Sample records for laser presentation material

  1. Present and future trends of laser materials processing in Japan

    NASA Astrophysics Data System (ADS)

    Matsunawa, Akira

    1991-10-01

    Lasers quickly penetrated into Japanese industries in the mid-80s. The paper reviews the present situation of industrial lasers and their applications in Japanese industries for materials removal, joining, and some surface modification technologies as well as their economical evaluation compared with competitive technologies. Laser cutting of metallic and nonmetallic thin sheets is widely prevalent even in small scale industries as a flexible manufacturing tool. As for the laser welding is concerned, industrial applications are rather limited in mass production lines. This mainly comes from the fact that the present laser technologies have not employed the adaptive control because of the lack of sensors, monitoring, and control systems which can tolerate the high-precision and high-speed processing. In spite of this situation, laser welding is rapidly increasing in recent years in industries such as automotive, machinery, electric/electronic, steel, heavy industries, etc. Laser surface modification technologies have attracted significant interest from industrial people, but actual application is very limited today. However, the number of R&D papers is increasing year by year. The paper also reviews these new technology trends in Japan.

  2. Holographic femtosecond laser processing and its application to biological materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio

    2017-02-01

    Femtosecond laser processing is a promising tool for fabricating novel and useful structures on the surfaces of and inside materials. An enormous number of pulse irradiation points will be required for fabricating actual structures with millimeter scale, and therefore, the throughput of femtosecond laser processing must be improved for practical adoption of this technique. One promising method to improve throughput is parallel pulse generation based on a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM), a technique called holographic femtosecond laser processing. The holographic method has the advantages such as high throughput, high light use efficiency, and variable, instantaneous, and 3D patterning. Furthermore, the use of an SLM gives an ability to correct unknown imperfections of the optical system and inhomogeneity in a sample using in-system optimization of the CGH. Furthermore, the CGH can adaptively compensate in response to dynamic unpredictable mechanical movements, air and liquid disturbances, a shape variation and deformation of the target sample, as well as adaptive wavefront control for environmental changes. Therefore, it is a powerful tool for the fabrication of biological cells and tissues, because they have free form, variable, and deformable structures. In this paper, we present the principle and the experimental setup of holographic femtosecond laser processing, and the effective way for processing the biological sample. We demonstrate the femtosecond laser processing of biological materials and the processing properties.

  3. Laser-Gyro Materials Studies

    DTIC Science & Technology

    1986-03-01

    mean-square (rms) have been measured on fused quartz and Zerodur surfaces polished by manufacturers of ring- laser gyros. The measurements were made...Sizes and Percent Crystallinity of Laser Gyro Materials. Crystallite Crystallinity, Material size, :-100 A ±10 vol% Zerodur 800 79 Quartz 500 53...Based on t data presented in this rel ort, Cervit, Zerodur , and RLA 559,122 from Corning Glass Works have acceptable material properties for laser

  4. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  5. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  6. Lasers in Materials Processing

    NASA Astrophysics Data System (ADS)

    Kukreja, L. M.; Paul, C. P.; Kumar, Atul; Kaul, R.; Ganesh, P.; Rao, B. T.

    Laser is undoubtedly one of the most important inventions of the twentieth century. Today, it is widely deployed for a cornucopia of applications including materials processing. Different lasers such as CO2, Nd:YAG, excimer, copper vapor, diode, fiber lasers, etc., are being used extensively for various materials processing applications like cutting, welding, brazing, surface treatment, peening, and rapid manufacturing by adopting conventional and unconventional routes with unprecedented precision. In view of its potential for providing solution to the emerging problems of the industrial materials processing and manufacturing technologies, a comprehensive program on laser materials processing and allied technologies was initiated at our laboratory. A novel feature-based design and additive manufacturing technologies facilitated the laser rapid manufacturing of complex engineering components with superior performance. This technology is being extended for the fabrication of anatomically shaped prosthetics with internal heterogeneous architectures. Laser peening of spring steels brought significant improvement in its fatigue life. Laser surface treatments resulted in enhanced intergranular corrosion resistance of AISI 316(N) and 304 stainless steel. Parametric dependence of laser welding of dissimilar materials, AISI 316M stainless steel with alloy D9, was established for avoiding cracks under optimum processing conditions. In the domain of laser cutting and piercing, the development of a power ramped pulsed mode with high pulse repetition frequency and low duty cycle scheme could produce highly circular, narrow holes with minimum spattered pierced holes. A review of these experimental and some theoretical studies is presented and discussed in this chapter. These studies have provided deeper insight of fascinating laser-based materials processing application for industrial manufacturing technologies.

  7. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  8. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  9. Laser-Material Interactions for Flexible Applications.

    PubMed

    Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae

    2017-07-01

    The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for amore » variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a

  11. Laser Material Processing for Microengineering Applications

    NASA Technical Reports Server (NTRS)

    Helvajian, H.

    1995-01-01

    The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.

  12. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  13. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  14. Femtosecond laser polishing of optical materials

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2015-10-01

    Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.

  15. PHOTONICS AND NANOTECHNOLOGY Laser nanostructuring of materials surfaces

    NASA Astrophysics Data System (ADS)

    Zavestovskaya, I. N.

    2010-12-01

    This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces.

  16. Development of Ceramic Solid-State Laser Host Material

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  17. New laser glass for short pulsed laser applications: the BLG80 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    George, Simi A.

    2017-03-01

    For achieving highest peak powers in a solid state laser (SSL) system, significant energy output and short pulses are necessary. For mode-locked lasers, it is well-known from the Fourier theorem that the largest gain bandwidths produce the narrowest pulse-widths; thus are transform limited. For an inhomogeneously broadened line width of a laser medium, if the intensity of pulses follow a Gaussian function, then the resulting mode-locked pulse will have a Gaussian shape with the emission bandwidth/pulse duration relationship of pulse ≥ 0.44?02/c. Thus, for high peak power SSL systems, laser designers incorporate gain materials capable of broad emission bandwidths. Available energy outputs from a phosphate glass host doped with rare-earth ions are unparalleled. Unfortunately, the emission bandwidths achievable from glass based gain materials are typically many factors smaller when compared to the Ti:Sapphire crystal. In order to overcome this limitation, a hybrid "mixed" laser glass amplifier - OPCPA approach was developed. The Texas petawatt laser that is currently in operation at the University of Texas-Austin and producing high peak powers uses this hybrid architecture. In this mixed-glass laser design, a phosphate and a silicate glass is used in series to achieve a broader bandwidth required before compression. Though proven, this technology is still insufficient for the future compact petawatt and exawatt systems capable of producing high energies and shorter pulse durations. New glasses with bandwidths that are two and three times larger than what is now available from glass hosts is needed if there is to be an alternative to Ti:Sapphire for laser designers. In this paper, we present new materials that may meet the necessary characteristics and demonstrate the laser and emission characteristics these through the internal and external studies.

  18. Possibilities of Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi

    Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.

  19. Target Fabrication Technology and New Functional Materials for Laser Fusion and Laser-Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Norimatsu, Takayoshi; Izawa, Yasukazu

    Target fabrication technique is a key issue of laser fusion. We present a comprehensive, up-to-data compilation of laser fusion target fabrication and relating new materials. To achieve highly efficient laser implosion, organic and inorganic highly spherical millimeter-sized capsules and cryogenic hydrogen layers inside should be uniform in diameter and thickness within sub-micrometer ˜ nanometer error. Porous structured targets and molecular cluster targets are required for laser-plasma experiments and applications. Various technologies and new materials concerning above purposes are summarized including fast-ignition targets, equation-of-state measurement targets, high energy ion generation targets, etc.

  20. Application of optical limiting materials in laser seeker

    NASA Astrophysics Data System (ADS)

    Niu, Yan-xiong; Wu, Dong-sheng; Zhang, Peng; Duan, Xiao-feng

    2005-01-01

    Seeker is the key component in the laser guided weapons. Although the seeker has many anti-jamming measures such as the narrowband filter in the front of the seeker and the tracking gate processing circuit in signal processing part, and these anti-jamming measures are always effective for the low power jamming laser. As far as the high power laser which can pass though the filter is concerned, it is easy to make the detector saturate, which will lead the seeker into losing the capturing and tracking capability for the target. In the past ten years, the applied research of organic nonlinear materials which is according to the optical limiting effect has had great development in the laser technology field. And some of these materials have been put into practicability phase. This kind of materials is characterized by its wide absorption spectrum, obvious nonlinear effect and quick response speed, all of which excel the mineral. If this kind of materials can be applied into the laser seeker, it will remedy the laser seeker's defect that its protective capability is weak for the high power jamming laser. The whole applied scheme is present in this paper. And the anti-jamming capability of seeker is analysed constructively before and after the organic matter is applied in the laser seeker. The result indicates that this kind of method is viable in theory.

  1. The advances and characteristics of high-power diode laser materials processing

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2000-10-01

    This paper presents a review of the direct applications of high-power diode lasers for materials processing including soldering, surface modification (hardening, cladding, glazing and wetting modifications), welding, scribing, sheet metal bending, marking, engraving, paint stripping, powder sintering, synthesis, brazing and machining. The specific advantages and disadvantages of diode laser materials processing are compared with CO 2, Nd:YAG and excimer lasers. An effort is made to identify the fundamental differences in their beam/material interaction characteristics and materials behaviour. Also an appraisal of the future prospects of the high-power diode lasers for materials processing is given.

  2. Development of high-power CO2 lasers and laser material processing

    NASA Astrophysics Data System (ADS)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  3. High Power Laser Processing Of Materials

    NASA Astrophysics Data System (ADS)

    Martyr, D. R.; Holt, T.

    1987-09-01

    The first practical demonstration of a laser device was in 1960 and in the following years, the high power carbon dioxide laser has matured as an industrial machine tool. Modern carbon dioxide gas lasers can be used for cutting, welding, heat treatment, drilling, scribing and marking. Since their invention over 25 years ago they are now becoming recognised as highly reliable devices capable of achieving huge savings in production costs in many situations. This paper introduces the basic laser processing techniques of cutting, welding and heat treatment as they apply to the most common engineering materials. Typical processing speeds achieved with a wide range of laser powers are reported. Accuracies achievable and fit-up tolerances required are presented. Methods of integrating lasers with machine tools are described and their suitability in a wide range of manufacturing industries is described by reference to recent installations. Examples from small batch manufacturing, high volume production using dedicated laser welding equipment, and high volume manufacturing using 'flexible' automated laser welding equipment are described Future applications of laser processing are suggested by reference to current process developments.

  4. Short-pulse laser interactions with disordered materials and liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less

  5. Review of selective laser melting: Materials and applications

    NASA Astrophysics Data System (ADS)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  6. Laser materials processing facility

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.

    1982-01-01

    The laser materials processing facility and its capabilities are described. A CO2 laser with continuous wave, repetitive pulse, and shaped power-time cycles is employed. The laser heated crystal growth station was used to produce metal and metal oxide single crystals and for cutting and shaping experiments using Si3N4 to displace diamond shaping processes.

  7. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process.

    PubMed

    Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei

    2018-05-10

    A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.

  8. Laser materials for the 0.67-microns to 2.5-microns range

    NASA Technical Reports Server (NTRS)

    Toda, Minoru; Zamerowski, Thomas J.; Ladany, Ivan; Martinelli, Ramon U.

    1987-01-01

    Basic requirements for obtaining injection laser action in III-V semiconductors are discussed briefly. A detailed review is presented of materials suitable for lasers emitting at 0.67, 1.44, 1.93, and 2.5 microns. A general approach to the problem is presented, based on curves of materials properties published by Sasaki et al. It is also shown that these curves, although useful, may need correction in certain ranges. It is deduced that certain materials combinations, either proposed in the literature or actually tried, are not appropriate for double heterostructure lasers, because the refractive index of the cladding material is higher than the index of the active material, thus resulting in no waveguiding, and high threshold currents. Recommendations are made about the most promising approach to the achievement of laser action in the four wavelengths mentioned above.

  9. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  10. HO:LULF and HO:LULF Laser Materials

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Morrison, Clyde A. (Inventor); Filer, Elizabeth D. (Inventor); Jani, Mahendra G. (Inventor); Murray, Keith E. (Inventor); Lockard, George E. (Inventor)

    1998-01-01

    A laser host material LULF (LuLiF4) is doped with holmium (Ho) and thulium (Tm) to produce a new laser material that is capable of laser light production in the vicinity of 2 microns. The material provides an advantage in efficiency over conventional Ho lasers because the LULF host material allows for decreased threshold and upconversion over such hosts as YAG and YLF. The addition of Tm allows for pumping by commonly available GaAlAs laser diodes. For use with flashlamp pumping, erbium (Er) may be added as an additional dopant. For further upconversion reduction, the Tm can be eliminated and the Ho can be directly pumped.

  11. Short Wavelength Laser/Materials Interactions

    DTIC Science & Technology

    1989-12-20

    lasterials interaction phenomena and effects, and 4) materials evaluation. The program has led to major advances in science-based understanding of...3.0 RESULTS 5 3.1 MATERIALS SELECTION and CHARACTERIZATION 5 3.2 DEVELOPMENT of NEW INSTRUMENTATION 8 3.2.1 Laser Sources 8 3.2.2 Multiwavelength ...high temperature during laser irradiation. The program has led to major advances in science-based understanding of materials performance under extreme

  12. Review of selective laser melting: Materials and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg; Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798; Chua, C. K., E-mail: mckchua@ntu.edu.sg

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power lasermore » have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.« less

  13. Review of Tm and Ho Materials; Spectroscopy and Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2008-01-01

    A review of Tm and Ho materials is presented, covering some fundamental aspects on the spectroscopy and laser dynamics in both single and co-doped systems. Following an introduction to 2- m lasers, applications and historical development, the physics of quasi-four level lasers, energy transfer and modeling are discussed in some detail. Recent developments in using Tm lasers to pump Ho lasers are discussed, and seen to offer some advantages over conventional Tm:Ho lasers. This article is not intended as a complete review, but as a primer for introducing concepts and a resource for further study.

  14. Effect of water on dental material ablation of the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1994-09-01

    It is understood that if a laser is to replace the dental high speed handpiece it must be able to ablate dental materials which are present in teeth being treated with the laser. It is the intent of this paper to evaluate the effects of the Er:YAG laser on dental composite restorative material concentrating on the etch rate with and without waterspray. Composite dental material is used to form plugs of known thickness and the etch rate of the Er:YAG laser on this material is determined. The results are compared with those obtained from studies of the Er:YAG on dentin and enamel. In these studies the water reduced the efficiency of the Er:YAG laser 15 - 20% on these tissues.

  15. Temperature analysis of laser ignited metalized material using spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet

    2018-05-01

    The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.

  16. Picosecond laser bonding of highly dissimilar materials

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-10-01

    We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.

  17. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  18. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J [Niceville, NM; Tappan, Alexander S [Albuquerque, NM; Palmer, Jeremy A [Albuquerque, NM

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  19. Tetravalent chromium doped laser materials and NIR tunable lasers

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0laser materials are characterized by a relatively high concentration of Cr.sup.4+-lasing ion in crystalline host that makes these materials suitable for compact high power (thin disk/wedge) NIR laser applications.

  20. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado.

  1. Laser balancing system for high material removal rates

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Georgalas, G.; Ortiz, A. L.

    1984-01-01

    A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.

  2. Modeling 2D and 3D periodic nanostructuring of materials with ultrafast laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colombier, Jean-Philippe; Rudenko, Anton; Bévillon, Emile; Zhang, Hao; Itina, Tatiana E.; Stoian, Razvan

    2017-03-01

    Generation of periodic arrangements of matter on materials irradiated by laser fields of uniform and isotropic energy distribution is a key issue in controlling laser structuring processes below the diffractive limit. Using three-dimensional finite-difference time-domain methods, we evaluate energy deposition patterns below a material's rough surface [1] and in bulk dielectric materials containing randomly distributed nano-inhomogeneities [2]. We show that both surface and volume patterns can be attributed to spatially ordered electromagnetic solutions of linear and nonlinear Maxwell equations. In particular, simulations revealed that anisotropic energy deposition results from the coherent superposition of the incident and the inhomogeneity-scattered light waves. Transient electronic response is also analyzed by kinetic equations of free electron excitation/relaxation processes for dielectrics and by ab initio calculations for metals. They show that for nonplasmonic metals, ultrafast carrier excitation can drastically affect electronic structures, driving a transient surface plasmonic state with high consequences for optical resonances generation [3]. Comparing condition formations of 2D laser-induced periodic surface structures (LIPSS) and 3D self-organized nanogratings, we will discuss the role of collective scattering of nanoroughness and the feedback-driven growth of the nanostructures. [1] H. Zhang, J.P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, Physical Review B 92, 174109 (2015). [2] A. Rudenko, J.P. Colombier, and T.E. Itina, Physical Review B 93 (7), 075427 (2016). [3] E. Bévillon, J.P. Colombier, V. Recoules, H. Zhang, C. Li and R. Stoian, Physical Review B 93 (16), 165416 (2016).

  3. In situ TEM Raman spectroscopy and laser-based materials modification.

    PubMed

    Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M

    2017-07-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fluoride crystals: materials for near-infrared solid state lasers

    NASA Astrophysics Data System (ADS)

    Parisi, Daniela; Veronesi, Stefano; Volpi, Azzurra; Gemmi, Mauro; Tonelli, Mauro; Cassanho, Arlete; Jenssen, Hans P.

    2013-07-01

    In this work we present an overview of the best 2μm laser results obtained in Tm-doped fluoride hosts LiYF4(YLF), LiLuF4 (LLF) and BaY2F8 (BYF) and we report on the growth, spectroscopy and first laser test emission of a novel mixed material BaYLuF8 (BYLF), interesting as a variant of BYF material with a partial substitution of Y3+ ions by Lu3+. The novel host is interesting mainly because indications are that the mixed crystal would be sturdier than BYF. The addition of Lutetium would improve the thermo-mechanical properties going into the direction of high power applications, as suggest from works on YLF and its isomorph LLF. A detailed description of Czochralski growth of fluoride laser materials is provided, focusing on the growth parameters of the novel BYLF:Tm3+12% material grown. With regard of spectroscopy analysis, we report on the results obtained with BYLF host. Detailed absorption, fluorescence and lifetime measurements have been performed focusing on the 3H4 and 3F4 manifolds, the pumping and upper laser level. Moreover diode pumped CW laser emission at 2 μm has been achieved in BYLF: Tm3+12% sample obtaining a slope efficiency of about 28% with respect to the absorbed power.

  5. Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.

    2017-03-01

    Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.

  6. Laser-induced Microparticle Impact Experiments on Soft Materials

    NASA Astrophysics Data System (ADS)

    Kooi, Steven; Veysset, David; Maznev, Alexei; Yang, Yun Jung; Olsen, Bradley; Nelson, Keith

    High-velocity impact testing is used to study fundamental aspects of materials behavior under high strain rates as well as in applications ranging from armor testing to the development of novel drug delivery platforms. In this work, we study high-velocity impact of micron-size projectiles on soft viscoelastic materials including synthetic hydrogels and gelatin samples. In an all optical laser-induced projectile impact test (LIPIT), a monolayer of microparticles is placed on a transparent substrate coated with a laser absorbing polymer layer. Ablation of a laser-irradiated polymer region accelerates the microparticles which are ejected from the launching pad into free space, reaching controllable speeds up to 1.5 km/s depending on the laser pulse energy and particle characteristics. The particles are monitored while in free space and after impact on the target surface with an ultrahigh-speed multi-frame camera that can record up to 16 images with time resolution of each frame as short as 3 ns. We present images and movies capturing individual particle impact and penetration in gels, and discuss the observed dynamics in the case of high Reynolds and Weber numbers. The results can provide direct input for modeling of high-velocity impact responses and high strain rate deformation in gels and other soft materials..

  7. New Polymer Materials for the Laser Sintering Process: Polypropylene and Others

    NASA Astrophysics Data System (ADS)

    Wegner, Andreas

    Laser sintering of polymers gets more and more importance for small series production. However, there is only a little number of materials available for the process. In most cases parts are build up using polyamide 12 or polyamide 11. Reasons for that are high prices, a restricted availability, poor mechanical part properties or an insufficient understanding of the processing of other materials. These problems result from the complex processing conditions in laser sintering with high requirements on the material's characteristics. Within this area, at the chair for manufacturing technology fundamental knowledge was established. Aim of the presented study was to qualify different polymers for the laser sintering process. Polyethylene, polypropylene, polyamide 6, polyoxymethylene as well as polybutylene terephthalate were analyzed. Within the study problems of qualifying new materials are discussed using some examples. Furthermore, the processing conditions as well as mechanical properties of a new polypropylene compound are shown considering also different laser sintering machines.

  8. Optical materials and films applied in industrial lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Shengyong

    1999-09-01

    Optical materials and films are often used in industrial lasers. Most of industrial lasers work at visible spectrum and near-infrared spectrum. Only CO2 laser works at far- infrared region (10.6 micrometers ). The optical materials and films are categorized in this article, and the properties of the materials and films are related. From visible to infrared spectrum, many optical materials can be used: K9 glass, fused silica, germanium, gallium arsenide, zinc selenide, silicon, copper, and so on. Optical films for lasers include reflection coating, antireflection coating, edge filter, VRM (variable reflectance mirror) coating and polarizer. The characteristic and application of them will be introduced.

  9. Powder Flux Regulation in the Laser Material Deposition Process

    NASA Astrophysics Data System (ADS)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  10. Study of transport of laser-driven relativistic electrons in solid materials

    NASA Astrophysics Data System (ADS)

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  11. Adjustment of Part Properties for an Elastomeric Laser Sintering Material

    NASA Astrophysics Data System (ADS)

    Wegner, A.; Ünlü, T.

    2018-03-01

    Laser sintering of polymers is gaining more and more importance within the field of small series productions. Polyamide 12 is predominantly used, although a variety of other materials are also available for the laser sintering process. For example, elastomeric, rubberlike materials offer very different part property profiles. Those make the production of flexible parts like, e.g., sealings, flexible tubes or shoe soles possible because they offer high part ductility and low hardness. At the chair for manufacturing technology, a new elastomeric laser sintering material has been developed and then commercialized by a spin-off from university. The aim of the presented study was the analysis of the new material's properties. Proof was found that Shore hardness can be modified by varying the parameter settings. Therefore, the correlation between process parameters, energy input, Shore hardness and other part properties like mechanical properties were analyzed. Based on these results, suitable parameter settings were established which lead to the possibility of producing parts with different Shore hardnesses.

  12. Laser microjoining of dissimilar and biocompatible materials

    NASA Astrophysics Data System (ADS)

    Bauer, Ingo; Russek, Ulrich A.; Herfurth, Hans J.; Witte, Reiner; Heinemann, Stefan; Newaz, Golam; Mian, A.; Georgiev, D.; Auner, Gregory W.

    2004-07-01

    Micro-joining and hermetic sealing of dissimilar and biocompatible materials is a critical issue for a broad spectrum of products such as micro-electronics, micro-optical and biomedical products and devices. Today, biocompatible titanium is widely applied as a material for orthopedic implants as well as for the encapsulation of implantable devices such as pacemakers, defibrillators, and neural stimulator devices. Laser joining is the process of choice to hermetically seal such devices. Laser joining is a contact-free process, therefore minimizing mechanical load on the parts to be joined and the controlled heat input decreases the potential for thermal damage to the highly sensitive components. Laser joining also offers flexibility, shorter processing time and higher quality. However, novel biomedical products, in particular implantable microsystems currently under development, pose new challenges to the assembly and packaging process based on the higher level of integration, the small size of the device's features, and the type of materials and material combinations. In addition to metals, devices will also include glass, ceramic and polymers as biocompatible building materials that must be reliably joined in similar and dissimilar combinations. Since adhesives often lack long-term stability or do not meet biocompatibility requirements, new joining techniques are needed to address these joining challenges. Localized laser joining provides promising developments in this area. This paper describes the latest achievements in micro-joining of metallic and non-metallic materials with laser radiation. The focus is on material combinations of metal-polymer, polymer-glass, metal-glass and metal-ceramic using CO2, Nd:YAG and diode laser radiation. The potential for applications in the biomedical sector will be demonstrated.

  13. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    DOE PAGES

    Shinde, D.; Arnoldi, L.; Devaraj, A.; ...

    2016-10-28

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion insidemore » the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites. Published by AIP Publishing.« less

  14. ARPA solid state laser and nonlinear materials program

    NASA Astrophysics Data System (ADS)

    Moulton, Peter F.

    1994-06-01

    The Research Division of Schwartz Electro-Optics, as part of the ARPA Solid State Laser and Nonlinear Materials Program, conducted a three-year study 'Erbium-Laser-Based Infrared Sources.' The aim of the study was to improve the understanding of semiconductor-laser-pumped, infrared (IR) solid state lasers based on the trivalent rare-earth ion erbium (Er) doped into a variety of host crystals. The initial program plan emphasized operation of erbium-doped materials on the 2.8-3.0 micrometers laser transition. Pulsed, Q-switched sources using that transition, when employed as a pump source for parametric oscillators, can provide tunable mid-IR energy. The dynamics of erbium lasers are more complex than conventional neodymium (Nd)-doped lasers and we intended to use pump-probe techniques to measure the level and temporal behavior of gain in various materials. To do so we constructed a number of different cw Er-doped lasers as probe sources and employed the Cr:LiSAF(LiSrAlF6) laser as a pulsed pump source that would simulate pulsed diode arrays. We identified the 970-nm wavelength pump band of Er as the most efficient and were able to make use of recently developed cw and pulsed InGaAs strained-quantum-well diode lasers in the effort. At the conclusion of the program we demonstrated the first pulsed diode bar pumping of the most promising materials for pulsed operation, the oxide garnets YSGG and GGG and the fluoride BaY2F8.

  15. Material properties and laser cutting of composites

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chieh; Cheng, Wing

    Laser (Light Amplification by Stimulated Emission of Radiation) has been used successfully for many material cutting, drilling, metal welding and heat treating applications. However, laser cutting of polymer composites were attempted with varying degrees of success. Because composites are heterogeneous, the energy applied by laser could result in severe resin degradation before fibers were cut. In this study, cutting of glass, Kevlar, and graphite composites were evaluated based on their material properties and laser cutting parameters. A transient heat transfer analysis was used to determine the relative heat affected zones of these composites. Kevlar composites can be cut very well while graphite composites are difficult to cut. Though the cutting process is much more complicated in reality, the analysis provides a semi-quantitative perspective on the characteristics and limitations of laser cutting of different composites.

  16. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  17. A compact plasma pre-ionized TEA-CO2 laser pulse clipper for material processing

    NASA Astrophysics Data System (ADS)

    Gasmi, Taieb

    2017-08-01

    An extra-laser cavity CO2-TEA laser pulse clipper using gas breakdown techniques for high spatial resolution material processing and shallow material engraving and drilling processes is presented. Complete extinction of the nitrogen tail, that extends the pulse width, is obtained at pressures from 375 up to 1500 torr for nitrogen and argon gases. Excellent energy stability and pulse repeatability were further enhanced using high voltage assisted preionized plasma gas technique. Experimental data illustrates the direct correlation between laser pulse width and depth of engraving in aluminum and alumina materials.

  18. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgakova, Nadezhda M., E-mail: nadezhda.bulgakova@hilase.cz; Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk; Zhukov, Vladimir P.

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when allmore » motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.« less

  19. Lasant Materials for Blackbody-Pumped Lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J. (Editor); Chen, K. Y. (Editor)

    1985-01-01

    Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers.

  20. Laser micro-structuring of surfaces for applications in materials and biomedical science

    NASA Astrophysics Data System (ADS)

    Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta

    2016-12-01

    Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.

  1. Relaxation dynamics of nanosecond laser superheated material in dielectrics

    DOE PAGES

    Demos, Stavros G.; Negres, Raluca A.; Raman, Rajesh N.; ...

    2015-08-20

    Intense laser pulses can cause superheating of the near-surface volume of materials. This mechanism is widely used in applications such as laser micromachining, laser ablation, or laser assisted thin film deposition. The relaxation of the near solid density superheated material is not well understood, however. In this work, we investigate the relaxation dynamics of the superheated material formed in several dielectrics with widely differing physical properties. The results suggest that the relaxation process involves a number of distinct phases, which include the delayed explosive ejection of microscale particles starting after the pressure of the superheated material is reduced to aboutmore » 4 GPa and for a time duration on the order of 1 μs. The appearance of a subset of collected ejected particles in fused silica is similar to that of micro-tektites and provides information about the state of the superheated material at the time of ejection. Lastly, these results advance our understanding of a key aspect of the laser–material interaction pathway and can lead to optimization of associated applications ranging from material processing to laser surgery.« less

  2. Laser Additive Manufacturing of Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  3. Femtosecond laser patterning of biological materials

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.

    2011-03-01

    This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.

  4. Laser micro-machining strategies for transparent brittle materials using ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Matylitsky, Victor

    2017-02-01

    Cutting and drilling of transparent materials using short pulsed laser systems are important industrial production processes. Applications ranging from sapphire cutting, hardened glass processing, and flat panel display cutting, to diamond processing are possible. The ablation process using a Gaussian laser beam incident on the topside of a sample with several parallel overlapping lines leads to a V-shaped structured groove. This limits the structuring depth for a given kerf width. The unique possibility for transparent materials to start the ablation process from the backside of the sample is a well-known strategy to improve the aspect ratio of the ablated features. This work compares the achievable groove depth depending on the kerf width for front-side and back-side ablation and presents the best relation between the kerf width and number of overscans. Additionally, the influence of the number of pulses in one burst train on the ablation efficiency is investigated. The experiments were carried out using Spirit HE laser from Spectra-Physics, with the features of adjustable pulse duration from <400 fs to 10 ps, three different repetition rates (100 kHz, 200 kHz and 400 kHz) and average output powers of >16 W ( at 1040 nm wavelength).

  5. The development and application of high energy laser protective material

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Zhao, Yizheng

    2016-03-01

    With the emergence of strong light source, laser weapons in the modern war, the threat of damage to the photoelectric sensor and the human eye, the laser protection technology has begun to be paid attention to and widespread concern. In the laser protective materials, we can divide it into the protective material based on the principle of linear optics and the protective material based on the principle of nonlinear optics. In this paper, two different mechanisms of laser protective materials are introduced, and their development and application are reviewed.

  6. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  7. Technology Assessment of Laser-Assisted Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  8. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  9. The reverse laser drilling of transparent materials

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.; Lindner, P. A.

    1980-01-01

    Within a limited range of incident laser-beam intensities, laser drilling of a sapphire wafer initiates on the surface of the wafer where the laser beam exits and proceeds upstream in the laser beam to the surface where the laser beam enters the wafer. This reverse laser drilling is the result of the constructive interference between the laser beam and its reflected component on the exit face of the wafer. Constructive interference occurs only at the exit face of the sapphire wafer because the internally reflected laser beam suffers no phase change there. A model describing reverse laser drilling predicts the ranges of incident laser-beam intensity where no drilling, reverse laser drilling, and forward laser drilling can be expected in various materials. The application of reverse laser drilling in fabricating feed-through conductors in silicon-on-sapphire wafers for a massively parallel processer is described.

  10. Laser-based microstructuring of materials surfaces using low-cost microlens arrays

    NASA Astrophysics Data System (ADS)

    Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.

    2012-03-01

    Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.

  11. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  13. Picosecond and femtosecond lasers for industrial material processing

    NASA Astrophysics Data System (ADS)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.

    2016-03-01

    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  14. Analysis and studies on the threats to the composite material from laser

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Yao, Weixing; Wang, Liwei; Wang, Guoliang; Xie, Fang

    2015-10-01

    It is always an attracting research field for the interaction between laser and matters. The interaction between laser and matters is used not only in the natural science, but also in practical application, for example, laser machine, laser weapon, laser ablations and so on. In this paper, we will give the model for the damage effect of the composite materials caused by the superpower laser weapons. Mechanism of the laser damage on the composite materials have been researched and modeled by the numerical analysis methods. Through the designed model, we analyzed the temperature and the stress fields of the composite material after the superpower lasers attacks with different power densities. By analyzing these modeling results, we achieved some conclusions on the threats to the composite materials from the superpower lasers. From the results, we have obtained the Irradiated threshold from the Laser. This paper will provide the theoretical foundations for the anti-laser design of the composite materials.

  15. Material Processing with High Power CO2-Lasers

    NASA Astrophysics Data System (ADS)

    Bakowsky, Lothar

    1986-10-01

    After a period of research and development lasertechnique now is regarded as an important instrument for flexible, economic and fully automatic manufacturing. Especially cutting of flat metal sheets with high power C02-lasers and CNC controlled two or three axes handling systems is a wide spread. application. Three dimensional laser cutting, laser-welding and -heat treatment are just at the be ginning of industrial use in production lines. The main. advantages of laser technology. are - high. accuracy - high, processing velocity - law thermal distortion. - no tool abrasion. The market for laser material processing systems had 1985 a volume of 300 Mio S with growth rates between, 20 % and 30 %. The topic of this lecture are hiTrh. power CO2-lasers. Besides this systems two others are used as machining tools, Nd-YAG- and Eximer lasers. All applications of high. power CO2-lasers to industrial material processing show that high processing velocity and quality are only guaranteed in case of a stable intensity. profile on the workpiece. This is only achieved by laser systems without any power and mode fluctuations and by handling systems of high accuracy. Two applications in the automotive industry are described, below as examples for laser cutting and laser welding of special cylindrical motor parts.

  16. Field mappers for laser material processing

    NASA Astrophysics Data System (ADS)

    Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy

    2016-03-01

    The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.

  17. Tubular filamentation for laser material processing

    PubMed Central

    Xie, Chen; Jukna, Vytautas; Milián, Carles; Giust, Remo; Ouadghiri-Idrissi, Ismail; Itina, Tatiana; Dudley, John M.; Couairon, Arnaud; Courvoisier, Francois

    2015-01-01

    An open challenge in the important field of femtosecond laser material processing is the controlled internal structuring of dielectric materials. Although the availability of high energy high repetition rate femtosecond lasers has led to many advances in this field, writing structures within transparent dielectrics at intensities exceeding 1013 W/cm2 has remained difficult as it is associated with significant nonlinear spatial distortion. This letter reports the existence of a new propagation regime for femtosecond pulses at high power that overcomes this challenge, associated with the generation of a hollow uniform and intense light tube that remains propagation invariant even at intensities associated with dense plasma formation. This regime is seeded from higher order nondiffracting Bessel beams, which carry an optical vortex charge. Numerical simulations are quantitatively confirmed by experiments where a novel experimental approach allows direct imaging of the 3D fluence distribution within transparent solids. We also analyze the transitions to other propagation regimes in near and far fields. We demonstrate how the generation of plasma in this tubular geometry can lead to applications in ultrafast laser material processing in terms of single shot index writing, and discuss how it opens important perspectives for material compression and filamentation guiding in atmosphere. PMID:25753215

  18. Picosecond laser welding of similar and dissimilar materials.

    PubMed

    Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P

    2014-07-01

    We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.

  19. Laser-accelerated particle beams for stress testing of materials.

    PubMed

    Barberio, M; Scisciò, M; Vallières, S; Cardelli, F; Chen, S N; Famulari, G; Gangolf, T; Revet, G; Schiavi, A; Senzacqua, M; Antici, P

    2018-01-25

    Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 18  W/cm 2 ) short-pulse (duration <1 ps) laser, is a growing field of interest, in particular for its manifold potential applications in different domains. Here, we provide experimental evidence that laser-generated particles, in particular protons, can be used for stress testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.

  20. Use of pre-pulse in laser spot welding of materials with high optical reflection

    NASA Astrophysics Data System (ADS)

    Mys, Ihor; Geiger, Manfred

    2003-11-01

    Laser micro welding has become a standard manufacturing technique, particularly in industry sectors, such as automotive and aerospace electronics or medical devices, where the requirements for strength, miniaturization and temperature resistance are constantly rising. So far the use of laser micro welding is limited due to the fluctuation of the quality of the welded joints, because the welding results for material with high optical reflection and thermal conductivity, such as copper and copper alloys, depend very strongly on the condition of the material surface. This paper presents investigations on the use of a laser pre-pulse in spot welding of electronic materials with Nd:YAG laser. In order to achieve reproducible joining results two strategies are followed-up. The first one utilizes a reflection-based process control for measuring the reflection during the short pre-pulse. The intensity of the reflected light is used to calculate an appropriated welding pulse power, which corresponds to the measured relative absorption. Adjustment of laser parameters according to the condition of the surface is done in real time before laser main pulse. A second possibility for the stabilization of copper welding is the employment of a short and powerful laser pre-pulse before laser main pulse. This pre-pulse affects the workpiece surface and creates more reproducible absorption conditions for the main pulse, independent from the initial situation on material surface.

  1. Laser detection of material thickness

    DOEpatents

    Early, James W.

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  2. A novel laser-based method for controlled crystallization in dental prosthesis materials

    NASA Astrophysics Data System (ADS)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  3. Surface roughness analysis after laser assisted machining of hard to cut materials

    NASA Astrophysics Data System (ADS)

    Przestacki, D.; Jankowiak, M.

