Science.gov

Sample records for laser presentation material

  1. Holographic femtosecond laser processing and its application to biological materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio

    2017-02-01

    Femtosecond laser processing is a promising tool for fabricating novel and useful structures on the surfaces of and inside materials. An enormous number of pulse irradiation points will be required for fabricating actual structures with millimeter scale, and therefore, the throughput of femtosecond laser processing must be improved for practical adoption of this technique. One promising method to improve throughput is parallel pulse generation based on a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM), a technique called holographic femtosecond laser processing. The holographic method has the advantages such as high throughput, high light use efficiency, and variable, instantaneous, and 3D patterning. Furthermore, the use of an SLM gives an ability to correct unknown imperfections of the optical system and inhomogeneity in a sample using in-system optimization of the CGH. Furthermore, the CGH can adaptively compensate in response to dynamic unpredictable mechanical movements, air and liquid disturbances, a shape variation and deformation of the target sample, as well as adaptive wavefront control for environmental changes. Therefore, it is a powerful tool for the fabrication of biological cells and tissues, because they have free form, variable, and deformable structures. In this paper, we present the principle and the experimental setup of holographic femtosecond laser processing, and the effective way for processing the biological sample. We demonstrate the femtosecond laser processing of biological materials and the processing properties.

  2. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  3. Modeling 2D and 3D periodic nanostructuring of materials with ultrafast laser pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colombier, Jean-Philippe; Rudenko, Anton; Bévillon, Emile; Zhang, Hao; Itina, Tatiana E.; Stoian, Razvan

    2017-03-01

    Generation of periodic arrangements of matter on materials irradiated by laser fields of uniform and isotropic energy distribution is a key issue in controlling laser structuring processes below the diffractive limit. Using three-dimensional finite-difference time-domain methods, we evaluate energy deposition patterns below a material's rough surface [1] and in bulk dielectric materials containing randomly distributed nano-inhomogeneities [2]. We show that both surface and volume patterns can be attributed to spatially ordered electromagnetic solutions of linear and nonlinear Maxwell equations. In particular, simulations revealed that anisotropic energy deposition results from the coherent superposition of the incident and the inhomogeneity-scattered light waves. Transient electronic response is also analyzed by kinetic equations of free electron excitation/relaxation processes for dielectrics and by ab initio calculations for metals. They show that for nonplasmonic metals, ultrafast carrier excitation can drastically affect electronic structures, driving a transient surface plasmonic state with high consequences for optical resonances generation [3]. Comparing condition formations of 2D laser-induced periodic surface structures (LIPSS) and 3D self-organized nanogratings, we will discuss the role of collective scattering of nanoroughness and the feedback-driven growth of the nanostructures. [1] H. Zhang, J.P. Colombier, C. Li, N. Faure, G. Cheng, and R. Stoian, Physical Review B 92, 174109 (2015). [2] A. Rudenko, J.P. Colombier, and T.E. Itina, Physical Review B 93 (7), 075427 (2016). [3] E. Bévillon, J.P. Colombier, V. Recoules, H. Zhang, C. Li and R. Stoian, Physical Review B 93 (16), 165416 (2016).

  4. Interaction of ultrashort laser pulses with epsilon-near-zero materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boyd, Robert W.

    2017-05-01

    Abstract: The nonlinear optical response of a material is conventionally assumed to be very much smaller than its linear response. Here we report that the nonlinear contribution to the refractive index of a sample of indium-tin oxide can be much larger than the linear contribution when the optical wavelength is close to the material's bulk plasma wavelength, where the material exhibits epsilon-near-zero behavior. In particular, we demonstrate that a change in refractive index as large as 0.7 can be obtained in an ultra-thin indium-tin oxide film using an optical intensity of 140 GW/cm2. Nonlinear optical phenomena result from the light-induced modification of the optical properties of a material lead to a broad range of applications, including microscopy, all-optical data processing, and quantum information. However, nonlinear (NL) effects are typically extremely weak. The size of nonlinear effects is typically limited by the largest intensity that can be used without permanently damaging of the material. Consequently, the resulting change in refractive index is typically of the order of 0.001 or smaller. A long-standing goal of nonlinear optics (NLO) has been the development of materials that can display a light-induced change in the refractive index of the order of unity. Such materials would lead to exciting new applications of NLO. Indeed, much effort in the fields of plasmonics and metamaterials is devoted to the development of such materials. Furthermore, it has been suggested that materials with vanishing permittivity, commonly known as epsilon-nearzero (ENZ) materials, can be used to induce highly nonlinear phenomena and unusual phase-matching behavior. In this work, we describe our studies of indium-tin oxide (ITO) at its ENZ wavelength, and we demonstrate a refractive index change of 0.7. Materials possessing free charges, such as metals and doped semiconductors, exhibit a vanishing permittivity at the bulk plasmon wavelength. The zero

  5. Laser Plasma Material Interactions

    SciTech Connect

    Schaaf, Peter; Carpene, Ettore

    2004-12-01

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  6. Laser speckle micro rheology for micro-mechanical mapping of bio-materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hajjarian Kashany, Zeinab; Ahn, Shawn; Tavakoli Nia, Hadi; Tshikudi, Diane M.; Grodzinsky, Alan; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-03-01

    Laser speckle Micro-rheology (LSM) is a novel optical tool for evaluating the viscoelastic properties of biomaterials. In LSM, a laser beam illuminates the specimen and scattered rays are collected through an objective by a high-speed CMOS camera. The self-interference of light rays forms a fluctuating speckle pattern captured by the CMOS sensor. Spatio-temporal correlation analysis of speckle images provides the intensity autocorrelation function, g2(t), for individual pixels. Next, the mean square displacements (MSD) of Brownian particles are deduced and substituted in the generalized Stokes-Einstein relation (GSER) to yield a 2D map of viscoelastic modulus, |G*(ω)|. To compare the accuracy, sensitivity, and dynamic range of LSM measurements with standard mechanical testing methods, homogeneous polyethylene glycol (PEG), agarose, and polyacrylamide (PA) gels, of assorted viscoelastic properties were fabricated and evaluated using LSM, shear rheology, and indentation-mode atomic force microscopy (AFM). Results showed a statistically significant, strong correlation between G* values measured by LSM and shear rheology (R=0.94, p<5x10-6) (|G*|: 30 Pa - 30 kPa at ω = 1 Hz). Likewise, strong correlation was observed between G* values measured by LSM and indentation moduli of AFM (R=0.94, p,0.05). Next, polyacrylamide substrates with micro-scale stiffness patterns were tested using LSM. The reconstructed |G*| maps illustrated the high sensitivity of LSM in resolving mechanical heterogeneities below 100 microns. These findings demonstrate the competent accuracy and sensitivity of LSM measurements. Moreover, the non-contact nature of LSM provides a major advantage over mechanical tests, making it suitable for in vivo studies in future.

  7. Laser Material Processing in Manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Marshall

    2014-03-01

    This presentation will address some of the past, present, and potential uses of lasers for material processing in manufacturing. Laser processing includes welding, drilling, cutting, cladding, etc. The U.S. was the hot bed for initial uses of lasers for material processing in the past with Europe, especially Germany, presently leading the way. The future laser processing leader may still be Germany. Selected uses, past and present, of lasers within GE will also be highlighted as seen in such business units as Aviation, Lighting, Power and Water, Healthcare, and Transportation.

  8. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  9. Modern solid state laser materials

    SciTech Connect

    Krupke, W.F.

    1984-06-20

    This document contains visual aids used in an invited talk entitled Modern Solid State Laser Materials, presented at the Conference on Lasers and Electro-Optics (CLEO) held in Anaheim, California, on June 20, 1984. Interest at LLNL in solid state lasers focuses on evaluating the potential of solid state laser media for high average power applications, including inertial fusion power production. This talk identifies the relevant bulk material parameters characterizing average power capacity and uses chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large-scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermo-mechanical properties of Nd:Cr:GSGG are given.

  10. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  11. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  12. Ceramic laser materials

    NASA Astrophysics Data System (ADS)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  13. Femtosecond laser materials processing

    NASA Astrophysics Data System (ADS)

    Banks, Paul S.; Stuart, Brent C.; Komashko, Aleksey M.; Feit, Michael D.; Rubenchik, Alexander M.; Perry, Michael D.

    2000-05-01

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biological materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  14. Femtosecond Laser Materials Processing

    SciTech Connect

    Banks, P.S.; Stuart, B.C.; Komashko, A.M.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    2000-03-06

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biologic materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  15. Ceramic Laser Materials

    SciTech Connect

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  16. Laser materials production

    NASA Astrophysics Data System (ADS)

    Gianinoni, I.; Musci, M.

    1985-09-01

    The characteristics and the perspectives of the new photochemical laser techniques for materials production will be briefly analysed and some recent experimental results both on large area deposition of thin films and on synthesis of powders will be reported. As an example of an IR laser process, the cw CO 2 laser-induced deposition of hydrogenated amorphous silicon will be described in some detail. The results of some UV experiments for semiconductor, metal and insulating film depositions will also be discussed. The features of the process for laser-driven synthesis of powders and the characteristics of the produced particles will be evidenced, and some of their technological applications will be outlined. The requirements of the laser sources suitable for this kind of applications are in general the same as in gas-phase laser chemistry, however it will be pointed out how some parameters are more significant for this specific use.

  17. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  18. Modern solid state laser materials

    NASA Astrophysics Data System (ADS)

    Krupke, W. F.

    1984-06-01

    Visual aids used in an invited talk entitled Modern Solid State Laser Materials are presented. Interest at LLNL in solid state lasers focuses on evaluating the potential inertial fusion power production. The relevant bulk material parameters characterizing average power capacity are identified and chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) are used as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermomechanical properties of Nd:Cr:GSGG are given.

  19. Laser processing of siliceous materials

    NASA Astrophysics Data System (ADS)

    Panzner, Michael; Lenk, Andreas; Wiedemann, Guenter R.; Hauptmann, Jan; Weiss, Hans J.; Ruemenapp, Thomas; Morgenthal, Lothar; Beyer, Eckhard

    2000-08-01

    Laser processing of siliceous materials becomes increasingly important. Analogous to the laser processing of conventional materials there are applications in the fields of cleaning, surface processing, cutting, etc. The present paper concerns the state of the art and new applications: (1) Laser cleaning of natural stone surfaces. The good disability allows restoration work to be carried out conveniently, as for example the complete removal of crusts or the removal to such degree that moisture is not trapped beneath. (2) Non-slip finish of polished natural stone surfaces: The excellent focusing of laser beams on spots as small as 100 micrometer and below can be exploited to produce macroscopically invisible structures on the surfaces of different materials. This permits microscopically small craters and lentil shaped depressions to be generated on the stone surface. Therefore it is possible to provide a non-slip finish to polished natural stone surfaces without noticeably impairing the gloss. (3) Concrete cutting: In Europe, and particularly in Germany, there is a growing demand for redevelopment of concrete apartment buildings, involving the removal of non-bearing walls and the cutting of openings. The temporal relocation of residents due to the noise and moisture from the use of diamond tools could be avoided by applying a laser cutting technology. With a 3 kW-Nd-YAG-laser, 70 mm concrete can be cut with rates up to 25 mm/min.

  20. Present status and future aspects of high-power diode laser materials processing under the view of a German national research project

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.

    2000-06-01

    High power diode lasers from a few Watts up to several Kilowatts have entered industrial manufacturing environment for materials processing applications. The technology has proven to show unique features, e.g. high efficiency, small size, low energy consumption and high reliability. In the first part of this paper a short description of state-of- the-art high power diode laser technology and applications is provided and the benefits and restrictions of this laser technology will be evaluated. For large scale penetration into the manufacture market, the restrictions, especially the rather poor beam quality of high power diode lasers compared to conventional lasers have to be overcome. Also, the specialities of the high power diode lasers, i.e. their modular structure and their extremely small size have to be translated into laser manufacturing technology. The further improvement of high power diode lasers as well as the development of new diode laser specific manufacturing technologies are the essential topics of a National German Minister Priority Project entitled 'Modular Diode Laser Beam Tools': 22 Partners from industry and institutions, 4 semiconductor experts, 5 laser manufacturers and 14 applicants are working together in frame of this project to work out and transfer a joint strategy and system technology to the benefits of the future of high power diode laser technology. The goals, the structure and the work of this project will be described in the second part of this paper.

  1. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  2. Laser Material Processing for Microengineering Applications

    NASA Technical Reports Server (NTRS)

    Helvajian, H.

    1995-01-01

    The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.

  3. Laser Materials Search and Characterization

    DTIC Science & Technology

    2014-05-30

    AFRL-AFOSR-UK-TR-2014-0030 Laser materials search and characterization Maxim E. Doroshenko INSTITUTION OF RUSSIAN ACADEMY OF SCIENCES...To) 1 October 2010 – 31 March 2014 4. TITLE AND SUBTITLE Laser materials search and characterization 5a. CONTRACT NUMBER ISTC Proj 4076p 5b...EOARD, Single crystals, ceramics, crystalline fibers, rare-earth ions, bismuth ions, laser materials, fluorescence decay, photonic crystal structure

  4. Fiber lasers for material processing

    NASA Astrophysics Data System (ADS)

    Shiner, Bill

    2005-03-01

    Low power fiber lasers began entering the commercial markets in the early 1990s. Since their introduction, fiber lasers have rapidly progressed in power levels level with greatly improved beam quality to the point where they now exceed any other commercial material processing laser. These lasers, with single mode operation to 1 kilowatt and multi-mode operation to beyond 20 kilowatts, have high wall plug efficiency, an extremely compact footprint, are maintenance free and have a predicted diode life beyond 100,000 hours of continuous operation. Fiber lasers are making inroads into the scientific, medical, government, and in particular, material processing markets. These lasers have greatly expanded the application umbrella due to their unparallel performance combined with the ability to operate at different wavelengths, address remote applications and be propagated great distances in fiber. In the material processing markets, fiber lasers are rapidly gaining share in the automotive, microelectronic, medical device and marking markets, to name a few. The single mode lasers are redefining process parameters that have been accepted for decades. The high brightness multimode-kilowatt class lasers are achieving speeds and depths greater than comparable powered conventional lasers while providing the only commercial material processing lasers operating beyond 6 kilowatts at the 1 micron region.

  5. HIGH ENERGY CRYSTALLINE LASER MATERIALS.

    DTIC Science & Technology

    The object of this research is to obtain improved laser materials for high energy lasers. During the third quarter of this contract, the study of... energy transfer from Cr to Nd in GdAlO3 and YAlG continued. In order to study the Nd fluorescence arising via transfer from Cr, the material was excited

  6. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  7. Femtosecond laser interaction with energetic materials

    NASA Astrophysics Data System (ADS)

    Roos, Edward V.; Benterou, Jerry J.; Lee, Ronald S.; Roseke, Frank; Stuart, Brent C.

    2002-09-01

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  8. Laser applications in machining slab materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping

    1990-10-01

    Since the invention of the laser back in 1960, laser technology has been extensively applied in many fields of science and technology. These has been a history of nearly two decades of using lasers as an energy source in machining materials, such as cutting, welding, ruling and boring, among other operations. With the development of flexible automation in production, the advantages of laser machining have has grown more and more obvious. The combination of laser technology and computer science further promotes the enhancement and upgrading of laser machining and related equipment. At present, many countries are building high quality laser equipment for machining slab materials, such as the Coherent and Spectra Physics corporations in the United States, the Trumpf Corporation in West Germany, the Amada Corporation in Japan, and the Bystronic Corporation in Switzerland, among other companies.

  9. Laser cooling in semiconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    2017-06-01

    Laser cooling of semiconductor is very important topic in science researches and technological applications. Here we will report our progresses on laser cooling in semiconductors. By using of strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, we observe a net cooling by about 40 K starting from 290 kelvin with 514-nm pumping and about 15 K starting from100 K with 532-nm pumping in a semiconductor using group-II-VI cadmium sulphide nanobelts. We also discuss the thickness dependence of laser cooing in CdS nanobelts, a concept porotype of semiconductor cryocooler and possibility of laser cooling in II-VI semiconductor family including CdSSe、CdSe, CdSe/ZnTe QDs and bulk CdS et al., Beyond II-VI semiconductor, we will present our recent progress in laser cooling of organic-inorganic perovskite materials, which show a very big cooling power and external quantum efficiency in 3D and 2D case. Further more, we demonstrate a resolved sideband Raman cooling of a specific LO phonon in ZnTe, in which only one specific phonon resonant with exciton can be cooled or heated. In the end, we will discuss the nonlinear anti-Stokes Raman and anti-Stokes photoluminescence upcoversion in very low temperature as low as down to liquid 4.2 K. In this case, the anti-Stokes resonance induces a quadratic power denpendece of anti-Stokes Raman and anti-Stokes PL. We proposed a CARS-like process to explain it. This nonlinear process also provides a possible physics picture of ultra-low temperatures phonon assisted photoluminescence and anti-Stokes Raman process.

  10. Laser cutting plastic materials

    SciTech Connect

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  11. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  12. Materials working with low power CO2 lasers

    NASA Astrophysics Data System (ADS)

    Fry, S. M.

    1980-01-01

    While the application of high power (50-5000 W) lasers to materials working is well known, the use of low power (1-5w) CO2 lasers has received little attention. This paper presents methods of utilizing low power CO2 lasers in materials processing, such as cutting, drilling, and welding of small organic (e.g., plastic) parts. Laser hardware is discussed and the waveguide laser is presented as an example of low-power materials working hardware. This paper also reports some of the applications which are ideally-handled by low power CO2 lasers, and reviews the factors which contribute to the successful use of these lasers.

  13. A review of ultrafast laser materials micromachining

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Liu, Chang-sheng; Shang, Shuo; Liu, Dun; Perrie, Walter; Dearden, Geoff; Watkins, Ken

    2013-03-01

    A brief review is given regarding ultrafast laser micromachining of materials. Some general experimental observations are first provided to show the characteristics of ultrafast laser micromachining. Apart from empirical research, mathematical models also appear to allow for a further and systematic understanding of these phenomena. A few fundamental ultrafast laser micromachining mechanisms are addressed in an attempt to highlight the physics behind the experimental observations and the mathematical models. It is supposed that a vivid view of ultrafast laser micromachining has been presented by linking experimental observations, mathematical models and the behind physics.

  14. Laser detection of material thickness

    DOEpatents

    Early, James W.

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  15. Laser cutting of energetic materials

    SciTech Connect

    Rivera, T.; Muenchausen, R.; Sanchez, J.

    1998-12-01

    The authors have demonstrated the feasibility of safely and efficiently cutting and drilling metal cases containing a variety of high explosives (HE) using a Nd:YAG laser. Spectral analysis of the optical emission, occurring during the laser-induced ablation process, is used to identify the removed material. By monitoring changes in the optical emission during the cutting process, the metal-He interface can be observed in real time and the cutting parameters adjusted accordingly. For cutting the HE material itself, the authors have demonstrated that this can be safely and efficiently accomplished by means of a ultraviolet (UV) laser beam obtained from the same Nd:YAG laser using the third or fourth harmonics. They are currently applying this technology to UXO identification and ordnance demilitarization.

  16. Pulsed Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Schechtel, Florian; Reg, Yvonne; Zimmermann, Maik; Stocker, Thomas; Knorr, Fabian; Mann, Vincent; Roth, Stephan; Schmidt, Michael

    At present the trends in paper and packaging industries are the personalization of products and the use of novel high-tech materials. Laser processes as non-contact and flexible techniques seem to be the obvious choice to address those developments. In this paper we present a basic understanding of the occurring mechanisms of laser based engraving of different paper and paperboard materials, using a picosecond laser source at 1064 nm. The influences on the beam-paper-interaction of grammage, the composition of the paper matrix, as well as the paper inherent cellulose fibers were investigated. Here the ablation threshold of commercially available paper was determined and a matrix ablation effect under the 1064 nm radiation observed. These results were characterized and qualified mainly by means of laser scanning microscope (LSM) micrographs in combination with color-space analytics.

  17. Femtosecond laser polishing of optical materials

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2015-10-01

    Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.

  18. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  19. Practical challenges for radiation-balanced lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bowman, Steven R.

    2017-02-01

    Radiation Balanced Lasers (RBL) use cooling from spontaneous emission to offset waste heat generation. This technique offers the potential for very high power operation without thermo-optic distortions or damage. Nevertheless establishing and maintaining radiation balance poses interesting problems for the laser designer. An analysis of RBL's sensitivity to material losses, intensity variation, and temperature will be presented. This comparison of simulations and experiments is intended to assist in the design of future high power systems.

  20. Possibilities of Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi

    Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.

  1. Millisecond laser machining of transparent materials assisted by nanosecond laser.

    PubMed

    Pan, Yunxiang; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2015-01-26

    A new form of double pulse composed of a nanosecond laser and a millisecond laser is proposed for laser machining transparent materials. To evaluate its advantages and disadvantages, experimental investigations are carried out and the corresponding results are compared with those of single millisecond laser. The mechanism is discussed from two aspects: material defects and effects of modifications induced by nanosecond laser on thermal stress field during millisecond laser irradiation. It is shown that the modifications of the sample generated by nanosecond laser improves the processing efficiency of subsequent millisecond laser, while limits the eventual size of modified region.

  2. Laser-Material Interactions

    DTIC Science & Technology

    1989-09-01

    polymer materials with large de- U. New Mexico, Center for High Technology Mate- nest-pnetdca(yialy5mst6 localized P1-electron systems exhibit...8217elected otircal transition in quanturn- %%elk’ Thi-. r-oi; ;’ c.i2𔃼lcii\\ alo % the amphifntg or Periodic airn medium illustrated in FiR. 1. ksith...Hoyt. and A. Vera . "Spatial light modulators using May I987. charge-coupled-device addressing and electmoabsorption effects in (50I 151 M. Ogura. W. Hsin

  3. Laser Material Interactions

    DTIC Science & Technology

    1992-04-13

    Technology Materials University of New Mexicou Albuquerque, NM 87031-6081 n 13 April 1992 I Technical Report for Period 16 April 1990 - 15 April 1991...1973).of SPW-radiation coupling-from underdamped, to nearly 11. M. C. Hutley and V. M. Bird , Opt. Acta 20, 771 (1973). 100% coupling, to overdamped...tion betwen PW’a. Hutley’ and Hutley and Bird ’ car- of detection. 0740-3224/91/061348-12$3&00 C 1991 Optical Society of America IZaidi al n. Vol. 8, N4o

  4. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-05

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived.

