementary school students living in Japan participated in a learning session of problem posing using Monsakun in Indonesian language. We analyzed their learning activities and show that students were able to interact with the structure of simple word problem using this learning environment. The results of data analysis and questionnaire suggested that the use of Monsakun provides a way of creating an interactive and fun environment for learning by problem posing for Indonesian elementary school students.
Problem Posing as a Pedagogical Strategy: A Teacher's Perspective
ERIC Educational Resources Information Center
Staebler-Wiseman, Heidi A.
2011-01-01
Student problem posing has been advocated for mathematics instruction, and it has been suggested that problem posing can be used to develop students' mathematical content knowledge. But, problem posing has rarely been utilized in university-level mathematics courses. The goal of this teacher-as-researcher study was to develop and investigate…
Students’ Creativity: Problem Posing in Structured Situation
NASA Astrophysics Data System (ADS)
Amalina, I. K.; Amirudin, M.; Budiarto, M. T.
2018-01-01
This is a qualitative research concerning on students’ creativity on problem posing task. The study aimed at describing the students’ creative thinking ability to pose the mathematics problem in structured situations with varied condition of given problems. In order to find out the students’ creative thinking ability, an analysis of mathematics problem posing test based on fluency, novelty, and flexibility and interview was applied for categorizing students’ responses on that task. The data analysis used the quality of problem posing and categorized in 4 level of creativity. The results revealed from 29 secondary students grade 8, a student in CTL (Creative Thinking Level) 1 met the fluency. A student in CTL 2 met the novelty, while a student in CTL 3 met both fluency and novelty and no one in CTL 4. These results are affected by students’ mathematical experience. The findings of this study highlight that student’s problem posing creativity are dependent on their experience in mathematics learning and from the point of view of which students start to pose problem.
Assessing Students' Mathematical Problem Posing
ERIC Educational Resources Information Center
Silver, Edward A.; Cai, Jinfa
2005-01-01
Specific examples are used to discuss assessment, an integral part of mathematics instruction, with problem posing and assessment of problem posing. General assessment criteria are suggested to evaluate student-generated problems in terms of their quantity, originality, and complexity.
Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.
Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F
2016-09-16
Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.
ERIC Educational Resources Information Center
Ellerton, Nerida F.
2013-01-01
Although official curriculum documents make cursory mention of the need for problem posing in school mathematics, problem posing rarely becomes part of the implemented or assessed curriculum. This paper provides examples of how problem posing can be made an integral part of mathematics teacher education programs. It is argued that such programs…
ERIC Educational Resources Information Center
Van Harpen, Xianwei Y.; Sriraman, Bharath
2013-01-01
In the literature, problem-posing abilities are reported to be an important aspect/indicator of creativity in mathematics. The importance of problem-posing activities in mathematics is emphasized in educational documents in many countries, including the USA and China. This study was aimed at exploring high school students' creativity in…
Interlocked Problem Posing and Children's Problem Posing Performance in Free Structured Situations
ERIC Educational Resources Information Center
Cankoy, Osman
2014-01-01
The aim of this study is to explore the mathematical problem posing performance of students in free structured situations. Two classes of fifth grade students (N = 30) were randomly assigned to experimental and control groups. The categories of the problems posed in free structured situations by the 2 groups of students were studied through…
Problem-Posing Strategies Used by Years 8 and 9 Students
ERIC Educational Resources Information Center
Stoyanova, Elena
2005-01-01
According to Kilpatrick (1987), in the mathematics classrooms problem posing can be applied as a "goal" or as a means of instruction. Using problem posing as a goal of instruction involves asking students to respond to a range of problem-posing prompts. The main goal of this article is a classification of mathematics questions created by Years 8…
When a Problem Is More than a Teacher's Question
ERIC Educational Resources Information Center
Olson, Jo Clay; Knott, Libby
2013-01-01
Not only are the problems teachers pose throughout their teaching of great importance but also the ways in which they use those problems make this a critical component of teaching. A problem-posing episode includes the problem setup, the statement of the problem, and the follow-up questions. Analysis of problem-posing episodes of precalculus…
An Analysis of Secondary and Middle School Teachers' Mathematical Problem Posing
ERIC Educational Resources Information Center
Stickles, Paula R.
2011-01-01
This study identifies the kinds of problems teachers pose when they are asked to (a) generate problems from given information and (b) create new problems from ones given to them. To investigate teachers' problem posting, preservice and inservice teachers completed background questionnaires and four problem-posing instruments. Based on previous…
NASA Astrophysics Data System (ADS)
Popp, J.; Tarcea, N.; Thomas, N.; Cockell, C.; Edwards, H. W. G.; Gomez-Elvira, J.; Hilchenbach, M.; Hochleitner, R.; Hofer, S.; Hoffmann, V.; Hofmann, B.; Jessberger, E. K.; Kiefer, W.; Martinez-Frias, J.; Maurice, S.; Rull Pérez, F.; Schmitt, M.; Simon, G.; Sobron, F.; Weigand, W.; Whitby, J. A.; Wurz, P.
2004-03-01
Whether there was or is life on Mars is a question of high interest to man. When looking for evidence of present or ancient life on Mars it might not be sufficient to disclose the chemical composition of the surface or subsurface material. Further information concerning for example the morphology of the sample under investigation or the spatial distribution of the observed chemicals or minerals is of similar relevance. Therefore one needs a reliable, automated, robust and miniaturized apparatus capable of resolving all the above mentioned problems in one effort. EXTENDED-MIRAS is an instrumental approach combining optical microscopy and micro-Raman spectroscopy with additional elementary characterization methods such as LIPS/LIBS (laser induced plasma spectrometry/laser induced breakdown spectrometry) or LMS (laser mass spectrometry). Nevertheless an exhaustive investigation usually requires time/energy which is a limited resource for a planetary mission. The size of the dataset produced might also pose a serious problem since the data link budget is limited (energy constraints). In order to maximize the scientific return, a measuring scenario that will make the most out of the reduced time/energy budget has to be implemented. Such a measuring scenario is described here with exemplification at laboratory scale.
ERIC Educational Resources Information Center
Kar, Tugrul
2015-01-01
This study aimed to investigate how the semantic structures of problems posed by sixth-grade middle school students for the addition of fractions affect their problem-posing performance. The students were presented with symbolic operations involving the addition of fractions and asked to pose two different problems related to daily-life situations…
ERIC Educational Resources Information Center
Contreras, Jose
2007-01-01
In this article, I model how a problem-posing framework can be used to enhance our abilities to systematically generate mathematical problems by modifying the attributes of a given problem. The problem-posing model calls for the application of the following fundamental mathematical processes: proving, reversing, specializing, generalizing, and…
ERIC Educational Resources Information Center
Kiliç, Çigdem
2017-01-01
This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…
Artifacts as Sources for Problem-Posing Activities
ERIC Educational Resources Information Center
Bonotto, Cinzia
2013-01-01
The problem-posing process represents one of the forms of authentic mathematical inquiry which, if suitably implemented in classroom activities, could move well beyond the limitations of word problems, at least as they are typically utilized. The two exploratory studies presented sought to investigate the impact of "problem-posing" activities when…
The Art of Problem Posing. 3rd Edition
ERIC Educational Resources Information Center
Brown, Stephen I.; Walter, Marion I.
2005-01-01
The new edition of this classic book describes and provides a myriad of examples of the relationships between problem posing and problem solving, and explores the educational potential of integrating these two activities in classrooms at all levels. "The Art of Problem Posing, Third Edition" encourages readers to shift their thinking…
ERIC Educational Resources Information Center
Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven
2011-01-01
In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…
Enhancing students’ mathematical problem posing skill through writing in performance tasks strategy
NASA Astrophysics Data System (ADS)
Kadir; Adelina, R.; Fatma, M.
2018-01-01
Many researchers have studied the Writing in Performance Task (WiPT) strategy in learning, but only a few paid attention on its relation to the problem-posing skill in mathematics. The problem-posing skill in mathematics covers problem reformulation, reconstruction, and imitation. The purpose of the present study was to examine the effect of WiPT strategy on students’ mathematical problem-posing skill. The research was conducted at a Public Junior Secondary School in Tangerang Selatan. It used a quasi-experimental method with randomized control group post-test. The samples were 64 students consists of 32 students of the experiment group and 32 students of the control. A cluster random sampling technique was used for sampling. The research data were obtained by testing. The research shows that the problem-posing skill of students taught by WiPT strategy is higher than students taught by a conventional strategy. The research concludes that the WiPT strategy is more effective in enhancing the students’ mathematical problem-posing skill compared to the conventional strategy.
Dissecting Success Stories on Mathematical Problem Posing: A Case of the Billiard Task
ERIC Educational Resources Information Center
Koichu, Boris; Kontorovich, Igor
2013-01-01
"Success stories," i.e., cases in which mathematical problems posed in a controlled setting are perceived by the problem posers or other individuals as interesting, cognitively demanding, or surprising, are essential for understanding the nature of problem posing. This paper analyzes two success stories that occurred with individuals of different…
ERIC Educational Resources Information Center
Crespo, Sandra; Sinclair, Nathalie
2008-01-01
School students of all ages, including those who subsequently become teachers, have limited experience posing their own mathematical problems. Yet problem posing, both as an act of mathematical inquiry and of mathematics teaching, is part of the mathematics education reform vision that seeks to promote mathematics as an worthy intellectual…
Helping Young Students to Better Pose an Environmental Problem
ERIC Educational Resources Information Center
Pruneau, Diane; Freiman, Viktor; Barbier, Pierre-Yves; Langis, Joanne
2009-01-01
Grade 3 students were asked to solve a sedimentation problem in a local river. With scientists, students explored many aspects of the problem and proposed solutions. Graphic representation tools were used to help students to better pose the problem. Using questionnaires and interviews, researchers observed students' capacity to pose the problem…
University Students' Problem Posing Abilities and Attitudes towards Mathematics.
ERIC Educational Resources Information Center
Grundmeier, Todd A.
2002-01-01
Explores the problem posing abilities and attitudes towards mathematics of students in a university pre-calculus class and a university mathematical proof class. Reports a significant difference in numeric posing versus non-numeric posing ability in both classes. (Author/MM)
NASA Astrophysics Data System (ADS)
Akben, Nimet
2018-05-01
The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.
Morris, Renée; Mehta, Prachi
2018-01-01
In mammals, the central nervous system (CNS) is constituted of various cellular elements, posing a challenge to isolating specific cell types to investigate their expression profile. As a result, tissue homogenization is not amenable to analyses of motor neurons profiling as these represent less than 10% of the total spinal cord cell population. One way to tackle the problem of tissue heterogeneity and obtain meaningful genomic, proteomic, and transcriptomic profiling is to use laser capture microdissection technology (LCM). In this chapter, we describe protocols for the capture of isolated populations of motor neurons from spinal cord tissue sections and for downstream transcriptomic analysis of motor neurons with RT-PCR. We have also included a protocol for the immunological confirmation that the captured neurons are indeed motor neurons. Although focused on spinal cord motor neurons, these protocols can be easily optimized for the isolation of any CNS neurons.
Analyzing Pre-Service Primary Teachers' Fraction Knowledge Structures through Problem Posing
ERIC Educational Resources Information Center
Kilic, Cigdem
2015-01-01
In this study it was aimed to determine pre-service primary teachers' knowledge structures of fraction through problem posing activities. A total of 90 pre-service primary teachers participated in this study. A problem posing test consisting of two questions was used and the participants were asked to generate as many as problems based on the…
Students’ Mathematical Creative Thinking through Problem Posing Learning
NASA Astrophysics Data System (ADS)
Ulfah, U.; Prabawanto, S.; Jupri, A.
2017-09-01
The research aims to investigate the differences in enhancement of students’ mathematical creative thinking ability of those who received problem posing approach assisted by manipulative media and students who received problem posing approach without manipulative media. This study was a quasi experimental research with non-equivalent control group design. Population of this research was third-grade students of a primary school in Bandung city in 2016/2017 academic year. Sample of this research was two classes as experiment class and control class. The instrument used is a test of mathematical creative thinking ability. Based on the results of the research, it is known that the enhancement of the students’ mathematical creative thinking ability of those who received problem posing approach with manipulative media aid is higher than the ability of those who received problem posing approach without manipulative media aid. Students who get learning problem posing learning accustomed in arranging mathematical sentence become matter of story so it can facilitate students to comprehend about story
Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles
Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.
2016-01-01
Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203
NASA Astrophysics Data System (ADS)
Supianto, A. A.; Hayashi, Y.; Hirashima, T.
2017-02-01
Problem-posing is well known as an effective activity to learn problem-solving methods. Monsakun is an interactive problem-posing learning environment to facilitate arithmetic word problems learning for one operation of addition and subtraction. The characteristic of Monsakun is problem-posing as sentence-integration that lets learners make a problem of three sentences. Monsakun provides learners with five or six sentences including dummies, which are designed through careful considerations by an expert teacher as a meaningful distraction to the learners in order to learn the structure of arithmetic word problems. The results of the practical use of Monsakun in elementary schools show that many learners have difficulties in arranging the proper answer at the high level of assignments. The analysis of the problem-posing process of such learners found that their misconception of arithmetic word problems causes impasses in their thinking and mislead them to use dummies. This study proposes a method of changing assignments as a support for overcoming bottlenecks of thinking. In Monsakun, the bottlenecks are often detected as a frequently repeated use of a specific dummy. If such dummy can be detected, it is the key factor to support learners to overcome their difficulty. This paper discusses how to detect the bottlenecks and to realize such support in learning by problem-posing.
The Problems Posed and Models Employed by Primary School Teachers in Subtraction with Fractions
ERIC Educational Resources Information Center
Iskenderoglu, Tuba Aydogdu
2017-01-01
Students have difficulties in solving problems of fractions in almost all levels, and in problem posing. Problem posing skills influence the process of development of the behaviors observed at the level of comprehension. That is why it is very crucial for teachers to develop activities for student to have conceptual comprehension of fractions and…
Problem-Posing Research in Mathematics Education: Looking Back, Looking Around, and Looking Ahead
ERIC Educational Resources Information Center
Silver, Edward A.
2013-01-01
In this paper, I comment on the set of papers in this special issue on mathematical problem posing. I offer some observations about the papers in relation to several key issues, and I suggest some productive directions for continued research inquiry on mathematical problem posing.
Park, Jae Byung; Lee, Seung Hun; Lee, Il Jae
2009-01-01
In this study, we propose a precise 3D lug pose detection sensor for automatic robot welding of a lug to a huge steel plate used in shipbuilding, where the lug is a handle to carry the huge steel plate. The proposed sensor consists of a camera and four laser line diodes, and its design parameters are determined by analyzing its detectable range and resolution. For the lug pose acquisition, four laser lines are projected on both lug and plate, and the projected lines are detected by the camera. For robust detection of the projected lines against the illumination change, the vertical threshold, thinning, Hough transform and separated Hough transform algorithms are successively applied to the camera image. The lug pose acquisition is carried out by two stages: the top view alignment and the side view alignment. The top view alignment is to detect the coarse lug pose relatively far from the lug, and the side view alignment is to detect the fine lug pose close to the lug. After the top view alignment, the robot is controlled to move close to the side of the lug for the side view alignment. By this way, the precise 3D lug pose can be obtained. Finally, experiments with the sensor prototype are carried out to verify the feasibility and effectiveness of the proposed sensor. PMID:22400007
Lee, Gi Soo; Irace, Alexandra; Rahbar, Reza
2017-06-01
To report the use of flexible fiber CO2 laser in the endoscopic management of pediatric airway cases. A retrospective review was conducted of patients who underwent CO2 laser-assisted airway procedures between September 2007 and January 2014 at a tertiary pediatric hospital. Sixty-eight patients underwent 80 procedures utilizing flexible fiber CO2 laser. Procedures included supraglottoplasty (n = 32), laryngeal cleft repair (type I [n = 10], type II [n = 7], type III [n = 6]), suprastomal granuloma excision (n = 6), cordotomy (n = 4), laryngeal neurofibroma excision (n = 4), laryngeal granulomatous mass excision (n = 1), subglottic stenosis excision (n = 6), division of glottic web (n = 2), subglottic cyst excision (n = 1), and supraglottic biopsy (n = 1). Ages ranged from 8 days to 21 years (median 11 months). No intraoperative or postoperative complications related to the use of laser were noted. The flexible fiber CO2 laser can be safely and effectively used to address a variety of pediatric airway lesions. Previously, the use of CO2 laser in minimally invasive airway surgery has been limited due to the articulating arm carrier, absence of a hand piece, and the direct line-of sight view required. The fiber allows the cutting beam to be directed at the site of the lesion and bypasses limitations posed by other laser systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Coughlan, H D; Darmanin, C; Phillips, N W; Hofmann, F; Clark, J N; Harder, R J; Vine, D J; Abbey, B
2015-07-01
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; Hofmann, F.; Clark, J. N.; Harder, R. J.; Vine, D. J.; Abbey, B.
2015-01-01
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources. PMID:26798804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
Coughlan, H. D.; Darmanin, C.; Phillips, N. W.; ...
2015-04-29
For laboratory and synchrotron based X-ray sources, radiation damage has posed a significant barrier to obtaining high-resolution structural data from biological macromolecules. The problem is particularly acute for micron-sized crystals where the weaker signal often necessitates the use of higher intensity beams to obtain the relevant data. Here, we employ a combination of techniques, including Bragg coherent diffractive imaging to characterise the radiation induced damage in a micron-sized protein crystal over time. The approach we adopt here could help screen for potential protein crystal candidates for measurement at X-ray free election laser sources.
An Exploratory Framework for Handling the Complexity of Mathematical Problem Posing in Small Groups
ERIC Educational Resources Information Center
Kontorovich, Igor; Koichu, Boris; Leikin, Roza; Berman, Avi
2012-01-01
The paper introduces an exploratory framework for handling the complexity of students' mathematical problem posing in small groups. The framework integrates four facets known from past research: task organization, students' knowledge base, problem-posing heuristics and schemes, and group dynamics and interactions. In addition, it contains a new…
Problem Posing at All Levels in the Calculus Classroom
ERIC Educational Resources Information Center
Perrin, John Robert
2007-01-01
This article explores the use of problem posing in the calculus classroom using investigative projects. Specially, four examples of student work are examined, each one differing in originality of problem posed. By allowing students to explore actual questions that they have about calculus, coming from their own work or class discussion, or…
Critical Inquiry across the Disciplines: Strategies for Student-Generated Problem Posing
ERIC Educational Resources Information Center
Nardone, Carroll Ferguson; Lee, Renee Gravois
2011-01-01
Problem posing is a higher-order, active-learning task that is important for students to develop. This article describes a series of interdisciplinary learning activities designed to help students strengthen their problem-posing skills, which requires that students become more responsible for their learning and that faculty move to a facilitator…
Developing Teachers' Subject Didactic Competence through Problem Posing
ERIC Educational Resources Information Center
Ticha, Marie; Hospesova, Alena
2013-01-01
Problem posing (not only in lesson planning but also directly in teaching whenever needed) is one of the attributes of a teacher's subject didactic competence. In this paper, problem posing in teacher education is understood as an educational and a diagnostic tool. The results of the study were gained in pre-service primary school teacher…
ERIC Educational Resources Information Center
Barlow, Angela T.; Cates, Janie M.
2006-01-01
This study investigated the impact of incorporating problem posing in elementary classrooms on the beliefs held by elementary teachers about mathematics and mathematics teaching. Teachers participated in a year-long staff development project aimed at facilitating the incorporation of problem posing into their classrooms. Beliefs were examined via…
The Posing of Arithmetic Problems by Mathematically Talented Students
ERIC Educational Resources Information Center
Espinoza González, Johan; Lupiáñez Gómez, José Luis; Segovia Alex, Isidoro
2016-01-01
Introduction: This paper analyzes the arithmetic problems posed by a group of mathematically talented students when given two problem-posing tasks, and compares these students' responses to those given by a standard group of public school students to the same tasks. Our analysis focuses on characterizing and identifying the differences between the…
Posing Problems to Understand Children's Learning of Fractions
ERIC Educational Resources Information Center
Cheng, Lu Pien
2013-01-01
In this study, ways in which problem posing activities aid our understanding of children's learning of addition of unlike fractions and product of proper fractions was examined. In particular, how a simple problem posing activity helps teachers take a second, deeper look at children's understanding of fraction concepts will be discussed. The…
Development of the Structured Problem Posing Skills and Using Metaphoric Perceptions
ERIC Educational Resources Information Center
Arikan, Elif Esra; Unal, Hasan
2014-01-01
The purpose of this study was to introduce problem posing activity to third grade students who have never met before. This study was also explored students' metaphorical images on problem posing process. Participants were from Public school in Marmara Region in Turkey. Data was analyzed both qualitatively (content analysis for difficulty and…
Integrating Worked Examples into Problem Posing in a Web-Based Learning Environment
ERIC Educational Resources Information Center
Hsiao, Ju-Yuan; Hung, Chun-Ling; Lan, Yu-Feng; Jeng, Yoau-Chau
2013-01-01
Most students always lack of experience and perceive difficult regarding problem posing. The study hypothesized that worked examples may have benefits for supporting students' problem posing activities. A quasi-experiment was conducted in the context of a business mathematics course for examining the effects of integrating worked examples into…
Robust dead reckoning system for mobile robots based on particle filter and raw range scan.
Duan, Zhuohua; Cai, Zixing; Min, Huaqing
2014-09-04
Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hybrid system estimation problems, and they have also been widely used in many WMRs applications, such as pose tracking, SLAM, video tracking, fault identification, etc. In this paper, the readings of a laser range finder, which may be also interfered with by noises, are used to reach accurate dead reckoning. The main contribution is that a systematic method to implement fault diagnosis and dead reckoning in a particle filter framework concurrently is proposed. Firstly, the perception model of a laser range finder is given, where the raw scan may be faulty. Secondly, the kinematics of the normal model and different fault models for WMRs are given. Thirdly, the particle filter for fault diagnosis and dead reckoning is discussed. At last, experiments and analyses are reported to show the accuracy and efficiency of the presented method.
Robust Dead Reckoning System for Mobile Robots Based on Particle Filter and Raw Range Scan
Duan, Zhuohua; Cai, Zixing; Min, Huaqing
2014-01-01
Robust dead reckoning is a complicated problem for wheeled mobile robots (WMRs), where the robots are faulty, such as the sticking of sensors or the slippage of wheels, for the discrete fault models and the continuous states have to be estimated simultaneously to reach a reliable fault diagnosis and accurate dead reckoning. Particle filters are one of the most promising approaches to handle hybrid system estimation problems, and they have also been widely used in many WMRs applications, such as pose tracking, SLAM, video tracking, fault identification, etc. In this paper, the readings of a laser range finder, which may be also interfered with by noises, are used to reach accurate dead reckoning. The main contribution is that a systematic method to implement fault diagnosis and dead reckoning in a particle filter framework concurrently is proposed. Firstly, the perception model of a laser range finder is given, where the raw scan may be faulty. Secondly, the kinematics of the normal model and different fault models for WMRs are given. Thirdly, the particle filter for fault diagnosis and dead reckoning is discussed. At last, experiments and analyses are reported to show the accuracy and efficiency of the presented method. PMID:25192318
Developing Pre-Service Teachers Understanding of Fractions through Problem Posing
ERIC Educational Resources Information Center
Toluk-Ucar, Zulbiye
2009-01-01
This study investigated the effect of problem posing on the pre-service primary teachers' understanding of fraction concepts enrolled in two different versions of a methods course at a university in Turkey. In the experimental version, problem posing was used as a teaching strategy. At the beginning of the study, the pre-service teachers'…
The Effects of Problem Posing on Student Mathematical Learning: A Meta-Analysis
ERIC Educational Resources Information Center
Rosli, Roslinda; Capraro, Mary Margaret; Capraro, Robert M.
2014-01-01
The purpose of the study was to meta-synthesize research findings on the effectiveness of problem posing and to investigate the factors that might affect the incorporation of problem posing in the teaching and learning of mathematics. The eligibility criteria for inclusion of literature in the meta-analysis was: published between 1989 and 2011,…
Teachers Implementing Mathematical Problem Posing in the Classroom: Challenges and Strategies
ERIC Educational Resources Information Center
Leung, Shuk-kwan S.
2013-01-01
This paper reports a study about how a teacher educator shared knowledge with teachers when they worked together to implement mathematical problem posing (MPP) in the classroom. It includes feasible methods for getting practitioners to use research-based tasks aligned to the curriculum in order to encourage children to pose mathematical problems.…
Problem-Posing in Education: Transformation of the Practice of the Health Professional.
ERIC Educational Resources Information Center
Casagrande, L. D. R.; Caron-Ruffino, M.; Rodrigues, R. A. P.; Vendrusculo, D. M. S.; Takayanagui, A. M. M.; Zago, M. M. F.; Mendes, M. D.
1998-01-01
Studied the use of a problem-posing model in health education. The model based on the ideas of Paulo Freire is presented. Four innovative experiences of teaching-learning in environmental and occupational health and patient education are reported. Notes that the problem-posing model has the capability to transform health-education practice.…
ERIC Educational Resources Information Center
Kar, Tugrul
2016-01-01
This study examined prospective middle school mathematics teachers' problem-posing skills by investigating their ability to associate linear graphs with daily life situations. Prospective teachers were given linear graphs and asked to pose problems that could potentially be represented by the graphs. Their answers were analyzed in two stages. In…
Mighty Mathematicians: Using Problem Posing and Problem Solving to Develop Mathematical Power
ERIC Educational Resources Information Center
McGatha, Maggie B.; Sheffield, Linda J.
2006-01-01
This article describes a year-long professional development institute combined with a summer camp for students. Both were designed to help teachers and students develop their problem-solving and problem-posing abilities.
Costa, Sergio; Correia-de-Sá, Paulo; Porto, Maria J; Cainé, Laura
2017-07-01
Sexual assault samples are among the most frequently analyzed in a forensic laboratory. These account for almost half of all samples processed routinely, and a large portion of these cases remain unsolved. These samples often pose problems to traditional analytic methods of identification because they consist most frequently of cell mixtures from at least two contributors: the victim (usually female) and the perpetrator (usually male). In this study, we propose the use of current preliminary testing for sperm detection in order to determine the chances of success when faced with samples which can be good candidates to undergo analysis with the laser microdissection technology. Also, we used laser microdissection technology to capture fluorescently stained cells of interest differentiated by gender. Collected materials were then used for DNA genotyping with commercially available amplification kits such as Minifiler, Identifiler Plus, NGM, and Y-Filer. Both the methodology and the quality of the results were evaluated to assess the pros and cons of laser microdissection compared with standard methods. Overall, the combination of fluorescent staining combined with the Minifiler amplification kit provided the best results for autosomal markers, whereas the Y-Filer kit returned the expected results regardless of the used method. © 2017 American Academy of Forensic Sciences.
An Analysis of Problem-Posing Tasks in Chinese and US Elementary Mathematics Textbooks
ERIC Educational Resources Information Center
Cai, Jinfa; Jiang, Chunlian
2017-01-01
This paper reports on 2 studies that examine how mathematical problem posing is integrated in Chinese and US elementary mathematics textbooks. Study 1 involved a historical analysis of the problem-posing (PP) tasks in 3 editions of the most widely used elementary mathematics textbook series published by People's Education Press in China over 3…
ERIC Educational Resources Information Center
Aydogdu Iskenderoglu, Tuba
2018-01-01
It is important for pre-service teachers to know the conceptual difficulties they have experienced regarding the concepts of multiplication and division in fractions and problem posing is a way to learn these conceptual difficulties. Problem posing is a synthetic activity that fundamentally has multiple answers. The purpose of this study is to…
ERIC Educational Resources Information Center
Cankoy, Osman; Özder, Hasan
2017-01-01
The aim of this study is to develop a scoring rubric to assess primary school students' problem posing skills. The rubric including five dimensions namely solvability, reasonability, mathematical structure, context and language was used. The raters scored the students' problem posing skills both with and without the scoring rubric to test the…
ERIC Educational Resources Information Center
Van Harpen, Xianwei Y.; Presmeg, Norma C.
2013-01-01
The importance of students' problem-posing abilities in mathematics has been emphasized in the K-12 curricula in the USA and China. There are claims that problem-posing activities are helpful in developing creative approaches to mathematics. At the same time, there are also claims that students' mathematical content knowledge could be highly…
An Investigation of Eighth Grade Students' Problem Posing Skills (Turkey Sample)
ERIC Educational Resources Information Center
Arikan, Elif Esra; Ünal, Hasan
2015-01-01
To pose a problem refers to the creative activity for mathematics education. The purpose of the study was to explore the eighth grade students' problem posing ability. Three learning domains such as requiring four operations, fractions and geometry were chosen for this reason. There were two classes which were coded as class A and class B. Class A…
Mathematical Creative Process Wallas Model in Students Problem Posing with Lesson Study Approach
ERIC Educational Resources Information Center
Nuha, Muhammad 'Azmi; Waluya, S. B.; Junaedi, Iwan
2018-01-01
Creative thinking is very important in the modern era so that it should be improved by doing efforts such as making a lesson that train students to pose their own problems. The purposes of this research are (1) to give an initial description of students about mathematical creative thinking level in Problem Posing Model with Lesson Study approach…
Problem Posing with Realistic Mathematics Education Approach in Geometry Learning
NASA Astrophysics Data System (ADS)
Mahendra, R.; Slamet, I.; Budiyono
2017-09-01
One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.
Alignment of the Stanford Linear Collider Arcs: Concepts and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitthan, R.; Bell, B.; Friedsam, H.
1987-02-01
The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with themore » unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components.« less
NASA Astrophysics Data System (ADS)
Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu
2017-03-01
In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.
Problem Posing and Solving with Mathematical Modeling
ERIC Educational Resources Information Center
English, Lyn D.; Fox, Jillian L.; Watters, James J.
2005-01-01
Mathematical modeling is explored as both problem posing and problem solving from two perspectives, that of the child and the teacher. Mathematical modeling provides rich learning experiences for elementary school children and their teachers.
Problem-posing in education: transformation of the practice of the health professional.
Casagrande, L D; Caron-Ruffino, M; Rodrigues, R A; Vendrúsculo, D M; Takayanagui, A M; Zago, M M; Mendes, M D
1998-02-01
This study was developed by a group of professionals from different areas (nurses and educators) concerned with health education. It proposes the use of a problem-posing model for the transformation of professional practice. The concept and functions of the model and their relationships with the educative practice of health professionals are discussed. The model of problem-posing education is presented (compared to traditional, "banking" education), and four innovative experiences of teaching-learning are reported based on this model. These experiences, carried out in areas of environmental and occupational health and patient education have shown the applicability of the problem-posing model to the practice of the health professional, allowing transformation.
Challenges in miniaturized automotive long-range lidar system design
NASA Astrophysics Data System (ADS)
Fersch, Thomas; Weigel, Robert; Koelpin, Alexander
2017-05-01
This paper discusses the current technical limitations posed on endeavors to miniaturize lidar systems for use in automotive applications and how to possibly extend those limits. The focus is set on long-range scanning direct time of flight LiDAR systems using APD photodetectors. Miniaturization evokes severe problems in ensuring absolute laser safety while maintaining the systems' performance in terms of maximum range, signal-to-noise ratio, detection probability, pixel density, or frame rate. Based on hypothetical but realistic specifications for an exemplary system the complete lidar signal path is calculated. The maximum range of the system is used as a general performance indicator. It is determined with the minimum signal-to-noise ratio required to detect an object. Various system parameters are varied to find their impact on the system's range. The reduction of the laser's pulse width and the right choice for the transimpedance amplifier's amplification have shown to be practicable measures to double the system's range.
[Problem-posing as a nutritional education strategy with obese teenagers].
Rodrigues, Erika Marafon; Boog, Maria Cristina Faber
2006-05-01
Obesity is a public health issue with relevant social determinants in its etiology and where interventions with teenagers encounter complex biopsychological conditions. This study evaluated intervention in nutritional education through a problem-posing approach with 22 obese teenagers, treated collectively and individually for eight months. Speech acts were collected through the use of word cards, observer recording, and tape-recording. The study adopted a qualitative methodology, and the approach involved content analysis. Problem-posing facilitated changes in eating behavior, triggering reflections on nutritional practices, family circumstances, social stigma, interaction with health professionals, and religion. Teenagers under individual care posed problems more effectively in relation to eating, while those under collective care posed problems in relation to family and psychological issues, with effective qualitative eating changes in both groups. The intervention helped teenagers understand their life history and determinants of eating behaviors, spontaneously implementing eating changes and making them aware of possibilities for maintaining the new practices and autonomously exercising their role as protagonists in their own health care.
Quantitative imaging of aggregated emulsions.
Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J
2006-02-28
Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.
3D reconstruction from non-uniform point clouds via local hierarchical clustering
NASA Astrophysics Data System (ADS)
Yang, Jiaqi; Li, Ruibo; Xiao, Yang; Cao, Zhiguo
2017-07-01
Raw scanned 3D point clouds are usually irregularly distributed due to the essential shortcomings of laser sensors, which therefore poses a great challenge for high-quality 3D surface reconstruction. This paper tackles this problem by proposing a local hierarchical clustering (LHC) method to improve the consistency of point distribution. Specifically, LHC consists of two steps: 1) adaptive octree-based decomposition of 3D space, and 2) hierarchical clustering. The former aims at reducing the computational complexity and the latter transforms the non-uniform point set into uniform one. Experimental results on real-world scanned point clouds validate the effectiveness of our method from both qualitative and quantitative aspects.