    2014-03-01

    Metal matrix composites and Si3N4 ceramics are very attractive materials for various industry applications due to extremely high hardness and abrasive wear resistance. However because of these features they are problematic for the conventional turning process. The machining on a classic lathe still requires special polycrystalline diamond (PCD) or cubic boron nitride (CBN) cutting inserts which are very expensive. In the paper an experimental surface roughness analysis of laser assisted machining (LAM) for two tapes of hard-to-cut materials was presented. In LAM, the surface of work piece is heated directly by a laser beam in order to facilitate, the decohesion of material. Surface analysis concentrates on the influence of laser assisted machining on the surface quality of the silicon nitride ceramic Si3N4 and metal matrix composite (MMC). The effect of the laser assisted machining was compared to the conventional machining. The machining parameters influence on surface roughness parameters was also investigated. The 3D surface topographies were measured using optical surface profiler. The analysis of power spectrum density (PSD) roughness profile were analyzed.

  4. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    NASA Astrophysics Data System (ADS)

    Santos, Dário, Jr.; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Gomes, Marcos da Silva; de Souza, Paulino Florêncio; Leme, Flavio de Oliveira; dos Santos, Luis Gustavo Cofani; Krug, Francisco José

    2012-05-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited.

  5. Losses, gain, and lasing in organic and perovskite active materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pourdavoud, Neda; Riedl, Thomas J.

    2016-09-01

    Organic solid state lasers (OSLs) based on semiconducting polymers or small molecules have seen some significant progress over the past decade. Highly efficient organic gain materials combined with high-Q resonator geometries (distributed feedback (DFB), VCSEL, etc.) have enabled OSLs, optically pumped by simple inorganic laser diodes or even LEDs. However, some fundamental goals remain to be reached, like continuous wave (cw) operation and injection lasing. I will address various loss mechanisms related to accumulated triplet excitons or long-lived polarons that in combination with the particular photo-physics of organic gain media state the dominant road-blocks on the way to reach these goals. I will discuss the recent progress in fundamental understanding of these loss processes, which now provides a solid basis for modelling, e.g. of laser dynamics. Avenues to mitigate these fundamental loss mechanisms, e.g. by alternative materials will be presented. In this regard, a class of gain materials based on organo-lead halide perovskites re-entered the scene as light emitters, recently. Enjoying a tremendous lot of attention as active material for solution processed solar cells with a 20+% efficiency, they have recently unveiled their exciting photo-physics for lasing applications. Optically pumped lasing in these materials has been achieved. I will discuss some of the unique properties that render this class of materials a promising candidate to overcome some of the limitations of "classical" organic gain media.

  6. New quantum cascade laser sources for sensing applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Troccoli, Mariano

    2017-05-01

    In this presentation we will review our most recent results on development of Quantum Cascade Lasers (QCLs) for analytical and industrial applications. QCLs have demonstrated the capability to cover the entire range of Mid-IR, Far-IR, and THz wavelengths by skillful tuning of the material design and composition and by use of intrinsic material properties via a set of techniques collectively called "bandgap engineering". The use of MOCVD, pioneered on industrial scale by AdTech Optics, has enabled the deployment of QCL devices into a diverse range of environments and applications. QCLs can be tailored to the specific application requirements due to their unprecedented flexibility in design and thanks to the leveraging of well-known III-V fabrication technologies inherited from the NIR domain. Nevertheless, several applications and new frontiers in R and D need the constant support of new developments in device features, capabilities, and performances. We have developed a wide range of devices, from high power, high efficiency multi-mode sources, to narrow-band, single mode devices with low-power consumption, and from non-linear, multi-wavelength generating devices to broadband sources and multi-emitter arrays. All our devices are grown and processed using MOCVD technology and allow us to attain competitive performances across the whole mid-IR spectral range. This talk will present an overview of our current achievements. References 1. M. Troccoli, "High power emission and single mode operation of quantum cascade lasers for industrial applications", J. Sel. Topics in Quantum Electron., 21 (6), 1-7 (2015). Invited Review. 2. Seungyong Jung, Aiting Jiang, Yifan Jiang, Karun Vijayraghavan, Xiaojun Wang, Mariano Troccoli, and Mikhail A. Belkin, "Broadly Tunable Monolithic Terahertz Quantum Cascade Laser Sources", Nature Comm. 5, 4267 (2014).. 3. Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G Tsekoun, Rowel Go, C Kumar N Patel, "Long

  7. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  8. A general high-speed laser drilling method for nonmetal thin material

    NASA Astrophysics Data System (ADS)

    Cai, Zhijian; Xu, Guangsheng; Xu, Zhou; Xu, Zhiqiang

    2013-05-01

    Many nonmetal film products, such as herbal plaster, medical adhesive tape and farm plastic film, require drilling dense small holes to enhance the permeability without affecting the appearance. For many medium and small enterprises, a low-cost, high-speed laser drilling machine with the ability of processing different kinds of nonmetal material is highly demanded. In this paper, we proposed a general purpose high-speed laser drilling method for micro-hole production on thin nonmetal film. The system utilizes a rotating polygonal mirror to perform high-speed laser scan, which is simpler and more efficient than the oscillating mirror scan. In this system, an array of closepacked paraboloid mirrors is mounted on the laser scan track to focus the high-power laser onto the material sheet, which could produce up to twenty holes in a single scan. The design of laser scan and focusing optics is optimized to obtain the best holes' quality, and the mirrors can be flexibly adjusted to get different drilling parameters. The use of rotating polygonal mirror scan and close-packed mirror array focusing greatly improves the drilling productivity to enable the machine producing thirty thousand holes per minute. With proper design, the hold uniformity can also get improved. In this paper, the detailed optical and mechanical design is illustrated, the high-speed laser drilling principle is introduced and the preliminary experimental results are presented.

  9. Pump-induced phase aberrations in Yb3+-doped materials(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keppler, Sebastian; Tamer, Issa; Hornung, Marco; Körner, Jörg; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte C.

    2017-05-01

    Optical pumping of laser materials is an effective way to create a population inversion necessary for laser operation. However, a fraction of the pump energy is always transfered as heat into the laser material, which is mainly caused by the quantum defect. For Yb3+-doped materials, the small energy difference between the pump level and the laser level and the pumping with narrowband high-power laser diodes result in a quantum defect of approx. 9%, which is significantly lower compared to other dopants e.g. Ti3+ (33%) or Nd3+ (24%). Due to the low heat introduction, high optical-to-optical efficiency and high repetition rate laser systems based on diode-pumping are well-suited for a number of applications. Here, however, laser beam quality is of crucial importance. Phase distortions and beam profile modulations can lead to optical damages as well as a significant reduction of the focal spot intensity. Pump-induced phase aberrations are the main cause for phase distortions of the amplified laser beam. The heat transferred to the material causes a change of the refractive index (dn/dT), thermal expansion and stress within the laser material, eventually leading to spatial phase aberrations (also called `thermal lens'). However, the spatially dependent distribution of the population inversion itself also leads to spatial phase aberrations. Since electron excitation directly leads to a change in the charge distribution of the laser active ions, the dynamic response of the material to external fields changes. These electronic phase aberrations (also called `population lens') are described by a change in the polarizability of the material. Due to the low quantum defect of Yb3+-doped materials, this effect becomes more important. We show the first comprehensive spatio-temporal characterization of the pump-induced phase aberration including both effects. A high-resolution interference measurement was carried out with time steps of 50µs for times during the pump period and

  10. The causes of high power diode laser brazed seams fractures of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Adamiak, Marcin; Czupryński, Artur; Janicki, Damian; Górka, Jacek

    2016-12-01

    Presented in this article are the results of experiments carried out to determine the causes of braze cracking of dissimilar materials brazed with a ROFIN DL 020 high power diode laser with the use of additional powdered EN AW-1070A aluminium alloy to bond thin aluminium sheets with soft, low alloy DC04+ZE75/75 steel plate which was electrolytically coated with zinc on both sides. Presented are the results of metallographic, macroscopic, microscopic, diffractometric phase analyses of the weld joints. Metallurgical problems arising during processing as well as suggestions regarding technical aspects of laser brazing dissimilar materials in regards to their physical characteristics and chemical composition are explored.

  11. Near Mbar-Level Dynamic Loading of Materials by Direct Laser-Irradiation

    NASA Astrophysics Data System (ADS)

    Tierney, T. E.; Swift, D. C.; Gammel, J. T.; Luo, S.; Johnson, R. P.

    2003-12-01

    We are developing techniques to perform direct-laser-illumination-driven, dynamic materials experiments at up to Mbar pressures with use of the Trident Laser Laboratory at Los Alamos. By temporally controlling the laser-irradiance, we are able to shape our loading for studies of fast-rise shocks, precursors, or isentropic compression. Laser-driven shock experiments are advantageous when considering the efficiency (fast turnaround), relative ease of sample recovery, taylorable dynamic loading, and in-situ structure diagnostics. Frequently, these experiments last 1-5 nanoseconds, and thus, permit investigation of rate-dependent processes and high strain rate environments. Laser-driven dynamic experiments are an important complement to traditional dynamic (e.g., light-gas gun) and static (e.g., diamond-anvil cell) experiments with certain advantages in studying equation of state, phase transitions and mechanical-chemical properties of Earth and planetary materials. Understanding high-pressure behavior in this regime is critical to phase boundaries for planetary interiors and dynamic properties of impact processes. Although we have studied silicates, oxides, metals, alloys and organic materials, this paper will focus on shocked and isentropically-compressed results obtained for iron in the range of 10-70 GPa (0.1-0.7 Mbar). Free surface velocities are measured using a Velocity Interferometer System for Any Reflector (VISAR). Nanosecond-scale laser experiments were interpreted with careful attention to exaggerated elastic-plastic effects and using accurate new equations of state for the phases of iron. This poster will present our technique, experimental results, and interpretation. *Work performed under the auspices of the US DOE under contract No. W-7405-ENG-36.

  12. Monitoring of laser material processing using machine integrated low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Kunze, Rouwen; König, Niels; Schmitt, Robert

    2017-06-01

    Laser material processing has become an indispensable tool in modern production. With the availability of high power pico- and femtosecond laser sources, laser material processing is advancing into applications, which demand for highest accuracies such as laser micro milling or laser drilling. In order to enable narrow tolerance windows, a closedloop monitoring of the geometrical properties of the processed work piece is essential for achieving a robust manufacturing process. Low coherence interferometry (LCI) is a high-precision measuring principle well-known from surface metrology. In recent years, we demonstrated successful integrations of LCI into several different laser material processing methods. Within this paper, we give an overview about the different machine integration strategies, that always aim at a complete and ideally telecentric integration of the measurement device into the existing beam path of the processing laser. Thus, highly accurate depth measurements within machine coordinates and a subsequent process control and quality assurance are possible. First products using this principle have already found its way to the market, which underlines the potential of this technology for the monitoring of laser material processing.

  13. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, William F.; Payne, Stephen A.; Chase, Lloyd L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises Ytterbium doped apatite (Yb:Ca.sub.5 (PO.sub.4).sub.3 F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  14. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, W.F.; Payne, S.A.; Chase, L.L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca{sub 5}(PO{sub 4}){sub 3}F) or Yb:FAP, or ytterbium doped crystals structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  15. Laser-Compton photon radiography for nondestructive test of bulk materials

    NASA Astrophysics Data System (ADS)

    Toyokawa, Hiroyuki; Ohgaki, Hideaki; Kudo, Katshuhisa; Takeda, Naoto; Mikado, Tomohisa; Yamada, Kawakatsu

    2001-12-01

    Experimental results of transmission photon radiography of bulk materials using the laser-Compton photon beam in the energy range of 2-20 MeV are given. The purpose of this work is to demonstrate the effectiveness and to survey a potential need and a technical limit of the present method for industrial application, such as nondestructive test of bulk materials. Several radiographs of metals, ceramics, and concrete were measured with the present method. Position resolution of the system was measured with using 10 MeV photon beam and slit. It was less than 1 mm.

  16. Laser-induced damage in optical materials: sixteenth ASTM symposium.

    PubMed

    Bennett, H E; Guenther, A H; Milam, D; Newnam, B E

    1987-03-01

    The Sixteenth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, CO, 15-17 Oct. 1984. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific Research. Approximately 180 scientists attended the Symposium, including representatives from England, France, The Netherlands, Scotland, and West Germany. The Symposium was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6,microm to the UV region. Highlights included surface characterization, thin-film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. Harold E. Bennett of the U.S. Naval Weapons Center, Arthur H. Guenther of the U.S. Air Force Weapons Laboratory, David Milam of the Lawrence Livermore National Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the Symposium.

  17. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallais, L., E-mail: laurent.gallais@fresnel.fr; Douti, D.-B.; Commandré, M.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thinmore » film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.« less

  18. Development of improved amorphous materials for laser systems

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1974-01-01

    Crystallization calculations were performed in order to determine the possibility of forming a particular type of laser glass with the avoidance of devitrification in an outer space laboratory. It was demonstrated that under the homogenuous nucleating conditions obtainable in a zero gravity laboratory this laser glass may be easily quenched to a virtually crystal-free product. Experimental evidence is provided that use of this material as a host in a neodymium glass laser would result in more than a 10 percent increase in efficiency when compared to laser glass rods of a similar composition currently commercially available. Differential thermal analysis, thermal gradient oven, X-ray diffraction, and liquidus determination experiments were carried out to determine the basics of the crystallization behavior of the glass, and small-angle X-ray scattering and splat-cooling experiments were performed in order to provide additional evidence for the feasibility of producing this laser glass material, crystal free, in an outer space environment.

  19. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, W.F.; Payne, S.A.; Chase, L.L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  20. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, W.F.; Payne, S.A.; Chase, L.L.; Smith, L.K.

    1994-01-18

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  1. Effect of Moisture Content of Paper Material on Laser Cutting

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  2. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  3. High precision laser processing of sensitive materials by Microjet

    NASA Astrophysics Data System (ADS)

    Sibailly, Ochelio D.; Wagner, Frank R.; Mayor, Laetitia; Richerzhagen, Bernold

    2003-11-01

    Material laser cutting is well known and widely used in industrial processes, including micro fabrication. An increasing number of applications require nevertheless a superior machining quality than can be achieved using this method. A possibility to increase the cut quality is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat damaged zone near the cut, but in fact many other advantages were observed due to the usage of a water-jet instead of an assist gas stream applied in conventional laser cutting. In brief, the advantages are three-fold: the absence of divergence due to light guiding, the efficient melt expulsion, and optimum work piece cooling. In this presentation we will give an overview on several industrial applications of the water-jet guided laser technique. These applications range from the cutting of CBN or ferrite cores to the dicing of thin wafers and the manufacturing of stencils, each illustrates the important impact of the water-jet usage.

  4. Modern laser technologies used for cutting textile materials

    NASA Astrophysics Data System (ADS)

    Isarie, Claudiu; Dragan, Anca; Isarie, Laura; Nastase, Dan

    2006-02-01

    With modern laser technologies we can cut multiple layers at once, yielding high production levels and short setup times between cutting runs. One example could be the operation of cutting the material named Nylon 66, used to manufacture automobile airbags. With laser, up to seven layers of Nylon 66 can be cut in one pass, that means high production rates on a single machine. Airbags must be precisely crafted piece of critical safety equipment that is built to very high levels of precision in a mass production environment. Of course, synthetic material, used for airbags, can be cut also by a conventional fixed blade system, but for a high production rates and a long term low-maintenance, laser cutting is most suitable. Most systems, are equipped with two material handling systems, which can cut on one half of he table while the finished product is being removed from the other half and the new stock material laid out. The laser system is reliable and adaptable to any flatbed-cutting task. Computer controlled industrial cutting and plotting machines are the latest offerings from a well established and experienced industrial engineering company that is dedicated to reduce cutting costs and boosting productivity in today's competitive industrial machine tool market. In this way, just one machine can carry out a multitude of production tasks. Authors have studied the cutting parameters for different textile materials, to reach the maximum output of the process.

  5. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  6. Transport of biologically active material in laser cutting.

    PubMed

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  7. ToF-SIMS characterization of robust window material for use in diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Fletcher, Aaron; Turner, David; Fairchild, Steven; Rice, Christopher; Pitz, Gregory

    2018-03-01

    Developments in diode pumped alkali laser (DPAL) systems have been impeded because of the catastrophic failure of laser windows. The window's failure is caused by localized laser-induced heating of window material. This heating is believed to occur due to increases in absorption on or near the surface of the window. This increase is believed to be caused by either adsorption of carbon-based soot from the collisional gas or by the diffusion of rubidium into the bulk material. The work presented here will focus on the diffusion of Rb into the bulk window materials and will strive to identify a superior material to use as windows. The results of this research indicate that aluminum oxynitride (ALON), sapphire, MgAl2O4 (spinel), and ZrO2 are resistant to alkali-induced changes in optical properties.

  8. Laser induced damage in optical materials: ninth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado.

  9. Past, present, and future of endobronchial laser photoresection

    PubMed Central

    Khemasuwan, Danai; Wang, Ko-Pen

    2015-01-01

    Laser photoresection of central airway obstruction is a useful tool for an Interventional Pulmonologist (IP). Endobronchial therapy of the malignant airway obstruction is considered as a palliative measure or a bridge therapy to the definite treatment of cancer. Several ablative therapies such as electrocautery, argon plasma coagulation (APC), cryotherapy and laser photoresection exist in the armamentarium of IP to tackle such presentations. Besides Neodymium-Yttrium, Aluminum, Garnet (Nd:YAG) laser, there are several different types of laser that have been used by the pulmonologist with different coagulative and cutting properties. This chapter focuses on the historical perspective, current status, and potentials of lasers in the management of central airway lesions. PMID:26807285

  10. A review of low density porous materials used in laser plasma experiments

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  11. Improve the material absorption of light and enhance the laser tube bending process utilizing laser softening heat treatment

    NASA Astrophysics Data System (ADS)

    Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Naseer Mahdi Hadi; Ahmad, Ahmad Kamal

    2018-02-01

    Laser forming is a flexible control process that has a wide spectrum of applications; particularly, laser tube bending. It offers the perfect solution for many industrial fields, such as aerospace, engines, heat exchangers, and air conditioners. A high power pulsed Nd-YAG laser with a maximum average power of 300 W emitting at 1064 nm and fiber-coupled is used to irradiate stainless steel 304 (SS304) tubes of 12.7 mm diameter, 0.6 mm thickness and 70 mm length. Moreover, a motorized rotation stage with a computer controller is employed to hold and rotate the tube. In this paper, an experimental investigation is carried out to improve the laser tube bending process by enhancing the absorption coefficient of the material and the mechanical formability using laser softening heat treatment. The material surface is coated with an oxidization layer; hence, the material absorption of laser light is increased and the temperature rapidly rises. The processing speed is enhanced and the output bending angle is increased to 1.9° with an increment of 70% after the laser softening heat treatment.

  12. Laser induced damage in optical materials: eleventh ASTM symposium.

    PubMed

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1980-07-15

    The eleventh Symposium on Optical Materials for High-Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30-31 October 1979. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, and the Office of Naval Research. About 150 scientists attended the symposium, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and Denmark. The symposium was divided into sessions concerning transparent optical materials and the measurement of their properties, mirrors and surfaces, thin film characteristics, thin film damage, considerations for high-power systems, and finally theory and breakdown. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos Scientific Laboratory were cochairpersons. The twelfth annual symposium is scheduled for 30 September-1 October 1980 at the National Bureau of Standards, Boulder, Colorado.

  13. Laser induced damage in optical materials: twelfth ASTM symposium.

    PubMed

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1981-09-01

    The twelfth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30 Sept.-l Oct., 1980. The symposium was held under the auspices of ASTM Committee F-l, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific research. Over 150 scientists attended the symposium, including representatives of the United Kingdom, France, Japan, and West Germany. The symposium was divided into sessions concerning materials and measurements, mirrors and surfaces, thin films, and finally fundamental mechanisms. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high power systems. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore National Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the symposium. The thirteenth annual symposium is scheduled for 17-18 Nov. 1981 at the National Bureau of Standards, Boulder, Colorado.

  14. Efficient production by laser materials processing integrated into metal cutting machines

    NASA Astrophysics Data System (ADS)

    Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut

    1994-09-01

    Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.

  15. The applicability of a material-treatment laser pulse in non-destructive evaluations.

    PubMed

    Hrovatin, R; Petkovsek, R; Diaci, J; Mozina, J

    2006-12-22

    A practical optodynamic study was performed to determine the usability of different lengths of laser pulses for the generation of ultrasonic transients in a solid material. The aim of the study was to evaluate the possibility of a dual use for a laser pulse-for laser material processing, on the one hand, and for the ultrasonic wave generation on the other-with both processes being combined on the same production line. The propagation of the laser-generated ultrasonic waves is evaluated by detecting and measuring with a PID-controlled stabilized interferometer. Thus, both systems provided the basic tools, the generation and detection of ultrasonic waves, for an ultrasonic, laser-based, non-destructive material evaluation. The ultrasonic transients generated by 'classical' nanosecond laser pulses were compared with the transients generated by industrial laser pulses with a duration of a few tenths of a microsecond. The experimental results are compared with the results of a time-of-flight analysis that also involved part of a mode-conversion analysis for both regimes in a layered material structure. The differences between the two waveforms were assessed in terms of their visibility, wavelength and resolution. The limit values were calculated and estimated for the laser-pulse parameters, when such pulses are intended for use in an ultrasonic, laser-based, non-destructive evaluation. The possibility of using an industrial marking laser for laser ultrasound generation is thus demonstrated.

  16. Optofluidic lasers and their applications in bioanalysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xudong

    2016-03-01

    The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.

  17. Material Processing Opportunites Utilizing a Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  18. Laser annealed in-situ P-doped Ge for on-chip laser source applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Srinivasan, Ashwyn; Pantouvaki, Marianna; Shimura, Yosuke; Porret, Clement; Van Deun, Rik; Loo, Roger; Van Thourhout, Dries; Van Campenhout, Joris

    2016-05-01

    Realization of a monolithically integrated on-chip laser source remains the holy-grail of Silicon Photonics. Germanium (Ge) is a promising semiconductor for lasing applications when highly doped with Phosphorous (P) and or alloyed with Sn [1, 2]. P doping makes Ge a pseudo-direct band gap material and the emitted wavelengths are compatible with fiber-optic communication applications. However, in-situ P doping with Ge2H6 precursor allows a maximum active P concentration of 6×1019 cm-3 [3]. Even with such active P levels, n++ Ge is still an indirect band gap material and could result in very high threshold current densities. In this work, we demonstrate P-doped Ge layers with active n-type doping beyond 1020 cm-3, grown using Ge2H6 and PH3 and subsequently laser annealed, targeting power-efficient on-chip laser sources. The use of Ge2H6 precursors during the growth of P-doped Ge increases the active P concentration level to a record fully activated concentration of 1.3×1020 cm-3 when laser annealed with a fluence of 1.2 J/cm2. The material stack consisted of 200 nm thick P-doped Ge grown on an annealed 1 µm Ge buffer on Si. Ge:P epitaxy was performed with PH3 and Ge2H6 at 320oC. Low temperature growth enable Ge:P epitaxy far from thermodynamic equilibrium, resulting in an enhanced incorporation of P atoms [3]. At such high active P concentration, the n++ Ge layer is expected to be a pseudo-direct band gap material. The photoluminescence (PL) intensities for layers with highest active P concentration show an enhancement of 18× when compared to undoped Ge grown on Si as shown in Fig. 1 and Fig. 2. The layers were optically pumped with a 640 nm laser and an incident intensity of 410 mW/cm2. The PL was measured with a NIR spectrometer with a Hamamatsu R5509-72 NIR photomultiplier tube detector whose detectivity drops at 1620 nm. Due to high active P concentration, we expect band gap narrowing phenomena to push the PL peak to wavelengths beyond the detection limit

  19. Laser-based fast-neutron spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pomerantz, Ishay; Kishon, Itay; Kleinschmidt, Annika; Schanz, Victor A.; Tebartz, Alexandra; Fernández, Juan Carlos; Gautier, Donald C.; Johnson, Randall Philip; Shimada, Tsutomu; Wurden, Glen Anthony; Roth, Markus

    2017-05-01

    Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.

  20. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    NASA Astrophysics Data System (ADS)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  1. [INVITED] Computational intelligence for smart laser materials processing

    NASA Astrophysics Data System (ADS)

    Casalino, Giuseppe

    2018-03-01

    Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from data and to use them for training ;intelligent machine; to make complex decisions without human intervention. As simulation is becoming more prevalent from design and planning to manufacturing and operations, laser material processing can also benefit from computer generating knowledge through soft computing. This work is a review of the state-of-the-art on the methodology and applications of CI in laser materials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser beam. After a basic description of the most common computational intelligences employed in manufacturing, four sections, namely, laser joining, machining, surface, and additive covered the most recent applications in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future challenges were identified and discussed.

  2. Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material.

    PubMed

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Krüger, Jörg; Berger, Georg

    2010-08-01

    Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 Jcm(-2). In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Chuan; Zhang, Haibin

    2017-03-01

    For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.

  4. Innovation Study for Laser Cutting of Complex Geometries with Paper Materials

    NASA Astrophysics Data System (ADS)

    Happonen, A.; Stepanov, A.; Piili, H.; Salminen, A.

    Even though technology for laser cutting of paper materials has existed for over 30 years, it seems that results of applications of this technology and possibilities of laser cutting systems are not easily available. The aim of this study was to analyze the feasibility of the complex geometry laser cutting of paper materials and to analyze the innovation challenges and potential of current laser cutting technologies offer. This research studied the potential and possible challenges in applying CO2 laser cutting technology for cutting of paper materials in current supply chains trying to fulfil the changing needs of customer in respect of shape, fast response during rapid delivery cycle. The study is focused on examining and analyzing the different possibilities of laser cutting of paper material in application area of complex low volume geometry cutting. The goal of this case was to analyze the feasibility of the laser cutting from technical, quality and implementation points of view and to discuss availability of new business opportunities. It was noticed that there are new business models still available within laser technology applications in complex geometry cutting. Application of laser technology, in business-to-consume markets, in synergy with Internet service platforms can widen the customer base and offer new value streams for technology and service companies. Because of this, existing markets and competition has to be identified, and appropriate new and innovative business model needs to be developed. And to be competitive in the markets, models like these need to include the earning logic and the stages from production to delivery as discussed in the paper.

  5. Laser-assisted manufacturing of super-insulation materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhang, Tao; Park, Byung Kyu; Lee, Woo Il; Hwang, David

    2017-02-01

    Being lightweight materials with good mechanical and thermal properties, hollow glass micro-particles (HGMPs) have been widely studied for multiple applications. In this study, it is shown that by using reduced binder fraction diluted in solvent, enables minimal contacts among the HGMPs assisted by a natural capillary trend, as confirmed by optical and electron microscope imaging. Such material architecture fabricated in a composite level proves to have enhanced thermal insulation performance through quantitative thermal conductivity measurement. Mechanical strength has also been evaluated in terms of particle-binder bonding by tensile test via in-situ microscope inspection. Effect of laser treatment was examined for further improvement of thermal and mechanical properties by selective binder removal and efficient redistribution of remaining binder components. The fabricated composite materials have potential applications to building insulation materials for their scalable manufacturing nature, improved thermal insulation performance and reasonable mechanical strength. Further studies are needed to understand mechanical and thermal properties of the resulting composites, and key fabrication mechanisms involved with laser treatment of complex multi-component and multi-phase systems.

  6. Modeling of Laser Material Interactions

    NASA Astrophysics Data System (ADS)

    Garrison, Barbara

    2009-03-01

    Irradiation of a substrate by laser light initiates the complex chemical and physical process of ablation where large amounts of material are removed. Ablation has been successfully used in techniques such as nanolithography and LASIK surgery, however a fundamental understanding of the process is necessary in order to further optimize and develop applications. To accurately describe the ablation phenomenon, a model must take into account the multitude of events which occur when a laser irradiates a target including electronic excitation, bond cleavage, desorption of small molecules, ongoing chemical reactions, propagation of stress waves, and bulk ejection of material. A coarse grained molecular dynamics (MD) protocol with an embedded Monte Carlo (MC) scheme has been developed which effectively addresses each of these events during the simulation. Using the simulation technique, thermal and chemical excitation channels are separately studied with a model polymethyl methacrylate system. The effects of the irradiation parameters and reaction pathways on the process dynamics are investigated. The mechanism of ablation for thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case where an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. The study provides insight into the influence of thermal and chemical processes in polymethyl methacrylate and facilitates greater understanding of the complex nature of polymer ablation.

  7. Material removal effect of microchannel processing by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Chen, Lei; Chen, Jianxiong; Tu, Yiliu

    2017-11-01

    Material processing using ultra-short-pulse laser is widely used in the field of micromachining, especially for the precision processing of hard and brittle materials. This paper reports a theoretical and experimental study of the ablation characteristics of a silicon wafer under micromachining using a femtosecond laser. The ablation morphology of the silicon wafer surface is surveyed by a detection test with an optical microscope. First, according to the relationship between the diameter of the ablation holes and the incident laser power, the ablation threshold of the silicon wafer is found to be 0.227 J/cm2. Second, the influence of various laser parameters on the size of the ablation microstructure is studied and the ablation morphology is analyzed. Furthermore, a mathematical model is proposed that can calculate the ablation depth per time for a given laser fluence and scanning velocity. Finally, a microchannel milling test is carried out on the micromachining center. The effectiveness and accuracy of the proposed models are verified by comparing the estimated depth to the actual measured results.

  8. Research and application of surface heat treatment for multipulse laser ablation of materials

    NASA Astrophysics Data System (ADS)

    Cai, Song; Chen, Genyu; Zhou, Cong

    2015-11-01

    This study analysed a laser ablation platform and built heat transfer equations for multipulse laser ablation of materials. The equations include three parts: laser emission after the material melt and gasification; end of laser emission after the material melts and there is the presence of a super-hot layer and solid-phase heat transfer changes during material ablation. For each of the three parts, the effects of evaporation, plasma shielding and energy accumulation under the pulse interval were considered. The equations are reasonable, and all the required parameters are only related to the laser parameters and material properties, allowing the model to have a certain versatility and practicability. The model was applied for numerical simulation of the heat transfer characteristics in the multipulse laser ablation of bronze and diamond. Next, experiments were conducted to analyse the topography of a bronze-bonded diamond grinding wheel after multipulse laser ablation. The theoretical analysis and experimental results showed that multipulse laser can merge the truing and dressing on a bronze-bonded diamond grinding wheel. This study provides theoretical guidance for optimising the process parameters in the laser ablation of a bronze-bonded diamond grinding wheel. A comparative analysis showed that the numerical solution to the model is in good agreement with the experimental data, thus verifying the correctness and feasibility of the heat transfer model.

  9. Generation of ultrasound in materials using continuous-wave lasers.

    PubMed

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  10. Development of functional materials by using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Shimotsuma, Y.; Sakakura, M.; Miura, K.

    2018-01-01

    The polarization-dependent periodic nanostructures inside various materials are successfully induced by ultrafast laser pulses. The periodic nanostructures in various materials can be empirically classified into the following three types: (1) structural deficiency, (2) expanded structure, (3) partial phase separation. Such periodic nanostructures exhibited not only optical anisotropy but also intriguing electric, thermal, and magnetic properties. The formation mechanisms of the periodic nanostructure was interpreted in terms of the interaction between incident light field and the generated electron plasma. Furthermore, the fact that the periodic nanostructures in semiconductors could be formed empirically only if it is indirect bandgap semiconductor materials indicates the stress-dependence of bandgap structure and/or the recombination of the excited electrons are also involved to the nanostructure formation. More recently we have also confirmed that the periodic nanostructures in glass are related to whether a large amount of non-bridged oxygen is present. In the presentation, we demonstrate new possibilities for functionalization of common materials ranging from an eternal 5D optical storage, a polarization imaging, to a thermoelectric conversion, based on the indicated phenomena.

  11. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  12. Direct diode lasers and their advantages for materials processing and other applications

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength

  13. Laser-shock damage of iron-based materials

    NASA Astrophysics Data System (ADS)

    Chu, Jinn P.; Banas, Grzegorz; Lawrence, Frederick V.; Rigsbee, James M.; Elsayed-Ali, Hani E.

    1993-05-01

    The effects of laser shock processing on the microstructure and mechanical properties of the manganese (1 percent C and 14 percent Mn) steels have been low carbon (0.04 wt. percent C) and Hadfield studied. Laser shock processing was performed with a 1.054 micrometers wavelength Nd-phosphate laser operating in a pulse mode (600 ps pulse length and up to 200 J energy) with power densities above 10 to the 11th power W/cm2. Shock waves were generated by volume expansion of the plasma formed when the material was laser irradiated. Maximum shock wave intensities were obtained using an energy-absorbing black paint coating without a plasma-confining overlay. Maximum modification of compressive residual stresses were achieved when laser shock processing induced deformation occurred without melting. Mechanical properties were improved through modifying the microstructure by laser shock processing. High density arrays of dislocations (greater than 10 to the 11th power/cm2) were generated in low carbon steel by high strain-rate deformation of laser shock processing, resulting in surface hardness increases of 30 to 80 percent. In austenitic Hadfield steel, laser shock processing caused extensive formation of Epsilon-hcp martensite (35 vol. percent), producing increases of 50 to 130 percent in surface hardness. The laser shock processing strengthening effect in Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to presence of the Epsilon-hcp martensite.

  14. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  15. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency.

    PubMed

    Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ.

  16. Nano material processing with lasers in combination with nearfield technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickmann, K.; Jersch, J.; Demming, F.

    1996-12-31

    Recent research work has shown, that focusing of laser radiation down to a few nanometer can be obtained by using lasers in combination with nearfield technology (known from Scanning Tunneling Microscope STM or Atomic Force Microscope AFM). Lateral external illumination of STM- or AFM-probe tips with laser radiation can cause tremendous intensity enhancement in the nearfield underneath the tip. This effect can be explained by various electrostatic as well as electrodynamic effects known from Surface Enhanced Raman Spectroscopy (SERS). This effect was utilized to concentrate laser radiation with high intensity between a tip and a substrate in the nearfield. FOLANT-techniquemore » (FOcusing of LAser radiation in the Nearfield of a Tip) enables intensity enhancement up to 10{sup 6} in a narrow localized zone underneath the tip. The interaction area with nanometer scale can be applied for material processing even down to atomic dimensions. Using STM-/ laser-combination, hillocks, pits and grooves with lateral dimensions down to 10 nm have been obtained on gold substrates. AFM-/ laser-combination enabled nanostructures down to 20 nm on dielectric materials as for example polycarbonate.« less

  17. Mobile terawatt laser propagation facility (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.

    2017-03-01

    This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.

  18. Spectroscopic and crystal-field analysis of new Yb-doped laser materials

    NASA Astrophysics Data System (ADS)

    Haumesser, Paul-Henri; Gaumé, Romain; Viana, Bruno; Antic-Fidancev, Elisabeth; Vivien, Daniel

    2001-06-01

    Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca3Y2(BO3)4 (CYB), Ca3Gd2(BO3)4 (CaGB), Sr3Y(BO3)3 (SrYBO), Ba3Lu(BO3)3 (BLuB), Y2SiO5 (YSO), Ca2Al2SiO7 (CAS) and SrY4(SiO4)3O (SYS). The 2F7/2 splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach.

  19. Industrial Materials Processing Laser Markets

    NASA Astrophysics Data System (ADS)

    Followwill, Dorman

    1989-03-01

    The way I would like to handle this morning is first, to give you an overview before I put anything up in terms of slides. An overview of the study that we produced a couple of months ago. It is entitled "Industrial Materials Processing Laser Markets", and if you want information on that particular study, then you can speak with me at the coffee break.

  20. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance.

    PubMed

    Gottfried, Jennifer L; Bukowski, Eric J

    2017-01-20

    A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10  μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

  1. Surface changes of composite and compomer materials following irradiation with an Er:YAG laser and a frequency doubled alexandrite laser

    NASA Astrophysics Data System (ADS)

    Pilgrim, Christian G.; Rechmann, Peter; Hennig, Thomas; Goldin, Dan S.

    1999-05-01

    Er:YAG laser as well as the frequency doubled Alexandrite laser have been suggested for the use in periodontal therapy and so for the elimination of calculus and the treatment of infected root cement. Intended is the laser application inside the gingival pocket. In consequence, both these lasers may be used in areas close to cervical or approximal location, or even on the fillings' surfaces. Light cured composite and compomer materials are in use for these types of fillings among others. Aim of the study presented here was to compare the effect of an Er:YAG laser (wavelength 2.94 μm, pulse duration 250 μs, free running. fluence 4.5 J/cm2 and 21.4 J/cm2) on compomers and composites with the result following irradiation with a frequency doubled Alexandrite laser (wavelength 377 nm, pulse duration 200 ns, fluence 3 Jcm-2 and 6 J/cm2). The surface of standardized compomer and composite samples were irradiated with both laser wavelengths (either frequency doubled Alexandrite or Er:YAG laser) using the same standardized application protocol. Scanning electron microscopic investigation showed that irradiation with both lasers causes surface changes in composites and compomers removing calculus with these lasers.