  5. Novel materials for laser refrigeration

    SciTech Connect

    Hehlen, Markus P

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  6. Mobile terawatt laser propagation facility (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.

    2017-03-01

    This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.

  7. Bulk Laser Material Modification: Towards a Kerfless Laser Wafering Process

    NASA Astrophysics Data System (ADS)

    LeBeau, James

    Due to the ever increasing relevance of finer machining control as well as necessary reduction in material waste by large area semiconductor device manufacturers, a novel bulk laser machining method was investigated. Because the cost of silicon and sapphire substrates are limiting to the reduction in cost of devices in both the light emitting diode (LED) and solar industries, and the present substrate wafering process results in >50% waste, the need for an improved ingot wafering technique exists. The focus of this work is the design and understanding of a novel semiconductor wafering technique that utilizes the nonlinear absorption properties of band-gapped materials to achieve bulk (subsurface) morphological changes in matter using highly focused laser light. A method and tool was designed and developed to form controlled damage regions in the bulk of a crystalline sapphire wafer leaving the surfaces unaltered. The controllability of the subsurface damage geometry was investigated, and the effect of numerical aperture of the focusing optic, energy per pulse, wavelength, and number of pulses was characterized for a nanosecond pulse length variable wavelength Nd:YAG OPO laser. A novel model was developed to describe the geometry of laser induced morphological changes in the bulk of semiconducting materials for nanosecond pulse lengths. The beam propagation aspect of the model was based on ray-optics, and the full Keldysh multiphoton photoionization theory in conjuncture with Thornber's and Drude's models for impact ionization were used to describe high fluence laser light absorption and carrier generation ultimately resulting in permanent material modification though strong electron-plasma absorption and plasma melting. Although the electron-plasma description of laser damage formation is usually reserved for extremely short laser pulses (<20 ps), this work shows that it can be adapted for longer pulses of up to tens of nanoseconds. In addition to a model

  8. The reverse laser drilling of transparent materials

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.; Lindner, P. A.

    1980-01-01

    Within a limited range of incident laser-beam intensities, laser drilling of a sapphire wafer initiates on the surface of the wafer where the laser beam exits and proceeds upstream in the laser beam to the surface where the laser beam enters the wafer. This reverse laser drilling is the result of the constructive interference between the laser beam and its reflected component on the exit face of the wafer. Constructive interference occurs only at the exit face of the sapphire wafer because the internally reflected laser beam suffers no phase change there. A model describing reverse laser drilling predicts the ranges of incident laser-beam intensity where no drilling, reverse laser drilling, and forward laser drilling can be expected in various materials. The application of reverse laser drilling in fabricating feed-through conductors in silicon-on-sapphire wafers for a massively parallel processer is described.

  9. Laser Weather Identifier: Present and Future.

    NASA Astrophysics Data System (ADS)

    Wang, Ting-I.; Lataitis, R.; Lawrence, R. S.; Ochs, G. R.

    1982-11-01

    Prototype Laser Weather Identifier (LWI) systems designed to detect fog, rain and snow were tested for several months at Stapleton International Airport in Denver, and at the AFGL Weather Test Facility at Otis Air Force Base, Massachusetts. We present a detailed analysis of the performance of these systems, compared with human weather observations and tipping-bucket raingages, and suggest modifications for future operational instruments.

  10. Parametric studies on the nanosecond laser micromachining of the materials

    NASA Astrophysics Data System (ADS)

    Tański, M.; Mizeraczyk, J.

    2016-12-01

    In this paper the results of an experimental studies on nanosecond laser micromachining of selected materials are presented. Tested materials were thin plates made of aluminium, silicon, stainless steel (AISI 304) and copper. Micromachining of those materials was carried out using a solid state laser with second harmonic generation λ = 532 nm and a pulse width of τ = 45 ns. The effect of laser drilling using single laser pulse and a burst of laser pulses, as well as laser cutting was studied. The influence of laser fluence on the diameter and morphology of a post ablation holes drilled with a single laser pulse was investigated. The ablation fluence threshold (Fth) of tested materials was experimentally determined. Also the drilling rate (average depth per single laser pulse) of holes drilled with a burst of laser pulses was determined for all tested materials. The studies of laser cutting process revealed that a groove depth increases with increasing average laser power and decreasing cutting speed. It was also found that depth of the laser cut grooves is a linear function of number of repetition of a cut. The quantitative influence of those parameters on the groove depth was investigated.

  11. Review of Tm and Ho Materials; Spectroscopy and Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2008-01-01

    A review of Tm and Ho materials is presented, covering some fundamental aspects on the spectroscopy and laser dynamics in both single and co-doped systems. Following an introduction to 2- m lasers, applications and historical development, the physics of quasi-four level lasers, energy transfer and modeling are discussed in some detail. Recent developments in using Tm lasers to pump Ho lasers are discussed, and seen to offer some advantages over conventional Tm:Ho lasers. This article is not intended as a complete review, but as a primer for introducing concepts and a resource for further study.

  12. Mid-infrared solid-state lasers and laser materials

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Byvik, Charles E.

    1988-01-01

    An account is given of NASA-Langley's objectives for the development of advanced lasers and laser materials systems applicable to remote sensing in the mid-IR range. Prominent among current concerns are fiber-optic spectroscopy, eye-safe solid-state lasers for both Doppler sensing and mid-IR wavelength-generation laser pumping, and nonlinear optics generating tunable mid-IR radiation. Ho:YAG lasers are noted to exhibit intrinsic advantages for the desired applications, and are pumpable by GaAlAs laser diodes with a quantum efficiency approaching 2.

  13. Hybrid Laser Processing of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki

    The following chapter is an overview of processing fused silica and other transparent materials by pulsed-laser irradiation: (1) Direct excitation of materials with multi-wavelength excitation processes, and (2) Media-assisted process with a conventional pulsed laser. A method to etch transparent materials by using laserinduced plasma-assisted ablation (LIPAA), or laser-induced backside wet etching (LIBWE), has been described in detail.

  14. Picosecond laser bonding of highly dissimilar materials

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-10-01

    We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.

  15. Challenge to advanced materials processing with lasers in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu

    2003-02-01

    Japan is one of the most advanced countries in manufacturing technology, and lasers have been playing an important role for advancement of manufacturing technology in a variety of industrial fields. Contribution of laser materials processing to Japanese industry is significant for both macroprocessing and microprocessing. The present paper describes recent trend and topics of industrial applications in terms of the hardware and the software to show how Japanese industry challenges to advanced materials processing using lasers, and national products related to laser materials processing are also briefly introduced.

  16. New laser glass for short pulsed laser applications: the BLG80 (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    George, Simi A.

    2017-03-01

    For achieving highest peak powers in a solid state laser (SSL) system, significant energy output and short pulses are necessary. For mode-locked lasers, it is well-known from the Fourier theorem that the largest gain bandwidths produce the narrowest pulse-widths; thus are transform limited. For an inhomogeneously broadened line width of a laser medium, if the intensity of pulses follow a Gaussian function, then the resulting mode-locked pulse will have a Gaussian shape with the emission bandwidth/pulse duration relationship of pulse ≥ 0.44?02/c. Thus, for high peak power SSL systems, laser designers incorporate gain materials capable of broad emission bandwidths. Available energy outputs from a phosphate glass host doped with rare-earth ions are unparalleled. Unfortunately, the emission bandwidths achievable from glass based gain materials are typically many factors smaller when compared to the Ti:Sapphire crystal. In order to overcome this limitation, a hybrid "mixed" laser glass amplifier - OPCPA approach was developed. The Texas petawatt laser that is currently in operation at the University of Texas-Austin and producing high peak powers uses this hybrid architecture. In this mixed-glass laser design, a phosphate and a silicate glass is used in series to achieve a broader bandwidth required before compression. Though proven, this technology is still insufficient for the future compact petawatt and exawatt systems capable of producing high energies and shorter pulse durations. New glasses with bandwidths that are two and three times larger than what is now available from glass hosts is needed if there is to be an alternative to Ti:Sapphire for laser designers. In this paper, we present new materials that may meet the necessary characteristics and demonstrate the laser and emission characteristics these through the internal and external studies.

  17. Laser materials based on transition metal ions

    NASA Astrophysics Data System (ADS)

    Moncorgé, Richard

    2017-01-01

    The purpose of this presentation is to review the spectroscopic properties of the main laser materials based on transition metal ions which lead to noticeable laser performance at room temperature and, for very few cases, because of unique properties, when they are operated at cryogenic temperatures. The description also includes the materials which are currently being used as saturable absorbers for passive-Q-switching of a variety of other near- and mid-infrared solid state lasers. A substantial part of the article is devoted first to the description of the energy levels and of the absorption and emission transitions of the transition metal ions in various types of environments by using the well-known Tanabe-Sugano diagrams. It is shown in particular how these diagrams can be used along with other theoretical considerations to understand and describe the spectroscopic properties of ions sitting in crystal field environments of near-octahedral or near-tetrahedral symmetry. The second part is then dedicated to the description (positions and intensities) of the main absorption and emission features which characterize the different types of materials.

  18. High power DUV lasers for material processing

    NASA Astrophysics Data System (ADS)

    Mimura, Toshio; Kakizaki, Kouji; Oizumi, Hiroaki; Kobayashi, Masakazu; Fujimoto, Junichi; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-11-01

    A frontier in laser machining has been required by material processing in DUV region because it is hard to get high power solid-state lasers in this spectral region. DUV excimer lasers are the only solution, and now the time has come to examine the new applications of material processing with DUV excimer lasers. The excimer lasers at 193nm and 248nm have been used in the semiconductor manufacturing for long years, and have field-proven stability and reliability. The high photon energy of 6.4 eV at 193nm is expected to interact directly with the chemical bond of hard-machining materials, such as CFRP, diamond and tempered glasses. We report the latest results of material processing by 193nm high power DUV laser.

  19. Field mappers for laser material processing

    NASA Astrophysics Data System (ADS)

    Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy

    2016-03-01

    The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.

  20. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  1. Laser Ignition of Energetic Materials Workshop

    NASA Astrophysics Data System (ADS)

    Devries, Nora M.; Oreilly, John J.; Forch, Brad E.

    1993-11-01

    Lasers inherently possess many desirable attributes making them excellent igniters for a wide range of energetic materials such as pyrotechnics, explosives, and gun propellants. Lasers can be made very small, have modest powereD requirements, are invulnerable to external stimuli, are very reliable, and can deliver radiative energy to remote locations through optical fibers. Although the concept of using lasers for the initiation of energetic materials is not new, successful integration of laser technology into military systems has the potential to provide significant benefits. In order to efficiently expedite the evolution of the laser ignition technology for military applications, it was desirable to coordinate the effort with the JANNAF combustion community. The laser ignition of Energetic Materials Workshop was originated by Brad Forch, Austin Barrows, Richard Beyer and Arthur Cohen of the Army Research Laboratory (ARL).

  2. Lasant Materials for Blackbody-Pumped Lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J. (Editor); Chen, K. Y. (Editor)

    1985-01-01

    Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers.

  3. New laser materials: Final report

    SciTech Connect

    Not Available

    1986-10-01

    In the Interim Report No. 1, it was reported that the fluorescence lifetime (greater than or equal to 750..mu..s) in Nd doped Y(PO/sub 3/)/sub 3/ was longer by a factor of three as compared to YAG. This means potentially three times as much energy storage and consequently more efficient for flashlamp pumping. It also makes diode pumping easier. In addition, since the Y site is octahedrally coordinated, there is a possibility of energy transfer using Cr as the sensitizing element. As suggested by W. Krupke, we decided to explore the trivalent cation metaphosphates systematically. The compounds investigated can be represented by the general formula A(PO/sub 3/)/sub 3/ where A = Y, Lu, In, Sc, GA and Al. The object is to study the fluorescence characteristics of Nd and Cr as well as the effectiveness of energy transfer from Cr to Nd. In addition, we also investigated other possible laser host crystals, notably CaMgSi/sub 2/O/sub 6/ (diopside), LaBO/sub 3/ and La(BO/sub 2/)/sub 3/. Results on these materials will also be discussed.

  4. Laser printed plasmonic color metasurfaces (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kristensen, Anders; Zhu, Xiaolong; Højlund-Nielsen, Emil; Vannahme, Christoph; Mortensen, N. Asger

    2016-09-01

    This paper describes color printing on nanoimprinted plasmonic metasurfaces by laser post-writing, for flexible decoration of high volume manufactured plastic products. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures. Different surface morphologies that support different plasmonic resonances, and thereby different color appearances, are created by control of the laser pulse energy density. All primary colors can be printed, with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power consumption down to 0.3 nJ per pixel.

  5. Short Wavelength Laser/Materials Interactions

    DTIC Science & Technology

    1989-12-20

    lasterials interaction phenomena and effects, and 4) materials evaluation. The program has led to major advances in science-based understanding of...3.0 RESULTS 5 3.1 MATERIALS SELECTION and CHARACTERIZATION 5 3.2 DEVELOPMENT of NEW INSTRUMENTATION 8 3.2.1 Laser Sources 8 3.2.2 Multiwavelength ...high temperature during laser irradiation. The program has led to major advances in science-based understanding of materials performance under extreme

  6. Photonic crystal Fano lasers: experiment and theory (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mork, Jesper; Yu, Yi; Xue, Weiqi; Semenova, Elizaveta; Yvind, Kresten

    2016-09-01

    We present theoretical and experimental results for a novel laser structure where one of the mirrors is realized by a Fano resonance between the laser waveguide and a side-coupled nano cavity. The laser may be modulated via the mirror resonance, enabling ultrahigh modulatioon speeds and pulse generation. Experimental results for a photonic crystal structure with quantum dot active layers will be presented.

  7. Compact Blue-Green Lasers: Summaries of papers presented at the topical meeting. Volume 6: Technical digest series

    NASA Astrophysics Data System (ADS)

    Quinn, Jarus W.

    1992-02-01

    Summaries of papers presented at the Compact Blue-Green Lasers Topical Meeting held in Santa Fe, New Mexico on February 20-21, 1992 are presented. Topics covered are blue-green laser applications, IR pumped visible lasers, blue-green diode emitters, materials, frequency conversion in bulk devices, gas lasers, and frequency conversion in guided-wave devices.

  8. Efficiency of Nd laser materials with laser diode pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Cross, Patricia L.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    For pulsed laser-diode-pumped lasers, where efficiency is the most important issue, the choice of the Nd laser material makes a significant difference. The absorption efficiency, storage efficiency, and extraction efficiency for Nd:YAG, Nd:YLF, Nd:GSGG, Nd:BEL, Nd:YVO4, and Nd:glass are calculated. The materials are then compared under the assumption of equal quantum efficiency and damage threshold. Nd:YLF is found to be the best candidate for the application discussed here.

  9. Laser guide star adaptive optics: Present and future

    SciTech Connect

    Olivier, S.S.; Max, C.E.

    1993-03-01

    Feasibility demonstrations using one to two meter telescopes have confirmed the utility of laser beacons as wavefront references for adaptive optics systems. Laser beacon architectures suitable for the new generation of eight and ten meter telescopes are presently under study. This paper reviews the concept of laser guide star adaptive optics and the progress that has been made by groups around the world implementing such systems. A description of the laser guide star program at LLNL and some experimental results is also presented.

  10. Optofluidic lasers and their applications in bioanalysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xudong

    2016-03-01

    The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.

  11. Laser materials processing at Sandia National Laboratories

    SciTech Connect

    Jellison, J.L.; Cieslak, M.J.

    1994-11-01

    The interest in laser processing has been driven by Sandia`s responsibility to design, prototype, manufacture, and steward high reliability defense hardware for the Department of Energy. The system requirements for the hardware generally necessitate hermetic sealing for ensured long life operation. With the advent of miniaturized electronic devices, traditional welding processes were no longer practical choices because of their limited ability to make very small weld closures without heat damage to the hardware. Gas and solid state lasers offered the opportunity to make hermetic closure welds in small, heat sensitive hardware. In order to consistently produce quality product, the Sandia laser materials processing team performed research aimed at identifying those critical parameters which controlled the laser welding process. This has been directed towards both the development of quantitative engineering data needed in product design and process control, and research to achieve fundamental process understanding. In addition, they have developed novel diagnostic systems to measure these important parameters, pioneered the use of calorimetric techniques to measure energy transfer efficiencies, and correlated the occurrence of welding defects with alloy compositions and type of laser welding process. Today, Sandia`s laser materials processing team continues to advance the state of laser processing technology in many areas, including aluminum laser welding, the design of novel optics for specific laser processing needs, laser micromachining of silicon and diamond for microelectronics applications, and fluxless laser soldering. This paper will serve to highlight some examples of where Sandia has made contributions to the field of laser materials processing and will indicate the directions where they expect to focus their future efforts.

  12. Laser material interaction in confined medium

    NASA Astrophysics Data System (ADS)

    Devaux, David; Fabbro, Remy; Virmont, Jean; Ballard, Patrick; Fournier, Jean

    1990-04-01

    The technique of dielectric metallic target confinement is discussed. Improvements in experimental measurements by piezodielectric sensor are described. Laser material interaction by the hydrodynamic code FILM is described. The formed plasma is visualized using a streak camera.

  13. Laser Additive Manufacturing of Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  14. Development of ceramic solid state laser host materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-02-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  15. Development of Ceramic Solid-State Laser Host Material

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  16. Characterization of laser beam interaction with carbon materials

    NASA Astrophysics Data System (ADS)

    Janićijević, Milovan; Srećković, Milesa; Kaluđerović, Branka; Bojanić, Slobodan; Družijanić, Dragan; Dinulović, Mirko; Kovačević, Aleksander

    2013-05-01

    This paper presents simulation and experimental results for the exposure of some carbon-based materials to alexandrite and Nd3+:YAG (yttrium aluminum garnet) laser radiation. Simulation of the heating effects was carried out using the COMSOL Multiphysics 3.5 package for samples of carbon-based P7295-2 fiber irradiated using an alexandrite laser and carbon-based P4396-2 fiber irradiated using an Nd3+:YAG laser, as well as by applying finite element modeling for P7295-2 samples irradiated using an Nd3+:YAG laser. In the experimental part, P7295-2 samples were exposed to alexandrite laser radiation while samples of carbon-based composite 3D C/C were exposed to Nd3+:YAG laser radiation. Micrographs of the laser induced craters were obtained by light and scanning electron microscopy, and the images analyzed using the ImageJ software. The results obtained enable identification of the laser-material interaction spots, and characterization of the laser induced changes in the materials investigated.

  17. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  18. Division of Materials Science (DMS) meeting presentation

    SciTech Connect

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  19. Advances In Laser Imaging Material

    NASA Astrophysics Data System (ADS)

    Watkinson, L. J.

    1980-08-01

    The technology of coatings is assessed in relation to the four main operating modes of lasers viz. u.v., high/medium power visible, near infra red and low power visible. It is assessed that though the majority of the systems in current commercial use are of the high power u.v. type because of the lack of availability of suitably sensitised coatings, great efforts are being made to provide coatings compatible with medium to low Dower lasers. A survey of the systems disclosed in the patent literature potentially able to achieve the objective is discussed.

  20. Cavity blackbody-pumpd lasers: Present research status

    NASA Technical Reports Server (NTRS)

    Christiansen, W.

    1985-01-01

    The basic concept for a blackbody cavity is given. A comparison between the direct solar-pumped laser efficiency and one which is indirectly pumped by a blackbody cavity shows that they are similar to a carnot cycle. The blackbody spectrum used to optically pump the lasant material is shown. Also shown is the physical principle behind the blackbody laser idea. An example of an infrared laser media is given. A system study was conducted to scale cavity blackbody pumped lasers to high output powers.

  1. Material, Mechanical, and Tribological Characterization of Laser-Treated Surfaces

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat; Aleem, B. J. Abdul

    2014-10-01

    Laser treatment under nitrogen assisting gas environment of cobalt-nickel-chromium-tungsten-based superalloy and high-velocity oxygen-fuel thermal spray coating of nickel-chromium-based superalloy on carbon steel was carried out to improve mechanical and tribological properties. Superalloy surface was preprepared to include B4C particles at the surface prior to the laser treatment process. Material and morphological changes in the laser-treated samples were examined using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction (XRD) analysis. Residual stresses present at the surface region of the laser-treated layer were determined from the XRD data. The microhardness of the laser-treated surface was measured by indentation tests. Fracture toughness of the coating surfaces before and after laser treatment were also measured using overload indentation tests. Macrowear and macrofriction characterization were carried out using pin-on-disk tests.

  2. Thermal aspects of laser-based measurement and ultrafast laser processing of dielectric materials

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Hua

    Two extreme regimes for laser applications on dielectric materials are presented in this dissertation. First, two independent novel techniques that use low power laser light to make precision non-contact measurement of liquids are introduced: (1) real-time concentration measurement of NaCl-H2O and MgCl2-H2O aqueous mixtures in a flowing system, and (2) temperature or concentration measurements of liquids, including water, ethanol, methanol, 1-proponal, and their mixtures, at a free surface as well as a solid-liquid interface. These measurement techniques exhibit very high spatial and temporal resolutions, making them good candidates for use in microscale and MEMS-based measurement technologies. Another extreme of laser applications is materials processing using high power ultrashort laser pulses, which exhibits exciting new opportunities for non-contact materials modification with high precision and high feature quality. The second part of this dissertation focuses on modeling the interactions between ultrashort laser pulses and dielectrics. Present models effectively characterize several dominant parameters during ultrafast laser processing of dielectrics. Good agreement has been found between the model predictions and the experimental results. Future research will be directed towards the utilization of these model predictions to enhance energy deposition and material removal rate during ultrafast laser processing, improve machined features, and optimize technologies that involve laser-microstructures fabrication.

  3. Thermal lensing of laser materials

    NASA Astrophysics Data System (ADS)

    Davis, Mark J.; Hayden, Joseph S.