ERIC Educational Resources Information Center
Contreras, José N.
2013-01-01
This paper discusses a classroom experience in which a group of prospective secondary mathematics teachers were asked to create, cooperatively (in class) and individually, problems related to Viviani's problem using a problem-posing framework. When appropriate, students used Sketchpad to explore the problem to better understand its attributes…
ERIC Educational Resources Information Center
Ünlü, Melihan
2017-01-01
The aim of the study was to determine mathematics teacher candidates' knowledge about problem solving strategies through problem posing. This qualitative research was conducted with 95 mathematics teacher candidates studying at education faculty of a public university during the first term of the 2015-2016 academic year in Turkey. Problem Posing…
A Problem-Solving Conceptual Framework and Its Implications in Designing Problem-Posing Tasks
ERIC Educational Resources Information Center
Singer, Florence Mihaela; Voica, Cristian
2013-01-01
The links between the mathematical and cognitive models that interact during problem solving are explored with the purpose of developing a reference framework for designing problem-posing tasks. When the process of solving is a successful one, a solver successively changes his/her cognitive stances related to the problem via transformations that…
Opportunities to Pose Problems Using Digital Technology in Problem Solving Environments
ERIC Educational Resources Information Center
Aguilar-Magallón, Daniel Aurelio; Fernández, Willliam Enrique Poveda
2017-01-01
This article reports and analyzes different types of problems that nine students in a Master's Program in Mathematics Education posed during a course on problem solving. What opportunities (affordances) can a dynamic geometry system (GeoGebra) offer to allow in-service and in-training teachers to formulate and solve problems, and what type of…
A direct method for nonlinear ill-posed problems
NASA Astrophysics Data System (ADS)
Lakhal, A.
2018-02-01
We propose a direct method for solving nonlinear ill-posed problems in Banach-spaces. The method is based on a stable inversion formula we explicitly compute by applying techniques for analytic functions. Furthermore, we investigate the convergence and stability of the method and prove that the derived noniterative algorithm is a regularization. The inversion formula provides a systematic sensitivity analysis. The approach is applicable to a wide range of nonlinear ill-posed problems. We test the algorithm on a nonlinear problem of travel-time inversion in seismic tomography. Numerical results illustrate the robustness and efficiency of the algorithm.
ERIC Educational Resources Information Center
Kapur, Manu
2018-01-01
The goal of this paper is to isolate the preparatory effects of problem-generation from solution generation in problem-posing contexts, and their underlying mechanisms on learning from instruction. Using a randomized-controlled design, students were assigned to one of two conditions: (a) problem-posing with solution generation, where they…
ERIC Educational Resources Information Center
Xie, Jinxia; Masingila, Joanna O.
2017-01-01
Existing studies have quantitatively evidenced the relatedness between problem posing and problem solving, as well as the magnitude of this relationship. However, the nature and features of this relationship need further qualitative exploration. This paper focuses on exploring the interactions, i.e., mutual effects and supports, between problem…
Improving attitudes toward mathematics learning with problem posing in class VIII
NASA Astrophysics Data System (ADS)
Vionita, Alfha; Purboningsih, Dyah
2017-08-01
This research is classroom action research which is collaborated to improve student's behavior toward math and mathematics learning at class VIII by using problem posing approach. The subject of research is all of students grade VIIIA which consist of 32 students. This research has been held on two period, first period is about 3 times meeting, and second period is about 4 times meeting. The instrument of this research is implementation of learning observation's guidance by using problem posing approach. Cycle test has been used to measure cognitive competence, and questionnaire to measure the students' behavior in mathematics learning process. The result of research shows the students' behavior has been improving after using problem posing approach. It is showed by the behavior's criteria of students that has increasing result from the average in first period to high in second period. Furthermore, the percentage of test result is also improve from 68,75% in first period to 78,13% in second period. On the other hand, the implementation of learning observation by using problem posing approach has also improving and it is showed by the average percentage of teacher's achievement in first period is 89,2% and student's achievement 85,8%. These results get increase in second period for both teacher and students' achievement which are 94,4% and 91,11%. As a result, students' behavior toward math learning process in class VIII has been improving by using problem posing approach.
Probabilistic Risk Assessment Process for High-Power Laser Operations in Outdoor Environments
2016-01-01
avionics data bus. In the case of a UAS-mounted laser system, the control path will additionally include a radio or satellite communications link. A remote...JBSA Fort Sam Houston, TX 78234 711 HPW/RHDO 11 . SPONSOR’S/MONITOR’S REPORT NUMBER(S) AFRL-RH-FS-JA-2015...hazard assessment pur- poses is not widespread within the laser safety community . The aim of this paper is to outline the basis of the probabilistic
A well-posed optimal spectral element approximation for the Stokes problem
NASA Technical Reports Server (NTRS)
Maday, Y.; Patera, A. T.; Ronquist, E. M.
1987-01-01
A method is proposed for the spectral element simulation of incompressible flow. This method constitutes in a well-posed optimal approximation of the steady Stokes problem with no spurious modes in the pressure. The resulting method is analyzed, and numerical results are presented for a model problem.
Pose and Solve Varignon Converse Problems
ERIC Educational Resources Information Center
Contreras, José N.
2014-01-01
The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…
Applications: Students, the Mathematics Curriculum and Mathematics Textbooks
ERIC Educational Resources Information Center
Kilic, Cigdem
2013-01-01
Problem posing is one of the most important topics in a mathematics education. Through problem posing, students gain mathematical abilities and concepts and teachers can evaluate their students and arrange adequate learning environments. The aim of the present study is to investigate Turkish primary school teachers' opinions about problem posing…
Investigating the Impact of Field Trips on Teachers' Mathematical Problem Posing
ERIC Educational Resources Information Center
Courtney, Scott A.; Caniglia, Joanne; Singh, Rashmi
2014-01-01
This study examines the impact of field trip experiences on teachers' mathematical problem posing. Teachers from a large urban public school system in the Midwest participated in a professional development program that incorporated experiential learning with mathematical problem formulation experiences. During 2 weeks of summer 2011, 68 teachers…
Thermal-mechanical modeling of laser ablation hybrid machining
NASA Astrophysics Data System (ADS)
Matin, Mohammad Kaiser
2001-08-01
Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of materials and contact between workpiece and tool. The theoretical formulation associated with LAHM for solving the thermal-mechanical problem using the finite element method is presented. The thermal formulation is incorporated in the user defined subroutines called by ABAQUS/Standard. The mechanical portion is modeled using ABAQUS/Explicit's general capabilities of modeling interactions involving contact and separation. The results obtained from the FEA simulations showed that the cutting force decrease considerably in both LAEM Surface Absorption (LARM-SA) and LAHM volume absorption (LAHM-VA) models relative to LAM model. It was observed that the HAZ can be expanded or narrowed depending on the laser speed and power. The cutting force is minimal at the last extent of the HAZ. In both the models the laser ablates material thus reducing material stiffness as well as relaxing the thermal stress. The stress values obtained showed compressive yield stress just below the ablated surface and chip. The failure occurs by conventional cutting where tensile stress exceeds the tensile strength of the material at that temperature. In this hybrid machining process the advantages of both the individual machining processes were realized.
ERIC Educational Resources Information Center
Darvin, Jacqueline
2009-01-01
One way to merge imagination with problem-posing and problem-solving in the English classroom is by asking students to respond to "cultural and political vignettes" (CPVs). CPVs are cultural and political situations that are presented to students so that they can practice the creative and essential decision-making skills that they will need to use…
ERIC Educational Resources Information Center
Huntley, Mary Ann; Davis, Jon D.
2008-01-01
A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from three problems that were posed in symbolic form. Two problems are…
Multi-pose system for geometric measurement of large-scale assembled rotational parts
NASA Astrophysics Data System (ADS)
Deng, Bowen; Wang, Zhaoba; Jin, Yong; Chen, Youxing
2017-05-01
To achieve virtual assembly of large-scale assembled rotational parts based on in-field geometric data, we develop a multi-pose rotative arm measurement system with a gantry and 2D laser sensor (RAMSGL) to measure and provide the geometry of these parts. We mount a 2D laser sensor onto the end of a six-jointed rotative arm to guarantee the accuracy and efficiency, combine the rotative arm with a gantry to measure pairs of assembled rotational parts. By establishing and using the D-H model of the system, the 2D laser data is turned into point clouds and finally geometry is calculated. In addition, we design three experiments to evaluate the performance of the system. Experimental results show that the system’s max length measuring deviation using gauge blocks is 35 µm, max length measuring deviation using ball plates is 50 µm, max single-point repeatability error is 25 µm, and measurement scope is from a radius of 0 mm to 500 mm.
NASA Astrophysics Data System (ADS)
Chen, Zhen; Chan, Tommy H. T.
2017-08-01
This paper proposes a new methodology for moving force identification (MFI) from the responses of bridge deck. Based on the existing time domain method (TDM), the MFI problem eventually becomes solving the linear algebraic equation in the form Ax = b . The vector b is usually contaminated by an unknown error e generating from measurement error, which often called the vector e as ''noise''. With the ill-posed problems that exist in the inverse problem, the identification force would be sensitive to the noise e . The proposed truncated generalized singular value decomposition method (TGSVD) aims at obtaining an acceptable solution and making the noise to be less sensitive to perturbations with the ill-posed problems. The illustrated results show that the TGSVD has many advantages such as higher precision, better adaptability and noise immunity compared with TDM. In addition, choosing a proper regularization matrix L and a truncation parameter k are very useful to improve the identification accuracy and to solve ill-posed problems when it is used to identify the moving force on bridge.
NASA Technical Reports Server (NTRS)
VanderWal, Randy L.
2000-01-01
The production of particulates, notably soot, during combustion has both positive and negative ramifications. Exhaust from diesel engines under load (for example, shifting gears), flickering candle flames and fireplaces all produce soot leaving a flame. From an efficiency standpoint, emission of soot from engines, furnaces or even a simple flickering candle flame represents a loss of useful energy. The emission of soot from diesel engines, furnaces, power generation facilities, incinerators and even simple flames poses a serious environmental problem and health risk. Yet some industries intentionally produce soot as carbon black for use in inks, copier toner, tires and as pigments. Similarly, the presence of soot within flames can act both positively and negatively. Energy transfer from a combustion process is greatly facilitated by the radiative heat transfer from soot yet radiative heat transfer also facilitates the spread of unwanted fires. To understand soot formation and develop control strategies for soot emission/formation, measurements of soot concentration in both practical devices such as engines and controlled laboratory flames are necessary. Laser-induced incandescence (LII) has been developed and characterized to address this need, as described here.
Electro-optic product design for manufacture: where next?
NASA Astrophysics Data System (ADS)
Barr, John R. M.; MacDonald, M.; Jeffery, G.; Troughton, M.
2016-10-01
Manufacturing of electro-optic products for military environments poses a large number of apparently intractable and mutually contradictory problems. The ability to successfully engage in this area presents an intellectual challenge of a high order. The Advanced Targeting Sector of Leonardo's Airborne and Space Systems Division, based in Edinburgh, has developed a successful range of electro-optic products and transitioned these into a volume, and high value, manufacturing environment. As products cycle through the design process, there has been strong feedback from users, suppliers, and most importantly from our manufacturing organization, that has driven evolution of our design practices. It is fair to say that recent pointer trackers and lasers bear little resemblance to those designed and built 10 years ago. Looking ahead, this process will only continue. There are interesting technologies that will drive improvements in manufacturability, reliability and usability of electro-optic products. Examples might include freeform optics, additive manufacture of metal components, and laser welding of optics to metals, to name but a few. These have uses across our product portfolio and, when sufficiently matured, will have a major impact on the product quality and reliability
ERIC Educational Resources Information Center
Aguilar-Magallón, Daniel Aurelio; Reyes-Martìnez, Isaid
2016-01-01
We analyze and discuss ways in which prospective high school teachers pose and pursue questions or problems during the process of reconstructing dynamic configurations of figures given in problem statements. To what extent does the systematic use of a Dynamic Geometry System (DGS) help the participants engage in problem posing activities…
Aircraft Detection System Ensures Free-Space Laser Safety
NASA Technical Reports Server (NTRS)
Smithgall, Brian; Wilson, Keith E.
2004-01-01
As scientists continue to explore our solar system, there are increasing demands to return greater volumes of data from smaller deep-space probes. Accordingly, NASA is studying advanced strategies based on free-space laser transmissions, which offer secure, high-bandwidth communications using smaller subsystems of much lower power and mass than existing ones. These approaches, however, can pose a danger to pilots in the beam path because the lasers may illuminate aircraft and blind them. Researchers thus are investigating systems that will monitor the surrounding airspace for aircraft that could be affected. This paper presents current methods for safe free space laser propagation.
Assessment of deformations in mining areas using the Riegl VZ-400 terrestrial laser scanner
NASA Astrophysics Data System (ADS)
Szwarkowski, Dariusz; Moskal, Magdalena
2018-04-01
The article discusses the use of terrestrial laser scanning to assess deformations in mining areas. Using the terrestrial laser scanning Riegl VZ-400, control measurements within the historical location of the underground coal mine in Zabrze were made. Two laser scanning measurements were taken over the course of one year. The research made it possible to determine changes in surface deformation on the shallowly located mining excavations. Differences in the terrain may be due to subsidence associated with the influence of underground mining and pose a threat to the adjacent road infrastructure and structures.
NASA Astrophysics Data System (ADS)
Burman, Erik; Hansbo, Peter; Larson, Mats G.
2018-03-01
Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.
Multidisciplinary model-based-engineering for laser weapon systems: recent progress
NASA Astrophysics Data System (ADS)
Coy, Steve; Panthaki, Malcolm
2013-09-01
We are working to develop a comprehensive, integrated software framework and toolset to support model-based engineering (MBE) of laser weapons systems. MBE has been identified by the Office of the Director, Defense Science and Engineering as one of four potentially "game-changing" technologies that could bring about revolutionary advances across the entire DoD research and development and procurement cycle. To be effective, however, MBE requires robust underlying modeling and simulation technologies capable of modeling all the pertinent systems, subsystems, components, effects, and interactions at any level of fidelity that may be required in order to support crucial design decisions at any point in the system development lifecycle. Very often the greatest technical challenges are posed by systems involving interactions that cut across two or more distinct scientific or engineering domains; even in cases where there are excellent tools available for modeling each individual domain, generally none of these domain-specific tools can be used to model the cross-domain interactions. In the case of laser weapons systems R&D these tools need to be able to support modeling of systems involving combined interactions among structures, thermal, and optical effects, including both ray optics and wave optics, controls, atmospheric effects, target interaction, computational fluid dynamics, and spatiotemporal interactions between lasing light and the laser gain medium. To address this problem we are working to extend Comet™, to add the addition modeling and simulation capabilities required for this particular application area. In this paper we will describe our progress to date.
Human Pose Estimation from Monocular Images: A Comprehensive Survey
Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi
2016-01-01
Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003
Regularization techniques for backward--in--time evolutionary PDE problems
NASA Astrophysics Data System (ADS)
Gustafsson, Jonathan; Protas, Bartosz
2007-11-01
Backward--in--time evolutionary PDE problems have applications in the recently--proposed retrograde data assimilation. We consider the terminal value problem for the Kuramoto--Sivashinsky equation (KSE) in a 1D periodic domain as our model system. The KSE, proposed as a model for interfacial and combustion phenomena, is also often adopted as a toy model for hydrodynamic turbulence because of its multiscale and chaotic dynamics. Backward--in--time problems are typical examples of ill-posed problem, where disturbances are amplified exponentially during the backward march. Regularization is required to solve such problems efficiently and we consider approaches in which the original ill--posed problem is approximated with a less ill--posed problem obtained by adding a regularization term to the original equation. While such techniques are relatively well--understood for linear problems, they less understood in the present nonlinear setting. We consider regularization terms with fixed magnitudes and also explore a novel approach in which these magnitudes are adapted dynamically using simple concepts from the Control Theory.
NASA Astrophysics Data System (ADS)
Harper, Kathleen A.; Etkina, Eugenia
2002-10-01
As part of weekly reports,1 structured journals in which students answer three standard questions each week, they respond to the prompt, If I were the instructor, what questions would I ask or problems assign to determine if my students understood the material? An initial analysis of the results shows that some student-generated problems indicate fundamental misunderstandings of basic physical concepts. A further investigation explores the relevance of the problems to the week's material, whether the problems are solvable, and the type of problems (conceptual or calculation-based) written. Also, possible links between various characteristics of the problems and conceptual achievement are being explored. The results of this study spark many more questions for further work. A summary of current findings will be presented, along with its relationship to previous work concerning problem posing.2 1Etkina, E. Weekly Reports;A Two-Way Feedback Tool, Science Education, 84, 594-605 (2000). 2Mestre, J.P., Probing Adults Conceptual Understanding and Transfer of Learning Via Problem Posing, Journal of Applied Developmental Psychology, 23, 9-50 (2002).
1980-02-01
to estimate f -..ell, -noderately ,-ell, or- poorly. 1 ’The sansitivity *of a rec-ilarized estimate of f to the noise is made explicit. After giving the...AD-A 7 .SA92 925 WISCONSIN UN! V-MADISON DEFT OF STATISTICS F /S 11,’ 1 ILL POSED PRORLEMS: NUMERICAL ANn STATISTICAL METHODS FOR MILOL-ETC(U FEB 80 a...estimate f given z. We first define the 1 intrinsic rank of the problem where jK(tit) f (t)dt is known exactly. This 0 definition is used to provide insight
In-the-wild facial expression recognition in extreme poses
NASA Astrophysics Data System (ADS)
Yang, Fei; Zhang, Qian; Zheng, Chi; Qiu, Guoping
2018-04-01
In the computer research area, facial expression recognition is a hot research problem. Recent years, the research has moved from the lab environment to in-the-wild circumstances. It is challenging, especially under extreme poses. But current expression detection systems are trying to avoid the pose effects and gain the general applicable ability. In this work, we solve the problem in the opposite approach. We consider the head poses and detect the expressions within special head poses. Our work includes two parts: detect the head pose and group it into one pre-defined head pose class; do facial expression recognize within each pose class. Our experiments show that the recognition results with pose class grouping are much better than that of direct recognition without considering poses. We combine the hand-crafted features, SIFT, LBP and geometric feature, with deep learning feature as the representation of the expressions. The handcrafted features are added into the deep learning framework along with the high level deep learning features. As a comparison, we implement SVM and random forest to as the prediction models. To train and test our methodology, we labeled the face dataset with 6 basic expressions.
In vivo microscopy of the mouse brain using multiphoton laser scanning techniques
NASA Astrophysics Data System (ADS)
Yoder, Elizabeth J.
2002-06-01
The use of multiphoton microscopy for imaging mouse brain in vivo offers several advantages and poses several challenges. This tutorial begins by briefly comparing multiphoton microscopy with other imaging modalities used to visualize the brain and its activity. Next, an overview of the techniques for introducing fluorescence into whole animals to generate contrast for in vivo microscopy using two-photon excitation is presented. Two different schemes of surgically preparing mice for brain imaging with multiphoton microscopy are reviewed. Then, several issues and problems with in vivo microscopy - including motion artifact, respiratory and cardiac rhythms, maintenance of animal health, anesthesia, and the use of fiducial markers - are discussed. Finally, examples of how these techniques have been applied to visualize the cerebral vasculature and its response to hypercapnic stimulation are provided.
Eye injuries from laser exposure: a review.
Hudson, S J
1998-05-01
Lasers pose a significant threat to vision in modern military operations. Anti-personnel lasers have been designed that can cause intentional blindness in large numbers of personnel. Although the use of blinding laser weapons during combat has been prohibited by international legislation, research and development of these weapons have not been prohibited, and significant controversy remains. Unintentional blinding can also result from other types of lasers used on the battlefield, such as range-finders and anti-material lasers. Lasers that are capable of producing blindness operate within specific wavelength parameters and include visible and near infrared lasers. Patients who suffer from laser eye injuries usually complain of flash blindness, followed by transient or permanent visual loss. Laser retinal damage should be suspected in any patient with visual complaints in an operational setting. The treatment for laser retinal injuries is extremely limited, and prevention is essential. Improved protective eyeware and other countermeasures to laser eye injury are necessary as long as the threat remains.
The Analysis of the Problems the Pre-Service Teachers Experience in Posing Problems about Equations
ERIC Educational Resources Information Center
Isik, Cemalettin; Kar, Tugrul
2012-01-01
The present study aimed to analyse the potential difficulties in the problems posed by pre-service teachers about first degree equations with one unknown and equation pairs with two unknowns. It was carried out with 20 pre-service teachers studying in the Department of Elementary Mathematics Educations at a university in Eastern Turkey. The…
NASA Astrophysics Data System (ADS)
Buldt, J.; Müller, M.; Klas, R.; Eidam, T.; Limpert, J.; Tünnermann, A.
2018-02-01
We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered SPM broadened spectra. A measured temporal contrast enhancement by at least 7 orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.
Control and System Theory, Optimization, Inverse and Ill-Posed Problems
1988-09-14
Justlfleatlen Distribut ion/ Availability Codes # AFOSR-87-0350 Avat’ and/or1987-1988 Dist Special *CONTROL AND SYSTEM THEORY , ~ * OPTIMIZATION, * INVERSE...considerable va- riety of research investigations within the grant areas (Control and system theory , Optimization, and Ill-posed problems]. The
Nanosecond laser scribing of CIGS thin film solar cell based on ITO bottom contact
NASA Astrophysics Data System (ADS)
Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Yu, Yi Yin; Choi, JaeMyung; Jeong, Jeung-hyun; Hwang, David J.
2018-03-01
Cu(In,Ga)Se2 (CIGS) thin films, a promising photovoltaic architecture, have mainly relied on Molybdenum for the bottom contact. However, the opaque nature of Molybdenum (Mo) poses limitations in module level fabrication by laser scribing as a preferred method for interconnect. We examined the P1, P2, and P3 laser scribing processes on CIGS photovoltaic architecture on the indium tin oxide (ITO) bottom contact with a cost-effective nanosecond pulsed laser of 532 nm wavelength. Laser illuminated from the substrate side, enabled by the transparent bottom contact, facilitated selective laser energy deposition onto relevant interfaces towards high-quality scribing. Parametric tuning procedures are described in conjunction with experimental and numerical investigation of relevant mechanisms, and preliminary mini-module fabrication results are also presented.
Guideline Implementation: Energy-Generating Devices, Part 2-Lasers.
Burlingame, Byron L
2017-04-01
Lasers have been used in the OR for many years and are essential tools in many different types of procedures. However, laser beams that come into contact with unintended targets directly or via reflection can cause injury to patients or personnel or pose other hazards, such as fires. The new AORN "Guideline for safe use of energy-generating devices" provides guidance on the use of all energy-generating devices in the OR. This article focuses on key points of the guideline that address the safe use of lasers. These include the components of the laser safety program, the responsibilities of the personnel in roles specific to use of a laser, laser safety measures, and documentation of laser use. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.
The World in a Tomato: Revisiting the Use of "Codes" in Freire's Problem-Posing Education.
ERIC Educational Resources Information Center
Barndt, Deborah
1998-01-01
Gives examples of the use of Freire's notion of codes or generative themes in problem-posing literacy education. Describes how these applications expand Freire's conceptions by involving students in code production, including multicultural perspectives, and rethinking codes as representations. (SK)
Assessment of a Problem Posing Task in a Jamaican Grade Four Mathematics Classroom
ERIC Educational Resources Information Center
Munroe, Kayan Lloyd
2016-01-01
This paper analyzes how a teacher of mathematics used problem posing in the assessment of the cognitive development of 26 students at the grade-four level. The students, ages 8 to 10 years, were from a rural elementary school in western Jamaica. Using a picture as a prompt, students were asked to generate three arithmetic problems and to offer…
Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving
ERIC Educational Resources Information Center
Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio
2016-01-01
This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…
Problem Posing Based on Investigation Activities by University Students
ERIC Educational Resources Information Center
da Ponte, Joao Pedro; Henriques, Ana
2013-01-01
This paper reports a classroom-based study involving investigation activities in a university numerical analysis course. The study aims to analyse students' mathematical processes and to understand how these activities provide opportunities for problem posing. The investigations were intended to stimulate students in asking questions, to trigger…
Examining Mathematics Classroom Interactions: Elevating Student Roles in Teaching and Learning
ERIC Educational Resources Information Center
Kent, Laura
2017-01-01
This article introduces a model entitled, "Responsive Teaching through Problem Posing" or RTPP, that addresses a type of reform oriented mathematics teaching based on posing relevant problems, positioning students as experts of mathematics, and facilitating discourse. RTPP incorporates decades of research on students' thinking in…
MRI-Guided Laser Interstitial Thermal Therapy for Epilepsy.
North, Robert Y; Raskin, Jeffrey S; Curry, Daniel J
2017-10-01
MRI-guided laser interstitial thermal therapy for epilepsy (LITT-E) has become an established, minimally invasive alternative to traditional epilepsy surgery. LITT-E is particularly valuable in cases in which open surgery poses unacceptably high morbidity or patient preference precludes craniotomy. Here we present a focused review of technical details and application of LITT to both focal and generalized epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Koichu, Boris; Harel, Guershon; Manaster, Alfred
2013-01-01
Twenty-four mathematics teachers were asked to think aloud when posing a word problem whose solution could be found by computing 4/5 divided by 2/3. The data consisted of verbal protocols along with the written notes made by the subjects. The qualitative analysis of the data was focused on identifying the structures of the problems produced and…
NASA Technical Reports Server (NTRS)
1973-01-01
Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.
Implementing AORN Recommended Practices for Laser Safety.
Castelluccio, Donna
2012-05-01
Lasers used in the OR pose many risks to both patients and personnel. AORN's "Recommended practices for laser safety in perioperative practice settings" identifies the potential hazards associated with laser use, such as eye damage and fire- and smoke-related injuries. The practice recommendations are intended to be used as a guide for establishing best practices in the workplace and to give perioperative nurses strategies for implementing the recommended safety measures. A laser safety program should include measures to control access to laser use areas; protect staff members and patients from exposure to the laser beam; provide staff members and patients with the appropriate safety eyewear for use in the laser use area; and protect staff members and patients from surgical smoke, electrical, and fire hazards. Measures such as using a safety checklist or creating a laser cart can help perioperative nurses successfully incorporate the practice recommendations. Patient scenarios are included as examples of how to use the document in real-life situations. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Meanings Given to Algebraic Symbolism in Problem-Posing
ERIC Educational Resources Information Center
Cañadas, María C.; Molina, Marta; del Río, Aurora
2018-01-01
Some errors in the learning of algebra suggest that students might have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing to analyze the students' capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process, depending on the characteristics of the algebraic…
Enhancing Students' Communication Skills through Problem Posing and Presentation
ERIC Educational Resources Information Center
Sugito; E. S., Sri Mulyani; Hartono; Supartono
2017-01-01
This study was to explore how enhance communication skill through problem posing and presentation method. The subjects of this research were the seven grade students Junior High School, including 20 male and 14 female. This research was conducted in two cycles and each cycle consisted of four steps, they were: planning, action, observation, and…
Image-based aircraft pose estimation: a comparison of simulations and real-world data
NASA Astrophysics Data System (ADS)
Breuers, Marcel G. J.; de Reus, Nico
2001-10-01
The problem of estimating aircraft pose information from mono-ocular image data is considered using a Fourier descriptor based algorithm. The dependence of pose estimation accuracy on image resolution and aspect angle is investigated through simulations using sets of synthetic aircraft images. Further evaluation shows that god pose estimation accuracy can be obtained in real world image sequences.
3D Vectorial Time Domain Computational Integrated Photonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallman, J S; Bond, T C; Koning, J M
2007-02-16
The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market,more » they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the microchip laser logic devices as well as devices characterized by electromagnetic (EM) propagation in nonlinear materials with time-varying parameters. The deliverables for this project were extended versions of the laser logic device code Quench2D and the EM propagation code EMsolve with new modules containing the novel solutions incorporated by taking advantage of the existing software interface and structured computational modules. Our approach was multi-faceted since no single methodology can always satisfy the tradeoff between model runtime and accuracy requirements. We divided the problems to be solved into two main categories: those that required Full Wave Methods and those that could be modeled using Approximate Methods. Full Wave techniques are useful in situations where Maxwell's equations are not separable (or the problem is small in space and time), while approximate techniques can treat many of the remaining cases.« less
Floor Sensing System Using Laser Reflectivity for Localizing Everyday Objects and Robot
Pyo, Yoonseok; Hasegawa, Tsutomu; Tsuji, Tokuo; Kurazume, Ryo; Morooka, Ken'ichi
2014-01-01
This paper describes a new method of measuring the position of everyday objects and a robot on the floor using distance and reflectance acquired by laser range finder (LRF). The information obtained by this method is important for a service robot working in a human daily life environment. Our method uses only one LRF together with a mirror installed on the wall. Moreover, since the area of sensing is limited to a LRF scanning plane parallel to the floor and just a few centimeters above the floor, the scanning covers the whole room with minimal invasion of privacy of a resident, and occlusion problem is mitigated by using mirror. We use the reflection intensity and position information obtained from the target surface. Although it is not possible to identify all objects by additionally using reflection values, it would be easier to identify unknown objects if we can eliminate easily identifiable objects by reflectance. In addition, we propose a method for measuring the robot's pose using the tag which has the encoded reflection pattern optically identified by the LRF. Our experimental results validate the effectiveness of the proposed method. PMID:24763253
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.
Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less
Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...
2016-12-26
Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less
Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui
2017-01-01
Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments. PMID:28216555
Liu, Tao; Guo, Yin; Yang, Shourui; Yin, Shibin; Zhu, Jigui
2017-02-14
Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF) pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.
NASA Astrophysics Data System (ADS)
Andreev, N. E.; Gorbunov, Leonid M.; Tikhonchuk, Vladimir T.
1994-09-01
A brief analysis is made of the most important nonlinear processes which result from the interaction of laser radiation with thermonuclear targets. lt is shown that problems in the physics of the plasma corona should be an essential part of any programme of research on laser controlled thermonuclear fusion. A list is given of the problems that have to be solved first before going to the next level of laser energies.
Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D
ERIC Educational Resources Information Center
Doliotis, Paul
2013-01-01
The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…
Tella-Amo, Marcel; Peter, Loic; Shakir, Dzhoshkun I.; Deprest, Jan; Iglesias, Juan Eugenio; Ourselin, Sebastien
2018-01-01
Abstract. The most effective treatment for twin-to-twin transfusion syndrome is laser photocoagulation of the shared vascular anastomoses in the placenta. Vascular connections are extremely challenging to locate due to their caliber and the reduced field-of-view of the fetoscope. Therefore, mosaicking techniques are beneficial to expand the scene, facilitate navigation, and allow vessel photocoagulation decision-making. Local vision-based mosaicking algorithms inherently drift over time due to the use of pairwise transformations. We propose the use of an electromagnetic tracker (EMT) sensor mounted at the tip of the fetoscope to obtain camera pose measurements, which we incorporate into a probabilistic framework with frame-to-frame visual information to achieve globally consistent sequential mosaics. We parametrize the problem in terms of plane and camera poses constrained by EMT measurements to enforce global consistency while leveraging pairwise image relationships in a sequential fashion through the use of local bundle adjustment. We show that our approach is drift-free and performs similarly to state-of-the-art global alignment techniques like bundle adjustment albeit with much less computational burden. Additionally, we propose a version of bundle adjustment that uses EMT information. We demonstrate the robustness to EMT noise and loss of visual information and evaluate mosaics for synthetic, phantom-based and ex vivo datasets. PMID:29487889
Development of a Mobile Learning System Based on a Collaborative Problem-Posing Strategy
ERIC Educational Resources Information Center
Sung, Han-Yu; Hwang, Gwo-Jen; Chang, Ya-Chi
2016-01-01
In this study, a problem-posing strategy is proposed for supporting collaborative mobile learning activities. Accordingly, a mobile learning environment has been developed, and an experiment on a local culture course has been conducted to evaluate the effectiveness of the proposed approach. Three classes of an elementary school in southern Taiwan…
ERIC Educational Resources Information Center
Yilmaz, Yasemin; Durmus, Soner; Yaman, Hakan
2018-01-01
This study investigated the pattern problems posed by middle school mathematics preservice teachers using multiple representations to determine both their pattern knowledge levels and their abilities to transfer this knowledge to students. The design of the study is the survey method, one of the quantitative research methods. The study group was…
ERIC Educational Resources Information Center
Wang, Xiao-Ming; Hwang, Gwo-Jen
2017-01-01
Computer programming is a subject that requires problem-solving strategies and involves a great number of programming logic activities which pose challenges for learners. Therefore, providing learning support and guidance is important. Collaborative learning is widely believed to be an effective teaching approach; it can enhance learners' social…
ERIC Educational Resources Information Center
Solórzano, Lorena Salazar
2015-01-01
Beginning university training programs must focus on different competencies for mathematics teachers, i.e., not only on solving problems, but also on posing them and analyzing the mathematical activity. This paper reports the results of an exploratory study conducted with future secondary school mathematics teachers on the introduction of…
A Short Range, High Accuracy Radar Ranging System,
1984-12-01
may be of any type and can perform the same functions as any other type of radar (pulsed or continuous wave (CW), coherent or noncoherent , etc.). The...use of an optical carrier frequency 4 enables laser radars to take advantage of the benefits inherent in higher frequencies: higher bandwidths allow...results that are inaccurate or incorrect. Also, directing a laser beam at an aircraft cockpit from a range of 25 feet would pose a serious safety
Assimilating data into open ocean tidal models
NASA Astrophysics Data System (ADS)
Kivman, Gennady A.