  2. Microstructural and mechanical characterization of laser deposited advanced materials

    NASA Astrophysics Data System (ADS)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  3. Experimental analysis of Nd-YAG laser cutting of sheet materials - A review

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Yadava, Vinod

    2018-01-01

    Cutting of sheet material is considered as an important process due to its relevance among products of everyday life such as aircrafts, ships, cars, furniture etc. Among various sheet cutting processes (ASCPs), laser beam cutting is one of the most capable ASCP to create complex geometries with stringent design requirements in difficult-to-cut sheet materials. Based on the recent research work in the area of sheet cutting, it is found that the Nd-YAG laser is used for cutting of sheet material in general and reflective sheet material in particular. This paper reviews the experimental analysis of Nd-YAG laser cutting process, carried out to study the influence of laser cutting parameters on the process performance index. The significance of experimental modeling and different optimization approaches employed by various researchers has also been discussed in this study.

  4. Cutting of optical materials by using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Nolte, Stefan; Will, Matthias; Augustin, Markus; Triebel, Peter; Zoellner, Karsten; Tuennermann, Andreas

    2001-11-01

    In the past years, ultrashort pulse lasers have been established as precise and universal tools for the microstructuring of solid materials. Since thermal and mechanical influences are minimized, the application of this technology is also suitable for the structuring of optical materials and opens new possibilities. In this paper, the influence of pulse duration, pulse energy (fluence) and polarization on the cutting quality for glass and silicon will be discussed. As a concrete application, the cutting and micromarking of dielectric coated mirrors for high power fiber lasers will be highlighted.

  5. Laser Transmission Welding of CFRTP Using Filler Material

    NASA Astrophysics Data System (ADS)

    Berger, Stefan; Schmidt, Michael

    In the automotive industry the increasing environmental awareness is reflected through consistent lightweight construction. Especially the use of carbon fiber reinforced thermoplastics (CFRTP) plays an increasingly important role. Accordingto the material substitution, the demand for adequate joining technologies is growing. Therefore, laser transmission welding with filler material provides a way to combine two opaque joining partners by using process specific advantages of the laser transmission welding process. After introducing the new processing variant and the used experimental setup, this paper investigates the process itselfand conditions for a stable process. The influence of the used process parameters on weld quality and process stability is characterized by tensile shear tests. The successfully performed joining of PA 6 CF 42 organic sheets using natural PA 6 as filler material underlines the potential of the described joining method for lightweight design and other industrial applications.

  6. Beam engineering for zero conicity cutting and drilling with ultra fast laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Letan, Amelie; Mishchik, Konstantin; Audouard, Eric; Hoenninger, Clemens; Mottay, Eric P.

    2017-03-01

    With the development of high average power, high repetition rate, industrial ultrafast lasers, it is now possible to achieve a high throughput with femtosecond laser processing, providing that the operating parameters are finely tuned to the application. Femtosecond lasers play a key role in these processes, due to their ability to high quality micro processing. They are able to drill high thickness holes (up to 1 mm) with arbitrary shapes, such as zero-conicity or even inversed taper, but can also perform zero-taper cutting. A clear understanding of all the processing steps necessary to optimize the processing speed is a main challenge for industrial developments. Indeed, the laser parameters are not independent of the beam steering devices. Pulses energy and repetition rate have to be precisely adjusted to the beam angle with the sample, and to the temporal and spatial sequences of pulses superposition. The purpose of the present work is to identify the role of these parameters for high aspect ratio drilling and cutting not only with experimental trials, but also with numerical estimations, using a simple engineering model based on the two temperature description of ultra-fast ablation. Assuming a nonlinear logarithmic response of the materials to ultrafast pulses, each material can be described by only two adjustable parameters. Simple assumptions allow to predict the effect of beam velocity and non-normal incident beams to estimate profile shapes and processing time.

  7. Bringing PW-class lasers to XFELs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    2017-06-01

    Experimental researches using high power optical lasers combined with free electron lasers (FELs) open new frontiers in high energy density (HED) sciences. Probing and pumping capabilities are dramatically improved due to the brightness of the XFEL pulses with ultrafast duration. Besides, the peak intensities of Ti:sapphire laser Chirped Pulse Amplification (CPA) systems reach petawatt (PW)-class with operating in few tens of fs and commercially available at a few Hz of repetition rate. We have been developing an experimental platform for HED sciences using high power, high intensity optical lasers at the XFEL facility, SACLA.Currently, an experimental platform with a dual 0.5 PW Ti:Sapphire laser system is under beam commissioning for experiments combined with the SACLA's x-ray beam for research objectives that require more peak power in the optical laser pulses with a few tens of fs. The optical laser system is designed to deliver two laser beams simultaneously with the maximum power of 0.5 PW in each into a target chamber located in an experimental hutch 6 (EH6) at BL2, which was recently commissioned as a SACLA's 2nd hard x-ray beamline. A focusing capability using sets of compound refractive lenses will be applied to increase the x-ray fluence on the target sample. One of the most key issues for the integrated experimental platform is development of diagnostics that meets requirements both from the high power laser (e.g. resistance to harsh environments) and from the XFEL (e.g. adaptation to the available data acquisition system). The status and future perspective of the development including automatic laser alignment systems will be reported in the presentation. We will discuss the most promising and important new physics experiments that will be enabled by the combination of PW-class lasers and the world-class FEL's x-ray beam.

  8. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    DOE PAGES

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-12-06

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less

  9. Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets.

    PubMed

    Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki

    2010-09-15

    We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.

  10. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    PubMed

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  11. Laser Induced Damage in Optical Materials: 1981. Symposium on Optical Materials for High Power Lasers (13th). Held in Boulder, Colorado on 17-18 November 1981

    DTIC Science & Technology

    1983-09-01

    pulses Ncr) of polymer materials in the multiple irradiation regime at a fixed laser intensity corresponding to Ncr = 20 for PMMA...KCl to repetitively pulsed 10.6 ~m laser irradiation . The technique of pulsed laser calorimetry [1] was used and at low intensity (~2s0 Mw/cm 2 ) a...power pulsed lasers . Under irradiation by high in­ tensity pUlsed monochromatic sources intensity dependent absorption mechanisms can be

  12. Ultrafast Bessel beams: advanced tools for laser materials processing

    NASA Astrophysics Data System (ADS)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  13. Role of carbon nano-materials in the analysis of biological materials by laser desorption/ionization-mass spectrometry.

    PubMed

    Najam-ul-Haq, M; Rainer, M; Szabó, Z; Vallant, R; Huck, C W; Bonn, G K

    2007-03-10

    At present, carbon nano-materials are being utilized in various procedures, especially in laser desorption/ionization-mass spectrometry (LDI-MS) for analyzing a range of analytes, which include peptides, proteins, metabolites, and polymers. Matrix-oriented LDI-MS techniques are very well established, with weak organic acids as energy-absorbing substances. Carbon materials, such as nano-tubes and fullerenes are being successfully applied in the small-mass range, where routine matrices have strong background signals. In addition, the role of carbon nano-materials is very well established in the fractionation and purification fields. Modified diamond powder and surfaces are utilized in binding peptides and proteins from complex biological fluids and analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Polylysine-coated diamond is used for solid-phase extraction to pre-concentrate DNA oligonucleotides. Graphite is useful for desalting, pre-concentration, and as energy-absorbing material (matrix) in desorption/ionization. Carbon nano-tubes in their different derivatized forms are used as matrix materials for the analysis of a range of analytes, such as carbohydrates, amino acids, peptides, proteins, and some environmental samples by LDI-MS. Fullerenes are modified in different ways to bind serum entities analyzed through MALDI/TOF-MS and are subsequently utilized in their identifications. In addition, the fullerenes are a promising matrix in LDI-MS, but improvements are needed.

  14. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    NASA Astrophysics Data System (ADS)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  15. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  16. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinzler, Charles C.; Zediker, Mark S.; Faircloth, Brian O.

    2016-12-06

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  17. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    NASA Astrophysics Data System (ADS)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  18. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4

  19. Indirect ignition of energetic materials with laser-driven flyer plates.

    PubMed

    Dean, Steven W; De Lucia, Frank C; Gottfried, Jennifer L

    2017-01-20

    The impact of laser-driven flyer plates on energetic materials CL-20, PETN, and TATB has been investigated. Flyer plates composed of 25 μm thick Al were impacted into the energetic materials at velocities up to 1.3 km/s. The flyer plates were accelerated by means of an Nd:YAG laser pulse. The laser pulse generates rapidly expanding plasma between the flyer plate foil and the substrate to which it is adhered. As the plasma grows, a section of the metal foil is ejected at high speed, forming the flyer plate. The velocity of the flyer plate was determined using VISAR, time of flight, and high-speed video. The response of the energetic material to impact was determined by light emission recorded by an infrared-sensitive photodiode. Following post-impact analysis of the impacted energetic material, it was hypothesized that the light emitted by the material after impact is not due to the impact of the flyer itself but rather is caused by the decomposition of energetic material ejected (via the shock of flyer plate impact) into a cloud of hot products generated during the launch of the flyer plate. This hypothesis was confirmed through schlieren imaging of a flyer plate launch, clearly showing the ejection of hot gases and particles from the region surrounding the flyer plate launch and the burning of the ejected energetic material particles.

  20. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  1. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  2. Laser-aided material identification for the waste sorting process

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Burmester, Ingo; Engel, Kai

    1994-03-01

    The LZH has carried out investigations in the field of rapid laser-supported material- identification systems for automatic material-sorting systems. The aim of this research is the fast identification of different sorts of plastics coming from recycled rubbish or electronic waste. Within a few milliseconds a spot on the sample which has to be identified is heated with a CO2 laser. The different and specific chemical and physical material properties of the examined sample cause a different temperature distribution on the surface which is measured with an IR thermographic system. This `thermal impulse response' has to be analyzed by means of a computer system. The results of previous investigations have shown that material identification of different sorts of plastics can possibly be done at a frequency of 30 Hz. Due to economic efficiency, a high velocity identification process is necessary to sort huge waste currents.

  3. Cr/sup 3 +/-doped colquiriite solid state laser material

    DOEpatents

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1988-03-31

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.

  4. Cr.sup.3+ -doped colquiriite solid state laser material

    DOEpatents

    Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.

    1989-01-01

    Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.

  5. Laser-Launched Flyer Plates and Direct Laser Shocks for Dynamic Material Property Measurements

    NASA Astrophysics Data System (ADS)

    Paisley, D. L.; Swift, D. C.; Johnson, R. P.; Kopp, R. A.; Kyrala, G. A.

    2002-07-01

    The Trident laser at Los Alamos was used to impart known and controlled shocks in various materials by launching flyer plates or by irradiating the sample directly. Materials investigated include copper, gold, NiTi, SS316, and other metals and alloys. Tensile spall strength, elastic-plastic transition, phase boundaries, and equation of state can be determined with small samples. Using thin samples (0.1 - 1.0 mm thick) as targets, high pressure gradients can be generated with relatively low pressures, resulting in high tensile strain rates (105 to 108 s-1). Free surface and interface velocities are recorded with point- and line-imaging VISARs. The flexible spatial and temporal pulse profiles of Trident, coupled with the use of laser-launched flyer plates, provides capabilities which complement experiments conducted using gas guns and tensile bars.

  6. ICALEO '91 - Laser materials processing; Proceedings of the Meeting, San Jose, CA, Nov. 3-8, 1991

    NASA Astrophysics Data System (ADS)

    Metzbower, Edward A.; Beyer, Eckhard; Matsunawa, Akira

    Consideration is given to new developments in LASERCAV technology, modeling of deep penetration laser welding, the theory of radiative transfer in the plasma of the keyhole in penetration laser welding, a synchronized laser-video camera system study of high power laser material interactions, laser process monitoring with dual wavelength optical sensors, new devices for on-line process diagnostics during laser machining, and the process development for a portable Nd:YAG laser materials processing system. Attention is also given to laser welding of alumina-reinforced 6061 aluminum alloy composite, the new trend of laser materials processing, optimization of the laser cutting process for thin section stainless steels, a new nozzle concept for cutting with high power lasers, rapid solidification effects during laser welding, laser surface modification of a low carbon steel with tungsten carbide and carbon, absorptivity of a polarized beam during laser hardening, and laser surface melting of 440 C tool steel. (No individual items are abstracted in this volume)

  7. Pyrolysis responses of kevlar/epoxy composite materials on laser irradiating

    NASA Astrophysics Data System (ADS)

    Liu, Wei-ping; Wei, Cheng-hua; Zhou, Meng-lian; Ma, Zhi-liang; Song, Ming-ying; Wu, Li-xiong

    2017-05-01

    The pyrolysis responses of kevlar/epoxy composite materials are valuable to study in a case of high temperature rising rate for its widely application. Distinguishing from the Thermal Gravimetric Analysis method, an apparatus is built to research the pyrolysis responses of kevlar/epoxy composite materials irradiated by laser in order to offer a high temperature rising rate of the sample. By deploying the apparatus, a near real-time gas pressure response can be obtained. The sample mass is weighted before laser irradiating and after an experiment finished. Then, the gas products molecular weight and the sample mass loss evolution are derived. It is found that the pressure and mass of the gas products increase with the laser power if it is less than 240W, while the molecular weight varies inversely. The variation tendency is confusing while the laser power is bigger than 240W. It needs more deeper investigations to bring it to light.

  8. Selective material ablation by the TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Tetsumi; Shiratori, Akira; Ninomiya, Yutaka; Obara, Minoru

    1995-03-01

    This paper reports two topics in the material processing using TEA CO2 lasers. We demonstrated selective ablation of hydrogenated amorphous silicon (a-Si:H) thin layer on a quartz substrate by the second harmonic (SH) radiation of TEA CO2 laser generated by AgGaSe2 nonlinear crystal. Si-H bonds contained in a-Si:H strongly absorb the 5 micrometers SH radiation and resulted in the selective ablation of the a-Si:H layer. The successful ablation processing of ethylenetetrafluoroethylene (ETFE) copolymer by the 9.6 micrometers fundamental wavelength TEA CO2 laser is also reported. Only ETFE thin film adhered to an aluminum substrate can be ablated by the TEA CO2 laser.

  9. Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Hackbarth, Andreas; Berger, Georg; Krüger, Jörg

    2012-07-01

    The surface of a titanium alloy (Ti6Al4V) implant material was covered with a bioactive calcium alkali phosphate ceramic with the aim to accelerate the healing and to form a stronger bond to living bone tissue. To fix the ceramic powder we used a femtosecond laser, which causes a thin surface melting of the metal. It is a requirement to prove that the laser irradiation would not reduce the lifetime of implants. Here we present the results of mechanical stability tests, determined by the rotating bending fatigue strength of sample rods. After describing the sample surfaces and their modifications caused by the laser treatment we give evidence for an unchanged mechanical stability. This applies not only to the ceramic fixation but also to a comparatively strong laser ablation.

  10. Momentum and velocity of the ablated material in laser machining of carbon fiber preforms

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Speker, N.; Weber, R.; Graf, T.

    2013-11-01

    The automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts demands efficient and low-cost machining technologies. In conventional cutting technologies, tool-wear and low process speeds are some of the reasons for high costs. Thus, the use of lasers is an attractive option for cutting CF-preforms. A typical effect degrading the quality in laser cutting CF-preform is a bulged cutting edge. This effect is assumed to be caused by interaction of the fibers with the ablated material, which leaves the kerf at high velocity. Hence, a method for measuring the momentum and the velocity of the vapor is presented in this article. To measure the momentum of the ablated material, the CF-preform is mounted on a precision scale while cutting it with a laser. The direction of the momentum was determined by measuring the momentum parallel and orthogonal to the CF-preform surface. A change of the direction of the momentum with different cutting-speeds is assessed at constant laser-power. Averaged velocities of the ablation products of up to 300 m/s were determined by measuring the ablated mass and the momentum.

  11. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  12. Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques.

    PubMed

    Kuehne, Alexander J C; Gather, Malte C

    2016-11-09

    Organic dyes have been used as gain medium for lasers since the 1960s, long before the advent of today's organic electronic devices. Organic gain materials are highly attractive for lasing due to their chemical tunability and large stimulated emission cross section. While the traditional dye laser has been largely replaced by solid-state lasers, a number of new and miniaturized organic lasers have emerged that hold great potential for lab-on-chip applications, biointegration, low-cost sensing and related areas, which benefit from the unique properties of organic gain materials. On the fundamental level, these include high exciton binding energy, low refractive index (compared to inorganic semiconductors), and ease of spectral and chemical tuning. On a technological level, mechanical flexibility and compatibility with simple processing techniques such as printing, roll-to-roll, self-assembly, and soft-lithography are most relevant. Here, the authors provide a comprehensive review of the developments in the field over the past decade, discussing recent advances in organic gain materials, which are today often based on solid-state organic semiconductors, as well as optical feedback structures, and device fabrication. Recent efforts toward continuous wave operation and electrical pumping of solid-state organic lasers are reviewed, and new device concepts and emerging applications are summarized.

  13. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE /E ˜20 %, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  14. Laser induced damage in optical materials: 8th ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1977-05-01

    The Eighth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was hosted by the National Bureau of Standards in Boulder, Colorado, from 13 to 15 July 1976. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Energy Research and Development Administration, and the Office of Naval Research. About 160 scientists attended the Symposium, including representatives of the United Kingdom, France, Canada, and Brazil. The Symposium was divided into five half-day sessions concerning Bulk Material Properties and Thermal Behavior, Mirrors and Surfaces, Thin Film Properties, Thin Film Damage, and Scaling Laws and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to new materials for use at 10.6 microm in mirror substrates, windo s, and coatings. New techniques in film deposition and advances in diamond-turning of optics were described. The scaling of damage thresholds with pulse duration, focal area, and wavelength were discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons of the Symposium. The Ninth Annual Symposium is scheduled for 4-6 October 1977 at the National Bureau of Standards, Boulder, Colorado.

  15. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    NASA Astrophysics Data System (ADS)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  16. Laser beam joining of material combinations for automotive applications

    NASA Astrophysics Data System (ADS)

    Schubert, Emil; Zerner, Ingo; Sepold, Gerd

    1997-08-01

    An ideal material for automotive applications would combine the following properties: high corrosion resistance, high strength, high stiffness and not at least a low material price. Today a single material is not able to meet all these requirements. Therefore, in the future different materials will be placed where they meet the requirements best. The result of this consideration is a car body with many different alloys and metals, which have to be joined to one another. BIAS is working on the development of laser based joining technologies for different material combinations, especially for thin sheets used in automotive applications. One result of the research is a joining technology for an aluminum-steel-joint. Using a Nd:YAG laser the problem of brittle intermetallic phases between these materials was overcome. Using suitable temperature-time cycles, elected by a FEM-simulation, the thickness of intermetallic phases was kept below 10 micrometers . This technology was also applied to coated steels, which were joined with different aluminum alloys. Further it is demonstrated that titanium alloys, e.g. used for racing cars, can also be joined with aluminum alloys.

  17. Efficiency of ablative loading of material upon the fast-electron transfer of absorbed laser energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, Sergei Yu; Kasperczuk, A; Pisarczyk, T

    2006-05-31

    We present the results of experiments on the short-term irradiation of a solid material by a laser beam. The data testify to a rise in efficiency of the energy transfer from the laser pulse to a shock wave due to the fast-electron energy transfer. The experiments were performed with massive aluminium targets on the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the time of shock decay and crater formation in the target (50-200 ns). The irradiation experiments were carried out using the fundamental laser harmonic (1.315 {mu}m) with an energy of 360 J. The greatermore » part of the experiments were performed for the radiation intensity exceeding 10{sup 15} W cm{sup -2}, which corresponded to the efficient generation of fast electrons under the conditions where the relatively long-wavelength iodine-laser radiation was employed. The irradiation intensity was varied by varying the laser beam radius for a specified pulse energy. (interaction of laser radiation with matter. laser plasma)« less

  18. Ablation by-products of dental materials from the Er:YAG laser and the dental handpiece

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-05-01

    Recently there has been much interest in lasers and their potential use to replace the dental drill. The research has been directed towards vital dental tissues. It must be understood that any laser to be used in dentistry which will replace the dental drill must also ablate and remove existing dental materials. Some concern exists about the ablation products when the Er:YAG laser is used to ablate dental materials. It is incumbent on the professionals using these lasers to understand the materials being produced by these lasers and protect themselves and their patients from possible toxic products. It is the intent of this paper to evaluate the products produced by the ablation of both dental amalgam and composite dental restorative materials and compare them with those produced by the traditional dental handpiece (drill).

  19. Laser nano-surgery for neuronal manipulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarker, Hori Pada; Chudal, Lalit; Mahapatra, Vasu; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Optical manipulation has enabled study of bio-chemical and bio-mechanical properties of the cells. Laser nanosurgery by ultrafast laser beam with appropriate laser parameters provides spatially-targeted manipulation of neurons in a minimal invasiveness manner with high efficiency. We utilized femto-second laser nano-surgery for both axotomy and sub-axotomy of rat cortical neurons. Degeneration and regeneration after axotomy was studied with and without external growth-factor(s) and biochemical(s). Further, axonal injury was studied as a function of pulse energy, exposure and site of injury. The ability to study the response of neurons to localized injury opens up opportunities for screening potential molecules for repair and regeneration after nerve injury. Sub-axotomy enabled transient opening of axonal membrane for optical delivery of impermeable molecules to the axoplasm. Fast resealing of the axonal membrane after sub-axotomy without significant long-term damage to axon (monitored by its growth) was observed. We will present these experimental results along with theoretical simulation of injury due to laser nano-surgery and delivery via the transient pore. Targeted delivery of proteins such as antibodies, genes encoding reporter proteins, ion-channels and voltage indicators will allow visualization, activation and detection of the neuronal structure and function.

  20. Material model validation for laser shock peening process simulation

    NASA Astrophysics Data System (ADS)

    Amarchinta, H. K.; Grandhi, R. V.; Langer, K.; Stargel, D. S.

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 106 s-1, which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic-plastic behavior of materials. Elastic perfectly plastic, Johnson-Cook and Zerilli-Armstrong models are used, and the performance of each model is compared with available experimental results.

  1. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  2. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  3. Characterizing Optical Loss in Orientation Patterned III-V Materials using Laser Calorimetry

    DTIC Science & Technology

    2014-03-27

    nm and solid state fiber lasers . A comparison of the important properties of commonly used frequency conversion materials are shown in Table 1 [9......templates at AFRL. 32 Laser Calorimetry Experiment A THOR Labs ITC 4001 Laser diode with a 1625 nm, 50 mW fiber pigtail was used as the source

  4. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    NASA Astrophysics Data System (ADS)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  5. MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance

    DTIC Science & Technology

    2017-02-01

    MOVPE Growth of LWIR AlInAs/GaInAs/InP Quantum Cascade Lasers: Impact of Growth and Material Quality on Laser Performance (Invited paper) Christine A...epitaxial layers in quantum cascade lasers (QCLs) has a primary impact on QCL operation, and establishing correlations between epitaxial growth and materials...QCLs emitting in this range. Index terms – Quantum cascade lasers, semiconductor growth, semiconductor epitaxial layers, infrared emitters. I

  6. Identification of carbohydrates by matrix-free material-enhanced laser desorption/ionisation mass spectrometry.

    PubMed

    Hashir, Muhammad Ahsan; Stecher, Guenther; Bakry, Rania; Kasemsook, Saowapak; Blassnig, Bernhard; Feuerstein, Isabel; Abel, Gudrun; Popp, Michael; Bobleter, Ortwin; Bonn, Guenther K

    2007-01-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material. Copyright (c) 2007 John Wiley & Sons, Ltd.

  7. Plasma-wall interaction in laser inertial fusion reactors: novel proposals for radiation tests of first wall materials

    NASA Astrophysics Data System (ADS)

    Alvarez Ruiz, J.; Rivera, A.; Mima, K.; Garoz, D.; Gonzalez-Arrabal, R.; Gordillo, N.; Fuchs, J.; Tanaka, K.; Fernández, I.; Briones, F.; Perlado, J.

    2012-12-01

    Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m-2 and implant more than 1018 particles m-2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

  8. Optical characteristics of novel bulk and nanoengineered laser host materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (<100 0C), several techniques for crystal growth have been developed. The hexagonal apatite structure (space group P63/m) is characteristic of several compounds, some of which have extremely interesting and useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  9. Method of defining features on materials with a femtosecond laser

    DOEpatents

    Roos, Edward Victor [Los Altos, CA; Roeske, Franklin [Livermore, CA; Lee, Ronald S [Livermore, CA; Benterou, Jerry J [Livermore, CA

    2006-05-23

    The invention relates to a pulsed laser ablation method of metals and/or dielectric films from the surface of a wafer, printed circuit board or a hybrid substrate. By utilizing a high-energy ultra-short pulses of laser light, such a method can be used to manufacture electronic circuits and/or electro-mechanical assemblies without affecting the material adjacent to the ablation zone.

  10. Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials

    DTIC Science & Technology

    2015-05-01

    Technical Report ARWSB-TR-15003 Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials Mark E. Todaro...SUBTITLE Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...thermomechanical effects that occur at the bore of large and medium caliber guns during firing. Hence, PLH has been used not only to gain insight into the erosion

  11. Dye-impregnated polymer-filled porous glass: a new composite material for solid state dye lasers and laser beam control optical elements (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Koldunov, M. F.; Manenkov, Alexander A.; Sitnikov, N. M.; Dolotov, S. M.

    1994-07-01

    Polymer-filled microporous glass (PFMG) composite materials have been recently proposed as a proper host for dyes to create solid-state dye lasers and laser beam control elements (Q-switchers, etc.) [1,2]. In this paper we report investigation of some laser-related properties of Polymethilmethacrylate (PMAA) - filled porous glass doped with Rhodamine 6G perchiorate (active lasing dye) and 1055 dye (passive bleachable dye): laser induced damage threshold, lasmg efficiency, bleaching efficiency, and microhardness have been measured. All these characteristics have been found to be rather high indicating that PFMG composite materials are perspective hosts for dye impregnation and fabrication highly effective solid-state dye lasers and other laser related elements (Q-switchers, mode-lockers, modeselectors, spatial filters).

  12. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation

  13. Further investigation of surface velocity measurements for material characterization in laser shockwave experiments

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Lacy, Jeffrey M.; Scott, Clark L.; Benefiel, Bradley C.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin

    2018-04-01

    As part of the U.S. High Performance Research Reactor program, a laser shock test system is being developed by the Idaho National Laboratory (INL) to characterize interface strength in innovative plate fuel for research reactors around the world. The INL has been working with National Research Council Canada (NRC) on this project for the last five years. One of the concerns is the difficulty of calibrating and standardizing the laser shock technique. A recent analytical study and testing support the use of the Hugoniot Elastic Limit (HEL) in materials as a robust and simple benchmark to compare stresses generated by different laser shock systems. Using a non-contact laser velocimeter based on a solid Fabry-Perot etalon, the systems at NRC and INL show that the back-surface velocity reached at the HEL is consistent, and independent of the laser power used. In this work, the laser velocimeter of the NRC system is tested against a fast rotating wheel to verify accuracy and determine best operating conditions. A round robin test between the two laser shock systems on plates of different aluminum alloys is presented that shows the consistent characterization of the aluminum alloys based on the HEL velocities as well as determines the bias between the systems. The effects of setup parameters on other characteristics of the back-surface velocity trace and corresponding stress wave are also discussed.

  14. Research progress of VO2 thin film as laser protecting material

    NASA Astrophysics Data System (ADS)

    Liu, Zhiwei; Lu, Yuan; Hou, Dianxin

    2018-03-01

    With the development of laser technology, the battlefield threat of directional laser weapons is becoming more and more serious. The blinding and destruction caused by laser weapons on the photoelectric equipment is an important part of the current photo-electronic warfare. The research on the defense technology of directional laser weapons based on the phase transition characteristics of VO2 thin films is an important subject. The researches of VO2 thin films are summarized based on review these points: the preparation methods of VO2 thin films, phase transition mechanism, phase transition temperature regulating, interaction between VO2 thin films and laser, and the application prospect of vo2 thin film as laser protecting material. This paper has some guiding significance for further research on the VO2 thin films in the field of defense directional laser weapons.

  15. Design and implementation of a system for laser assisted milling of advanced materials

    NASA Astrophysics Data System (ADS)

    Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli

    2016-09-01

    Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.

  16. Laser-assisted metal spinning for an efficient and flexible processing of challenging materials

    NASA Astrophysics Data System (ADS)

    Brummer, C.; Eck, S.; Marsoner, S.; Arntz, K.; Klocke, F.

    2016-03-01

    The demand for components made from high performance materials like titanium or nickel-based alloys as well as strain-hardening stainless steel is steadily increasing. However, conventional forming operations conducted on these materials are generally very laborious and time-consuming. This is where the limitations of metal spinning also become apparent. Using a laser to apply heat localized to the forming zone during metal spinning facilitates to enhance the formability of a material. In order to analyse the potential of the new manufacturing process, experimental investigations on laser-assisted shear forming and multi-pass metal spinning have been performed with austenitic stainless steel X5CrNi18-10, nickel-based alloy Inconel 718 and titanium grade 2. It could be demonstrated that the formability of these materials can be enhanced by laser-assistance. Besides the resulting enhancement of forming limits for metal spinning of challenging materials, the forming forces were reduced and the product quality was improved significantly.

  17. 193nm high power lasers for the wide bandgap material processing

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru

    2017-02-01

    Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.

  18. Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, Sergei Yu; Borodziuk, S; Kasperczuk, A

    2004-11-30

    The results of investigations are presented which are concerned with laser radiation absorption in a target, the plasma state of its ablated material, the energy transfer to the solid target material, the characteristics of the shock wave and craters on the target surface. The investigation involved irradiation of a planar target by a subnanosecond plasma-producing laser pulse. The experiments were carried out with massive aluminium targets using the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the shock wave attenuation and on-target crater formation times (50-200 ns). The investigations were conducted for a laser radiation energymore » of 100 J at two wavelengths of 0.438 and 1.315 {mu}m. For a given pulse energy, the irradiation intensity was varied in a broad range (10{sup 13}-10{sup 16} W cm{sup -2}) by varying the radius of the laser beam. The efficiency of laser radiation-to-shock energy transfer was determined as a function of the intensity and wavelength of laser radiation; also determined were the characteristics of the plasma plume and the shock wave propagating in the solid target, including the experimental conditions under which two-dimensional effects are highly significant. (invited paper)« less

  19. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.

    2007-12-01

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  20. Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation

    NASA Astrophysics Data System (ADS)

    Martukanitz, R. P.; Babu, S. S.

    2004-06-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.

  1. High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material.

    PubMed

    Loeffler, Felix F; Foertsch, Tobias C; Popov, Roman; Mattes, Daniela S; Schlageter, Martin; Sedlmayr, Martyna; Ridder, Barbara; Dang, Florian-Xuan; von Bojničić-Kninski, Clemens; Weber, Laura K; Fischer, Andrea; Greifenstein, Juliane; Bykovskaya, Valentina; Buliev, Ivan; Bischoff, F Ralf; Hahn, Lothar; Meier, Michael A R; Bräse, Stefan; Powell, Annie K; Balaban, Teodor Silviu; Breitling, Frank; Nesterov-Mueller, Alexander

    2016-06-14

    Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).

  2. Investigation of Chemical Processes Involving Laser-generated Nanoenergetic Materials

    DTIC Science & Technology

    2010-02-01

    nanoparticle formation, nanoenergetic materials, laser ablation, plasma chemistry , optical emission 16. SECURITY CLASSIFICATION OF: 17...alloys with known trace metal concentrations. In addition to observing the effect of trace metals on the plasma chemistry , commercially available

  3. High Power Laser Safety

    NASA Astrophysics Data System (ADS)

    Brusl, Helmut

    1986-10-01

    The Austrian legislation about laser safety is discussed. Appropriate control measures for laser use and alternate means of enclosure and baffling are presented. Present laser safety standards are explained briefly. Eye protective techniques and eyewear are considered for a variety of sources. The optical properties of enclosure materials are also discussed.

  4. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Gondal, M. A.

    2013-06-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  5. Analysis of fabric materials cut using ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  6. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOEpatents

    Susemihl, Ingo

    1990-01-01

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut.

  7. Method and apparatus for optimizing the efficiency and quality of laser material processing

    DOEpatents

    Susemihl, I.

    1990-03-13

    The efficiency of laser welding and other laser material processing is optimized according to this invention by rotating the plane of polarization of a linearly polarized laser beam in relation to a work piece of the material being processed simultaneously and in synchronization with steering the laser beam over the work piece so as to keep the plane of polarization parallel to either the plane of incidence or the direction of travel of the beam in relation to the work piece. Also, depending to some extent on the particular processing being accomplished, such as welding or fusing, the angle of incidence of the laser beam on the work piece is kept at or near the polarizing or Brewster's angle. The combination of maintaining the plane of polarization parallel to plane of incidence while also maintaining the angle of incidence at or near the polarizing or Brewster's angle results in only minimal, if any, reflection losses during laser welding. Also, coordinating rotation of the plane of polarization with the translation or steering of a work piece under a laser cutting beam maximizes efficiency and kerf geometry, regardless of the direction of cut. 7 figs.

  8. Effect analysis of material properties of picosecond laser ablation for ABS/PVC

    NASA Astrophysics Data System (ADS)

    Tsai, Y. H.; Ho, C. Y.; Chiou, Y. J.

    2017-06-01

    This paper analytically investigates the picosecond laser ablation of ABS/PVC. Laser-pulsed ablation is a wellestablished tool for polymer. However the ablation mechanism of laser processing for polymer has not been thoroughly understood yet. This study utilized a thermal transport model to analyze the relationship between the ablation rate and laser fluences. This model considered the energy balance at the decomposition interface and Arrhenius law as the ablation mechanisms. The calculated variation of the ablation rate with the logarithm of the laser fluence agrees with the measured data. It is also validated in this work that the variation of the ablation rate with the logarithm of the laser fluence obeys Beer's law for low laser fluences. The effects of material properties and processing parameters on the ablation depth per pulse are also discussed for picosecond laser processing of ABS/PVC.

  9. Modelling the influence of pore size on the response of materials to infrared lasers An application to human enamel

    NASA Astrophysics Data System (ADS)

    Vila Verde, A.; Ramos, Marta M. D.

    2005-07-01

    We present an analytical model for a ceramic material (hydroxyapatite, HA) containing nanometre-scale water pores, and use it to estimate the pressure at the pore as a function of temperature at the end of a single 0.35 μs laser pulse by Er:YAG (2.94 μm) and CO 2 (10.6 μm) lasers. Our results suggest that the pressure at the pore is directly related to pore temperature, and that very high pressures can be generated simply by the thermal expansion of liquid water. Since the temperature reached in the pores at the end of the laser pulse is a strong function of pore size for Er:YAG lasers, but is independent of pore size for CO 2 lasers, our present results provide a possible explanation for the fact that human dental enamel threshold ablation fluences vary more for Er:YAG lasers than for CO 2 lasers. This suggests that experimentalists should analyse their results accounting for factors, like age or type of tooth, that may change the pore size distribution in their samples.

  10. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Wai; Carson, Louise; Smith, Graham C.; Morelli, Alessio; Lee, Seunghwan

    2017-05-01

    Implant failure caused by bacterial infection is extremely difficult to treat and usually requires the removal of the infected components. Despite the severe consequence of bacterial infection, research into bacterial infection of orthopaedic implants is still at an early stage compared to the effort on enhancing osseointegration, wear and corrosion resistance of implant materials. In this study, the effects of laser surface treatment on enhancing the antibacterial properties of commercially pure (CP) Ti (Grade 2), Ti6Al4V (Grade 5) and CoCrMo alloy implant materials were studied and compared for the first time. Laser surface treatment was performed by a continuous wave (CW) fibre laser with a near-infrared wavelength of 1064 nm in a nitrogen-containing environment. Staphylococcus aureus, commonly implicated in infection associated with orthopaedic implants, was used to investigate the antibacterial properties of the laser-treated surfaces. The surface roughness and topography of the laser-treated materials were analysed by a 2D roughness testing and by AFM. The surface morphologies before and after 24 h of bacterial cell culture were captured by SEM, and bacterial viability was determined using live/dead staining. Surface chemistry was analysed by XPS and surface wettability was measured using the sessile drop method. The findings of this study indicated that the laser-treated CP Ti and Ti6Al4V surfaces exhibited a noticeable reduction in bacterial adhesion and possessed a bactericidal effect. Such properties were attributable to the combined effects of reduced hydrophobicity, thicker and stable oxide films and presence of laser-induced nano-features. No similar antibacterial effect was observed in the laser-treated CoCrMo.

  11. Systems and Methods of Laser Texturing of Material Surfaces and Their Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Mool C. (Inventor); Nayak, Barada K. (Inventor)

    2014-01-01

    The surface of a material is textured and by exposing the surface to pulses from an ultrafast laser. The laser treatment causes pillars to form on the treated surface. These pillars provide for greater light absorption. Texturing and crystallization can be carried out as a single step process. The crystallization of the material provides for higher electric conductivity and changes in optical and electronic properties of the material. The method may be performed in vacuum or a gaseous environment. The gaseous environment may aid in texturing and/or modifying physical and chemical properties of the surfaces. This method may be used on various material surfaces, such as semiconductors, metals and their alloys, ceramics, polymers, glasses, composites, as well as crystalline, nanocrystalline, polycrystalline, microcrystalline, and amorphous phases.