    2014-10-01

    This paper focuses on the three main effects that can induce wave-front distortion due to thermal lensing in laser gain media: 1) thermo-optic (dn/dT); 2) stress-optic; and 3) surface deformation (e.g., "end-bulging" of a laser rod). Considering the simple case of a side-pumped cylindrical rod which is air- or water-cooled along its length, the internal temperature distribution has long been known to assume a simple parabolic profile. Resulting from this are two induced refractive index variations due to thermo-optic and stress-optic effects that also assume a parabolic profile, but generally not of the same magnitude, nor even of the same sign. Finally, a small deformation on the rod ends can induce a small additional lensing contribution. We had two goals in this study: a) use finite-element simulations to verify the existing analytical expressions due to Koechner1 and Foster and Osterink; and b) apply them to glasses from the SCHOTT laser glass portfolio. The first goal was a reaction to more recent work by Chenais et al. who claimed Koechner made an error in his analysis with regard to thermal stress, throwing into doubt conclusions within studies since 1970 which made use of his equations. However, our re-analysis of their derivations, coupled with our FE modeling, confirmed that the Koechner and Foster and Osterink treatments are correct, and that Chenais et al. made mistakes in their derivation of the thermally-induced strain. Finally, for a nominal laser rod geometry, we compared the thermally-induced optical distortions in LG-680, LG-750, LG-760, LG-770, APG-1, and APG-2. While LG-750, -760, and -770 undergo considerable thermo-optic lensing, their stress-optic lensing is nearly of the same magnitude but of opposite sign, leading to a small total thermal lensing signature.

  4. Holmium-doped laser materials for eye-safe solid state laser application

    NASA Astrophysics Data System (ADS)

    Kim, Woohong; Bowman, Steven R.; Baker, Colin; Villalobos, Guillermo; Shaw, Brandon; Sadowski, Bryan; Hunt, Michael; Aggarwal, Ishwar; Sanghera, Jasbinder

    2014-06-01

    Trivalent holmium has 14 laser channels from 0.55 to 3.9 μm. The laser emission of most interest is the transition 5I7→5I8 near 2 μm because of its potential for use in eye-safe systems and medical applications. In this paper, we present our recent results in the development of Ho3+ doped laser materials for eye-safe solid state lasers. We report a calorimetric study of non-radiative losses in two micron pumped holmium doped laser host materials such as silica glass, yttrium aluminum garnet (YAG) crystal and Lu2O3 ceramics. Optical, spectral and morphological properties as well as the lasing performance from highly transparent ceramics are presented.

  5. New quantum cascade laser sources for sensing applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Troccoli, Mariano

    2017-05-01

    In this presentation we will review our most recent results on development of Quantum Cascade Lasers (QCLs) for analytical and industrial applications. QCLs have demonstrated the capability to cover the entire range of Mid-IR, Far-IR, and THz wavelengths by skillful tuning of the material design and composition and by use of intrinsic material properties via a set of techniques collectively called "bandgap engineering". The use of MOCVD, pioneered on industrial scale by AdTech Optics, has enabled the deployment of QCL devices into a diverse range of environments and applications. QCLs can be tailored to the specific application requirements due to their unprecedented flexibility in design and thanks to the leveraging of well-known III-V fabrication technologies inherited from the NIR domain. Nevertheless, several applications and new frontiers in R and D need the constant support of new developments in device features, capabilities, and performances. We have developed a wide range of devices, from high power, high efficiency multi-mode sources, to narrow-band, single mode devices with low-power consumption, and from non-linear, multi-wavelength generating devices to broadband sources and multi-emitter arrays. All our devices are grown and processed using MOCVD technology and allow us to attain competitive performances across the whole mid-IR spectral range. This talk will present an overview of our current achievements. References 1. M. Troccoli, "High power emission and single mode operation of quantum cascade lasers for industrial applications", J. Sel. Topics in Quantum Electron., 21 (6), 1-7 (2015). Invited Review. 2. Seungyong Jung, Aiting Jiang, Yifan Jiang, Karun Vijayraghavan, Xiaojun Wang, Mariano Troccoli, and Mikhail A. Belkin, "Broadly Tunable Monolithic Terahertz Quantum Cascade Laser Sources", Nature Comm. 5, 4267 (2014).. 3. Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G Tsekoun, Rowel Go, C Kumar N Patel, "Long

  6. Laser surgery in podiatric medicine--present and future.

    PubMed

    Borovoy, M; Fuller, T A; Holtz, P; Kaczander, B I

    1983-01-01

    Laser surgery in podiatric medicine is now in its most formative stages. Foot surgery lends itself to the utilization of the laser technique very readily. At the present time the laser is utilized in foot surgery at Sinai Hospital in Detroit for eradication of plantar verrucae, for excision of Morton's neuroma, for common nail pathology such as ingrown borders and traumatic ram's horn nails, and for correction of mycotic nail plates.

  7. Development of high-power CO2 lasers and laser material processing

    NASA Astrophysics Data System (ADS)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  8. Metal-oxide-semiconductor plasmonic nanorod lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gwo, Shangjr

    2017-02-01

    Scaling down semiconductor lasers in all three dimensions hold the key to the developments of compact, low-threshold, and ultrafast coherent light sources, as well as photonic integrated circuits. However, the minimum size of conventional semiconductor lasers utilizing dielectric cavity resonators (photonic cavities) is constrained to the diffraction limit. In the past few years, it has been experimentally demonstrated that the use of plasmonic cavities based on metal-oxide-semiconductor (MOS) structures can break this limit. In this presentation, I will report on the recent progress of plasmonic nanolasers using MOS structures. In particular, by using alloy-composition-varied indium gallium nitride/gallium nitride (InGaN/GaN) core-shell nanorods as the nanolaser gain media in the full visible spectrum, we are able to demonstrate full-color nanolasers that can be operated with ultralow CW lasing thresholds and single lasing modes. Full-color lasing in these subdiffraction plasmonic cavities is achieved via a unique autotuning mechanism based on a property of weak size dependence inherent in plasmonic nanolasers. As for choice of metals in the MOS structures, epitaxial Ag films and giant colloidal Ag crystals have been shown by us to be the superior constituent materials for plasmonic cavities due to their low plasmonic losses in the visible spectral range. Recently, we have also succeeded in developing InGaN/GaN nanorod array plasmonic lasers based on a metal (Au)-all-around MOS structure, which can be fabricated easily on a wafer scale. I will present the latest results in these developments.

  9. Laser-induced reactions in energetic materials

    NASA Astrophysics Data System (ADS)

    Ling, Ping

    1999-07-01

    Several energetic materials have been investigated under shock wave loading, heating, and photodissociation. This dissertation highlights some efforts to understand energetic material from an angle of basic physical processes and elementary chemical reactions. The first series of experiments was performed to study laser-generated shock waves in energetic materials. Shock waves are generated by pulsed laser vaporization of thin aluminum films. The rapidly expanding aluminum plasma launches a shock wave into the adjacent layer of energetic material, initiating chemical reactions. The shock velocity has been measured by a velocity interferometer. Shock pressures as high as 8 GPa have been generated in this manner. A simple model is proposed to predict laser-generated shock pressure. Several energetic materials have been studied under laser- generated shock wave. The second series of experiments was conducted to study thermal decomposition and photodissociation of energetic materials. Glycidyl azide polymer (GAP) and poly(glycidyl nitrate) (PGN) have been investigated by pulsed infrared laser pyrolysis and ultraviolet laser photolysis of thin films at 17-77 K. Reactions are monitored by transmission infrared spectroscopy. Photolysis of GAP at 266 nm shows that the initial reaction steps are elimination of molecular nitrogen with subsequent formation of imines. Thermal decomposition of GAP by infrared laser pyrolysis reveals products similar to the UV experiments after warming. Laser pyrolysis of PGN indicated that the main steps of decomposition are elimination of NO2 and CH2O from the nitrate ester functional group. It seems that the initial thermal decomposition mechanism of GAP and PGN are the same from heating rate of several degrees per second to 107 oC/s. The third series of experiments is about detailed study of photodissociation mechanism of methyl nitrate. Photodissociation of methyl nitrate isolated in an argon matrix at 17 K has been investigated by 266 nm

  10. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  11. Ultrafast laser processing of glass-phase materials: mathematical simulation

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana N.; Surmenko, Elena L.; Chebotarevsky, Yury V.; Konyushin, Alexander V.; Popov, Ivan A.; Bessonov, Dmitry A.

    2013-11-01

    Glass-phase materials, such as glass-carbon, ceramics etc., are a wide class of substances applied in electronic industry. These materials often need special technologies for their processing. Unlike traditional methods of micromachining, focused ultrashort laser pulses of sufficiently high fluence makes it possible not only to avoid the majority of side effects, including temperature, but also to create a qualitatively new laser technology for "hard materials". When using ultrafast lasers in micromachining processes it is necessary to account the possible negative effects that occur in the processing of brittle materials. Removing material from the surface in cold ablation process caused by laser light, in such a short period of time with such a high rate, creates the area of high pressure in the interaction zone that could cause a microdamage of brittle materials. To study the stress-strain state arising in brittle materials under the influence of ultrafast lasers, the special physicalmathematical model of the process was formulated. As a measure of the mechanical action of laser radiation on the processed material in cold ablation the reactive force was taken. As a mechanical reaction of the treated glass-carbon substrate a back pressure generated by the reactive force was considered. Brittle materials suffer plastic deformation, as a rule, only in the areas of high-temperature heating. Hence, in case of picosecond treatment in cold ablation process the material, from a mechanical point of view, was seen as a perfectly elastic up to its destruction. From a geometrical point of view, the processed object was presented in the form of a thin rectangular plate, loosely founded on the elastic base.

  12. Selective Laser Sintering of Filled Polymer Systems: Bulk Properties and Laser Beam Material Interaction

    NASA Astrophysics Data System (ADS)

    Wudy, Katrin; Lanzl, Lydia; Drummer, Dietmar

    Additive manufacturing techniques, such as selective laser melting of plastics, generate components directly from a CAD data set without using a specific mold. The range of materials commercially available for selective laser sintering merely includes some semi crystalline polymers mainly polyamides, which leads to an absence of realizable component properties. The presented investigations are concerned with the manufacturing and analysis of components made from filled polymer systems by means of selective laser sintering. The test specimens were generated at varied filler concentration, filler types and manufacturing parameter like laser power or scan speed. In addition to the characterization of the mixed powders, resulting melt depth were analyzed in order to investigate the beam material interaction. The basic understanding of the influence of different fillers, filler concentration and manufacturing parameters on resulting component properties will lead to new realizable component properties and thus fields of application of selective laser sintering.

  13. Advances in excimer laser processing of materials

    SciTech Connect

    Jervis, T.R.; Nastasi, M.; Hirvonen, J.-P.

    1996-08-01

    The use of pulsed excimer lasers to surface processing of materials hinges on an understanding of the nature of the interaction between the laser energy and the material. The application of this understanding of the laser materials interaction to surface modification must also recognize the existence of thermodynamic driving forces and kinetic limitations in light of the short duration of a single pulse event. For species that have higher solubility in the liquid than in the solid phase, segregation by ``zone refinement`` from multiple passes by a solidification front to the surface results in surface enrichment of those species. The most obvious applications for surface processing occur where the bulk properties of a component are not commensurate with the needed surface properties. Improvements in surface mechanical properties have been observed in a number of metal and ceramic alloys. In the microelectronics industry, apart from micromachining or material removal applications, for which excimers are indeed well suited, the same features of the laser-materials interaction that are used to modify the mechanical or electrochemical properties of a surface can be used to advantage. Further advances, such as those demonstrated in microelectronics, await application-specific developments. 22 refs., 1 fig.

  14. Materials processing with a high power diode laser

    SciTech Connect

    Li, L.; Lawrence, J.; Spencer, J.T.

    1996-12-31

    This paper reports on work exploring the feasibility of a range of materials processing applications using a Diomed 60W diode laser delivered through a 600{mu}m diameter optical fibre to a 3 axis CNC workstation. The applications studied include: marking/engraving natural stones (marble and granite), marking ceramic tiles, sealing tile grouts, cutting and marking glass, marking/engraving wood, stripping paint and lacquer, and welding metallic wires. The study shows that even at the present limited power level of diode lasers, many materials processing applications can be accomplished with satisfactory results. Through the study an initial understanding of interaction of high power diode laser (HPDL) beam with various materials has been gained. Also, within the paper basic beam characteristics, and current R&D activities in HPDL technology and materials processing applications are reviewed.

  15. Study of fast laser induced cutting of silicon materials

    NASA Astrophysics Data System (ADS)

    Weinhold, S.; Gruner, A.; Ebert, R.; Schille, J.; Exner, H.

    2014-03-01

    We report on a fast machining process for cutting silicon wafers using laser radiation without melting or ablating and without additional pretreatment. For the laser induced cutting of silicon materials a defocused Gaussian laser beam has been guided over the wafer surface. In the course of this, the laser radiation caused a thermal induced area of tension without affecting the material in any other way. With the beginning of the tension cracking process in the laser induced area of tension emerged a crack, which could be guided by the laser radiation along any direction over the wafer surface. The achieved cutting speed was greater than 1 m/s. We present results for different material modifications and wafer thicknesses. The qualitative assessment is based on SEM images of the cutting edges. With this method it is possible to cut mono- and polycrystalline silicon wafers in a very fast and clean way, without having any waste products. Because the generated cracking edge is also very planar and has only a small roughness, with laser induced tension cracking high quality processing results are easily accessible.

  16. Tetravalent chromium doped laser materials and NIR tunable lasers

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0laser materials are characterized by a relatively high concentration of Cr.sup.4+-lasing ion in crystalline host that makes these materials suitable for compact high power (thin disk/wedge) NIR laser applications.

  17. Laser surface conditioning of semimetallic friction materials

    SciTech Connect

    Patten, D.T.

    1986-01-01

    Surface conditioning is one way of reducing the duration and magnitude of the initial transients occurring in friction materials. In developing a laser searing system for semimetallic materials the changes occurring on the surface were characterized as a function of the power density. Excessive power melted the surface of the lining and produced an undesirable microstructure, while too little power did not produce the changes desired. The changes produced by laser searing were found to be similar to the changes produced by other types of surface conditioning. The friction and wear performance was studied for linings seared with different power densities. Laser searing primarily increased the low speed, low temperature, pre-burnish friction level. The amount of increase was proportional to the amount of searing. After burnishing the searing did not effect the friction level of the lining. Excessive power densities produced undesirable surface microstructures and persistent rotor scoring.

  18. Review of selective laser melting: Materials and applications

    SciTech Connect

    Yap, C. Y.; Chua, C. K. Liu, Z. H. Zhang, D. Q. Loh, L. E. Sing, S. L.; Dong, Z. L.

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  19. Review of selective laser melting: Materials and applications

    NASA Astrophysics Data System (ADS)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  20. Modeling of laser interactions with composite materials

    SciTech Connect

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  1. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  2. Ultrashort-pulse laser generated nanoparticles of energetic materials

    SciTech Connect

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  3. Laser ablation of a polysilane material

    NASA Astrophysics Data System (ADS)

    Hansen, S. G.; Robitaille, T. E.

    1987-08-01

    The laser ablation properties of a (50%)-isopropyl methyl-(50%)-n-propyl methyl silane copolymer are examined. Both 193- and 248-nm-pulsed excimer laser radiation cleanly and completely remove this material in vacuum above certain energy thresholds (30 and 50 mJ/cm2, respectively). Under these conditions the ablation properties are quite similar to those reported for typical organic polymers. Below threshold, ablation is less efficient and becomes increasingly inefficient as irradiation continues due to spectral bleaching. In the presence of air, material removal is incomplete even for high-energy densities and long exposures. The ablation rate is shown to be independent of substrate material both above and below threshold.

  4. Bringing PW-class lasers to XFELs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    2017-06-01

    Experimental researches using high power optical lasers combined with free electron lasers (FELs) open new frontiers in high energy density (HED) sciences. Probing and pumping capabilities are dramatically improved due to the brightness of the XFEL pulses with ultrafast duration. Besides, the peak intensities of Ti:sapphire laser Chirped Pulse Amplification (CPA) systems reach petawatt (PW)-class with operating in few tens of fs and commercially available at a few Hz of repetition rate. We have been developing an experimental platform for HED sciences using high power, high intensity optical lasers at the XFEL facility, SACLA.Currently, an experimental platform with a dual 0.5 PW Ti:Sapphire laser system is under beam commissioning for experiments combined with the SACLA's x-ray beam for research objectives that require more peak power in the optical laser pulses with a few tens of fs. The optical laser system is designed to deliver two laser beams simultaneously with the maximum power of 0.5 PW in each into a target chamber located in an experimental hutch 6 (EH6) at BL2, which was recently commissioned as a SACLA's 2nd hard x-ray beamline. A focusing capability using sets of compound refractive lenses will be applied to increase the x-ray fluence on the target sample. One of the most key issues for the integrated experimental platform is development of diagnostics that meets requirements both from the high power laser (e.g. resistance to harsh environments) and from the XFEL (e.g. adaptation to the available data acquisition system). The status and future perspective of the development including automatic laser alignment systems will be reported in the presentation. We will discuss the most promising and important new physics experiments that will be enabled by the combination of PW-class lasers and the world-class FEL's x-ray beam.

  5. Past, present, and future of endobronchial laser photoresection

    PubMed Central

    Khemasuwan, Danai; Wang, Ko-Pen

    2015-01-01

    Laser photoresection of central airway obstruction is a useful tool for an Interventional Pulmonologist (IP). Endobronchial therapy of the malignant airway obstruction is considered as a palliative measure or a bridge therapy to the definite treatment of cancer. Several ablative therapies such as electrocautery, argon plasma coagulation (APC), cryotherapy and laser photoresection exist in the armamentarium of IP to tackle such presentations. Besides Neodymium-Yttrium, Aluminum, Garnet (Nd:YAG) laser, there are several different types of laser that have been used by the pulmonologist with different coagulative and cutting properties. This chapter focuses on the historical perspective, current status, and potentials of lasers in the management of central airway lesions. PMID:26807285

  6. Photovoltaic materials: Present efficiencies and future challenges.

    PubMed

    Polman, Albert; Knight, Mark; Garnett, Erik C; Ehrler, Bruno; Sinke, Wim C

    2016-04-15

    Recent developments in photovoltaic materials have led to continual improvements in their efficiency. We review the electrical characteristics of 16 widely studied geometries of photovoltaic materials with efficiencies of 10 to 29%. Comparison of these characteristics to the fundamental limits based on the Shockley-Queisser detailed-balance model provides a basis for identifying the key limiting factors, related to efficient light management and charge carrier collection, for these materials. Prospects for practical application and large-area fabrication are discussed for each material.

  7. Laser photoacoustics for gas analysis and materials testing

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.

    1995-07-01

    The application of laser photoacoustics to two different areas is discussed. First, laser-induced spallation and interferometric detection of transient surface displacements is proposed as a powerful noncontact tool for the investigation of adhesion properties of solid surface coatings. Results for nickel and plasma-sprayed ceramic coatings are presented. Delamination processes at the interface between substrate and coating could be detected with excellent spatial and temporal resolution and adhesion strengths in the 0.2 to 2 GPa range be determined. Second, laser photoacoustic spectroscopy is applied to trace gas monitoring. An automated mobile CO2$ laser photoacoustic system is employed for in situ air monitoring with parts per billion sensitivity in industrial, urban, and rural environments. An improvement in detection selectivity for multicomponent gas mixtures is achieved with a continuously tunable high- pressure CO2 laser with a narrow linewidth of 0.017 cm-1. A CO laser photoacoustic system previously used for the analysis of motor vehicle exhausts is now employed for studying dimerization phenomena in fatty acid vapors. Finally, emphasis is put on the development of widely tunable, narrow-band, mid-IR laser sources based on optical parametric oscillation or difference frequency generation employing tunable diode lasers and AgGaSe2 as nonlinear material.

  8. Tubular filamentation for laser material processing

    PubMed Central

    Xie, Chen; Jukna, Vytautas; Milián, Carles; Giust, Remo; Ouadghiri-Idrissi, Ismail; Itina, Tatiana; Dudley, John M.; Couairon, Arnaud; Courvoisier, Francois

    2015-01-01

    An open challenge in the important field of femtosecond laser material processing is the controlled internal structuring of dielectric materials. Although the availability of high energy high repetition rate femtosecond lasers has led to many advances in this field, writing structures within transparent dielectrics at intensities exceeding 1013 W/cm2 has remained difficult as it is associated with significant nonlinear spatial distortion. This letter reports the existence of a new propagation regime for femtosecond pulses at high power that overcomes this challenge, associated with the generation of a hollow uniform and intense light tube that remains propagation invariant even at intensities associated with dense plasma formation. This regime is seeded from higher order nondiffracting Bessel beams, which carry an optical vortex charge. Numerical simulations are quantitatively confirmed by experiments where a novel experimental approach allows direct imaging of the 3D fluence distribution within transparent solids. We also analyze the transitions to other propagation regimes in near and far fields. We demonstrate how the generation of plasma in this tubular geometry can lead to applications in ultrafast laser material processing in terms of single shot index writing, and discuss how it opens important perspectives for material compression and filamentation guiding in atmosphere. PMID:25753215

  9. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  10. Fluoride crystals: materials for near-infrared solid state lasers

    NASA Astrophysics Data System (ADS)

    Parisi, Daniela; Veronesi, Stefano; Volpi, Azzurra; Gemmi, Mauro; Tonelli, Mauro; Cassanho, Arlete; Jenssen, Hans P.

    2013-07-01

    In this work we present an overview of the best 2μm laser results obtained in Tm-doped fluoride hosts LiYF4(YLF), LiLuF4 (LLF) and BaY2F8 (BYF) and we report on the growth, spectroscopy and first laser test emission of a novel mixed material BaYLuF8 (BYLF), interesting as a variant of BYF material with a partial substitution of Y3+ ions by Lu3+. The novel host is interesting mainly because indications are that the mixed crystal would be sturdier than BYF. The addition of Lutetium would improve the thermo-mechanical properties going into the direction of high power applications, as suggest from works on YLF and its isomorph LLF. A detailed description of Czochralski growth of fluoride laser materials is provided, focusing on the growth parameters of the novel BYLF:Tm3+12% material grown. With regard of spectroscopy analysis, we report on the results obtained with BYLF host. Detailed absorption, fluorescence and lifetime measurements have been performed focusing on the 3H4 and 3F4 manifolds, the pumping and upper laser level. Moreover diode pumped CW laser emission at 2 μm has been achieved in BYLF: Tm3+12% sample obtaining a slope efficiency of about 28% with respect to the absorbed power.