The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.
Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.
Lee, Donghwa; Myung, Hyun
2014-07-11
In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system.
ERIC Educational Resources Information Center
Lavy, Ilana; Shriki, Atara
2010-01-01
In the present study we explore changes in perceptions of our class of prospective mathematics teachers (PTs) regarding their mathematical knowledge. The PTs engaged in problem posing activities in geometry, using the "What If Not?" (WIN) strategy, as part of their work on computerized inquiry-based activities. Data received from the PTs'…
Mathematical Problem Posing as a Measure of Curricular Effect on Students' Learning
ERIC Educational Resources Information Center
Cai, Jinfa; Moyer, John C.; Wang, Ning; Hwang, Stephen; Nie, Bikai; Garber, Tammy
2013-01-01
In this study, we used problem posing as a measure of the effect of middle-school curriculum on students' learning in high school. Students who had used a standards-based curriculum in middle school performed equally well or better in high school than students who had used more traditional curricula. The findings from this study not only show…
Pose-Invariant Face Recognition via RGB-D Images.
Sang, Gaoli; Li, Jing; Zhao, Qijun
2016-01-01
Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions.
A pose estimation method for unmanned ground vehicles in GPS denied environments
NASA Astrophysics Data System (ADS)
Tamjidi, Amirhossein; Ye, Cang
2012-06-01
This paper presents a pose estimation method based on the 1-Point RANSAC EKF (Extended Kalman Filter) framework. The method fuses the depth data from a LIDAR and the visual data from a monocular camera to estimate the pose of a Unmanned Ground Vehicle (UGV) in a GPS denied environment. Its estimation framework continuy updates the vehicle's 6D pose state and temporary estimates of the extracted visual features' 3D positions. In contrast to the conventional EKF-SLAM (Simultaneous Localization And Mapping) frameworks, the proposed method discards feature estimates from the extended state vector once they are no longer observed for several steps. As a result, the extended state vector always maintains a reasonable size that is suitable for online calculation. The fusion of laser and visual data is performed both in the feature initialization part of the EKF-SLAM process and in the motion prediction stage. A RANSAC pose calculation procedure is devised to produce pose estimate for the motion model. The proposed method has been successfully tested on the Ford campus's LIDAR-Vision dataset. The results are compared with the ground truth data of the dataset and the estimation error is ~1.9% of the path length.
Interfacial waves generated by contact line motion through electrowetting
NASA Astrophysics Data System (ADS)
Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Bae, Jungmok; Kim, Ho-Young
2013-11-01
The contact angle of a liquid-fluid interface can be effectively modulated by EWOD (electrowetting on dielectric). Rapid movement of the contact line, which can be achieved by swift change of voltages at the electrodes, can give rise to interfacial waves under the strong influence of surface tension. Many optofluidic devices employing EWOD actuation, such as lenses, three-dimensional displays and laser radar, use two different liquids in a single cell, implying that the motions of the two liquids should be considered simultaneously to solve the dynamics of interfacial waves. Furthermore, the capillary waves excited by moving contact lines, which inherently involve slipping flows at solid boundaries, pose an interesting problem that has not been treated so far. We perform a perturbation analysis for this novel wave system to find the dispersion relation that relates the wavenumber, and the decay length over which the wave is dissipated by viscous effects. We experimentally corroborate our theory.
Latest innovations for tattoo and permanent makeup removal.
Mao, Johnny C; DeJoseph, Louis M
2012-05-01
The goal of this article is to reveal the latest techniques and advances in laser removal of both amateur and professional tattoos, as well as cosmetic tattoos and permanent makeup. Each pose different challenges to the removing physician, but the goal is always the same: removal without sequelae. The authors' technique is detailed, and discussion of basic principles of light reflection, ink properties, effects of laser energy and heat, and outcomes and complications of tattoo removal are presented. Copyright © 2012 Elsevier Inc. All rights reserved.
Solar-pumped solid state Nd lasers
NASA Technical Reports Server (NTRS)
Williams, M. D.; Zapata, L.
1985-01-01
Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.
[Evaluation of Educational Effect of Problem-Posing System in Nursing Processing Study].
Tsuji, Keiko; Takano, Yasuomi; Yamakawa, Hiroto; Kaneko, Daisuke; Takai, Kiyako; Kodama, Hiromi; Hagiwara, Tomoko; Komatsugawa, Hiroshi
2015-09-01
The nursing processing study is generally difficult, because it is important for nursing college students to understand knowledge and utilize it. We have developed an integrated system to understand, utilize, and share knowledge. We added a problem-posing function to this system, and expected that students would deeply understand the nursing processing study through the new system. This system consisted of four steps: create a problem, create an answer input section, create a hint, and verification. Nursing students created problems related to nursing processing by this system. When we gave a lecture on the nursing processing for second year students of A university, we tried to use the creating problem function of this system. We evaluated the effect by the number of problems and the contents of the created problem, that is, whether the contents consisted of a lecture stage or not. We also evaluated the correlation between those and regular examination and report scores. We derived the following: 1. weak correlation between the number of created problems and report score (r=0.27), 2. significant differences between regular examination and report scores of students who created problems corresponding to the learning stage, and those of students who created problems not corresponding to it (P<0.05). From these results, problem-posing is suggested to be effective to fix and utilize knowledge in the lecture of nursing processing theory.
ERIC Educational Resources Information Center
Akay, Hayri; Boz, Nihat
2010-01-01
Research on mathematics teaching and learning has recently focused on affective variables, which were found to play an essential role that influences behaviour and learning. Despite its importance, problem posing has not yet received the attention it warrants from the mathematics education community. Perceived self-efficacy beliefs have been found…
Target identification using Zernike moments and neural networks
NASA Astrophysics Data System (ADS)
Azimi-Sadjadi, Mahmood R.; Jamshidi, Arta A.; Nevis, Andrew J.
2001-10-01
The development of an underwater target identification algorithm capable of identifying various types of underwater targets, such as mines, under different environmental conditions pose many technical problems. Some of the contributing factors are: targets have diverse sizes, shapes and reflectivity properties. Target emplacement environment is variable; targets may be proud or partially buried. Environmental properties vary significantly from one location to another. Bottom features such as sand, rocks, corals, and vegetation can conceal a target whether it is partially buried or proud. Competing clutter with responses that closely resemble those of the targets may lead to false positives. All the problems mentioned above contribute to overly difficult and challenging conditions that could lead to unreliable algorithm performance with existing methods. In this paper, we developed and tested a shape-dependent feature extraction scheme that provides features invariant to rotation, size scaling and translation; properties that are extremely useful for any target classification problem. The developed schemes were tested on an electro-optical imagery data set collected under different environmental conditions with variable background, range and target types. The electro-optic data set was collected using a Laser Line Scan (LLS) sensor by the Coastal Systems Station (CSS), located in Panama City, Florida. The performance of the developed scheme and its robustness to distortion, rotation, scaling and translation was also studied.
One Answer to "What Is Calculus?"
ERIC Educational Resources Information Center
Shilgalis, Thomas W.
1979-01-01
A number of questions are posed that can be answered with the aid of calculus. These include best value problems, best shape problems, problems involving integration, and growth and decay problems. (MP)
Pose-free structure from motion using depth from motion constraints.
Zhang, Ji; Boutin, Mireille; Aliaga, Daniel G
2011-10-01
Structure from motion (SFM) is the problem of recovering the geometry of a scene from a stream of images taken from unknown viewpoints. One popular approach to estimate the geometry of a scene is to track scene features on several images and reconstruct their position in 3-D. During this process, the unknown camera pose must also be recovered. Unfortunately, recovering the pose can be an ill-conditioned problem which, in turn, can make the SFM problem difficult to solve accurately. We propose an alternative formulation of the SFM problem with fixed internal camera parameters known a priori. In this formulation, obtained by algebraic variable elimination, the external camera pose parameters do not appear. As a result, the problem is better conditioned in addition to involving much fewer variables. Variable elimination is done in three steps. First, we take the standard SFM equations in projective coordinates and eliminate the camera orientations from the equations. We then further eliminate the camera center positions. Finally, we also eliminate all 3-D point positions coordinates, except for their depths with respect to the camera center, thus obtaining a set of simple polynomial equations of degree two and three. We show that, when there are merely a few points and pictures, these "depth-only equations" can be solved in a global fashion using homotopy methods. We also show that, in general, these same equations can be used to formulate a pose-free cost function to refine SFM solutions in a way that is more accurate than by minimizing the total reprojection error, as done when using the bundle adjustment method. The generalization of our approach to the case of varying internal camera parameters is briefly discussed. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Neulist, Joerg; Armbruster, Walter
2005-05-01
Model-based object recognition in range imagery typically involves matching the image data to the expected model data for each feasible model and pose hypothesis. Since the matching procedure is computationally expensive, the key to efficient object recognition is the reduction of the set of feasible hypotheses. This is particularly important for military vehicles, which may consist of several large moving parts such as the hull, turret, and gun of a tank, and hence require an eight or higher dimensional pose space to be searched. The presented paper outlines techniques for reducing the set of feasible hypotheses based on an estimation of target dimensions and orientation. Furthermore, the presence of a turret and a main gun and their orientations are determined. The vehicle parts dimensions as well as their error estimates restrict the number of model hypotheses whereas the position and orientation estimates and their error bounds reduce the number of pose hypotheses needing to be verified. The techniques are applied to several hundred laser radar images of eight different military vehicles with various part classifications and orientations. On-target resolution in azimuth, elevation and range is about 30 cm. The range images contain up to 20% dropouts due to atmospheric absorption. Additionally some target retro-reflectors produce outliers due to signal crosstalk. The presented algorithms are extremely robust with respect to these and other error sources. The hypothesis space for hull orientation is reduced to about 5 degrees as is the error for turret rotation and gun elevation, provided the main gun is visible.
Laser-based firing systems for prompt initiation of secondary explosives
NASA Technical Reports Server (NTRS)
Meeks, Kent D.; Setchell, Robert E.
1993-01-01
Motivated by issues of weapon safety and security, laser based firing systems for promptly initiating secondary explosives have been under active development at Sandia National Laboratories for more than four years. Such a firing system consists of miniaturized, Q-switched, solid-state laser, optical detonators, optical safety switches, and elements for splitting, coupling, and transmitting the laser output. Potential system applications pose significant challenges in terms of server mechanical and thermal environments and packaging constraints, while requiring clear demonstration of safety enhancements. The Direct Optical Initiation (DOI) Program at Sandia is addressing these challenges through progress development phases during which the design, fabrication, and testing of prototype hardware is aimed at more difficult application requirements. A brief history of the development program, and a summary of current and planned activities, will be presented.
Multi-object segmentation using coupled nonparametric shape and relative pose priors
NASA Astrophysics Data System (ADS)
Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep
2009-02-01
We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.
An international review of laser Doppler vibrometry: Making light work of vibration measurement
NASA Astrophysics Data System (ADS)
Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T.; Steger, H.; Tomasini, E. P.; Vanlanduit, S.; Vignola, J. F.
2017-12-01
In 1964, just a few years after the invention of the laser, a fluid velocity measurement based on the frequency shift of scattered light was made and the laser Doppler technique was born. This comprehensive review paper charts advances in the development and applications of laser Doppler vibrometry (LDV) since those first pioneering experiments. Consideration is first given to the challenges that continue to be posed by laser speckle. Scanning LDV is introduced and its significant influence in the field of experimental modal analysis described. Applications in structural health monitoring and MEMS serve to demonstrate LDV's applicability on structures of all sizes. Rotor vibrations and hearing are explored as examples of the classic applications. Applications in acoustics recognise the versatility of LDV as demonstrated by visualisation of sound fields. The paper concludes with thoughts on future developments, using examples of new multi-component and multi-channel instruments.
CO2 laser arthroscopy-through the arthroscope
NASA Astrophysics Data System (ADS)
Garrick, James G.
1990-06-01
Orthopedists have been among the last of the specialists to utilize lasers in surgery. Even today, laser usage in orthopedics is almost exclusively limited to arthroscopy procedures. Although other types of lasers have been approved for use in orthopedics, nearly all laser-assisted arthroscopic procedures have involved the carbon dioxide laser in the knee. These techniques involve skills and problems not previously encountered. In an attempt to simplify the usage and circumvent some of the problems, we describe a means of laser energy delivery through the arthroscope.
Laser Ablation Experiments on the Tamdakht H5 Chondrite
NASA Technical Reports Server (NTRS)
White, Susan M.; Stern, Eric
2017-01-01
High-powered lasers were used to induce ablation and to form fusion crusts in the lab on Tamdakht H5 chondrites and basalt. These ground tests were undertaken to improve our understanding, and ultimately improve our abilty to model and predict, meteoroid ablation during atmospheric entry. The infrared fiber laser at the LHMEL facilty, operated in the continuous wave (i.e. non-pulsed) mode, provided radiation surface heat flux at levels similar to meteor entry for these tests. Results are presented from the first round of testing on samples of Tamdakht H5 ordinary chondrite which were ex-posed to entry-relevant heating rates between 2 and 10 kWcm2.
Analysis of a space debris laser removal system
NASA Astrophysics Data System (ADS)
Gjesvold, Evan; Straub, Jeremy
2017-05-01
As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.
Shock isolator for diode laser operation on a closed-cycle refrigerator
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Hillman, J. J.
1977-01-01
Closed-cycle helium refrigerators are widely used as coolers for semiconductor diode lasers. These refrigerators pose several difficulties including temperature oscillations due to varying refrigerator capacity during the Solvay cycle, and impact shocks delivered to the diode in the cycle's expansion phase. A shock isolator has been designed to isolate diode lasers from such impact shocks. Slow diode current scans have been made before installation of the shock isolator, with the isolator but no thermal damper, and with both devices. With the isolator and no damper, the diode output frequency oscillated at the refrigerator cycle rate, deviating by plus or minus 40 MHz. Using the isolator and the damper no frequency fluctuation was detected.
NASA Astrophysics Data System (ADS)
Awi; Ahmar, A. S.; Rahman, A.; Minggi, I.; Mulbar, U.; Asdar; Ruslan; Upu, H.; Alimuddin; Hamda; Rosidah; Sutamrin; Tiro, M. A.; Rusli
2018-01-01
This research aims to reveal the profile about the level of creativity and the ability to propose statistical problem of students at Mathematics Education 2014 Batch in the State University of Makassar in terms of their cognitive style. This research uses explorative qualitative method by giving meta-cognitive scaffolding at the time of research. The hypothesis of research is that students who have field independent (FI) cognitive style in statistics problem posing from the provided information already able to propose the statistical problem that can be solved and create new data and the problem is already been included as a high quality statistical problem, while students who have dependent cognitive field (FD) commonly are still limited in statistics problem posing that can be finished and do not load new data and the problem is included as medium quality statistical problem.
Incorporating structure from motion uncertainty into image-based pose estimation
NASA Astrophysics Data System (ADS)
Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen
2015-05-01
A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.
Belmonte, Aniceto; Taylor, Michael T; Hollberg, Leo; Kahn, Joseph M
2017-07-10
The need for an accurate time reference on orbiting platforms motivates study of time transfer via free-space optical communication links. The impact of atmospheric turbulence on earth-to-satellite optical time transfer has not been fully characterized, however. We analyze limits to two-way laser time transfer accuracy posed by anisoplanatic non-reciprocity between uplink and downlink. We show that despite limited reciprocity, two-way time transfer can still achieve sub-picosecond accuracy in realistic propagation scenarios over a single satellite visibility period.
Femtosecond laser-assisted cataract surgery in pediatric patients.
Corredor-Ortega, Claudia; Gonzalez-Salinas, Roberto; Montero, María José; González-Flores, Rocío; Collura-Merlier, Allan; Cervantes-Coste, Guadalupe; Mendoza-Schuster, Erick; Velasco-Barona, Cecilio
2018-04-01
Pediatric cataract surgery poses a significant challenge for the cataract surgeon, in part because an elastic anterior capsule can make capsulorhexis difficult. With the use of femtosecond laser-assisted cataract surgery (FLACS), however, the continuous curvilinear capsulorhexis can be made with predictable size, circular shape, centration, and accuracy. In addition, topical anesthesia can be used for the FLACS docking procedure in cooperative children above 6 years of age, using transparent adhesive polyurethane film segments. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
Autonomous target recognition using remotely sensed surface vibration measurements
NASA Astrophysics Data System (ADS)
Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.
1993-09-01
The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.
NASA Astrophysics Data System (ADS)
de Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Pires-Santos, Gustavo M.; Sampaio, Fernando José P.; Zanin, Fátima Antônia A.; Pinheiro, Antônio L. B.
2015-03-01
Nowadays photodynamic inactivation has been proposed as an alternative treatment for localized bacterial infections as a response to the problem of antibiotic resistance. Much is already known about the photodynamic inactivation of microorganisms: both antibiotic-sensitive and -resistant strains can be successfully photoinactivated and there is the additional advantage that repeated photosensitization of bacterial cells does not induce a selection of resistant strains. Staphylococcus spp. are opportunistic microorganisms known for their capacity to develop resistance against antimicrobial agents. The emergence of resistant strains of bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) poses a major challenge to healthcare. MRSA is a major cause of hospital-acquired infection throughout the world and is now also prevalent in the community as well as nursing and residential homes. The aim of this study was to evaluate the phagocytic function of macrophages J774 against S. aureus in the presence and absence of AmPDT with phenothiazine compound (12.5 μg/mL) and low level laser (λ=660nm, 12 J/cm²). Experimental groups: Control group (L-P-), Phenothiazine group (L-P+) Laser group (L+P-), AmPDT group (L+P+).The tests presented in this study were performed in triplicate. This study showed that AmPDT induced bacterial death in about 80% as well as increasing phagocytic capacity of macrophages by approximately 20% and enhanced the antimicrobial activity by approximately 50% compared to the control group and enabling more intense oxidative burst.
Face pose tracking using the four-point algorithm
NASA Astrophysics Data System (ADS)
Fung, Ho Yin; Wong, Kin Hong; Yu, Ying Kin; Tsui, Kwan Pang; Kam, Ho Chuen
2017-06-01
In this paper, we have developed an algorithm to track the pose of a human face robustly and efficiently. Face pose estimation is very useful in many applications such as building virtual reality systems and creating an alternative input method for the disabled. Firstly, we have modified a face detection toolbox called DLib for the detection of a face in front of a camera. The detected face features are passed to a pose estimation method, known as the four-point algorithm, for pose computation. The theory applied and the technical problems encountered during system development are discussed in the paper. It is demonstrated that the system is able to track the pose of a face in real time using a consumer grade laptop computer.
Diode-pumped DUV cw all-solid-state laser to replace argon ion lasers
NASA Astrophysics Data System (ADS)
Zanger, Ekhard; Liu, B.; Gries, Wolfgang
2000-04-01
The slim series DELTATRAINTM-worldwide the first integrated cw diode-pumped all-solid-state DUV laser at 266 nm with a compact, slim design-has been developed. The slim design minimizes the DUV DPSSL footprint and thus greatly facilitates the replacement of commonly used gas ion lasers, including these with intra-cavity frequency doubling, in numerous industrial and scientific applications. Such a replacement will result in an operation cost reduction by several thousands US$DLR each year for one unit. Owing to its unique geometry-invariant frequency doubling cavity- based on the LAS patent-pending DeltaConcept architecture- this DUV laser provides excellent beam-pointing stability of <2 (mu) rad/ degree(s)C and power stability of <2%. The newest design of the cavity block has adopted a cemented resonator with each component positioned precisely inside a compact monolithic metal block. The automatic and precise crystal shifter ensures long operation lifetime of > 5000 hours of whole 266 nm laser. The microprocessor controlled power supply provides an automatic control of the whole 266 nm laser, making this DUV laser a hands-off system which can meet tough requirements posed by numerous industrial and scientific applications. It will replace the commonplace ion laser as the future DUV laser of choice.
Enabling laser applications in microelectronics manufacturing
NASA Astrophysics Data System (ADS)
Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf
2016-02-01
In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.
A fast and accurate imaging algorithm in optical/diffusion tomography
NASA Astrophysics Data System (ADS)
Klibanov, M. V.; Lucas, T. R.; Frank, R. M.
1997-10-01
An n-dimensional (n = 2,3) inverse problem for the parabolic/diffusion equation 0266-5611/13/5/015/img1, 0266-5611/13/5/015/img2, 0266-5611/13/5/015/img3, 0266-5611/13/5/015/img4 is considered. The problem consists of determining the function a(x) inside of a bounded domain 0266-5611/13/5/015/img5 given the values of the solution u(x,t) for a single source location 0266-5611/13/5/015/img6 on a set of detectors 0266-5611/13/5/015/img7, where 0266-5611/13/5/015/img8 is the boundary of 0266-5611/13/5/015/img9. A novel numerical method is derived and tested. Numerical tests are conducted for n = 2 and for ranges of parameters which are realistic for applications to early breast cancer diagnosis and the search for mines in murky shallow water using ultrafast laser pulses. The main innovation of this method lies in a new approach for a novel linearized problem (LP). Such a LP is derived and reduced to a well-posed boundary-value problem for a coupled system of elliptic partial differential equations. A principal advantage of this technique is in its speed and accuracy, since it leads to the factorization of well conditioned, sparse matrices with non-zero entries clustered in a narrow band near the diagonal. The authors call this approach the elliptic systems method (ESM). The ESM can be extended to other imaging modalities.
Study on robot motion control for intelligent welding processes based on the laser tracking sensor
NASA Astrophysics Data System (ADS)
Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju
2017-06-01
A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.
Progress in the Growth of Yb:S-FAP Laser Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffers, K I; Tassano, J B; Waide, P A
The crystal growth of Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] is being studied for 1.047-{micro}m laser operation. These crystals are not yet routinely available and the growth of high optical quality, low loss crystals poses a challenge due to a number of crystal growth issues, including, cloudiness, bubble core defects, anomalous absorption, low-angle grain boundaries, and cracking. At this time, a growth process has been formulated to simultaneously eliminate or greatly diminish each of the defects yielding high quality material. Laser slabs of dimension 4.0 x 6.0 x 0.75 cm are being fabricated from sub-scale pieces using the diffusion bondingmore » technique.« less
Electro-optic harmonic conversion to switch a laser beam out of a cavity
Haas, R.A.; Henesian, M.A.
1984-10-19
The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.
Williams, G P; Ang, H P; George, B L; Liu, Y C; Peh, G; Izquierdo, L; Tan, D T; Mehta, J S
2015-10-06
Cataract surgery is the most common surgical procedure and femtosecond laser assisted cataract surgery (FLACS) has gained increased popularity. FLACS requires the application of a suction device to stabilize the laser head and focus the laser beam accurately. This may cause a significant escalation in intra-ocular pressure (IOP), which poses potential risks for patients undergoing cataract surgery. In this study we aimed to assess the effect of the Ziemer LDV Z8 femtosecond cataract machine on IOP. We demonstrated through a porcine model that IOP was significantly higher with a flat interface but could be abrogated by reducing surgical compression and vacuum. Pressure was lower with a liquid interface, and further altering angulation of the laser arm could reduce the IOP to 36 mmHg. A pilot series in patients showed comparable pressure rises with the porcine model (30 mmHg). These strategies may improve the safety profile in patients vulnerable to high pressure when employing FLACS with the Ziemer LDV Z8.
Nakatsutsumi, M; Sentoku, Y; Korzhimanov, A; Chen, S N; Buffechoux, S; Kon, A; Atherton, B; Audebert, P; Geissel, M; Hurd, L; Kimmel, M; Rambo, P; Schollmeier, M; Schwarz, J; Starodubtsev, M; Gremillet, L; Kodama, R; Fuchs, J
2018-01-18
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm -2 ) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.
Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; ...
2018-01-18
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less
Advanced Q-switched DPSS lasers for ID-card marking
NASA Astrophysics Data System (ADS)
Hertwig, Michael; Paster, Martin; Terbrueggen, Ralf
2008-02-01
Increased homeland security concerns across the world have generated a strong demand for forgery-proof ID documents. Manufacturers currently employ a variety of high technology techniques to produce documents that are difficult to copy. However, production costs and lead times are still a concern when considering any possible manufacturing technology. Laser marking has already emerged as an important tool in the manufacturer's arsenal, and is currently being utilized to produce a variety of documents, such as plastic ID cards, drivers' licenses, health insurance cards and passports. The marks utilized can range from simple barcodes and text to high resolution, true grayscale images. The technical challenges posed by these marking tasks include delivering adequate mark legibility, minimizing substrate burning or charring, accurately reproducing grayscale data, and supporting the required process throughput. This article covers the advantages and basic requirements on laser marking of cards and reviews how laser output parameters affect marking quality, speed and overall process economics.
Balaraman, Brundha; Friedman, Paul M
2016-04-01
The removal of Becker's nevi poses a significant challenge due to limited available therapeutic options and increased risk of adverse effects, including scarring and dyspigmentation. Herein, we present the use of the non-ablative fractional photothermolysis in combination with laser hair removal for the treatment of hypertrichotic Becker's nevi. Retrospective analysis of three patients with Becker's nevi revealed that two patients with hypertrichotic Becker's nevi had greater than 75% clearance with combination therapy, and one patient with atrichotic Becker's nevus had a similar result with monotherapy non-ablative fractional photothermolysis. This report demonstrates the utility and safety of combination non-ablative fractional resurfacing and laser hair removal for the treatment of hypertrichotic Becker's nevi, and monotherapy non-ablative fractional photothermolysis for atrichotic Becker's nevi. Further comparative studies are necessary to determine optimal laser parameters, treatment schedules, and response duration. © 2016 Wiley Periodicals, Inc.
3D atom microscopy in the presence of Doppler shift
NASA Astrophysics Data System (ADS)
Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid
2018-03-01
The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.
Safe laser application requires more than laser safety
NASA Astrophysics Data System (ADS)
Frevel, A.; Steffensen, B.; Vassie, L.
1995-02-01
An overview is presented concerning aspects of laser safety in European industrial laser use. Surveys indicate that there is a large variation in the safety strategies amongst industrial laser users. Some key problem areas are highlighted. Emission of hazardous substances is a major problem for users of laser material processing systems where the majority of the particulate is of a sub-micrometre size, presenting a respiratory hazard. Studies show that in many cases emissions are not frequently monitored in factories and uncertainty exists over the hazards. Operators of laser machines do not receive adequate job training or safety training. The problem is compounded by a plethora of regulations and standards which are difficult to interpret and implement, and inspectors who are not conversant with the technology or the issues. A case is demonstrated for a more integrated approach to laser safety, taking into account the development of laser applications, organizational and personnel development, in addition to environmental and occupational health and safety aspects. It is necessary to achieve a harmonization between these elements in any organization involved in laser technology. This might be achieved through establishing technology transfer centres in laser technology.
Read-Fuller, Andrew M; Yates, David M; Vu, David D; Hoopman, John E; Finn, Richard A
2017-01-01
Facial resurfacing with a CO 2 laser has been used for treatment of pathologic lesions and for cosmetic purposes. Postoperative complications and problems after laser resurfacing include infections, acneiform lesions, and pigment changes. This retrospective study describes the most common problems and complications in 105 patients and assesses postoperative pain in 38 patients. All patients received CO 2 laser resurfacing for treatment of malignant/premalignant lesions and had postoperative follow-up to assess problems and complications. Some had follow-up to assess postoperative pain. All patients had Fitzpatrick I-III skin types and underwent the same perioperative care regimen. There were 11 problems and 2 complications. Problems included infection, acneiform lesion/milia, and uncontrolled postoperative pain. Complications included hyperpigmentation. Among the postoperative pain group, 53% reported no pain and the rest had mild or moderate pain. Complications are rare. Infection and acneiform lesions/milia were the most common problems, as previously reported. Most patients do not experience postoperative pain. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wyatt, Philip
2009-03-01
The electromagnetic inverse scattering problem suggests that if a homogeneous and non-absorbing object be illuminated with a monochromatic light source and if the far field scattered light intensity is known at sufficient scattering angles, then, in principle, one could derive the dielectric structure of the scattering object. In general, this is an ill-posed problem and methods must be developed to regularize the search for unique solutions. An iterative procedure often begins with a model of the scattering object, solves the forward scattering problem using this model, and then compares these calculated results with the measured values. Key to any such solution is instrumentation capable of providing adequate data. To this end, the development of the first laser based absolute light scattering photometers is described together with their continuing evolution and some of the remarkable discoveries made with them. For particles much smaller than the wavelength of the incident light (e.g. macromolecules), the inverse scattering problems are easily solved. Among the many solutions derived with this instrumentation are the in situ structure of bacterial cells, new drug delivery mechanisms, the development of new vaccines and other biologicals, characterization of wines, the possibility of custom chemotherapy, development of new polymeric materials, identification of protein crystallization conditions, and a variety discoveries concerning protein interactions. A new form of the problem is described to address bioterrorist threats. Over the many years of development and refinement, one element stands out as essential for the successes that followed: the R and D teams were always directed and executed by physics trained theorists and experimentalists. 14 Ph. D. physicists each made his/her unique contribution to the development of these evolving instruments and the interpretation of their results.
Problem-Solving Support for English Language Learners
ERIC Educational Resources Information Center
Wiest, Lynda R.
2008-01-01
Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…
Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides
NASA Astrophysics Data System (ADS)
Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf
2018-02-01
While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.
Improved solution of the lidar equation utilizing particle counter measurements
NASA Technical Reports Server (NTRS)
Jaeger, H.; Hofmann, D. J.; Jaeger, H.; Hofmann, D. J.
1986-01-01
The extraction of particle backscattering from incoherent lidar measurements poses some problems. In the case of measurements of the stratospheric aerosol layer the solution of the lidar equation is based on two assumptions which are necessary to normalize the measured signal and to correct it with the two-way transmission of the laser pulse. Normalization and transmission are tackled by adding the information contained in aerosol particle counter measurements of the University of Wyoming to the ruby lidar measurements at Garmisch-Partenkirchen. Calculated backscattering from height levels above 25 km for the El Chichon period will be compared with lidar measurements and necessary corrections. The calculated backscatter-to-extinction ratios are compared to those, which were derived from a comparison of published extinction values to measured lidar backscattering at Garmisch. These ratios were used to calculate the Garmisch lidar returns. For the period 4 to 12 months after the El Chichon eruption a backscater-to-extinction ratio of 0.026 1/sr was applied with smaller values before and after that time.
Formulation of benzoporphyrin derivatives in Pluronics.
Chowdhary, Rubinah K; Chansarkar, Namrata; Sharif, Isha; Hioka, Noboru; Dolphin, David
2003-03-01
This study investigates the potential of Pluronics for the formulation of tetrapyrrole-based photosensitizers, with a particular focus on B-ring benzoporphyrin derivatives. The B-ring derivatives have a high tendency to aggregate in aqueous solutions, and this poses a significant formulation problem. Pluronics are ABA-type triblock copolymers composed of a central hydrophobic polypropylene oxide section with two hydrophilic polyethylene oxide sections of equal length at either end. Out of a range of different commercially available block copolymers studied, it was found that the longer the hydrophobic block, the better the stabilization of tetrapyrrolic drugs in monomeric form in aqueous suspensions. Of these the best performance was observed in the micelle-forming Pluronic P123. Micelle size determination by laser light scattering confirmed that particle size in stable Pluronic formulations was around 20 nm. Pluronics such as L122 formed emulsions spontaneously without the need for emulsion stabilizers; emulsions were highly stable at ambient temperatures over several days and also highly effective as potential drug delivery agents.
Ramos, Ruben; Caceres, Diego H; Perez, Marilyn; Garcia, Nicole; Castillo, Wendy; Santiago, Erika; Borace, Jovanna; Lockhart, Shawn R; Berkow, Elizabeth L; Hayer, Lizbeth; Espinosa-Bode, Andres; Moreno, Jose; Jackson, Brendan R; Moran, Jackeline; Chiller, Tom; de Villarreal, Gloriela; Sosa, Nestor; Vallabhaneni, Snigdha
2018-04-25
Candida duobushaemulonii , a yeast closely related to Candida auris, is thought to rarely cause infections, and is often misidentified. In October 2016, the Panamanian Ministry of Health implemented laboratory surveillance for C. auris Suspected C. auris isolates were forwarded to the national reference laboratory for identification by Matrix Assisted Laser Desorption Ionization-Time of Flight mass spectrometry and antifungal susceptibility testing. During November 2016-May 2017, 17 of 36 (47%) isolates suspected to be C. auris were identified as C. duobushaemulonii. These 17 isolates were obtained from 14 patients at six hospitals. Ten patients, including three children, had bloodstream infections, MICs for fluconazole, voriconazole, and amphotericin B were elevated. No resistance to echinocandins was observed. C. duobushaemulonii causes more invasive infections than previously appreciated, and poses a substantial problem given it is resistant to multiple antifungals. Expanded laboratory surveillance is an important step in the detection and control of such emerging pathogens. Copyright © 2018 American Society for Microbiology.
Quelques problemes poses a la grammaire casuelle (Some Problems Regarding Case Grammar)
ERIC Educational Resources Information Center
Fillmore, Charles J.