  12. Laser-induced periodic surface structures formation: investigation of the effect of nonlinear absorption of laser energy in different materials

    NASA Astrophysics Data System (ADS)

    Levy, Yoann; Bulgakova, Nadezhda M.; Mocek, Tomáš

    2017-05-01

    To get insight into laser-induced periodic surface structures (LIPSS) formation, the relaxation of a modulation in the temperature profile is investigated numerically on surfaces of two different kinds of materials (metals and dielectrics; gold and fused silica as examples) upon irradiation by ultrashort laser pulses. The temperature modulation is assumed to originate from the interference between the incoming laser pulse and the surface electromagnetic wave, which is considered as the main mechanism of LIPSS formation. For comparative studies of laser energy dissipation, a simplified 2D approach is used. It is based on the two-temperature model (TTM) and considers the mechanisms of nonlinear absorption of laser light (multiphoton ionization in fused silica; temperature-dependent thermophysical and optical properties in gold) and relaxation (electron trapping to excitonic states in fused silica). The TTM is coupled with the Drude model, considering the evolution of optical properties as a function of free-carrier density and/or temperature. The development and decay of the lattice temperature modulation, which can govern the LIPSS formation, is followed during electron-lattice thermalization time and beyond. It is shown that strong temperature gradients can form along the surfaces of both kinds of materials under study within the fluence range typical for LIPSS formation. Considerable changes in optical properties of these materials are found as a function of time, including metals, for which a constant reflectivity is usually assumed. Effects of nonlinear absorption on the surface temperature dynamics are reported.

  13. An experimental evaluation of precision laser cutting of dental hard tissues and materials.

    PubMed

    Cox, C J; Patel, B C; Pearson, G J

    1993-06-01

    This paper examines the use of excimer laser radiation in the controlled removal of tooth tissue and three plastic restorative materials. Freshly extracted human third molar teeth were filled with three restorative materials and sectioned longitudinally through the restoratives. The cut surfaces of the materials and surrounding enamel and dentine were exposed to three laser energy densities and the dimensions and topographical details of the irradiated sites assessed using optical and scanning electron microscopy. The results showed that the radiation produced lesions of uniformly reproducible size and shape.

  14. Laser Materials Processing Final Report CRADA No. TC-1526-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J.; Lehane, C. J.

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less

  15. Vanderbilt free-electron-laser project in biomedical and materials research. Annual report, 1 February 1987-31 January 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haglund, R.F.; Tolk, N.H.

    The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the usemore » of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.« less

  16. Intensity fluctuations of erbium-doped whispering gallery mode lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Féron, Patrice; Ceppe, Jean-Baptiste; Dumeige, Yannick; Mortier, Michel S.

    2017-02-01

    Micro spherical resonators have attracted significant attention in recent years due to their interesting optical properties and the range of applications for which they can be used. Most of the publications dedicated to micro spherical Laser are devoted to lasing effects in different materials where the spectral properties of the emission depends on (i) the choice of dopant (e.g. Er3+, Yb3+, Tm3+) and (ii) the host matrix (e.g. silica, fluoride, phosphate or telluride glass) in which the dopant is embedded. Yet, the dynamics of theses Lasers are still to be studied. This paper shows experimental results on the amplitude fluctuations of a Whispering Gallery Mode Laser, also known as relative intensity noise (RIN). It gives information about the dynamics inside the cavity, such as photon lifetime, effective pumping rate and noise sources. We use as active medium Er3+ doped fluoride ZBLALiP glass and also industrial IOG-1 Yb3+- Er3+ co-doped phosphate glass. Theses glasses are well adapted to the development of micro spherical Laser operating in the infrared region, in particular with emission wavelengths falling respectively in the C-band and C+L band. We have observed that the RIN can provide insurance about the emission of the Laser. Moreover, we have shown that a single-mode emission comes with the presence of multiple harmonics of the relaxation frequency, which is the signature of a Laser with high noise levels. In this particular case, the second and higher orders of intensity fluctuations cannot be neglected any longer in the small-signal analysis.

  17. Next-generation materials for future synchrotron and free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, Lahsen; Graafsma, Heinz

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  18. Next-generation materials for future synchrotron and free-electron laser sources

    DOE PAGES

    Assoufid, Lahsen; Graafsma, Heinz

    2017-06-09

    We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less

  19. Laser cutting plastic materials

    NASA Astrophysics Data System (ADS)

    Vancleave, R. A.

    1980-08-01

    A 1000 watt CO2 laser was demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics were laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass reinforced laminates, Kevlar/epoxy composites, fiberglass reinforced phenolics, nylon/epoxy laminates, ceramics, and disposal tooling made from acrylic.

  20. Development of optically pumped DBR-free semiconductor disk lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Albrecht, Alexander R.; Cederberg, Jeffrey G.; Sheik-Bahae, Mansoor

    2017-03-01

    Semiconductor disk lasers (SDLs) are attractive for applications requiring good beam quality, wavelength versatility, and high output powers. Typical SDLs utilize the active mirror geometry, where a semiconductor DBR is integrated with the active region by growth or post-growth bonding. This imposes restrictions for the SDL design, like material system choice, thermal management, and effective gain bandwidth. In DBR-free geometry, these restrictions can be alleviated. An integrated gain model predicts DBR-free geometry with twice the gain bandwidth of typical SDLs, which has been experimentally verified with active regions near 1 μm and 1.15 μm. The lift-off and bonding technique enables the integration of semiconductor active regions with arbitrary high quality substrates, allowing novel monolithic geometries. Bonding an active region onto a straight side of a commercial fused silica right angle prism, and attaching a high reflectivity mirror onto the hypotenuse side, with quasi CW pumping at 780 nm, lasing operation was achieved at 1037 nm with 0.2 mW average power at 1.6 mW average pump power. Laser dynamics show that thermal lens generation in the active region bottlenecks the laser efficiency. Investigations on total internal reflection based monolithic ring cavities are ongoing. These geometries would allow the intracavity integration of 2D materials or other passive absorbers, which could be relevant for stable mode locking. Unlike typical monolithic microchip SDLs, with the evanescent wave coupling technique, these monolithic geometries allow variable coupling efficiency.

  1. New advanced characterization tools for PW-class lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2017-05-01

    Spatio-temporal couplings (STC) of laser beams are ubiquitous in ultrafast optics. In the femtosecond range, chirped-pulse amplification (CPA), the key technology of amplified ultrashort pulses, relies on the use of massive STCs induced at different locations in laser systems (for instance by gratings or prisms), which should all eventually perfectly cancel out at the laser output. Residual STCs, for example resulting from imperfect compensation, decrease the peak intensity at focus by increasing both the focal spot size and the pulse duration. This is particularly detrimental for ultrahigh-intensity (UHI) lasers, which aim for the highest possible peak intensities. However, it is precisely with these lasers that such uncontrolled defects are most likely to occur, due to the complexity of these systems and the large diameters of the output beams. Accurately measuring STCs is thus essential in ultrafast optics. Significant progress has been made in the last decade, and several techniques are now available for the partial or complete spatiotemporal characterization of near-visible femtosecond laser beams. However, none of these has yet been applied to UHI femtosecond lasers, due to the difficulty of handling these large and powerful beams. As a result, all UHI lasers are currently characterized under the unjustified and unverified assumption of the absence of STCs, using separate measurements in space and time. This situation is now becoming a major bottleneck for the development of UHI lasers and their applications. In particular, the optimal and reliable operation of PW-class lasers now available or under construction all around the world will simply not be possible without a proper spatiotemporal metrology. In this talk, we present the first complete spatiotemporal experimental reconstruction of the field E(t,r) for a 100 TW peak-power laser, obtained using self-referenced spatially-resolved Fourier transform spectroscopy [1,2], and thus reveal the spatiotemporal

  2. Femtosecond laser writing of new type of waveguides in silver containing glasses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abou Khalil, Alain; Bérubé, Jean-Philippe; Danto, Sylvain; Desmoulin, Jean-Charles; Cardinal, Thierry; Petit, Yannick G.; Canioni, Lionel; Vallée, Réal

    2017-03-01

    Femtosecond laser writing in glasses is a growing field of research and development in photonics, since it provides a versatile, robust and efficient approach to directly address 3D material structuring. Laser-glass interaction process has been studied for many years, especially the local changes of the refractive index that have been classified by three distinct types (types I, II and III, respectively). These refractive index modifications are widely used for the creation of photonics devices such as waveguides [1], couplers, photonic crystals to fabricate integrated optical functions in glasses for photonic applications as optical circuits or integrated sensors. Femtosecond laser writing in a home-developed silver containing zinc phosphate glasses induces the creation of fluorescent silver clusters distributed around the laser-glass interaction voxel [2]. In this paper, we introduce a new type of refractive index modification in glasses. It is based on the creation of these photo-induced silver clusters allowing a local change in the refractive index Δn = 5×10-3, which is sufficient for the creation of waveguides and photonics devices. The wave guiding process in our glasses along these structures with original geometry is demonstrated for wavelengths from visible to NIR [3], giving a promising access to integrated optical circuits in these silver containing glasses. Moreover, the characterization of the waveguides is presented, including their original geometry, the refractive index change, the mode profile, the estimation of propagation losses and a comparison with simulation results. 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729-1731 (1996). 2. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, The Journal of Physical Chemistry C 114, 15584-15588 (2010). 3. S. Danto, F. Désévédavy, Y. Petit, J.-C. Desmoulin, A. Abou Khalil, C. Strutynski, M. Dussauze, F

  3. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials

    NASA Astrophysics Data System (ADS)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.

    2013-08-01

    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  4. Resource Letter L-1: Lasers.

    ERIC Educational Resources Information Center

    O'Shea, Donald C.; Peckham, Donald C.

    1981-01-01

    Following a brief introduction, an annotated listing of literature and teaching aids on lasers is presented. Categories include: Background Materials; Historical References; General References and Textbooks; Specialized References; Reviews; Articles; Films; Laser Courses; Equipment, Demonstrations, and Experiments; Laser Safety; and Lasers and…

  5. Interaction of ultrashort laser pulses with epsilon-near-zero materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boyd, Robert W.

    2017-05-01

    Abstract: The nonlinear optical response of a material is conventionally assumed to be very much smaller than its linear response. Here we report that the nonlinear contribution to the refractive index of a sample of indium-tin oxide can be much larger than the linear contribution when the optical wavelength is close to the material's bulk plasma wavelength, where the material exhibits epsilon-near-zero behavior. In particular, we demonstrate that a change in refractive index as large as 0.7 can be obtained in an ultra-thin indium-tin oxide film using an optical intensity of 140 GW/cm2. Nonlinear optical phenomena result from the light-induced modification of the optical properties of a material lead to a broad range of applications, including microscopy, all-optical data processing, and quantum information. However, nonlinear (NL) effects are typically extremely weak. The size of nonlinear effects is typically limited by the largest intensity that can be used without permanently damaging of the material. Consequently, the resulting change in refractive index is typically of the order of 0.001 or smaller. A long-standing goal of nonlinear optics (NLO) has been the development of materials that can display a light-induced change in the refractive index of the order of unity. Such materials would lead to exciting new applications of NLO. Indeed, much effort in the fields of plasmonics and metamaterials is devoted to the development of such materials. Furthermore, it has been suggested that materials with vanishing permittivity, commonly known as epsilon-nearzero (ENZ) materials, can be used to induce highly nonlinear phenomena and unusual phase-matching behavior. In this work, we describe our studies of indium-tin oxide (ITO) at its ENZ wavelength, and we demonstrate a refractive index change of 0.7. Materials possessing free charges, such as metals and doped semiconductors, exhibit a vanishing permittivity at the bulk plasmon wavelength. The zero

  6. Influence of non-collisional laser heating on the electron dynamics in dielectric materials

    NASA Astrophysics Data System (ADS)

    Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.

    2016-12-01

    The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.

  7. Temperature dependent absorption measurement of various transition metal doped laser materials

    NASA Astrophysics Data System (ADS)

    Horackova, Lucie; Šulc, Jan; Jelinkova, Helena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomás.

    2015-05-01

    In recent years, there has been a vast development of high energy class lasers of the order of 100 J to kJ level which have potential applications in the field of science and technology. Many such systems use the gain media cooled at cryogenic temperatures which will help in enhancing the spectroscopic and thermo-optical properties. Nevertheless, parasitic effects like amplified spontaneous emission enhance and affect the overall efficiency. The best way to suppress this effect is to use cladding element attached to the gain material. Based on these facts, this work was focused on the systematic investigation of temperature dependent absorption of several materials doped with transition metals, which can be used as cladding, as laser gain material, or as passive Q-switching element. The Ti:sapphire, Cr:YAG, V:YAG, and Co:MALO samples were measured in temperature range from 80 K to 330 K by step of 50 K. Using Beer-Lambert law we estimated the absorption coefficient of these materials.

  8. Femtosecond pulsed laser processing of electronic materials: Fundamentals and micro/nano-scale applications

    NASA Astrophysics Data System (ADS)

    Choi, Tae-Youl

    Ultra-short pulsed laser radiation has been shown to be effective for precision materials processing and surface micro-modification. One of advantages is the substantial reduction of the heat penetration depth, which leads to minimal lateral damage. Other advantages include non-thermal nature of ablation process, controlled ablation and ideal characteristics for precision micro-structuring. Yet, fundamental questions remain unsolved regarding the nature of melting and ablation mechanisms in femtosecond laser processing of materials. In addition to micro engineering problems, nano-structuring and nano-fabrication are emerging fields that are of particular interest in conjunction with femtosecond laser processing. A comprehensive experimental study as well as theoretical development is presented to address these issues. Ultra-short pulsed laser irradiation was used to crystallize 100 nm amorphous silicon (a-Si) films. The crystallization process was observed by time-resolved pump-and-probe reflection imaging in the range of 0.2 ps to 100 ns. The in-situ images in conjunction with post-processed SEM and AFM mapping of the crystallized structure provide evidence for non-thermal ultra-fast phase transition and subsequent surface-initiated crystallization. Mechanisms of ultra-fast laser-induced ablation on crystalline silicon and copper are investigated by time-resolved pump-and-probe microscopy in normal imaging and shadowgraph arrangements. A one-dimensional model of the energy transport is utilized to predict the carrier temperature and lattice temperature as well as the electron and vapor flux emitted from the surface. The temporal delay between the pump and probe pulses was set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. The ejection of material was observed at several picoseconds to tens of nanoseconds after the main (pump) pulse by high-resolution, ultra-fast shadowgraphs. The

  9. A novel "gain chip" concept for high-power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Mingzhong; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang; Cui, Xudong; Zhang, Xiaomin

    2017-05-01

    High-power lasers, including high-peak power lasers (HPPL) and high-average power lasers (HAPL), attract much interest for enormous variety of applications in inertial fusion energy (IFE), materials processing, defense, spectroscopy, and high-field physics research. To meet the requirements of high efficiency and quality, a "gain chip" concept is proposed to properly design the pumping, cooling and lasing fields. The gain chip mainly consists of the laser diode arrays, lens duct, rectangle wave guide and slab-shaped gain media. For the pumping field, the pump light will be compressed and homogenized by the lens duct to high irradiance with total internal reflection, and further coupled into the gain media through its two edge faces. For the cooling field, the coolant travels along the flow channel created by the adjacent slabs in the other two edge-face direction, and cool the lateral faces of the gain media. For the lasing field, the laser beam travels through the lateral faces and experiences minimum thermal wavefront distortions. Thereby, these three fields are in orthogonality offering more spatial freedom to handle them during the construction of the lasers. Transverse gradient doping profiles for HPPL and HAPL have been employed to achieve uniform gain distributions (UGD) within the gain media, respectively. This UGD will improve the management for both amplified spontaneous emission (ASE) and thermal behavior. Since each "gain chip" has its own pump source, power scaling can be easily achieved by placing identical "gain chips" along the laser beam axis without disturbing the gain and thermal distributions. To detail our concept, a 1-kJ pulsed amplifier is designed and optical-to-optical efficiency up to 40% has been obtained. We believe that with proper coolant (gas or liquid) and gain media (Yb:YAG, Nd:glass or Nd:YAG) our "gain chip" concept might provide a general configuration for high-power lasers with high efficiency and quality.

  10. Laser-assisted development of titanium alloys: the search for new biomedical materials

    NASA Astrophysics Data System (ADS)

    Almeida, Amelia; Gupta, Dheeraj; Vilar, Rui

    2011-02-01

    Ti-alloys used in prosthetic applications are mostly alloys initially developed for aeronautical applications, so their behavior was not optimized for medical use. A need remains to design new alloys for biomedical applications, where requirements such as biocompatibility, in-body durability, specific manufacturing ability, and cost effectiveness are considered. Materials for this application must present excellent biocompatibility, ductility, toughness and wear and corrosion resistance, a large laser processing window and low sensitivity to changes in the processing parameters. Laser deposition has been investigated in order to access its applicability to laser based manufactured implants. In this study, variable powder feed rate laser cladding has been used as a method for the combinatorial investigation of new alloy systems that offers a unique possibility for the rapid and exhaustive preparation of a whole range of alloys with compositions variable along a single clad track. This method was used as to produce composition gradient Ti-Mo alloys. Mo has been used since it is among the few elements biocompatible, non-toxic β-Ti phase stabilizers. Alloy tracks with compositions in the range 0-19 wt.%Mo were produced and characterized in detail as a function of composition using microscale testing procedures for screening of compositions with promising properties. Microstructural analysis showed that alloys with Mo content above 8% are fully formed of β phase grains. However, these β grains present a cellular substructure that is associated to a Ti and Mo segregation pattern that occurs during solidification. Ultramicroindentation tests carried out to evaluate the alloys' hardness and Young's modulus showed that Ti-13%Mo alloys presented the lowest hardness and Young's modulus (70 GPa) closer to that of bone than common Ti alloys, thus showing great potential for implant applications.

  11. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers.more » For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.« less

  12. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  13. Pulsed Laser Techniques to Determine Lattice and Radiative Thermal Conductivity of Deep Planetary Materials at Extreme Pressure-Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Lobanov, S.; Goncharov, A. F.; Holtgrewe, N.; Konopkova, Z.; McWilliams, R. S.

    2017-12-01

    Thermal conductivity of deep planetary materials determines the planetary heat transport mode and properties (e.g. magnetic field) and can be used to decipher the planetary thermal history. Due to the lack of direct measurements of the lattice and radiative conductivity of the relevant materials at the planetary conditions, the current geodynamical models use theoretical calculations and extrapolations of the available experimental data. Here we describe our pulsed laser techniques that enable direct measurements of the lattice and radiative lattice conductivity of the Earth's mantle and core materials and also of noble gases and simple molecules present in the interiors of giant planets (e.g. hydrogen). Flash heating laser techniques working in a pump-probe mode that include time resolved two-side radiative and thermoreflection temperature probes employ various laser and photo-detector configurations, which provide a measure of the thermal fluxes propagating through the samples confined in the diamond anvil cell cavity. A supercontinuum ultra-bright broadband laser source empower accurate measurements of the optical properties of planetary materials used to extract the radiative conductivity. Finite element calculations serve to extract the temperature and pressure dependent thermal conductivity and temperature gradients across the sample. We report thermal conductivity measurements of the Earth's minerals (postperovskite, bridgmanite, ferropericlase) and their assemblies (pyrolite) and core materials (Fe and alloys with Si and O) at the realistic deep Earth's pressure temperature conditions. We thank J.-F.Lin, M. Murakami, J. Badro for contributing to this work.

  14. High-speed micro-scale laser shock peening using a fiber laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Chenfei; Deng, Leimin; Sun, Shiding; Lu, Yongfeng

    2017-03-01

    Laser shock peening using low-energy nanosecond (ns) fiber lasers was investigated in this study to realize high-speed micro-scale laser shock peening on selected positions without causing surface damage. Due to the employment of a fiber laser with high-frequency and prominent environmental adaptability, the laser peening system is able to work with a much higher speed compared to traditional peening systems using Nd:YAG lasers and is promising for in-situ applications in harsh environments. Detailed surface morphology investigations both on sacrificial coatings and Al alloy surfaces after the fiber laser peening revealed the effects of focal position, pulse duration, peak power density, and impact times. Micro-dent arrays were also obtained with different spot-to-spot distances. Obvious micro-hardness improvement was observed inside the laser-peening-induced microdents after the fiber laser shock peening.

  15. Using Laser-Induced Thermal Voxels to Pattern Diverse Materials at the Solid-Liquid Interface.

    PubMed

    Zarzar, Lauren D; Swartzentruber, B S; Donovan, Brian F; Hopkins, Patrick E; Kaehr, Bryan

    2016-08-24

    We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. This strategy expands the chemistries and materials that can be used in combination with laser direct writing.

  16. Using laser-induced thermal voxels to pattern diverse materials at the solid–liquid interface

    DOE PAGES

    Zarzar, Lauren D.; Swartzentruber, B. S.; Donovan, Brian F.; ...

    2016-08-05

    We describe a high-resolution patterning approach that combines the spatial control inherent to laser direct writing with the versatility of benchtop chemical synthesis. By taking advantage of the steep thermal gradient that occurs while laser heating a metal edge in contact with solution, diverse materials comprising transition metals are patterned with feature size resolution nearing 1 μm. We demonstrate fabrication of reduced metallic nickel in one step and examine electrical properties and air stability through direct-write integration onto a device platform. In conclusion, this strategy expands the chemistries and materials that can be used in combination with laser direct writing.

  17. Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS

    NASA Astrophysics Data System (ADS)

    Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang

    2014-02-01

    Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.

  18. Laser shocking of materials: Toward the national ignition facility

    DOE PAGES

    Meyers, M. A.; Remington, B. A.; Maddox, B.; ...

    2010-01-16

    In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. In this paper, this technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 10 7–10 8 s -1 and resolving details of themore » kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Finally, other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.« less

  19. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death

  20. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan

    2017-08-01

    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  1. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    NASA Astrophysics Data System (ADS)

    Balu, Prabu

    cracking issue, and 3) the effect of composition and composition gradient of Ni and WC on the slurry erosion resistance over a wide range of erosion conditions. This thesis presents a set of numerical and experimental methods in order to address the challenges mentioned above. A three-dimensional (3-D) computational fluid dynamics (CFD) based powder flow model and three vision based techniques were developed in order to visualize the process of feeding the Ni-WC powder in the LBPD process. The results provide the guidelines for efficiently feeding the Ni-WC composite powder into the laser-formed molten pool. The finite element (FE) based experimentally verified 3-D thermal and thermo-mechanical models are developed in order to understand the thermal and stress evolutions in Ni-WC composite material during the LBPD process. The models address the effect of the process variables, preheating temperature, and different mass fractions of WC in Ni on thermal cycles and stress distributions within the deposited material. The slurry erosion behavior of the single and multilayered deposits of Ni-WC composite material produced by the LBPD process is investigated using an accelerated slurry erosion testing machine and a 3-D FE dynamic model. The verified model is used to identify the appropriate composition and composition gradient of Ni-WC composite material required to achieve erosion resistance over a wide range of erosion conditions.

  2. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ams, Martin; Dekker, Peter; Gross, Simon; Withford, Michael J.

    2017-01-01

    Optical waveguide Bragg gratings (WBGs) can be created in transparent materials using femtosecond laser pulses. The technique is conducted without the need for lithography, ion-beam fabrication methods, or clean room facilities. This paper reviews the field of ultrafast laser-inscribed WBGs since its inception, with a particular focus on fabrication techniques, WBG characteristics, WBG types, and WBG applications.

  3. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    NASA Astrophysics Data System (ADS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank

    2016-12-01

    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  4. Low quantum defect laser performance

    NASA Astrophysics Data System (ADS)

    Bowman, Steven R.

    2017-01-01

    Low quantum defect lasers are possible using near-resonant optical pumping. This paper examines the laser material performance as the quantum defect of the laser is reduced. A steady-state model is developed, which incorporates the relevant physical processes in these materials and predicts extraction efficiency and waste heat generation. As the laser quantum defect is reduced below a few percent, the impact of fluorescence cooling must be included in the analysis. The special case of a net zero quantum defect laser is examined in detail. This condition, referred to as the radiation balance laser (RBL), is shown to provide two orders of magnitude lower heat generation at the cost of roughly 10% loss in extraction efficiency. Numerical examples are presented with the host materials Yb:YAG and Yb:Silica. The general conditions, which yield optimal laser efficiency, are derived and explored.

  5. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  6. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPEmore » for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.« less

  7. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pereira, Mauro F.

    2016-10-01

    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  8. High peak power solid-state laser for micromachining of hard materials

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Quitter, John P.; Ray, Gregory M.; Kuntze, Thomas; Wiessner, Alexander O.; Govorkov, Sergei V.; Heglin, Mike

    2003-06-01

    Laser micromachining has become a key enabling technology in the ever-continuing trend of miniaturization in microelectronics, micro-optics, and micromechanics. New applications have become commercially viable due to the emergence of innovative laser sources, such as diode pumped solid-state lasers (DPSSL), and the progress in processing technology. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines, or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high aspect ratio holes, while yielding low heat affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in microelectronics, semiconductor and automotive industry. This kind of high quality, high aspect ratio micromachining requires high peak power and short pulse durations.

  9. The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis.

    PubMed

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Albaladejo, Alberto; Montiel-Company, José María; Bellot-Arcís, Carlos

    2018-01-01

    Lasers have recently been introduced as an alternative means of conditioning dental ceramic surfaces in order to enhance their adhesive strength to cements and other materials. The present systematic review and meta-analysis aimed to review and quantitatively analyze the available literature in order to determine which bond protocols and laser types are the most effective. A search was conducted in the Pubmed, Embase and Scopus databases for papers published up to April 2017. PRISMA guidelines for systematic review and meta-analysis were followed. Fifty-two papers were eligible for inclusion in the review. Twenty-five studies were synthesized quantitatively. Lasers were found to increase bond strength of ceramic surfaces to resin cements and composites when compared with control specimens (p-value < 0.01), whereas no significant differences were found in comparison with air-particle abraded surfaces. High variability can be observed in adhesion values between different analyses, pointing to a need to standardize study protocols and to determine the optimal parameters for each laser type.

  10. High power lasers: Sources, laser-material interactions, high excitations, and fast dynamics in laser processing and industrial applications; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 3, 1987

    NASA Technical Reports Server (NTRS)

    Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)

    1987-01-01

    The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.

  11. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    PubMed

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  12. Speckle photography during dynamic impact of an energetic material using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asay, B.W.; Laabs, G.W.; Henson, B.F.

    1997-08-01

    Laser and white light speckle photography have been used to observe surface displacement in a number of materials and over a varied range of strain rates. However, each suffers from limitations. We have developed a novel application of speckle photography in very difficult environments by using laser-induced fluorescence to generate the speckle pattern. This permits confinement of the free surface without undue degradation of the correlation upon which speckle methods are based. We have applied this method to measure the surface displacement of a reactive material during dynamic deformation at moderate strain rates. Conventional methods were tried but were unsuccessful,more » necessitating a novel approach. To the best of our knowledge, neither high-speed laser nor white light speckle photography has been performed using energetic materials. These measurements are very difficult because of the low material strength (yield strength {approximately}8{endash}80 MPa), and because significant out-of-plane motion and surface disruption occur during fracture, and early during the deformation process. We report results from experiments in which these major problems have been overcome. {copyright} {ital 1997 American Institute of Physics.}« less

  13. Ultrashort laser pulse cell manipulation using nano- and micro- materials

    NASA Astrophysics Data System (ADS)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander

    2010-08-01

    The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.

  14. Thin Film Delamination Using a High Power Pulsed Laser Materials Interaction

    NASA Astrophysics Data System (ADS)

    Sherman, Bradley

    Thin films attached to substrates are only effective while the film is adhered to the substrate. When the film begins to spall the whole system can fail, thus knowing the working strength of the film substrate system is important when designing structures. Surface acoustic waves (SAWs) are suitable for characterization of thin film mechanical properties due to the confinement of their energy within a shallow depth from a material surface. In this project, we study the feasibility of inducing dynamic interfacial failure in thin films using surface waves generated by a high power pulsed laser. Surface acoustic waves are modeled using a finite element numerical code, where the ablative interaction between the pulsed laser and the incident film is modeled using equivalent surface mechanical stresses. The numerical results are validated using experimental results from a laser ultrasonic setup. Once validated the normal film-substrate interfacial stress can be extracted from the numerical code and tends to be in the mega-Pascal range. This study uses pulsed laser generation to produce SAW in various metallic thin film/substrate systems. Each system varies in its response based on its dispersive relationship and as such requires individualized numerical modeling to match the experimental data. In addition to pulsed SAW excitation using an ablative source, a constrained thermo-mechanical load produced by the ablation of a metal film under a polymer layer is explored to generate larger dynamic mechanical stresses. These stresses are sufficient to delaminate the thin film in a manner similar to a peel test. However, since the loading is produced by a pulsed laser source, it occurs at a much faster rate, limiting the influence of slower damage modes that are present in quasi-static loading. This approach is explored to predict the interfacial fracture toughness of weak thin film interfaces.

  15. Development of Novel Composite and Random Materials for Nonlinear Optics and Lasers

    NASA Technical Reports Server (NTRS)

    Noginov, Mikhail

    2002-01-01

    A qualitative model explaining sharp spectral peaks in emission of solid-state random laser materials with broad-band gain is proposed. The suggested mechanism of coherent emission relies on synchronization of phases in an ensemble of emitting centers, via time delays provided by a network of random scatterers, and amplification of spontaneous emission that supports the spontaneously organized coherent state. Laser-like emission from powders of solid-state luminophosphors, characterized by dramatic narrowing of the emission spectrum and shortening of emission pulses above the threshold, was first observed by Markushev et al. and further studied by a number of research groups. In particular, it has been shown that when the pumping energy significantly exceeds the threshold, one or several narrow emission lines can be observed in broad-band gain media with scatterers, such as films of ZnO nanoparticles, films of pi-conjugated polymers or infiltrated opals. The experimental features, commonly observed in various solid-state random laser materials characterized by different particle sizes, different values of the photon mean free path l*, different indexes of refraction, etc.. can be described as follows. (Liquid dye random lasers are not discussed here.)

  16. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  17. Spatial and temporal laser pulse design for material processing on ultrafast scales

    NASA Astrophysics Data System (ADS)

    Stoian, R.; Colombier, J. P.; Mauclair, C.; Cheng, G.; Bhuyan, M. K.; Velpula, P. K.; Srisungsitthisunti, P.

    2014-01-01

    The spatio-temporal design of ultrafast laser excitation can have a determinant influence on the physical and engineering aspects of laser-matter interactions, with the potential of upgrading laser processing effects. Energy relaxation channels can be synergetically stimulated as the energy delivery rate is synchronized with the material response on ps timescales. Experimental and theoretical loops based on the temporal design of laser irradiation and rapid monitoring of irradiation effects are, therefore, able to predict and determine ideal optimal laser pulse forms for specific ablation objectives. We illustrate this with examples on manipulating the thermodynamic relaxation pathways impacting the ablation products and nanostructuring of bulk and surfaces using longer pulse envelopes. Some of the potential control factors will be pointed out. At the same time the spatial character can dramatically influence the development of laser interaction. We discuss spatial beam engineering examples such as parallel and non-diffractive approaches designed for high-throughput, high-accuracy processing events.

  18. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    EPA Science Inventory

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  19. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    NASA Astrophysics Data System (ADS)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  20. Novel laser induced photoacoustic spectroscopy for instantaneous trace detection of explosive materials.

    PubMed

    El-Sharkawy, Yasser H; Elbasuney, Sherif

    2017-08-01

    Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preliminary design of laser-induced breakdown spectroscopy for proto-Material Plasma Exposure eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, G., E-mail: shawgc@ornl.gov; University of Tennessee, Knoxville, Tennessee 37996; Martin, M. Z.

    2014-11-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collectionmore » probe, and the expected results.« less

  2. Remote Sensing to Estimate Saturation Differences of Chosen Building Materials Using Terrestrial Laser Scanner

    NASA Astrophysics Data System (ADS)

    Suchocki, Czesław; Katzer, Jacek; Panuś, Arkadiusz

    2017-06-01

    Terrestrial Laser Scanner (TLS) method which is commonly used for geodetic applications has a great potential to be successfully harnessed for multiple civil engineering applications. One of the most promising uses of TLS in construction industry is remote sensing of saturation of building materials. A research programme was prepared in order to prove that harnessing TLS for such an application is viable. Results presented in the current paper are a part of a much larger research programme focused on harnessing TLS for remote sensing of saturation of building materials. The paper describes results of the tests conducted with an impulse scanner Leica C-10. Tests took place both indoors (in a stable lab conditions) and outdoors (in a real environment). There were scanned specimens of the most popular building materials in Europe. Tested specimens were dried and saturated (including capillary rising moisture). One of the tests was performed over a period of 95 hours. Basically, a concrete specimen was scanned during its setting and hardening. It was proven that absorption of a laser signal is influenced by setting and hardening of concrete. Outdoor tests were based on scanning real buildings with partially saturated facades. The saturation assessment was based on differences of values of intensity. The concept proved to be feasible and technically realistic.

  3. Pulsed laser vaporization synthesis of boron loaded few layered graphene (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tennyson, Wesley D.; Tian, Mengkun; More, Karren L.; Geohegan, David B.; Puretzky, Alexander A.; Papandrew, Alexander B.; Rouleau, Christopher M.; Yoon, Mina

    2017-02-01

    The bulk production of loose graphene flakes and its doped variants are important for energy applications including batteries, fuel cells, and supercapacitors as well as optoelectronic and thermal applications. While laser-based methods have been reported for large-scale synthesis of single-wall carbon nanohorns (SWNHs), similar large-scale production of graphene has not been reported. Here we explored the synthesis of doped few layered graphene by pulsed laser vaporization (PLV) with the goal of producing an oxidation resistant electrode support for solid acid fuel cells. PLV of graphite with various amounts of boron was carried out in mixtures in either Ar or Ar/H2 at 0.1 MPa at elevated temperatures under conditions typically used for synthesis of SWNHs. Both the addition of hydrogen to the background argon, or the addition of boron to the carbon target, was found to shift the formation of carbon nanohorns to two-dimensional flakes of a new form of few-layer graphene material, with sizes up to microns in dimension as confirmed by XRD and TEM. However, the materials made with boron exhibited superior resistance to carbon corrosion in the solid acid fuel cell and thermal oxidation resistance in air compared to similar product made without boron. Mechanisms for the synthesis and oxidation resistance of these materials will be discussed based upon detailed characterization and modeling. •Synthesis science was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Material processing and characterization science supported by ARPA-E under Cooperative Agreement Number DE-AR0000499 and as a user project at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

  4. Laser supported detonation wave source of atomic oxygen for aerospace material testing

    NASA Technical Reports Server (NTRS)

    Krech, Robert H.; Caledonia, George E.

    1990-01-01

    A pulsed high-flux source of nearly monoenergetic atomic oxygen was developed to perform accelerated erosion testing of spacecraft materials in a simulated low-earth orbit (LEO) environment. Molecular oxygen is introduced into an evacuated conical expansion nozzle at several atmospheres pressure through a pulsed molecular beam valve. A laser-induced breakdown is generated in the nozzle throat by a pulsed CO2 TEA laser. The resulting plasma is heated by the ensuing laser-supported detonation wave, and then it rapidly expands and cools. An atomic oxygen beam is generated with fluxes above 10 to the 18th atoms per pulse at 8 + or - 1.6 km/s with an ion content below 1 percent for LEO testing. Materials testing yielded the same surface oxygen enrichment in polyethylene samples as observed on the STS mission, and scanning electron micrographs of the irradiated polymer surfaces showed an erosion morphology similar to that obtained on low earth orbit.

  5. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  6. Multidisciplinary approaches to radiation-balanced lasers (MARBLE): a MURI program by AFOSR (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sheik-Bahae, Mansoor

    2017-02-01

    An overview of the diverse research activities under the newly funded MURI project by AFOSR will be presented. The main goal is to advance the science of radiation-balanced lasers, also known as athermal lasers, in order to mitigate the thermal degradation of the high-power laser beams. The MARBLE project involves researchers from four universities and spans research activities in rare-earth doped crystals and fibers to semiconductor disc lasers.

  7. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  8. A history of semi-active laser dome and window materials

    NASA Astrophysics Data System (ADS)

    Sullivan, Roger M.

    2014-05-01

    Semi-Active Laser (SAL) guidance systems were developed starting in the mid-1960's and today form an important class of precision guided weapons. The laser wavelengths generally fall in the short wave infrared region of the spectrum. Relative to passive, image based, infrared seekers the optical demands placed on the domes or windows of SAL seekers is very modest, allowing the use of low cost, easily manufactured materials, such as polycarbonate. This paper will examine the transition of SAL window and dome science and technology from the laboratory to battlefield, with special emphasis on the story of polycarbonate domes.

  9. Safe laser application requires more than laser safety

    NASA Astrophysics Data System (ADS)

    Frevel, A.; Steffensen, B.; Vassie, L.