  11. Open architecture control for laser materials processing

    NASA Astrophysics Data System (ADS)

    Ortmann, Juergen; Kahmen, A.; Kaierle, Stefan; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    2001-12-01

    In laser materials processing, usually CNC controls come into operation that are fitted to conventional applications of machining, like milling. Because of the flexibility required and the large variety of applications in laser technology the use of an open architecture control is necessary. Open controls based on the OSACA (Open System Architecture for Controls within Automation systems) specification gain an increasing importance when innovative technology is integrated into controls. OSACA defines a uniform system platform that provides services for communication and configuration. The OSACA platform has been developed as a modular system for different operating systems with or without real-time capability and different hardware platforms. The functionality of the control is subdivided into single functional units, which communicate provided by the OSACA platform. Every unit can access the internal control data in a standardized way. The contribution reports about the implementation of an OSACA based control into a laser manufacturing plant. The problems and components concerning a linkage to the laser control and the implementation of some laser specific control units are discussed.

  12. Experiments on multiplane balancing using a laser for material removal

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.

    1979-01-01

    The modifications of a flexible rotor system for two-plane laser balancing is described. Experimental testing of the laser material removal method for balancing through the first bending critical speed was demonstrated. The test rig, optical configuration, and a neodymium glass laser system were assembled and calibrated for static and rotating material removal rates. The laser control computer program was combined with the influence coefficient balancing process, resulting in a completely automated data acquisition, laser, and balancing system. The laser system rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.

  13. Laser-material interactions: A study of laser energy coupling with solids

    SciTech Connect

    Shannon, Mark Alan

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  14. Ultrafast laser spectroscopy in complex solid state materials

    SciTech Connect

    Li, Tianqi

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  15. Laser applications to fluid materials: laser-induced cavitation in cryogenic liquid and gas decomposition by laser

    NASA Astrophysics Data System (ADS)

    Maeno, Kazuo; Sato, Hitoshi; Endo, Seiichi

    1999-05-01

    In this paper laser applications to fluid dynamical problems are presented. Firstly as for the recent research on cavitations, pulsed-laser-induced cavitation bubble in liquid nitrogen is studied. The bubble is produced by focused and pulsed irradiation of second harmonics of YAG laser in the cryostat. The dynamics of laser-induced bubble is visualized by high-speed shadowgraphs and schlieren photographs by an image-converter camera (Imacon-790). Bubble and solid wall interactions are also investigated. Based on the results obtained, a novel laser surface processing technology using the pulse-laser-induced cavitation bubbles is secondly proposed. The possibility of cold material surface processing by produced cavitation bubble is discussed including the cryogenic range. Furthermore, discussing by the fundamental results of the experiment of laser-gas molecular absorption, the possibility of decomposition of environmental gases by strong CW CO2 laser irradiation is also studied. Freon 12, 113, and other environmental gases including SF6 are very tough to be decomposed, and they break effectively the ozone molecules at high altitude above the Earth, or they heat up the earth. The wavelength range of the infrared laser is suitable for the molecular absorption to increase their temperature to be ionized. The possibility and trial experiments are discussed.

  16. Lunar Science from Laser Ranging - Present and Future

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. Todd; Williams, James G.; Turyshev, S. G.

    2008-01-01

    The interior properties of the Moon influence lunar tides and rotation. Three-axis rotation (physical librations) and tides are sensed by tracking lunar landers. The Lunar Laser Ranging (LLR) experiment has acquired 38 yr of increasingly accurate ranges from observatories on the Earth to four corner cube retroreflector arrays on the Moon. Lunar Laser Ranging is reviewed in [1]. Recent lunar science results are in [4,5]. In this abstract present LLR capabilities are described followed by future possibilities.

  17. Long-Lifetime Laser Materials For Effective Diode Pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Long quantum lifetimes reduce number of diodes required to pump. Pumping by laser diodes demonstrated with such common Nd laser materials as neodymium:yttrium aluminum garnet (Nd:YAG) and Nd:YLiF4, but such materials as Nd:LaF3, Nd:NaF.9YF3, and possibly Nd:YF3 more useful because of long lifetimes of their upper laser energy levels. Cost effectiveness primary advantage of solid-state laser materials having longer upper-laser-level lifetimes. Because cost of diodes outweighs cost of laser material by perhaps two orders of magnitude, cost reduced significantly.

  18. Laser-generated shock waves and applications to advanced materials

    SciTech Connect

    Holmes, N.C.

    1996-01-19

    The use of lasers for the generation and application of high-pressure shock waves offers unique advantages and challenges. In contrast to impact systems, the range of pressures and strain rates is substantially greater using laser drive. The ability to change the temporal shape of the drive pulse allows a variety of strain-rate conditions to be obtained. In addition, high time-resolution in situ diagnostic methods are relatively simple to implement. Lasers can be at a disadvantage compared to impact methods in terms of shock generation, simplicity of the states achieved, the difficulty of characterizing bulk properties, and sample size. I will review the physics of laser-driven shock physics, diagnostic methods, and applications, with an emphasis on material physics. I will also present some views on important new directions for this area of research.

  19. Numerical Testbed for Laser Materials Processing

    DTIC Science & Technology

    2002-01-24

    parametesis s cut edge S\\ \\ Bottom edge Adherent dross of sheet Figure 5. A schematic of the cut zone. The high surface tension of the melt and its...adhesion to the workpiece results in dross adhering to the lower edge of the cut.is A similar scatter of theories and the limited predictive capabilities...of current simulations prevails in context with other features in laser materials processing such as humping, rippling and dross formation. The

  20. The advances and characteristics of high-power diode laser materials processing

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2000-10-01

    This paper presents a review of the direct applications of high-power diode lasers for materials processing including soldering, surface modification (hardening, cladding, glazing and wetting modifications), welding, scribing, sheet metal bending, marking, engraving, paint stripping, powder sintering, synthesis, brazing and machining. The specific advantages and disadvantages of diode laser materials processing are compared with CO 2, Nd:YAG and excimer lasers. An effort is made to identify the fundamental differences in their beam/material interaction characteristics and materials behaviour. Also an appraisal of the future prospects of the high-power diode lasers for materials processing is given.

  1. Powder Flux Regulation in the Laser Material Deposition Process

    NASA Astrophysics Data System (ADS)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  2. Optical materials for space based laser systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Armagan, G.; Byvik, C. E.; Albin, S.

    1989-01-01

    The design features and performance characteristics of a sensitized holmium laser applicable to differential lidar and Doppler windshear measurements are presented, giving attention to the optimal choice of sensitizing/activating dopant ions. This development of a 2-micron region eye-safe laser, where holmium is sensitized by either hulium or erbium, has called for interionic energy transfer processes whose rate will not result in gain-switched pulses that are excessively long for atmospheric lidar and Doppler windshear detection. The application of diamond films for optical component hardening is noted.

  3. Optical materials for space based laser systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Armagan, G.; Byvik, C. E.; Albin, S.

    1989-01-01

    The design features and performance characteristics of a sensitized holmium laser applicable to differential lidar and Doppler windshear measurements are presented, giving attention to the optimal choice of sensitizing/activating dopant ions. This development of a 2-micron region eye-safe laser, where holmium is sensitized by either hulium or erbium, has called for interionic energy transfer processes whose rate will not result in gain-switched pulses that are excessively long for atmospheric lidar and Doppler windshear detection. The application of diamond films for optical component hardening is noted.

  4. Direct laser writing of auxetic structures: present capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Hengsbach, Stefan; Díaz Lantada, Andrés

    2014-08-01

    Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and that display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic geometries and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of direct laser writing. The process stands out for its precision and complex three-dimensional (3D) geometries attainable without the need of supporting structures. To our knowledge it represents one of the first examples of the application of this technology to the manufacture of auxetic geometries and mechanical metamaterials, with details even more remarkable than those shown in very recent studies, almost reaching the current limit of this additive manufacturing technology. We have used some special 3D auxetic designs whose remarkable NPR has been previously highlighted.

  5. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  6. Laser Ablation of Materials for Propulsion of Spacecraft

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Carruth, Ralph; Campbell, Jonathan; Gray, Perry

    2004-01-01

    A report describes experiments performed as part of a continuing investigation of the feasibility of laser ablation of materials as a means of propulsion for small spacecraft. In each experiment, a specimen of ablative material was mounted on a torsion pendulum and irradiated with a laser pulse having an energy of 5 J. The amplitude of the resulting rotation of the torsion pendulum was taken to be an indication of the momentum transferred from the laser beam. Of the ablative materials tested, aluminum foils yielded the smallest rotation amplitudes of the order of 10 degrees. Black coating materials yielded rotation amplitudes of the order of 90 degrees. Samples of silver coated with a fluorinated ethylene propylene (FEP) copolymer yielded the largest rotation amplitudes 6 to 8 full revolutions. The report presents a theory involving heating of a confined plasma followed by escape of the plasma to explain the superior momentum transfer performance of the FEP specimens. It briefly discusses some concepts for optimizing designs of spacecraft engines to maximize the thrust obtainable by exploiting the physical mechanisms of the theory. Also discussed is the use of laser-ablation engines with other types of spacecraft engines.

  7. Hole qualities in laser trepanning of polymeric materials

    NASA Astrophysics Data System (ADS)

    Choudhury, I. A.; Chong, W. C.; Vahid, G.

    2012-09-01

    The present study focuses the effect of four input controllable laser cutting variables on the hole taper and hole circularity in laser trepan drilling of polymeric materials. Experiments have been conducted on acrylonitrile butadiene styrene (ABS) and polymethyl methacrylate (PMMA) polymer sheets. Laser power, assist gas pressure, cutting speed and stand-off distance were selected as independent process variables. Three different holes of diameters 2 mm, 4 mm and 6 mm were drilled in these work materials of 5 mm thickness. A Taguchi L9 orthogonal array with four factors and three levels of each factor was used to plan and conduct the experiments in order to obtain required information with reduced number of experiments. The process performance was ascertained in terms of hole taper and hole circularity. Initial analysis involved in determining the effect of the four process variables on hole taper and circularity for these two polymers at three different hole diameters. From ANOVA analysis, the optimum levels of the four process variables with respect to materials and hole diameters were evaluated. As it was found that the optimum levels of four process variables were different for different hole size and materials, additional analysis was conducted to incorporate the effect of material and hole diameter on the hole taper. From the analysis, the optimum combinations were obtained at compressed air pressure of 2.0 bar, laser power of 500 W, cutting speed of 0.6 m/min, stand-off distance of 5.0 mm, hole diameter of 2.0 mm and material of PMMA. These combinations produced the minimum taper in the hole. The circularity of the hole was more at the entrance than the exit when ABS polymer was laser drilled while in PMMA, the hole was more circular at the exit than the entrance.

  8. WinGEONET: What's New? (Presentation material)

    SciTech Connect

    Gaydosh, M.; Langer, L.; LeCocq, C.; /SLAC

    2005-08-23

    The name GEONET means data reduction software for the accelerator alignment community. It was developed in the early 1980's but the only thing left from the original version is the hierarchical directory structure to hold the observations and results. This poster presents the three components of WinGEONET: the Windows interface, the computational engine and the visualization tool. It also presents further developments towards a more versatile toolbox architecture.

  9. HO:LULF and HO:LULF Laser Materials

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Morrison, Clyde A. (Inventor); Filer, Elizabeth D. (Inventor); Jani, Mahendra G. (Inventor); Murray, Keith E. (Inventor); Lockard, George E. (Inventor)

    1998-01-01

    A laser host material LULF (LuLiF4) is doped with holmium (Ho) and thulium (Tm) to produce a new laser material that is capable of laser light production in the vicinity of 2 microns. The material provides an advantage in efficiency over conventional Ho lasers because the LULF host material allows for decreased threshold and upconversion over such hosts as YAG and YLF. The addition of Tm allows for pumping by commonly available GaAlAs laser diodes. For use with flashlamp pumping, erbium (Er) may be added as an additional dopant. For further upconversion reduction, the Tm can be eliminated and the Ho can be directly pumped.

  10. Optical microdevices fabricated using femtosecond laser processing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Otuka, Adriano J. G.; Tomázio, Nathália B.; Tribuzi, Vinicius; Ferreira, Paulo Henrique D.; De Boni, Leonardo; Mendonça, Cleber R.

    2017-02-01

    Femtosecond laser processing techniques have been widely employed to produce micro or nanodevices with special features. These devices can be selectively doped with organic dyes, biological agents, nanoparticles or carbon nanotubes, increasing the range of applications. Acrylate polymers can be easily doped with various compounds, and therefore, they are interesting materials for laser fabrication techniques. In this work, we use multiphoton absorption polymerization (MAP) and laser ablation to fabricate polymeric microdevices for optical applications. The polymeric sample used in this work is composed in equal proportions of two three-acrylate monomers; while tris(2-hydroxyethyl)isocyanurate triacrylate gives hardness to the structure, the ethoxylated(6) trimethyl-lolpropane triacrylate reduces the shrinkage tensions upon polymerization. These monomers are mixed with a photoinitiator, the 2,4,6-trimetilbenzoiletoxifenil phosphine oxide, enabling the sample polymerization after laser irradiation. Using MAP, we fabricate three-dimensional structures doped with fluorescent dyes. These structures can be used in several optical applications, such as, RGB fluorescent microdevices or microresonators. Using azo compounds like dopant in the host resin, we can apply these structures in optical data storage devices. Using laser ablation technique, we can fabricate periodic microstructures inside polymeric bulks doped with xanthene dyes and single-walled carbon nanotubes, aiming applications in random laser experiments. In structured bulks we observed multi-narrow emission peaks over the xanthene fluorescence emission. Furthermore, in comparison with non-structured bulks, we observed that the periodic structure decreased the degree of randomness, reducing the number of peaks, but defining their position.

  11. Enhancing the Recall of Presented Material

    ERIC Educational Resources Information Center

    Larson, Ronald B.

    2009-01-01

    Many educators distribute either complete or incomplete handouts so students can follow along with their lectures. This research examines a teaching system that combines computer-generated graphics presentations and detailed outline handouts with blanks added. An experiment found that this system produced significantly higher short-term recall of…

  12. A simple methodology for predicting laser-weld properties from material and laser parameters

    NASA Astrophysics Data System (ADS)

    Hann, D. B.; Iammi, J.; Folkes, J.

    2011-11-01

    In laser material processing, understanding the laser interaction and the effect of processing parameters on this interaction is fundamental to any process if the system is to be optimized. Expanding this to different materials or other laser systems with different beam characteristics makes this interaction more complex and difficult to resolve. This work presents a relatively simple physical model to understand these interactions in terms of mean surface enthalpy values derived from both material parameters and laser parameters. From these fundamental properties the melt depth and width for any material can be predicted using a simple theory. By considering the mean enthalpy of the surface, the transition from conduction limited melting to keyholing can also be accurately predicted. The theory is compared to experimental results and the predicted and observed data are shown to correspond well for these experimental results as well as for published results for stainless steel and for a range of metals. The results suggest that it is important to keep the Fourier number of the weld much smaller than one to make it efficient. It is also discussed that the surface enthalpy could be used to prodict other effects in the weld such as porosity and material expulsion.

  13. Laser-based fast-neutron spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pomerantz, Ishay; Kishon, Itay; Kleinschmidt, Annika; Schanz, Victor A.; Tebartz, Alexandra; Fernández, Juan Carlos; Gautier, Donald C.; Johnson, Randall Philip; Shimada, Tsutomu; Wurden, Glen Anthony; Roth, Markus

    2017-05-01

    Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.

  14. Laser amplifier based on Raman amplification in plasma (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vieux, Gregory; Cipiccia, Silvia; Lemos, Nuno R. C.; Ciocarlan, Cristian; Grant, Peter A.; Grant, David W.; Ersfeld, Bernhard; Hur, MinSup; Lepipas, Panagiotis; Manahan, Grace; Reboredo Gil, David; Subiel, Anna; Welsh, Gregor H.; Wiggins, S. Mark; Yoffe, Samuel R.; Farmer, John P.; Aniculaesei, Constantin; Brunetti, Enrico; Yang, Xue; Heathcote, Robert; Nersisyan, Gagik; Lewis, Ciaran L. S.; Pukhov, Alexander; Dias, João. Mendanha; Jaroszynski, Dino A.

    2017-05-01

    The increasing demand for high laser powers is placing huge demands on current laser technology. This is now reaching a limit, and to realise the existing new areas of research promised at high intensities, new cost-effective and technically feasible ways of scaling up the laser power will be required. Plasma-based laser amplifiers may represent the required breakthrough to reach powers of tens of petawatt to exawatt, because of the fundamental advantage that amplification and compression can be realised simultaneously in a plasma medium, which is also robust and resistant to damage, unlike conventional amplifying media. Raman amplification is a promising method, where a long pump pulse transfers energy to a lower frequency, short duration counter-propagating seed pulse through resonant excitation of a plasma wave that creates a transient plasma echelon that backscatters the pump into the probe. Here we present the results of an experimental campaign conducted at the Central Laser Facility. Pump pulses with energies up to 100 J have been used to amplify sub-nanojoule seed pulses to near-joule level. An unprecedented gain of eight orders of magnitude, with a gain coefficient of 180 cm-1 has been measured, which exceeds high-power solid-state amplifying media by orders of magnitude. High gain leads to strong competing amplification from noise, which reaches similar levels to the amplified seed. The observation of 640 Jsr-1 directly backscattered from noise, implies potential overall efficiencies greater than 10%.

  15. Laser nano-surgery for neuronal manipulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarker, Hori Pada; Chudal, Lalit; Mahapatra, Vasu; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Optical manipulation has enabled study of bio-chemical and bio-mechanical properties of the cells. Laser nanosurgery by ultrafast laser beam with appropriate laser parameters provides spatially-targeted manipulation of neurons in a minimal invasiveness manner with high efficiency. We utilized femto-second laser nano-surgery for both axotomy and sub-axotomy of rat cortical neurons. Degeneration and regeneration after axotomy was studied with and without external growth-factor(s) and biochemical(s). Further, axonal injury was studied as a function of pulse energy, exposure and site of injury. The ability to study the response of neurons to localized injury opens up opportunities for screening potential molecules for repair and regeneration after nerve injury. Sub-axotomy enabled transient opening of axonal membrane for optical delivery of impermeable molecules to the axoplasm. Fast resealing of the axonal membrane after sub-axotomy without significant long-term damage to axon (monitored by its growth) was observed. We will present these experimental results along with theoretical simulation of injury due to laser nano-surgery and delivery via the transient pore. Targeted delivery of proteins such as antibodies, genes encoding reporter proteins, ion-channels and voltage indicators will allow visualization, activation and detection of the neuronal structure and function.

  16. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  17. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  18. FY 1980 Report on Dye Laser Materials

    DTIC Science & Technology

    1981-02-01

    by block number) Dye Lasers Laser Dyes Tunable Lasers Photodegradation Rhodamine Dyes 20. ABSTRACT (Continue n resld* it necesiry and Identify by block...limited usefulness as a portable military device because of the photodegradation of the dye solution. Although there have been state-of-the-art reviews...on laser dyes , 1𔃼 the photodegradation of laser dyes ,3 and dye lasers, 4- 6 only authors from, or funded by, military organizations have given strict

  19. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado.

  20. Materials Development and Evaluation of Selective Laser Sintering Manufacturing Applications

    SciTech Connect

    Smith, Peter F.; Mitchell, Russell R.

    1997-01-15

    This report summarizes the FY96 accomplishments for CRADA No. LA95C10254, "Materials Development and Evaluation of Laser Sintering Manufacturing Applications". To research the potential for processing additional materials using DTM Corporations Selective Laser Sintering rapid prototyping technology and evaluate the capability for rapid manufacturing applications, the following materials were processed experimentally using the Sinterstation 2000 platform; Linear Low Density Polyethylene thermoplastic; Polypropylene thermoplastic; Polysulfone thermoplastic; Polymethylpentene (TPX) thermoplastic; Carbon microsphere filled nylon 11; "APO-BMI" Apocure bismaleimide thermoset polyimide glass m.icrosphere filled and carbon microsphere filled formulations; and 900-24 physical properties mock for plastic bonded TATB high explosive These materials have been successfully processed to a "proof of concept" level or better (with the exception of No. 7). While none of these materials have been introduced as a standard product as of this date, the potential to do so is viable. Present status of materials processing efforts is presented in Section A 2.0. Some recent efforts in manufacturing applications is discussed in Section A 4.0.

  1. Comparison of graphite materials for targets of laser ion source.

    PubMed

    Fuwa, Y; Ikeda, S; Kumaki, M; Sekine, M; Munemoto, N; Cinquegrani, D; Romanelli, M; Kanesue, T; Okamura, M; Iwashita, Y

    2014-02-01

    To investigate efficient graphite material for carbon ion production in laser ion source, the plasma properties produced from these materials are measured. Comparing acquired current profile and charge state distribution, the distributions of ions in laser induced plasma from isotropic graphite and single crystal of graphite are different. The produced quantity of C(6+) from isotropic materials is larger than that from single crystal.

  2. Short-pulse laser materials processing

    SciTech Connect

    Stuart, B.C.; Perry, M.D.; Myers, B.R.; Banks, P.S.; Honea, E.C.

    1997-06-18

    While there is much that we have learned about materials processing in the ultrashort-pulse regime, there is an enormous amount that we don`t know. How short does the pulse have to be to achieve a particular cut (depth, material, quality)? How deep can you cut? What is the surface roughness? These questions are clearly dependent upon the properties of the material of interest along with the short-pulse interaction physics. From a technology standpoint, we are asked: Can you build a 100 W average power system ? A 1000 W average power system? This proposal seeks to address these questions with a combined experimental and theoretical program of study. Specifically, To develop an empirical database for both metals and dielectrics which can be used to determine the pulse duration and wavelength necessary to achieve a specific machining requirement. To investigate Yb:YAG as a potential laser material for high average power short-pulse systems both directly and in combination with titanium doped sapphire. To develop a conceptual design for a lOOW and eventually 5OOW average power short-pulse system.

  3. Molecular Dynamics Simulations of Laser-Materials Interactions: General and Material-Specific Mechanisms of Material Removal and Generation of Crystal Defects

    NASA Astrophysics Data System (ADS)

    Karim, Eaman T.; Wu, Chengping; Zhigilei, Leonid V.

    Molecular dynamics simulations of laser-materials interactions are capable of providing detailed information on the complex processes induced by the fast laser energy deposition and can help in the advancement of laser-driven applications. This chapter provides a brief overview of recent progress in the atomic- and molecular-level modeling of laser-materials interactions and presents several examples of the application of atomistic simulations for investigation of laser melting and resolidification, generation of crystal defects, photomechanical spallation, and ablation of metals and molecular targets. A particular focus of the analysis of the computational results is on revealing the general and material-specific phenomena in laser-materials interactions and on making connections to experimental observations.