1975-01-01
Discusses problems related to case grammar theory, including: the organizations of a case grammar; determination of semantic roles; definition and hierarchy of cases; cause-effect relations; and formalization and notation. (Text is in French.) (AM)
ERIC Educational Resources Information Center
Huck, Schuyler W.
1991-01-01
This poem, with stanzas in limerick form, refers humorously to the many threats to validity posed by problems in research design, including problems of sample selection, data collection, and data analysis. (SLD)
Research Mathematicians' Practices in Selecting Mathematical Problems
ERIC Educational Resources Information Center
Misfeldt, Morten; Johansen, Mikkel Willum
2015-01-01
Developing abilities to create, inquire into, qualify, and choose among mathematical problems is an important educational goal. In this paper, we elucidate how mathematicians work with mathematical problems in order to understand this mathematical process. More specifically, we investigate how mathematicians select and pose problems and discuss to…
Characterising the Cognitive Processes in Mathematical Investigation
ERIC Educational Resources Information Center
Yeo, Joseph B. W.; Yeap, Ban Har
2010-01-01
Many educators believe that mathematical investigation involves both problem posing and problem solving, but some teachers have taught their students to investigate during problem solving. The confusion about the relationship between investigation and problem solving may affect how teachers teach their students and how researchers conduct their…
A new approach to facilitate apexogenesis using soft tissue diode laser
Mathur, Vijay Prakash; Dhillon, Jatinder Kaur; Kalra, Gauri
2014-01-01
Traumatic injuries occur commonly in children and adolescents and the prevalence of such injuries has increased over the last decade. Such injuries may result in pulpal exposure, which can endanger tooth vitality. Therefore, the treatment for such injuries should be carefully planned so as to preserve the pulp vitality. Teeth with immature roots pose a great challenge for the clinician and procedures like pulpotomy may prove effective as a treatment strategy. Such procedure may ensure continued root development and apexogenesis. Lasers have varied applications in the dental practice such as oral surgical procedures, cavity preparation, disinfection etc. This article is a case report on the use of diode laser for pulpotomy in a young permanent tooth with traumatically exposed pulp in an 8-year-old male. PMID:24808708
Aircrew laser eye protection: visual consequences and mission performance.
Thomas, S R
1994-05-01
Battlefield laser proliferation poses a mounting risk to aircrew and ground personnel. Laser eye protection (LEP) based on current mature, mass-producible technologies absorbs visible light and can impact visual performance and color identification. These visual consequences account for many of the mission incompatibilities associated with LEP. Laboratory experiments and field investigations that examined the effects of LEP on visual performance and mission compatibility are reviewed. Laboratory experiments assessed the ability of subjects to correctly read and identify the color of head-down display symbology and tactical pilotage charts (TPC's) with three prototype LEP visors. Field investigations included Weapons Systems Trainer (WST), ground, and flight tests of the LEP visors. Recommendations for modifying aviation lighting systems to improve LEP compatibility are proposed. Issues concerning flight safety when using LEP during air operation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lie, Zener Sukra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id; Pardede, Marincan
An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities inducedmore » by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.« less
NASA Astrophysics Data System (ADS)
Ozkat, Erkan Caner; Franciosa, Pasquale; Ceglarek, Dariusz
2017-08-01
Remote laser welding technology offers opportunities for high production throughput at a competitive cost. However, the remote laser welding process of zinc-coated sheet metal parts in lap joint configuration poses a challenge due to the difference between the melting temperature of the steel (∼1500 °C) and the vapourizing temperature of the zinc (∼907 °C). In fact, the zinc layer at the faying surface is vapourized and the vapour might be trapped within the melting pool leading to weld defects. Various solutions have been proposed to overcome this problem over the years. Among them, laser dimpling has been adopted by manufacturers because of its flexibility and effectiveness along with its cost advantages. In essence, the dimple works as a spacer between the two sheets in lap joint and allows the zinc vapour escape during welding process, thereby preventing weld defects. However, there is a lack of comprehensive characterization of dimpling process for effective implementation in real manufacturing system taking into consideration inherent changes in variability of process parameters. This paper introduces a methodology to develop (i) surrogate model for dimpling process characterization considering multiple-inputs (i.e. key control characteristics) and multiple-outputs (i.e. key performance indicators) system by conducting physical experimentation and using multivariate adaptive regression splines; (ii) process capability space (Cp-Space) based on the developed surrogate model that allows the estimation of a desired process fallout rate in the case of violation of process requirements in the presence of stochastic variation; and, (iii) selection and optimization of the process parameters based on the process capability space. The proposed methodology provides a unique capability to: (i) simulate the effect of process variation as generated by manufacturing process; (ii) model quality requirements with multiple and coupled quality requirements; and (iii) optimize process parameters under competing quality requirements such as maximizing the dimple height while minimizing the dimple lower surface area.
The Tell-Tale Data: Virtual Whispering and Final Student Grades
ERIC Educational Resources Information Center
Cook, Susan; Germann, Clark
2010-01-01
Online classroom management issues pose new problems for the online instructor and pose seductive communicative options for students. This exploratory group of studies examined Blackboard/WEBCT[TM] data as collected for the course designer of an online course as possible indicators of "whispering" or backchanneling between students with…
Influence of femtosecond laser produced nanostructures on biofilm growth on steel
NASA Astrophysics Data System (ADS)
Epperlein, Nadja; Menzel, Friederike; Schwibbert, Karin; Koter, Robert; Bonse, Jörn; Sameith, Janin; Krüger, Jörg; Toepel, Jörg
2017-10-01
Biofilm formation poses high risks in multiple industrial and medical settings. However, the robust nature of biofilms makes them also attractive for industrial applications where cell biocatalysts are increasingly in use. Since tailoring material properties that affect bacterial growth or its inhibition is gaining attention, here we focus on the effects of femtosecond laser produced nanostructures on bacterial adhesion. Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e., a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten identical samples were laser-processed. Subsequently, the samples were subjected to microbial adhesion tests. Bacteria of different shape and adhesion behavior (Escherichia coli and Staphylococcus aureus) were exposed to laser structures and to polished reference surfaces. Our results indicate that E. coli preferentially avoids adhesion to the LIPSS-covered areas, whereas S. aureus favors these areas for colonization.
Laser Techniques in Conservation of Artworks:. Problems and Breakthroughs
NASA Astrophysics Data System (ADS)
Salimbeni, Renzo; Siano, Salvatore
2010-04-01
After more than thirty years since the first experiment in Venice, only in the last decade laser techniques have been widely recognised as one of the most important innovation introduced in the conservation of artworks for diagnostics, restoration and monitoring aims. Especially the use of laser ablation for the delicate phase of cleaning has been debated for many years, because of the problems encountered in finding an appropriate setting of the laser parameters. Many experimentations carried out on stone, metals and pigments put in evidence unacceptable side effects such as discoloration and yellowing after the treatment, or scarce cleaning productivity in respect of other techniques. Many research projects organised at European level have contributed to find breakthroughs in laser techniques that could avoid such problems. The choices of specific laser parameters better suited for cleaning of stone, metals and pigments are described. A series of validation case studies is reported.
Finite dimensional approximation of a class of constrained nonlinear optimal control problems
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Hou, L. S.
1994-01-01
An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.
FDTD method for laser absorption in metals for large scale problems.
Deng, Chun; Ki, Hyungson
2013-10-21
The FDTD method has been successfully used for many electromagnetic problems, but its application to laser material processing has been limited because even a several-millimeter domain requires a prohibitively large number of grids. In this article, we present a novel FDTD method for simulating large-scale laser beam absorption problems, especially for metals, by enlarging laser wavelength while maintaining the material's reflection characteristics. For validation purposes, the proposed method has been tested with in-house FDTD codes to simulate p-, s-, and circularly polarized 1.06 μm irradiation on Fe and Sn targets, and the simulation results are in good agreement with theoretical predictions.
Chung, King
2004-01-01
This is the second part of a review on the challenges and recent developments in hearing aids. Feedback and the occlusion effect pose great challenges in hearing aid design and usage. Yet, conventional solutions to feedback and the occlusion effect often create a dilemma: the solution to one often leads to the other. This review discusses the advanced signal processing strategies to reduce feedback and some new approaches to reduce the occlusion effect. Specifically, the causes of three types of feedback (acoustic, mechanical, and electromagnetic) are discussed. The strategies currently used to reduce acoustic feedback (i.e., adaptive feedback reduction algorithms using adaptive gain reduction, notch filtering, and phase cancellation strategies) and the design of new receivers that are built to reduce mechanical and electromagnetic feedback are explained. In addition, various new strategies (i.e., redesigned sound delivery devices and receiver-in-the-ear-canal hearing aid configuration) to reduce the occlusion effect are reviewed. Many manufacturers have recently adopted laser shell-manufacturing technologies to overcome problems associated with manufacturing custom hearing aid shells. The mechanisms of selected laser sintering and stereo lithographic apparatus and the properties of custom shells produced by these two processes are reviewed. Further, various new developments in hearing aid transducers, telecoils, channel-free amplification, open-platform programming options, rechargeable hearing aids, ear-level frequency modulated (FM) receivers, wireless Bluetooth FM systems, and wireless programming options are briefly explained and discussed. Finally, the applications of advanced hearing aid technologies to enhance other devices such as cochlear implants, hearing protectors, and cellular phones are discussed. PMID:15735871
NASA Astrophysics Data System (ADS)
Fragnelli, Vito; Patrone, Fioravante; Torre, Anna
2006-02-01
The lexicographic order is not representable by a real-valued function, contrary to many other orders or preorders. So, standard tools and results for well-posed minimum problems cannot be used. We prove that under suitable hypotheses it is however possible to guarantee the well-posedness of a lexicographic minimum over a compact or convex set. This result allows us to prove that some game theoretical solution concepts, based on lexicographic order are well-posed: in particular, this is true for the nucleolus.
The Circle of Apollonius and Its Applications in Introductory Physics
NASA Astrophysics Data System (ADS)
Partensky, Michael B.
2008-02-01
The circle of Apollonius is named after the ancient geometrician Apollonius of Perga. This beautiful geometric construct can be helpful when solving some general problems of geometry and mathematical physics, optics, and electricity. Here we discuss two of its applications: localizing an object in space and calculating electric fields. First, we pose an entertaining localization problem to trigger students' interest in the subject. Analyzing this problem, we introduce the circle of Apollonius and show that this geometric technique helps solve the problem in an elegant and intuitive manner. Then we switch to seemingly unrelated problems of calculating the electric fields. We show that the zero equipotential line for two unlike charges is the Apollonius circle for these two charges and use this discovery to find the electric field of a charge positioned near a grounded conductive sphere. Finally, we pose some questions for further examination.
Point Cloud Based Relative Pose Estimation of a Satellite in Close Range
Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming
2016-01-01
Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633
Laser Spot Detection Based on Reaction Diffusion.
Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J M; Dormido, Raquel; Duro, Natividad
2016-03-01
Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.
Bed Bug Epidemic: A Challenge to Public Health
ERIC Educational Resources Information Center
Ratnapradipa, Dhitinut; Ritzel, Dale O.; Haramis, Linn D.; Bliss, Kadi R.
2011-01-01
In recent years, reported cases of bed bug infestations in the U.S. and throughout the world have escalated dramatically, posing a global public health problem. Although bed bugs are not known to transmit disease to humans, they pose both direct and indirect public health challenges in terms of health effects, treatment, cost, and resource…
SMEs and their E-Commerce: Implications for Training in Wellington, New Zealand
ERIC Educational Resources Information Center
Beal, Tim; Abdullah, Moha Asri
2005-01-01
One of the greatest challenges facing traditional small and medium-sized enterprises (SMEs) throughout the world is that posed by the Internet. While the Internet offers great potential to SMEs, from improving and cheapening production processes through to reaching global customers, it also poses great problems. SMEs' resources, human and…
Laser induced mortality of Anopheles stephensi mosquitoes
NASA Astrophysics Data System (ADS)
Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty
2016-02-01
Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.
Reynolds, Pamela; Botchway, Stanley W.; Parker, Anthony W.; O’Neill, Peter
2013-01-01
The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair. PMID:23688615
Alshami, Mohammad Ali; Mohana, Mona Jameel; Alshami, Ahlam Mohammad
2016-11-01
Warts in general and plane warts in particular pose a therapeutic challenge for dermatologists. Many treatment modalities exist, with variable success rates, side effect profiles, and precautions. The long-pulsed 532-nm neodymium-doped yttrium aluminium garnet (LP Nd:YAG) laser has not been previously used for this indication. This study was conducted to assess the efficacy and safety of the LP Nd:YAG laser for treating facial plane warts. A total of 160 Yemeni patients (62 women, 98 men; age range, 5-55 years) were exposed to 1 laser treatment session with the following parameters: wavelength, 532 nm; pulse duration, 20 millisecond; spot size, 2 to 3 mm; and fluence, 25 J/cm. The end point was graying or whitening of the lesion. Color photographs were taken before and immediately after treatment and at follow-up visits 1, 4, and 16 weeks after the laser session. An overall clearance rate of 92% after only one session was achieved, with minimal and transient side effects. The LP Nd:YAG laser is safe and effective for treating facial plane warts, with a success rate of 92% after only one session.
Application of lasers in endodontics
NASA Astrophysics Data System (ADS)
Ertl, Thomas P.; Benthin, Hartmut; Majaron, Boris; Mueller, Gerhard J.
1997-12-01
Root canal treatment is still a problem in dentistry. Very often the conventional treatment fails and several treatment sessions are necessary to save the tooth from root resection or extraction. Application of lasers may help in this situation. Bacteria reduction has been demonstrated both in vitro and clinically and is either based on laser induced thermal effects or by using an ultraviolet light source. Root canal cleansing is possible by Er:YAG/YSGG-Lasers, using the hydrodynamic motion of a fluid filled in the canals. However root canal shaping using lasers is still a problem. Via falsas and fiber breakage are points of research.
Interpretation of laser/multi-sensor data for short range terrain modeling and hazard detection
NASA Technical Reports Server (NTRS)
Messing, B. S.
1980-01-01
A terrain modeling algorithm that would reconstruct the sensed ground images formed by the triangulation scheme, and classify as unsafe any terrain feature that would pose a hazard to a roving vehicle is described. This modeler greatly reduces quantization errors inherent in a laser/sensing system through the use of a thinning algorithm. Dual filters are employed to separate terrain steps from the general landscape, simplifying the analysis of terrain features. A crosspath analysis is utilized to detect and avoid obstacles that would adversely affect the roll of the vehicle. Computer simulations of the rover on various terrains examine the performance of the modeler.
Problem Drift: Teaching Curriculum With(in) a World of Emerging Significance
ERIC Educational Resources Information Center
Banting, Nat; Simmt, Elaine
2017-01-01
In this paper we frame our observations in enactivism, specifically problem posing, to propose the notion of problem drift as a method to analyze the curriculum generating actions of small group learning systems in relation to teacher interventions intended to trigger specific content goals. Teacher attentiveness to problem drift is suggested to…
The Coffee-Milk Mixture Problem Revisited
ERIC Educational Resources Information Center
Marion, Charles F.
2015-01-01
This analysis of a problem that is frequently posed at professional development workshops, in print, and on the Web--the coffee-milk mixture riddle--illustrates the timeless advice of George Pólya's masterpiece on problem solving in mathematics, "How to Solve It." In his book, Pólya recommends that problems previously solved and put…
From the Golden Rectangle and Fibonacci to Pedagogy and Problem Posing
ERIC Educational Resources Information Center
Brown, Stephen I.
1976-01-01
Beginning with an analysis of the golden rectangle, the author shows how a series of problems for student investigation arise from queries concerning changes in conditions and analogous situations. (SD)
NASA Astrophysics Data System (ADS)
Sirota, Dmitry; Ivanov, Vadim
2017-11-01
Any mining operations influence stability of natural and technogenic massifs are the reason of emergence of the sources of differences of mechanical tension. These sources generate a quasistationary electric field with a Newtonian potential. The paper reviews the method of determining the shape and size of a flat source field with this kind of potential. This common problem meets in many fields of mining: geological exploration mineral resources, ore deposits, control of mining by underground method, determining coal self-heating source, localization of the rock crack's sources and other applied problems of practical physics. This problems are ill-posed and inverse and solved by converting to Fredholm-Uryson integral equation of the first kind. This equation will be solved by A.N. Tikhonov regularization method.
Rikard, R V; Thompson, Maxine S; Head, Rachel; McNeil, Carlotta; White, Caressa
2012-09-01
The rate of HIV infection among African Americans is disproportionately higher than for other racial groups in the United States. Previous research suggests that low level of health literacy (HL) is an underlying factor to explain racial disparities in the prevalence and incidence of HIV/AIDS. The present research describes a community and university project to develop a culturally tailored HIV/AIDS HL toolkit in the African American community. Paulo Freire's pedagogical philosophy and problem-posing methodology served as the guiding framework throughout the development process. Developing the HIV/AIDS HL toolkit occurred in a two-stage process. In Stage 1, a nonprofit organization and research team established a collaborative partnership to develop a culturally tailored HIV/AIDS HL toolkit. In Stage 2, African American community members participated in focus groups conducted as Freirian cultural circles to further refine the HIV/AIDS HL toolkit. In both stages, problem posing engaged participants' knowledge, experiences, and concerns to evaluate a working draft toolkit. The discussion and implications highlight how Freire's pedagogical philosophy and methodology enhances the development of culturally tailored health information.
Human pose tracking from monocular video by traversing an image motion mapped body pose manifold
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2010-01-01
Tracking human pose from monocular video sequences is a challenging problem due to the large number of independent parameters affecting image appearance and nonlinear relationships between generating parameters and the resultant images. Unlike the current practice of fitting interpolation functions to point correspondences between underlying pose parameters and image appearance, we exploit the relationship between pose parameters and image motion flow vectors in a physically meaningful way. Change in image appearance due to pose change is realized as navigating a low dimensional submanifold of the infinite dimensional Lie group of diffeomorphisms of the two dimensional sphere S2. For small changes in pose, image motion flow vectors lie on the tangent space of the submanifold. Any observed image motion flow vector field is decomposed into the basis motion vector flow fields on the tangent space and combination weights are used to update corresponding pose changes in the different dimensions of the pose parameter space. Image motion flow vectors are largely invariant to style changes in experiments with synthetic and real data where the subjects exhibit variation in appearance and clothing. The experiments demonstrate the robustness of our method (within +/-4° of ground truth) to style variance.
Object recognition and pose estimation of planar objects from range data
NASA Technical Reports Server (NTRS)
Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael
1994-01-01
The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and noise.
New laser sources for clinical treatment and diagnostics of neonatal jaundice
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.
2001-06-01
An elevated serum bilirubin concentration in the newborn infant presents a therapeutic as well as a diagnostic problem to the physician. It has long been recognized that high levels of bilirubin cause irreversible brain damage and even death. The authors introduce the use of semiconductor diode lasers and diode-pumped solid-state lasers that can be used for solving such diagnostic and therapeutic problems. These new laser sources can improve the ergonomics of using laser, enhance performance capabilities and reduce the cost of employing laser energy to pump bilirubin out of an infant's body. The choice of laser wavelengths follows the principles of bilirubinometry and phototherapy of neonatal jaundice. The wide spread use of these new laser sources for clinical monitoring and treatment of neonatal hyperbilirubinemia will be made possible as each incremental or quantum jump cost reduction is achieved. Our leading clinical experience as well as the selection rules of laser wavelengths will be presented.
NASA Astrophysics Data System (ADS)
Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.
2008-05-01
A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"
NASA Astrophysics Data System (ADS)
Ingle, Ninad; Gu, Ling; Mohanty, Samarendra K.
2011-03-01
Here, we report in situ formation of microstructures from the regular constituents of culture media near live cells using spatially-structured near infrared (NIR) laser beam. Irradiation with the continuous wave (cw) NIR laser microbeam for few seconds onto the regular cell culture media containing fetal bovine serum resulted in accumulation of dense material inside the media as evidenced by phase contrast microscopy. The time to form the phase dense material was found to depend on the laser beam power. Switching off the laser beam led to diffusion of phase dark material. However, the proteins could be stitched together by use of carbon nanoparticles and continuous wave (cw) Ti: Sapphire laser beam. Further, by use of spatially-structured beam profiles different structures near live cells could be formed. The microfabricated structure could be held by the Gravito-optical trap and repositioned by movement of the sample stage. Orientation of these microstructures was achieved by rotating the elliptical laser beam profile. Thus, multiple microstructures were formed and organized near live cells. This method would enable study of response of cells/axons to the immediate physical hindrance provided by such structure formation and also eliminate the biocompatibility requirement posed on artificial microstructure materials.
Mirrors & Windows into Student Noticing
ERIC Educational Resources Information Center
Dominguez, Higinio
2016-01-01
In many classrooms, students solve problems posed by others--teachers, textbooks, and test materials. These problems typically describe a contrived situation followed by a question about an unknown that students are expected to resolve. Unsurprisingly, many students avoid reading these problems for meaning and instead engage in a suspension of…
A study on facial expressions recognition
NASA Astrophysics Data System (ADS)
Xu, Jingjing
2017-09-01
In terms of communication, postures and facial expressions of such feelings like happiness, anger and sadness play important roles in conveying information. With the development of the technology, recently a number of algorithms dealing with face alignment, face landmark detection, classification, facial landmark localization and pose estimation have been put forward. However, there are a lot of challenges and problems need to be fixed. In this paper, a few technologies have been concluded and analyzed, and they all relate to handling facial expressions recognition and poses like pose-indexed based multi-view method for face alignment, robust facial landmark detection under significant head pose and occlusion, partitioning the input domain for classification, robust statistics face formalization.
Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...
2016-10-18
Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less
Calvarial tuberculosis presenting as cystic lesion: An unusual presentation in two patients.
Khare, Pratima; Gupta, Renu; Chand, Priyanka; Agarwal, Swapnil
2015-01-01
Tuberculosis is a common disease in developing countries such as India, posing a major public health problem. With human immunodeficiency virus (HIV) infection being a global endemic, there has been a resurgence of tuberculosis even in developed countries. Tuberculosis may affect almost any part of the body. However, tuberculosis of the calvarium is very rare. Presentation of tuberculosis as a soft tissue swelling on the scalp poses a diagnostic problem. These two cases are being reported here to convey the utility of fine-needle aspiration cytology (FNAC) in providing the confirmatory diagnosis obviating the need for invasive surgical procedure.
The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehoucq, R. B.; Reu, P. L.; Turner, D. Z.
Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.
The Effect of the Ill-posed Problem on Quantitative Error Assessment in Digital Image Correlation
Lehoucq, R. B.; Reu, P. L.; Turner, D. Z.
2017-11-27
Here, this work explores the effect of the ill-posed problem on uncertainty quantification for motion estimation using digital image correlation (DIC) (Sutton et al. 2009). We develop a correction factor for standard uncertainty estimates based on the cosine of the angle between the true motion and the image gradients, in an integral sense over a subregion of the image. This correction factor accounts for variability in the DIC solution previously unaccounted for when considering only image noise, interpolation bias, contrast, and the software settings such as subset size and spacing.
A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics
NASA Astrophysics Data System (ADS)
Lecoanet, D.; McCourt, M.; Quataert, E.; Burns, K. J.; Vasil, G. M.; Oishi, J. S.; Brown, B. P.; Stone, J. M.; O'Leary, R. M.
2016-02-01
The non-linear evolution of the Kelvin-Helmholtz instability is a popular test for code verification. To date, most Kelvin-Helmholtz problems discussed in the literature are ill-posed: they do not converge to any single solution with increasing resolution. This precludes comparisons among different codes and severely limits the utility of the Kelvin-Helmholtz instability as a test problem. The lack of a reference solution has led various authors to assert the accuracy of their simulations based on ad hoc proxies, e.g. the existence of small-scale structures. This paper proposes well-posed two-dimensional Kelvin-Helmholtz problems with smooth initial conditions and explicit diffusion. We show that in many cases numerical errors/noise can seed spurious small-scale structure in Kelvin-Helmholtz problems. We demonstrate convergence to a reference solution using both ATHENA, a Godunov code, and DEDALUS, a pseudo-spectral code. Problems with constant initial density throughout the domain are relatively straightforward for both codes. However, problems with an initial density jump (which are the norm in astrophysical systems) exhibit rich behaviour and are more computationally challenging. In the latter case, ATHENA simulations are prone to an instability of the inner rolled-up vortex; this instability is seeded by grid-scale errors introduced by the algorithm, and disappears as resolution increases. Both ATHENA and DEDALUS exhibit late-time chaos. Inviscid simulations are riddled with extremely vigorous secondary instabilities which induce more mixing than simulations with explicit diffusion. Our results highlight the importance of running well-posed test problems with demonstrated convergence to a reference solution. To facilitate future comparisons, we include as supplementary material the resolved, converged solutions to the Kelvin-Helmholtz problems in this paper in machine-readable form.
NASA Astrophysics Data System (ADS)
Park, Byeolteo; Myung, Hyun
2014-12-01
With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.
Tracking the Careers of Graduates: A New Agenda for Graduate Schools
ERIC Educational Resources Information Center
Stewart, Debra W.
2013-01-01
As candidates in the 2012 election debated issues raised by the state of the US economy, unemployment statistics and job creation took center stage. The problems under discussion posed (and continue to pose) a particularly clear and pressing challenge to the nation's graduate schools. While the US enjoys a reputation for having the most dynamic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wisoff, P. J.
The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform andmore » deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.« less
ERIC Educational Resources Information Center
Schulman, Steven M.
2014-01-01
In this article the author describes a problem posed to his class, "How many squares are there on a checkerboard?" The problem is deliberately vague so that the teacher can get the students to begin asking questions. The first goal is to come to an agreement about what the problem means (Identify the problem). The second goal is to get…
Using a Five-Step Procedure for Inferential Statistical Analyses
ERIC Educational Resources Information Center
Kamin, Lawrence F.
2010-01-01
Many statistics texts pose inferential statistical problems in a disjointed way. By using a simple five-step procedure as a template for statistical inference problems, the student can solve problems in an organized fashion. The problem and its solution will thus be a stand-by-itself organic whole and a single unit of thought and effort. The…
Research on NC laser combined cutting optimization model of sheet metal parts
NASA Astrophysics Data System (ADS)
Wu, Z. Y.; Zhang, Y. L.; Li, L.; Wu, L. H.; Liu, N. B.
2017-09-01
The optimization problem for NC laser combined cutting of sheet metal parts was taken as the research object in this paper. The problem included two contents: combined packing optimization and combined cutting path optimization. In the problem of combined packing optimization, the method of “genetic algorithm + gravity center NFP + geometric transformation” was used to optimize the packing of sheet metal parts. In the problem of combined cutting path optimization, the mathematical model of cutting path optimization was established based on the parts cutting constraint rules of internal contour priority and cross cutting. The model played an important role in the optimization calculation of NC laser combined cutting.
Fecal contamination of waters used for recreation, drinking water, and aquaculture is an environmental problem and poses significant human health risks. The problem is often difficult to correct because the source of the contamination cannot be determined with certainty. Run-of...
DOT National Transportation Integrated Search
2003-07-01
Traveler delay is the problem most often associated with highway crashes, but by far the most serious problem is the resulting secondary crashes that occur. Another related issue is the danger posed to response personnel serving the public at the sce...
Minimum Altitude-Loss Soaring in a Specified Vertical Wind Distribution
NASA Technical Reports Server (NTRS)
Pierson, B. L.; Chen, I.
1979-01-01
Minimum altitude-loss flight of a sailplane through a given vertical wind distribution is discussed. The problem is posed as an optimal control problem, and several numerical solutions are obtained for a sinusoidal wind distribution.
Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow
NASA Technical Reports Server (NTRS)
Arian, Eyal; Ta'asan, Shlomo
1996-01-01
In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.
Robust head pose estimation via supervised manifold learning.
Wang, Chao; Song, Xubo
2014-05-01
Head poses can be automatically estimated using manifold learning algorithms, with the assumption that with the pose being the only variable, the face images should lie in a smooth and low-dimensional manifold. However, this estimation approach is challenging due to other appearance variations related to identity, head location in image, background clutter, facial expression, and illumination. To address the problem, we propose to incorporate supervised information (pose angles of training samples) into the process of manifold learning. The process has three stages: neighborhood construction, graph weight computation and projection learning. For the first two stages, we redefine inter-point distance for neighborhood construction as well as graph weight by constraining them with the pose angle information. For Stage 3, we present a supervised neighborhood-based linear feature transformation algorithm to keep the data points with similar pose angles close together but the data points with dissimilar pose angles far apart. The experimental results show that our method has higher estimation accuracy than the other state-of-art algorithms and is robust to identity and illumination variations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laser Prevention of Earth Impact Disasters
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W.; Howell, Joe (Technical Monitor)
2002-01-01
Today we are seeing the geological data base constantly expanding as new evidence from past impacts with the Earth are discovered and investigated. It is now commonly believed that a hypervelocity impact occurring approximately 65 million years ago in the Yucatan Peninsula area was the disaster responsible for the extinction of almost 70% of the species of life on Earth including of course the dinosaurs. What is sobering is that we believe now that this was just one of several such disasters and that some of the others caused extinctions to even a greater extent. Preventing collisions with the Earth by hypervelocity asteroids, meteoroids, and comets is the most important problem facing human civilization. While there are many global problems facing our planet including overpopulation, pollution, disease, and deforestation; none of these offer the potential of rapid, total extinction. Rapid is the operative word here in that many of the global problems we face may indeed, if not sufficiently addressed, pose a similar long-term threat. However, with the impact threat, a single, almost unpredictable event could lead to a chain reaction of disasters that would end everything mankind has worked to achieve over the centuries. Our chances of being hit are greater than our chance of winning the lottery. We now believe that while there are only about 2000-earth orbit crossing rocks great than 1 kilometer in diameter, there may be as many as 100,000 rocks in the 100 m size range. The 1 kilometer rocks are difficult to detect and even harder to track. The 100 m class ones are almost impossible to find with today's technology. Can anything be done about this fundamental existence question facing us? The answer is a resounding yes. By using an intelligent combination of Earth and space based sensors coupled with high-energy laser stations in orbit, we can deflect rocks from striking the Earth. This is accomplished by irradiating the surface of the rock with sufficiently intense pulses so that ablation occurs. This ablation acts as a small rocket incrementally changing the shape of the rock's orbit around the Sun.
Influence of irradiation conditions on the deformation of pure titanium frames in laser welding.
Shimakura, Michio; Yamada, Satoshi; Takeuchi, Misao; Miura, Koki; Ikeyama, Joji
2009-03-01
Due to its ease of use in connecting metal frames, laser welding is now applied in dentistry. However, to achieve precise laser welding, several problems remain to be resolved. One such problem is the influence of irradiation conditions on the deformation of titanium frameworks during laser welding, which this study sought to investigate. Board-shaped pure titanium specimens were prepared with two different joint types. Two specimens were abutted against each other to form a welding block with gypsum. For welding, three different laser waveforms were used. Deformation of the specimen caused by laser welding was measured as a rise from the gypsum surface at the opposite, free end of the specimen. It was observed that specimens with a beveled edge registered a smaller deformation than specimens with a square edge. In addition, a double laser pulse waveform--whereby a supplementary laser pulse was delivered immediately after the main pulse--resulted in a smaller deformation than with a single laser pulse waveform.
ERIC Educational Resources Information Center
Downton, Ann; Sullivan, Peter
2017-01-01
While the general planning advice offered to mathematics teachers seems to be to start with simple examples and build complexity progressively, the research reported in this article is a contribution to the body of literature that argues the reverse. That is, posing of appropriately complex tasks may actually prompt the use of more sophisticated…
ERIC Educational Resources Information Center
Park, Travis; Pearson, Donna; Richardson, George B.
2017-01-01
All students need to learn how to read, write, solve mathematics problems, and understand and apply scientific principles to succeed in college and/or careers. The challenges posed by entry-level career fields are no less daunting than those posed by college-level study. Thus, career and technical education students must learn effective math,…
Strong electromagnetic pulses generated in laser-matter interactions with 10TW-class fs laser
NASA Astrophysics Data System (ADS)
Rączka, Piotr; Rosiński, Marcin; Zaraś-Szydłowska, Agnieszka; Wołowski, Jerzy; Badziak, Jan
2018-01-01
The results of an experiment on the generation of electromagnetic pulses (EMP) in the interaction of 10TW fs pulses with thick (mm scale) and thin foil (μm scale) targets are described. Such pulses, with frequencies in the GHz range, may pose a threat to safe and reliable operation of high-power, high-intensity laser facilities. The main point of the experiment is to investigate the fine temporal structure of such pulses using an oscilloscope capable of measurements at very high sampling rate. It is found that the amazing reproducibility of such pulses is confirmed at this high sampling rate. Furthermore, the differences between the EMP signals generated from thick and thin foil targets are clearly seen, which indicates that besides electric polarization of the target and the target neutralization current there may be other factors essential for the EMP emission.
NASA Astrophysics Data System (ADS)
Stalcup, Thomas Eugene, Jr.