    1995-02-01

    An overview is presented concerning aspects of laser safety in European industrial laser use. Surveys indicate that there is a large variation in the safety strategies amongst industrial laser users. Some key problem areas are highlighted. Emission of hazardous substances is a major problem for users of laser material processing systems where the majority of the particulate is of a sub-micrometre size, presenting a respiratory hazard. Studies show that in many cases emissions are not frequently monitored in factories and uncertainty exists over the hazards. Operators of laser machines do not receive adequate job training or safety training. The problem is compounded by a plethora of regulations and standards which are difficult to interpret and implement, and inspectors who are not conversant with the technology or the issues. A case is demonstrated for a more integrated approach to laser safety, taking into account the development of laser applications, organizational and personnel development, in addition to environmental and occupational health and safety aspects. It is necessary to achieve a harmonization between these elements in any organization involved in laser technology. This might be achieved through establishing technology transfer centres in laser technology.

  10. Residual heat generated during laser processing of CFRP with picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Freitag, Christian; Pauly, Leon; Förster, Daniel J.; Wiedenmann, Margit; Weber, Rudolf; Kononenko, Taras V.; Konov, Vitaly I.; Graf, Thomas

    2018-05-01

    One of the major reasons for the formation of a heat-affected zone during laser processing of carbon fiber-reinforced plastics (CFRP) with repetitive picosecond (ps) laser pulses is heat accumulation. A fraction of every laser pulse is left as what we termed residual heat in the material also after the completed ablation process and leads to a gradual temperature increase in the processed workpiece. If the time between two consecutive pulses is too short to allow for a sufficient cooling of the material in the interaction zone, the resulting temperature can finally exceed a critical temperature and lead to the formation of a heat-affected zone. This accumulation effect depends on the amount of energy per laser pulse that is left in the material as residual heat. Which fraction of the incident pulse energy is left as residual heat in the workpiece depends on the laser and process parameters, the material properties, and the geometry of the interaction zone, but the influence of the individual quantities at the present state of knowledge is not known precisely due to the lack of comprehensive theoretical models. With the present study, we, therefore, experimentally determined the amount of residual heat by means of calorimetry. We investigated the dependence of the residual heat on the fluence, the pulse overlap, and the depth of laser-generated grooves in CRFP. As expected, the residual heat was found to increase with increasing groove depth. This increase occurs due to an indirect heating of the kerf walls by the ablation plasma and the change in the absorbed laser fluence caused by the altered geometry of the generated structures.

  11. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutopoulos, Christos; Zergioti, Ioanna; Touloupakis, Eleftherios

    This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.

  12. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  13. Laser material micro-working (LMμW): some new surface processes

    NASA Astrophysics Data System (ADS)

    Daurelio, G.; D'Alonzo, M.

    2007-05-01

    On the last recent years many new Laser Surface Processes have been studied and tested in the field of the L.M. μW. - Laser Material Micro Working. Still today many of these "young" processes are to study and more and more searches are dedicated to they. These are the Marking, Texturing, Fine Texturing, Filling, Polishing, Micro Shot-Penning, Silking and Colouring. This experimental work reports the results obtained in the field of the Laser Surface Fine Texturing on AISI 304 and 430 Stainless Steels by using a Marking System, that is a Nd:YAG Laser, VECTORMARK type by TRUMPH ( D ). So some new laser surface finishes, called by Authors, - Effetto tessuto, con trama e ordito (Woven effect, with weft and warp) - Effetto pelle scamosciata ( Effect shammy leather ) - Effetto pelle uncinata ( Effect hooked skin ) - Effetto pelle unghiata ( Effect skin looking like scratch ) - Effetto pelle damascata ( Effect damask skin ) - Effetto speculare , ottonato ( Specular effect, looking like brass ) Effetto speculare, bronzato ( specular effect looking like bronze ) - Effetto speculare, argenteo ( specular, looking like silver effect ) - Effetto speculare, ramato ( Specular effect, looking like copper ), Effetto Speculare, dorato ( Specular effect, looking like gold ) - Effetto speculare , dorato, a raggiera ( Specular effect, looking like gold, to aureole) , were carried out. The work is still in progress.

  14. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  15. Optimization of operator and physical parameters for laser welding of dental materials.

    PubMed

    Bertrand, C; le Petitcorps, Y; Albingre, L; Dupuis, V

    2004-04-10

    Interactions between lasers and materials are very complex phenomena. The success of laser welding procedures in dental metals depends on the operator's control of many parameters. The aims of this study were to evaluate factors relating to the operator's dexterity and the choice of the welding parameters (power, pulse duration and therefore energy), which are recognized determinants of weld quality. In vitro laboratory study. FeNiCr dental drawn wires were chosen for these experiments because their properties are well known. Different diameters of wires were laser welded, then tested in tension and compared to the control material as extruded, in order to evaluate the quality of the welding. Scanning electron microscopy of the fractured zone and micrograph observations perpendicular and parallel to the wire axis were also conducted in order to analyse the depth penetration and the quality of the microstructure. Additionally, the micro-hardness (Vickers type) was measured both in the welded and the heat-affected zones and then compared to the non-welded alloy. Adequate combination of energy and pulse duration with the power set in the range between 0.8 to 1 kW appears to improve penetration depth of the laser beam and success of the welding procedure. Operator skill is also an important variable. The variation in laser weld quality in dental FeNiCr wires attributable to operator skill can be minimized by optimization of the physical welding parameters.

  16. Numerical modeling of pulsed laser-material interaction and of laser plume dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Qiang; Shi, Yina

    2015-03-10

    We have developed two-dimensional Arbitrary Lagrangian Eulerian (ALE) code which is used to study the physical processes, the plasma absorption, the crater profile, and the temperature distribution on metallic target and below the surface. The ALE method overcomes problems with Lagrangian moving mesh distortion by mesh smoothing and conservative quantities remapping from Lagrangian mesh to smoothed one. A new second order accurate diffusion solver has been implemented for the thermal conduction and radiation transport on distorted mesh. The results of numerical simulation of pulsed laser ablation are presented. The influences of different processes, such as time evolution of the surfacemore » temperature, interspecies interactions (elastic collisions, recombination-dissociation reaction), interaction with an ambient gas are examined. The study presents particular interest for the analysis of experimental results obtained during pulsed laser ablation.« less

  17. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    DTIC Science & Technology

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  18. Laser printed plasmonic color metasurfaces (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kristensen, Anders; Zhu, Xiaolong; Højlund-Nielsen, Emil; Vannahme, Christoph; Mortensen, N. Asger

    2016-09-01

    This paper describes color printing on nanoimprinted plasmonic metasurfaces by laser post-writing, for flexible decoration of high volume manufactured plastic products. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures. Different surface morphologies that support different plasmonic resonances, and thereby different color appearances, are created by control of the laser pulse energy density. All primary colors can be printed, with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power consumption down to 0.3 nJ per pixel.

  19. The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis

    PubMed Central

    García-Sanz, Verónica; Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Albaladejo, Alberto; Montiel-Company, José María; Bellot-Arcís, Carlos

    2018-01-01

    Lasers have recently been introduced as an alternative means of conditioning dental ceramic surfaces in order to enhance their adhesive strength to cements and other materials. The present systematic review and meta-analysis aimed to review and quantitatively analyze the available literature in order to determine which bond protocols and laser types are the most effective. A search was conducted in the Pubmed, Embase and Scopus databases for papers published up to April 2017. PRISMA guidelines for systematic review and meta-analysis were followed. Fifty-two papers were eligible for inclusion in the review. Twenty-five studies were synthesized quantitatively. Lasers were found to increase bond strength of ceramic surfaces to resin cements and composites when compared with control specimens (p-value < 0.01), whereas no significant differences were found in comparison with air-particle abraded surfaces. High variability can be observed in adhesion values between different analyses, pointing to a need to standardize study protocols and to determine the optimal parameters for each laser type. PMID:29293633

  20. Application of Laser Plasma Sources of Soft X-rays and Extreme Ultraviolet (EUV) in Imaging, Processing Materials and Photoionization Studies

    NASA Astrophysics Data System (ADS)

    Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.

    In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.

  1. Optical Studies of Nd-doped benzil, a potential luminescent and laser material

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Curley, M.; Noginova, N.; Wang, W. S.; Aggarwal, M. D.

    1998-08-01

    Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 s. The experimental Nd lifetime (under Ar laser excitation) is equal to 19 s. The broad emission band centered at approximately 700 nm ( decay 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm 1 have been observed at excitation of benzil with 532-nm Q -switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.

  2. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing

    NASA Astrophysics Data System (ADS)

    Liang, D.; Almeida, J.

    2014-08-01

    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  3. A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes

    NASA Astrophysics Data System (ADS)

    Christen, Hans M.; Ohkubo, Isao; Rouleau, Christopher M.; Jellison, Gerald E., Jr.; Puretzky, Alex A.; Geohegan, David B.; Lowndes, Douglas H.

    2005-01-01

    Parallel (multi-sample) approaches, such as discrete combinatorial synthesis or continuous compositional-spread (CCS), can significantly increase the rate of materials discovery and process optimization. Here we review our generalized CCS method, based on pulsed-laser deposition, in which the synchronization between laser firing and substrate translation (behind a fixed slit aperture) yields the desired variations of composition and thickness. In situ alloying makes this approach applicable to the non-equilibrium synthesis of metastable phases. Deposition on a heater plate with a controlled spatial temperature variation can additionally be used for growth-temperature-dependence studies. Composition and temperature variations are controlled on length scales large enough to yield sample sizes sufficient for conventional characterization techniques (such as temperature-dependent measurements of resistivity or magnetic properties). This technique has been applied to various experimental studies, and we present here the results for the growth of electro-optic materials (SrxBa1-xNb2O6) and magnetic perovskites (Sr1-xCaxRuO3), and discuss the application to the understanding and optimization of catalysts used in the synthesis of dense forests of carbon nanotubes.

  4. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  5. Role of target material in proton acceleration from thin foils irradiated by ultrashort laser pulses.

    PubMed

    Tayyab, M; Bagchi, S; Ramakrishna, B; Mandal, T; Upadhyay, A; Ramis, R; Chakera, J A; Naik, P A; Gupta, P D

    2014-08-01

    We report on the proton acceleration studies from thin metallic foils of varying atomic number (Z) and thicknesses, investigated using a 45 fs, 10 TW Ti:sapphire laser system. An optimum foil thickness was observed for efficient proton acceleration for our laser conditions, dictated by the laser ASE prepulse and hot electron propagation behavior inside the material. The hydrodynamic simulations for ASE prepulse support the experimental observation. The observed maximum proton energy at different thicknesses for a given element is in good agreement with the reported scaling laws. The results with foils of different atomic number Z suggest that a judicious choice of the foil material can enhance the proton acceleration efficiency, resulting into higher proton energy.

  6. Does laser-driven heat front propagation depend on material microstructure?

    NASA Astrophysics Data System (ADS)

    Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.

    2016-10-01

    We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).

  7. Restorative retinal laser therapy: Present state and future directions.

    PubMed

    Chhablani, Jay; Roh, Young Jung; Jobling, Andrew I; Fletcher, Erica L; Lek, Jia Jia; Bansal, Pooja; Guymer, Robyn; Luttrull, Jeffrey K

    Because of complications and side effects, conventional laser therapy has taken a back seat to drugs in the treatment of macular diseases. Despite this, research on new laser modalities remains active. In particular, various approaches are being pursued to preserve and improve retinal structure and function. These include micropulsing, various exposure titration algorithms, and real-time temperature feedback control of short-pulse continuous wave lasers, and ultra-short-pulse nanosecond lasers. Some of these approaches are at the preclinical stage of development, whereas others are available for clinical use. Cell biology is providing important insights into the mechanisms of action of retinal laser treatment. We outline the technological bases of current laser platforms, their basic science, therapeutic concepts, clinical experience, and future directions for retinal laser treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Color matters--material ejection and ion yields in UV-MALDI mass spectrometry as a function of laser wavelength and laser fluence.

    PubMed

    Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-10-01

    The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.

  9. Cr.sup.4+-doped mixed alloy laser materials and lasers and methods using the materials

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A laser medium includes a single crystal of Cr.sup.4+:Mg.sub.2-xM.sub.xSi.sub.1-yA.sub.yO.sub.4, where, where M is a bivalent ion having an ionic radius larger than Mg.sup.2+, and A is a tetravalent ion having an ionic radius larger than Si.sup.4+. In addition, either a) 0.ltoreq.x<2 and 0laser medium can be used in a laser device, such as a tunable near infrared (NIR) laser.

  10. Laser Ablation for Cancer: Past, Present and Future

    PubMed Central

    Schena, Emiliano; Saccomandi, Paola; Fong, Yuman

    2017-01-01

    Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment. PMID:28613248

  11. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  12. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Wei; Rovore, Thomas; Weerawarne, Darshana

    2015-06-02

    While conformal and wearable devices have become one of the most desired formats for printable electronics, it is challenging to establish a scalable process that produces stable conductive patterns but also uses substrates compatible with widely available wearable materials. Here, we describe findings of an investigation of a nanoalloy ink printed and pulsed laser sintered conductive patterns as flexible functional devices with enhanced stability and materials compatibility. While nanoparticle inks are desired for printable electronics, almost all existing nanoparticle inks are based on single-metal component, which, as an electronic element, is limited by its inherent stabilities of the metal suchmore » as propensity of metal oxidation and mobility of metal ions, especially in sintering processes. The work here has demonstrated the first example in exploiting plasmonic coupling of nanoalloys and pulsed-laser energy with controllable thermal penetration. The experimental and theoretical results have revealed clear correlation between the pulsed laser parameters and the nanoalloy structural characteristics. The superior performance of the resulting flexible sensor device, upon imparting nanostructured sensing materials, for detecting volatile organic compounds has significant implications to developing stable and wearable sensors for monitoring environmental pollutants and breath biomarkers. This simple “nanoalloy printing 'laser sintering' nanostructure printing” process is entirely general to many different sensor devices and nanostructured sensing materials, enabling the ability to easily construct sophisticated sensor array.« less

  13. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.

    PubMed

    Zhao, Wei; Rovere, Thomas; Weerawarne, Darshana; Osterhoudt, Gavin; Kang, Ning; Joseph, Pharrah; Luo, Jin; Shim, Bonggu; Poliks, Mark; Zhong, Chuan-Jian

    2015-06-23

    While conformal and wearable devices have become one of the most desired formats for printable electronics, it is challenging to establish a scalable process that produces stable conductive patterns but also uses substrates compatible with widely available wearable materials. Here, we describe findings of an investigation of a nanoalloy ink printed and pulsed-laser sintered conductive patterns as flexible functional devices with enhanced stability and materials compatibility. While nanoparticle inks are desired for printable electronics, almost all existing nanoparticle inks are based on single-metal component, which, as an electronic element, is limited by its inherent stabilities of the metal such as propensity of metal oxidation and mobility of metal ions, especially in sintering processes. The work here has demonstrated the first example in exploiting plasmonic coupling of nanoalloys and pulsed-laser energy with controllable thermal penetration. The experimental and theoretical results have revealed clear correlation between the pulsed laser parameters and the nanoalloy structural characteristics. The superior performance of the resulting flexible sensor device, upon imparting nanostructured sensing materials, for detecting volatile organic compounds has significant implications to developing stable and wearable sensors for monitoring environmental pollutants and breath biomarkers. This simple "nanoalloy printing-laser sintering-nanostructure printing" process is entirely general to many different sensor devices and nanostructured sensing materials, enabling the ability to easily construct sophisticated sensor array.

  14. 2000W high beam quality diode laser for direct materials processing

    NASA Astrophysics Data System (ADS)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong

    2011-11-01

    This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.

  15. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa

    advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance

  16. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    NASA Astrophysics Data System (ADS)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  17. Optical Studies of Nd-doped benzil, a potential luminescent and laser material.

    PubMed

    Noginov, M A; Curley, M; Noginova, N; Wang, W S; Aggarwal, M D

    1998-08-20

    Neodymium-doped benzil crystals have been synthesized and characterized for their absorption, emission, and kinetics properties. From Judd-Ofelt analysis, the radiative decay time of Nd emission (peaking at 1055 nm) is estimated to be equal to 441 mus. The experimental Nd lifetime (under Ar+ laser excitation) is equal to 19 mus. The broad emission band centered at approximately 700 nm (tau(decay) approximately 15 ns) and the Raman scattering with characteristic frequency shift of 1600 cm(-1) have been observed at excitation of benzil with 532-nm Q-switched laser pulses. We show that rare-earth-doped benzil can be considered as a potential candidate for luminescent and solid-state laser material.

  18. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands

    NASA Astrophysics Data System (ADS)

    Trautner, Stefan; Jasik, Juraj; Parigger, Christian G.; Pedarnig, Johannes D.; Spendelhofer, Wolfgang; Lackner, Johannes; Veis, Pavel; Heitz, Johannes

    2017-03-01

    Laser-induced breakdown spectroscopy (LIBS) for composition analysis of polymer materials results in optical spectra containing atomic and ionic emission lines as well as molecular emission bands. In the present work, the molecular bands are analyzed to obtain spectroscopic information about the plasma state in an effort to quantify the content of different elements in the polymers. Polyethylene (PE) and a rubber material from tire production are investigated employing 157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in air. The optical detection reaches from ultraviolet (UV) over the visible (VIS) to the near infrared (NIR) spectral range. In the UV/VIS range, intense molecular emissions, C2 Swan and CN violet bands, are measured with an Echelle spectrometer equipped with an intensified CCD camera. The measured molecular emission spectra can be fitted by vibrational-rotational transitions by open access programs and data sets with good agreement between measured and fitted spectra. The fits allow determining vibrational-rotational temperatures. A comparison to electronic temperatures Te derived earlier from atomic carbon vacuum-UV (VUV) emission lines show differences, which can be related to different locations of the atomic and molecular species in the expanding plasma plume. In the NIR spectral region, we also observe the CN red bands with a conventional CDD Czerny Turner spectrometer. The emission of the three strong atomic sulfur lines between 920 and 925 nm is overlapped by these bands. Fitting of the CN red bands allows a separation of both spectral contributions. This makes a quantitative evaluation of sulfur contents in the start material in the order of 1 wt% feasible.

  19. Vitamin C for stabilising biological lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kar, Ajoy K.; Mackenzie, Mark D.; Cialowicz, Katarzyna I.; Saleeb, Rebecca S.; Duncan, Rory R.

    2016-04-01

    We report on efforts to improve the lifetime of biological lasers through the use of ascorbic acid (also commonly known as vitamin C). Fluorescent proteins and dyes, used in biological lasers, suffer from photobleaching due to the build-up of reactive oxygen species (ROS) which causes damage leading to a decrease in emission over time. This is an issue both for laser lifetime and cell health. It has previously been shown that ascorbic acid can be effective in reducing ROS levels in a variety of applications. For our experiments human embryonic kidney cells (HEK293), containing the fluorescent dye Calcein AM, were placed between two dielectric plane mirrors to form a laser cavity. The cells were pumped using the output of a Ti:Sapphire femtosecond OPO system, frequency doubled twice in BBO crystals, giving an output of 474 nm. Initial results have shown an increase in laser lifetime when ascorbic acid is added to cells indicating a reduction in the build-up of ROS.

  20. Nano-material size dependent laser-plasma thresholds

    NASA Astrophysics Data System (ADS)

    EL Sherbini, Ashraf M.; Parigger, Christian G.

    2016-10-01

    The reduction of laser fluence for initiation of plasma was measured for zinc monoxide nanoparticles of diameters in the range of 100 to 20 nm. In a previous work by EL Sherbini and Parigger [Wavelength Dependency and Threshold Measurements for Nanoparticle-enhanced Laser-induced Breakdown Spectroscopy, Spectrochim. Acta Part B 116 (2016) 8-15], the hypothesis of threshold dependence on particle size leads to the interpretation of the experiments for varying excitation wavelengths with fixed, 30 nm nanomaterial. The experimental results presented in this work were obtained with 1064 nm Nd:YAG radiation and confirm and validate the suspected reduction due to quenching of the thermal conduction length to the respective sizes of the nanoparticles.

  1. Nd:YAG laser associated to different materials on seal of dentinal tubuli for dowel and post preparation

    NASA Astrophysics Data System (ADS)

    Aun, Carlos E.; de Campos Ferraz, Jussara; Silva Kfouri, Luciana

    1998-04-01

    Previous researches have discussed the importance of sealing the internal surface of the root canal after preparing it for posts or dowels, avoiding tubuli contamination by the oral environment. The purpose of this study was to investigate the effects of Neodymium-Yttrium-Aluminum-Garnet laser irradiation, associated or not with another materials, on the root inner walls after post space preparation. Forty single rooted endodontically treated teeth had theirs filings partially removed for prosthetics restoration, divided into 8 groups which received a coat of the following materials: group A: Copalite vanish; group B: Copalite vanish and laser; group C: Scothbond Multi-Purpose; group D: Scothbond Multi-Purpose and laser; group E: methylcianoacrilate; group F: methylcianocrilate and laser; group G: laser only; group H: control. The roots were placed in methylene blue dye and transversally cutted, then submitted to the analysis in the profile projector. So far we could observe that the Nd:Yag laser was able to enhance the sealing properties of the Scothbond Multi-Purpose.

  2. Influence of gel/LED-laser application on cervical microleakage of two barrier materials used for endodontically treated teeth whitening

    NASA Astrophysics Data System (ADS)

    Marchesan, Melissa Andréia; Barros, Felipe; Porto, Saulo; Zaitter, Suellen; Brugnera, Aldo, Jr.; Sousa-Neto, Manoel D.

    2007-02-01

    This study evaluated ex vivo the influence of the number of gel/LED-laser applications/activations on cervical microleakage of two different barrier materials used for protection during whitening of endodontically treated teeth. Eighty-four canines were instrumented and obturated with epoxy resin sealer. The seal was removed 2 mm beyond the cemento-enamel junction for barrier placement and the teeth were divided into two groups of 40 teeth each: G1, zinc phosphate cement; G2, glass ionomer cement. The two groups were subdivided into 4 subgroups (n=10 each): I) no gel or LED-laser application; II) one gel application and two LED-laser activations; III) two gel applications and four LED-laser activations; IV) three gel applications and six LED-laser activations. The teeth were immersed in India ink for 7 days, decalcified and cleared. Cervical microleakage was quantified with a measurement microscope. Statistical analysis showed that zinc phosphate caused significantly lower microleakage than glass ionomer cement (presented microleakage in all subgroups). However, after two (p<0.01) and three (p<0.001) applications of gel, there was statistially significant microleakage in zinc phosphate barriers. Based on the present results, it can be concluded that cervical barriers with zinc phosphate cement show less cervical microleakage and that two or more applications/activations of gel/LED-laser significantly increase microleakage.

  3. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  4. Direct laser writing of auxetic structures: present capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Hengsbach, Stefan; Díaz Lantada, Andrés

    2014-08-01

    Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and that display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic geometries and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of direct laser writing. The process stands out for its precision and complex three-dimensional (3D) geometries attainable without the need of supporting structures. To our knowledge it represents one of the first examples of the application of this technology to the manufacture of auxetic geometries and mechanical metamaterials, with details even more remarkable than those shown in very recent studies, almost reaching the current limit of this additive manufacturing technology. We have used some special 3D auxetic designs whose remarkable NPR has been previously highlighted.

  5. Free-electron laser wavelength-selective materials alteration and photoexcitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tolk, N. H.; Albridge, R. G.; Barnes, A. V.; Barnes, B. M.; Davidson, J. L.; Gordon, V. D.; Margaritondo, G.; McKinley, J. T.; Mensing, G. A.; Sturmann, J.

    1996-10-01

    The free-electron laser (FEL) has become an important tool for producing high-intensity photon beams, especially in the infrared. Synchrotron radiation's primary spectral domains are in the ultraviolet and X-ray region. FEL's are therefore excellent complimentary facilities to synchrotron radiation sources. While FEL's have seen only limited use in experimentation, recently developed programs at Vanderbilt University in Nashville, TN, are swiftly rectifying this situation. This review paper examines practical experience obtained through pioneering programs using the Vanderbilt FEL, which currently hosts one of the largest FEL materials research programs. Results will be discussed in three areas: two-photon absorption in germanium, FEL-assisted internal photoemission measurements of interface energy barriers (FELIPE), and wavelength-specific laser diamond ablation.

  6. An Overview of Laser in Dermatology: The Past, the Present and … the Future (?).

    PubMed

    Gianfaldoni, Serena; Tchernev, Georgi; Wollina, Uwe; Fioranelli, Massimo; Roccia, Maria Grazia; Gianfaldoni, Roberto; Lotti, Torello

    2017-07-25

    The authors discuss a brief history of lasers and their use in dermatology. Although the excellent results achieved by the use of laser in dermatology, this special treatment modality is in continuous evolution. At present, new devices have been under development for the therapy of different kind of diseases, while lasers, already in use, has been changing, in order to be more secure, effective and be useful in many others disorders.

  7. Amalgam ablation with the Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.; Visuri, Steven R.; Walsh, Joseph T., Jr.

    1995-04-01

    Any laser that will be used by dentist to replace the dental drill (handpiece) must remove dental hard tissues safely. These lasers must also have the ability to ablate the restorative dental materials which are present in the teeth being treated. Prior to any laser being used to treat humans a thorough knowledge of the effects of the laser treatment on dental materials must be understood. Cores of dental amalgam were created and sliced into thin wafers for this experiment. Ablation efficiency and thermal changes were evaluated with and without water. It appears as if the Er:YAG laser can effectively ablate amalgam dental material with and without water. The water prevents the temperature from increasing much above baseline and does not reduce efficiency of ablation.

  8. Investigations to improve laser induced lithrotripsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eisel, Max; Ulaganathan, Keerthanan; Strittmatter, Frank; Pongratz, Thomas; Sroka, Ronald

    2017-02-01

    Laser lithotripsy is the preferred application for the destruction of ureteral and kidney stones. Clinically Ho:YAG lasers (λ=2.1μm) are used due to high absorption by water to induce thermomechanical ablation. This study focussed on the investigation of different laser parameters in relation to the stone dusting efficiency. The term dusting was defined when the ablated fragments were d<1mm in diameter while fragmentation is defined to pieces of d> 1mm. The discussion about fragment-size showed advantages like reduced surgery time. Experiments were performed using clinical available Ho:YAG laser energy transferred via a standard fibre (Ø: 365μm) onto phantom calculi (Bego-Stones of different hardness) in a water filled vessel. Dusting can be reached most efficient by using low energy/pulse (approx. 0.5J/pulse) and repetition rate of around 40 Hz. Higher energy/pulse showed strong repulsion and thereby increased mobility, while using lower repetition rates result in longer ablation times. With regard to the hardness of the phantoms it can be derived that on soft calculi or calculi with a very rugged surface dusting can be observed less because the stone breaks into large fragments after a short time of laser application. For hard calculi the ablation process takes a much longer time compared to soft stones. In the following will be shown that dusting and fragmentation process depends not only on the energy/pulse and repetition rate of a Ho:YAG-laser, but also there are differences between Ho:YAG-laser systems according to the dusting efficiency.

  9. Multiscale analysis: a way to investigate laser damage precursors in materials for high power applications at nanosecond pulse duration

    NASA Astrophysics Data System (ADS)

    Natoli, J. Y.; Wagner, F.; Ciapponi, A.; Capoulade, J.; Gallais, L.; Commandré, M.

    2010-11-01

    The mechanism of laser induced damage in optical materials under high power nanosecond laser irradiation is commonly attributed to the presence of precursor centers. Depending on material and laser source, the precursors could have different origins. Some of them are clearly extrinsic, such as impurities or structural defects linked to the fabrication conditions. In most cases the center size ranging from sub-micrometer to nanometer scale does not permit an easy detection by optical techniques before irradiation. Most often, only a post mortem observation of optics permits to proof the local origin of breakdown. Multi-scale analyzes by changing irradiation beam size have been performed to investigate the density, size and nature of laser damage precursors. Destructive methods such as raster scan, laser damage probability plot and morphology studies permit to deduce the precursor densities. Another experimental way to get information on nature of precursors is to use non destructive methods such as photoluminescence and absorption measurements. The destructive and non destructive multiscale studies are also motivated for practical reasons. Indeed LIDT studies of large optics as those used in LMJ or NIF projects are commonly performed on small samples and with table top lasers whose characteristics change from one to another. In these conditions, it is necessary to know exactly the influence of the different experimental parameters and overall the spot size effect on the final data. In this paper, we present recent developments in multiscale characterization and results obtained on optical coatings (surface case) and KDP crystal (bulk case).

  10. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  11. Novel materials as potential infrared laser hosts

    NASA Astrophysics Data System (ADS)

    Sarkies, Julian Richard

    The work presented in this thesis has concentrated on an assessment and characterisation of potential laser host media which will only support low phonon or vibrational modes. This is a necessary criterion if systems in which the active ions are lanthanides are to be made to lase in the mid-infrared, as in conventional host media non- radiative processes dominate transitions in this region. Research has concentrated upon two main areas. Firstly a spectroscopic study of lanthanide doped PBr3/AlBr3/SbBr3 was undertaken. A detailed investigation and characterisation of the stable solution formation region was carried out. The doping levels achievable were seen to vary across the lanthanide series from a maximum 0.24mol% for praesodymium to a minimum 0.15mol% for ytterbium. Energies of the characteristic 4 f absorptions of the trivalent lanthanides were measured, along with their oscillator strengths. Judd-Ofelt parameters were found for several rare earths. Stimulated emission cross sections were found to be higher than in conventional glass hosts for certain transitions, such as 6.83 × 10 -20 cm2 for the 4F3/2 --> 4I11/2 transition in the Nd3+ doped liquid. This was verified both experimentally and by the Ladenburg-Fuchtbauer relation when compared to a standard silicate glass. The behaviour, both spectroscopic and physical, of the doped solutions was seen to change dramatically upon heating. Heating the solutions gave rise to higher crystallisation rates, but lower non-radiative relaxation rates. Waveguide and laser experiments were attempted in both bulk and capillary geometries, however material factors such as crystallisation and thermal lensing prevented laser action. Secondly, rare earth doped planar waveguides of zinc sulphide were prepared. A full characterisation of the way in which waveguide loss was affected by factors such as deposition rate, doping level and waveguide masking during evaporation was performed. Waveguide losses as low as 1.5dB/cm at 980nm

  12. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  13. Laser microphone

    DOEpatents

    Veligdan, James T.

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  14. Lasers '81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.B.

    1982-01-01

    Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less

  15. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-06-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  16. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-04-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  17. Development of laser technology in Poland: 2016

    NASA Astrophysics Data System (ADS)

    Jankiewicz, Zdzisław; Jabczyński, Jan K.; Romaniuk, Ryszard S.

    2016-12-01

    The paper is an introduction to the volume of proceedings and a concise digest of works presented during the XIth National Symposium on Laser Technology (SLT2016) [1]. The Symposium is organized since 1984 every three years [2-8]. SLT2016 was organized by the Institute of Optoelectronics, Military University of Technology (IO, WAT) [9], Warsaw, with cooperation of Warsaw University of Technology (WUT) [10], in Jastarnia on 27-30 September 2016. Symposium Proceedings are traditionally published by SPIE [11-19]. The meeting has gathered around 150 participants who presented around 120 research and technical papers. The Symposium, organized every 3 years is a good portrait of laser technology and laser applications development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. The SLT also presents the current technical projects under realization by the national research, development and industrial teams. Topical tracks of the Symposium, traditionally divided to two large areas - sources and applications, were: laser sources in near and medium infrared, picosecond and femtosecond lasers, optical fiber lasers and amplifiers, semiconductor lasers, high power and high energy lasers and their applications, new materials and components for laser technology, applications of laser technology in measurements, metrology and science, military applications of laser technology, laser applications in environment protection and remote detection of trace substances, laser applications in medicine and biomedical engineering, laser applications in industry, technologies and material engineering.

  18. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.; Vary, Alex; Kautz, Harold

    1990-01-01

    Presented in viewgraph format, the possibility of using laser generation and detection of ultrasound to replace piezoelectric transducers for the acousto-ultrasonic technique is advanced. The advantages and disadvantages of laser acousto-ultrasonics are outlined. Laser acousto-ultrasonics complements standard piezoelectric acousto-ultrasonics and offers non-contact nondestructive evaluation.

  19. Ultrashort pulse laser processing of hard tissue, dental restoration materials, and biocompatibles

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Strassl, M.; Beer, F.; Verhagen, L.; Wittschier, M.; Wintner, E.

    2007-07-01

    During the last few years, ultra-short laser pulses have proven their potential for application in medical tissue treatment in many ways. In hard tissue ablation, their aptitude for material ablation with negligible collateral damage provides many advantages. Especially teeth representing an anatomically and physiologically very special region with less blood circulation and lower healing rates than other tissues require most careful treatment. Hence, overheating of the pulp and induction of microcracks are some of the most problematic issues in dental preparation. Up till now it was shown by many authors that the application of picosecond or femtosecond pulses allows to perform ablation with very low damaging potential also fitting to the physiological requirements indicated. Beside the short interaction time with the irradiated matter, scanning of the ultra-short pulse trains turned out to be crucial for ablating cavities of the required quality. One main reason for this can be seen in the fact that during scanning the time period between two subsequent pulses incident on the same spot is so much extended that no heat accumulation effects occur and each pulse can be treated as a first one with respect to its local impact. Extension of this advantageous technique to biocompatible materials, i.e. in this case dental restoration materials and titanium plasma-sprayed implants, is just a matter of consequence. Recently published results on composites fit well with earlier data on dental hard tissue. In case of plaque which has to be removed from implants, it turns out that removal of at least the calcified version is harder than tissue removal. Therefore, besides ultra-short lasers, also Diode and Neodymium lasers, in cw and pulsed modes, have been studied with respect to plaque removal and sterilization. The temperature increase during laser exposure has been experimentally evaluated in parallel.

  20. An Overview of Laser in Dermatology: The Past, the Present and … the Future (?)

    PubMed Central

    Gianfaldoni, Serena; Tchernev, Georgi; Wollina, Uwe; Fioranelli, Massimo; Roccia, Maria Grazia; Gianfaldoni, Roberto; Lotti, Torello

    2017-01-01

    The authors discuss a brief history of lasers and their use in dermatology. Although the excellent results achieved by the use of laser in dermatology, this special treatment modality is in continuous evolution. At present, new devices have been under development for the therapy of different kind of diseases, while lasers, already in use, has been changing, in order to be more secure, effective and be useful in many others disorders. PMID:28785350

  1. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures

  2. Contamination and UV lasers: lessons learned

    NASA Astrophysics Data System (ADS)

    Daly, John G.

    2015-09-01

    Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.

  3. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  4. Diode laser soldering using a lead-free filler material for electronic packaging structures

    NASA Astrophysics Data System (ADS)

    Chaminade, C.; Fogarassy, E.; Boisselier, D.

    2006-04-01

    As of today, several lead-free soldering pastes have been qualified for currently used soldering process. Regarding the new potential of laser-assisted soldering processes, the behaviour of the SnAgCu soldering paste requires, however, new investigations. In the first part of this study, the specific temperature profile of a laser soldering process is investigated using a high power diode laser (HPDL). These experimental results are compared to a thermal simulation developed for this specific application. The second part of this work deals with the diffusion of the tin-based filler material through the nickel barrier using the information extracted from the temperature simulations.

  5. X-ray emission as a potential hazard during ultrashort pulse laser material processing

    NASA Astrophysics Data System (ADS)

    Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg

    2018-06-01

    In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.

  6. Laser/Materials Interaction Studies for Enhanced Sensitivity of Laser Ultrasonic Systems.

    DTIC Science & Technology

    1998-05-01

    laser wavelengths is given. Graphite is birefrengent , and hence, the index of refraction and the skin depth depend on the polarization direction...Another development in the model would be the inclusion of processes occurring in the air under atmospheric conditions. The vacuum model presented... atmospheric pressure. 279 74 The jump conditions for cases where this approximation breaks down are treated by Knight (1979). Vaporization in the

  7. Laser-driven flyer application in thin film dissimilar materials welding and spalling

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Wang, Yuliang

    2017-10-01

    This paper applied a low cost method to pack and drive laser-driven flyer in the applications of welding and spalling. The laser system has the maximum energy of 3.1 J, which is much lower than that used in the previous study. The chemical release energy from the ablative layer was estimated as 3.7 J. The flying characteristic of laser-driven flyer was studied by measuring the flyer velocity at different locations with photonic Doppler velocimetry (PDV). The application of laser-driven flyer in welding Al and Cu was investigated at different laser spot size. Weld strength was measured with the peel test. Weld interface was characterized with optical microscopy (OM) and scanning electron microscopy (SEM). The study of application of laser-driven flyer in spalling was carried out for both brittle and ductile materials. The impact pressure was calculated based on the Hugoniot data. The amount of spalling was not only related to the impact pressure but also related to the duration of impact pressure. The fractography of spalled fracture surface was studied and revealed that the fracture mode was related to the strain rate. The spall strength of Cu 110, Al 1100 and Ni 201was measured and was consistent with the literature data.