  4. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  5. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    NASA Astrophysics Data System (ADS)

    Bulgakova, Nadezhda M.; Zhukov, Vladimir P.; Sonina, Svetlana V.; Meshcheryakov, Yuri P.

    2015-12-01

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  6. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    SciTech Connect

    Bulgakova, Nadezhda M.; Zhukov, Vladimir P.; Sonina, Svetlana V.; Meshcheryakov, Yuri P.

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  7. Ultrafast laser diagnostics to investigate initiation fundamentals in energetic materials.

    SciTech Connect

    Farrow, Darcie; Jilek, Brook Anton; Kohl, Ian Thomas; Kearney, Sean Patrick

    2013-08-01

    We present the results of a two year early career LDRD project, which has focused on the development of ultrafast diagnostics to measure temperature, pressure and chemical change during the shock initiation of energetic materials. We compare two single-shot versions of femtosecond rotational CARS to measure nitrogen temperature: chirped-probe-pulse and ps/fs hybrid CARS thermometry. The applicability of measurements to the combustion of energetic materials will be discussed. We have also demonstrated laser shock and particle velocity measurements in thin film explosives using stretched femtosecond laser pulses. We will discuss preliminary results from Al and PETN thin films. Agreement between our results and previous work will be discussed.

  8. Strengthened solid-state laser materials

    SciTech Connect

    Marion, J.

    1985-10-01

    The tensile fracture strength of crystalline materials for high average power lasers has been increased by a factor of 15 using deep chemical polishing. Samples of gadolinium scandium gallium garnet, gadolinium gallium garnet, and yttrium aluminum garnet, which were prepared by conventional mechanical techniques to a high quality polish, were found to contain subsurface damage up to 50 ..mu..m in depth. When this damage was removed by deep chemical etching, the mean strength of small, four-point flexure specimens increased from 155 to 2280 MPa; however, these samples were no longer optically flat after etching. Specimens in which the optical figure was restored by polishing after the etch had an intermediate strength of 630 MPa.

  9. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing.

  10. Synthesis Of Materials With Infrared And Ultraviolet Lasers

    NASA Astrophysics Data System (ADS)

    Lyman, John L.

    1989-05-01

    This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) Infrared (CO2) laser synthesis of silane (SiH4) from disilane (Si2H6); (2) Excimer (ArF) laser production of fine silicon powders from methyl-and chlorosubstituted silanes; and, (3) Excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application.

  11. Synthesis of materials with infrared and ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Lyman, John L.

    This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO2) laser synthesis of silane (SiH4) from disilane (Si2H6); (2) excimer (ArF) laser production of fine silicon powders from methly- and chloro-substituted silanes; and (3) exciver (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusins about the features of the laser radiation that enable each application.

  12. Overview of 3D laser materials processing concepts

    NASA Astrophysics Data System (ADS)

    Tsoukantas, George; Salonitis, Konstantinos; Stavropoulos, Panagiotis; Chryssolouris, George

    2003-04-01

    The term of 3D laser processing has been used so far to describe a group of different three-dimensional laser processing concepts. At each of these concepts the 3D aspect refers to a different manipulation of one or more laser beams, as to process and/or produce three-dimensional geometries by performing material removal, welding or heat treating. The most important concepts are focused mainly in laser machining and laser welding processes by incorporating one or two laser beams simultaneously. This paper overviews a number of these concepts that have been developed in research or industrial level, along with their advantages, drawbacks and fields of application.

  13. Cr:ZnSe guided wave lasers and materials

    NASA Astrophysics Data System (ADS)

    McDaniel, Sean; Lancaster, Adam; Stites, Ronald; Thorburn, Fiona; Kar, Ajoy; Cook, Gary

    2017-02-01

    We describe a variety of technological advances in the development of efficient, powerful, and continuously tunable Cr:ZnSe lasers operating in the 2.3-2.7 μm spectral region. This includes the development of compact "single chip" waveguide Cr:ZnSe lasers, waveguide mode-locked Cr:ZnSe lasers, and the creation of homogeneously broadened laser material.

  14. Laser-induced damage in optical materials: sixteenth ASTM symposium.

    PubMed

    Bennett, H E; Guenther, A H; Milam, D; Newnam, B E

    1987-03-01

    The Sixteenth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, CO, 15-17 Oct. 1984. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific Research. Approximately 180 scientists attended the Symposium, including representatives from England, France, The Netherlands, Scotland, and West Germany. The Symposium was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6,microm to the UV region. Highlights included surface characterization, thin-film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. Harold E. Bennett of the U.S. Naval Weapons Center, Arthur H. Guenther of the U.S. Air Force Weapons Laboratory, David Milam of the Lawrence Livermore National Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the Symposium.

  15. An improved approach for process monitoring in laser material processing

    NASA Astrophysics Data System (ADS)

    König, Hans-Georg; Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-04-01

    Process monitoring is used in many different laser material processes due to the demand for reliable and stable processes. Among different methods, on-axis process monitoring offers multiple advantages. To observe a laser material process it is unavoidable to choose a wavelength for observation that is different to the one used for material processing, otherwise the light of the processing laser would outshine the picture of the process. By choosing a different wavelength, lateral chromatic aberration occurs in not chromatically corrected optical systems with optical scanning units and f-Theta lenses. These aberrations lead to a truncated image of the process on the camera or the pyrometer, respectively. This is the reason for adulterated measurements and non-satisfying images of the process. A new approach for solving the problem of field dependent lateral chromatic aberration in process monitoring is presented. Therefore, the scanner-based optical system is reproduced in a simulation environment, to predict the occurring lateral chromatic aberrations. In addition, a second deflecting system is integrated into the system. By using simulation, a predictive control is designed that uses the additional deflecting system to introduce reverse lateral deviations in order to compensate the lateral effect of chromatic aberration. This paper illustrates the concept and the implementation of the predictive control, which is used to eliminate lateral chromatic aberrations in process monitoring, the simulation on which the system is based the optical system as well as the control concept.

  16. Vanderbilt free electron laser project in biomedical and materials research

    NASA Astrophysics Data System (ADS)

    Haglund, Richard F.; Tolk, N. H.

    1988-06-01

    The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the use of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.

  17. Spectroscopic Investigation of Materials for Frequency Agile Laser Systems.

    DTIC Science & Technology

    1985-01-01

    fluorescence spectra and lifetimes of divalent Rh, Ru, Pt, and Ir ions in alkali halide crystals are measured using pulsed nitrogen laser excitation...AD-Ai5t 73t SPECTROSCOPIC INVESTIGRTION OF MATERIALS FOR FREQUENCY t/ AGILE LASER SYSTEMS(U) OKLAHOMA STATE UNIV STILLWATER DEPT OF PHYSICS R C...INVESTIGATION OF MATERIALS FOR FREQUENCY AGILE LASER SYSTEMS Richard C. Powell, Ph.D. Principal Investigator Department of Physics OKLAHOMA STATE UNIVERSITY

  18. Structural damage assessment in composite material using laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Willemann, Daniel P.; Castellini, Paolo; Revel, Gian M.; Tomasini, Enrico P.

    2004-06-01

    In recent years, a great effort has been done to improve damage detection techniques in structures by using vibration measurements. This paper presents a case where a non-contact measurement system, a Scanning Laser Doppler Vibrometer, has been used to detect delaminations in a composite material plate. The diagnostic technique is the evolution of a methodology previously approached by the authors. An in-house made software has been produced for data acquisition and vibrometer control. The maps of the detected defects are presented, thus allowing the assessment of the performances of this methodology to detect damages. This analysis permitted to outline the main points to be improved in the future investigations.

  19. Novel materials and beam delivery technique for ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    Sun, Ju

    2002-01-01

    Ultrafast lasers offer significant advantages for novel laser materials processing, especially at small length scales. Their extremely high optical intensity results in nonlinear laser-material interaction and energy deposition, which provide unique, non-traditional material processing capabilities. In this work, a Ti:sapphire femtosecond laser system is applied for both practical and fundamental investigations of ultrafast laser materials processing. For practical applications, experimental techniques are developed to characterize and process two novel materials: (1) silica aerogels, and (2) thermal-sprayed materials, both of which are difficult to micromachine using any conventional technique. The breakdown threshold as well as the low-level absorption coefficient of the aerogel material are measured, while the material removal rate is characterized as a function of the laser fluence and the number of laser shots. Thermal-sprayed line patterns are trimmed by synchronizing the femtosecond laser pulses with a three-dimensional motorized micro-positioning system. A trimmed line width ˜50 mum is obtained, from an original line width ˜500 mum. In addition to developing experimental techniques for practical ultrafast laser processing of novel materials, investigations on improving the machining quality and efficiency by characterizing the nonlinear interactions between the femtosecond laser pulses and the beam delivery gas medium are also conducted in this work. A theoretical model based on the nonlinear Schrodinger equation is applied to simulate the pulse propagation under the coupled effects of two nonlinear mechanisms. The model predictions show that the beam profile can be dramatically distorted due to the nonlinear changes in the refractive index in air, which can be minimized by delivering the beam using an inert gas, particularly helium, due to its unique physical properties. Machining of copper sample by delivering the femtosecond laser pulse in four

  20. Optical and physical properties of ceramic crystal laser materials

    NASA Astrophysics Data System (ADS)

    Simmons, Jed A.

    Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption

  1. Laser Induced Damage in Optical Materials: 1979.

    DTIC Science & Technology

    1980-07-01

    an oscillator in laser fusion systems [8, 9]. Tm:YLF, pumped by an XeF laser , and emitting at 453 nm [10], is an efficient storage laser and is being...Chicklis, [4] Wilson, R., Varian Associates (private E.P. and Jenssen, H.P., XeF pumped communication). Tm:YLF an excimer excited storage laser , Technical...caused by pulsed laser -induced thermal stress were not signifi- cantly influenced by transverse heat conduction. However, the fluence levels were above

  2. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    NASA Astrophysics Data System (ADS)

    Safdar, Shakeel; Li, Lin; Sheikh, M. A.

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data.

  3. Analysis of photoacoustic response from plasmonic nanostructures irradiated by ultrafast laser in water (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Darvish, Behafarid; Dagallier, Adrien; Boutopoulos, Christos; Meunier, Michel

    2016-03-01

    Gold and silver plasmonic nanoparticles (NPs) are widely used as a contrast agent for photoacoustic (PA) imaging, taking advantage of the strong optical absorption cross-section of these particles due to their localized surface-plasmon resonance. Inspired by recent developments in ultra-high frequency wide-bandwidth transducers, we propose utilizing off-resonance ultrashort laser sources with a pulse width in the femtosecond (fs) and picosecond (ps) range to increase the efficiency of PA imaging. Also, from the fact that the laser pulse duration is shorter than the heat diffusion time of the materials, we expect practically no collateral damage of the laser irradiated biological tissues. Our preliminary studies show that irradiating the NPs with an ultrashort-pulsed laser has the potential to achieve substantially higher efficiency at generating the PA signal. Enhanced by the presence of NPs, the laser field causes a highly localized plasma nucleation around the vicinity of the NPs. Plasma relaxes through electron-ion interaction and releases a pressure wave in the surrounding medium. However, in this process, it is crucial to precisely control the heat energy absorption in the NPs to avoid their fragmentation. In this talk we present a model to simulate an optimized plasma-mediated PA signal dynamics generated from off-resonance ultrashort laser excitation (λ =800 nm, τ = 70 fs - 2 ps) of a variety of plasmonic NPs with sizes ranging from 50 nm to 100 nm.

  4. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    NASA Astrophysics Data System (ADS)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  5. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  6. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Laser materials for the 0.67-microns to 2.5-microns range

    NASA Technical Reports Server (NTRS)

    Toda, Minoru; Zamerowski, Thomas J.; Ladany, Ivan; Martinelli, Ramon U.

    1987-01-01

    Basic requirements for obtaining injection laser action in III-V semiconductors are discussed briefly. A detailed review is presented of materials suitable for lasers emitting at 0.67, 1.44, 1.93, and 2.5 microns. A general approach to the problem is presented, based on curves of materials properties published by Sasaki et al. It is also shown that these curves, although useful, may need correction in certain ranges. It is deduced that certain materials combinations, either proposed in the literature or actually tried, are not appropriate for double heterostructure lasers, because the refractive index of the cladding material is higher than the index of the active material, thus resulting in no waveguiding, and high threshold currents. Recommendations are made about the most promising approach to the achievement of laser action in the four wavelengths mentioned above.

  8. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-01

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites.

  9. Laser balancing system for high material removal rates

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Georgalas, G.; Ortiz, A. L.

    1984-01-01

    A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.

  10. Laser materials processing of complex components. From reverse engineering via automated beam path generation to short process development cycles.

    NASA Astrophysics Data System (ADS)

    Görgl, R.; Brandstätter, E.

    2016-03-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser welding, laser cladding and additive laser manufacturing are given.

  11. Past, present and future of laser fusion research

    SciTech Connect

    Yamanaka, C.

    1996-05-01

    The concept of laser fusion was devised very shortly after the invention of laser. In 1972, the Institute of Laser Engineering, Osaka University was established by the author in accordance with the Edward Teller{close_quote}s special lecture on {open_quote}{open_quote}New Internal Combustion Engine{close_quote}{close_quote} for IQEC at Montreal which predicted the implosion fusion. In 1975 we invented the so called indirect drive fusion concept {open_quote}{open_quote}Cannonball Target{close_quote}{close_quote} which became later to be recognize as a same concept of {open_quote}{open_quote}Hohlraum Target{close_quote}{close_quote} from Livermore. As well known, ICF research in the US had been veiled for a long time due to the defense classification. While researchers from Japan, Germany and elsewhere have concentrated the efforts to investigate the inertial fusion energy which seems to be very interesting for a future civil energy. They were publishing their own works not only on the direct implosion scheme but also the indirect implosion experiment. These advanced results often frustrated the US researchers who were not allowed to talk about the details of their works. In 1988, international members of the ICF research society including the US scientists gathered together at ECLIM to discuss the necessity of freedom in the ICF research and concluded to make a statement {open_quote}{open_quote}Madrid Manifest{close_quote}{close_quote} which requested the declassification of the ICF research internationally. After 6 years of halt, the US DOE decided to declassify portions of the program as a part of secretary Hazel O{close_quote}Leary{close_quote}s openness initiative. The first revealed presentation from the US was done at Seville 1994, which however were well known already. Classification impeded the progress by restricting the flow of information and did not allow the ICF work to compete by the open scientific security. (Abstract Truncated)

  12. Present and future value of dental composite materials and sealants.

    PubMed

    Dogon, I L

    1990-01-01

    This article reviews the development, composition, chemistry, recent technological advances, and extent of use of composite resin restorative materials, adhesives, and pit and fissure sealants. The problems related to the clinical behavior of these materials in the oral environment are dealt with, and methods of minimizing their present deficiencies are suggested. Future directions that might be taken to improve these materials and solve some of the inadequacies that these materials exhibit are also discussed.

  13. Effect of Moisture Content of Paper Material on Laser Cutting

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  14. Materials processing with a tightly focused femtosecond laser vortex pulse.

    PubMed

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V

    2010-10-15

    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness.

  15. High Power Lasers And Their Application In Materials Processing

    NASA Astrophysics Data System (ADS)

    Bohn, W. L.

    1985-02-01

    The idea of using a laser for materials processing is more than 20 years old. Although the concept of a non-contact method for processing with a beam of light has been pursued with great interest and enthusiasm, the practical use of laser beam processing was slow to develop. The lasers available in the 1960's were fragile and of relatively low power. In the 1970's lasers in the multi-kilowatt range were developed but the problem of laser acceptance by the customer had to be overcome. Today, reliable Nd-Yag and CO2-lasers are available and laser processing is a fast growing market. An additional boost is expected with the development of the next generation of lasers and with increased knowledge of the physical phenomena that underlie laser material processing. This paper will review latest developments in laser technology and laser-workpiece interaction with special emphasis on the impact of high speed photography on the research work in these areas.

  16. Laser-limiting materials for medical use

    NASA Astrophysics Data System (ADS)

    Podgaetsky, Vitaly M.; Kopylova, Tat'yana N.; Tereshchenko, Sergey A.; Reznichenko, Alexander V.; Selishchev, Sergey V.

    2004-03-01

    The important problem of modern laser medicine is the decrease of an exposure of biological tissues outside of an operational field and can be solved by optical radiation limiting. Organic dyes with reversibly darkening can be placed onto surfaces of irradiated tissues or can be introduced in solder for laser welding of vessels. The limiting properties of a set of nontoxic organic compounds were investigated. Nonlinear optical properties of dyes having reverse saturable absorption (pyran styryl derivatives, cyanine and porphyrine compounds) were studied under XeCl and YAG:Nd (II harmonics) lasers excitation. The effect of attenuation of a visible laser radiation is obtained for ethanol solutions of cyanines: radiation attenuation coefficient ( AC) = 25-35 at N/S = 100-250 MW/cm2. In water solutions of such compounds in UV spectrum range AC ~ 10. The spectral characteristics of compounds appeared expedient enough to operational use in laser limiters (broad passband in visible range of a spectrum). Under the data of Z-scanning (the scheme F/10) value AC ~ 70 was reached. The limiting of power laser radiation in visible (λ = 532 nm) and UV- (λ = 308 nm) spectral region and nanosecond pulse duration (7 -13 ns) across porphyrine solutions and their complexes with some metals (13 compounds) was investigated too. The comparative study of optical limiting dependence on intensity of laser radiation, solvent type and concentration of solutions was carried out for selecte wavelength. There was shown a possible use of pyran styryl derivatives DCM as limiters of visual laser radiation. To understand a mechanism of laser radiation limitation the light induced processes were experimentally and theoretically studied in organic molecules. The quantum-chemical investigation of one cyanine compound was carried out. There were noted the perspectives of laser radiation limiting by application of inverted schemes of traditional laser shutters. Usage of phenomena of light -induced

  17. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  18. Laser Window Materials and Optical Coating Science

    DTIC Science & Technology

    1977-08-01

    10 Torr pressure , is presently the favored alternative RAP agent. Comparison studies of optical coatings prepared under conventional high...In principle , the uncoated surface heat also contributes to the first and second slopes but in practice, as discussed in the results in Sec. Ill...jim), CO (5.3 jim), and CO2 (9.27 and 10.6 fi.m). The window materials that are under investigation include selected alkali halides and

  19. Efficient material treatment by axi-symmetrically polarized laser radiation

    NASA Astrophysics Data System (ADS)

    Makin, V. S.; Pestov, Yu I.; Makin, R. S.

    2016-08-01

    Recent years the increased interest is to the problem of interaction of nontraditionally polarized laser radiation with condensed media. The experiments with axisymmetrical polarization attract more attention. The peculiarities of interaction of axisymmetrical laser radiation with condensed matter are considered in framework of universal polariton model. It is shown that more effective is interaction of radially polarized laser radiation with surface active media. The optical schemes for efficient material treatment by radially polarized radiation are sketched.

  20. Nonstoichiometric Laser Materials: Designer Wavelengths in Neodymium Doped Garnets

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.

    2008-01-01

    The tunable nature of lasers provides for a wide range of applications. Most applications rely on finding available laser wavelengths to meet the needs of the research. This article presents the concept of compositional tuning, whereby the laser wavelength is designed by exploiting nonstoichiometry. For research where precise wavelengths are required, such as remote sensing, this is highly advantageous. A theoretical basis for the concept is presented and experimental results in spectroscopic measurements support the theoretical basis. Laser operation nicely demonstrates the validity of the concept of designer lasers.

  1. Effect of the lasers used in periodontal therapy on the surfaces of restorative materials.

    PubMed

    Hatipoğlu, Mükerrem; Barutcigil, Çağatay; Harorlı, Osman Tolga; Ulug, Bülent

    2016-05-01

    The present study aimed to reveal potential damage of the lasers, which are used as an alternative to manual instruments in periodontal therapy, might cause to the surface of restorative materials. Four different restorative materials were used: a glass-ionomer cement (GIC), a flowable composite (FC), a universal composite (UC) and an amalgam. Ten cylindrical samples (8 mm × 2 mm) were prepared for each restorative material. Two laser systems were used in subgingival curettage mode; an 940 nm diode laser (Epic Biolase, Irvine, CA) and an Er,Cr:YSGG laser (Waterlase iPlus, Biolase, Irvine, CA). After laser irradiation, roughness of the sample surfaces was measured using a profilometer. Additionally, atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses were performed to evaluate the morphology and surface deformations of the restorative materials and surfaces. The laser irradiation did not affect the surface roughness of any restorative materials relative to that of the control group (p > 0.05) except for the Er,Cr:YSGG treatment on GIC (p < 0.05). SEM and AFM images verified the results of the surface roughness tests. Within the limitations of the present study, it was demonstrated that Er,Cr:YSGG and diode lasers, aside from the Er;Cr:YSGG treatment on GIC, caused no harmful surface effects on adjacent restorative materials. SCANNING 38:227-233, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  2. Laser induced damage in optical materials: 8th ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1977-05-01

    The Eighth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was hosted by the National Bureau of Standards in Boulder, Colorado, from 13 to 15 July 1976. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Energy Research and Development Administration, and the Office of Naval Research. About 160 scientists attended the Symposium, including representatives of the United Kingdom, France, Canada, and Brazil. The Symposium was divided into five half-day sessions concerning Bulk Material Properties and Thermal Behavior, Mirrors and Surfaces, Thin Film Properties, Thin Film Damage, and Scaling Laws and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to new materials for use at 10.6 microm in mirror substrates, windo s, and coatings. New techniques in film deposition and advances in diamond-turning of optics were described. The scaling of damage thresholds with pulse duration, focal area, and wavelength were discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons of the Symposium. The Ninth Annual Symposium is scheduled for 4-6 October 1977 at the National Bureau of Standards, Boulder, Colorado.

  3. Laser -Based Joining of Metallic and Non-metallic Materials

    NASA Astrophysics Data System (ADS)

    Padmanabham, G.; Shanmugarajan, B.

    Laser as a high intensity heat source can be effectively used for joining of materials by fusion welding and brazing in autogenous or in hybrid modes. In autogenous mode, welding is done in conduction , deep penetration , and keyhole mode. However, due to inherently high energy density available from a laser source, autogenous keyhole welding is the most popular laser welding mode. But, it has certain limitations like need for extremely good joint fit-up, formation of very hard welds in steel , keyhole instability, loss of alloying elements, etc. To overcome these limitations, innovative variants such as laser-arc hybrid welding , induction-assisted welding , dual beam welding , etc., have been developed. Using laser heat, brazing can be performed by melting a filler to fill the joints, without melting the base materials. Accomplishing laser-based joining as mentioned above requires appropriate choice of laser source, beam delivery system, processing head with appropriate optics and accessories. Basic principles of various laser-based joining processes, laser system technology, process parameters, metallurgical effects on different base materials, joint performance, and applications are explained in this chapter.