Adaptive optics using natural guide stars can produce images of amazing quality, but is limited to a small fraction of the sky due to the need for a relatively bright guidestar. Adaptive optics systems using a laser generated artificial reference can be used over a majority of the sky, but these systems have some attendant problems. These problems can be reduced by increasing the altitude of the laser return, and indeed a simple, single laser source focused at an altitude of 95 km on a layer of atmospheric sodium performs well for the current generation of 8--10 m telescopes. For future giant telescopes in the 20--30 m class, however, the errors due to incorrect atmospheric sampling and spot elongation will prohibit such a simple system from working. The system presented in this dissertation provides a solution to these problems. Not only does it provide the 6.5m MMT with a relatively inexpensive laser guide star system with unique capabilities, it allows research into solving many of the problems faced by laser guide star systems on future giant telescopes. The MMT laser guidestar system projects a constellation of five doubled Nd:YAG laser beams focused at a mean height of 25 km, with a dynamic refocus system that corrects for spot elongation and allows integrating the return from a 10 km long range gate. It has produced seeing limited spot sizes in ˜1 arcsecond seeing conditions, and has enabled the first on-sky results of Ground Layer Adaptive Optics (GLAO).
On the formulation and solution of an emergency routing problem.
DOT National Transportation Integrated Search
2007-10-01
In this work, we will identify important variables that contribute to : vehicular movement in an emergency environment. In particular, we for- : mulate and pose the Convoy Routing Problem (using far fewer variables : than other important models witho...
MANAGING ELECTRONIC DATA TRANSFER IN ENVIRONMENTAL CLEANUPS
The use of computers and electronic information poses a complex problem for potential litigation in space law. The problem currently manifests itself in at least two ways. First, the Environmental Protection Agency (EPA) enforcement of Comprehensive Environmental Response, Compen...
Frequency-Modulated Microwave Photonic Links with Direct Detection: Review and Theory
2010-12-15
create large amounts of signal distortion. Alternatives to MZIs have been pro- posed, including Fabry - Perot interferometers, ber Bragg gratings (FBGs...multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot discriminated, FM subcarrier...multiplexed system were presented by [17]. An array of optical frequency modulated DFB lasers and a Fabry - Perot discriminator were used to transmit and
Tissue Engineered Bone Using Polycaprolactone Scaffolds Made by Selective Laser Sintering
2005-01-01
temporo - mandibular joint (TMJ) pose many challenges for bone tissue engineering. Adverse reactions to alloplastic, non- biological materials result in...producing a prototype mandibular condyle scaffold based on an actual pig condyle. INTRODUCTION Repair and reconstruction of complex joints such as the...computed tomography (CT) data with a designed porous architecture to build a complex scaffold that mimics a mandibular condyle. Results show that
Analysis of eroded bovine teeth through laser speckle imaging
NASA Astrophysics Data System (ADS)
Koshoji, Nelson H.; Bussadori, Sandra K.; Bortoletto, Carolina C.; Oliveira, Marcelo T.; Prates, Renato A.; Deana, Alessandro M.
2015-02-01
Dental erosion is a non-carious lesion that causes progressive tooth wear of structure through chemical processes that do not involve bacterial action. Its origin is related to eating habits or systemic diseases involving tooth contact with substances that pose a very low pH. This work demonstrates a new methodology to quantify the erosion by coherent light scattering of tooth surface. This technique shows a correlation between acid etch duration and laser speckle contrast map (LASCA). The experimental groups presented a relative contrast between eroded and sound tissue of 17.8(45)%, 23.4 (68)% 39.2 (40)% and 44.3 (30)%, for 10 min, 20 min, 30 min and 40 min of acid etching, respectively.
NASA Astrophysics Data System (ADS)
Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann
2016-05-01
The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.
Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Auriault, Laurent
1996-01-01
It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.
Students Advise Fortune 500 Company: Designing a Problem-Based Learning Community
ERIC Educational Resources Information Center
Brzovic, Kathy; Matz, S. Irene
2009-01-01
This article describes the process of planning and implementing a problem-based learning community. Business and communication students from a large university in the Western United States competed in teams to solve an authentic business problem posed by a Fortune 500 company. The company's willingness to adopt some of their recommendations…
Variations in Both-Addends-Unknown Problems
ERIC Educational Resources Information Center
Champagne, Zachary M.; Schoen, Robert; Riddell, Claire M.
2014-01-01
Early elementary school students are expected to solve twelve distinct types of word problems. A math researcher and two teachers pose a structure for thinking about one problem type that has not been studied as closely as the other eleven. In this article, the authors share some of their discoveries with regard to the variety of…
NASA Technical Reports Server (NTRS)
1983-01-01
NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.
Progress toward a practical laser driven ion source using variable thickness liquid crystal targets
NASA Astrophysics Data System (ADS)
Poole, Patrick; Cochran, Ginevra; Zeil, Karl; Metzkes, Josephine; Obst, Lieselotte; Kluge, Thomas; Schlenvoigt, Hans-Peter; Prencipe, Irene; Cowan, Tom; Schramm, Uli; Schumacher, Douglass
2016-10-01
Ion acceleration from ultra-intense laser interaction has been long investigated in pursuit of requisite energies and spectral distributions for applications like proton cancer therapy. However, the details of ion acceleration mechanisms and their laser intensity scaling are not fully understood, especially the complete role of pulse contrast and target thickness. Additionally, target delivery and alignment at appropriate rates for study and subsequent treatment pose significant challenges. We present results from a campaign on the Draco laser using liquid crystal targets that have on-demand, in-situ thickness tunability over more than three orders of magnitude, enabling rapid data collection due to <1 minute, automatically aligned target formation. Diagnostics include spectral and spatial measurement of ions, electrons, and reflected and transmitted light, all with thickness, laser focus, and pulse contrast variations. In particular we discuss optimal thickness vs. contrast and details of ultra-thin target normal ion acceleration, along with supporting particle-in-cell studies. This work was supported by the DARPA PULSE program through AMRDEC, by the NNSA (DE-NA0001976), by EC Horizon 2020 LASERLAB-EUROPE/LEPP (654148), and by the German Federal Ministry of Education and Research (BMBF, 03Z1O511).
Algorithms for output feedback, multiple-model, and decentralized control problems
NASA Technical Reports Server (NTRS)
Halyo, N.; Broussard, J. R.
1984-01-01
The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented.
NASA Technical Reports Server (NTRS)
Miller, M. D.
1980-01-01
Lead salt diode lasers are being used increasingly as tunable sources of monochromatic infrared radiation in a variety of spectroscopic systems. These devices are particularly useful, both in the laboratory and in the field, because of their high spectral brightness (compared to thermal sources) and wide spectral coverage (compared to line-tunable gas lasers). While the primary commercial application of these lasers has been for ultrahigh resolution laboratory spectroscopy, there are numerous systems applications, including laser absorbtion pollution monitors and laser heterodyne radiometers, for which diode lasers have great potential utility. Problem areas related to the wider use of these components are identified. Among these are total tuning range, mode control, and high fabrication cost. A fabrication technique which specifically addresses the problems of tuning range and cost, and which also has potential application for mode control, is reported.
Complete identification and eventual prevention of urban/suburban water quality problems pose significant monitoring challenges. Uncontrolled growth of impervious surfaces (roads, buildings and parking) causes detrimental hydrologic changes, stream channel erosion, habitat degra...
Complete identification and eventual prevention of urban water quality problems pose significant monitoring, "smart growth" and water quality management challenges. Uncontrolled increase of impervious surface area (roads, buildings, and parking lots) causes detrimental hydrologi...
Implementation of the concrete maturity meter for Maryland : research summary.
DOT National Transportation Integrated Search
2011-12-01
Problem: : The process of waiting for concrete to attain its desired strength for certain : construction applications can pose one of two problems. The concrete strength : may be overestimated, which creates a safety concern for workers and the gener...
Batinjan, Goran; Filipović Zore, Irina; Rupić, Ivana; Bago Jurič, Ivona; Zore, Zvonimir; Gabrić Pandurić, Dragana
2013-01-01
The purpose of this study was to evaluate the antimicrobial photodynamic therapy (APDT) and low level laser therapy (LLLT) on wound healing, pain intensity, swelling problems, halitosis and the postoperative usage of analgesics after surgical removal of lower third molars. One hundred and fifty patients, randomly divided into three groups were selected (50 per each group). The P1 group received the APDT after a third molar surgery, the P2 group received the LLLT and the C group (control group) was without any additional therapy after surgery. A photoactive substance was applied in the APDT study group before suturing. After 60 seconds the photosensitive substance was thoroughly washed with saline water and the laser light was applied in two intervals (30 seconds each). The irradiation power was 50 mW while the wavelength was 660 nm. The laser therapy in P2 group was performed before suturing and the laser light was applied also in two intervals (90 seconds each), the irradiation power was 90 mW while the wavelength was the same as in the first group - 660 nm. Postoperative follow-ups were scheduled on the third and the seventh day in patients who received laser therapy. The results of the postoperative evaluation showed that there was a statistically significant difference in the postoperative wound healing, pain intensity, swelling problems, halitosis and analgesics intake between patients in all three groups (p<0.001). The patients that were subjected to APDT (P1) had the least postoperative problems. After the laser therapy (P1 and P2) wound healing was without any complications, opposite from the patients from the C group (p<0.001). Postoperative application of a laser therapy significantly reduced patient's use of analgesics over the observed period of time (p<0.001). Both modalities of laser therapy significantly reduced postoperative problems after surgical removal of third lower molars with the best results in both laser groups.
Vision-Based Navigation and Parallel Computing
1990-08-01
33 5.8. Behizad Kamgar-Parsi and Behrooz Karngar-Parsi,"On Problem 5- lving with Hopfield Neural Networks", CAR-TR-462, CS-TR...Second. the hypercube connections support logarithmic implementations of fundamental parallel algorithms. such as grid permutations and scan...the pose space. It also uses a set of virtual processors to represent an orthogonal projection grid , and projections of the six dimensional pose space
Well-posed and stable transmission problems
NASA Astrophysics Data System (ADS)
Nordström, Jan; Linders, Viktor
2018-07-01
We introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability are analysed for continuous and discrete problems using both strong and weak formulations, and a general transmission condition is obtained. The theory is applied to the coupling of fluid-acoustic models, multi-grid implementations, adaptive mesh refinements, multi-block formulations and numerical filtering.
NASA Astrophysics Data System (ADS)
Gupta, S. R. D.; Gupta, Santanu D.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
Johnson, Christopher M; Pate, Mariah B; Postma, Gregory N
2018-04-01
Standard KTP laser (potassium titanyl phosphate) wavelength-specific protective eyewear often impairs visualization of tissue changes during laser treatment. This sometimes necessitates eyewear removal to evaluate tissue effects, which wastes time and poses safety concerns. The objective was to determine if "virtual" or "electronic" chromoendoscopy filters, as found on some endoscopy platforms, could alleviate the restricted visualization inherent to protective eyewear. A KTP laser was applied to porcine laryngeal tissue and recorded via video laryngoscopy with 1 optical (Olympus Narrow Band Imaging) and 8 digital (Pentax Medical I-scan) chromoendoscopy filters. Videos were viewed by 11 otolaryngologists wearing protective eyewear. Using a discrete visual analog scale, they rated each filter on its ability to improve visualization,. No filter impaired visualization; 5 of 9 improved visualization. Based on statistical significance, the number of positive responses, and the lack of negative responses, narrow band imaging and the I-scan tone enhancement filter for leukoplakia performed best. These filters could shorten procedure time and improve safety; therefore, further clinical evaluation is warranted.
ERIC Educational Resources Information Center
Varmus, Harold
1988-01-01
Discusses the growth, development, and unusual parasitic nature of the retrovirus community. Reviews these infectious cancer-causing agents as models for the study of fundamental biological problems, tools for genetic manipulations, and problems posed by their pathogenic potential in humans and animal hosts where they cause diseases such as…
The Human Sciences Program and the Future.
ERIC Educational Resources Information Center
Carter, Jack L.
1982-01-01
Discusses the interdisciplinary/multidisciplinary nature of the BSCS Human Sciences Program and problems associated with the development, dissemination, and use of such curricula. Poses a series of questions related to these problems and discusses influences of single-issues pressure groups on science teaching. (JN)
The Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations
NASA Technical Reports Server (NTRS)
Hesthaven, J. S.
1997-01-01
We present a detailed analysis of a recently proposed perfectly matched layer (PML) method for the absorption of acoustic waves. The split set of equations is shown to be only weakly well-posed, and ill-posed under small low order perturbations. This analysis provides the explanation for the stability problems associated with the split field formulation and illustrates why applying a filter has a stabilizing effect. Utilizing recent results obtained within the context of electromagnetics, we develop strongly well-posed absorbing layers for the linearized Euler equations. The schemes are shown to be perfectly absorbing independent of frequency and angle of incidence of the wave in the case of a non-convecting mean flow. In the general case of a convecting mean flow, a number of techniques is combined to obtain a absorbing layers exhibiting PML-like behavior. The efficacy of the proposed absorbing layers is illustrated though computation of benchmark problems in aero-acoustics.
Fast human pose estimation using 3D Zernike descriptors
NASA Astrophysics Data System (ADS)
Berjón, Daniel; Morán, Francisco
2012-03-01
Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.
NASA Astrophysics Data System (ADS)
Zhu, Aichun; Wang, Tian; Snoussi, Hichem
2018-03-01
This paper addresses the problems of the graphical-based human pose estimation in still images, including the diversity of appearances and confounding background clutter. We present a new architecture for estimating human pose using a Convolutional Neural Network (CNN). Firstly, a Relative Mixture Deformable Model (RMDM) is defined by each pair of connected parts to compute the relative spatial information in the graphical model. Secondly, a Local Multi-Resolution Convolutional Neural Network (LMR-CNN) is proposed to train and learn the multi-scale representation of each body parts by combining different levels of part context. Thirdly, a LMR-CNN based hierarchical model is defined to explore the context information of limb parts. Finally, the experimental results demonstrate the effectiveness of the proposed deep learning approach for human pose estimation.
Problem Solving in Technology Rich Contexts: Mathematics Sense Making in Out-of-School Environments
ERIC Educational Resources Information Center
Lowrie, Tom
2005-01-01
This investigation describes the way in which a case study participant (aged 7) represented, posed and solved problems in a technology game-based environment. The out-of-school problem-solving context placed numeracy demands on the participant that were more complex and sophisticated than the type of mathematics experiences he encountered in…
NASA Astrophysics Data System (ADS)
Sargsyan, M. Z.; Poghosyan, H. M.
2018-04-01
A dynamical problem for a rectangular strip with variable coefficients of elasticity is solved by an asymptotic method. It is assumed that the strip is orthotropic, the elasticity coefficients are exponential functions of y, and mixed boundary conditions are posed. The solution of the inner problem is obtained using Bessel functions.
ERIC Educational Resources Information Center
Madensen, Tamara D.; Eck, John E.
2006-01-01
Alcohol-related riots among university students pose a significant problem for police agencies that serve college communities. The intensity of the disturbances may vary. However, the possible outcomes include property destruction and physical violence and are a serious threat to community and officer safety. This report provides a framework for…
Conduct Problems in Young, School-Going Children in Ireland: Prevalence and Teacher Response
ERIC Educational Resources Information Center
Hyland, Lynda; Ní Mháille, Grainne; Lodge, Anne; McGilloway, Sinead
2014-01-01
Conduct problems in school settings can pose significant challenges for both children and teachers. This study examined the teacher-reported prevalence of conduct problems in a sample of young children (N?=?445) in the first two years of formal education. A secondary aim was to assess teachers' perceptions of child behaviour and their classroom…
"You Can't Go on the Other Side of the Fence": Preservice Teachers and Real-World Problems
ERIC Educational Resources Information Center
Simic-Muller, Ksenija; Fernandes, Anthony; Felton-Koestler, Mathew D.
2016-01-01
Our study investigates preservice teachers' perceptions of real-world problems; their beliefs about teaching real-world contexts, especially ones sociopolitical in nature; and their ability to pose meaningful real-world problems. In this paper we present cases of three preservice teachers who participated in interviews that probed their thinking…
Wolzt, M; Schmetterer, L; Rheinberger, A; Salomon, A; Unfried, C; Breiteneder, H; Ehringer, H; Eichler, H G; Fercher, A F
1995-01-01
1. The study was performed to determine the sensitivity and short-term and day-to-day variability of a novel technique based on laser interferometry of ocular fundus pulsations and of non-invasive methods for the quantification of haemodynamic drug effects. An additional aim was to assess sex differences in haemodynamic responsiveness to cardiovascular drugs in male and female healthy volunteers. 2. Ten males and nine females (age range 20-33 years) were studied in a double-blind, randomized, cross-over trial. Simultaneous measurements from systemic haemodynamics, laser interferometry of ocular fundus pulsations, systolic time intervals from mechanocardiography, a/b ratio from oxymetric fingerplethysmography and Doppler sonography of the radial artery were used to describe the haemodynamic effects of cumulative, stepwise increasing intravenous doses of phenylephrine, isoprenaline, sodium nitroprusside and of placebo. 3. Laser interferometry detected the isoprenaline-effects at the lowest dose level of 0.1 micrograms min-1 with a high signal-to-noise ratio. The reproducibility of measurements under baseline was high, no changes were observed after systemically effective doses of phenylephrine or sodium nitroprusside. Systolic time intervals were sensitive and specific for isoprenaline-induced effects, PEP and QS2c-measurements had high reproducibility. Fingerplethysmography proved a sensitive measurement for the detection of the vasodilating effects of sodium nitroprusside, but was not specific, and showed low reproducibility. Measurements from Doppler sonography had lower reproducibility and sensitivity compared with the other applied methods. 4. There was a significant sex difference for several of the haemodynamic parameters under baseline conditions; however, the responsiveness to the drugs under study was not different, when drug effects were expressed as %-change from the baseline. 5. Laser interferometry is a valuable non-invasive, highly sensitive and specific approach for the detection of pulse pressure changes. A battery of non-invasive tests appears useful for the characterization of cardiovascular drugs. Gender differences may not pose a relevant problem for the study of acute haemodynamic effects of cardiovascular drugs. Images Figure 1 PMID:7640140
Schäfer, J.; Foest, R.; Reuter, S.; Kewitz, T.; Šperka, J.; Weltmann, K.-D.
2012-01-01
The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable gradients of refractive index by local gas heating and opens new diagnostics prospects particularly for microplasmas. PMID:23126765
Pose estimation for augmented reality applications using genetic algorithm.
Yu, Ying Kin; Wong, Kin Hong; Chang, Michael Ming Yuen
2005-12-01
This paper describes a genetic algorithm that tackles the pose-estimation problem in computer vision. Our genetic algorithm can find the rotation and translation of an object accurately when the three-dimensional structure of the object is given. In our implementation, each chromosome encodes both the pose and the indexes to the selected point features of the object. Instead of only searching for the pose as in the existing work, our algorithm, at the same time, searches for a set containing the most reliable feature points in the process. This mismatch filtering strategy successfully makes the algorithm more robust under the presence of point mismatches and outliers in the images. Our algorithm has been tested with both synthetic and real data with good results. The accuracy of the recovered pose is compared to the existing algorithms. Our approach outperformed the Lowe's method and the other two genetic algorithms under the presence of point mismatches and outliers. In addition, it has been used to estimate the pose of a real object. It is shown that the proposed method is applicable to augmented reality applications.
Recovering the 3d Pose and Shape of Vehicles from Stereo Images
NASA Astrophysics Data System (ADS)
Coenen, M.; Rottensteiner, F.; Heipke, C.
2018-05-01
The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.
Innovative discharge geometries for diffusion-cooled gas lasers
NASA Astrophysics Data System (ADS)
Lapucci, Antonio
2004-09-01
Large area, narrow discharge gap, diffusion cooled gas lasers are nowadays a well established technology for the construction of industrial laser sources. Successful examples exist both with the slab (Rofin-Sinar) or coaxial (Trumpf) geometry. The main physical properties and the associated technical problems of the transverse large area RF discharge, adopted for the excitation of high power diffusion cooled gas lasers, are reviewed here. The main problems of this technology are related to the maintenance of a uniform and stable plasma excitation between closely spaced large-area electrodes at high power-density loading. Some practical solutions such as distributed resonance of the discharge channel proved successful in the case of square or rectangular cross-sections but hardly applicable to geometries such as that of coaxial electrodes. In this paper we present some solutions, adopted by our group, for the development of slab and annular CO2 lasers and for CO2 laser arrays with linear or circular symmetry. We will also briefly mention the difficulties encountered in the extraction of a good quality beam from an active medium with such a cross section. A problem that has also seen some interesting solutions.
NASA Astrophysics Data System (ADS)
Jia, Zhongxiao; Yang, Yanfei
2018-05-01
In this paper, we propose new randomization based algorithms for large scale linear discrete ill-posed problems with general-form regularization: subject to , where L is a regularization matrix. Our algorithms are inspired by the modified truncated singular value decomposition (MTSVD) method, which suits only for small to medium scale problems, and randomized SVD (RSVD) algorithms that generate good low rank approximations to A. We use rank-k truncated randomized SVD (TRSVD) approximations to A by truncating the rank- RSVD approximations to A, where q is an oversampling parameter. The resulting algorithms are called modified TRSVD (MTRSVD) methods. At every step, we use the LSQR algorithm to solve the resulting inner least squares problem, which is proved to become better conditioned as k increases so that LSQR converges faster. We present sharp bounds for the approximation accuracy of the RSVDs and TRSVDs for severely, moderately and mildly ill-posed problems, and substantially improve a known basic bound for TRSVD approximations. We prove how to choose the stopping tolerance for LSQR in order to guarantee that the computed and exact best regularized solutions have the same accuracy. Numerical experiments illustrate that the best regularized solutions by MTRSVD are as accurate as the ones by the truncated generalized singular value decomposition (TGSVD) algorithm, and at least as accurate as those by some existing truncated randomized generalized singular value decomposition (TRGSVD) algorithms. This work was supported in part by the National Science Foundation of China (Nos. 11771249 and 11371219).
Future Research Needs in Learning Disabilities.
ERIC Educational Resources Information Center
Senf, Gerald M.
This paper deals with future research needs and problems in learning disabilities, and is divided into the following two broad categories: (1) supporting conditions, which involve necessary prerequisites to the research effort; and (2) procedural considerations, which deal with methodological concerns. First, the problems posed by supporting…
Workplace Learning: A Concept in Off-Campus Teaching.
ERIC Educational Resources Information Center
Rose, Emma; McKee, Willie; Temple, Bryan K.; Harrison, David K.; Kirkwood, D.
2001-01-01
Discusses types of university-provided workplace learning; identifies problems posed by employee turnover and lack of equipment. Suggests that the problem of too few students to have a cost-effective program can be solved by clustering program offerings for small businesses. (Contains 25 references.) (SK)
Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.
Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao
2016-01-01
Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.
Use of Lasers in Laryngeal Surgery
Yan, Yan; Olszewski, Aleksandra E.; Hoffman, Matthew R.; Zhuang, Peiyun; Ford, Charles N.; Dailey, Seth H.; Jiang, Jack J.
2012-01-01
Lasers are a relatively recent addition to laryngeal surgery. Since their invention, laser use and applications have expanded rapidly. In this paper, we discuss the benefits and disadvantages of lasers for different procedures, as well as ways to overcome commonly faced clinical problems. The use of lasers in surgery has offered a time- and cost-efficient alternative to cold surgical techniques, and has been employed in the treatment of numerous laryngeal pathologies, including stenoses, recurrent respiratory papillomatosis, leukoplakia, nodules, malignant laryngeal disease, and polypoid degeneration (Reinke’s edema). However, lasers can incur adjacent tissue damage and vocal fold scarring. These problems can be minimized through understanding the mechanisms by which lasers function and correctly manipulating the parameters under a surgeon’s control. By varying fluence, power density, and pulsation, tissue damage can be decreased and lasers can be used with greater confidence. The various types of lasers and their applications to the treatment of specific pathologies are reviewed with the intention of helping surgeons select the best tool for a given procedure. Recent applications of lasers to treat benign laryngeal lesions and severe laryngomalacia demonstrate that additional research must be conducted in order to realize the full potential of this surgical tool. PMID:19487102
Laser exposure incidents: pilot ocular health and aviation safety issues.
Nakagawara, Van B; Wood, Kathryn J; Montgomery, Ron W
2008-09-01
A database of aviation reports involving laser illumination of flight crewmembers has been established and maintained at the Civil Aerospace Medical Institute. A review of recent laser illumination reports was initiated to investigate the significance of these events. Reports that involved laser exposures of civilian aircraft in the United States were analyzed for the 13-month period (January 1, 2004, through January 31, 2005). There were 90 reported instances of laser illumination during the study period. A total of 53 reports involved laser exposure of commercial aircraft. Lasers illuminated the cockpit in 41 (46%) of the incidents. Of those, 13 (32%) incidents resulted in a visual impairment or distraction to a pilot, including 1 incident that reportedly resulted in an ocular injury. Nearly 96% of these reports occurred in the last 3 months of the study period. There were no aviation accidents in which laser light illumination was found to be a contributing factor. Operational problems have resulted from laser illumination incidents in the national airspace system. Eye care practitioners, to provide effective consultations to their pilot patients, should be familiar with the problems that can occur with laser exposure.
Dezhurov and Tyurin pose in Zvezda during Expedition Three
2001-08-01
ISS003-E-5498 (August 2001) --- Cosmonauts Mikhail Tyurin (left) and Vladimir Dezhurov, Expedition Three flight engineers, pose for a photograph in the Zvezda Service Module. Tyurin and Dezhurov represent Rosaviakosmos. Please note: The date identifiers on some frames are not accurate due to a technical problem with one of the Expedition Three cameras. When a specific date is given in the text or description portion, it is correct.
ERIC Educational Resources Information Center
Montero, E.; Gonzalez, M. J.
2009-01-01
Problem-based learning has been at the core of significant developments in engineering education in recent years. This term refers to any learning environment in which the problem drives the learning, because it is posed in such a way that students realize they need to acquire new knowledge before the problem can be solved. This paper presents the…
NASA Technical Reports Server (NTRS)
Rodgers, M. O.; Bradshaw, J. D.; Sandholm, S. T.; Kesheng, S.; Davis, D. D.
1985-01-01
A number of techniques have been proposed for detecting atmospheric OH radicals. Of these, the laser-induced fluorescence (LIF) technique has been used by the largest number of investigators. One of the problems arising in connection with the implementation of this technique is related to the perturbing effect of the UV (lambda approximately 282 nm) laser beam used for OH monitoring, while another problem relates to signal extraction. Several new LIF approaches have been or are currently under development with the objective to bring both problems under control. The present paper deals with the experimental features of one of these new approaches. The considered approach is referred to as 2-lambda laser-induced fluorescence (2-lambda LIF). It is shown that the 2-lambda LIF system provides significant advantages over earlier 1-lambda LIF OH measurement instruments operating at ambient pressure.
Real-time upper-body human pose estimation from depth data using Kalman filter for simulator
NASA Astrophysics Data System (ADS)
Lee, D.; Chi, S.; Park, C.; Yoon, H.; Kim, J.; Park, C. H.
2014-08-01
Recently, many studies show that an indoor horse riding exercise has a positive effect on promoting health and diet. However, if a rider has an incorrect posture, it will be the cause of back pain. In spite of this problem, there is only few research on analyzing rider's posture. Therefore, the purpose of this study is to estimate a rider pose from a depth image using the Asus's Xtion sensor in real time. In the experiments, we show the performance of our pose estimation algorithm in order to comparing the results between our joint estimation algorithm and ground truth data.
Adaptive relative pose control of spacecraft with model couplings and uncertainties
NASA Astrophysics Data System (ADS)
Sun, Liang; Zheng, Zewei
2018-02-01
The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.
NASA Astrophysics Data System (ADS)
Das Gupta, Santanu; Das Gupta, S. R.
1991-10-01
The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein'sA, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the ‘rate equations’ to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.
Solid state laser systems for space application
NASA Technical Reports Server (NTRS)
Kay, Richard B.
1994-01-01
Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.
An Improved Method of Pose Estimation for Lighthouse Base Station Extension.
Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang
2017-10-22
In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal.
An Improved Method of Pose Estimation for Lighthouse Base Station Extension
Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang
2017-01-01
In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal. PMID:29065509
Pose estimation of industrial objects towards robot operation
NASA Astrophysics Data System (ADS)
Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu
2017-10-01
With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.
Expanding the Space of Plausible Solutions in a Medical Tutoring System for Problem-Based Learning
ERIC Educational Resources Information Center
Kazi, Hameedullah; Haddawy, Peter; Suebnukarn, Siriwan
2009-01-01
In well-defined domains such as Physics, Mathematics, and Chemistry, solutions to a posed problem can objectively be classified as correct or incorrect. In ill-defined domains such as medicine, the classification of solutions to a patient problem as correct or incorrect is much more complex. Typical tutoring systems accept only a small set of…
ERIC Educational Resources Information Center
Tisdell, Christopher C.
2017-01-01
Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching "well posedness" of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a…
ERIC Educational Resources Information Center
Derting, Terry L.
1992-01-01
Develops a research-oriented method of studying the digestive system that integrates species' ecology with the form and function of this system. Uses problem-posing, problem-probing, and peer persuasion. Presents information for mammalian systems. (27 references) (MKR)
On a local solvability and stability of the inverse transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia; Buterin, Sergey
2017-11-01
We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.
Kinetic Modeling of Next-Generation High-Energy, High-Intensity Laser-Ion Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Brian James; Yin, Lin; Stark, David James
One of the long-standing problems in the community is the question of how we can model “next-generation” laser-ion acceleration in a computationally tractable way. A new particle tracking capability in the LANL VPIC kinetic plasma modeling code has enabled us to solve this long-standing problem
Laser cutting of sodium silicate glasses
NASA Astrophysics Data System (ADS)
Buchanov, V. V.; Kazarian, M. A.; Kustov, M. E.; Mashir, Yu. I.; Murav'ev, E. N.; Revenko, V. I.; Solinov, E. F.
2018-04-01
The problems of through laser cutting of sodium silicate glasses by laser-controlled thermal cleavage are considered. A wide variety of obtained end face shapes is demonstrated. It is shown that the strength of glass samples cut by the laser is about two times higher than that of samples cut by a glass cutter.
A practical method to assess model sensitivity and parameter uncertainty in C cycle models
NASA Astrophysics Data System (ADS)
Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy
2015-04-01
The carbon cycle combines multiple spatial and temporal scales, from minutes to hours for the chemical processes occurring in plant cells to several hundred of years for the exchange between the atmosphere and the deep ocean and finally to millennia for the formation of fossil fuels. Together with our knowledge of the transformation processes involved in the carbon cycle, many Earth Observation systems are now available to help improving models and predictions using inverse modelling techniques. A generic inverse problem consists in finding a n-dimensional state vector x such that h(x) = y, for a given N-dimensional observation vector y, including random noise, and a given model h. The problem is well posed if the three following conditions hold: 1) there exists a solution, 2) the solution is unique and 3) the solution depends continuously on the input data. If at least one of these conditions is violated the problem is said ill-posed. The inverse problem is often ill-posed, a regularization method is required to replace the original problem with a well posed problem and then a solution strategy amounts to 1) constructing a solution x, 2) assessing the validity of the solution, 3) characterizing its uncertainty. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Intercomparison experiments have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF) to estimate model parameters and initial carbon stocks for DALEC using eddy covariance measurements of net ecosystem exchange of CO2 and leaf area index observations. Most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results. We consider adjoint based methods to investigate inverse problems using DALEC and various data streams. Using resolution matrices we study the nature of the inverse problems (solution existence, uniqueness and stability) and show how standard regularization techniques affect resolution and stability properties. Instead of using standard prior information as a penalty term in the cost function to regularize the problems we constraint the parameter space using ecological balance conditions and inequality constraints. The efficiency and rapidity of this approach allows us to compute ensembles of solutions to the inverse problems from which we can establish the robustness of the variational method and obtain non Gaussian posterior distributions for the model parameters and initial carbon stocks.
Bellum, John Curtis; Winstone, Trevor; Lamaignere, Laurent; ...