  8. Functionally Graded Materials by Laser Metal Deposition (PREPRINT)

    DTIC Science & Technology

    2010-03-01

    composition of Fe-82 wt% V (powder-1) and Inconel - 625 (powder-2) powders are listed in Table 1. The substrate materials used for the experiment were cold...like laser power, travel speed and powder feed rate is yet to be determined to obtain a successful FGM. Inconel - 625 deposits showed macro-cracks...Composition (wt%) Powder-1: Fe-82 wt% V V (82), Al (0.68), Si (0.9), C (0.07), S (0.01), P (0.02), Fe (18) Powder-2: Inconel - 625 Ni (58), Cr (20-23

  9. High-power laser diodes at various wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emanuel, M.A.

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  10. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    NASA Astrophysics Data System (ADS)

    Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  11. Research on laser direct metal deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzhong; Shi, Likai

    2003-03-01

    Laser direct deposition of metallic parts is a new manufacturing technology, which combines with computer-aided design, laser cladding and rapid prototyping. Fully dense metallic parts can be directly obtained through melting the coaxially fed powders with a high-power laser in a layer-by-layer manner. The process characteristics, system composition as well as some research and advancement on laser direct deposition are presented here. The microstructure and properties observation of laser direct formed 663 copper alloy, 316L stainless steel and Rene'95 nickel super alloy samples indicate that, the as-deposited microstructure is similar to rapidly solidified materials, with homogenous composition and free of defects. Under certain conditions, directionally solidified microstructure can be obtained. The as-formed mechanical properties are equal to or exceed those for casting and wrought annealed materials. At the same time, some sample parts with complicate shape are presented for technology demonstration. The formed parts show good surface quality and dimensional accuracy.

  12. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    NASA Astrophysics Data System (ADS)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  13. The role of lasers in dentistry: present and future.

    PubMed

    Pearson, G J; Schuckert, K H

    2003-03-01

    Lasers have been used for hard tissue cutting in dentistry for a number of years. The quality of the cavity preparation and the surface finish achievable is variable and is dependent on operating wavelength. The collateral damage, which may be produced at differing wavelengths, is quite marked. Lasers in current form are now able to remove tissue in bulk at a similar rate to conventional methods such as bur and turbine handpiece. Some lasers may, however, provide precision cutting, which may be developed further in the future. Alternative uses of laser light are potentially more beneficial in the shorter term. The use of diode lasers as a means of activating a photosensitizer to carry out photo-activated disinfection appears to be beneficial.

  14. Correlation Between Early-Stage Expansion and Spectral Emission of a Nanosecond Laser-Induced Plasma from Organic Material

    DTIC Science & Technology

    2008-01-01

    atmosphere like ours (mix of nitrogen and oxygen) implies a more complex plasma chemistry . For example, one of these difficulties is the interpretation of...due to LSDW have also been observed. KEYWORDS Polymer ablation, Shadowgraphy, Time-resolved laser induced breakdown spectroscopy, Plasma ... chemistry , Organic materials analysis, Expansion of laser-induced plasma 1 INTRODUCTION Laser-Induced Breakdown Spectroscopy (LIBS) traditionally

  15. Evolution of surface structure in laser-preheated, perturbed materials

    DOE PAGES

    Di Stefano, Carlos; Merritt, Elizabeth Catherine; Doss, Forrest William; ...

    2017-02-03

    Here, we report an experimental and computational study investigating the effects of laser preheat on the hydrodynamic behavior of a material layer. In particular, we find that perturbation of the surface of the layer results in a complex interaction, in which the bulk of the layer develops density, pressure, and temperature structure and in which the surface experiences instability-like behavior, including mode coupling. A uniform one-temperature preheat model is used to reproduce the experimentally observed behavior, and we find that this model can be used to capture the evolution of the layer, while also providing evidence of complexities in themore » preheat behavior. Lastly, this result has important consequences for inertially confined fusion plasmas, which can be difficult to diagnose in detail, as well as for laser hydrodynamics experiments, which generally depend on assumptions about initial conditions in order to interpret their results.« less

  16. Influences of Nozzle Material on Laser Droplet Brazing Joints with Cu89Sn11 Preforms

    NASA Astrophysics Data System (ADS)

    Stein, Stefan; Heberle, Johannes; Gürtler, Franz Josef; Cvecek, Kristian; Roth, Stephan; Schmidt, Michael

    This paper presents latest results on the influences of nozzle material and geometry on the electromechanical contacting of sensitive piezoceramic actuator modules. Two nozzle types have been investigated,a standard WC/Co nozzle which is used for soldering applications and a novelceramic nozzle. Applications for active piezoceramic components integrated in structural parts are e.g. active damping, energy harvesting, or monitoring of vibrations and material failure. Anup to now unsolved problem is the electrical contacting of such components without damaging the conductor or the metallization of the ceramic substrate. Since piezoelectric components are to be integrated into structures made of casted aluminum, requirements are high mechanical strength and temperature resistance. Within this paper a method forcontacting piezoceramic modules is presented. A spherical braze preform of tin bronze Cu89Sn11 with a diameter of 600 μm is located in a ceramic nozzle and is subsequently melted by a laser pulse. The liquid solder is ejected from the nozzlevia nitrogen overpressure and wets the surface of the metallization pad and the Cu-wire, resulting in a brazing joint after solidification. The process is called laser droplet brazing (LDB). To asses the thermal evolution during one cycle WC/Co and ZTA have been simulated numerically for two different geometries enabling a proposition weather the geometry or the material properties have a significant influence on the thermal load during one cycle. To evaluate the influence of the nozzle on the joint the positioning accuracy, joint height and detachment times have been evaluated. Results obtained with the ZTA nozzle show comparable positioning accuracies to a WC/Co nozzle with a lower standard deviation of solder detachment time.

  17. Surface Thermometry of Energetic Materials by Laser-Induced Fluorescence

    DTIC Science & Technology

    1989-09-01

    at 34 yttrium- aluminum -garnet (Dy:YAG). The simplified energy diagram of Dy:YAG is shown in Fig. 1. Absorbed laser light (at 355 nrm) can 5 excite the...the thermometric technique on a surface similar to that of an energetic material, a thermal-setting plastic supplied by Buehler, Ltd., was employed...temperature over the temperature range of interest. The rare-earth ion dysprosium (Dy) doped into a yttrium- aluminum -garnet (YAG) crystal was I determined

  18. Processing Parameters Optimization for Material Deposition Efficiency in Laser Metal Deposited Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Mahamood, Rasheedat M.; Akinlabi, Esther T.

    2016-03-01

    Ti6Al4V is an important Titanium alloy that is mostly used in many applications such as: aerospace, petrochemical and medicine. The excellent corrosion resistance property, the high strength to weight ratio and the retention of properties at high temperature makes them to be favoured in most applications. The high cost of Titanium and its alloys makes their use to be prohibitive in some applications. Ti6Al4V can be cladded on a less expensive material such as steel, thereby reducing cost and providing excellent properties. Laser Metal Deposition (LMD) process, an additive manufacturing process is capable of producing complex part directly from the 3-D CAD model of the part and it also has the capability of handling multiple materials. Processing parameters play an important role in LMD process and in order to achieve desired results at a minimum cost, then the processing parameters need to be properly controlled. This paper investigates the role of processing parameters: laser power, scanning speed, powder flow rate and gas flow rate, on the material utilization efficiency in laser metal deposited Ti6Al4V. A two-level full factorial design of experiment was used in this investigation, to be able to understand the processing parameters that are most significant as well as the interactions among these processing parameters. Four process parameters were used, each with upper and lower settings which results in a combination of sixteen experiments. The laser power settings used was 1.8 and 3 kW, the scanning speed was 0.05 and 0.1 m/s, the powder flow rate was 2 and 4 g/min and the gas flow rate was 2 and 4 l/min. The experiments were designed and analyzed using Design Expert 8 software. The software was used to generate the optimized process parameters which were found to be laser power of 3.2 kW, scanning speed of 0.06 m/s, powder flow rate of 2 g/min and gas flow rate of 3 l/min.

  19. Parameters in selective laser melting for processing metallic powders

    NASA Astrophysics Data System (ADS)

    Kurzynowski, Tomasz; Chlebus, Edward; Kuźnicka, Bogumiła; Reiner, Jacek

    2012-03-01

    The paper presents results of studies on Selective Laser Melting. SLM is an additive manufacturing technology which may be used to process almost all metallic materials in the form of powder. Types of energy emission sources, mainly fiber lasers and/or Nd:YAG laser with similar characteristics and the wavelength of 1,06 - 1,08 microns, are provided primarily for processing metallic powder materials with high absorption of laser radiation. The paper presents results of selected variable parameters (laser power, scanning time, scanning strategy) and fixed parameters such as the protective atmosphere (argon, nitrogen, helium), temperature, type and shape of the powder material. The thematic scope is very broad, so the work was focused on optimizing the process of selective laser micrometallurgy for producing fully dense parts. The density is closely linked with other two conditions: discontinuity of the microstructure (microcracks) and stability (repeatability) of the process. Materials used for the research were stainless steel 316L (AISI), tool steel H13 (AISI), and titanium alloy Ti6Al7Nb (ISO 5832-11). Studies were performed with a scanning electron microscope, a light microscopes, a confocal microscope and a μCT scanner.

  20. Femtosecond X-ray Diffraction: Applications for Laser-Irradiated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wark, Justin S.

    2009-09-10

    Over the past few years short pulse x-ray diffraction at the nanosecond and picosecond level has become an established technique in many high-power laser laboratories for interrogating the lattice response of laser-perturbed and shocked matter, and is now finding applications in diagnosing the state of crystalline materials subject to quasi-isentropic compression. We review some of the previous results obtained in this area, for example the direct observation of coherent phonons, the first direct confirmation of the alpha-epsilon transition in shocked iron, and recent measurements indicating that the strength of matter can be measured at shock pressures exceeding a Mbar. Themore » majority of sources used to date have been laser-plasma based, with some work being performed using 3{sup rd} generation synchrotron sources. However, the development of 4{sup th} generation x-ray free-electron lasers, such as LCLS, afford many new opportunities, with pulse lengths in the femtosecond regime. The extremely low divergence and monochromatic nature of the LCLS beam make it well suited to study compressed polycrystalline matter, especially samples with small grain sizes. At extremely short pulse lengths, such that the pulse is shorter than an x-ray extinction depth traversal time, the diffraction process itself becomes time-dependent, and in certain cases the full wave-field solution will be required, particularly if the matter itself is being rapidly perturbed, as will occur if the intense x-ray radiation is used to create warm dense matter, as in recent experiments on FLASH at DESY.« less

  1. Progress in ultrafast laser processing and future prospects

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  2. Influence of the initial surface texture on the resulting surface roughness and waviness for micro-machining with ultra-short laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Remund, Stefan M.; Jaeggi, Beat; Kramer, Thorsten; Neuenschwander, Beat

    2017-03-01

    The resulting surface roughness and waviness after processing with ultra-short pulsed laser radiation depend on the laser parameters as well as on the machining strategy and the scanning system. However the results depend on the material and its initial surface quality and finishing as well. The improvement of surface finishing represents effort and produces additional costs. For industrial applications it is important to reduce the preparation of a workpiece for laser micro-machining to optimize quality and reduce costs. The effects of the ablation process and the influence of the machining strategy and scanning system onto the surface roughness and waviness can be differenced due to their separate manner. By using the optimal laser parameters on an initially perfect surface, the ablation process mainly increases the roughness to a certain value for most metallic materials. However, imperfections in the scanning system causing a slight variation in the scanning speed lead to a raise of the waviness on the sample surface. For a basic understanding of the influence of grinding marks, the sample surfaces were initially furnished with regular grooves of different depths and spatial frequencies to gain a homogenous and well-defined original surface. On these surfaces the effect of different beam waists and machining strategy are investigated and the results are compared with a simulation of the process. Furthermore the behaviors of common surface finishes used in industrial applications for laser micro-machining are studied and the relation onto the resulting surface roughness and waviness is presented.

  3. Observation of ultrafast temporal evolution of symmetry in short-pulsed laser induced transient states of matter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Garnett, Joy; Krzyzanowska, Halina; Baydin, Andrey; Tolk, Norman H.

    2017-02-01

    In condensed matter physics, ultrafast photoexcitation has been shown to result in modification of macroscopic material properties, sometimes involving phase changes, on a subpicosecond time scale. In semiconductors, irreversible non-thermal solid-to-liquid structural transitions have been demonstrated at high laser fluences. In the pump-probe experiments reported here, we observe a striking continuously varying low-fluence pump-induced time-dependent structural symmetry modification in intrinsic gallium arsenide (GaAs) using a probe that produces femtosecond polarization-resolved second harmonic generation (f-PRSHG) data. SHG spectroscopy is particularly suited to monitor symmetry changes since its magnitude is governed by the nonlinear optical susceptibility tensor whose elements are determined by the underlying material symmetry. Conceptually, these experiments seek to provide insight into the details of the time evolution of symmetry arising from laser induced transient states of matter in GaAs. Overall, the basic explanation of these experimental observations is that as a result of the photoinduced electronic excitation, many electrons, including bond electrons are excited to higher states. This results in subpicosecond changes in the local anharmonic potential and produces a changing nonlinear polarization response thus accounting for the nonthermal time dependent symmetry changes. Clearly, our approach may be easily extended to many different crystalline materials with different levels of defects, dopants and stresses to fully characterize the time dependent behavior of laser induced transient states in material systems.

  4. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    NASA Astrophysics Data System (ADS)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  5. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, <=50um with ps laser, and <=20um with sub-ps laser, respectively was observed as a criteria of selecting the laser pulse width. The effects of laser processing parameters on speed and efficiency were also investigated. This is to explore how to provide industry users the best laser solution for device micro-fabrication with best price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.

  6. Particle characteristics of different materials after ultra-short pulsed laser (USPL) irradiation

    NASA Astrophysics Data System (ADS)

    Meister, Joerg; Schelle, Florian; Kowalczyk, Philip; Frentzen, Matthias

    2012-01-01

    The exposition of nanoparticles caused by laser application in dental health care is an open discussion. Based on the fact that nanoparticles can penetrate through the mucosa, the knowledge about particle characteristics after irradiation with an USPL is of high importance. Therefore, the aim of this study was to investigate the particle characteristics, especially the size of the ablated debris after USPL irradiation. The irradiation was carried out with an USP Nd:YVO4 laser with a center wavelength of 1064 nm. Based on the pulse duration of 8 ps and a pulse repetition rate of 500 kHz the laser emits an average power of 9 W. The materials investigated were dental tissues and dental restorative materials (composite and amalgam), ceramic and different metals (gold and aluminium). The samples were irradiated with a power density in the order of 300 GW/cm2 at distances of 5, 10, 15, and 20 mm. The debris was collected on an object plate. SEM pictures were used for analysis of the ablation debris. Depending on the irradiated material, we observed different kinds of structures: vitreous, flocculent, and pellet-like. The mean particle sizes were 10 x 10 up to 30 x 30 μm2. In addition, a cluster of ablated matter (nanometer range) distributed over the whole irradiated area was found. With increasing distances the cluster structure reduced from multi-layer to mono-layer clusters. Particle sizes in the micrometer and nanometer range were found after irradiation with an USPL. The nanoparticles create a cluster structure which is influenced by increasing distances.

  7. Management of heat in laser tissue welding using NIR cover window material.

    PubMed

    Sriramoju, Vidyasagar; Savage, Howard; Katz, Alvin; Muthukattil, Ronex; Alfano, Robert R

    2011-12-01

    Laser tissue welding (LTW) is a novel method of surgical wound closure by the use of laser radiation to induce fusion of the biological tissues. Molecular dynamics associated with LTW is a result of thermal and non-thermal mechanisms. This research focuses exclusively on better heat management to reduce thermal damage of tissues in LTW using a near infrared laser radiation. An infrared continuous-wave (CW) laser radiation at 1,450 nm wavelength corresponding to the absorption band from combination vibrational modes of water is used to weld together ex vivo porcine aorta. In these studies we measured the optimal laser power and scan speed, for better tensile strength of the weld and lesser tissue dehydration. Significant amount of water loss from the welded tissue results in cellular death and tissue buckling. Various thermally conductive optical cover windows were used as heat sinks to reduce thermal effects during LTW for the dissipation of the heat. The optimal use of the method prevents tissue buckling and minimizes the water loss. Diamond, sapphire, BK7, fused silica, and IR quartz transparent optical cover windows were tested. The data from this study suggests that IR-quartz as the material with optimal thermal conductivity is ideal for laser welding of the porcine aorta. Copyright © 2011 Wiley Periodicals, Inc.

  8. Fabrication of nanofibers reinforced polymer microstructures using femtosecond laser material processing

    NASA Astrophysics Data System (ADS)

    Alubaidy, Mohammed-Amin

    A new method has been introduced for the formation of microfeatures made of nanofibers reinforced polymer, using femtosecond laser material processing. The Femtosecond laser is used for the generation of three-dimensional interweaved nanofibers and the construction of microfeatures, like microchannels and voxels, through multi photon polymerization of nanofiber dispersed polymer resin. A new phenomenon of multiphoton polymerization induced by dual wavelength irradiation was reported for the first time. A significant improvement in the spatial resolution, compared to the two photon absorption (2PA) and the three photon absorption (3PA) processes has been achieved. Conductive polymer microstructures and magnetic polymer microstructures have been fabricated through this method. The mechanical properties of nanofiber reinforced polymer microstructures has been investigated by means of nanoindentation and the volume fraction of the generated nanofibers in the nanocomposite was calculated by using nanoindentation analysis. The results showed significant improvement in strength of the material. The electrical conductivity of the two photon polymerization (TPP) generated microfeatures was measured by a two-probe system at room temperature and the conductivity-temperature relationship was measured at a certain temperature range. The results suggest that the conductive polymer microstructure is reproducible and has a consistent conductivity-temperature relation. The magnetic strength has been characterized using Guassmeter. To demonstrate the potential application of the new fabrication method, a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes were fabricated. The developed nanofibrous DNA biosensor has been characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Results showed that the probe--target recognition has been improved. This research demonstrated that femtosecond

  9. Generalized sub-Schawlow-Townes laser linewidths via material dispersion

    NASA Astrophysics Data System (ADS)

    Pillay, Jason Cornelius; Natsume, Yuki; Stone, A. Douglas; Chong, Y. D.

    2014-03-01

    A recent S-matrix-based theory of the quantum-limited linewidth, which is applicable to general lasers, including spatially nonuniform laser cavities operating above threshold, is analyzed in various limits. For broadband gain, a simple interpretation of the Petermann and bad-cavity factors is presented in terms of geometric relations between the zeros and poles of the S matrix. When there is substantial dispersion, on the frequency scale of the cavity lifetime, the theory yields a generalization of the bad-cavity factor, which was previously derived for spatially uniform one-dimensional lasers. This effect can lead to sub-Schawlow-Townes linewidths in lasers with very narrow gain widths. We derive a formula for the linewidth in terms of the lasing mode functions, which has accuracy comparable to the previous formula involving the residue of the lasing pole. These results for the quantum-limited linewidth are valid even in the regime of strong line pulling and spatial hole burning, where the linewidth cannot be factorized into independent Petermann and bad-cavity factors.

  10. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  11. Ultrashort pulsed laser (USPL) application in dentistry: basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials.

    PubMed

    Schelle, Florian; Polz, Sebastian; Haloui, Hatim; Braun, Andreas; Dehn, Claudia; Frentzen, Matthias; Meister, Jörg

    2014-11-01

    Modern ultrashort pulse lasers with scanning systems provide a huge set of parameters affecting the suitability for dental applications. The present study investigates thresholds and ablation rates of oral hard tissues and restorative materials with a view towards a clinical application system. The functional system consists of a 10 W Nd:YVO4 laser emitting pulses with a duration of 8 ps at 1,064 nm. Measurements were performed on dentin, enamel, ceramic, composite, and mammoth ivory at a repetition rate of 500 kHz. By employing a scanning system, square-shaped cavities with an edge length of 1 mm were created. Ablation threshold and rate measurements were assessed by variation of the applied fluence. Examinations were carried out employing a scanning electron microscope and optical profilometer. Irradiation time was recorded by the scanner software in order to calculate the overall ablated volume per time. First high power ablation rate measurements were performed employing a laser source with up to 50 W. Threshold values in the range of 0.45 J/cm(2) (composite) to 1.54 J/cm(2) (enamel) were observed. Differences between any two materials are statistically significant (p < 0.05). Preparation speeds up to 37.53 mm(3)/min (composite) were achieved with the 10 W laser source and differed statistically significant for any two materials (p < 0.05) with the exception of dentin and mammoth ivory (p > 0.05). By employing the 50 W laser source, increased rates up to ∼50 mm(3)/min for dentin were obtained. The results indicate that modern USPL systems provide sufficient ablation rates to be seen as a promising technology for dental applications.

  12. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  13. Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi

    Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.

  14. Laser processing of thin films for industrial packaging

    NASA Astrophysics Data System (ADS)

    Sozzi, Michele; Lutey, Adrian H. A.; Cucinotta, Annamaria; Selleri, Stefano; Molari, Pier Gabriele

    2014-05-01

    Single layer thin-film materials such as aluminum, polyethylene, polypropylene, and their multi-layer combinations such as aluminum-paper have been exposed to different laser radiation. A wide number of samples have been processed with 10 - 12.5 ns IR and Green, and 500 - 800 ps IR laser radiation at different translating speeds ranging from 50 mm/s to 1 m/s. High quality incisions have been obtained for all tested materials within the experimental conditions. The presented results provide the necessary parameters for an efficient cut and processing of the tested materials, for the employment of pulsed laser sources in the packaging industry, allowing the laser to prevail in lieu of more costly and energy intensive methods.

  15. Laser tissue welding in genitourinary reconstructive surgery: assessment of optimal suture materials.

    PubMed

    Poppas, D P; Klioze, S D; Uzzo, R G; Schlossberg, S M

    1995-02-01

    Laser tissue welding in genitourinary reconstructive surgery has been shown in animal models to decrease operative time, improve healing, and decrease postoperative fistula formation when compared with conventional suture controls. Although the absence of suture material is the ultimate goal, this has not been shown to be practical with current technology for larger repairs. Therefore, suture-assisted laser tissue welding will likely be performed. This study sought to determine the optimal suture to be used during laser welding. The integrity of various organic and synthetic sutures exposed to laser irradiation were analyzed. Sutures studied included gut, clear Vicryl, clear polydioxanone suture (PDS), and violet PDS. Sutures were irradiated with a potassium titanyl phosphate (KTP)-532 laser or an 808-nm diode laser with and without the addition of a light-absorbing chromophore (fluorescein or indocyanine green, respectively). A remote temperature-sensing device obtained real-time surface temperatures during lasing. The average temperature, time, and total energy at break point were recorded. Overall, gut suture achieved significantly higher temperatures and withstood higher average energy delivery at break point with both the KTP-532 and the 808-nm diode lasers compared with all other groups (P < 0.05). Both chromophore-treated groups had higher average temperatures at break point combined with lower average energy. The break-point temperature for all groups other than gut occurred at 91 degrees C or less. The optimal temperature range for tissue welding appears to be between 60 degrees and 80 degrees C. Gut suture offers the greatest margin of error for KTP and 808-nm diode laser welding with or without the use of a chromophore.

  16. Integrated InAs/InP quantum-dot coherence comb lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Zhenguo; Liu, Jiaren; Poole, Philip J.; Song, Chun-Ying; Webber, John; Mao, Linda; Chang, Shoude; Ding, Heping; Barrios, Pedro J.; Poitras, Daniel; Janz, Siegfried

    2017-02-01

    Current communication networks needs to keep up with the exponential growth of today's internet traffic, and telecommunications industry is looking for radically new integrated photonics components for new generation optical networks. We at National Research Council (NRC) Canada have successfully developed nanostructure InAs/InP quantum dot (QD) coherence comb lasers (CCLs) around 1.55 μm. Unlike uniform semiconductor layers in most telecommunication lasers, in these QD CCLs light is emitted and amplified by millions of semiconductor QDs less than 60 nm in diameter. Each QD acts like an isolated light source acting independently of its neighbours, and each QD emits light at its own unique wavelength. The end result is a QD CCL is more stable and has ultra-low timing jitter. But most importantly, a single QD CCL can simultaneously produce 50 or more separate laser beams at distinct wavelengths over the telecommunications C-band. Utilizing those unique properties we have put considerable effort well to design, grow and fabricate InAs/InP QD gain materials. After our integrated packaging and using electrical feedback-loop control systems, we have successfully demonstrated ultra-low intensity and phase noise, frequency-stabilized integrated QD CCLs with the repetition rates from 10 GHz to 100 GHz and the total output power up to 60 mW at room temperature. We have investigated their relative intensity noises, phase noises, RF beating signals and other performance of both filtered individual channel and the whole CCLs. Those highly phase-coherence comb lasers are the promising candidates for flexible bandwidth terabit coherent optical networks and signal processing applications.

  17. From cells to embryos: the application of femtosecond laser pulses for altering cellular material in complex biological systems

    NASA Astrophysics Data System (ADS)

    Kohli, V.; Elezzabi, A. Y.

    2008-02-01

    We report the application of high-intensity femtosecond laser pulses as a novel tool for manipulating biological specimens. When femtosecond laser pulses were focused to a near diffraction-limited focal spot, cellular material within the laser focal volume was surgically ablated. Several dissection cuts were made in the membrane of live mammalian cells, and membrane surgery was accomplished without inducing cell collapse or disassociation. By altering how the laser pulses were applied, focal adhesions joining live epithelial cells were surgically removed, resulting in single cell isolation. To further examine the versatility of this reported tool, cells were transiently permeabilized for introducing foreign material into the cytoplasm of live mammalian cells. Localizing focused femtosecond laser pulses on the biological membrane resulted in the formation of transient pores, which were harnessed as a pathway for the delivery of exogenous material. Individual mammalian cells were permeabilized in the presence of a hyperosmotic cryoprotective disaccharide. Material delivery was confirmed by measuring the volumetric response of cells permeabilized in 0.2, 0.3, 0.4 and 0.5 M cryoprotective sugar. The survival of permeabilized cells in increasing osmolarity of sugar was assessed using a membrane integrity assay. Further demonstrating the novelty of this reported tool, laser surgery of an aquatic embryo, the zebrafish (Danio rerio), was also performed. Utilizing the transient pores that were formed in the embryonic cells of the zebrafish embryo, an exogenous fluorescent probe FITC, Streptavidin-conjugated quantum dots or plasmid DNA (sCMV) encoding EGFP was introduced into the developing embryonic cells. To determine if the laser induced any short- or long-term effects on development, laser-manipulated embryos were reared to 2 and 7 days post-fertilization and compared to control embryos at the same developmental stages. Light microscopy and scanning electron microscopy

  18. Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.

  19. Modeling ultrafast laser-induced nanocavitation around plasmonic nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meunier, Michel; Dagallier, Adrien; Lachaine, Rémi; Boutopoulos, Christos; Boulais, Étienne

    2017-03-01

    Vapor nanobubbles generated around plasmonic nanoparticles (NPs) by ultrafast laser irradiation are efficient for inducing localized damage to living cells. Killing targeted cancer cells or gene delivery can therefore be envisioned using this new technology [1,2]. The extent of the damage and its non-lethal character are linked to the size of the nanobubble. Precise understanding of the mechanisms leading to bubble formation around plasmonic nanostructures is necessary to optimize the technique. In this presentation, we present a complete model that successfully describes all interactions occurring during the irradiation of plasmonics nanostructures by an ultrafast laser of various pulse widths and fluences. Nanoavitation is caused by the interplay between heat conduction at the NP-medium interface and non-linear plasmon-enhanced photoionization of a nanoplasma in the near-field [3-5], the former being dominant for in-resonance and the latter for off-resonance irradiation. Modeling of the whole laser-nanoparticle interaction, together with the help of the shadowgraphic imaging and scattering techniques [3-5], give valuable insight on the mechanisms of cavitation at the nanoscale, leading to possible optimization of the nanostructure for bubble-based nanomedicine applications. 1- E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 17, 26-49 (2013). 2- E. Bergeron, S. Patskovsky, D. Rioux, and M. Meunier, Nanoscale 7,17836-17847 (2015). 3- E. Boulais, R. Lachaine, and M. Meunier, Nano Letters 12, 4763-4769 (2012). 4- R. Lachaine, E. Boulais, and M. Meunier, ACS Photonics 1, 331-336 (2014). 5- C. Boutopoulos, A. Hatef, M. Fortin-Deschênes, and M. Meunier Nanoscale 7,11758-11765 (2015).

  20. Solid State Lasers from an Efficiency Perspective

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2007-01-01

    Solid state lasers have remained a vibrant area of research because several major innovations expanded their capability. Major innovations are presented with emphasis focused on the laser efficiency. A product of efficiencies approach is developed and applied to describe laser performance. Efficiency factors are presented in closed form where practical and energy transfer effects are included where needed. In turn, efficiency factors are used to estimate threshold and slope efficiency, allowing a facile estimate of performance. Spectroscopic, thermal, and mechanical data are provided for common solid state laser materials.

  1. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems

    DTIC Science & Technology

    1991-03-15

    Lasing Properties of Nd3+:Ba2 ZnGe 2O 7 III. SPECTROSCOPIC PROPERTIES OF CHROMIUM -DOPED LASER CRYSTALS III.1 Laser-Induced Grating Spectroscopy of...rare earth- and chromium -doped Iasor crystals, rare earth-doped glasses, and potassium niobate. Ilas or- spectroscopy techniques were used to...being investigated: rare ea’-Lh-doped laser crystals; chromium -doped laser crystals; and photorefractive crystals and glasses. The important results

  2. Prediction and Characterization of NaGaS2, A High Thermal Conductivity Mid-Infrared Nonlinear Optical Material for High-Power Laser Frequency Conversion.

    PubMed

    Hou, Dianwei; Nissimagoudar, Arun S; Bian, Qiang; Wu, Kui; Pan, Shilie; Li, Wu; Yang, Zhihua

    2018-06-15

    Infrared nonlinear optical (IR NLO) crystals are the major materials to widen the output range of solid-state lasers to mid- or far-infrared regions. The IR NLO crystals used in the middle IR region are still inadequate for high-power laser applications because of deleterious thermal effects (lensing and expansion), low laser-induced damage threshold, and two-photon absorption. Herein, the unbiased global minimum search method was used for the first time to search for IR NLO optical materials and ultimately found a new IR NLO material NaGaS 2 . It meets the stringent demands for IR NLO materials pumped by high-power laser with the highest thermal conductivity among common IR NLO materials able to avoid two-photon absorption, a classic nonlinear coefficient, and wide infrared transparency.

  3. Numerical simulation of the shape of laser cut for fiber and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Zaitsev, A. V.; Ermolaev, G. V.; Polyanskiy, T. A.; Gurin, A. M.

    2017-10-01

    The results of numerical modeling of steel plate laser cutting with nitrogen as assist gas with consideration of heat transfer into a bulk material are presented. In this work we studied a distribution of absorbed radiation energy inside cut kerf and the difference between CO2 and fiber laser radiation propagation and absorption. The influence of secondary absorption of reflected from the cut front radiation on stability of melt hydrodynamics is discussed for different laser types.

  4. Radioisotopes present in building materials of workplaces

    NASA Astrophysics Data System (ADS)

    Del Claro, F.; Paschuk, S. A.; Corrêa, J. N.; Denyak, V.; Kappke, J.; Perna, A. F. N.; Martins, M. R.; Santos, T. O.; Rocha, Z.; Schelin, H. R.

    2017-11-01

    The isotope 222Rn is responsible for approximately half of the effective annual dose received by the world population. The decay products of 222Rn interacting with the cells of biological tissue of lungs have very high probability to induce cancer. The present survey was focused in the evaluation of activity concentration of 222Rn and other radioisotopes related to the building materials at workplaces at Curitiba - Paraná State. For this purpose, the instant radon detector AlphaGUARD (Saphymo GmbH) was used to measure the average concentrations of 222Rn in building materials, which were also submitted to gamma spectrometry analysis for qualitative and quantitative evaluation of the radionuclides present in samples of sand, mortar, blue crushed stone (Gneissic rock), red crushed stone (Granite), concrete and red bricks. The main radionuclides evaluated by gamma spectrometry in building material samples were 238U/226Ra, 232Th and 40K. These measurements were performed at the Laboratory of Applied Nuclear Physics of the Federal University of Technology - Paraná in collaboration with the Center of Nuclear Technology Development (CDTN - CNEN). The results of the survey present the concentration values of 222Rn related to construction materials in a range from 427±40.52 Bq/m³ to 2053±90.06 Bq/m³. The results of gamma spectroscopy analysis show that specific activity values for the mentioned isotopes are similar to the results indicated by the literature. Nevertheless, the present survey is showing the need of further studies and indicates that building materials can contribute significantly to indoor concentration of 222Rn.

  5. Mitigation of Laser Beam Scintillation in Free-Space Optical Communication Systems Through Coherence-Reducing Optical Materials

    NASA Technical Reports Server (NTRS)

    Renner, Christoffer J.

    2005-01-01

    Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.

  6. UV excimer laser and low temperature plasma treatments of polyamide materials

    NASA Astrophysics Data System (ADS)

    Yip, Yiu Wan Joanne

    Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH

  7. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1990-01-01

    The acousto-ultrasonic method has proven to be a most interesting technique for nondestructive evaluation of the mechanical properties of a variety of materials. Use of the technique or a modification thereof, has led to correlation of the associated stress wave factor with mechanical properties of both metals and composite materials. The method is applied to the nondestructive evaluation of selected fiber reinforced structural composites. For the first time, conventional piezoelectric transducers were replaced with laser beam ultrasonic generators and detectors. This modification permitted true non-contact acousto-ultrasonic measurements to be made, which yielded new information about the basic mechanisms involved as well as proved the feasibility of making such non-contact measurements on terrestrial and space structures and heat engine components. A state-of-the-art laser based acousto-ultrasonic system, incorporating a compact pulsed laser and a fiber-optic heterodyne interferometer, was delivered to the NASA Lewis Research Center.

  8. Simulations of laser undulators

    NASA Astrophysics Data System (ADS)

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  9. Effects of erbium-and chromium-doped yttrium scandium gallium garnet and diode lasers on the surfaces of restorative dental materials: a scanning electron microscope study.

    PubMed

    Hatipoglu, M; Barutcigil, C

    2015-01-01

    The aim of this study is to evaluate the potential effects of laser irradiation, which is commonly performed in periodontal surgery, on the surfaces of restorative materials. Five different restorative dental materials were used in this study, as follows: (1) Resin composite, (2) poly acid-modified resin composite (compomer), (3) conventional glass ionomer cement (GIC), (4) resin-modified glass ionomer cement (RMGIC), and (5) amalgam. Four cylindrical samples (8 mm diameter, 2 mm height) were prepared for each restorative material. In addition, four freshly extracted, sound human incisors teeth were selected. Two different laser systems commonly used in periodontal surgery were examined in this study: A 810 nm diode laser at a setting of 1 W with continuous-phase laser irradiation for 10 s, and an erbium-and chromium-doped yttrium scandium gallium garnet (Er, Cr: YSGG) laser at settings of 2.5 W, 3.25 W, and 4 W with 25 Hz laser irradiation for 10 s. Scanning electron microscopy (SEM) analysis was performed to evaluate the morphology and surface deformation of the restorative materials and tooth surfaces. According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples. High-magnification SEM images of GIC samples showed the melting and combustion effects of the Er, Cr: YSGG laser, which increased as the laser power was increased. In amalgam samples, neither laser left significant harmful effects at the lowest power setting. The diode laser did cause irradiation markings, but they were insignificant compared with those left by the Er, Cr: YSGG laser on the surfaces of the different materials and teeth. Within the limitations of this study, it can be concluded that Er, Cr: YSGG laser irradiation could cause distortions of the surfaces

  10. Manufacturing of the ISO 25178-70 material measures with direct laser writing: a feasibility study

    NASA Astrophysics Data System (ADS)

    Eifler, M.; Hering, J.; von Freymann, G.; Seewig, J.

    2018-06-01

    The standard ISO 25178-70 defines material measures for the calibration of 2D- and 3D-topography measurement devices. Some of the suggested material measures are established within the industrial application for a long time while others have not yet been extensively researched regarding their practical abilities. This paper describes a holistic and systematic investigation of the ISO 25178-70 material measures. The manufacturing of the suggested geometries is executed with two-photon laser lithography, alias direct laser writing (DLW). Since this manufacturing process is not yet frequently used in a material measures context, it is examined regarding its suitability for the fabrication of the ISO 25178-70 material measures. With DLW, it is possible to manufacture multiple material measures on one sample in order to enable a comprehensive calibration of optical topography measurement devices. The manufactured ISO 25178-70 geometries are examined using different 3D-topography measuring devices. In doing so, their abilities regarding the calibration of the devices can be evaluated and the practical feasibility of their industrial application is assessed. For the review of this practical usefulness, varying calibration and evaluation strategies are taken into account.

  11. Laser modification of macroscopic properties of metal surface layer

    NASA Astrophysics Data System (ADS)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  12. A simple solution to the problem of effective utilisation of the target material for pulsed laser deposition of thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A

    The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less

  13. Excimer laser decontamination

    NASA Astrophysics Data System (ADS)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.

    2000-04-01

    The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.