  4. Ultrafast Laser Dynamics and Interactions in Complex Materials

    NASA Astrophysics Data System (ADS)

    Patz, Aaron Edward

    The work described in this thesis underscores specific examples of using an ultrafast laser as a materials research tool for studying condensed matter physics in complex materials. The majority of materials studied fall into the iron-pnictide class of unconventional superconductors, which exhibit a multitude of phases that appear to be dependent on each other, or the magnetic semiconductor, GaMnAs. In my work I show various ultrafast laser techniques for studying these complex materials in order to decouple the different properties in the time-domain and gain information about the underlying physics governing the material properties.

  5. Research of metallic materials irradiation with high energy pulsed laser impact

    NASA Astrophysics Data System (ADS)

    Blesman, A. I.; Postnikov, D. V.; Seropyan, G. M.; Tkachenko, E. A.; Teplouhov, A. A.; Polonyankin, D. A.

    2016-02-01

    In the process of metallic materials treatment by pulsed laser beams with nanosecond duration occurs extremely rapid and intensive heating of their surface. In this case a thin surface layer of material is heated to the boiling point and rapidly evaporates. This leads to arising substantial forces of reactive nature which significantly influence on the shape of the solidified melt and in some cases may cause deformation of the underlying layers. The considered question is relevant in the research of precision treatment of miniature products by laser beams. A metallic powder with microfine material structure was selected as the object of research and was exposed to laser irradiation with nanosecond duration. At the core of reactive forces calculation used the approach similar for laser rocket engines. The paper also presents the model and the results of the forces and the reactive recoil impulse calculation occurring during laser impact to the microfine metallic powder.

  6. Fullerenes in asphaltenes and other carbonaceous materials: natural constituents or laser artifacts.

    PubMed

    Santos, Vanessa G; Fasciotti, Maíra; Pudenzi, Marcos A; Klitzke, Clécio F; Nascimento, Heliara L; Pereira, Rosana C L; Bastos, Wagner L; Eberlin, Marcos N

    2016-04-25

    The presence of fullerenes as natural constituents of carbonaceous materials or their formation as laser artifacts during laser desorption ionization (LDI) mass spectrometry (MS) analysis is reinvestigated and reviewed. The results using asphaltene samples with varying composition as well as standard polycyclic aromatic hydrocarbons (PAH) and fullerene samples as models have demonstrated that indeed Cn ring fullerenes are not natural constituents but they are formed as common and often as predominant artifacts upon laser radiation, and a series of incorrect assignments based on LDI-MS data of several carbonaceous materials seems unfortunately to have been made. When the present results are evaluated also in the light of the vast literature on LDI-MS of carbonaceous materials, the formation of fullerene artifacts seems particularly common for LDI-MS analysis of asphaltenes and other carbonaceous samples with considerably high levels of PAH and varies according to the type of laser used, and the intensity of the laser beam.

  7. Broadband, ultralow reflectance surface structures on silica windows for high-energy laser applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Busse, Lynda E.; Frantz, Jesse A.; Shaw, L. Brandon; Poutous, Menelaos K.; Aggarwal, Ishwar D.; Sanghera, Jasbinder S.

    2017-05-01

    The characteristics of broadband transmission, environmental durability, and laser damage resistance are critical for silica glass exit aperture windows for their use in kW-level, high energy laser systems. The use of conventional antireflective (AR) coatings on windows for high energy lasers operating in the near infrared is impacted by laser induced damage that occurs under high power irradiation as well as the potential for delamination in operational environments. Novel methods for fabricating antireflective surface structures (ARSS) directly on optics have resulted not only in reduced reflection loss, but also in other advantages to AR coatings as well. The ARSS approach involves sub-wavelength surface structures fabricated directly into the actual surface of the window, eliminating the need for a coating of extraneous materials. We will report on results for ARSS fabricated on silica glass windows. Recently we have reported broadband, low reflectance (< 0.02% at 1 µm) for silica glass windows with random ARSS, fabricated using reactive ion etching. These windows have shown remarkably high laser damage thresholds of 100 J/cm2 at 1.06 µm, which is 5x the threshold measured for a conventional AR coating. We will also present results for MILSPEC durability tests on silica windows, both with and without ARSS, for rain and sand erosion as well as salt fog testing, conducted at a government facility. We will also report on scale up of ARSS on silica windows of large sizes (33 cm), making them practical for system implementation.

  8. Laser induced damage in optical materials: eleventh ASTM symposium.

    PubMed

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1980-07-15

    The eleventh Symposium on Optical Materials for High-Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30-31 October 1979. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, and the Office of Naval Research. About 150 scientists attended the symposium, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and Denmark. The symposium was divided into sessions concerning transparent optical materials and the measurement of their properties, mirrors and surfaces, thin film characteristics, thin film damage, considerations for high-power systems, and finally theory and breakdown. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos Scientific Laboratory were cochairpersons. The twelfth annual symposium is scheduled for 30 September-1 October 1980 at the National Bureau of Standards, Boulder, Colorado.

  9. Laser induced damage in optical materials: twelfth ASTM symposium.

    PubMed

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1981-09-01

    The twelfth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30 Sept.-l Oct., 1980. The symposium was held under the auspices of ASTM Committee F-l, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific research. Over 150 scientists attended the symposium, including representatives of the United Kingdom, France, Japan, and West Germany. The symposium was divided into sessions concerning materials and measurements, mirrors and surfaces, thin films, and finally fundamental mechanisms. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high power systems. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore National Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the symposium. The thirteenth annual symposium is scheduled for 17-18 Nov. 1981 at the National Bureau of Standards, Boulder, Colorado.

  10. Past, present and future of laser fusion research

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1996-05-01

    The concept of laser fusion was devised very shortly after the invention of laser. In 1972, the Institute of Laser Engineering, Osaka University was established by the author in accordance with the Edward Teller's special lecture on ``New Internal Combustion Engine'' for IQEC at Montreal which predicted the implosion fusion. In 1975 we invented the so called indirect drive fusion concept ``Cannonball Target'' which became later to be recognize as a same concept of ``Hohlraum Target'' from Livermore. As well known, ICF research in the US had been veiled for a long time due to the defense classification. While researchers from Japan, Germany and elsewhere have concentrated the efforts to investigate the inertial fusion energy which seems to be very interesting for a future civil energy. They were publishing their own works not only on the direct implosion scheme but also the indirect implosion experiment. These advanced results often frustrated the US researchers who were not allowed to talk about the details of their works. In 1988, international members of the ICF research society including the US scientists gathered together at ECLIM to discuss the necessity of freedom in the ICF research and concluded to make a statement ``Madrid Manifest'' which requested the declassification of the ICF research internationally. After 6 years of halt, the US DOE decided to declassify portions of the program as a part of secretary Hazel O'Leary's openness initiative. The first revealed presentation from the US was done at Seville 1994, which however were well known already. Classification impeded the progress by restricting the flow of information and did not allow the ICF work to compete by the open scientific security. The implosion experiments by GEKKO XII Osaka demonstrated a high temperature compression of DT fuel up to 10 keV, neutron yield 1013 and a high density compression of CDT hollow shell pellet to reach 1000 g/cm3 respectively. These results gave us a strong

  11. Laser Ablation for Cancer: Past, Present and Future

    PubMed Central

    Schena, Emiliano; Saccomandi, Paola; Fong, Yuman

    2017-01-01

    Laser ablation (LA) is gaining acceptance for the treatment of tumors as an alternative to surgical resection. This paper reviews the use of lasers for ablative and surgical applications. Also reviewed are solutions aimed at improving LA outcomes: hyperthermal treatment planning tools and thermometric techniques during LA, used to guide the surgeon in the choice and adjustment of the optimal laser settings, and the potential use of nanoparticles to allow biologic selectivity of ablative treatments. Promising technical solutions and a better knowledge of laser-tissue interaction should allow LA to be used in a safe and effective manner as a cancer treatment. PMID:28613248

  12. Laser irradiation of carbon-tungsten materials

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Avotina, L.; Marin, A.; Lungu, C. P.; Grigorescu, C. E. A.; Demitri, N.; Ursescu, D.; Porosnicu, C.; Osiceanu, P.; Kizane, G.; Grigoriu, C.

    2014-09-01

    Carbon-tungsten layers deposited on graphite by thermionic vacuum arc (TVA) were directly irradiated with a femtosecond terawatt laser. The morphological and structural changes produced in the irradiated area by different numbers of pulses were systematically explored, both along the spots and in their depths. Although micro-Raman and Synchrotron-x-ray diffraction investigations have shown no carbide formation, they have shown the unexpected presence of embedded nano-diamonds in the areas irradiated with high fluencies. Scanning electron microscopy images show a cumulative effect of the laser pulses on the morphology through the ablation process. The micro-Raman spatial mapping signalled an increased percentage of sp3 carbon bonding in the areas irradiated with laser fluencies around the ablation threshold. In-depth x-ray photoelectron spectroscopy investigations suggested a weak cumulative effect on the percentage increase of the sp2-sp3 transitions with the number of laser pulses just for nanometric layer thicknesses.

  13. Beam engineering for zero conicity cutting and drilling with ultra fast laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Letan, Amelie; Mishchik, Konstantin; Audouard, Eric; Hoenninger, Clemens; Mottay, Eric P.

    2017-03-01

    With the development of high average power, high repetition rate, industrial ultrafast lasers, it is now possible to achieve a high throughput with femtosecond laser processing, providing that the operating parameters are finely tuned to the application. Femtosecond lasers play a key role in these processes, due to their ability to high quality micro processing. They are able to drill high thickness holes (up to 1 mm) with arbitrary shapes, such as zero-conicity or even inversed taper, but can also perform zero-taper cutting. A clear understanding of all the processing steps necessary to optimize the processing speed is a main challenge for industrial developments. Indeed, the laser parameters are not independent of the beam steering devices. Pulses energy and repetition rate have to be precisely adjusted to the beam angle with the sample, and to the temporal and spatial sequences of pulses superposition. The purpose of the present work is to identify the role of these parameters for high aspect ratio drilling and cutting not only with experimental trials, but also with numerical estimations, using a simple engineering model based on the two temperature description of ultra-fast ablation. Assuming a nonlinear logarithmic response of the materials to ultrafast pulses, each material can be described by only two adjustable parameters. Simple assumptions allow to predict the effect of beam velocity and non-normal incident beams to estimate profile shapes and processing time.

  14. Damage testing of sapphire and Ti: sapphire laser materials

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Diffusion bonded sapphire and Ti (Titanium). Sapphire laser materials that will be damage tested to determine if there is an increase in damage threshold. Photographed in building 1145, photographic studio.

  15. Joining of materials using laser heating

    DOEpatents

    Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.

    2003-07-01

    A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.

  16. High resolution Broadband CARS of laser shocked materials

    NASA Astrophysics Data System (ADS)

    Baer, Bruce; Maddox, Brian

    2013-06-01

    We will present preliminary data and methods detailing experiments scheduled later this year using Janus at the Jupiter Laser Facility at LLNL to obtain Coherent Anti-stokes Raman Spectra (CARS) of materials under shock conditions. High resolution (~1 cm-1) CARS of the pre-shocked materials will demonstrate the feasibility and high precision of the methods involved. Pressures as high as 200 GPa have been previously achieved. Initially, our experiments will focus on quartz and diamond and should subsequently lead to hydrogen, deuterium and other constituents of the giant gas planets. This work has been supported under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344.

  17. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays.

    PubMed

    Pan, Yunxiang; Lv, Xueming; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2016-06-15

    A millisecond laser combined with a nanosecond laser was applied to machining transparent materials. The influences of delay between the two laser pulses on processing efficiencies and modified sizes were studied. In addition, a laser-supported combustion wave (LSCW) was captured during laser irradiation. An optimal delay corresponding to the highest processing efficiency was found for cone-shaped cavities. The modified size as well as the lifetime and intensity of the LSCW increased with the delay decreasing. Thermal cooperation effects of defects, overlapping effects of small modified sites, and thermal radiation from LSCW result in all the phenomena.

  18. Laser micro-machining strategies for transparent brittle materials using ultrashort pulsed lasers

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Matylitsky, Victor

    2017-02-01

    Cutting and drilling of transparent materials using short pulsed laser systems are important industrial production processes. Applications ranging from sapphire cutting, hardened glass processing, and flat panel display cutting, to diamond processing are possible. The ablation process using a Gaussian laser beam incident on the topside of a sample with several parallel overlapping lines leads to a V-shaped structured groove. This limits the structuring depth for a given kerf width. The unique possibility for transparent materials to start the ablation process from the backside of the sample is a well-known strategy to improve the aspect ratio of the ablated features. This work compares the achievable groove depth depending on the kerf width for front-side and back-side ablation and presents the best relation between the kerf width and number of overscans. Additionally, the influence of the number of pulses in one burst train on the ablation efficiency is investigated. The experiments were carried out using Spirit HE laser from Spectra-Physics, with the features of adjustable pulse duration from <400 fs to 10 ps, three different repetition rates (100 kHz, 200 kHz and 400 kHz) and average output powers of >16 W ( at 1040 nm wavelength).

  19. Dibenzotetraaza [14] annulene materials for recordable blue laser optical disc

    NASA Astrophysics Data System (ADS)

    Bin, Yuejing; Zhao, Fuqun; Huang, Lei; Li, Zhongyu; Zhang, Fushi

    2008-03-01

    Phthalocyanine materials have successfully been applied in infrared ray optical disc systems. Seeking for the phthalocyanine-analogous materials with great conjugate macrocyclic π bond system is the key for new materials research of super high density blue laser optical storage. Dibenzotetraaza [14] annulene have the similar macrocyclic structure. It was used as a building block for the preparation of multi-component materials matched the requirement of recordable blue laser optical disc. Ester substituents have been generated with oxalyl dichloride (or phosgene) and appropriate HO-function-containing substrates. A range of new complexes equipped with ester groups derived from various alcohols and phenols have been prepared. The new products have been characterized by UV-Vis spectrometer, TGA, refractive index of the organic films. These kinds of materials have suitable light and thermal sensitivity, and it is a valuable material for blue laser optical storage.

  20. Study of underwater laser propulsion using different target materials.

    PubMed

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets.

  1. Industrial applications of high power diode lasers in materials processing

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich

    2003-03-01

    Diode lasers are widely used in communication, computer and consumer electronics technology. These applications are based on systems, which provide power in the milliwatt range. However, in the mean time high power diode lasers have reached the kilowatt power range. This became possible by special cooling and mounting as well as beam combination and beam forming technologies. Such units are nowadays used as a direct source for materials processing. High power diode lasers have entered the industrial manufacturing area [Proceedings of the Advanced Laser Technologies Conference 2001, Proc. SPIE, Constanta, Romania, 11-14 September 2001].

  2. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Chase, Lloyd L.; Smith, Larry K.

    1994-01-01

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises Ytterbium doped apatite (Yb:Ca.sub.5 (PO.sub.4).sub.3 F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  3. Losses, gain, and lasing in organic and perovskite active materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pourdavoud, Neda; Riedl, Thomas J.

    2016-09-01

    Organic solid state lasers (OSLs) based on semiconducting polymers or small molecules have seen some significant progress over the past decade. Highly efficient organic gain materials combined with high-Q resonator geometries (distributed feedback (DFB), VCSEL, etc.) have enabled OSLs, optically pumped by simple inorganic laser diodes or even LEDs. However, some fundamental goals remain to be reached, like continuous wave (cw) operation and injection lasing. I will address various loss mechanisms related to accumulated triplet excitons or long-lived polarons that in combination with the particular photo-physics of organic gain media state the dominant road-blocks on the way to reach these goals. I will discuss the recent progress in fundamental understanding of these loss processes, which now provides a solid basis for modelling, e.g. of laser dynamics. Avenues to mitigate these fundamental loss mechanisms, e.g. by alternative materials will be presented. In this regard, a class of gain materials based on organo-lead halide perovskites re-entered the scene as light emitters, recently. Enjoying a tremendous lot of attention as active material for solution processed solar cells with a 20+% efficiency, they have recently unveiled their exciting photo-physics for lasing applications. Optically pumped lasing in these materials has been achieved. I will discuss some of the unique properties that render this class of materials a promising candidate to overcome some of the limitations of "classical" organic gain media.

  4. Development of improved amorphous materials for laser systems

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1974-01-01

    Crystallization calculations were performed in order to determine the possibility of forming a particular type of laser glass with the avoidance of devitrification in an outer space laboratory. It was demonstrated that under the homogenuous nucleating conditions obtainable in a zero gravity laboratory this laser glass may be easily quenched to a virtually crystal-free product. Experimental evidence is provided that use of this material as a host in a neodymium glass laser would result in more than a 10 percent increase in efficiency when compared to laser glass rods of a similar composition currently commercially available. Differential thermal analysis, thermal gradient oven, X-ray diffraction, and liquidus determination experiments were carried out to determine the basics of the crystallization behavior of the glass, and small-angle X-ray scattering and splat-cooling experiments were performed in order to provide additional evidence for the feasibility of producing this laser glass material, crystal free, in an outer space environment.

  5. Crystal-Field Engineering of Solid-State Laser Materials

    NASA Astrophysics Data System (ADS)

    Henderson, Brian; Bartram, Ralph H.

    2005-08-01

    This book examines the underlying science and design of laser materials. It emphasizes the principles of crystal-field engineering and discusses the basic physical concepts that determine laser gain and nonlinear frequency conversion in optical crystals. Henderson and Bartram develop the predictive capabilities of crystal-field engineering to show how modification of the symmetry and composition of optical centers can improve laser performance. They also discuss applications of the principles of crystal-field engineering to a variety of optical crystals in relation to the performances of laser devices. This book will be of considerable interest to physical, chemical and material scientists and to engineers involved in the science and technology of solid state lasers.

  6. Crystal-Field Engineering of Solid-State Laser Materials

    NASA Astrophysics Data System (ADS)

    Henderson, Brian; Bartram, Ralph H.

    2000-07-01

    This book examines the underlying science and design of laser materials. It emphasizes the principles of crystal-field engineering and discusses the basic physical concepts that determine laser gain and nonlinear frequency conversion in optical crystals. Henderson and Bartram develop the predictive capabilities of crystal-field engineering to show how modification of the symmetry and composition of optical centers can improve laser performance. They also discuss applications of the principles of crystal-field engineering to a variety of optical crystals in relation to the performances of laser devices. This book will be of considerable interest to physical, chemical and material scientists and to engineers involved in the science and technology of solid state lasers.

  7. Laser (cooling) refrigeration in erbium based solid state materials

    NASA Astrophysics Data System (ADS)

    Lynch, Jonathan W.

    The objective of this study was to investigate the potential of erbium based solid state materials for laser refrigeration in bulk material. A great deal of work in the field has been focused on the use of ytterbium based ZBLAN glass. Some experiments have also reported cooling in thulium based solid state materials but with considerably less success. We proposed that erbium had many attractive features compared to ytterbium and therefore should be tried for cooling. The low lying energy level structure of erbium provides energy levels that could bring obtainable temperatures two orders of magnitude lower. Erbium transitions of interest for cooling fall in the near IR region (0.87 microns and 1.5 microns). Lasers for one of these transitions, in the 1.5 micron region, are well developed for communication and are in the eye-safe and water and atmosphere transparent region. Theoretical calculations are also presented so as to identify energy levels of the eleven 4f electrons in Er3+ in Cs2NaYCl 6:Er3+ and the transitions between them. The strengths of the optical transitions between them have been calculated. Knowledge of such energy levels and the strength of the laser induced transitions between them is crucial for understanding the refrigeration mechanisms and different energy transfer pathways following the laser irradiation. The crystal host for erbium was a hexa-chloro-elpasolite crystal, Cs 2NaYCl6:Er3+ with an 80% (stoichiometric) concentration of erbium. The best cooling results were obtained using the 0.87 micron transition. We have demonstrated bulk cooling in this crystal with a temperature difference of ~6.2 K below the surrounding temperature. The temperatures of the crystal and its immediate surrounding environment were measured using differential thermometry. Refrigeration experiments using the 1.5 micron transition were performed and the results are presented. The demonstrated temperature difference was orders of magnitude smaller. Only a temperature

  8. Cr.sup.3+ -doped colquiriite solid state laser material

    DOEpatents

    Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.

    1989-01-01

    Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.

  9. Cr/sup 3 +/-doped colquiriite solid state laser material

    DOEpatents

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1988-03-31

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.

  10. Cr/sup 3+/-doped colquiriite solid state laser material

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1989-03-07

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3+/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3+/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high-slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3+/ or Tm/sup 3+/ for use in a multimegajoule single shot fusion research facility.

  11. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect

    Bolme, Cynthia A; Mc Grane, Shawn D; Dang, Nhan C; Whitley, Von H; Moore, David S.

    2011-01-20

    Ultrafast dynamic ellipsometry is used to measure the material motion and changes in the optical refractive index of laser shock compressed materials. This diagnostic has shown us that the ultrafast laser driven shocks are the same as shocks on longer timescales and larger length scales. We have added spectroscopic diagnostics of infrared absorption, ultra-violet - visible transient absorption, and femtosecond stimulated Raman scattering to begin probing the initiation chemistry that occurs in shock reactive materials. We have also used the femtosecond stimulated Raman scattering to measure the vibrational temperature of materials using the Stokes gain to anti-Stokes loss ratio.