2016-08-25
We designed an optical coating based on TiO 2/SiO 2 layer pairs for broad bandwidth high reflection (BBHR) at 45-deg angle of incidence (AOI), P polarization of femtosecond (fs) laser pulses of 900-nm center wavelength, and produced the coatings in Sandia’s large optics coater by reactive, ion-assisted e-beam evaporation. This paper reports on laser-induced damage threshold (LIDT) tests of these coatings. The broad HR bands of BBHR coatings pose challenges to LIDT tests. An ideal test would be in a vacuum environment appropriate to a high energy, fs-pulse, petawatt-class laser, with pulses identical to its fs pulses. Short of thismore » would be tests over portions of the HR band using nanosecond or sub-picosecond pulses produced by tunable lasers. Such tests could, e.g., sample 10-nm-wide wavelength intervals with center wavelengths tunable over the broad HR band. Alternatively, the coating’s HR band could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to the coating absorbing moisture under ambient conditions. In conclusion, we had LIDT tests performed on the BBHR coatings at selected AOIs to gain insight into their laser damage properties and analyze how the results of the different LIDT tests compare.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellum, John Curtis; Winstone, Trevor; Lamaignere, Laurent
We designed an optical coating based on TiO 2/SiO 2 layer pairs for broad bandwidth high reflection (BBHR) at 45-deg angle of incidence (AOI), P polarization of femtosecond (fs) laser pulses of 900-nm center wavelength, and produced the coatings in Sandia’s large optics coater by reactive, ion-assisted e-beam evaporation. This paper reports on laser-induced damage threshold (LIDT) tests of these coatings. The broad HR bands of BBHR coatings pose challenges to LIDT tests. An ideal test would be in a vacuum environment appropriate to a high energy, fs-pulse, petawatt-class laser, with pulses identical to its fs pulses. Short of thismore » would be tests over portions of the HR band using nanosecond or sub-picosecond pulses produced by tunable lasers. Such tests could, e.g., sample 10-nm-wide wavelength intervals with center wavelengths tunable over the broad HR band. Alternatively, the coating’s HR band could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to the coating absorbing moisture under ambient conditions. In conclusion, we had LIDT tests performed on the BBHR coatings at selected AOIs to gain insight into their laser damage properties and analyze how the results of the different LIDT tests compare.« less
Ross, Edward V; Chuang, Gary S; Ortiz, Arisa E; Davenport, Scott A
2018-04-01
High concentrations of sub-micron nanoparticles have been shown to be released during laser hair removal (LHR) procedures. These emissions pose a potential biohazard to healthcare workers that have prolonged exposure to LHR plume. We sought to demonstrate that cold sapphire skin cooling done in contact mode might suppress plume dispersion during LHR. A total of 11 patients were recruited for laser hair removal. They were treated on the legs and axilla with a 755 or 1064 nm millisecond-domain laser equipped with either (i) cryogen spray (CSC); (ii) refrigerated air (RA); or (iii) contact cooling with sapphire (CC). Concentration of ultrafine nanoparticles <1 μm were measured just before and during LHR with the three respective cooling methods. For contact cooling (CC), counts remained at baseline levels, below 3,500 parts per cubic centimeter (ppc) for all treatments. In contrast, the CSC system produced large levels of plume, peaking at times to over 400,000 ppc. The CA cooled system produced intermediate levels of plume, about 35,000 ppc (or about 10× baseline). Cold Sapphire Skin cooling with gel suppresses plume during laser hair removal, potentially eliminating the need for smoke evacuators, custom ventilation systems, and respirators during LHR. Lasers Surg. Med. 50:280-283, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank
2006-01-01
High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.
NASA Astrophysics Data System (ADS)
Saadat, S. A.; Safari, A.; Needell, D.
2016-06-01
The main role of gravity field recovery is the study of dynamic processes in the interior of the Earth especially in exploration geophysics. In this paper, the Stabilized Orthogonal Matching Pursuit (SOMP) algorithm is introduced for sparse reconstruction of regional gravity signals of the Earth. In practical applications, ill-posed problems may be encountered regarding unknown parameters that are sensitive to the data perturbations. Therefore, an appropriate regularization method needs to be applied to find a stabilized solution. The SOMP algorithm aims to regularize the norm of the solution vector, while also minimizing the norm of the corresponding residual vector. In this procedure, a convergence point of the algorithm that specifies optimal sparsity-level of the problem is determined. The results show that the SOMP algorithm finds the stabilized solution for the ill-posed problem at the optimal sparsity-level, improving upon existing sparsity based approaches.
Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment : Tech Transfer Summaries
DOT National Transportation Integrated Search
2016-05-01
Problem Statement : While several state departments of transportation (DOTs) have used : terrestrial laser scanning (TLS) in the project planning phase, limited : research has been conducted on employing laser scanners to detect : cracks for bridge c...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin
Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less
Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; ...
2016-04-04
Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less
Deterring Emergent Technologies
2016-01-01
materials ablaze (451° F or 233° C).38 The laser runs off a single lithium - ion battery , roughly the size of a standard AA battery , which enables the...United States has historically en- joyed may no longer be possible. By some measures of innovation , such as the number of major scientific articles...infrastructure in the world, our productivity is declining while others are rapidly improving their ability to innovate . This poses the danger of the
2012-01-01
Scientific Instruments 3 (article in press is attached in Appendix B). Additional experiments were performed in phantoms composed of minced chicken ...molecularly target tumors at their early stage. In fluorescenc imaging, the incident laser causes the flu orophore to excite. Upon relaxation, light is...measurements were acquired. Experiments were also performed using in vitro phantoms, which were com- posed of minced chicken breast combined with 1
Progress in hohlraum physics for the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Moody, J. D.; Callahan, D. A.; Hinkel, D. E.; Amendt, P. A.; Baker, K. L.; Bradley, D.; Celliers, P. M.; Dewald, E. L.; Divol, L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Jones, O.; Haan, S. W.; Ho, D.; Hopkins, L. B.; Izumi, N.; Kalantar, D.; Kauffman, R. L.; Kilkenny, J. D.; Landen, O.; Lasinski, B.; LePape, S.; Ma, T.; MacGowan, B. J.; MacLaren, S. A.; Mackinnon, A. J.; Meeker, D.; Meezan, N.; Michel, P.; Milovich, J. L.; Munro, D.; Pak, A. E.; Rosen, M.; Ralph, J.; Robey, H. F.; Ross, J. S.; Schneider, M. B.; Strozzi, D.; Storm, E.; Thomas, C.; Town, R. P. J.; Widmann, K. L.; Kline, J.; Kyrala, G.; Nikroo, A.; Boehly, T.; Moore, A. S.; Glenzer, S. H.
2014-05-01
Advances in hohlraums for inertial confinement fusion at the National Ignition Facility (NIF) were made this past year in hohlraum efficiency, dynamic shape control, and hot electron and x-ray preheat control. Recent experiments are exploring hohlraum behavior over a large landscape of parameters by changing the hohlraum shape, gas-fill, and laser pulse. Radiation hydrodynamic modeling, which uses measured backscatter, shows that gas-filled hohlraums utilize between 60% and 75% of the laser power to match the measured bang-time, whereas near-vacuum hohlraums utilize 98%. Experiments seem to be pointing to deficiencies in the hohlraum (instead of capsule) modeling to explain most of the inefficiency in gas-filled targets. Experiments have begun quantifying the Cross Beam Energy Transfer (CBET) rate at several points in time for hohlraum experiments that utilize CBET for implosion symmetry. These measurements will allow better control of the dynamic implosion symmetry for these targets. New techniques are being developed to measure the hot electron energy and energy spectra generated at both early and late time. Rugby hohlraums offer a target which requires little to no CBET and may be less vulnerable to undesirable dynamic symmetry "swings." A method for detecting the effect of the energetic electrons on the fuel offers a direct measure of the hot electron effects as well as a means to test energetic electron mitigation methods. At higher hohlraum radiation temperatures (including near vacuum hohlraums), the increased hard x-rays (1.8-4 keV) may pose an x-ray preheat problem. Future experiments will explore controlling these x-rays with advanced wall materials.
NASA Astrophysics Data System (ADS)
Manning, Robert Michael
This work concerns itself with the analysis of two optical remote sensing methods to be used to obtain parameters of the turbulent atmosphere pertinent to stochastic electromagnetic wave propagation studies, and the well -posed solution to a class of integral equations that are central to the development of these remote sensing methods. A remote sensing technique is theoretically developed whereby the temporal frequency spectrum of the scintillations of a stellar source or a point source within the atmosphere, observed through a variable radius aperture, is related to the space-time spectrum of atmospheric scintillation. The key to this spectral remote sensing method is the spatial filtering performed by a finite aperture. The entire method is developed without resorting to a priori information such as results from stochastic wave propagation theory. Once the space-time spectrum of the scintillations is obtained, an application of known results of atmospheric wave propagation theory and simple geometric considerations are shown to yield such important information such as the spectrum of atmospheric turbulence, the cross-wind velocity, and the path profile of the atmospheric refractive index structure parameter. A method is also developed to independently verify the Taylor frozen flow hypothesis. The success of the spectral remote sensing method relies on the solution to a Fredholm integral equation of the first kind. An entire class of such equations, that are peculiar to inverse diffraction problems, is studied and a well-posed solution (in the sense of Hadamard) is obtained and probed. Conditions of applicability are derived and shown not to limit the useful operating range of the spectral remote sensing method. The general integral equation solution obtained is then applied to another remote sensing problem having to do with the characterization of the particle size distribution to atmospheric aerosols and hydrometeors. By measuring the diffraction pattern in the focal plane of a lens created by the passage of a laser beam through a distribution of particles, it is shown that the particle-size distribution of the particles can be obtained. An intermediate result of the analysis also gives the total volume concentration of the particles.
Youth in crisis: dimensions of self-destructive conduct among adolescent prisoners.
Johnson, R
1978-01-01
Self-mutilation and attempted suidcide among adolescent prisoners are explored in relation to concrete coping tests posed in prison and to self-esteem problems posed by failure of external (family) and internal (peer) support systems. Crisis sequences are traced using verbatim excerpts from interviews with self-destructive prisoners and conceptualized in terms of enduring adolescent needs and concerns. Some general observations regarding strategies of intervention with crisisprone prisoners are included.
Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space
NASA Astrophysics Data System (ADS)
Jun, Chen; Wenjun, Hou; Qing, Sheng
After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.
On the Ramsey numbers for complete distance graphs with vertices in {l_brace}0,1{r_brace}{sup n}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailov, Kirill A; Raigorodskii, Andrei M
2009-12-31
A new problem of Ramsey type is posed for complete distance graphs in R{sup n} with vertices in the Boolean cube. This problem is closely related to the classical Nelson-Erdos-Hadwiger problem on the chromatic number of a space. Several quite sharp estimates are obtained for certain numerical characteristics that appear in the framework of the problem. Bibliography: 15 titles.
Rapid optimization of multiple-burn rocket flights.
NASA Technical Reports Server (NTRS)
Brown, K. R.; Harrold, E. F.; Johnson, G. W.
1972-01-01
Different formulations of the fuel optimization problem for multiple burn trajectories are considered. It is shown that certain customary idealizing assumptions lead to an ill-posed optimization problem for which no solution exists. Several ways are discussed for avoiding such difficulties by more realistic problem statements. An iterative solution of the boundary value problem is presented together with efficient coast arc computations, the right end conditions for various orbital missions, and some test results.
ERIC Educational Resources Information Center
Parrish, Fred
1975-01-01
Concludes that the manipulation of photojournalism situations poses a problem for professional and student photographers, and suggests an ethical basis for developing guidelines for photojournalists. (RB)
Problem Posing and Problem Solving in a Math Teacher's Circle
ERIC Educational Resources Information Center
Appleton, Eric; Farina, Solange; Holzer, Tyler; Kotelawala, Usha; Trushkowsky, Mark
2017-01-01
This article describes the New York City Community of Adult Math Instructors (CAMI), a math teachers' circle founded in November 2014. The authors share details about their own participation in CAMI to show the professional growth that research-based, peer-led professional development can offer for adult educators.
Examining Administrators' Disciplinary Philosophies: A Conceptual Model
ERIC Educational Resources Information Center
Smith, Brittany N.; Hains, Bryan J.
2012-01-01
Background: In the 40th Annual Phi Delta Kappa/Gallup Poll of the Public's Attitudes Toward the Public Schools, Americans rated student discipline as the second largest problem facing public education. This poses a substantial problem for administrators striving to employ school reform policies, address public demands, and meet the needs of…
Rational Analyses of Information Foraging on the Web
ERIC Educational Resources Information Center
Pirolli, Peter
2005-01-01
This article describes rational analyses and cognitive models of Web users developed within information foraging theory. This is done by following the rational analysis methodology of (a) characterizing the problems posed by the environment, (b) developing rational analyses of behavioral solutions to those problems, and (c) developing cognitive…
Editorial Research Reports on Health Topics.
ERIC Educational Resources Information Center
Dickinson, William B., Jr., Ed.
Nine reports published in this volume reflect the link between public health and national power. Not only the health problems of underdeveloped nations must be considered, but also the health problems of industrially advanced societies, those peculiar to life in an increasingly urban setting. The dilemmas posed by gains in medical science are…
The Reading Skills of Home Economics: Problems and Selected References.
ERIC Educational Resources Information Center
Cranney, A. Garr; And Others
Since most secondary school reading textbooks give home economics only minimal attention, this paper identifies selected information sources in home economics reading skills and in home economics for high school reading specialists. The first portion of the paper discusses eight principle problems that home economics poses for secondary school…
Rational Approximations to Rational Models: Alternative Algorithms for Category Learning
ERIC Educational Resources Information Center
Sanborn, Adam N.; Griffiths, Thomas L.; Navarro, Daniel J.
2010-01-01
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models…
ERIC Educational Resources Information Center
Bradley, Loretta J.; Hendricks, Bret
2009-01-01
The proliferation of the use of e-mail and texting has created some ethical dilemmas for family counselors. Although e-mail can expand and encourage communication, it is not problem free and, in fact, can pose problems. There are issues with privacy, confidentiality, and maintaining an appropriate professional relationship. Family counselors…
ERIC Educational Resources Information Center
Allen, Kasi C.
2013-01-01
In line with the Common Core and Standards for Mathematical Practice that portray a classroom where students are engaged in problem-solving experiences, and where various tools and arguments are employed to grow their strategic thinking, this article is the story of such a student-initiated problem. A seemingly simple question was posed by…
On Learning Geometry for Teaching
ERIC Educational Resources Information Center
Kuchemann, Dietmar; Rodd, Melissa
2012-01-01
The title is that of a course with the same name, designed for teachers of mathematics. The rational for a course specifically on geometry was that "many of those currently teaching mathematics in school had little geometrical education". Teachers on the course experience geometry through problem solving, and learning to pose geometrical problems.…
Quadratic Expressions by Means of "Summing All the Matchsticks"
ERIC Educational Resources Information Center
Gierdien, M. Faaiz
2012-01-01
This note presents demonstrations of quadratic expressions that come about when particular problems are posed with respect to matchsticks that form regular triangles, squares, pentagons and so on. Usually when such "matchstick" problems are used as ways to foster algebraic thinking, the expressions for the number of matchstick quantities are…
Rescuing Computerized Testing by Breaking Zipf's Law.
ERIC Educational Resources Information Center
Wainer, Howard
2000-01-01
Suggests that because of the nonlinear relationship between item usage and item security, the problems of test security posed by continuous administration of standardized tests cannot be resolved merely by increasing the size of the item pool. Offers alternative strategies to overcome these problems, distributing test items so as to avoid the…
due to the dangers of utilizing convoy operations. However, enemy actions, austere conditions, and inclement weather pose a significant risk to a...squares temporal differencing for policy evaluation. We construct a representative problem instance based on an austere combat environment in order to
A Surprisingly Radical Problem
ERIC Educational Resources Information Center
Ledford, Sarah D.; Garner, Mary L.; Teachey, Angela L.
2012-01-01
Sometimes, in the teaching and learning of mathematics, open-ended problems posed by teachers or students can lead to a fuller understanding of mathematical concepts--a depth of understanding that no one could have anticipated. Interesting solutions and ideas emerged unexpectedly when the authors asked prospective and in-service teachers an "old"…
An assessment of the impact of radio frequency interference on microwave SETI searches
NASA Technical Reports Server (NTRS)
Klein, M. J.; Gulkis, S.; Olsen, E. T.; Armstrong, E. F.; Jackson, E. B.
1987-01-01
The problem posed for SETI by radio frequency interference (RFI) is briefly discussed. The degree to which various frequencies are subject to RFI is indicated, and predictions about the future of such interference are made. Suggestions for coping with the problem are given.
Topic Models for Link Prediction in Document Networks
ERIC Educational Resources Information Center
Kataria, Saurabh
2012-01-01
Recent explosive growth of interconnected document collections such as citation networks, network of web pages, content generated by crowd-sourcing in collaborative environments, etc., has posed several challenging problems for data mining and machine learning community. One central problem in the domain of document networks is that of "link…
Neuromorphic Event-Based 3D Pose Estimation
Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B.
2016-01-01
Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547
Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition
NASA Astrophysics Data System (ADS)
Yin, Xi; Liu, Xiaoming
2018-02-01
This paper explores multi-task learning (MTL) for face recognition. We answer the questions of how and why MTL can improve the face recognition performance. First, we propose a multi-task Convolutional Neural Network (CNN) for face recognition where identity classification is the main task and pose, illumination, and expression estimations are the side tasks. Second, we develop a dynamic-weighting scheme to automatically assign the loss weight to each side task, which is a crucial problem in MTL. Third, we propose a pose-directed multi-task CNN by grouping different poses to learn pose-specific identity features, simultaneously across all poses. Last but not least, we propose an energy-based weight analysis method to explore how CNN-based MTL works. We observe that the side tasks serve as regularizations to disentangle the variations from the learnt identity features. Extensive experiments on the entire Multi-PIE dataset demonstrate the effectiveness of the proposed approach. To the best of our knowledge, this is the first work using all data in Multi-PIE for face recognition. Our approach is also applicable to in-the-wild datasets for pose-invariant face recognition and achieves comparable or better performance than state of the art on LFW, CFP, and IJB-A datasets.
Body Parts Dependent Joint Regressors for Human Pose Estimation in Still Images.
Dantone, Matthias; Gall, Juergen; Leistner, Christian; Van Gool, Luc
2014-11-01
In this work, we address the problem of estimating 2d human pose from still images. Articulated body pose estimation is challenging due to the large variation in body poses and appearances of the different body parts. Recent methods that rely on the pictorial structure framework have shown to be very successful in solving this task. They model the body part appearances using discriminatively trained, independent part templates and the spatial relations of the body parts using a tree model. Within such a framework, we address the problem of obtaining better part templates which are able to handle a very high variation in appearance. To this end, we introduce parts dependent body joint regressors which are random forests that operate over two layers. While the first layer acts as an independent body part classifier, the second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This helps to overcome typical ambiguities of tree structures, such as self-similarities of legs and arms. In addition, we introduce a novel data set termed FashionPose that contains over 7,000 images with a challenging variation of body part appearances due to a large variation of dressing styles. In the experiments, we demonstrate that the proposed parts dependent joint regressors outperform independent classifiers or regressors. The method also performs better or similar to the state-of-the-art in terms of accuracy, while running with a couple of frames per second.
REVIEWS OF TOPICAL PROBLEMS: Spiral light beams
NASA Astrophysics Data System (ADS)
Abramochkin, Evgenii G.; Volostnikov, Vladimir G.
2004-12-01
This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity strusture during propagation and focusing. We describe a family of laser beams termed spiral whose intensity remains invariable, up to scale and rotation, during propagation. Several properties of spiral beams are of practical interest for laser technologies, medicine, and microbiology. The problem of synthesis of spiral beams with the intensity distribution given by an arbitrary planar curve is considered. We emphasize the feasibility, in principle, of making lasers that directly generate beams with desired properties without additional unconventional optics.
Argon laser application to endodontics
NASA Astrophysics Data System (ADS)
Blankenau, Richard J.; Ludlow, Marvin; Anderson, David
1993-07-01
The application of laser technology to endodontics has been studied for some time. At the present time several major problems are being investigated: (1) removal of infected tissues, (2) sterilization of canals, (3) obturation of canals, and (4) preservation of the vitality of supporting tissues. This list is not intended to imply other problems do not exist or have been solved, but it is a starting point. This paper reviews some of the literature that relates to laser applications to endodontics and concludes with some of the findings from our investigation.
Laser mass spectrometry of chemical warfare agents using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Weickhardt, C.; Grun, C.; Grotemeyer, J.
1998-12-01
Fast relaxation processes in excited molecules such as IC, ISC, and fragmentation are observed in many environmentally and technically relevant substances. They cause severe problems to resonance ionization mass spectrometry because they reduce the ionization yield and lead to mass spectra which do not allow the identification of the compound. By the use of ultrashort laser pulses these problems can be overcome and the advantages of REMPI over conventional ionization techniques in mass spectrometry can be regained. This is demonstrated using soil samples contaminated with a chemical warfare agent.
Laser cleaning of steel for paint removal
NASA Astrophysics Data System (ADS)
Chen, G. X.; Kwee, T. J.; Tan, K. P.; Choo, Y. S.; Hong, M. H.
2010-11-01
Paint removal is an important part of steel processing for marine and offshore engineering. For centuries, a blasting techniques have been widely used for this surface preparation purpose. But conventional blasting always has intrinsic problems, such as noise, explosion risk, contaminant particles, vibration, and dust. In addition, processing wastes often cause environmental problems. In recent years, laser cleaning has attracted much research effort for its significant advantages, such as precise treatment, and high selectivity and flexibility in comparison with conventional cleaning techniques. In the present study, we use this environmentally friendly technique to overcome the problems of conventional blasting. Processed samples are examined with optical microscopes and other surface characterization tools. Experimental results show that laser cleaning can be a good alternative candidate to conventional blasting.
NASA Astrophysics Data System (ADS)
Zhirnov, A. A.; Pnev, A. B.; Svelto, C.; Norgia, M.; Pesatori, A.; Galzerano, G.; Laporta, P.; Shelestov, D. A.; Karasik, V. E.
2017-11-01
A novel laser for phase-sensitive optical time-domain reflectometry (Φ-OTDR) is presented. The advantages of a compact solid-state laser are listed, current problems are shown. Experiments with a microchip single-optical-element laser, from setup construction to usage in Φ-OTDR system, are presented. New laser scheme with two-photon intracavity absorber is suggested and its advantages are described.
Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces
NASA Astrophysics Data System (ADS)
Guo, Zihua
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation ∂u+|∂u+uu=0, u(x,0)=u(x), is locally well-posed in the Sobolev spaces H for s>1-α if 0⩽α⩽1. The new ingredient is that we generalize the methods of Ionescu, Kenig and Tataru (2008) [13] to approach the problem in a less perturbative way, in spite of the ill-posedness results of Molinet, Saut and Tzvetkov (2001) [21]. Moreover, as a bi-product we prove that if 0<α⩽1 the corresponding modified equation (with the nonlinearity ±uuu) is locally well-posed in H for s⩾1/2-α/4.
Proceedings of Colloquium on Stable Solutions of Some Ill-Posed Problems, October 9, 1979.
1980-06-30
4. In (24] iterative process (9) was applied for calculation of the magnetization of thin magnetic films . This problem is of interest for computer...equation fl I (x-t) -f(t) = g(x), x > 1. (i) Its multidimensional analogue fmX-tK-if(t)dt = g(x), xEA, AnD (2) can be intepreted as the problem of
ERIC Educational Resources Information Center
Jamil, Tahira; Marsman, Maarten; Ly, Alexander; Morey, Richard D.; Wagenmakers, Eric-Jan
2017-01-01
In 1881, Donald MacAlister posed a problem in the "Educational Times" that remains relevant today. The problem centers on the statistical evidence for the effectiveness of a treatment based on a comparison between two proportions. A brief historical sketch is followed by a discussion of two default Bayesian solutions, one based on a…
Enterprise Analysis of Strategic Airlift to Obtain Competitive Advantage Through Fuel Efficiency
2014-09-18
Single Dimension Value Function SFC Specific Fuel Consumption TRANSCAP Transportation System Capability TSP Travelling Salesman Problem VFT...the value posed by limiting intermediate nodes and en route stops. According to Flood (1955), the Travelling Salesman Problem (TSP) was first...B. (1954). The Problem of Routing Aircraft, a Mathematical Solution. (No. P-561). RAND CORP SANTA MONICA CALIF. Flood, M. M. (1956). The Traveling
A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences
Zhu, Youding; Fujimura, Kikuo
2010-01-01
This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933
Solid state lasers for use in non-contact temperature measurements
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.
1989-01-01
The last decade has seen a series of dramatic developments in solid state laser technology. Prominent among these has been the emergence of high power semiconductor laser diode arrays and a deepening understanding of the dynamics of solid state lasers. Taken in tandem these two developments enable the design of laser diode pumped solid state lasers. Pumping solid state lasers with semiconductor diodes relieves the need for cumbersome and inefficient flashlamps and results in an efficient and stable laser with the compactness and reliability. It provides a laser source that can be reliably used in space. These new coherent sources are incorporated into the non-contact measurement of temperature. The primary focus is the development and characterization of new optical materials for use in active remote sensors of the atmosphere. In the course of this effort several new materials and new concepts were studied which can be used for other sensor applications. The general approach to the problem of new non-contact temperature measurements has had two components. The first component centers on passive sensors using optical fibers; an optical fiber temperature sensor for the drop tube was designed and tested at the Marshall Space Flight Center. Work on this problem has given insight into the use of optical fibers, especially new IR fibers, in thermal metrology. The second component of the effort is to utilize the experience gained in the study of passive sensors to examine new active sensor concepts. By active sensor are defined as a sensing device or mechanism which is interrogated in some way be radiation, usually from a laser. The status of solid state lasers as sources for active non-contact temperature sensors are summarized. Some specific electro-optic techniques are described which are applicable to the sensor problems at hand. Work on some of these ideas is in progress while other concepts are still being worked out.
NASA Technical Reports Server (NTRS)
Herb, G. T.
1973-01-01
Two areas of a laser range finder for a Mars roving vehicle are investigated: (1) laser scanning systems, and (2) range finder methods and implementation. Several ways of rapidly scanning a laser are studied. Two digital deflectors and a matrix of laser diodes, are found to be acceptable. A complete range finder scanning system of high accuracy is proposed. The problem of incident laser spot distortion on the terrain is discussed. The instrumentation for a phase comparison, modulated laser range finder is developed and sections of it are tested.
Plate Tectonics: A Paradigm under Threat.
ERIC Educational Resources Information Center
Pratt, David
2000-01-01
Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)
Optimization of a fast optical CT scanner for nPAG gel dosimetry
NASA Astrophysics Data System (ADS)
Vandecasteele, Jan; DeDeene, Yves
2009-05-01
A fast laser scanning optical CT scanner was constructed and optimized at the Ghent university. The first images acquired were contaminated with several imaging artifacts. The origins of the artifacts were investigated. Performance characteristics of different components were measured such as the laser spot size, light attenuation by the lenses and the dynamic range of the photo-detector. The need for a differential measurement using a second photo-detector was investigated. Post processing strategies to compensate for hardware related errors were developed. Drift of the laser and of the detector was negligible. Incorrectly refractive index matching was dealt with by developing an automated matching process. When scratches on the water bath and phantom container are present, these pose a post processing challenge to eliminate the resulting artifacts from the reconstructed images Secondary laser spots due to multiple reflections need to be further investigated. The time delay in the control of the galvanometer and detector was dealt with using black strips that serve as markers of the projection position. Still some residual ringing artifacts are present. Several small volumetric test phantoms were constructed to obtain an overall picture of the accuracy.
Diode Laser Excision of Oral Benign Lesions.
Mathur, Ena; Sareen, Mohit; Dhaka, Payal; Baghla, Pallavi
2015-01-01
Lasers have made tremendous progress in the field of dentistry and have turned out to be crucial in oral surgery as collateral approach for soft tissue surgery. This rapid progress can be attributed to the fact that lasers allow efficient execution of soft tissue procedures with excellent hemostasis and field visibility. When matched to scalpel, electrocautery or high frequency devices, lasers offer maximum postoperative patient comfort. Four patients agreed to undergo surgical removal of benign lesions of the oral cavity. 810 nm diode lasers were used in continuous wave mode for excisional biopsy. The specimens were sent for histopathological examination and patients were assessed on intraoperative and postoperative complications. Diode laser surgery was rapid, bloodless and well accepted by patients and led to complete resolution of the lesions. The excised specimen proved adequate for histopathological examination. Hemostasis was achieved immediately after the procedure with minimal postoperative problems, discomfort and scarring. We conclude that diode lasers are rapidly becoming the standard of care in contemporary dental practice and can be employed in procedures requiring excisional biopsy of oral soft tissue lesions with minimal problems in histopathological diagnosis.
Maximal likelihood correspondence estimation for face recognition across pose.
Li, Shaoxin; Liu, Xin; Chai, Xiujuan; Zhang, Haihong; Lao, Shihong; Shan, Shiguang
2014-10-01
Due to the misalignment of image features, the performance of many conventional face recognition methods degrades considerably in across pose scenario. To address this problem, many image matching-based methods are proposed to estimate semantic correspondence between faces in different poses. In this paper, we aim to solve two critical problems in previous image matching-based correspondence learning methods: 1) fail to fully exploit face specific structure information in correspondence estimation and 2) fail to learn personalized correspondence for each probe image. To this end, we first build a model, termed as morphable displacement field (MDF), to encode face specific structure information of semantic correspondence from a set of real samples of correspondences calculated from 3D face models. Then, we propose a maximal likelihood correspondence estimation (MLCE) method to learn personalized correspondence based on maximal likelihood frontal face assumption. After obtaining the semantic correspondence encoded in the learned displacement, we can synthesize virtual frontal images of the profile faces for subsequent recognition. Using linear discriminant analysis method with pixel-intensity features, state-of-the-art performance is achieved on three multipose benchmarks, i.e., CMU-PIE, FERET, and MultiPIE databases. Owe to the rational MDF regularization and the usage of novel maximal likelihood objective, the proposed MLCE method can reliably learn correspondence between faces in different poses even in complex wild environment, i.e., labeled face in the wild database.
Atmospheric Propagation and Combining of High-Power Lasers
2015-09-08
Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when
Laser ablation of iron-rich black films from exposed granite surfaces
NASA Astrophysics Data System (ADS)
Delgado Rodrigues, J.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S.
2014-10-01
Here, we investigated the potential of laser removal of iron-rich dark films from weathered granite substrates, which represents a very difficult conservation problem because of the polymineralic nature of the stone and of its complex deterioration mechanisms. As often occurs, biotite was the most critical component because of its high optical absorption, low melting temperature, and pronounced cleavage, which required a careful control of the photothermal and photomechanical effects to optimize the selective ablation of the mentioned unwanted dark film. Different pulse durations and wavelengths Nd:YAG lasers were tested and optimal irradiation conditions were determined through thorough analytical characterisations. Besides addressing a specific conservation problem, the present work provides information of general valence in laser uncovering of encrusted granite.
López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel
2017-01-01
One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758
Aspects of CO2 laser engraving of printing cylinders.
Atanasov, P A; Maeno, K; Manolov, V P
1999-03-20
Results of the experimental and theoretical investigations of CO(2) laser-engraved cylinders are presented. The processed surfaces of test samples are examined by a phase-stepping laser interferometer, digital microscope, and computer-controlled profilometer. Fourier analysis is made on the patterns parallel to the axis of the laser-scribed test ceramic cylinders. The problem of the visually observed banding is discussed.
Present state of applying diode laser in Toyota Motor Corp.
NASA Astrophysics Data System (ADS)
Terada, Masaki; Nakamura, Hideo
2003-03-01
Since the mid-1980s, Toyota Motor Corporation has applied CO2 lasers and YAG lasers to machine (welding, piercing, cutting, surface modifying etc.) automobile parts. In recent years diode lasers, which are excellent in terms of cost performance, are now available on the market as a new type of oscillator and are expected to bring about a new age in laser technology. Two current problems with these lasers, however, are the lack of sufficient output and the difficulty in improving the focusing the beam, which is why it has not been easy to apply them to the machining of metal parts in the past. On the other hand, plastics can be joined with low energy because they have a lower melting point than metal and the rate of absorption of the laser is easy to control. Moreover, because the high degree of freedom in molding plastic parts results in many complex shapes that need to be welded, Toyota is looking into the use of diode lasers to weld plastic parts. This article will introduce the problems of plastics welding and the methods to solve them referring to actual examples.
Ultra-low noise combs in the palm of your hand
NASA Astrophysics Data System (ADS)
Schibli, Thomas R.
Mode-locked lasers are attractive tools for precision measurements and for photonic microwave generation. The technology around these lasers has rapidly evolved, and with the invention of optical frequency combs, fs-technology has become a ubiquitous tool science and engineering. At first, most of these combs were generated by bulky and delicate Kerr-Lens mode-locked Ti:sapphire systems, but have now been mostly replaced by the much more robust and compact fiber lasers. However, the move from table-top solid-state lasers to the fully self-contained fiber systems came with a price: the optical phase noise performance degraded due to design constraints. While this is of no concern for most spectroscopic applications, it poses a challenge for applications that require excellent short-term phase noise performance, such as, for example, required for photonic microwave generation. While much of this has been improved by ingenious laser designs, it remains a challenge to obtain ultra-low phase-noise combs from high-repetition-rate fiber lasers. Here we present a new approach consisting of a monolithic cavity design, in which the laser light is fully confined inside an optical material. Thanks to this monolithic design, these solid-state lasers are inherently robust against environmental perturbations, such as acoustics, vibrations, air pressure and humidity. Opposed to the omnipresent mode-locked fiber lasers, these monolithic lasers exhibit very low round-trip loss, dispersion and nonlinearities. As a result, they produce highly stable pulse trains, with free-running relative line-widths of the order of a few Hz in the optical domain, despite their moderately high fundamental repetition rates of 1 GHz. The compact design further simplifies integration into complex systems, and eliminates the need for an optics bench or a vibration isolated platform. These lasers produce less than 0.2 W of heat, and are fully turn-key. This work was supported by the DARPA PULSE program with a Grant from AMRDEC and by the NSF Early Career Award.