  14. Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings

    NASA Astrophysics Data System (ADS)

    Triebel, W.; Mühlig, C.; Kufert, S.

    2005-10-01

    Precise absorption measurements of bulk materials and coatings upon pulsed ArF laser irradiation are presented using a compact experimental setup based on the laser induced deflection technique (LID). For absorption measurements of bulk materials the influence of pure bulk and pure surface absorption on the temperature and refractive index profile and thus for the probe beam deflection is analyzed in detail. The separation of bulk and surface absorption via the commonly used variation of the sample thickness is carried out for fused silica and calcium fluoride. The experimental results show that for the given surface polishing quality the bulk absorption coefficient of fused silica can be obtained by investigating only one sample. To avoid the drawback of different bulk and surface properties amongst a thickness series, we propose a strategy based on the LID technique to generally obtain surface and bulk absorption separately by investigating only one sample. Apart from measuring bulk absorption coefficients the LID technique is applied to determine the absorption of highly reflecting (HR) coatings on CaF2 substrates. Beside the measuring strategy the experimental results of a AlF3/LaF3 based HR coating are presented. In order to investigate a larger variety of coatings, including high transmitting coatings, a general measuring strategy based on the LID technique is proposed.

  15. Material transport in laser-heated diamond anvil cell melting experiments

    NASA Technical Reports Server (NTRS)

    Campbell, Andrew J.; Heinz, Dion L.; Davis, Andrew M.

    1992-01-01

    A previously undocumented effect in the laser-heated diamond anvil cell, namely, the transport of molten species through the sample chamber, over distances large compared to the laser beam diameter, is presented. This effect is exploited to determine the melting behavior of high-pressure silicate assemblages of olivine composition. At pressures where beta-spinel is the phase melted, relative strengths of partitioning can be estimated for the incompatible elements studied. Iron was found to partition into the melt from beta-spinel less strongly than calcium, and slightly more strongly than manganese. At higher pressures, where a silicate perovskite/magnesiowuestite assemblage is melted, it is determined that silicate perovskite is the liquidus phase, with iron-rich magnesiowuestite accumulating at the end of the laser-melted stripe.

  16. Present state of applying diode laser in Toyota Motor Corp.

    NASA Astrophysics Data System (ADS)

    Terada, Masaki; Nakamura, Hideo

    2003-03-01

    Since the mid-1980s, Toyota Motor Corporation has applied CO2 lasers and YAG lasers to machine (welding, piercing, cutting, surface modifying etc.) automobile parts. In recent years diode lasers, which are excellent in terms of cost performance, are now available on the market as a new type of oscillator and are expected to bring about a new age in laser technology. Two current problems with these lasers, however, are the lack of sufficient output and the difficulty in improving the focusing the beam, which is why it has not been easy to apply them to the machining of metal parts in the past. On the other hand, plastics can be joined with low energy because they have a lower melting point than metal and the rate of absorption of the laser is easy to control. Moreover, because the high degree of freedom in molding plastic parts results in many complex shapes that need to be welded, Toyota is looking into the use of diode lasers to weld plastic parts. This article will introduce the problems of plastics welding and the methods to solve them referring to actual examples.

  17. Dissipative Structures At Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  18. Investigating the CO 2 laser cutting parameters of MDF wood composite material

    NASA Astrophysics Data System (ADS)

    Eltawahni, H. A.; Olabi, A. G.; Benyounis, K. Y.

    2011-04-01

    Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO 2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.

  19. Laser Processing of Metals and Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singaravelu, Senthilraja

    2012-05-01

    A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applicationsmore » starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.« less

  20. Approaches toward a blue semiconductor laser

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1989-01-01

    Possible approaches for obtaining semiconductor diode laser action in the blue region of the spectrum are surveyed. A discussion of diode lasers is included along with a review of the current status of visible emitters, presently limited to 670 nm. Methods are discussed for shifting laser emission toward shorter wavelengths, including the use of II-IV materials, the increase in the bandgap of III-V materials by addition of nitrogen, and changing the bandstructure from indirect to direct by incorporating interstitial atoms or by constructing superlattices. Non-pn-junction injection methods are surveyed, including avalanche breakdown, Langmuir-Blodgett diodes, heterostructures, carrier accumulation, and Berglund diodes. Prospects of inventing new multinary semiconducting materials are discussed, and a number of novel materials described in the literature are tabulated. New approaches available through the development of quantum wells and superlattices are described, including resonant tunneling and the synthesis of arbitrary bandgap materials through multiple quantum wells.

  1. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  2. Laser-induced transformation of graphitic materials to two-dimensional graphene-like structures at ambient conditions.

    PubMed

    Antonelou, Aspasia; Benekou, Vasiliki; Dracopoulos, Vasileios; Kollia, Mary; Yannopoulos, Spyros N

    2018-06-27

    Laser processing of carbon containing compounds towards the formation of graphene-based structures gains ground over the last years in view of the practicality that lasers offer against other conventional graphene preparation methods. The current work explores the viability of low-cost lasers, operating at ambient conditions, for the transformation of various graphitic materials to structures with graphene-like atomic arrangement. Starting materials are at two opposing sides. On one side stand typical graphite powder with Bernal stacking and strong sp2 character, while nanocrystalline or quasi-amorphous graphitic powders such as carbon black and activated carbon are also investigated. Electron microscopies are employed to observe post-irradiation morphological changes while Raman scattering identifies details on atomic arrangement. It is demonstrated that graphene-like structures can be prepared either by starting from a well-organized Bernal-stacked network or by irradiating the quasi-amorphous forms of nanocrystalline carbon. Mild structural changes in the former case pertain to increase of the interlayer spacing, which could possibly be rationalized by considering a mechanism based on Coulomb expansion. For less organized carbon structures, reorganization of the atomic arrangement with an appreciable sp3 to sp2 transformation is observed. The findings of this work confirm that laser processing at minimal chamber conditions demonstrate high potential for preparing high-quality graphene-based structures starting from low cost materials. The proposed method being easily scalable adaptable to current technological platforms is expected to be transformed to a viable and eco-friendly graphene production technology. © 2018 IOP Publishing Ltd.

  3. System, Apparatus and Method Employing a Dual Head Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B. (Inventor); Stysley, Paul R. (Inventor); Poulios, Demetrios (Inventor)

    2015-01-01

    A system, apparatus and method employing a laser with a split-head, V-assembly gain material configuration. Additionally, the present invention is directed to techniques to better dissipate or remove unwanted energies in laser operations. The present invention is also directed to techniques for better collimated laser beams, with single spatial mode quality (TEM00), with improved efficiency, in extreme environments, such as in outer space.

  4. From Laser Desorption to Laser Ablation of Biopolymers

    NASA Astrophysics Data System (ADS)

    Franz, Hillenkamp

    1998-03-01

    For selected indications laser ablation and cutting of biological tissues is clinical practice. Preferentially lasers with emission wavelengths in the far UV and the mid IR are used, for which tissue absorption is very high. Morphologically the ablation sites look surprisingly similar for the two wavelength ranges, despite of the very different prim y putative interaction mechanisms. Ablation depth as a function of fluence follows a sigmoidal curve. Even factors below the nominal ablation threshold superficial layers of material get removed from the surface. This is the fluence range for Matrix-Assisted Laser Desorption/Ionization (MALDI). Evidence will be presented which suggest that strong similarities exist between the desorption and ablation processes both for UV- as well as for IR-wavelengths.

  5. Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser's effect on short- and long-term development

    PubMed Central

    Kohli, Vikram; Elezzabi, Abdulhakem Y

    2008-01-01

    Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185

  6. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials

    NASA Astrophysics Data System (ADS)

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng

    2017-04-01

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation.

  7. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials.

    PubMed

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng

    2017-04-06

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.

  8. Room-temperature subnanosecond waveguide lasers in Nd:YVO4 Q-switched by phase-change VO2: A comparison with 2D materials

    PubMed Central

    Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng

    2017-01-01

    We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation. PMID:28383017

  9. Interaction of Intense Short Laser Pulses with Air and Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Eisenmann, S.; Katzir, Y.; Zigler, A.; Fibich, G.; Louzon, E.; Ehrlich, Y.; Henis, Z.; Pecker, S.; Fisher, D.; Fraenkel, M.

    A study of the propagation of intense short laser pulses in air and the interaction of these pulses with distant targets is described. It is shown that the beam filamentation pattern can be controlled by introducing beam astigmatism. In addition, it is demonstrated that the collapse distance of intense femtosecond laser beams scales as P-1/2 for input powers that are moderately above the critical power for self focusing, and that at higher powers the collapse distance scales as P-1. Related to the interaction of intense short pulses with distant targets, it is measured that the threshold fluence for optical damage in wide gap materials is lower by up to 20% for negatively chirped pulses than for positively chirped, at pulse durations ranging from 60 fs to 1 ps.

  10. Trends in laser micromachining

    NASA Astrophysics Data System (ADS)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  11. Crystal fibers for high power lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Florea, C.; Gibson, D.; Peele, J.; Askins, C.; Shaw, B.; Bowman, S.; O'Connor, S.; Bayya, S.; Aggarwal, I.; Sanghera, J. S.

    2013-02-01

    In this paper, we present our recent progress in developing single crystal fibers for high power single frequency fiber lasers. The optical, spectral and morphological properties as well as the loss and gain measured from these crystal fibers drawn by Laser Heated Pedestal Growth (LHPG) system are also discussed. Results on application of various cladding materials on the crystal core and the methods of fiber end-face polishing are also presented.

  12. Pulsed—Laser Deposition Of Oxide Thin Films And Laser—Induced Breakdown Spectroscopy Of Multi—Element Materials

    NASA Astrophysics Data System (ADS)

    Pedarnig, Johannes D.

    2010-10-01

    New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.

  13. Quantagenetics® analysis of laser-induced breakdown spectroscopic data: Rapid and accurate authentication of materials

    NASA Astrophysics Data System (ADS)

    McManus, Catherine E.; Dowe, James; McMillan, Nancy J.

    2018-07-01

    Many industrial and commercial issues involve authentication of such matters as the manufacturer or geographic source of a material, and quality control of materials, determining whether specific treatments have been properly applied, or if a material is authentic or fraudulent. Often, multiple analytical techniques and tests are used, resulting in expensive and time-consuming testing procedures. Laser-Induced Breakdown Spectroscopy (LIBS) is a rapid laser ablation spectroscopic analytical method. Each LIBS spectrum contains information about the concentration of every element, some isotopic ratios, and the molecular structure of the material, making it a unique and comprehensive signature of the material. Quantagenetics® is a multivariate statistical method based on Bayesian statistics that uses the Euclidian distance between LIBS spectra of materials to classify materials (US Patents 9,063,085 and 8,699,022). The fundamental idea behind Quantagenetics® is that LIBS spectra contain sufficient information to determine the origin and history of materials. This study presents two case studies that illustrate the method. LIBS spectra from 510 Colombian emeralds from 18 mines were classified by mine. Overall, 99.4% of the spectra were correctly classified; the success rate for individual mines ranges from 98.2% to 100%. Some of the mines are separated by distances as little as 200 m, indicating that the method uses the slight but consistent differences in composition to identify the mine of origin accurately. The second study used bars of 17-4 stainless steel from three manufacturers. Each of the three bars was cut into 90 coupons; 30 of each bar received no further treatment, another 30 from each bar received one tempering and hardening treatment, and the final 30 coupons from each bar received a different heat treatment. Using LIBS spectra taken from the coupons, the Quantagenetics® method classified the 270 coupons both by manufacturer (composition) and heat

  14. Applications of ions produced by low intensity repetitive laser pulses for implantation into semiconductor materials

    NASA Astrophysics Data System (ADS)

    Wołowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosinski, M.; Turan, R.; Yerci, S.

    This work reports experiment concerning specific applications of implantation of laser-produced ions for production of semiconductor nanocrystals. The investigation was carried out in the IPPLM within the EC STREP `SEMINANO' project. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 μ m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced ions was performed with the use of `time-of-flight' ion diagnostics simultaneously with other diagnostic methods in dependence on laser pulse parameters, illumination geometry and target material. The properties of laser-implanted and modified SiO2 layers on sample surface were characterised with the use of different methods (XPS + ASD, Raman spectroscopy, PL spectroscopy) at the Middle East Technological University in Ankara and at the Warsaw University of Technology. The production of the Ge nanocrystallites has been demonstrated for annealed samples prepared in different experimental conditions.

  15. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    NASA Astrophysics Data System (ADS)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  16. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  17. Coherence switching of a vertical-cavity semiconductor-laser for multimode biomedical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Knitter, Sebastian; Liu, Changgeng; Redding, Brandon; Khokha, Mustafa Kezar; Choma, Michael Andrew

    2017-02-01

    Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a semiconductor-based degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. Our system is designed around a semiconductor gain element, and overcomes barriers presented by previous low spatial coherence lasers. The gain medium is an electrically-pumped vertical external cavity surface emitting laser (VECSEL) with a large active area. The use of a degenerate external cavity enables either distributing the laser emission over a large ( 1000) number of mutually incoherent spatial modes or concentrating emission to few modes by using a pinhole in the Fourier plane of the self-imaging cavity. To demonstrate the unique potential of spatial coherence switching for multimodal biomedical imaging, we use both low and high spatial coherence light generated by our VECSEL-based degenerate laser for imaging embryo heart function in Xenopus, an important animal model of heart disease. The low-coherence illumination is used for high-speed (100 frames per second) speckle-free imaging of dynamic heart structure, while the high-coherence emission is used for laser speckle contrast imaging of the blood flow.

  18. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  19. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser

  20. Development of Solid State Laser Materials for Application in Lasers for Atmospheric Ozone and Water Vapor Sensing

    NASA Technical Reports Server (NTRS)

    Noginov, Makhail A.; Loutts, G. B.

    2002-01-01

    We have grown neodymium doped mixed apatite crystals, (Sr(x)Ba(l-x)5(PO4)3F, Sr5(P(1-x)V(x)O4)3F, and Ba5(P(1-x)V(x)O4)3F, and spectroscopically studied them as potential gain media for a laser source for atmospheric water sensing operating at 944.11 nm0. We conclude that an appropriate apatite host material for a 944.11 nm laser should be a mixture of Sr5(PO4)3F with a small fraction of Ba5(PO4)3F. The precise wavelength tuning around 944.11 nm can be accomplished by varying the host composition, temperature, and threshold population inversion. In apatite crystals of mixed composition, the Amplified Spontaneous Emission (ASE) loss at 1.06 microns is predicted to be significantly smaller than that in the end members.

  1. Bibliography of Soviet Laser Developments, September-October 1987

    DTIC Science & Technology

    1988-10-01

    Lasers , Gas Lasers , Chemical Lasers , Laser Components Nonlinear Optics, Spectroscopy of Laser Materials, Ultrashort Pulse Generation, Laser ...optics; spectroscopy of laser materials; ultrashort pulse generation; crystal growing; theoretical aspects of advanced lasers ; and general laser theory...focusing ....................... 26 6. Acoustic Interaction ................ 26 G. Spectroscopy of Laser Materials ......... 28 H.

  2. Broadband monolithic extractors for terahertz quantum cascade laser based frequency combs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rösch, Markus; Benea-Chelmus, Ileana-Cristina; Scalari, Giacomo; Bonzon, Christopher B.; Süess, Martin J.; Beck, Mattias; Faist, Jérôme

    2017-02-01

    Recent work has been showing the possibility of generating frequency combs at terahertz frequencies using terahertz quantum cascade lasers. The main efforts so far were on getting the laser to work in a stable comb operation over an as broad as possible spectral bandwidth. Another issue is the scattered farfield of such combs due to their subwavelength facets of the used metal-metal waveguide. In contrast to single mode lasers the monolithic approaches of distributed feedback lasers or photonic crystals cannot be used. We present here a monolithic broadband extractor compatible with frequency comb operation based on the concept of an end-fire antenna. The antenna can be fabricated using standard fabrication techniques. It has been designed to support a bandwidth of up to 600 GHz at a central frequency of 2.5 THz. The fabricated devices show single lobed farfields with only minor asymmetries, increased output power along an increased dynamical range of frequency comb operation. A side-absorber schematics using a thin film of Nickel has been used to suppress any higher-order lateral modes in the laser. The reported frequency combs with monolithic extractors are ideal candidates for spectroscopic applications at terahertz frequencies using a self-detected dual-comb spectroscopy setup due to the increased dynamical range along with the improved farfield leading to more output power of the frequency combs.

  3. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials.

    PubMed

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-07

    Transparent Er 3+ -doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH - ) content. Enhanced 2.7 μm emission was achieved from Er 3+ -doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO 2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er 3+ -doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10 -20  cm 2 ). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  4. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    PubMed Central

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-01-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570

  5. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  6. Compact 1.5-GHz intra-burst repetition rate Yb-doped all-PM-fiber laser system for ablation-cooled material removal

    NASA Astrophysics Data System (ADS)

    Akcaalan, Onder; Kalaycioglu, Hamit; Ilday, F. Omer

    Although fs fiber laser systems are powerful technologies for material and tissue processing, limited ablation rates and high energy are drawbacks. Recently, we identified a new regime of laser-material interaction, ablation-cooled laser material removal, where the repetition rate has to be high enough so that the targeted spot size cannot cool down substantially by heat conduction which scales down ablation threshold by several orders of magnitude and reduces thermal effects to the bulk of the target. This opens the door to simplified laser systems for processing. In order to exploit this regime in tissue processing, a compact all-PM-fiber laser amplifier system with an intra-burst repetition rate of 1.5 GHz is developed on a 40 x 65 cm platform. The system is able to produce bursts ranging from 20-ns to 65-ns duration with 20 uJ to 80 uJ total energy, respectively, and pulses with up to 2 uJ individual energy and burst repetition rate ranging from 25 kHz to 200 kHz. The seed signal is generated by a home-built all-normal dispersion oscillator with 385 MHz repetition rate and converted to approximately 1.5 GHz by a multiplier. Amplified pulses are compressed to approximately 250-fs, the shortest pulse width for burst-mode fiber laser systems known to date.

  7. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    NASA Astrophysics Data System (ADS)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  8. Enhanced Damage-Resistant Optics for Spaceflight Laser Systems: Workshop findings and recommendations

    NASA Technical Reports Server (NTRS)

    Schulze, Norman; Cimolino, Marc; Guenther, Arthur; Mcminn, Ted; Rainer, Frank; Schmid, Ansgar; Seitel, Steven C.; Soileau, M. J.; Theon, John S.; Walz, William

    1991-01-01

    NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage.

  9. Everlasting Dark Printing on Alumina by Laser

    NASA Astrophysics Data System (ADS)

    Penide, J.; Quintero, F.; Arias-González, F.; Fernández, A.; del Val, J.; Comesaña, R.; Riveiro, A.; Lusquiños, F.; Pou, J.

    Marks or prints are needed in almost every material, mainly for decorative or identification purposes. Despite alumina is widely employed in many different industries, the need of printing directly on its surface is still a complex problem. In this sense, lasers have largely demonstrated their high capacities to mark almost every material including ceramics, but performing dark permanent marks on alumina is still an open challenge. In this work we present the results of a comprehensive experimental analysis on the process of marking alumina by laser. Four different laser sources were used in this study: a fiber laser (1075 nm) and three diode pumped Nd:YVO4 lasers emitting at near-infrared (1064 nm), visible (532 nm) and ultraviolet (355 nm) wavelengths, respectively. The results obtained with the four lasers were compared and physical processes involved were explained in detail. Colorimetric analyses allowed to identify the optimal parameters and conditions to produce everlasting and high contrast marks on alumina.

  10. Laser Induced Breakdown Spectroscopy of Metals

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawhead, Carlos; Ujj, Laszlo

    2015-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a very practical spectroscopy to determine the chemical composition of materials. Recent technical developments resulted in equipment used on the MARS Rover by NASA. It is capable of measuring the emission spectra of laser induced plasma created by energetic laser pulses focused on the sample (rocks, metals, etc.). We have develop a Laser Induced Breakdown Spectroscopy setup and investigated the necessary experimental and methodological challenges needed to make such material identification measurements. 355 and 532 nm laser pulses with 5 ns temporal duration was used to generate micro-plasma from which compositions can be determined based on known elemental and molecular emission intensities and wavelengths. The performance of LIBS depends on several parameters including laser wavelength, pulse energy, pulse duration, time interval of observation, geometrical configuration of collecting optics, and the properties of ambient medium. Spectra recorded from alloys (e.g. US penny coin) and pure metals will be presented. Special thanks for the financial support of the Office of Undergraduate Research of UWF.

  11. Material Processing Laser Systems In Production

    NASA Astrophysics Data System (ADS)

    Taeusch, David R.

    1988-11-01

    The laser processing system is now a respected, productive machine tool in the manufacturing industries. Systems in use today are proving their cost effectiveness and capabilities of processing quality parts. Several types of industrial lasers are described and their applications are discussed, with emphasis being placed on the production environment and methods of protection required for optical equipment against this normally hostile environment.

  12. Modification of semiconductor materials with the use of plasma produced by low intensity repetitive laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolowski, J.; Rosinski, M.; Badziak, J.

    2008-03-19

    This work reports experiments concerning specific application of laser-produced plasma at IPPLM in Warsaw. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 {mu}m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced plasma was performed with the use of 'time-of-flight' ion diagnostics simultaneously with other diagnostic methods. The results of laser-matter interaction were obtained in dependence on laser pulse parameters, illumination geometry and target material. The modified SiO{sub 2} layers and sample surface properties were characterised with the use of differentmore » methods at the Middle-East Technological University in Ankara and at the Warsaw University of technology. The production of the Ge nanocrystallites has been demonstrated for annealed samples prepared in different experimental conditions.« less

  13. Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser

    DTIC Science & Technology

    2016-12-15

    Laboratory 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 AFRL /RDHP 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RD-PS-TR-2016-0055 12...6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 1 cy Official Record Copy AFRL /RDHP/Andreas Schmitt-Sody 1 cy Approved for Public... AFRL -RD-PS- AFRL -RD-PS- TR-2016-0055 TR-2016-0055 NON-LINEAR OPTICAL STUDIES OF IR MATERIALS WITH INFRARED FEMTOSECOND LASER Enam

  14. Toward a comprehensive UV laser ablation modeling of multicomponent materials—A non-equilibrium investigation on titanium carbide

    NASA Astrophysics Data System (ADS)

    Ait Oumeziane, Amina; Parisse, Jean-Denis

    2018-05-01

    Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.

  15. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening

    PubMed Central

    Gujba, Abdullahi K.; Medraj, Mamoun

    2014-01-01

    The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed. PMID:28788284

  16. Supersonic laser spray of aluminium alloy on a ceramic substrate

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Lusquiños, F.; Comesaña, R.; Quintero, F.; Pou, J.

    2007-12-01

    Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.

  17. Sealing ability of three root-end filling materials prepared using an erbium: Yttrium aluminium garnet laser and endosonic tip evaluated by confocal laser scanning microscopy

    PubMed Central

    Nanjappa, A Salin; Ponnappa, KC; Nanjamma, KK; Ponappa, MC; Girish, Sabari; Nitin, Anita

    2015-01-01

    Aims: (1) To compare the sealing ability of mineral trioxide aggregate (MTA), Biodentine, and Chitra-calcium phosphate cement (CPC) when used as root-end filling, evaluated under confocal laser scanning microscope using Rhodamine B dye. (2) To evaluate effect of ultrasonic retroprep tip and an erbium:yttrium aluminium garnet (Er:YAG) laser on the integrity of three different root-end filling materials. Materials and Methods: The root canals of 80 extracted teeth were instrumented and obturated with gutta-percha. The apical 3 mm of each tooth was resected and 3 mm root-end preparation was made using ultrasonic tip (n = 30) and Er:YAG laser (n = 30). MTA, Biodentine, and Chitra-CPC were used to restore 10 teeth each. The samples were coated with varnish and after drying, they were immersed in Rhodamine B dye for 24 h. The teeth were then rinsed, sectioned longitudinally, and observed under confocal laser scanning microscope. Statistical Analysis Used: Data were analyzed using one-way analysis of variance (ANOVA) and a post-hoc Tukey's test at P < 0.05 (R software version 3.1.0). Results: Comparison of microleakage showed maximum peak value of 0.45 mm for Biodentine, 0.85 mm for MTA, and 1.05 mm for Chitra-CPC. The amount of dye penetration was found to be lesser in root ends prepared using Er:YAG laser when compared with ultrasonics, the difference was found to be statistically significant (P < 0.05). Conclusions: Root-end cavities prepared with Er:YAG laser and restored with Biodentine showed superior sealing ability compared to those prepared with ultrasonics. PMID:26180420

  18. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials.

    PubMed

    Holá, Markéta; Mikuska, Pavel; Hanzlíková, Renáta; Kaiser, Jozef; Kanický, Viktor

    2010-03-15

    A study of LA-ICP-MS analysis of pressed powdered tungsten carbide precursors was performed to show the advantages and problems of nanosecond laser ablation of matrix-unified samples. Five samples with different compositions were pressed into pellets both with silver powder as a binder serving to keep the matrix unified, and without any binder. The laser ablation was performed by nanosecond Nd:YAG laser working at 213 nm. The particle formation during ablation of both sets of pellets was studied using an optical aerosol spectrometer allowing the measurement of particle concentration in two size ranges (10-250 nm and 0.25-17 microm) and particle size distribution in the range of 0.25-17 microm. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using a scanning electron microscope (SEM) and the particle chemical composition was determined by an energy dispersive X-ray spectroscope (EDS). The matrix effect was proved to be reduced using the same silver powdered binder for pellet preparation in the case of the laser ablation of powdered materials. The LA-ICP-MS signal dependence on the element content present in the material showed an improved correlation for Co, Ti, Ta and Nb of the matrix-unified samples compared to the non-matrix-unified pellets. In the case of W, the ICP-MS signal of matrix-unified pellets was influenced by the changes in the particle formation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  20. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  1. Investigation of laser-tissue interaction in medicine by means of laser spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Lademann, Juergen; Weigmann, Hans-Juergen

    1995-01-01

    Toxic and carcinogenic substances were produced during laser application in medicine for the cutting and evaporation of tissue. The laser smoke presents a danger potential for the medical staff and the patients. The laser tissue interaction process was investigated by means of laser spectroscopic measurements which give the possibility of measuring metastable molecular states directly as a prerequisite to understand and to influence fundamental laser tissue interaction processes in order to reduce the amount of harmful chemicals. Highly excited atomic and molecular states and free radicals (CN, OH, C2, CH, CH2) have been detected applying spontaneous and laser induced fluorescence methods. It was found that the formation of harmful substances in the laser plumes can be reduced significantly by optimization of the surrounding gas atmosphere. A high content of oxygen or water in the interaction zone has been found, in agreement with the results of classical and analytical methods, as a suitable way to decrease pollutant emission. The experimental methods and the principal results are applicable not only in laser medicine but in laser material treatment generally.

  2. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  3. On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials

    NASA Astrophysics Data System (ADS)

    George, D. S.; Onischenko, A.; Holmes, A. S.

    2004-03-01

    Focused laser ablation by single laser pulses at varying angles of incidence is studied in two materials of interest: a solgel (Ormocer 4) and a polymer (SU8). For a range of angles (up to 70° from normal), and for low-energy (<20 μJ), 40 ns pulses at 266 nm wavelength, the ablation depth along the direction of the incident laser beam is found to be independent of the angle of incidence. This allows the crater profiles at oblique incidence to be generated directly from the crater profiles at normal incidence by a simple coordinate transformation. This result is of use in the development of simulation tools for direct-write laser ablation. A simple model based on the moving ablation front approach is shown to be consistent with the observed behavior.

  4. Laser-triggered vacuum switch

    DOEpatents

    Brannon, Paul J.; Cowgill, Donald F.

    1990-01-01

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable.

  5. Selective Laser Melting of Hot Gas Turbine Components: Materials, Design and Manufacturing Aspects

    NASA Astrophysics Data System (ADS)

    Goutianos, Stergios

    2017-07-01

    Selective Laser Melting (SLM) allows the design and manufacturing of novel parts and structures with improved performance e.g. by incorporating complex and more efficient cooling schemes in hot gas turbine parts. In contrast to conventional manufacturing of removing material, with SLM parts are built additively to nearly net shape. This allows the fabrication of arbitrary complex geometries that cannot be made by conventional manufacturing techniques. However, despite the powerful capabilities of SLM, a number of issues (e.g. part orientation, support structures, internal stresses), have to be considered in order to manufacture cost-effective and high quality parts at an industrial scale. These issues are discussed in the present work from an engineering point of view with the aim to provide simple quidelines to produce high quality SLM parts.

  6. Multi-functional laser fabrication of diamond (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salter, Patrick S.; Booth, Martin J.

    2017-03-01

    Ultrafast laser fabrication enables micro-structuring of diamond in 3D with a range of functionality. An ultrashort pulsed beam focused beneath the diamond surface induces structural modifications which are highly localised in three dimensions. At high pulse energy, the laser breaks down the diamond lattice at focus to form a graphitic phase. We demonstrate high resolution analysis of the structural changes revealing the graphitic phase to be formed of small clusters ( 100 nm in size) of amorphous sp2 bonded carbon accompanied by localised cracking of the diamond. When the laser focus is traced through the diamond, continuous graphitic wires are created which are electrically conductive. We have used such wires to fabricate large-area 3D radiation sensors which have been employed for the detection of high energy protons. Such graphitic wires have an associated stress field and a related localised modulation of the refractive index. We have recently written combinations of graphitic tracks in diamond to engineer stress fields to give a desired refractive index distribution and form an optical waveguide. Type III waveguides are demonstrated that allow guiding of both polarization states. We also show that by reducing the laser pulse energy, it is possible to avoid complete breakdown of the diamond lattice and simply introduce an ensemble of vacancies within the focal volume. This can be used to create single coherent NV centres in diamond isolated in 3D. All these processes are improved by processing at high numerical aperture (NA), for which adaptive optics aberration correction is essential.

  7. Crystal growth and near infrared optical properties of Pr 3+ doped lead halide materials for resonantly pumped eye safe laser applications

    NASA Astrophysics Data System (ADS)

    Jones, Ivy Krystal

    In this dissertation the material development and optical spectroscopy of Pr3+ activated low phonon energy halide crystals is presented for possible applications in resonantly pumped eye-safe solid-state laser gain media. In the last twenty years, the developments in fiber and diode lasers have enabled highly efficient resonant pumping of Pr3+ doped crystals for possible lasing in the 1.6--1.7 microm region. In this work, the results of the purification, crystal growth, and near-infrared (NIR) spectroscopic characterization of Pr3+ doped lead (II) chloride, PbCl2 and lead (II) bromide, PbBr2 are presented. The investigated PbCl2 and PbBr2 crystals are non-hygroscopic with maximum phonon energies between ~180--200 cm-1, which enable efficient emission in the NIR spectral region (~ 1.6 microm) from the 3F3/3F4 → 3H4 transition of Pr3+ ions. The commercial available starting materials were purchased as ultra dry, high purity (~ 99.999 %) beads and purified through a combination of zone-refinement and halogenation. The crystal growth of Pr3+ doped PbCl 2 and PbBr2 was performed via vertical Bridgman technique using a two-zone furnace. The resulting Pr3+ doped PbCl 2 and PbBr2 crystals exhibited characteristic IR absorption bands in the 1.5--1.7 microm region (3H4 → 3F3/3F4), which allow for resonant pumping using commercial diode lasers. A broad IR emission band centered at ~1.6 microm was observed under ~1445 nm diode laser excitation from both Pr3+ doped halides. This dissertation presents comparative spectroscopic results for Pr 3+:PbCl2 and Pr3+:PbBr2 including NIR absorption and emission studies, lifetime measurements, modelling of radiative and non-radiative decay rates, determination of transition cross-section, and the net effective gain cross sections.

  8. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  9. Femtosecond diode-pumped mode-locked neodymium lasers

    NASA Astrophysics Data System (ADS)

    Kubeček, Václav; Jelínek, Michal; Čech, Miroslav; Vyhlídal, David; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Qian, Xiaobo; Wang, Jingya; Xu, Jun

    2016-12-01

    Fluoride-type crystals (CaF2, SrF2) doped with neodymium Nd3+ and codoped with buffer ions for breaking clusters of active ions and increasing fluorescence efficiency, present interesting alternative as laser active media for the diode-pumped mode-locked lasers. In comparison with widely used materials as Nd:YAG or Nd:YVO4, they have broad emission spectra as well as longer fluorescence lifetime, in comparison with Nd:glass, SrF2 and CaF2 have better thermal conductivity. In spite of the fact, that this thermal conductivity decreases with Nd3+ doping concentration, these crystals are alternative for the Nd:glass in subpicosecond mode-locked laser systems. In this paper we review the basic results reported recently on these active materials and in the second part we present our results achieved in low power diode pumped passively mode locked lasers with Nd,La:CaF2 and Nd,Y:SrF2 crystals. The pulses as short as 258 fs at wavelength of 1057 nm were obtained in the first case, while 5 ps long pulses at 1065 nm were generated from the second laser system.

  10. Modeling of the self-Q-switching behavior of lasers based on chromium doped active material

    NASA Astrophysics Data System (ADS)

    Fromager, M.; Ameur, K. Aı̈t

    2001-05-01

    The aim of this paper is to study the influence of the direct coupling of the average lattice strains to the active ions on the behavior of a gain switching laser based on chromium doped active material. It is found that the resulting nonlinear time-dependent lensing effect combined with an internal aperture behaves as a saturable absorber. A resulting self-Q-switching effect is observed from the calculated output laser pulses. The results of our modeling are in agreement with experimental observations already reported in literature.

  11. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  12. Cr.sup.3+-doped laser materials and lasers and methods of making and using

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Bykov, Alexey (Inventor); Petricevic, Vladimir (Inventor); Sharonov, Mikhail (Inventor)

    2008-01-01

    A laser medium includes a single crystal of chromium-doped LiSc.sub.l-xIn.sub.xGe.sub.1-ySi.sub.yO.sub.4, where 0.ltoreq.x.ltoreq.1 and 0.ltoreq.y.ltoreq.1. Preferably, x and y are not both 0. A laser, such as a tunable near infrared laser, can contain the laser medium.

  13. Studies of new media radiation induced laser

    NASA Technical Reports Server (NTRS)

    Han, K. S.; Shiu, Y. J.; Raju, S. R.; Hwang, I. H.; Tabibi, B.

    1984-01-01

    Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed.

  14. Laser-triggered vacuum switch

    DOEpatents

    Brannon, P.J.; Cowgill, D.F.

    1990-12-18

    A laser-triggered vacuum switch has a material such as a alkali metal halide on the cathode electrode for thermally activated field emission of electrons and ions upon interaction with a laser beam, the material being in contact with the cathode with a surface facing the discharge gap. The material is preferably a mixture of KCl and Ti powders. The laser may either shine directly on the material, preferably through a hole in the anode, or be directed to the material over a fiber optic cable. 10 figs.

  15. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  16. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  17. Tailored laser beam shaping for efficient and accurate microstructuring

    NASA Astrophysics Data System (ADS)

    Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.

    2018-02-01

    Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.

  18. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  19. Prototyping of Dental Structures Using Laser Milling

    NASA Astrophysics Data System (ADS)

    Andreev, A. O.; Kosenko, M. S.; Petrovskiy, V. N.; Mironov, V. D.

    2016-02-01

    The results of experimental studies of the effect of an ytterbium fiber laser radiation parameters on processing efficiency and quality of ZrO2 ceramics widely used in stomatology are presented. Laser operating conditions with optimum characteristics for obtaining high quality final surfaces and rapid material removal of dental structures are determined. The ability of forming thin-walled ceramic structures by laser milling technology (a minimum wall thickness of 50 μm) is demonstrated. The examples of three-dimensional dental structures created in computer 3D-models of human teeth using laser milling are shown.

  20. Principles of laser surgery. Advantages and disadvantages.

    PubMed

    Ballow, E B

    1992-07-01

    An attempt has been made in this article to present an honest and accurate state-of-art narrative of laser surgery for pedal conditions. The theory of operation, physiologic effects and procedural comparisons have been presented regarding those procedures and lasers that are available for use by podiatric surgeons and others treating the foot and leg. Although some information described within this article is anecdotal, it is elaborated with representative expert material from the scientific literature. Overall, a sound theoretic understanding of the mode of action of lasers and extensive training and experience is encouraged when engaging in this exciting discipline of surgery.

  1. Solar-pumped CO laser

    NASA Astrophysics Data System (ADS)

    Treanor, Charles E.

    This paper describes a method of converting thermal radiation directly into laser radiation at a wavelength of about 5 micrometers. The working fluid for the laser operation is a mixture of carbon monoxide and argon. The source of thermal radiation is assumed to be a solar oven or electrical oven operating in the range of 2000 to 2500 K. The use of carbon monoxide as the lasing material presents the advantage that the absorbing lines can be pressure broadened to permit efficient absorption of the thermal radiation without unacceptable increases in vibrational relaxation. Estimates of the efficiency, size, and power loading of such a laser are discussed.