  12. Femtosecond laser processing of fuel injectors - a materials processing evaluation

    SciTech Connect

    Stuart, B C; Wynne, A

    2000-12-16

    Lawrence Livermore National Laboratory (LLNL) has developed a new laser-based machining technology that utilizes ultrashort-pulse (0.1-1.0 picosecond) lasers to cut materials with negligible generation of heat or shock. The ultrashort pulse laser, developed for the Department of Energy (Defense Programs) has numerous applications in operations requiring high precision machining. Due to the extremely short duration of the laser pulse, material removal occurs by a different physical mechanism than in conventional machining. As a result, any material (e.g., hardened steel, ceramics, diamond, silicon, etc.) can be machined with minimal heat-affected zone or damage to the remaining material. As a result of the threshold nature of the process, shaped holes, cuts, and textures can be achieved with simple beam shaping. Conventional laser tools used for cutting or high-precision machining (e.g., sculpting, drilling) use long laser pulses (10{sup -8} to over 1 sec) to remove material by heating it to the melting or boiling point (Figure 1.1a). This often results in significant damage to the remaining material and produces considerable slag (Figure 1.2a). With ultrashort laser pulses, material is removed by ionizing the material (Figure 1.1b). The ionized plasma expands away from the surface too quickly for significant energy transfer to the remaining material. This distinct mechanism produces extremely precise and clean-edged holes without melting or degrading the remaining material (Figures 1.2 and 1.3). Since only a very small amount of material ({approx} <0.5 microns) is removed per laser pulse, extremely precise machining can be achieved. High machining speed is achieved by operating the lasers at repetition rates up to 10,000 pulses per second. As a diagnostic, the character of the short-pulse laser produced plasma enables determination of the material being machined between pulses. This feature allows the machining of multilayer materials, metal on metal or metal on

  13. Technology Assessment of Laser-Assisted Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  14. Aluminum thin film enhanced IR nanosecond laser-induced frontside etching of transparent materials

    NASA Astrophysics Data System (ADS)

    Nieto, Daniel; Cambronero, Ferran; Flores-Arias, María Teresa; Farid, Nazar; O'Connor, Gerard M.

    2017-01-01

    Laser processing of glass is of significant commercial interest for microfabrication of precision optical engineering devices. In this work, a laser ablation enhancement mechanism for microstructuring of glass materials is presented. The method consists of depositing a thin film of aluminum on the front surface of the glass material to be etched. The laser beam modifies the glass material by being incident on this front-side. The influence of ablation fluence in the nanosecond regime, in combination with the deposition of the aluminum layer of various thicknesses, is investigated by determining the ablation threshold for different glass materials including soda-lime, borosilicate, fused silica and sapphire. Experiments are performed using single laser pulse per shot in an air environment. The best enhancement in terms of threshold fluence reduction is obtained for a 16 nm thick aluminum layer where a reduction of two orders of magnitude in the ablation threshold fluence is observed for all the glass samples investigated in this work.

  15. New Polymer Materials for the Laser Sintering Process: Polypropylene and Others

    NASA Astrophysics Data System (ADS)

    Wegner, Andreas

    Laser sintering of polymers gets more and more importance for small series production. However, there is only a little number of materials available for the process. In most cases parts are build up using polyamide 12 or polyamide 11. Reasons for that are high prices, a restricted availability, poor mechanical part properties or an insufficient understanding of the processing of other materials. These problems result from the complex processing conditions in laser sintering with high requirements on the material's characteristics. Within this area, at the chair for manufacturing technology fundamental knowledge was established. Aim of the presented study was to qualify different polymers for the laser sintering process. Polyethylene, polypropylene, polyamide 6, polyoxymethylene as well as polybutylene terephthalate were analyzed. Within the study problems of qualifying new materials are discussed using some examples. Furthermore, the processing conditions as well as mechanical properties of a new polypropylene compound are shown considering also different laser sintering machines.

  16. Terminal-level relaxation in ND-doped laser materials

    SciTech Connect

    Bibeau, C.; Payne, S.A.

    1996-06-01

    During the energy extraction of a 1-{mu}m pulse in a Nd-doped laser material, the Nd-ion population is transferred from the metastable {sup 4}F{sub 3/2} level into the terminal {sup 4}I{sub 11/2} level. The terminal-level lifetime, {tau}{sub 11/2}, is defined in this case as the time it takes the Nd-ion population to decay from the {sup 4}I{sub 11/2} level into the {sup 4}I{sub 9/2} ground state. Several experimental and theoretical approaches over the last three decades have been made to measure the terminal-level lifetime. However, an agreement in the results among the different approaches for a large sampling of laser materials has never been demonstrated. This article presents three independent methods (pump-probe, emission, and energy extraction) for measuring the terminal-level lifetime in Nd:phosphate glass LG-750. The authors find remarkable agreement among the data and determine the {tau}{sub 11/2} lifetime to be 253{+-}50 ps. They extend their studies to show that the results of the pump-probe and emission methods agree to within a factor of two for additional Nd-doped glases and crystals investigated, thus offering validation for the emission method, which is a simpler, indirect approach.

  17. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  18. Present state of applying diode laser in Toyota Motor Corp.

    NASA Astrophysics Data System (ADS)

    Terada, Masaki; Nakamura, Hideo

    2003-03-01

    Since the mid-1980s, Toyota Motor Corporation has applied CO2 lasers and YAG lasers to machine (welding, piercing, cutting, surface modifying etc.) automobile parts. In recent years diode lasers, which are excellent in terms of cost performance, are now available on the market as a new type of oscillator and are expected to bring about a new age in laser technology. Two current problems with these lasers, however, are the lack of sufficient output and the difficulty in improving the focusing the beam, which is why it has not been easy to apply them to the machining of metal parts in the past. On the other hand, plastics can be joined with low energy because they have a lower melting point than metal and the rate of absorption of the laser is easy to control. Moreover, because the high degree of freedom in molding plastic parts results in many complex shapes that need to be welded, Toyota is looking into the use of diode lasers to weld plastic parts. This article will introduce the problems of plastics welding and the methods to solve them referring to actual examples.

  19. Intracavity frequency-doubled degenerate laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Liew, Seng Fatt; Knitter, Sebastian; Weiler, Sascha; Monjardin-Lopez, Jesus F.; Ramme, Mark; Redding, Brandon; Choma, Michael A.

    2017-02-01

    Visible lasers have a wide range of applications in imaging, spectroscopy and displays. Unfortunately, they suffer from coherent artifacts such as speckle. Various compounding techniques have been developed to remove speckle, but these methods usually involve mechanically moving parts and require long acquisition times. A different approach to prevent speckle formation is developing lasers with low spatial coherence. A careful design of the laser cavity can facilitate lasing in many spatial modes with distinct emission pattern. The total emission from those mutually incoherent lasing modes has low spatial coherence. To date, several types of such lasers have been developed, but most of them have emission beyond the visible spectrum, making them unsuitable for imaging or display applications that require visible light. An alternative way of making visible sources, especially of green color, is frequency doubling of infrared (IR) lasers. We develop a green light source with low spatial coherence via intracavity frequency doubling of a solid-state degenerate laser. The second harmonic emission is distributed over a few thousands independent transverse modes, and exhibits low spatial coherence. A strong suppression of speckle formation is demonstrated for both fundamental and second harmonic beams. Using the green emission for fluorescence excitation, we show the coherent artifacts are removed from the full-field fluorescence images. The achievable high power, low spatial coherence, and good directionality make the green degenerate laser an attractive illumination source for parallel imaging and projection display.

  20. Thin film resistive materials: past, present and future

    NASA Astrophysics Data System (ADS)

    Cherian Lukose, C.; Zoppi, G.; Birkett, M.

    2016-01-01

    This paper explores the key developments in thin film resistive materials for use in the fabrication of discrete precision resistors. Firstly an introduction to the preparation of thin films and their fundamental properties is given with respect to well established systems such as NiCr, TaN and CrSiO. The effect of doping these systems in both solid and gaseous forms to further refine their structural and electrical properties is then discussed before the performance of more recent materials systems such as CuAlMo and MmAgCuN are reviewed. In addition to performance of the materials themselves, the effect of varying processing parameters such as deposition pressure and temperature and subsequent annealing environment, as well as laser trimming energy and geometry are also studied. It is shown how these parameters can be systematically controlled to produce films of the required properties for varying applications such as high precision, long term stability and high power pulse performance.

  1. Material measurement method based on femtosecond laser plasma shock wave

    NASA Astrophysics Data System (ADS)

    Zhong, Dong; Li, Zhongming

    2017-03-01

    The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.

  2. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  3. Picosecond and femtosecond lasers for industrial material processing

    NASA Astrophysics Data System (ADS)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.

    2016-03-01

    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  4. Laser manufacturing for transparent, flexible and stretchable electronics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Shutong; Yu, Yongchao; Feng, Guoying; Hu, Anming

    2017-02-01

    We investigated the interaction between femotsecond laser and polyimide with a high repetition femtosecond fiber laser and a precisely motorized 3D stage. We have found that high repetition femtosecond laser pulse train can effectively fabricate double-layer electrical conductive tracks inside a polyimide (PI) sheets by a single-time irradiation. This interaction comprised multi-photon absorption, dissociation of polymer molecules and the thermal accumulation. The experiment unveiled that dual-layer carbonization was a consequence of an inside micro-lens formed instantly as laser was just focused into the inside of polyimide. This micro-lens further focused the subsequent laser pulse to carbonize the polymer through multi-photon excitation, bond breaking and graphite layer reformation and eventually form the second electronic conductive layer. The second conductive layer was generated below the focal point. With the laser irradiating is kept at the same height, the top layer at the focused plane continued to absorb laser energy then carbonized into the conductive layer. We called the process as a kind of self-focusing phenomenon. We study the focus effect of inside microlenses under different laser powers and irradiation times. The gap of double electronic tracks embedded in the polyimide matrix can be adjusted with the laser processing parameters. When the gap is more than 30 micrometer, two conductive layers are electrically insulating. While the gap is smaller than 10 micrometer, two conductive layers are electrically connected. Various applications, such as, supercapacitors, capacitive sensors and the field effect transistors were investigated in the flexible PI sheets using this 3D double-layer electrical conductive architecture.

  5. Composite multiple wavelength laser material and multiple wavelength laser for use therewith

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G. (Inventor)

    1997-01-01

    A composite multiple wavelength laser material is provided and is typically constructed with a common axis of construction in the form of a rod of uniform cross-section. The rod comprises a plurality of segments of laser material bonded, e.g., diffusion bonded, to one another along the common axis. Each segment lases at a unique wavelength when excited to produce a laser emission. The segments can be made from a birefringent material doped with laser active ions. If the same birefringent host material is used for all segments, ground-state absorption losses can be reduced by terminating either end of the rod with end segments made from undoped pieces of the birefringent material.

  6. Relaxation dynamics of nanosecond laser superheated material in dielectrics

    SciTech Connect

    Demos, Stavros G.; Negres, Raluca A.; Raman, Rajesh N.; Feit, Michael D.; Manes, Kenneth R.; Rubenchik, Alexander M.

    2015-08-20

    Intense laser pulses can cause superheating of the near-surface volume of materials. This mechanism is widely used in applications such as laser micromachining, laser ablation, or laser assisted thin film deposition. The relaxation of the near solid density superheated material is not well understood, however. In this work, we investigate the relaxation dynamics of the superheated material formed in several dielectrics with widely differing physical properties. The results suggest that the relaxation process involves a number of distinct phases, which include the delayed explosive ejection of microscale particles starting after the pressure of the superheated material is reduced to about 4 GPa and for a time duration on the order of 1 μs. The appearance of a subset of collected ejected particles in fused silica is similar to that of micro-tektites and provides information about the state of the superheated material at the time of ejection. Lastly, these results advance our understanding of a key aspect of the laser–material interaction pathway and can lead to optimization of associated applications ranging from material processing to laser surgery.

  7. Relaxation dynamics of nanosecond laser superheated material in dielectrics

    DOE PAGES

    Demos, Stavros G.; Negres, Raluca A.; Raman, Rajesh N.; ...

    2015-08-20

    Intense laser pulses can cause superheating of the near-surface volume of materials. This mechanism is widely used in applications such as laser micromachining, laser ablation, or laser assisted thin film deposition. The relaxation of the near solid density superheated material is not well understood, however. In this work, we investigate the relaxation dynamics of the superheated material formed in several dielectrics with widely differing physical properties. The results suggest that the relaxation process involves a number of distinct phases, which include the delayed explosive ejection of microscale particles starting after the pressure of the superheated material is reduced to aboutmore » 4 GPa and for a time duration on the order of 1 μs. The appearance of a subset of collected ejected particles in fused silica is similar to that of micro-tektites and provides information about the state of the superheated material at the time of ejection. Lastly, these results advance our understanding of a key aspect of the laser–material interaction pathway and can lead to optimization of associated applications ranging from material processing to laser surgery.« less

  8. Ultrafast laser fabrication of waveguides in glasses and crystalline materials

    NASA Astrophysics Data System (ADS)

    McMillen, Benjamin W.

    Over the last decade, the ultrafast laser has emerged as a powerful tool to shape three-dimensional photonic circuits in transparent dielectric materials. One of the unique traits of this fabrication approach is its ability to produce photonic circuits in bulk optical substrates with proven optical quality. It therefore bypasses all challenges associated with multi-step thin-film based material synthesis and fabrication techniques. In this thesis, the ultrafast direct laser writing (DLW) technique is applied to several materials, including fused silica, lithium tantalate ( LiTaO3), sapphire (Al2 O3), and gallium lanthanum sulfide (GLS) chalcogenide glass to produce 3D photonic circuits. Optimal processing conditions are determined through the analysis of the guided-mode characteristics of these structures, while the mechanisms behind the laser-induced refractive index change are investigated with such techniques as micro-structural Raman imaging, and second-harmonic microscopy. This research identifies optimized processing conditions by considering laser-induced multi-photon ionization, pulse distortion due to nonlinear Kerr interactions, and laser-induced thermal effects, all in connection with the intrinsic material properties. Based on this fundamental understanding of ultrafast laser material interactions, spatial and temporal pulse femtosecond time scales with micrometer spatial resolution. This work has yielded high quality low-loss photonic circuits in chalcogenide glasses for nonlinear and mid-IR applications.

  9. Laser micro-cutting of wide band gap materials

    NASA Astrophysics Data System (ADS)

    Savriama, Guillaume; Jarry, Vincent; Barreau, Laurent; Boulmer-Leborgne, Chantal; Semmar, Nadjib

    2012-07-01

    This paper investigates laser micro cutting of wide band gap materials for semiconductor industry purposes. Laser is an alternative to blade sawing for hard materials such as sapphire (α-Al2O3) and silicon carbide (SiC) which are useful for new functions. An ultraviolet (355 nm) diodepumped solid-state (DPSS) nanosecond laser is used in this investigation. The properties of the materials are analyzed by the means of ellipsometry and X-ray diffraction in order to understand laser/matter interaction physics. The effect of pulse energy and feed rate (scanning speed) is studied on the depth of the cutting street of α-Al2O3 and SiC. The depth of the grooves increases with laser energy (10 to 147.5 μJ/pulse with typical frequencies of 40 to 160 kHz) It decreases with the feed rate (10 to 150 mm/s) until saturation except for certain conditions for α-Al2O3. Indeed, results show periodic patterns produced by phase explosion that can influence on the achieved depth. The shape, size and periodicity of the recast material depend on the feed rate and the laser beam frequency. Photothermal ablation is the main removal mechanism for both materials although some evidences of photo-ionization for SiC can be observed.

  10. Multiphoton tomography with tunable Ti:sapphire laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Li, Tuan; König, Karsten

    2016-03-01

    Femtosecond near infrared laser microscopes are widely used to perform high resolution 3D imaging of biological samples based on second harmonic generation (SHG) and non-resonant simultaneous absorption of two or more photons at GW/cm2 intensities. However, high contrast imaging of living specimens without any destructive effect is limited to certain laser and exposure parameters with respect to the optical properties of the target. We compared three different femtosecond lasers, including a novel ultra-compact ultrashort fiber laser, in the range of 15-180 fs and repetition rates of 50-300 MHz for optimal non-destructive two-photon autofluorescence imaging. In particular we determined the thresholds for the onset of photodamage effects such as impaired cell reproduction.

  11. Mathematical Modelling of Laser/Material Interactions.

    DTIC Science & Technology

    1983-11-25

    translated to the model input. Even an experimental mode print can also be digitalised for the model. In trying to describe high order modes matliematically...4. Mazumder J. Steen W.M. "Welding of Ti 6al - 4V by continuous wave CO2 laser". Metal construction Sept. 1980 pp423 - 427. 5. Kogelnik H, Li.T Proc

  12. High-speed ultrafast laser machining with tertiary beam positioning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Chuan; Zhang, Haibin

    2017-03-01

    For an industrial laser application, high process throughput and low average cost of ownership are critical to commercial success. Benefiting from high peak power, nonlinear absorption and small-achievable spot size, ultrafast lasers offer advantages of minimal heat affected zone, great taper and sidewall quality, and small via capability that exceeds the limits of their predecessors in via drilling for electronic packaging. In the past decade, ultrafast lasers have both grown in power and reduced in cost. For example, recently, disk and fiber technology have both shown stable operation in the 50W to 200W range, mostly at high repetition rate (beyond 500 kHz) that helps avoid detrimental nonlinear effects. However, to effectively and efficiently scale the throughput with the fast-growing power capability of the ultrafast lasers while keeping the beneficial laser-material interactions is very challenging, mainly because of the bottleneck imposed by the inertia-related acceleration limit and servo gain bandwidth when only stages and galvanometers are being used. On the other side, inertia-free scanning solutions like acoustic optics and electronic optical deflectors have small scan field, and therefore not suitable for large-panel processing. Our recent system developments combine stages, galvanometers, and AODs into a coordinated tertiary architecture for high bandwidth and meanwhile large field beam positioning. Synchronized three-level movements allow extremely fast local speed and continuous motion over the whole stage travel range. We present the via drilling results from such ultrafast system with up to 3MHz pulse to pulse random access, enabling high quality low cost ultrafast machining with emerging high average power laser sources.

  13. The determination of energy transfer rates in the Ho:Tm:Cr:YAG laser material

    NASA Technical Reports Server (NTRS)

    Koker, Edmond B.

    1988-01-01

    Energy transfer processes occurring between atomic, ionic, or molecular systems are very widespread in nature. The applications of such processes range form radiation physics and chemistry to biology. In the field of laser physics, energy transfer processes have been used to extend the lasing range, increase the output efficiency, and influence the spectral and temporal characteristics of the output pulses of energy transfer dye lasers or solid-state laser materials. Thus in the development of solid state lasers, it is important to investigate the basic energy transfer (ET) mechanisms and processes in order to gain detailed knowledge so that successful technical utilization can be achieved. The aim of the present research is to measure the ET rate from a given manifold associated with the chromium sensitizer atom to a given manifold in the holmium activator atom via the thulium transfer atom, in the Ho:Cr:YAG laser material.

  14. Laser materials processing of complex components: from reverse engineering via automated beam path generation to short process development cycles

    NASA Astrophysics Data System (ADS)

    Görgl, Richard; Brandstätter, Elmar

    2017-01-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.

  15. Investigations to improve laser induced lithrotripsy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eisel, Max; Ulaganathan, Keerthanan; Strittmatter, Frank; Pongratz, Thomas; Sroka, Ronald

    2017-02-01

    Laser lithotripsy is the preferred application for the destruction of ureteral and kidney stones. Clinically Ho:YAG lasers (λ=2.1μm) are used due to high absorption by water to induce thermomechanical ablation. This study focussed on the investigation of different laser parameters in relation to the stone dusting efficiency. The term dusting was defined when the ablated fragments were d<1mm in diameter while fragmentation is defined to pieces of d> 1mm. The discussion about fragment-size showed advantages like reduced surgery time. Experiments were performed using clinical available Ho:YAG laser energy transferred via a standard fibre (Ø: 365μm) onto phantom calculi (Bego-Stones of different hardness) in a water filled vessel. Dusting can be reached most efficient by using low energy/pulse (approx. 0.5J/pulse) and repetition rate of around 40 Hz. Higher energy/pulse showed strong repulsion and thereby increased mobility, while using lower repetition rates result in longer ablation times. With regard to the hardness of the phantoms it can be derived that on soft calculi or calculi with a very rugged surface dusting can be observed less because the stone breaks into large fragments after a short time of laser application. For hard calculi the ablation process takes a much longer time compared to soft stones. In the following will be shown that dusting and fragmentation process depends not only on the energy/pulse and repetition rate of a Ho:YAG-laser, but also there are differences between Ho:YAG-laser systems according to the dusting efficiency.

  16. Matrix-assisted laser transfer of electronic materials for direct-write applications

    NASA Astrophysics Data System (ADS)

    Auyeung, Raymond C. Y.; Wu, H. D.; Modi, R.; Pique, Alberto; Fitz-Gerald, J. M.; Young, Henry D.; Lakeou, Samuel; Chung, Russell; Chrisey, Douglas B.

    2000-11-01

    A novel laser-based direct-write technique, called Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE-DW), has been developed for the rapid prototyping of electronic devices. MAPLE-DW is a maskless deposition process operating under ambient conditions which allows for the rapid fabrication of complex patterns of electronic materials. The technique utilizes a laser transparent substrate with one side coated with a matrix of the materials of interest mixed with an organic vehicle. The laser is focused through the transparent substrate onto the matrix coating which aids in transferring the materials of interest to an acceptor substrate placed parallel to the matrix surface. With MAPLE-DW, diverse materials including metals, dielectrics, ferroelectrics, ferrites and polymers have been transferred onto various acceptor substrates. The capability for laser-modifying the surface of the acceptor substance and laser-post-processing the transferred material has been demonstrated as well. This simple yet powerful technique has been used to fabricate passive thin film electronic components such as resistors, capacitors and metal lines with good functional properties. An overview of these key results along with a discussion of their materials and properties characterization will be presented.

  17. Material Processing Opportunites Utilizing a Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  18. Material Property Measurement in Hostile Environments using Laser Acoustics

    SciTech Connect

    Ken L. Telschow

    2004-08-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods—it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100’s of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for

  19. Vitamin C for stabilising biological lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kar, Ajoy K.; Mackenzie, Mark D.; Cialowicz, Katarzyna I.; Saleeb, Rebecca S.; Duncan, Rory R.

    2016-04-01

    We report on efforts to improve the lifetime of biological lasers through the use of ascorbic acid (also commonly known as vitamin C). Fluorescent proteins and dyes, used in biological lasers, suffer from photobleaching due to the build-up of reactive oxygen species (ROS) which causes damage leading to a decrease in emission over time. This is an issue both for laser lifetime and cell health. It has previously been shown that ascorbic acid can be effective in reducing ROS levels in a variety of applications. For our experiments human embryonic kidney cells (HEK293), containing the fluorescent dye Calcein AM, were placed between two dielectric plane mirrors to form a laser cavity. The cells were pumped using the output of a Ti:Sapphire femtosecond OPO system, frequency doubled twice in BBO crystals, giving an output of 474 nm. Initial results have shown an increase in laser lifetime when ascorbic acid is added to cells indicating a reduction in the build-up of ROS.