ERIC Educational Resources Information Center
Meszaros, Bonnie; Saunders, Phillip
The guide is designed to accompany fifteen 20-minute economic education film/television programs for ages nine to 13. The emphasis is on economic decision making and problem solving. A statement of key concepts, suggestions for introducing the program, a summary, questions to help students resolve the problem posed at the end of the program, and…
Group Work Tests for Context-Rich Problems
ERIC Educational Resources Information Center
Meyer, Chris
2016-01-01
The group work test is an assessment strategy that promotes higher-order thinking skills for solving context-rich problems. With this format, teachers are able to pose challenging, nuanced questions on a test, while providing the support weaker students need to get started and show their understanding. The test begins with a group discussion…
Useful Material Efficiency Green Metrics Problem Set Exercises for Lecture and Laboratory
ERIC Educational Resources Information Center
Andraos, John
2015-01-01
A series of pedagogical problem set exercises are posed that illustrate the principles behind material efficiency green metrics and their application in developing a deeper understanding of reaction and synthesis plan analysis and strategies to optimize them. Rigorous, yet simple, mathematical proofs are given for some of the fundamental concepts,…
A Solution to the Mysteries of Morality
ERIC Educational Resources Information Center
DeScioli, Peter; Kurzban, Robert
2013-01-01
We propose that moral condemnation functions to guide bystanders to choose the same side as other bystanders in disputes. Humans interact in dense social networks, and this poses a problem for bystanders when conflicts arise: which side, if any, to support. Choosing sides is a difficult strategic problem because the outcome of a conflict…
Introductory Economic Geography: Problem-Solving or a Teaching Problem?
ERIC Educational Resources Information Center
Wheeler, James O.
Because economic geography is viewed as a field with too many different aspects for one person to master, teaching an introductory course in the subject poses the challenge of selecting an organizing theme. One specific approach, organized around higher level generalizations and theories, is the use of location theory. Coupling location theory…
Finishing High School: Alternative Pathways and Dropout Recovery
ERIC Educational Resources Information Center
Tyler, John H.; Lofstrom, Magnus
2009-01-01
John Tyler and Magnus Lofstrom take a close look at the problems posed when students do not complete high school. The authors begin by discussing the ongoing, sometimes heated, debate over how prevalent the dropout problem is. They note that one important reason for discrepancies in reported dropout rates is whether holders of the General…
Qualitative Reasoning methods for CELSS modeling.
Guerrin, F; Bousson, K; Steyer JPh; Trave-Massuyes, L
1994-11-01
Qualitative Reasoning (QR) is a branch of Artificial Intelligence that arose from research on engineering problem solving. This paper describes the major QR methods and techniques, which, we believe, are capable of addressing some of the problems that are emphasized in the literature and posed by CELSS modeling, simulation, and control at the supervisory level.
Seeing Mathematics through a New Lens: Using Photos in the Mathematics Classroom
ERIC Educational Resources Information Center
Bragg, Leicha A.; Nicol, Cynthia
2011-01-01
In this article, the authors present an approach to developing open-ended problems through capturing contextualised mathematics in photographs. They draw upon their research with the Problem Posing Research Project, a collaborative venture between an Australian and a Canadian university to broaden pre-service teachers pedagogical practices in the…
Reverse and Add to 100: Explorations in Place Value
ERIC Educational Resources Information Center
Edwards, Michael Todd; Quinlan, James; Strayer, Jeremy F.
2016-01-01
During the past few years, several of the authors have incorporated student problem posing as a regular instructional feature in their classrooms. When they offer their students the opportunity to construct their own problems, particularly during the course of an entire school year, they create many novel tasks. Student-created tasks not only…
Ethical Issues in Paediatric Practice - Part I: General Principles
Attard-Montalto, S
2001-01-01
Clinical problems with ethical implications pose an ever increasing dilemma in everyday medical practice, and this is particularly the case with ethical issues involving children and those unable to take their own decisions. In this editorial we shall review some of the general principles that guide medical ethical problems. PMID:22368603
Language and Communication-Related Problems of Aviation Safety.
ERIC Educational Resources Information Center
Cushing, Steven
A study of the problems posed by the use of natural language in various aspects of aviation is presented. The study, part of a larger investigation of the feasibility of voice input/output interfaces for communication in aviation, looks at representative real examples of accidents and near misses resulting from language confusions and omissions.…
"Children-with-matches" fires in the Angeles National Forest area
William S. Folkman
1966-01-01
Forest fires started by children playing with matches pose a threat to the Angeles National Forest. An investigation of the problem has gathered some data on the characteristics of the offenders, appraised existing organizational structures and procedures for dealing with the problem, and recommended some action to improve the situation.
A chance constraint estimation approach to optimizing resource management under uncertainty
Michael Bevers
2007-01-01
Chance-constrained optimization is an important method for managing risk arising from random variations in natural resource systems, but the probabilistic formulations often pose mathematical programming problems that cannot be solved with exact methods. A heuristic estimation method for these problems is presented that combines a formulation for order statistic...
The Unemployment-Inflation Dilemma: A Manpower Solution.
ERIC Educational Resources Information Center
Holt, Charles C.; And Others
Unemployment and inflation pose a trade-off problem with one being employed at the expense of the other, seriously hampering efforts to deal effectively with poverty, crime, pollution, and other domestic problems. When unemployment is high, real income is relatively low so the nation feels that it cannot afford measures to solve these questions.…
An Application of Calculus: Optimum Parabolic Path Problem
ERIC Educational Resources Information Center
Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali
2009-01-01
A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…
ERIC Educational Resources Information Center
Ramaekers, Stephan; Kremer, Wim; Pilot, Albert; van Beukelen, Peter; van Keulen, Hanno
2010-01-01
Real-life, complex problems often require that decisions are made despite limited information or insufficient time to explore all relevant aspects. Incorporating authentic uncertainties into an assessment, however, poses problems in establishing results and analysing their methodological qualities. This study aims at developing a test on clinical…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalf, R.L.
The proliferation of xenobiotic chemicals in the global environment poses living problems for each of us aboard {open_quotes}spaceship earth.{close_quotes} Seven case studies are presented that illustrate the magnitude of the problem that can result from waiting to identify toxic hazards until there have been decades of {open_quotes}human guinea pig{close_quotes} exposure. 25 refs., 5 tabs.
Taking the Incredible Years Child and Teacher Programs to Scale in Wales
ERIC Educational Resources Information Center
Hutchings, Judy; Williams, Margiad Elen
2017-01-01
Students who demonstrate conduct problems pose ongoing challenges for teachers. Therefore, prevention programs that all families and teachers of young children can use to promote social and emotional learning, emotion regulation, and problem solving are of great interest to researchers and practitioners alike. This article describes the Incredible…
Research Thinking of Low-intensity laser For the Treatment of Menopausal Syndrome
NASA Astrophysics Data System (ADS)
Chen, G. Z.; Xu, Y. X.; Wang, X. Y.; Liu, S. H.; Li, L. J.
2011-02-01
Female climacteric syndrome is a clinical syndrome due to autonomic nerve dysfunction occurring in women during climacteric period, which may affect their physical and mental health. Therefore, how to pass climacteric period for women without any problems, avoid or reduce the occurrence of climacteric syndrome, prevent geriatric diseases and improve life quality is a key issue now for great attention. Looking for a convenient, effective, and safer method without toxic-side effects to control the disease is a modern medical problem. By analyzing the relationship between laser technology and traditional acupuncture and moxibustion, the advantage and the existing problems on acupuncture and moxibustion for the treatment of menopausal syndrome, the application of laser methods for the mechanism research on TCM diagnosis and treatment of menopausal syndrome was discussed. It's pointed out that the laser acupuncture is safe and effective to treat menopausal syndrome. Breakthrough will be achieved from the research of the selection of the acupoint prescription and mechanism of Acupuncture and Moxibustion for the treatment of menopausal syndrome by utilizing the advantage of interdisciplinary intersection. Laser technology will make the development of acupuncture and moxibustion science possess an unprecedented field.
Food technology problems related to space feeding.
Hollender, H A; Klicka, M V; Smith, M C
1970-01-01
The development of foods suitable for extraterrestrial consumption posed unique problems. Limitations on weight, volume and stability of space food together with the lack of refrigeration favored the use of dehydrated foods on Gemini and Apollo menus. Environmental constraints, cabin pressures of 1/3 atmosphere with exposure of the food assembly to the vacuum of space in conjunction with extravehicular activities and zero gravity required special packaging and adaptation of foods considered suitable for space flight use. Requirements for acceptable, familiar, crumb free, low residue, non-gas producing, stable foods added to the complexity of the developmental effort. Four basic approaches: semisolid foods in metal tubes, dehydrated bite-size foods to be eaten dry, dehydrated foods to be reconstituted before eating and flexibly packaged thermostabilized wet meat products have been utilized in the feeding systems developed for Projects Mercury, Gemini and Apollo. The development of each type posed many interesting technologic problems. Data from current Apollo flights have pointed to certain deficiencies which still remain to be corrected. Work is progressing to eliminate current problems and to provide feeding systems suitable for both short-term and long-term space flights.
Solving ill-posed inverse problems using iterative deep neural networks
NASA Astrophysics Data System (ADS)
Adler, Jonas; Öktem, Ozan
2017-12-01
We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the ‘gradient’ component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 × 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).
Hand held lasers, a hazard to aircraft: How do we address this?
NASA Astrophysics Data System (ADS)
Barat, K.
2015-10-01
The availability of hand held lasers, commonly termed "laser pointers" is easy and wide spread, through commercial web sites and brick & mortar stores. The output of these hand held devices ranges from 1-5 milliWatts (mW) the legal laser pointer output limit, to 5000mW (5Watts). This is thousand times the maximum limit for pointers. Sadly the abuse of these devices is also wide spread. Over the last few years over 3000 aircraft are exposed to laser hits per year. While these aircraft exposures are of no danger to the aircraft frame but they can cause pilot distractions with the potential to cause a serve accident. The presentation will discuss the problem review visual effects, the regulatory response and how educators need to be aware of the problem and can take steps to educate students in the hope of having an effect.
Immunodeficiency and laser magnetic therapy in urology
NASA Astrophysics Data System (ADS)
Maati, Moufagued; Rozanov, Vladimir V.; Avdoshin, V. P.
1996-11-01
The importance of immunodeficiency problem has increased last time not only due to AIDS appearance, but also to a great extent as a result of the development and active practical use of the methods of immunology parameters investigations. Al great pharmaceutical firms are organizing the process of creating the drugs, influencing on the different phases of immunity, but unfortunately, the problem of their adverse effect and connected complications is till today a milestone. A great number of investigations, proving a good effect of laser-magnetic therapy concerning immune system have been done today. There is, in particular, changing of blood counts and immunologic tests after intravenous laser irradiation of blood. Intravenous laser irradiation of blood results in increasing of lymphocytes, T-immuno stimulation, stabilization of t-lymphocyte subpopulation, increasing of t-lymphocyte helper activity and decreasing of suppressor one.Under this laser action number of circulating immune complexes is decreased, and blood serum bactericide activity and lisozyme number are increased.
What's New for Laser Orbital Debris Removal
NASA Astrophysics Data System (ADS)
Phipps, Claude; Lander, Mike
2011-11-01
Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm is now a reality that we ignore at our peril. The least costly, and most comprehensive, solution is Laser Orbital Debris Removal (LODR). In this approach, a high power pulsed laser on the Earth creates a laser-ablation jet on the debris object's surface which provides the small impulse required to cause it to re-enter and burn up in the atmosphere. The LODR system should be located near the Equator, and includes the laser, a large, agile mirror, and systems for active detection, tracking and atmospheric path correction. In this paper, we discuss advances that have occurred since LODR was first proposed, which make this solution to the debris problem look quite realistic.
New Polymer Materials for the Laser Sintering Process: Polypropylene and Others
NASA Astrophysics Data System (ADS)
Wegner, Andreas
Laser sintering of polymers gets more and more importance for small series production. However, there is only a little number of materials available for the process. In most cases parts are build up using polyamide 12 or polyamide 11. Reasons for that are high prices, a restricted availability, poor mechanical part properties or an insufficient understanding of the processing of other materials. These problems result from the complex processing conditions in laser sintering with high requirements on the material's characteristics. Within this area, at the chair for manufacturing technology fundamental knowledge was established. Aim of the presented study was to qualify different polymers for the laser sintering process. Polyethylene, polypropylene, polyamide 6, polyoxymethylene as well as polybutylene terephthalate were analyzed. Within the study problems of qualifying new materials are discussed using some examples. Furthermore, the processing conditions as well as mechanical properties of a new polypropylene compound are shown considering also different laser sintering machines.
Clinical dental application of Er:YAG laser for Class V cavity preparation.
Matsumoto, K; Nakamura, Y; Mazeki, K; Kimura, Y
1996-06-01
Following the development of the ruby laser by Maiman in 1960, the Nd:YAG laser, the CO2 laser, the semiconductor laser, the He-Ne laser, excimer lasers, the argon laser, and finally the Er:YAG laser capable of cutting hard tissue easily were developed and have come to be applied clinically. In the present study, the Er:YAG laser emitting at a wavelength of 2.94 microns developed by Luxar was used for the clinical preparation of class V cavities. Parameters of 8 Hz and approx. 250 mJ/pulse maximum output were used for irradiation. Sixty teeth of 40 patients were used in this clinical study. The Er:YAG laser used in this study was found to be a system suitable for clinical application. No adverse reaction was observed in any of the cases. Class V cavity preparation was performed without inducing any pain in 48/60 cases (80%). All of the 12 cases that complained of mild or severe intraoperative pain had previously complained of cervical dentin hypersensibility during the preoperative examination. Cavity preparation was completed with this laser system in 58/60 cases (91.7%). No treatment-related clinical problems were observed during the follow-up period of approx. 30 days after cavity preparation and resin filling. Cavity preparation took between approx. 10 sec and 3 min and was related more or less to cavity size and depth. Overall clinical evaluation showed no safety problem with very good rating in 49 cases (81.7%).
Random-Profiles-Based 3D Face Recognition System
Joongrock, Kim; Sunjin, Yu; Sangyoun, Lee
2014-01-01
In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation. PMID:24691101
NASA Astrophysics Data System (ADS)
Perusich, Karl Anthony
1986-12-01
The problems and potential of a single proposed ballistic missile defense system, the X-ray laser-armed satellite, are examined in this research. Specifically, the X-ray laser satellite system is examined to determine its impact on the issues of cost-effectiveness and crisis stability. To examime the cost-effectiveness and the crisis stability of the X-ray laser satellites, a simulation of a nuclear exchange was constructed. The X-ray laser satellites were assumed to be vulnerable to attack from energy satellites with limited satellite-to-satellite lethal ranges. Symmetric weapons and force postures were used. Five principal weapon classes were used in the model: ICMBs, SLBMs, X-ray laser satellites, bombers, and endo-atmospheric silo defenses. Also, the orbital dynamics of the ballistic missiles and satellites were simulated. The cost-effectiveness of the X-ray laser satellites was determined for two different operational capabilities, damage-limitation and assured destruction. The following conclusions were reached. The effects of deployment of a new weapon system on the Triad as a whole should be examined. The X-ray laser was found to have little effectiveness as a damage-limiting weapon for a defender. For an assured destruction capability, X-ray laser satellites could be part of a minimum-cost force mix with that capability.
Chen, Chin-Sheng; Chen, Po-Chun; Hsu, Chih-Ming
2016-01-01
This paper presents a novel 3D feature descriptor for object recognition and to identify poses when there are six-degrees-of-freedom for mobile manipulation and grasping applications. Firstly, a Microsoft Kinect sensor is used to capture 3D point cloud data. A viewpoint feature histogram (VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object can be simultaneously recognized and registered in a stable pose and the information is stored in a database. The VFH is robust to a large degree of surface noise and missing depth information so it is reliable for stereo data. However, the pose estimation for an object fails when the object is placed symmetrically to the viewpoint. To overcome this problem, this study proposes a modified viewpoint feature histogram (MVFH) descriptor that consists of two parts: a surface shape component that comprises an extended fast point feature histogram and an extended viewpoint direction component. The MVFH descriptor characterizes an object’s pose and enhances the system’s ability to identify objects with mirrored poses. Finally, the refined pose is further estimated using an iterative closest point when the object has been recognized and the pose roughly estimated by the MVFH descriptor and it has been registered on a database. The estimation results demonstrate that the MVFH feature descriptor allows more accurate pose estimation. The experiments also show that the proposed method can be applied in vision-guided robotic grasping systems. PMID:27886080
Optimal control of build height utilizing optical profilometry in cold spray deposits
NASA Astrophysics Data System (ADS)
Chakraborty, Abhijit; Shishkin, Sergey; Birnkrant, Michael J.
2017-04-01
Part-to-part variability and poor part quality due to failure to maintain geometric specifications pose a challenge for adopting Additive Manufacturing (AM) as a viable manufacturing process. In recent years, In-process Monitoring and Control (InPMC) has received a lot of attention as an approach to overcome these obstacles. The ability to sense geometry of the deposited layers accurately enables effective process monitoring and control of AM application. This paper demonstrates an application of geometry sensing technique for the coating deposition Cold Spray process, where solid powders are accelerated through a nozzle, collides with the substrate and adheres to it. Often the deposited surface has shape irregularities. This paper proposes an approach to suppress the iregularities by controlling the deposition height. An analytical control-oriented model is developed that expresses the resulting height of deposit as an integral function of nozzle velocity and angle. In order to obtain height information at each layer, a Micro-Epsilon laser line scanner was used for surface profiling after each deposition. This surface profile information, specifically the layer height, was then fed back to an optimal control algorithm which manipulated the nozzle speed to control the layer height to a pre specified height. While the problem is heavily nonlinear, we were able to transform it into equivalent Optimal Control problem linear w.r.t. input. That enabled development of two solution methods: one is fast and approximate, while another is more accurate but still efficient.
A Survey of Road Construction and Maintenance Problems in Central Alaska.
1976-10-01
recent natural disasters, such as the earthquake of 1964 and the Fairbanks flood in 1967, seriously set back the Alaskan highway program for several...problems as classifica- tion of natural road building materials, prevention of culvert icing, measurement of subgrade temperature, maintenance of slopes...Scarcity of clays or other material suitable for use as a binder in gravel surfacings poses additional problems throughout Alaska. Dust and stones
NASA Astrophysics Data System (ADS)
Vasilenko, Georgii Ivanovich; Taratorin, Aleksandr Markovich
Linear, nonlinear, and iterative image-reconstruction (IR) algorithms are reviewed. Theoretical results are presented concerning controllable linear filters, the solution of ill-posed functional minimization problems, and the regularization of iterative IR algorithms. Attention is also given to the problem of superresolution and analytical spectrum continuation, the solution of the phase problem, and the reconstruction of images distorted by turbulence. IR in optical and optical-digital systems is discussed with emphasis on holographic techniques.
ERIC Educational Resources Information Center
Wood, Richard T. A.; Griffiths, Mark D.
2007-01-01
The paper reports one of the first ever studies to evaluate the effectiveness of an online help and guidance service for problem gamblers. The evaluation utilised a mixed methods design in order to examine both primary and secondary data relating to the client experience. In addition, the researchers posed as problem gamblers in order to obtain…
Evaluation of parallel reduction strategies for fusion of sensory information from a robot team
NASA Astrophysics Data System (ADS)
Lyons, Damian M.; Leroy, Joseph
2015-05-01
The advantage of using a team of robots to search or to map an area is that by navigating the robots to different parts of the area, searching or mapping can be completed more quickly. A crucial aspect of the problem is the combination, or fusion, of data from team members to generate an integrated model of the search/mapping area. In prior work we looked at the issue of removing mutual robots views from an integrated point cloud model built from laser and stereo sensors, leading to a cleaner and more accurate model. This paper addresses a further challenge: Even with mutual views removed, the stereo data from a team of robots can quickly swamp a WiFi connection. This paper proposes and evaluates a communication and fusion approach based on the parallel reduction operation, where data is combined in a series of steps of increasing subsets of the team. Eight different strategies for selecting the subsets are evaluated for bandwidth requirements using three robot missions, each carried out with teams of four Pioneer 3-AT robots. Our results indicate that selecting groups to combine based on similar pose but distant location yields the best results.
Laser microjoining of dissimilar and biocompatible materials
NASA Astrophysics Data System (ADS)
Bauer, Ingo; Russek, Ulrich A.; Herfurth, Hans J.; Witte, Reiner; Heinemann, Stefan; Newaz, Golam; Mian, A.; Georgiev, D.; Auner, Gregory W.
2004-07-01
Micro-joining and hermetic sealing of dissimilar and biocompatible materials is a critical issue for a broad spectrum of products such as micro-electronics, micro-optical and biomedical products and devices. Today, biocompatible titanium is widely applied as a material for orthopedic implants as well as for the encapsulation of implantable devices such as pacemakers, defibrillators, and neural stimulator devices. Laser joining is the process of choice to hermetically seal such devices. Laser joining is a contact-free process, therefore minimizing mechanical load on the parts to be joined and the controlled heat input decreases the potential for thermal damage to the highly sensitive components. Laser joining also offers flexibility, shorter processing time and higher quality. However, novel biomedical products, in particular implantable microsystems currently under development, pose new challenges to the assembly and packaging process based on the higher level of integration, the small size of the device's features, and the type of materials and material combinations. In addition to metals, devices will also include glass, ceramic and polymers as biocompatible building materials that must be reliably joined in similar and dissimilar combinations. Since adhesives often lack long-term stability or do not meet biocompatibility requirements, new joining techniques are needed to address these joining challenges. Localized laser joining provides promising developments in this area. This paper describes the latest achievements in micro-joining of metallic and non-metallic materials with laser radiation. The focus is on material combinations of metal-polymer, polymer-glass, metal-glass and metal-ceramic using CO2, Nd:YAG and diode laser radiation. The potential for applications in the biomedical sector will be demonstrated.
Explosive detection technology
NASA Astrophysics Data System (ADS)
Doremus, Steven; Crownover, Robin
2017-05-01
The continuing proliferation of improvised explosive devices is an omnipresent threat to civilians and members of military and law enforcement around the world. The ability to accurately and quickly detect explosive materials from a distance would be an extremely valuable tool for mitigating the risk posed by these devices. A variety of techniques exist that are capable of accurately identifying explosive compounds, but an effective standoff technique is still yet to be realized. Most of the methods being investigated to fill this gap in capabilities are laser based. Raman spectroscopy is one such technique that has been demonstrated to be effective at a distance. Spatially Offset Raman Spectroscopy (SORS) is a technique capable of identifying chemical compounds inside of containers, which could be used to detect hidden explosive devices. Coherent Anti-Stokes Raman Spectroscopy (CARS) utilized a coherent pair of lasers to excite a sample, greatly increasing the response of sample while decreasing the strength of the lasers being used, which significantly improves the eye safety issue that typically hinders laser-based detection methods. Time-gating techniques are also being developed to improve the data collection from Raman techniques, which are often hindered fluorescence of the test sample in addition to atmospheric, substrate, and contaminant responses. Ultraviolet based techniques have also shown significant promise by greatly improved signal strength from excitation of resonance in many explosive compounds. Raman spectroscopy, which identifies compounds based on their molecular response, can be coupled with Laser Induced Breakdown Spectroscopy (LIBS) capable of characterizing the sample's atomic composition using a single laser.
Inverse problems and optimal experiment design in unsteady heat transfer processes identification
NASA Technical Reports Server (NTRS)
Artyukhin, Eugene A.
1991-01-01
Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.
Control and stabilization of decentralized systems
NASA Technical Reports Server (NTRS)
Byrnes, Christopher I.; Gilliam, David; Martin, Clyde F.
1989-01-01
Proceeding from the problem posed by the need to stabilize the motion of two helicopters maneuvering a single load, a methodology is developed for the stabilization of classes of decentralized systems based on a more algebraic approach, which involves the external symmetries of decentralized systems. Stabilizing local-feedback laws are derived for any class of decentralized systems having a semisimple algebra of symmetries; the helicopter twin-lift problem, as well as certain problems involving the stabilization of discretizations of distributed parameter problems, have just such algebras of symmetries.
Lasers in private dermatologic practice.
Eastern, J S
1986-04-01
The author has collected and evaluated data from 464 cutaneous laser procedures performed on 315 patients over two and one-half years. All procedures were performed under local anesthesia in a private dermatology office. The quality of results obtained, the advantages and disadvantages of laser treatment for the treatment of cutaneous problems, comparison with more conventional therapies, and the future of the laser in dermatologic private practice are discussed.
The Erdős-Hajnal problem of hypergraph colouring, its generalizations, and related problems
NASA Astrophysics Data System (ADS)
Raigorodskii, Andrei M.; Shabanov, Dmitrii A.
2011-10-01
Extremal problems concerned with hypergraph colouring first arose in connection with classical investigations in the 1920-30s which gave rise to Ramsey theory. Since then, this area has assumed a central position in extremal combinatorics. This survey is devoted to one well-known problem of hypergraph colouring, the Erdős-Hajnal problem, initially posed in 1961. It opened a line of research in hypergraph theory whose methods and results are widely used in various domains of discrete mathematics. Bibliography: 109 titles.
ERIC Educational Resources Information Center
Ginsberg, Gina; Weiner, Ann
1979-01-01
The authors respond to problems posed by professionals (including a junior high school teacher, a school counselor, a fifth-grade teacher, a pediatrician, and a high school teacher) who work with gifted students. (SBH)
Action Learning: Potential for Inner City Youth
ERIC Educational Resources Information Center
Epps, Edgar G.
1974-01-01
Working class and minority participation in action-learning poses potential problems likely to be overlooked by program planners. This presentation reveals the trouble spots and offers constructive suggestions. (Editor)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalashnikova, Irina
2012-05-01
A numerical study aimed to evaluate different preconditioners within the Trilinos Ifpack and ML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson problem implemented within the Albany code base and posed on the Ottawa Flat 270 design geometry is performed. This study led to some new development of Albany that allows the user to select an ML preconditioner with Zoltan repartitioning based on nodal coordinates, which is summarized. Convergence of the numerical solutions computed within the QCAD computational suite with successive mesh refinement is examined in two metrics, the mean value of the solution (an L{sup 1} norm)more » and the field integral of the solution (L{sup 2} norm).« less
History matching by spline approximation and regularization in single-phase areal reservoirs
NASA Technical Reports Server (NTRS)
Lee, T. Y.; Kravaris, C.; Seinfeld, J.
1986-01-01
An automatic history matching algorithm is developed based on bi-cubic spline approximations of permeability and porosity distributions and on the theory of regularization to estimate permeability or porosity in a single-phase, two-dimensional real reservoir from well pressure data. The regularization feature of the algorithm is used to convert the ill-posed history matching problem into a well-posed problem. The algorithm employs the conjugate gradient method as its core minimization method. A number of numerical experiments are carried out to evaluate the performance of the algorithm. Comparisons with conventional (non-regularized) automatic history matching algorithms indicate the superiority of the new algorithm with respect to the parameter estimates obtained. A quasioptimal regularization parameter is determined without requiring a priori information on the statistical properties of the observations.
The exit-time problem for a Markov jump process
NASA Astrophysics Data System (ADS)
Burch, N.; D'Elia, M.; Lehoucq, R. B.
2014-12-01
The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.
Laser eye protection bleaching with femtosecond exposure
NASA Astrophysics Data System (ADS)
Stolarski, Jacob; Hayes, Kristy L.; Thomas, Robert J.; Noojin, Gary D.; Stolarski, David J.; Rockwell, Benjamin A.
2003-06-01
The measured optical density of various laser eye protection samples is presented as a function of irradiance using femtosecond laser pulses. We show that the protective quality of some eyewear degrades as irradiance increases. In previous studies this problem has been demonstrated for samples irradiated by nanosecond pulses, but the current study shows that some modern laser eye protection seems to be robust except for the irradiance level possible with ultrashort laser pulse exposure. We discuss the most likely saturation mechanisms in this pulse duration regime and its relevance to laser safety.
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
NASA Astrophysics Data System (ADS)
Selwa, Edithe; Elisée, Eddy; Zavala, Agustin; Iorga, Bogdan I.
2018-01-01
Our participation to the D3R Grand Challenge 2 involved a protocol in two steps, with an initial analysis of the available structural data from the PDB allowing the selection of the most appropriate combination of docking software and scoring function. Subsequent docking calculations showed that the pose prediction can be carried out with a certain precision, but this is dependent on the specific nature of the ligands. The correct ranking of docking poses is still a problem and cannot be successful in the absence of good pose predictions. Our free energy calculations on two different subsets provided contrasted results, which might have the origin in non-optimal force field parameters associated with the sulfonamide chemical moiety.
Contamination and UV lasers: lessons learned
NASA Astrophysics Data System (ADS)
Daly, John G.
2015-09-01
Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.
NASA Astrophysics Data System (ADS)
Pickard, William F.
2004-10-01
The classical PERT inverse statistics problem requires estimation of the mean, \\skew1\\bar{m} , and standard deviation, s, of a unimodal distribution given estimates of its mode, m, and of the smallest, a, and largest, b, values likely to be encountered. After placing the problem in historical perspective and showing that it is ill-posed because it is underdetermined, this paper offers an approach to resolve the ill-posedness: (a) by interpreting a and b modes of order statistic distributions; (b) by requiring also an estimate of the number of samples, N, considered in estimating the set {m, a, b}; and (c) by maximizing a suitable likelihood, having made the traditional assumption that the underlying distribution is beta. Exact formulae relating the four parameters of the beta distribution to {m, a, b, N} and the assumed likelihood function are then used to compute the four underlying parameters of the beta distribution; and from them, \\skew1\\bar{m} and s are computed using exact formulae.
Laser angioplasty for cardiovascular disease
NASA Astrophysics Data System (ADS)
Okada, Masayoshi
2005-07-01
Recently, endovascular interventions such as balloon angioplasty, atherectomy and the stenting method, except for conventional surgery have been clinically employed for the patients with atheromatous plaques of the peripheral- and the coronary arteries, because the number of patients with arteriosclerosis is now increasing in the worldwide. Among these procedures, restenoses after endovascular interventions have been remarkably disclosed in 20-40 % of the patients who underwent percutaneous coronary interventions. Thus, there are still some problems in keeping long-term patency by means of endovascular techniques such as balloon angioplasty and atherectomy (1, 2). For reduction of these problems , laser angioplasty using Argon laser was applied experimentally and clinically. Based on excellent experimental studies, laser was employed for 115 patients with stenotic ,or obstructive lesions occluding more thasn 75 % of the peripheral and the coronary arteries angiographycally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suvorov, A A
2010-10-15
The problem of steady-state generation of a Gaussian partially coherent beam in a stable-cavity laser is considered within the framework of the method of expansion of the radiation coherence function in partially coherent modes. We discuss the conditions whose fulfilment makes it possible to neglect the intermode beatings of the radiation field and the effect of the gain dispersion on the steady-state generation of multimode partially coherent radiation. Based on the simplified model, we solve the self-consistent problem of generation of a Gaussian partially coherent beam for the given laser pump conditions and the resonator parameters. The dependence of themore » beam characteristics (power, radius, etc.) on the active medium properties and the resonator parameters is obtained. (laser beams)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.
Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.
EPA supports community-based problem solving through grants and assistance to address health threats posed by a range of environmental hazards in San Joaquin Valley, including drinking water contamination and revitalization plans for downtown Fresno.
Detector sustainability improvements at LCLS
NASA Astrophysics Data System (ADS)
Browne, Michael C.; Carini, Gabriella; DePonte, Daniel P.; Galtier, Eric C.; Hart, Philip A.; Koralek, J. D.; Mitra, Ankush; Nakahara, Kazutaka
2017-06-01
The Linac Coherent Light Source (LCLS) poses a number of daunting and often unusual challenges to maintaining X-ray detectors, such as proximity to liquid-sample injectors, complex setups with moving components, intense X-ray and optical laser light, and Electromagnetic Pulse (EMP). The Detector and Sample Environment departments at LCLS are developing an array of engineering, monitoring, and administrative controls solutions to better address these issues. These include injector improvements and monitoring methods, fast online damage recognition algorithms, EMP mapping and protection, actively cooled filters, and more.
Bracing Regular Polygons as We Race into the Future
ERIC Educational Resources Information Center
Frederickson, Greg N.
2012-01-01
How many rods does it take to brace a square in the plane? Once Martin Gardner's network of readers got their hands on it, it turned out to be fewer than Raphael Robinson, who originally posed the problem, thought. And who could have predicted the stunning solutions found subsequently for various generalizations of the problem?
Extension of transformation groups of compact solvmanifolds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milovanov, M V
2015-04-30
We indicate a way to extend connected simply connected soluble Lie groups acting transitively and locally effectively on a given compact solvmanifold. In 1973, Auslander posed the problem of describing all groups of this kind. The results obtained here lead to the conclusion that it is unlikely that this problem has an exhaustive solution. Bibliography: 10 titles.
Finding Ways to Effectively Prevent Sexual Abuse by Youth
ERIC Educational Resources Information Center
Klein, Alisa; Tabachnick, Joan
2002-01-01
Youth with sexual behavior problems pose a complicated challenge to the society. Yet the society has succeeded in developing only a limited range of actions and attitudes to grapple with and prevent this problem. Very few of the social service and criminal justice systems have rallied to create compassionate models that not only address and…
Exploring a Structure for Mathematics Lessons That Foster Problem Solving and Reasoning
ERIC Educational Resources Information Center
Sullivan, Peter; Walker, Nadia; Borcek, Chris; Rennie, Mick
2015-01-01
While there is widespread agreement on the importance of incorporating problem solving and reasoning into mathematics classrooms, there is limited specific advice on how this can best happen. This is a report of an aspect of a project that is examining the opportunities and constraints in initiating learning by posing challenging mathematics tasks…
Minimal Solutions to the Box Problem
ERIC Educational Resources Information Center
Chuang, Jer-Chin
2009-01-01
The "box problem" from introductory calculus seeks to maximize the volume of a tray formed by folding a strictly rectangular sheet from which identical squares have been cut from each corner. In posing such questions, one would like to choose integral side-lengths for the sheet so that the excised squares have rational or integral side-length.…
Teaching Problem-Posing and Inquiry to Teachers Using a Non-Traditional Operation
ERIC Educational Resources Information Center
White, D.; Sullivan, E.