  2. Utilizing Laser-Induced Breakdown Spectroscopy Method to recognize chemical composition of low-carbon steel in NH3(NO)4 material

    NASA Astrophysics Data System (ADS)

    Saud Oraibi, Nissan

    2018-05-01

    A standoff laser Induced Break down Spectroscopy (L.I.B.S) technique has been used to characterization the organic material such as NH3(NO)4, a Q-switched Nd:YAG laser (1064 nm wavelength, 9 ns pulse width and 1 Hz repetition rate, 300 mJ is focused to the targets to generate plasma. HR 4000 CG-UV-NIR spectrum analyzer was used to collect the generated plasma emissions, specific signature of each targets material can be obtained by analysis the plasma emission spectrum Peak ratio analysis technique is used for the identification of energetic materials.

  3. Computational modelling of Er(3+): Garnet laser materials

    NASA Technical Reports Server (NTRS)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  4. Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Renz, Günther

    2015-02-01

    An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.

  5. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  6. Space Operation of the MOLA Laser

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.

    2000-01-01

    Interest in lasers for space applications such as active remote sensing in Earth orbit, planetary science, and inter-satellite laser communications is growing. These instruments typically use diode-pumped solid state lasers for the laser transmitter. The mission specifications and constraints of space qualification, place strict requirements on the design and operation of the laser. Although a laser can be built in the laboratory to meet performance specifications relatively routinely, tile mission constraints demand unique options and compromises in the materials used, and design to ensure the success of the mission. Presently, the best laser architecture for a light weight, rugged, high peak power and efficient transmitter is a diode laser pumped ND:YAG laser. Diode lasers can often obviate the need for water cooling, reduce the size and weight of the laser, increase the electrical to optical efficiency, system reliability, and lifetime. This paper describes the in-space operation and performance of the Mars Orbiter Laser Altimeter (MOLA) laser transmitter, representing the current state-of-the-art in space-based solid- state lasers.

  7. EDITORIAL Light-induced material organization Light-induced material organization

    NASA Astrophysics Data System (ADS)

    Vainos, Nikos; Rode, Andrei V.

    2010-12-01

    Light-induced material organization extends over a broad area of research, from photon momentum transfer to atoms, molecules and particles, serving the basis for optical trapping, and expands into the laser-induced changes of material properties through photopolymerization, photodarkening, and materials ablation. Relevant phenomena are observed over many orders of magnitude of light intensity, from a few kW cm-2 for the optical trapping of living cells to 1014 W cm-2 encountered in femtosecond laser micromachining and micro-explosion. Relevant interactions reveal a rich palette of novel phenomena in the solid state, from subtle excitations and material organization to phase transformations, non-equilibrium and transient states. The laser-induced material modifications relate to changes in the crystal structure and the molecular bonding, phase transitions in liquid state, ablation and plasma production associated with extreme pressure and temperature conditions towards entirely new states of matter. The underlying physical mechanisms form the foundations for micro-engineering photonic and other functional devices and lead the way to relevant applications. At the same time, they hold the potential for creating non-equilibrium material states and a range of fundamentally new products not available by other means. The fundamental understanding of both materials nature and functional behaviour will ultimately yield novel devices and improved performance in several fields. The far reaching goals of these studies relate to the development of new methods and technologies for micro- and nano-fabrication, not only offering a significant reduction of cost, but also expanding the fabrication capabilities into unexplored areas of biophotonics and nanotechnology. This special issue of Journal of Optics presents some very recent and exciting advances in the field of materials manipulation by laser beams, aiming to underline its current trends. In optical trapping research we

  8. Laser Surface Microstructuring of Biocompatible Materials Using a Microlens Array and the Talbot Effect: Evaluation of the Cell Adhesion.

    PubMed

    Aymerich, María; Nieto, Daniel; Álvarez, Ezequiel; Flores-Arias, María T

    2017-02-22

    A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material.

  9. Depth-resolved sample composition analysis using laser-induced ablation-quadrupole mass spectrometry and laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Oelmann, J.; Gierse, N.; Li, C.; Brezinsek, S.; Zlobinski, M.; Turan, B.; Haas, S.; Linsmeier, Ch.

    2018-06-01

    Monitoring a sample's material composition became more and more important over the last years for both - industrial process control as well as for post mortem analysis in research and industrial development. Although material composition identification as well as a comparison with standard samples works fine, there is a lack of diagnostics which can provide quantitative information with depth resolution without any standard samples. We present a novel method utilizing a residual gas analysis with quadrupole mass spectrometry after picosecond laser-induced ablation and release of volatile species. In the present experiment, well characterized multilayer thin film solar cells (μc-Si:H and a-Si:D as p-i-n-junctions on ZnO:Al electrodes) are used as a set of well characterized material samples to demonstrate the capabilities of the new method. The linearity of the spectrometer signal to gas pressure simplifies its calibration and reduces its uncertainties in comparison with other analysis techniques, although high vacuum conditions (10-6 hPa to 10-7 hPa) are required to reach high sensitivity better than the percent-range. Moreover, the laser-ablation based sample analysis requires no preparation of the sample and is flexible regarding ablation rates. The application of a picosecond laser pulse ensures that the thermal penetration depth of the laser is in the same order of magnitude as the ablation rate, which enables to achieve depth resolutions in the order of 100 nm and avoids matrix mixing effects at the edge of the laser-induced crater in the sample.

  10. Optical Characterization of Pulse Laser Deposition of Thin Films of Hard Materials Using RHEED and AFM Techniques

    DTIC Science & Technology

    2011-12-20

    diamond thin-film generation. PLD is initiated by laser ablation, which is essentially evaporation of a material by a high - powered laser. Subsequently...COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

  11. Laser Weldability of High-Strength Al-Zn Alloys and Its Improvement by the Use of an Appropriate Filler Material

    NASA Astrophysics Data System (ADS)

    Enz, Josephin; Riekehr, Stefan; Ventzke, Volker; Huber, Norbert; Kashaev, Nikolai

    2016-06-01

    Heat-treatable Al-Zn alloys are promising candidates for use as structural lightweight materials in automotive and aircraft applications. This is mainly due to their high strength-to-density ratio in comparison to conventionally employed Al alloys. Laser beam welding is an efficient method for producing joints with high weld quality and has been established in the industry for many years. However, it is well known that aluminum alloys with a high Zn content or, more precisely, with a high (Zn + Mg + Cu) content are difficult to fusion weld due to the formation of porosity and hot cracks. The present study concerns the laser weldability of these hard-to-weld Al-Zn alloys. In order to improve weldability, it was first necessary to understand the reasons for weldability problems and to identify crucial influencing factors. Based on this knowledge, it was finally possible to develop an appropriate approach. For this purpose, vanadium was selected as additional filler material. Vanadium exhibits favorable thermophysical properties and, thereby, can improve the weldability of Al-Zn alloys. The effectiveness of the approach was verified by its application to several Al-Zn alloys with differing amounts of (Zn + Mg + Cu).

  12. Integration of terrestrial laser scanner, ultrasonic and petrographical data in the diagnostic process on stone building materials

    NASA Astrophysics Data System (ADS)

    Casula, Giuseppe; Fais, Silvana; Giovanna Bianchi, Maria; Cuccuru, Francesco; Ligas, Paola

    2015-04-01

    The Terrestrial Laser Scanner (TLS) is a modern contactless non-destructive technique (NDT) useful to 3D-model complex-shaped objects with a few hours' field survey. A TLS survey produces very dense point clouds made up of coordinates of point and radiometric information given by the reflectivity parameter i.e. the ratio between the amount of energy emitted by the sensor and the energy reflected by the target object. Modern TLSs used in architecture are phase instruments where the phase difference obtained by comparing the emitted laser pulse with the reflected one is proportional to the sensor-target distance expressed as an integer multiple of the half laser wavelength. TLS data are processed by registering point clouds i.e. by referring them to the same reference frame and by aggregation after a fine registration procedure. The resulting aggregate point cloud can be compared with graphic primitives as single or multiple planes, cylinders or spheres, and the resulting residuals give a morphological map that affords information about the state of conservation of the building materials used in historical or modern buildings, in particular when compared with other NDT techniques. In spite of its great productivity, the TLS technique is limited in that it is unable to penetrate the investigated materials. For this reason both the 3D residuals map and the reflectivity map need to be correlated with the results of other NDT techniques such as the ultrasonic method, and a complex study of the composition of building materials is also necessary. The application of a methodology useful to evaluate the quality of stone building materials and locate altered or damaged zones is presented in this study based on the integrated application of three independent techniques, two non destructive such as the TLS and the ultrasonic techniques in the 24-54 kHz range, and a third to analyze the petrographical characteristics of the stone materials, mainly the texture, with optical and

  13. Influencing Factors and Workpiece's Microstructure in Laser-Assisted Milling of Titanium

    NASA Astrophysics Data System (ADS)

    Wiedenmann, R.; Liebl, S.; Zaeh, M. F.

    Today's lightweight components have to withstand increasing mechanical and thermal loads. Therefore, advanced materials substitute conventional materials like steel or aluminum alloys. Using these high-performance materials the associated costs become prohibitively high. This paper presents the newest fundamental investigations on the hybrid process 'laser-assisted milling' which is an innovative technique to process such materials. The focus is on the validation of a numerical database for a CAD/CAM process control unit which is calculated by using simulation. Prior to that, the influencing factors on a laser-assisted milling process are systematically investigated using Design of Experiments (DoE) to identify the main influencing parameters coming from the laser and the milling operation.

  14. Mathematical Modelling of Laser/Material Interactions.

    DTIC Science & Technology

    1983-11-25

    check the relationship between the raw and focussed beams. REFERENCES 1. DULEY,W.W. CO Lasers effects and applications Academic press 1976 2. READY,J.F...Effects of high power laser radiation Academic press 1971 3. KOGELNIK.H.& LI,T. Proc IEEE 54 1312 1966 4. BORN,M.& WOLF,E. Principles of optics...zone at toe Mi Partial temport. ,- : dist , Ielting -point of the substrate to facilitate transverse nec.t a’ X a fusion bond. Thin in obtained if ’g

  15. Joining of materials using laser heating

    DOEpatents

    Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.

    2003-07-01

    A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.

  16. Design of a high pulse repitition frequency carbon dioxide laser for processing high damage threshold materials

    NASA Astrophysics Data System (ADS)

    Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.

    1989-07-01

    The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.

  17. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  18. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  19. Effective transvascular drug delivery to glioma in rats by using a pulsed laser-induced photomechanical wave (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akutsu, Yusuke; Sato, Shunichi; Tomiyama, Arata; Tsunoi, Yasuyuki; Kawauchi, Satoko; Mori, Kentaro; Terakawa, Mitsuhiro

    2016-03-01

    Glioma is one of the most aggressive cancers, for which efficacy of conventional chemotherapy is often limited due to the blood-tumor barrier (BTB). Thus, the development of a method for enhancing the BTB permeability is strongly desired. In this study, we applied a photomechanical wave (PMW), which was generated by the irradiation of a light-absorbing material with a nanosecond laser pulse, to transiently open the BTB in a rat intracranial glioma model using C6 cells. A tumor was grown in the both hemispheres, and a solution of Evans blue (EB), as a test drug, was injected into the tail vein. Thereafter, we applied a PMW generated at a laser fluence of 0.2 J/cm2 (averaged peak pressure, ~27 MPa), 0.4 J/cm2 (~54 MPa) or 0.6 J/cm2 (~78MPa), to one hemisphere through the cranial window, while the other hemisphere served as a control. Four hours later, the rat was perfused, and we compared intensity distributions of EB fluorescence between the both hemispheres. Intensities of EB fluorescence both in the peritumoral and tumor core regions were increased with increasing the laser fluence, but hemorrhage was observed at the highest fluence. Thus, 0.4 J/cm2 would be optimum for efficient and safe BTB opening. On the basis of fluorescence microscopy with the use of enhanced green fluorescent protein-expressing C6 cells, we confirmed that a drug was delivered into targeted glioma cells in the peritumoral region. These results show the validity of the present transvascular drug delivery method to glioma.

  20. Bibliography of Soviet Laser Developments, Number 81, January-February 1986

    DTIC Science & Technology

    1987-04-24

    Lasers , Liquid Lasers ; Gas Lasers ; Chemical Lasers , Laser Components Nonlinear Optics, Spectroscopy of Laser Materials, Ultrashort Pulse Generation...spectroscopy of laser materials; ultrashort pulse generation; theoretical aspects of advanced lasers ; and general laser theory. Laser applications are...28 6. Acoustic Interaction ................ 28 G. Spectroscopy of Laser Materials ......... 28 H. Ultrashort

  1. kW-class diode laser bars

    NASA Astrophysics Data System (ADS)

    Strohmaier, S. G.; Erbert, G.; Meissner-Schenk, A. H.; Lommel, M.; Schmidt, B.; Kaul, T.; Karow, M.; Crump, P.

    2017-02-01

    Progress will be presented on ongoing research into the development of ultra-high power and efficiency bars achieving significantly higher output power, conversion efficiency and brightness than currently commercially available. We combine advanced InAlGaAs/GaAs-based epitaxial structures and novel lateral designs, new materials and superior cooling architectures to enable improved performance. Specifically, we present progress in kilowatt-class 10-mm diode laser bars, where recent studies have demonstrated 880 W continuous wave output power from a 10 mm x 4 mm laser diode bar at 850 A of electrical current and 15°C water temperature. This laser achieves < 60% electro-optical efficiency at 880 W CW output power.

  2. What laser does your practice need? Advantages, considerations, and practice integration of laser dentistry.

    PubMed

    Coluzzi, Donald J

    2008-12-01

    The use of lasers in dentistry has expanded and improved some treatment options for those clinicians who have adopted the technology. As with all dental materials and instruments, the practitioner must use clinical experience, receive proper training, become very familiar with the operating manual, and proceed within the scope of his or her practice. The potential purchaser should carefully analyze the style and type of the practice to decide how useful the device could be. Moreover, attending introductory courses, seminars, and presentations, such as those at the aforementioned Academy of Laser Dentistry's Annual Conference, or at various state and national scientific sessions, are essential before buying. Because of the varied composition of human tissue and the differing ways that laser energy is absorbed, there is no single perfect laser. However, our patients continue to agree that the dental laser is a wonderful instrument.

  3. Laser-induced emission, fluorescence and Raman hybrid setup: A versatile instrument to analyze materials from cultural heritage

    NASA Astrophysics Data System (ADS)

    Syvilay, D.; Bai, X. S.; Wilkie-Chancellier, N.; Texier, A.; Martinez, L.; Serfaty, S.; Detalle, V.

    2018-02-01

    The aim of this research project was the development of a hybrid system in laboratory coupling together three analytical techniques, namely laser-induced breakdown spectroscopy (LIBS), laser-induced fluorescence (LIF) and Raman spectroscopy in a single instrument. The rationale for combining these three spectroscopies was to identify a material (molecular and elemental analysis) without any preliminary preparation, regardless of its organic or inorganic nature, on the surface and in depth, without any surrounding light interference thanks to time resolution. Such instrumentation would allow characterizing different materials from cultural heritage. A complete study on LIBS-LIF-Raman hybrid was carried out, from its conception to instrumental achievement, in order to elaborate a strategy of analysis according to the material and to be able to address conservation issues. From an instrumental point of view, condensing the three spectroscopies was achieved by using a single laser for excitation and two spectrometers (time-integrated and not time-integrated) for light collection. A parabolic mirror was used as collecting system, while three excitation sources directed through this optical system ensured the examination of a similar probe area. Two categories of materials were chosen to test the hybrid instrumentation on cultural heritage applications (copper corrosion products and wall paintings). Some examples are reported to illustrate the wealth of information provided by the hybrid, thus demonstrating its great potential to be used for cultural heritage issues. Finally, several considerations are outlined aimed at further improving the hybrid.

  4. High-Power Broad-Area Diode Lasers and Laser Bars

    NASA Astrophysics Data System (ADS)

    Erbert, Goetz; Baerwolff, Arthur; Sebastian, Juergen; Tomm, Jens

    This review presents the basic ideas and some examples of the chip technology of high-power diode lasers ( λ= 650,-1060,) in connection with the achievements of mounted single-stripe emitters in recent years.In the first section the optimization of the epitaxial layer structure for a low facet load and high conversion efficiency is discussed. The so-called broadened waveguide Large Optical Cavity (LOC) concept is described and also some advantages and disadvantages of Al-free material. The next section deals with the processing steps of epitaxial wafers to make single emitters and bars. Several possibilities to realize contact windows (implantation, insulators, and wet chemical oxidation) and laser mirrors are presented. The impact of heating in the CW regime and some aspects of reliability are the following topics. The calculation of thermal distributions in diode lasers, which shows the need for sophisticated mounting, will be given. In the last part the current state-of-the-art of single-stripe emitters will be reviewed.

  5. Laser Crystal

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lightning Optical Corporation, under an SBIR (Small Business Innovative Research) agreement with Langley Research Center, manufactures oxide and fluoride laser gain crystals, as well as various nonlinear materials. The ultimate result of this research program is the commercial availability in the marketplace of a reliable source of high-quality, damage resistant laser material, primarily for diode-pumping applications.

  6. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well

  7. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    PubMed

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  8. Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2017-02-01

    Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.

  9. New generation all-silica based optical elements for high power laser systems

    NASA Astrophysics Data System (ADS)

    Tolenis, T.; GrinevičiÅ«tÄ--, L.; Melninkaitis, A.; Selskis, A.; Buzelis, R.; MažulÄ--, L.; Drazdys, R.

    2017-08-01

    Laser resistance of optical elements is one of the major topics in photonics. Various routes have been taken to improve optical coatings, including, but not limited by, materials engineering and optimisation of electric field distribution in multilayers. During the decades of research, it was found, that high band-gap materials, such as silica, are highly resistant to laser light. Unfortunately, only the production of anti-reflection coatings of all-silica materials are presented to this day. A novel route will be presented in materials engineering, capable to manufacture high reflection optical elements using only SiO2 material and GLancing Angle Deposition (GLAD) method. The technique involves the deposition of columnar structure and tailoring the refractive index of silica material throughout the coating thickness. A numerous analysis indicate the superior properties of GLAD coatings when compared with standard methods for Bragg mirrors production. Several groups of optical components are presented including anti-reflection coatings and Bragg mirrors. Structural and optical characterisation of the method have been performed and compared with standard methods. All researches indicate the possibility of new generation coatings for high power laser systems.

  10. Laser-induced artificial fulgurites

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Marsin Sanagi, Mohd; Farah, Mohammed; Naqiuddin Razali, M.; Khamis, Jamil

    2018-07-01

    Fulgurite is a natural glass created by lightning. Naturally it can be found at beaches or in deserts. Artificial fulgurite is created by immersing high-voltage electrodes in a tab of sand. Commonly, fulgurite is of interest among geoscientists, but its applications are still unknown. In the present paper, the concept of natural fulgurite generation is simulated to induce artificial fulgurite. Instead of lightning, a high-power laser beam is used as a source of transient heating. Syntactic sand from agrowaste is used as target material. Artificial fulgurite is generated after transient heating from a laser beam. The benefit of this finding can be used to extract silica from rice husk ash using laser technology.

  11. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Laser surface modification of electrically conductive fabrics: Material performance improvement and design effects

    NASA Astrophysics Data System (ADS)

    Tunakova, Veronika; Hrubosova, Zuzana; Tunak, Maros; Kasparova, Marie; Mullerova, Jana

    2018-01-01

    Development of lightweight flexible materials for electromagnetic interference shielding has obtained increased attention in recent years particularly for clothing, textiles in-house use and technical applications especially in areas of aircraft, aerospace, automobiles and flexible electronics such as portable electronics and wearable devices. There are many references in the literature concerning development and investigation of electromagnetic shielding lightweight flexible materials especially textile based with different electrically conductive additives. However, only little attention is paid to designing and enhancing the properties of these special fabrics by textile finishing processes. Laser technology applied as a physical treatment method is becoming very popular and can be used in different applications to make improvement and even overcome drawbacks of some of the traditional processes. The main purpose of this study is firstly to analyze the possibilities of transferring design onto the surface of electrically conductive fabrics by laser beam and secondly to study of effect of surface modification degree on performance of conductive fabric including electromagnetic shielding ability and mechanical properties. Woven fabric made of yarns containing 10% of extremely thin stainless steel fiber was used as a conductive substrate.

  13. Resonant infrared laser deposition of polymer-nanocomposite materials for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Park, Hee K.; Schriver, Kenneth E.; Haglund, Richard F.

    2011-11-01

    Polymers find a number of potentially useful applications in optoelectronic devices. These include both active layers, such as light-emitting polymers and hole-transport layers, and passive layers, such as polymer barrier coatings and light-management films. This paper reports the experimental results for polymer films deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) and resonant infrared pulsed laser deposition (RIR-PLD) for commercial optoelectronic device applications. In particular, light-management films, such as anti-reflection coatings, require refractive-index engineering of a material. However, refractive indices of polymers fall within a relatively narrow range, leading to major efforts to develop both low- and high-refractive-index polymers. Polymer nanocomposites can expand the range of refractive indices by incorporating low- or high-refractive-index nanoscale materials. RIR-MAPLE is an excellent technique for depositing polymer-nanocomposite films in multilayer structures, which are essential to light-management coatings. In this paper, we report our efforts to engineer the refractive index of a barrier polymer by combining RIR-MAPLE of nanomaterials (for example, high refractive-index TiO2 nanoparticles) and RIR-PLD of host polymer. In addition, we report on the properties of organic and polymer films deposited by RIR-MAPLE and/or RIR-PLD, such as Alq3 [tris(8-hydroxyquinoline) aluminum] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)]. Finally, the challenges and potential for commercializing RIR-MAPLE/PLD, such as industrial scale-up issues, are discussed.

  14. AR coatings on laser crystals for HiPER project

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindřich; Pokorný, Pavel

    2010-08-01

    In this contribution we present a technology for deposition of interference coatings for optical components designed to operate as active media in power pulsed lasers. The aim of the technology is to prepare crystals for lasers for the HiPER project (High Power laser Energy Research) which should demonstrate the feasibility of laser driven fusion as a future energy source. Diode pumped solid state lasers (DPSSL) are the most likely option for fusion ignition. The choice of material for the lasers active medium is critical. Some of the most important properties include the ability to be antireflection coated to reduce the energy losses and increase the overall efficiency. This contribution deals with some of the materials considered to be candidates for slabs serving as the active medium of the DPSSLs. We tested Yb:YAG, Yb:CaF2 samples. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. Appropriate coating materials and techniques need to be chosen. Therefore differences between available coating techniques are investigated in terms of adhesion, enduring of stress resulting from temperature shocks, etc. Coated samples were placed into cryogenic environment in order to simulate conditions similar to those in real life operation. Optical microscopy was used for coating investigation after the conducted experiments.

  15. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  16. Study of Material Consolidation at Higher Throughput Parameters in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. SLM stands poised to revolutionize propulsion manufacturing, but there are a number of technical questions that must be addressed in order to achieve rapid, efficient fabrication and ensure adequate performance of parts manufactured using this process in safety-critical flight applications. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this work is to characterize the impact of higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. In phase I of this work, density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, hatch spacing, and layer thickness) and material consolidation (assessed in terms of as-built density and porosity). Phase II additionally considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the same higher energy parameter regime considered in the phase I work. Density and microstructure represent the "first-gate" metrics for determining the adequacy of the SLM process in this parameter range and, as a critical initial indicator of material quality, will factor into a follow-on DOE that assesses the impact of these parameters on mechanical properties. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid

  17. New laser machining processes for shape memory alloys

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Paschko, Stefan; Goede, Martin

    2001-04-01

    Due to special material properties, shape memory alloys (SMA) are finding increasing attention in micro system technology. However, only a few processes are available for the machining of miniaturized SMA-components. In this connection, laser material processing offers completely new possibilities. This paper describes the actual status of two projects that are being carried out to qualify new methods to machine SMA components by means of laser radiation. Within one project, the laser material ablation process of miniaturized SMA- components using ultra-short laser pulses (pulse duration: approx. 200 fs) in comparison to conventional laser material ablation is being investigated. Especially for SMA micro- sensors and actuators, it is important to minimize the heat affected zone (HAZ) to maintain the special mechanical properties. Light-microscopic investigations of the grain texture of SMA devices processed with ultra-short laser pulses show that the HAZ can be neglected. Presently, the main goal of the project is to qualify this new processing technique for the micro-structuring of complex SMA micro devices with high precision. Within a second project, investigations are being carried out to realize the induction of the two-way memory effect (TWME) into SMA components using laser radiation. By precisely heating SMA components with laser radiation, local tensions remain near the component surface. In connection with the shape memory effect, these tensions can be used to make the components execute complicated movements. Compared to conventional training methods to induce the TWME, this procedure is faster and easier. Furthermore, higher numbers of thermal cycling are expected because of the low dislocation density in the main part of the component.

  18. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    NASA Astrophysics Data System (ADS)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  19. Single-Photon Ionization Soft-X-Ray Laser Mass Spectrometry of Potential Hydrogen Storage Materials

    NASA Astrophysics Data System (ADS)

    Dong, F.; Bernstein, E. R.; Rocca, J. J.

    A desk-top size capillary discharge 46.9 nm lasear is applied in the gas phase study of nanoclusters. The high photon energy allows for single-photon ionization mass spectrometry with reduced cluster fragmentation. In the present studies, neutral Al m C n and Al m C n H x cluster are investigation for the first time. Single photon ionization through 46.9 nm, 118 nm, 193 nm lasers is used to detect neutral cluster distributions through time of flight mass spectrometry. Al m C n clusters are generated through laser ablation of a mixture of Al and C powders pressed into a disk. An oscillation of the vertical ionization energies (VIEs) of Al m C n clusters is observed in the experiments. The VIEs of Al m C n clusters changes as a function of the numbers of Al and C atoms in the clusters. Al m C n H x clusters are generated through an Al ablation plasma-hydrocarbon reaction, an Al-C ablation plasma reacting with H2 gas, or through cold Al m C n clusters reacting with H2 gas in a fast flow reactor. DFT and ab inito calculations are carried out to explore the structures, IEs, and electronic structures of Al m C n H x clusters. C=C bonds are favored for the lowest energy structures for Al m C n clusters. Be m C n H x are generated through a beryllium ablation plasma-hydrocarbon reaction and detected by single photon ionization of 193 nm laser. Both Al m C n H x and Be m C n H x are considered as potential hydrogen storage materials.

  20. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F [Berkeley, CA

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  1. A high contrast 400-2500 nm hyperspectral checkerboard consisting of Acktar material cut with a femto second laser

    NASA Astrophysics Data System (ADS)

    Keresztes, Janos C.; Henrottin, Anne; Goodarzi, Mohammad; Wouters, Niels; van Roy, Jeroen; Saeys, Wouter

    2015-09-01

    Visible-near infrared (Vis-NIR) and short wave infrared (SWIR) hyperspectral imaging (HSI) are gaining interest in the food sorting industry. As for traditional machine vision (MV), spectral image registration is an important step which affects the quality of the sorting system. Unfortunately, it currently still remains challenging to accurately register the images acquired with the different imagers as this requires a reference with good contrast over the full spectral range. Therefore, the objective of this work was to develop an accurate high contrast checkerboard over the full spectral range. From the investigated white and dark materials, Teflon and Acktar were found to present very good contrast over the full spectral range from 400 to 2500 nm, with a minimal contrast ratio of 60% in the Vis-NIR and 98 % in the SWIR. The Metal Velvet self-adhesive coating from Acktar was selected as it also provides low specular reflectance. This was taped onto a near-Lambertian polished Teflon plate and one out of two squares were removed after laser cutting the dark coating with an accuracy below 0.1 mm. As standard technologies such as nano-second pulsed lasers generated unwanted damages on both materials, a pulsed femto-second laser setup from Lasea with 60µm accuracy was used to manufacture the checkerboard. This pattern was monitored with an Imec Vis-NIR and a Headwall SWIR HSI pushbroom hyperspectral camera. Good contrast was obtained over the full range of both HSI systems and the estimated effective focal length for the Vis-NIR HSI was determined with computer vision to be 0.5 mm, close to the lens model at high contrast.

  2. Compact Blue-Green Lasers: Summaries of Papers Presented at the Topical Meeting Held in Sante Fe, New Mexico on 20-21 February 1992. Volume 6. Technical Digest Series

    DTIC Science & Technology

    1992-02-21

    Contents: Applications, IR Pumped Visible Lasers, Blue-Green Diode Emitters, Materials, Poster Session, Frequency Conversion in Bulk Devices, Gas Lasers, and Frequency Conversion in Guided-Wave Devices.

  3. Sol-Gel Derived Active Material for Yb Thin-Disk Lasers

    PubMed Central

    Almeida, Rui M.; Ribeiro, Tiago

    2017-01-01

    A ytterbium doped active material for thin-disk laser was developed based on aluminosilicate and phosphosilicate glass matrices containing up to 30 mol% YbO1.5. Thick films and bulk samples were prepared by sol-gel processing. The structural nature of the base material was assessed by X-ray diffraction and Raman spectroscopy and the film morphology was evidenced by scanning electron microscopy. The photoluminescence (PL) properties of different compositions, including emission spectra and lifetimes, were also studied. Er3+ was used as an internal reference to compare the intensities of the Yb3+ PL peaks at ~ 1020 nm. The Yb3+ PL lifetimes were found to vary between 1.0 and 0.5 ms when the Yb concentration increased from 3 to 30 mol%. Based on a figure of merit, the best active material selected was the aluminosilicate glass composition 71 SiO2-14 AlO1.5-15 YbO1.5 (in mol%). An active disk, ~ 36 μm thick, consisting of a Bragg mirror, an aluminosilicate layer doped with 15 mol% Yb and an anti-reflective coating, was fabricated. PMID:28869488

  4. Laser Surface Microstructuring of Biocompatible Materials Using a Microlens Array and the Talbot Effect: Evaluation of the Cell Adhesion

    PubMed Central

    Aymerich, María; Nieto, Daniel; Álvarez, Ezequiel; Flores-Arias, María T.

    2017-01-01

    A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material. PMID:28772574

  5. Optical Physics Study of Laser Interactions with Solids for Ultra-Trace Materials Analysis Using RIS. Phase 1.

    DTIC Science & Technology

    1987-04-24

    eliminated. Averaging the mass spectra from only 500 laser shots (50 seconds with this system) resulted in a detection limit of r15 ppb. The...resolution. Fluctuations in laser pulse energy from shot to shot appear as noise in the interleaved data, but averaging of several such traces gives a good...ranging from 0to 120 ix Wm- 2. quantity of material volatilized was proportional to the number of lase shots . A simple time-of-flight mass spectrometer was

  6. Guide star lasers for adaptive optics

    NASA Astrophysics Data System (ADS)

    Roberts, William Thomas, Jr.

    Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of

  7. Laser 3D micro-manufacturing

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.

    2016-06-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.

  8. Recent studies of laser science in paintings conservation and research.

    PubMed

    Pouli, Paraskevi; Selimis, Alexandros; Georgiou, Savas; Fotakis, Costas

    2010-06-15

    The removal of aged and deteriorated molecular overlayers from the surface of paintings is a delicate and critical intervention in Cultural Heritage (CH) conservation. This irreversible action gets particularly complicated given the multitude of materials that may be present within a painted work of art (often in ultrathin layers or traces), as well as the exceptional sensitivity of the original surfaces to environmental conditions such as heat, light, and so on. Lasers hold an important role among the available cleaning methodologies, as they enable high control and accuracy, material selectivity, and immediate feedback. Still, prior to their implementation, it is imperative to optimize the cleaning parameters, so to ensure that any potential implications to the remaining materials are minimal and well understood. Toward this aim, research at IESL-FORTH is focused on both refining and continuously updating the laser-cleaning protocols (by introducing novel laser technologies into the field, i.e., ultrashort laser pulses), as well as on investigating and studying the nature and extent of laser-induced physicochemical alterations to the involved materials. In this Account, extended work for the understanding of ultraviolet (UV) laser ablation of polymers is presented. Emphasis is placed on the use of model systems (polymers doped with chromophores of known photochemistry) to examine the in-depth laser-induced modifications at the processed surfaces and thus to illustrate the dependence of their nature and extent on laser parameters and material properties. Furthermore, studies for the potential use of femtosecond UV pulses to overcome certain limitations involved with the nanosecond ablation of molecular overlayers from CH surfaces are highlighted. In particular, it is demonstrated that in the femtosecond regime any chemical modifications are, qualitatively and quantitatively, highly defined, limited and nearly independent of the material properties, such as the

  9. Non-mechanical beam control for entry, descent and landing laser radar (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stockley, Jay E.; Kluttz, Kelly; Hosting, Lance; Serati, Steve; Bradley, Cullen P.; McManamon, Paul F.; Amzajerdian, Farzin

    2017-05-01

    Laser radar for entry, descent, and landing (EDL) applications as well as the space docking problem could benefit from a low size, weight, and power (SWaP) beam control system. Moreover, an inertia free approach employing non-mechanical beam control is also attractive for laser radar that is intended to be employed aboard space platforms. We are investigating a non-mechanical beam steering (NMBS) sub-system based on liquid crystal polarization grating (LCPG) technology with emphasis placed on improved throughput and significant weight reduction by combining components and drastically reducing substrate thicknesses. In addition to the advantages of non-mechanical, gimbal free beam control, and greatly improved SWaP, our approach also enables wide area scanning using a scalable architecture. An extraterrestrial application entails additional environmental constraints, consequently an environmental test plan tailored to an EDL mission will also be discussed. In addition, we will present advances in continuous fine steering technology which would complement the coarse steering LCPG technology. A low-SWaP, non-mechanical beam control system could be used in many laser radar remote sensing applications including meteorological studies and agricultural or environmental surveys in addition to the entry, descent, and landing application.

  10. Method for laser spot welding monitoring

    NASA Astrophysics Data System (ADS)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  11. The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.

    2007-09-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less

  12. Biostimulation effects of low-energy laser radiation on yeast cell suspensions

    NASA Astrophysics Data System (ADS)

    Anghel, Sorin; Stanescu, Constantin S.; Giosanu, Dana; Neagu, Ionica; Savulescu, Geta; Iorga-Siman, Ion

    2000-02-01

    This paper presents work to determine the effects produced by low energy laser radiation on the metabolism and growth of a yeast cell suspension. As experimental material, we used young yeast culture in liquid medium, then distributed on a solid medium, to obtain isolated colonies. As laser source, we used a He-Ne laser, and the irradiation was made with different exposure times. Form each irradiated material, a sample of white grape sterile must was sowed, that has fermented at 18 divided by 20 degrees C for 10 divided by 15 days, after that some properties was tested. Some microscopic studies were also made. The results prove some influence of low energy laser irradiation, which can induce mutations, with new properties of the irradiated material. These mutations can be obtained in a positive sense, with new and important perspectives in wine industry. Also, we observed an inhibitory effect of the laser radiation on the yeast cell growth, due, probably to the too high values of the exposure.

  13. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Frank R., E-mail: frank.wagner@fresnel.fr; Natoli, Jean-Yves; Akhouayri, Hassan

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched lasermore » and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.« less

  14. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    DOE PAGES

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less

  15. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  16. Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.

    Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.

  17. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  18. Development and testing of hermetic, laser-ignited pyrotechnic and explosive components

    NASA Technical Reports Server (NTRS)

    Kramer, Daniel P.; Beckman, Thomas M.; Spangler, Ed M.; Munger, Alan C.; Woods, C. M.

    1993-01-01

    During the last decade there has been increasing interest in the use of lasers in place of electrical systems to ignite various pyrotechnic and explosive materials. The principal driving force for this work was the requirement for safer energetic components which would be insensitive to electrostatic and electromagnetic radiation. In the last few years this research has accelerated since the basic concepts have proven viable. At the present time it is appropriate to shift the research emphasis in laser initiation from the scientific arena--whether it can be done--to the engineering realm--how it can be put into actual practice in the field. Laser initiation research and development at EG&G Mound was in three principal areas: (1) laser/energetic material interactions; (2) development of novel processing techniques for fabricating hermetic (helium leak rate of less than 1 x 10(exp -8) cu cm/s) laser components; and (3) evaluation and testing of laser-ignited components. Research in these three areas has resulted in the development of high quality, hermetic, laser initiated components. Examples are presented which demonstrate the practicality of fabricating hermetic, laser initiated explosive or pyrotechnic components that can be used in the next generation of ignitors, actuators, and detonators.

  19. Laser-driven hydrothermal process studied with excimer laser pulses

    NASA Astrophysics Data System (ADS)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  20. Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuanyuan; Wei, Yanyu; Jiang, Xuebing

    We present an analysis of a Cherenkov free-electron laser based on a single slab made from negative-index materials. In this system, a flat electron beam with finite thickness travelling close to the surface of the slab interacts with the copropagating electromagnetic surface mode. The dispersion equation for a finitely thick slab is worked out and solved numerically to study the dispersion relation of surface modes supported by negative-index materials, and the calculations are in good agreement with the simulation results from a finite difference time domain code. We find that under suitable conditions there is inherent feedback in such amore » scheme due to the characteristics of negative-index materials, which means that the system can oscillate without external reflectors when the beam current exceeds a threshold value, i.e., start current. Using the hydrodynamic approach, we setup coupled equations for this system, and solve these equations analytically in the small signal regime to obtain formulas for the spatial growth rate and start current.« less