2018-01-01
Teaching teachers to participate in mathematical inquiry has the potential to both transform belief systems about mathematics and to transform teachers from consumers of mathematics to producers of mathematics. The focus of this paper is to describe the use of a problem, based on a non-traditional binary operation, to encourage and teach…
ERIC Educational Resources Information Center
Cummings, E. Mark; Schatz, Julie N.
2012-01-01
The social problem posed by family conflict to the physical and psychological health and well-being of children, parents, and underlying family relationships is a cause for concern. Inter-parental and parent-child conflict are linked with children's behavioral, emotional, social, academic, and health problems, with children's risk particularly…
Female circumcision: obstetric issues.
Baker, C A; Gilson, G J; Vill, M D; Curet, L B
1993-12-01
Female circumcision is a problem unfamiliar to most Western obstetrician-gynecologists. We present a case illustrative of the unique management problems posed by these patients during labor. A method of releasing the anterior vulvar scar tissue to allow vaginal delivery is described. Sensitivity and a nonjudgmental approach as to what is culturally appropriate care for these women are of paramount importance.
Problem Posing in Leadership Education: Using Case Study to Foster More Effective Problem Solving
ERIC Educational Resources Information Center
Myran, Steve; Sutherland, Ian
2016-01-01
This case explores Crabapple Middle, a struggling urban school in the midst of a transition that seeks new leadership that can overcome the challenges of two sub-cultures that divide the school and community. In an effort to address issues of low academic performance and negative community perception, an International Baccalaureate magnet program…
The Development of Questioning as a Means of Framing Problems and Posing Challenges.
ERIC Educational Resources Information Center
Feigenbaum, Peter
When a person encounters a problem, the character, form, and content of his or her response provides psychologists with useful and interesting information about processes of challenge and their relationship to intellectual development. In essence, challenge is a developing relationship that is defined on the one hand by objective factors (a person…
ERIC Educational Resources Information Center
Doleck, Tenzin; Jarrell, Amanda; Poitras, Eric G.; Chaouachi, Maher; Lajoie, Susanne P.
2016-01-01
Clinical reasoning is a central skill in diagnosing cases. However, diagnosing a clinical case poses several challenges that are inherent to solving multifaceted ill-structured problems. In particular, when solving such problems, the complexity stems from the existence of multiple paths to arriving at the correct solution (Lajoie, 2003). Moreover,…
Medical and technology requirements for human solar system exploration missions
NASA Technical Reports Server (NTRS)
Nicogossian, Arnauld; Harris, Leonard; Couch, Lana; Sulzman, Frank; Gaiser, Karen
1989-01-01
Measures that need to be taken to cope with the health problems posed by zero gravity and radiation in manned solar system exploration missions are discussed. The particular systems that will be used aboard Space Station Freedom are addressed, and relevant human factors problems are examined. The development of a controlled ecological life support system is addressed.
The Y2K Problem: Will It Just Be Another New Year's Eve?
ERIC Educational Resources Information Center
Iwanowski, Jay
1998-01-01
Potential problems for college and university computing functions posed by arrival of the year 2000 (Y2K) are discussed, including arithmetic calculations and sorting functions based on two-digit year dates, embedding of two-digit dates in archival data, system coordination for data exchange, unique number generation, and leap year calculations. A…
Internet addiction: a new disorder enters the medical lexicon.
OReilly, M
1996-06-15
The latest consequence of the information age may be addiction to the Internet. A psychologist who has established the Centre for Online Addiction in the US says the disorder causes the same type of social problems as other established addictions. Michael OReilly went on line to find physicians interested in discussing potential problems posed by the Internet.
Instructional Strategies for Online Introductory College Physics Based on Learning Styles
ERIC Educational Resources Information Center
Ekwue, Eleazer U.
2013-01-01
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…
Is It a Noun or Is It a Verb? Resolving the Ambicategoricality Problem
ERIC Educational Resources Information Center
Conwell, Erin; Morgan, James L.
2012-01-01
In many languages, significant numbers of words are used in more than one grammatical category; English, in particular, has many words that can be used as both nouns and verbs. Such "ambicategoricality" potentially poses problems for children trying to learn the grammatical properties of words and has been used to argue against the logical…
A Framework for Representing and Jointly Reasoning over Linguistic and Non-Linguistic Knowledge
ERIC Educational Resources Information Center
Murugesan, Arthi
2009-01-01
Natural language poses several challenges to developing computational systems for modeling it. Natural language is not a precise problem but is rather ridden with a number of uncertainties in the form of either alternate words or interpretations. Furthermore, natural language is a generative system where the problem size is potentially infinite.…
Justice: A Problem for Military Ethics during Irregular War
2008-05-22
monograph directly addresses the problem posed when considering the question ‘Who says what right is?’ or ‘Justice according to whom?’ The relative...nature of the term ‘justice’ creates a problem for military ethics, particularly when soldiers try to determine what actions are morally acceptable... What can stop this slide into strict formalism, where law eclipses ethics? The research conducted for this monograph has led the author to believe
ERIC Educational Resources Information Center
Ware, Helen
This report is the result of a two-month study commissioned by the World Fertility Survey prior to the inclusion of Cameroon in the WFS program, in order to examine the problem of linguistic diversity and the obstacles this problem might pose to a demographic survey of the country. The study was to propose a strategy which would uphold the WFS…
EPA supports community-based problem solving through grants and assistance to address health threats posed by a range of environmental hazards in San Joaquin Valley, including drinking water contamination and revitalization plans for downtown Fresno.
DOT National Transportation Integrated Search
1999-01-01
Collisions at highway-railroad grade crossings have posed a significant safety problem. To reduce the number of these collisions at highway-railroad grade : crossings where train visibility is a contributing factor, the Federal Railroad Administratio...
Contaminated Sediment in the Great Lakes
Contaminated sediments are a significant problem in the Great Lakes basin. Persistent high concentrations of contaminants in the bottom sediments of rivers and harbors pose risks to aquatic organisms, wildlife, and humans.
REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation
NASA Astrophysics Data System (ADS)
Gordiets, B. F.; Panchenko, Vladislav Ya
1986-07-01
CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717
ERIC Educational Resources Information Center
Chapline, George; Wood, Lowell
1975-01-01
Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)
A Laser Technology Program Does Not Start with the Speed of Light.
ERIC Educational Resources Information Center
Gebert, John H.
1982-01-01
Describes the personnel, equipment, and facilities problems encountered by North Central Technical Institute in the development of a laser technician program, and the program's enrollment and job placement rates. Advocates financial support for such programs to meet the national demand for laser and other high technology personnel. (WL)
Erythema after laser skin resurfacing.
Ruiz-Esparza, J; Barba Gomez, J M; Gomez de la Torre, O L; David, L
1998-01-01
Erythema after laser skin resurfacing is seen by many as a necessary evil in order to get good results from the procedure. A critical review of widely accepted concepts may lead to diminishing the length of postoperative erythema in patients undergoing laser resurfacing. The authors report on two previously unrecognized factors in the causation of this problem.
Laser-Excited Opto-Acoustic Pulses in a Flame
1981-06-01
I. INTRODUCTION ........... ....................... . A. Laser Probes and Combustion Chemistry ............. ... B. Cpto...unweighted least-squares fit ...... ................ 32 |Z I: **. t•I U 5-u•. ,. I. .-IRODUCTION A. Laser Probes and Combustion Chemistry The...influencing the chemistry . Although th; presence of particulate matter can be a serious problem, extremes of temperature and pressure offer no hostility
Optoelectronic Materials Center
1991-06-11
surface - emitting GaAs/AIGaAs vertical - cavity laser (TJ- VCSEL ) incorporating wavelength-resonant...multi-quantum well, vertical cavity surface - emitted laser . This structure consists entirely of undoped epilayers, thus simplifying the problems of... cavity surface - emitting lasers ( VCSELs ) for doubling and for parallel optical data processing. Progress - GaAIAs/GaAs and InGaAs/GaAs RPG- VCSEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan
The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of lightmore » arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.« less
Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser
NASA Astrophysics Data System (ADS)
Kim, Taewon; Suga, Yasuo; Koike, Takashi
TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.
Weighted nonnegative tensor factorization for atmospheric tomography reconstruction
NASA Astrophysics Data System (ADS)
Carmona-Ballester, David; Trujillo-Sevilla, Juan M.; Bonaque-González, Sergio; Gómez-Cárdenes, Óscar; Rodríguez-Ramos, José M.
2018-06-01
Context. Increasing the area on the sky over which atmospheric turbulences can be corrected is a matter of wide interest in astrophysics, especially when a new generation of extremely large telescopes (ELT) is to come in the near future. Aims: In this study we tested if a method for visual representation in three-dimensional displays, the weighted nonnegative tensor factorization (WNTF), is able to improve the quality of the atmospheric tomography (AT) reconstruction as compared to a more standardized method like a randomized Kaczmarz algorithm. Methods: A total of 1000 different atmospheres were simulated and recovered by both methods. Recovering was computed for two and three layers and for four different constellations of laser guiding stars (LGS). The goodness of both methods was tested by means of the radial average of the Strehl ratio across the field of view of a telescope of 8m diameter with a sky coverage of 97.8 arcsec. Results: The proposed method significantly outperformed the Kaczmarz in all tested cases (p ≤ 0.05). In WNTF, three-layers configuration provided better outcomes, but there was no clear relation between different LGS constellations and the quality of Strehl ratio maps. Conclusions: The WNTF method is a novel technique in astronomy and its use to recover atmospheric turbulence profiles was proposed and tested. It showed better quality of reconstruction than a conventional Kaczmarz algorithm independently of the number and height of recovered atmospheric layers and of the constellation of laser guide star used. The WNTF method was shown to be a useful tool in highly ill-posed AT problems, where the difficulty of classical algorithms produce high Strehl value maps.
Multistatic aerosol-cloud lidar in space: A theoretical perspective
NASA Astrophysics Data System (ADS)
Mishchenko, M. I.; Alexandrov, M. D.; Brian, C.; Travis, L. D.
2016-12-01
Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170° can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics.
Multistatic Aerosol Cloud Lidar in Space: A Theoretical Perspective
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.
2016-01-01
Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170deg can dramatically increase the information content of the measurements. Although the specific subject of this Perspective is the multistatic lidar concept, all our conclusions equally apply to a multistatic radar system intended to study from space the global distribution of cloud and precipitation characteristics.
Multisensor Fusion for Change Detection
NASA Astrophysics Data System (ADS)
Schenk, T.; Csatho, B.
2005-12-01
Combining sensors that record different properties of a 3-D scene leads to complementary and redundant information. If fused properly, a more robust and complete scene description becomes available. Moreover, fusion facilitates automatic procedures for object reconstruction and modeling. For example, aerial imaging sensors, hyperspectral scanning systems, and airborne laser scanning systems generate complementary data. We describe how data from these sensors can be fused for such diverse applications as mapping surface erosion and landslides, reconstructing urban scenes, monitoring urban land use and urban sprawl, and deriving velocities and surface changes of glaciers and ice sheets. An absolute prerequisite for successful fusion is a rigorous co-registration of the sensors involved. We establish a common 3-D reference frame by using sensor invariant features. Such features are caused by the same object space phenomena and are extracted in multiple steps from the individual sensors. After extracting, segmenting and grouping the features into more abstract entities, we discuss ways on how to automatically establish correspondences. This is followed by a brief description of rigorous mathematical models suitable to deal with linear and area features. In contrast to traditional, point-based registration methods, lineal and areal features lend themselves to a more robust and more accurate registration. More important, the chances to automate the registration process increases significantly. The result of the co-registration of the sensors is a unique transformation between the individual sensors and the object space. This makes spatial reasoning of extracted information more versatile; reasoning can be performed in sensor space or in 3-D space where domain knowledge about features and objects constrains reasoning processes, reduces the search space, and helps to make the problem well-posed. We demonstrate the feasibility of the proposed multisensor fusion approach with detecting surface elevation changes on the Byrd Glacier, Antarctica, with aerial imagery from 1980s and ICESat laser altimetry data from 2003-05. Change detection from such disparate data sets is an intricate fusion problem, beginning with sensor alignment, and on to reasoning with spatial information as to where changes occurred and to what extent.
A New 3D Object Pose Detection Method Using LIDAR Shape Set
Kim, Jung-Un
2018-01-01
In object detection systems for autonomous driving, LIDAR sensors provide very useful information. However, problems occur because the object representation is greatly distorted by changes in distance. To solve this problem, we propose a LIDAR shape set that reconstructs the shape surrounding the object more clearly by using the LIDAR point information projected on the object. The LIDAR shape set restores object shape edges from a bird’s eye view by filtering LIDAR points projected on a 2D pixel-based front view. In this study, we use this shape set for two purposes. The first is to supplement the shape set with a LIDAR Feature map, and the second is to divide the entire shape set according to the gradient of the depth and density to create a 2D and 3D bounding box proposal for each object. We present a multimodal fusion framework that classifies objects and restores the 3D pose of each object using enhanced feature maps and shape-based proposals. The network structure consists of a VGG -based object classifier that receives multiple inputs and a LIDAR-based Region Proposal Networks (RPN) that identifies object poses. It works in a very intuitive and efficient manner and can be extended to other classes other than vehicles. Our research has outperformed object classification accuracy (Average Precision, AP) and 3D pose restoration accuracy (3D bounding box recall rate) based on the latest studies conducted with KITTI data sets. PMID:29547551
A New 3D Object Pose Detection Method Using LIDAR Shape Set.
Kim, Jung-Un; Kang, Hang-Bong
2018-03-16
In object detection systems for autonomous driving, LIDAR sensors provide very useful information. However, problems occur because the object representation is greatly distorted by changes in distance. To solve this problem, we propose a LIDAR shape set that reconstructs the shape surrounding the object more clearly by using the LIDAR point information projected on the object. The LIDAR shape set restores object shape edges from a bird's eye view by filtering LIDAR points projected on a 2D pixel-based front view. In this study, we use this shape set for two purposes. The first is to supplement the shape set with a LIDAR Feature map, and the second is to divide the entire shape set according to the gradient of the depth and density to create a 2D and 3D bounding box proposal for each object. We present a multimodal fusion framework that classifies objects and restores the 3D pose of each object using enhanced feature maps and shape-based proposals. The network structure consists of a VGG -based object classifier that receives multiple inputs and a LIDAR-based Region Proposal Networks (RPN) that identifies object poses. It works in a very intuitive and efficient manner and can be extended to other classes other than vehicles. Our research has outperformed object classification accuracy (Average Precision, AP) and 3D pose restoration accuracy (3D bounding box recall rate) based on the latest studies conducted with KITTI data sets.
Laser-based structural sensing and surface damage detection
NASA Astrophysics Data System (ADS)
Guldur, Burcu
Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of this research is to combine useful information extracted from laser scanner data with color information, which provides information in the fourth dimension that enables detection of damage types such as cracks, corrosion, and related surface defects that are generally difficult to detect using only laser scanner data; moreover, the color information also helps to track volumetric changes on structures such as spalling. Although using images with varying resolution to detect cracks is an extensively researched topic, damage detection using laser scanners with and without color images is a new research area that holds many opportunities for enhancing the current practice of visual inspections. The aim is to combine the best features of laser scans and images to create an automatic and effective surface damage detection method, which will reduce the need for skilled labor during visual inspections and allow automatic documentation of related information. This work enables developing surface damage detection strategies that integrate existing condition rating criteria for a wide range damage types that are collected under three main categories: small deformations already existing on the structure (cracks); damage types that induce larger deformations, but where the initial topology of the structure has not changed appreciably (e.g., bent members); and large deformations where localized changes in the topology of the structure have occurred (e.g., rupture, discontinuities and spalling). The effectiveness of the developed damage detection algorithms are validated by comparing the detection results with the measurements taken from test specimens and test-bed bridges.
Donnez, J; Nisolle, M
1989-09-01
Used endoscopically, the CO2 laser offers some advantages over other operative techniques for endometriosis and adhesions but, in spite of the continuing development of new instrumentation there are still problems with the system. The technique needs specialized equipment requiring ongoing biomedical maintenance and specialized technical care in the operating room. Some problems such as the intraperitoneal accumulation of smoke, gas leakage, and difficulty with maintenance of proper beam alignment still occur. In spite of these problems the advantages are numerous: the system allows precise bloodless destruction of diseased tissue and eliminates the risks of cautery. In the hands of an experienced laparoscopist, it appears safe and effective in vaporization of endometriotic lesions, utero-sacral neurectomy, adhesiolysis and salpingostomy. The judicious use of these techniques, combined with carefully planned further investigations by well-trained and experienced laparoscopists and continuing improvements in the delivery systems, will soon reveal the true efficacy of the CO2 laser laparoscope. If studies continue to show pregnancy rates and pain relief to be equivalent to those patients treated by laparotomy, CO2 laser laparoscopy will become the preferred procedure for the management of pelvic endometriosis and its associated adhesions, distal tubal occlusion, pelvic pain and tubal pregnancy. With the exception of using the argon laser to treat endometriosis, the selective absorption characteristic of lasers has not been greatly utilized. While the CO2 laser is heavily absorbed by water and hence vaporizes most cells in a rather indiscriminate fashion, this is not true for other wavelengths, such as argon, Nd-YAG, KTP, krypton, xenon, copper and gold vapour lasers. The energy form of each of these lasers has different properties of penetration, absorption, reflection and heat dissipation. Many of these lasers have not yet been evaluated in human subjects. An exciting, although not new, area of possible laser application involves the use of photosensitizers and fluorescing agents (Dougherty et al, 1978). Some recent experimental studies (Schellhas and Schneider, 1986; Schneider et al, 1988) may lead to new therapeutic possibilities. The surgical laser is not, however, a panacea. Only controlled trials carried out carefully over the next few years will clearly define its potential. In the meantime it is incumbent upon all of us to investigate the clinical, gynaecological and surgical applications in a careful, methodical and scientific manner.
[Medicine and astrology in Arnau's corpus].
Giralt, Sebastià
2006-01-01
The role of astrology in Arnau de Vilanova's medical work is revisited with special attention to the problems of authorship posed by the astrological writings of Arnau's corpus and to their hypothetical chronology.
Surgery Considerations for Adults and Children
... may be posed by complicating factors such as dental problems (skeletal fragility makes dentitia prone to fracture), cleft palate, joint stiffness or heart valve disease. Anesthesia personnel also need to be aware of ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... been repetitive, or a problem that poses a significant risk to public health and safety if left... wetlands management practices; and (ii) No new structure(s) will be built on the property except as...
Topical Adjuncts to Pulsed Dye Laser for Treatment of Port Wine Stains: Review of the Literature.
Lipner, Shari R
2018-06-01
Port wine stains (PWS) pose a therapeutic challenge. Pulsed dye laser (PDL) is the treatment of choice; however, treatment is often ineffective and recurrences are common. This article provides a review of topical therapies that have been investigated to improve efficacy of PDL for the treatment of PWS. A literature search was performed through PubMed, EMBASE, Web of Science, and CINAHL, using the search terms "port wine stain," "pulsed dye laser," and "topical." Clinical trials have investigated the topical agents, timolol, imiquimod, and rapamycin (RPM) in combination with PDL for the treatment of PWS. Topical timolol with PDL failed to show improved efficacy compared with PDL alone. Two clinical trials using imiquimod and PDL showed enhanced blanching of PWS compared with controls. Rapamycin and PDL were more effective than controls for facial PWS, but not for nonfacial PWS. Topical imiquimod and RPM have shown some efficacy in treating PWS with PDL, but to date there is no topical adjuvant to PDL that reliably improves results for PWS.
Study of phase-locked diode laser array and DFB/DBR surface emitting laser diode
NASA Astrophysics Data System (ADS)
Hsin, Wei
New types of phased-array and surface-emitting lasers are designed. The importance and approaches (or structures) of different phased array and surface emitting laser diodes are reviewed. The following are described: (1) a large optical cavity channel substrate planar laser array with layer thickness chirping; (2) a vertical cavity surface emitter with distributed feedback (DFB) optical cavity and a transverse junction buried heterostructure; (3) a microcavity distributed Bragg reflector (DBR) surface emitter; and (4) two surface emitting laser structures which utilized lateral current injection schemes to overcome the problems occurring in the vertical injection scheme.
Assessment Study of Small Space Debris Removal by Laser Satellites
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Papa, Richard S.
2011-01-01
Space debris in Earth orbit poses significant danger to satellites, humans in space, and future space exploration activities. In particular, the increasing number of unidentifiable objects, smaller than 10 cm, presents a serious hazard. Numerous technologies have been studied for removing unwanted objects in space. Our approach uses a short wavelength laser stationed in orbit to vaporize these small objects. This paper discusses the power requirements for space debris removal using lasers. A short wavelength laser pumped directly or indirectly by solar energy can scan, identify, position, and illuminate the target, which will then be vaporized or slow down the orbital speed of debris by laser detonation until it re-enters the atmosphere. The laser-induced plasma plume has a dispersive motion of approximately 105 m/sec with a Lambertian profile in the direction of the incoming beam [1-2]. The resulting fast ejecting jet plume of vaporized material should prevent matter recombination and condensation. If it allows any condensation of vaporized material, the size of condensed material will be no more than a nanoscale level [3]. Lasers for this purpose can be indirectly pumped by power from an array of solar cells or directly pumped by the solar spectrum [4]. The energy required for vaporization and ionization of a 10 cm cube ( 2700 gm) of aluminum is 87,160 kJ. To remove this amount of aluminum in 3 minutes requires a continuous laser beam power of at least 5.38 MW under the consideration of 9% laser absorption by aluminum [5] and 5% laser pumping efficiency. The power needed for pumping 5.38 MW laser is approximately 108 MW, which can be obtained from a large solar array with 40% efficiency solar cells and a minimal area of 450 meters by 450 meters. This solar array would collect approximately 108 MW. The power required for system operation and maneuvering can be obtained by increasing solar panel size. This feasibility assessment covers roughly the power requirement, laser system, and a potential operational scenario.
NASA Astrophysics Data System (ADS)
Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh
2015-11-01
The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more-advanced parameter reconstruction algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gostev, T S; Fadeev, V V
2011-05-31
We study the possibility of solving the multiparameter inverse problem of nonlinear laser fluorimetry of molecular systems with high local concentration of fluorophores (by the example of chlorophyll {alpha} molecules in photosynthetic organisms). The algorithms are proposed that allow determination of up to four photophysical parameters of chlorophyll {alpha} from the experimental fluorescence saturation curves. The uniqueness and stability of the inverse problem solution obtained using the proposed algorithms were assessed numerically. The laser spectrometer, designed in the course of carrying out the work and aimed at nonlinear laser fluorimetry in the quasi-stationary and nonstationary excitation regimes is described. Themore » algorithms, proposed in this paper, are tested on pure cultures of microalgae Chlorella pyrenoidosa and Chlamydomonas reinhardtii under different functional conditions. (optical technologies in biophysics and medicine)« less
For Many Young Cancer Survivors, Late Effects Pose Lasting Problems
Many survivors of adolescent and young adult cancers are unaware of or underestimate their heightened risk for late health effects. Efforts are underway to raise awareness and increase monitoring and surveillance.
Keep Counting Those Boxes--There's More.
ERIC Educational Resources Information Center
Mingus, Tabitha T. Y.; Grassl, Richard M.
1998-01-01
Poses and solves several related extensions involving enumerating squares and rectangles. Describes how problem extensions can be developed and used in the classroom to motivate and challenge teachers and students to exert themselves mathematically. (ASK)
Automated Acquisition Systems: Keynote Address.
ERIC Educational Resources Information Center
Boss, Richard D.
1980-01-01
The 1980s offer libraries numerous automated acquisitions alternatives, including turnkey systems from circulation system vendors and the acquisition subsystems of the bibliographic utilities. Integration of systems from several sources poses the principal problem. (Author/RAA)
The exit-time problem for a Markov jump process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burch, N.; D'Elia, Marta; Lehoucq, Richard B.
2014-12-15
The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developedmore » nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.« less
A problem-posing approach to teaching the topic of radioactivity
NASA Astrophysics Data System (ADS)
Klaassen, C. W. J. M.
1995-12-01
This thesis highlights a problem-posing approach to science education. By this is meant an approach that explicitly aims at providing students with content-related motives for extending their existing conceptual resources, experiential base and belief system in a certain direction, such that a further development in that direction eventually leads to a proper understanding of science. An elaboration of that approach consists in designing, testing, improving, etc, concrete didactical structures. The eventual aim of the approach is a coherent, and by means of developmental research empirically supported, didactical structure that covers the whole of science education. The thesis also contains a few steps in the direction suggested by this programmatic view. It contains an illustration of the heuristic value of an articulation of a didactical structure in some main substructures, based on the work of van Hiele and ten Voorde. It further contains a discussion of some methodological aspects relating to the design and evaluation of a didactical structure, and of the role that a further developed version of Davidson's theory of interpretation could play in this respect. A detailed didactical structure of the topic of radioactivity is presented, evaluated and, on the basis of the evaluation, judged as `good enough.' Also the role of the teacher in a problem-posing approach is dis-cussed, and in particular the consequences for that role of giving students control over and responsibility for the progress of their learning process with respect to content.
NASA Astrophysics Data System (ADS)
Li, Zhenhai; Nie, Chenwei; Yang, Guijun; Xu, Xingang; Jin, Xiuliang; Gu, Xiaohe
2014-10-01
Leaf area index (LAI) and LCC, as the two most important crop growth variables, are major considerations in management decisions, agricultural planning and policy making. Estimation of canopy biophysical variables from remote sensing data was investigated using a radiative transfer model. However, the ill-posed problem is unavoidable for the unique solution of the inverse problem and the uncertainty of measurements and model assumptions. This study focused on the use of agronomy mechanism knowledge to restrict and remove the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (NAMK) and linked with agronomic mechanism knowledge (AMK) were compared. The results showed that AMK did not significantly improve the accuracy of LAI inversion. LAI was estimated with high accuracy, and there was no significant improvement after considering AMK. The validation results of the determination coefficient (R2) and the corresponding root mean square error (RMSE) between measured LAI and estimated LAI were 0.635 and 1.022 for NAMK, and 0.637 and 0.999 for AMK, respectively. LCC estimation was significantly improved with agronomy mechanism knowledge; the R2 and RMSE values were 0.377 and 14.495 μg cm-2 for NAMK, and 0.503 and 10.661 μg cm-2 for AMK, respectively. Results of the comparison demonstrated the need for agronomy mechanism knowledge in radiative transfer model inversion.
Human Detection from a Mobile Robot Using Fusion of Laser and Vision Information
Fotiadis, Efstathios P.; Garzón, Mario; Barrientos, Antonio
2013-01-01
This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method. PMID:24008280
Human detection from a mobile robot using fusion of laser and vision information.
Fotiadis, Efstathios P; Garzón, Mario; Barrientos, Antonio
2013-09-04
This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method.
3D laser traking of a particle in 3DFM
NASA Astrophysics Data System (ADS)
Desai, Kalpit; Welch, Gregory; Bishop, Gary; Taylor, Russell; Superfine, Richard
2003-11-01
The principal goal of 3D tracking in our home-built 3D Magnetic Force Microscope is to monitor movement of the particle with respect to laser beam waist and keep the particle at the center of laser beam. The sensory element is a Quadrant Photo Diode (QPD) which captures scattering of light caused by particle motion with bandwidth up to 40 KHz. XYZ translation stage is the driver element which moves particle back in the center of the laser with accuracy of couple of nanometers and with bandwidth up to 300 Hz. Since our particles vary in size, composition and shape, instead of using a priori model we use standard system identification techniques to have optimal approximation to the relationship between particle motion and QPD response. We have developed position feedback control system software that is capable of 3-dimensional tracking of beads that are attached to cilia on living cells which are beating at up to 15Hz. We have also modeled the control system of instrument to simulate performance of 3D particle tracking for different experimental conditions. Given operational level of nanometers, noise poses a great challenge for the tracking system. We propose to use stochastic control theory approaches to increase robustness of tracking.
Pose tracking for augmented reality applications in outdoor archaeological sites
NASA Astrophysics Data System (ADS)
Younes, Georges; Asmar, Daniel; Elhajj, Imad; Al-Harithy, Howayda
2017-01-01
In recent years, agencies around the world have invested huge amounts of effort toward digitizing many aspects of the world's cultural heritage. Of particular importance is the digitization of outdoor archaeological sites. In the spirit of valorization of this digital information, many groups have developed virtual or augmented reality (AR) computer applications themed around a particular archaeological object. The problem of pose tracking in outdoor AR applications is addressed. Different positional systems are analyzed, resulting in the selection of a monocular camera-based user tracker. The limitations that challenge this technique from map generation, scale, anchoring, to lighting conditions are analyzed and systematically addressed. Finally, as a case study, our pose tracking system is implemented within an AR experience in the Byblos Roman theater in Lebanon.
Oral health care for pregnant and postpartum women.
Goldie, M Perno
2003-08-01
Pregnancy may pose a number of concerns to the mother and the foetus. This can include systemic and oral issues that effect health. Transmission of caries-causing bacteria is one problem that can be minimized by utilizing simple, cost-effective measures. Chlorhexidine rinses and xylitol containing chewing gum will be discussed as possible solutions to this tremendous public health problem.
The Soda Can Optimization Problem: Getting Close to the Real Thing
ERIC Educational Resources Information Center
Premadasa, Kirthi; Martin, Paul; Sprecher, Bryce; Yang, Lai; Dodge, Noah-Helen
2016-01-01
Optimizing the dimensions of a soda can is a classic problem that is frequently posed to freshman calculus students. However, if we only minimize the surface area subject to a fixed volume, the result is a can with a square edge-on profile, and this differs significantly from actual cans. By considering a more realistic model for the can that…
ERIC Educational Resources Information Center
Kister, Joanna; And Others
This Personal Development Resource Guide is intended to help teachers implement Ohio's Work and Family Life Program. Course content focuses on the practical problems faced by adolescents at the critical stage of their development. These practical problems are posed through case studies and shared experiences and examined using critical questions…
ERIC Educational Resources Information Center
Kister, Joanna; And Others
This Resource Management Resource Guide is intended to help teachers implement Ohio's Work and Family Life Program. Course content focuses on the practical problems related to managing human and material resources, making consumer decisions, and feeding, clothing, and housing the family. These practical problems are posed through case studies and…
ERIC Educational Resources Information Center
Wüstenberg, Sascha; Greiff, Samuel; Vainikainen, Mari-Pauliina; Murphy, Kevin
2016-01-01
Changes in the demands posed by increasingly complex workplaces in the 21st century have raised the importance of nonroutine skills such as complex problem solving (CPS). However, little is known about the antecedents and outcomes of CPS, especially with regard to malleable external factors such as classroom climate. To investigate the relations…
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, Renate J.
1990-01-01
The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.
ERIC Educational Resources Information Center
Abramovich, S.
2014-01-01
The availability of sophisticated computer programs such as "Wolfram Alpha" has made many problems found in the secondary mathematics curriculum somewhat obsolete for they can be easily solved by the software. Against this background, an interplay between the power of a modern tool of technology and educational constraints it presents is…
Least Squares Computations in Science and Engineering
1994-02-01
iterative least squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise , direct...optimization methods. Generally, the problems are accompanied by constraints, such as bound constraints, and the observations are corrupted by noise . The...engineering. This effort has involved interaction with researchers in closed-loop active noise (vibration) control at Phillips Air Force Laboratory
ERIC Educational Resources Information Center
Dickson, Laurie M.; Derevensky, Jeffrey L.; Gupta, Rina
2004-01-01
Despite the growing popularity of the harm reduction approach in the field of adolescent alcohol and substance abuse, a harm reduction approach to prevention and treatment of youth problem gambling remains largely unexplored. This article poses the question of whether the harm reduction paradigm is a promising approach to the prevention of…
Structural synthesis: Precursor and catalyst
NASA Technical Reports Server (NTRS)
Schmit, L. A.
1984-01-01
More than twenty five years have elapsed since it was recognized that a rather general class of structural design optimization tasks could be properly posed as an inequality constrained minimization problem. It is suggested that, independent of primary discipline area, it will be useful to think about: (1) posing design problems in terms of an objective function and inequality constraints; (2) generating design oriented approximate analysis methods (giving special attention to behavior sensitivity analysis); (3) distinguishing between decisions that lead to an analysis model and those that lead to a design model; (4) finding ways to generate a sequence of approximate design optimization problems that capture the essential characteristics of the primary problem, while still having an explicit algebraic form that is matched to one or more of the established optimization algorithms; (5) examining the potential of optimum design sensitivity analysis to facilitate quantitative trade-off studies as well as participation in multilevel design activities. It should be kept in mind that multilevel methods are inherently well suited to a parallel mode of operation in computer terms or to a division of labor between task groups in organizational terms. Based on structural experience with multilevel methods general guidelines are suggested.