  20. Laser spectroscopy-present and future at ISOLDE

    SciTech Connect

    Flanagan, K. T.

    2011-10-28

    Laser spectroscopy experiments at the ISOLDE facility have a venerable history which now spans more than 30 years. This period has seen the development of a remarkable variety of laser techniques in order to study rare isotopes far from stability, which include in-source, collinear and {beta}-NMR/{beta}-NQR spectroscopy. The propensity for innovation in laser spectroscopy at ISOLDE has continued in the last three years, helped in part by synergies with laboratories across Europe. Highlights of this work include bunched-beam spectroscopy of the neutron-rich copper and gallium isotope chains and collinear-anticollinear spectroscopy of the Be isotope chain. New ionization schemes have been developed for the Po atom crucial for the successful in-source laser spectroscopy campaign. The future HIE-ISOLDE facility will provide experimentalists with improved ion-beam quality, increased yields and a larger number of accessible elements. Several new experiments are now in preparation to maximise the reach of laser spectroscopy at HIE-ISOLDE, which include collinear resonance ionization spectroscopy and in-cooler optical pumping.

  1. High speed ultrafast laser surface processing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mincuzzi, Girolamo; Kling, Rainer; Lopez, John; Hoenninger, Clemens; Audouard, Eric; Mottay, Eric P.

    2017-03-01

    Surface functionalization is a rapidly growing application for industrial ultrafast lasers. There is an increasing interest for high throughput surface processing, especially for texturing and engraving large manufacturing tools for different industrial fields such as injection molding, embossing and printing. Hydrophobic and hydrophilic surfaces, colored or deep black metal surfaces can now be industrially produced. The engraving speed is continuously improving following improvements in beam scanning technology and high average power industrial ultrafast lasers. Several tenths of MHz for the laser repetition rate and several hundreds of meter per second for the beam speed are available. More than 100 m/s scanning speed is then possible for laser surface structuring. But these surfaces are quite hard to produce since it is necessary to have a good compromise between high removal rate and high surface quality (low roughness, burr-free, narrow heat affected zone). In this work, we apply a simple engineering model based on the two temperature description of ultra-fast ablation to estimate key processing parameters. In particular, the pulse-to-pulse overlap which depends on the scanning velocity, the spot size, and the laser repetition rate all have to be adjusted to optimize the depth and roughness, otherwise heat accumulation and heat affected zone may appear. Optimal sequences of time and spatial superposition of pulses are determined and applied with a polygonal scanner. Ablation depth and processing speed obtained are compared with experimental results.

  2. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  3. Laser Propagation in Nanostructured Ultra-Low-Density Materials

    SciTech Connect

    Fournier, K. B.; Colvin, J.; Yogo, A; Kemp, G. E.; Matsukuma, H.; Tanaka, N.; Zhang, Z.; Koga, K.; Tosaki, S.; Nishimura, H.

    2016-03-15

    The nanostructure of very-low-density aerogels (< 10 mg/cm3) affects the laser heating and propagation of the subsequent heat front. Simulations treat these materials as an atomistic medium without any structure differentiating between near-solid-density material and voids. Thus, simulations fail to predict the effects of the aerogel’s physical micro or nanostructure on the laser-matter interaction. We have designed an experiment using the GEKKO XII laser and ILE diagnostics to characterize the ionization-wave propagation and x-ray yield from aerogel and mass-matched gaseous targets as the laser passes through each. By design, the gas and aerogel targets will have identical densities and identical effective ionization states.

  4. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect

    Dickinson, J. T.

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  5. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation.

    PubMed

    Brugmans, M J; Kemper, J; Gijsbers, G H; van der Meulen, F W; van Gemert, M J

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an understanding of heat accumulation and related thermal damage during (super) pulsed CO2 laser irradiation. The experiments show a very slow decay of temperatures in the longer time regime. This behavior is well predicted by a simple model for one-dimensional heat flow that considers the CO2 laser radiation as producing a heat flux on the material surface. The critical pulse repetition frequency for which temperature accumulation is sufficiently low is estimated at about 5 Hz. Although we have not investigated the ablative situation, our results suggest that very low pulse frequencies in microsurgical procedures may be recommended.

  6. Method of defining features on materials with a femtosecond laser

    DOEpatents

    Roos, Edward Victor; Roeske, Franklin; Lee, Ronald S.; Benterou, Jerry J.

    2006-05-23

    The invention relates to a pulsed laser ablation method of metals and/or dielectric films from the surface of a wafer, printed circuit board or a hybrid substrate. By utilizing a high-energy ultra-short pulses of laser light, such a method can be used to manufacture electronic circuits and/or electro-mechanical assemblies without affecting the material adjacent to the ablation zone.

  7. Imaging laser analysis of building materials - practical examples

    SciTech Connect

    Wilsch, G.; Schaurich, D.; Wiggenhauser, H.

    2011-06-23

    The Laser induced Breakdown Spectroscopy (LIBS) is supplement and extension of standard chemical methods and SEM- or Micro-RFA-applications for the evaluation of building materials. As a laboratory method LIBS is used to gain color coded images representing composition, distribution of characteristic ions and/or ingress characteristic of damaging substances. To create a depth profile of element concentration a core has to be taken and split along the core axis. LIBS was proven to be able to detect all important elements in concrete, e. g. Chlorine, Sodium or Sulfur, which are responsible for certain degradation mechanisms and also light elements like lithium or hydrogen. Practical examples are given and a mobile system for on-site measurements is presented.

  8. Dynamics of Crater Evolution During Laser Treatment of Materials

    NASA Astrophysics Data System (ADS)

    Vasilijev, S. V.; Zharkii, N. V.; Ivanov, A. Yu.; Kopytskii, A. V.; Nedolugov, V. I.

    2017-01-01

    Acoustic emission of the destruction zone formed upon exposure of the metal surface to pulsed laser radiation is considered. A dependence of the waveform and spectrum of acoustic vibrations on the parameters of the irradiated material and a law of increase in the crater depth are determined. It is revealed that for the copper sample surface irradiated by the laser pulse with duration of 20 μs, the time of growth of the destruction zone is approximately 40 μs, which is in good agreement with the time of existence of plasma formation at the surface of the target treated by laser plasma ( 50 μs).

  9. Tunable Solid State Lasers and Synthetic Nonlinear Materials

    DTIC Science & Technology

    1987-09-23

    in the MMR refrigerator. The results will be JIM~rJ ]VVX XAT.71uJ* An~ AF P- PMJ~ XRNrK Nn KA XA* XJ Xk W MUX X September 23, 1987 8 discussed at the...interests appeared in the original proposal "Tunable Solid State Lasers and Synthetic Nonlinear Materials." .(= ,- w ,NMIw., 1 Wr 4 W , JWW September 23, 1987...Eric Gustafson - Research Associate Mary Farley - Group Secretary SLAB GEOMETRY LASERS 10 J, 10 Hz Fixed Slab Glass Laser Source Murray Reed Moving

  10. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C.; Zediker, Mark S.; Faircloth, Brian O.; Moxley, Joel F.

    2016-12-06

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  11. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  12. Laser processes and analytics for high power 3D battery materials

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.

    2016-03-01

    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  13. Laser induced damage in optical materials: ninth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado.

  14. Multi-functional laser fabrication of diamond (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salter, Patrick S.; Booth, Martin J.

    2017-03-01

    Ultrafast laser fabrication enables micro-structuring of diamond in 3D with a range of functionality. An ultrashort pulsed beam focused beneath the diamond surface induces structural modifications which are highly localised in three dimensions. At high pulse energy, the laser breaks down the diamond lattice at focus to form a graphitic phase. We demonstrate high resolution analysis of the structural changes revealing the graphitic phase to be formed of small clusters ( 100 nm in size) of amorphous sp2 bonded carbon accompanied by localised cracking of the diamond. When the laser focus is traced through the diamond, continuous graphitic wires are created which are electrically conductive. We have used such wires to fabricate large-area 3D radiation sensors which have been employed for the detection of high energy protons. Such graphitic wires have an associated stress field and a related localised modulation of the refractive index. We have recently written combinations of graphitic tracks in diamond to engineer stress fields to give a desired refractive index distribution and form an optical waveguide. Type III waveguides are demonstrated that allow guiding of both polarization states. We also show that by reducing the laser pulse energy, it is possible to avoid complete breakdown of the diamond lattice and simply introduce an ensemble of vacancies within the focal volume. This can be used to create single coherent NV centres in diamond isolated in 3D. All these processes are improved by processing at high numerical aperture (NA), for which adaptive optics aberration correction is essential.

  15. Preparation of Rare Earth Doped Laser Materials.

    DTIC Science & Technology

    1982-12-01

    Nt’aval Research Labo;atpry. The host crystals include yttrii1 aluminum garnet (y2A14O1 2 ), yttrium lithium fluorides TYLiFk, and barium yttrium DD...are necessary for test lasers at the Naval Research Laboratory. The host crystals include yttrium aluminum garnet (Y2 Al 40 12), yttrium lithium...fluorides (YLiF4 ), and barium yttrium fluoride (BaY2 F8 ). These hosts were doped with single or multiple rare earth elements for lasing action at wave

  16. Liquid Contact Luminescence from Semiconductor Laser Materials

    DTIC Science & Technology

    1997-01-09

    Young, P.S. Zory, and D.P. Bour, Layer Diodes and Applications, Kurt I. Linden , Prasad R. Akkapeddi, Editors, Proc. SPIE 2682, 136 (1996). 129 130...Grove, P.S. Zory, H.K. Choi, and G.W. Turner, Laser Diodes and Applications, Kurt L Linden , Prasad R. Akkapeddi, Editors, Proc. SPIE 2382, 244 (1995...equivalent circuit model developed for PAL is shown in Figure 2-13. Cox CdI . Rsod~n Rf D iode j ,h10o Figure 2-13. Schematic diagram of the PAL

  17. Picosecond laser welding of similar and dissimilar materials.

    PubMed

    Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P

    2014-07-01

    We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.

  18. Laser and nonlinear optical materials; Proceedings of the Meeting, San Diego, CA, Aug. 19, 20, 1986

    SciTech Connect

    Deshazer, L.G.

    1987-01-01

    Topics discussed include frequency conversion materials; damage resistance and crystal growth of KDP; the application of urea crystals to nonlinear optics; the properties and uses of BaB/sub 2/O/sub 4/; and direct assessment of the phase matching properties of new nonlinear materials. Papers are presented on the growth of laser crystals and solid state lasers; the growth and characterization of Nd,Cr:GSGG laser crystals and Ti:Al/sub 2/O/sub 3/ crystals; oxide host crystals for unstable lasers; the use of the heat exchanger method to grow laser crystals; Faraday rotator materials for laser systems; and crystal growth, processing, and characterization of photorefractive BaTiO/sub 3/. Consideration is given to the application of synchrotron radiation to X-ray fluorescence analysis of trace elements; the electron-paramagnetic resonance spectra in Ti-doped sapphire; electrical transport properties in garnets; the photoelastic properties of optical materials; thermal variation of the refractive index in optical materials; and the mechanical properties of single crystal ceramics.

  19. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    SciTech Connect

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-04-01

    Presented at the 7th International Conference on Concentrating Photovoltaic Systems (CPV-7), 4-6 April 2011, Las Vegas, Nevada. Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple an optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interfaces(s) while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials.

  20. Multidisciplinary approaches to radiation-balanced lasers (MARBLE): a MURI program by AFOSR (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sheik-Bahae, Mansoor

    2017-02-01

    An overview of the diverse research activities under the newly funded MURI project by AFOSR will be presented. The main goal is to advance the science of radiation-balanced lasers, also known as athermal lasers, in order to mitigate the thermal degradation of the high-power laser beams. The MARBLE project involves researchers from four universities and spans research activities in rare-earth doped crystals and fibers to semiconductor disc lasers.

  1. Optical gain in GaAsBi-based quantum-well diode lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marko, Igor P.; Broderick, Christopher A.; Jin, Shirong; Ludewig, Peter; Stolz, Wolfgang; Volz, Kerstin; Rorison, Judy M.; O'Reilly, Eoin P.; Sweeney, Stephen J.

    2017-02-01

    GaAsBi offers the possibility to develop near-IR semiconductor lasers such that the spin-orbit-split-off energy (ΔSO) is greater than the bandgap (Eg) in the active region with lasing wavelengths in the datacom/telecom range of 1.3-1.6 μm. This promises to suppress the dominant efficiency-limiting loss processes as Auger recombination, involving the generation of "hot" holes in the spin-orbit split-off band (the so-called "CHSH" process), and inter-valence band absorption (IVBA), where emitted photons are re-absorbed in the active region, thereby increasing the internal optical losses and negatively impacting upon the laser characteristics being responsible for the main energy consumption. In addition to growth and fabrication processes refinement, a key aspect of efforts to continue the advancement of the GaAsBi material system for laser applications is to develop a quantitative understanding of the impact of Bi on key device parameters. In this work, we present the first experimental measurements of the absorption, spontaneous emission, and optical gain spectra of GaAsBi/AlGaAs QW lasers using a segmented contact method and a theoretical analysis of these devices, which shows good quantitative agreement with the experiment. Internal optical losses of 10-15 cm-1 and peak modal gain of 24 cm-1 are measured at threshold and a peak material gain is estimated to be 1500 cm-1 at current density of 2 kA/cm-2, which agrees well with the calculated value of 1560 cm-1. The theoretical calculations also enabled us to identify and quantify Bi composition variations across the wafer and Bi-induced inhomogeneous broadening of the optical spectra.

  2. Laser-induced breakdown spectroscopy analysis of energetic materials

    NASA Astrophysics Data System (ADS)

    de Lucia, Frank C.; Harmon, Russell S.; McNesby, Kevin L.; Winkel, Raymond J.; Miziolek, Andrzej W.

    2003-10-01

    A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials.

  3. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    SciTech Connect

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-10-08

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm{sup 2} with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  4. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-10-01

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  5. Analysis of fabric materials cut using ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  6. The materiality of mathematics: presenting mathematics at the blackboard.

    PubMed

    Greiffenhagen, Christian

    2014-09-01

    Sociology has been accused of neglecting the importance of material things in human life and the material aspects of social practices. Efforts to correct this have recently been made, with a growing concern to demonstrate the materiality of social organization, not least through attention to objects and the body. As a result, there have been a plethora of studies reporting the social construction and effects of a variety of material objects as well as studies that have explored the material dimensions of a diversity of practices. In different ways these studies have questioned the Cartesian dualism of a strict separation of 'mind' and 'body'. However, it could be argued that the idea of the mind as immaterial has not been entirely banished and lingers when it comes to discussing abstract thinking and reasoning. The aim of this article is to extend the material turn to abstract thought, using mathematics as a paradigmatic example. This paper explores how writing mathematics (on paper, blackboards, or even in the air) is indispensable for doing and thinking mathematics. The paper is based on video recordings of lectures in formal logic and investigates how mathematics is presented at the blackboard. The paper discusses the iconic character of blackboards in mathematics and describes in detail a number of inscription practices of presenting mathematics at the blackboard (such as the use of lines and boxes, the designation of particular regions for specific mathematical purposes, as well as creating an 'architecture' visualizing the overall structure of the proof). The paper argues that doing mathematics really is 'thinking with eyes and hands' (Latour 1986). Thinking in mathematics is inextricably interwoven with writing mathematics.

  7. Advanced hole patterning technology using soft spacer materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Jong Keun; Hustad, Phillip D.; Aqad, Emad; Valeri, David; Wagner, Mike D.; Li, Mingqi

    2017-03-01

    A continuing goal in integrated circuit industry is to increase density of features within patterned masks. One pathway being used by the device manufacturers for patterning beyond the 80nm pitch limitation of 193 immersion lithography is the self-aligned spacer double patterning (SADP). Two orthogonal line space patterns with subsequent SADP can be used for contact holes multiplication. However, a combination of two immersion exposures, two spacer deposition processes, and two etch processes to reach the desired dimensions makes this process expensive and complicated. One alternative technique for contact hole multiplication is the use of an array of pillar patterns. Pillars, imaged with 193 immersion photolithography, can be uniformly deposited with spacer materials until a hole is formed in the center of 4 pillars. Selective removal of the pillar core gives a reversal of phases, a contact hole where there was once a pillar. However, the highly conformal nature of conventional spacer materials causes a problem with this application. The new holes, formed between 4 pillars, by this method have a tendency to be imperfect and not circular. To improve the contact hole circularity, this paper presents the use of both conventional spacer material and soft spacer materials. Application of soft spacer materials can be achieved by an existing coating track without additional cost burden to the device manufacturers.

  8. Active 2D and carbon-based materials: physics and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.

    2016-09-01

    In nanophotonics we create material-systems, which are structured at length scales smaller than the wavelength of light. When light propagates inside such effective materials numerous novel physics phenomena emerge including thresholdless lasing, atto-joule per bit efficient modulators, and exciton-polariton effects. However, in order to make use of these opportunities, synergistic device designs have to be applied to include materials, electric and photonic constrains - all at the nanoscale. In this talk, I present our recent progress in exploring 2D and TCO materials for active optoelectronics. I highlight nanoscale device demonstrations including their physical operation principle and performance benchmarks. Details include epsilon-bear-zero tuning of thin-film ITO, Graphene electro-static gating via Pauli-blocking, plasmonic electro-optic modulation, and hetero-integrated III-V and carbon-based plasmon lasers on Silicon photonics.

  9. Solid state dye lasers: rhodamines in silica-zirconia materials.

    PubMed

    Schultheiss, Silke; Yariv, Eli; Reisfeld, Renata; Breuer, Hans Dieter

    2002-05-01

    Silica-zirconia materials as well as silica-zirconia ormosils prepared by the sol-gel technique were doped with the laser dyes Rhodamine B and Rhodamine 6G and used as solid state dye lasers. The photostability and efficiency of the solid state laser samples were measured in a transverse pumping configuration by either a nitrogen laser or the second harmonic of a Nd-YAG laser. Under the excitation of a nitrogen laser the photostability of Rhodamine B in silica-zirconia materials was low and decreased with a growing amount of zirconia. The photophysical properties of the incorporated dyes were studied by time-resolved fluorescence spectroscopy. The fluorescence lifetimes of both dyes increased when the matrix was modified by organic compounds Furthermore, the threshold energy of Rhodamine 6G in two ormosils containing 3 and 50% methylsilica was measured. The results revealed that the threshold energy was lower for the matrix with a higher amount of ormosil while the slope efficiency was higher in the matrix containing 30% ormosil.

  10. Two-dimensional material electronics and photonics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan

    2015-09-01

    Two-dimensional (2D) materials has attracted intense interest in research in recent years. As compared to their bulk counterparts, these 2D materials have many unique properties due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the materials also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and interaction with light. These unique properties of 2D materials open up broad territories of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on graphene and transition metal dichalcogenides.

  11. Novel materials for stable perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Abate, Antonio

    2015-09-01

    Organic-inorganic perovskites are quickly overrunning research activities in new materials for cost-effective and high-efficiency photovoltaic technologies. Since the first demonstration from Kojima and co-workers in 2009, several perovskite-based solar cells have been reported and certified with rapidly improving power conversion efficiency. Recent reports demonstrate that perovskites can compete with the most efficient inorganic materials, while they still allow processing from solution as potential advantage to deliver a cost-effective solar technology. Compare to the impressive progress in power conversion efficiency, stability studies are rather poor and often controversial. An intrinsic complication comes from the fact that the stability of perovskite solar cells is strongly affected by any small difference in the device architecture, preparation procedure, materials composition and testing procedure. In the present talk we will focus on the stability of perovskite solar cells in working condition. We will discuss a measuring protocol to extract reliable and reproducible ageing data. We will present new materials and preparation procedures which improve the device lifetime without giving up on high power conversion efficiency.

  12. Modern laser technologies used for cutting textile materials

    NASA Astrophysics Data System (ADS)

    Isarie, Claudiu; Dragan, Anca; Isarie, Laura; Nastase, Dan

    2006-02-01

    With modern laser technologies we can cut multiple layers at once, yielding high production levels and short setup times between cutting runs. One example could be the operation of cutting the material named Nylon 66, used to manufacture automobile airbags. With laser, up to seven layers of Nylon 66 can be cut in one pass, that means high production rates on a single machine. Airbags must be precisely crafted piece of critical safety equipment that is built to very high levels of precision in a mass production environment. Of course, synthetic material, used for airbags, can be cut also by a conventional fixed blade system, but for a high production rates and a long term low-maintenance, laser cutting is most suitable. Most systems, are equipped with two material handling systems, which can cut on one half of he table while the finished product is being removed from the other half and the new stock material laid out. The laser system is reliable and adaptable to any flatbed-cutting task. Computer controlled industrial cutting and plotting machines are the latest offerings from a well established and experienced industrial engineering company that is dedicated to reduce cutting costs and boosting productivity in today's competitive industrial machine tool market. In this way, just one machine can carry out a multitude of production tasks. Authors have studied the cutting parameters for different textile materials, to reach the maximum output of the process.

  13. Direct laser writing of microoptical structures using a Ge-containing hybrid material

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Gaidukevičiūtė, Arūnė; Purlys, Vytautas; Žukauskas, Albertas; Sakellari, Ioanna; Kabouraki, Elmina; Candiani, Alessandro; Gray, David; Pissadakis, Stavros; Gadonas, Roaldas; Piskarskas, Algis; Fotakis, Costas; Vamvakaki, Maria; Farsari, Maria

    2011-06-01

    We present our investigations into the direct laser writing of a novel germanium-containing hybrid sol-gel photosensitive material for optical applications at micro scale. We employ this material in the fabrication of photonic micro-structures, such as aspheric lenses and prisms; these are well-shaped and provided good optical performance. The material exhibits good transparency and structurability, and three-dimensional structures with sub-100 nm resolution are achieved. We demonstrate the suitability of the direct laser writing method for the rapid production of custom shaped microoptical components. Since germanium glasses are widely used in fiber optics, the combination of direct laser writing with this specially designed, functional material opens an interesting way in fabricating structures for controlling light flow.

  14. Laser ablation of advanced ceramics and glass-ceramic materials: Reference position dependence

    NASA Astrophysics Data System (ADS)

    Sola, D.; Escartín, A.; Cases, R.; Peña, J. I.

    2011-04-01

    In this work, we present the effect produced by modifying the reference position as well as the method of machining on the results obtained when advanced ceramics and glass-ceramic materials are machined by laser ablation. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulsewidths in the nanosecond range has been used. Morphology, depth and volume obtained by means of pulse bursts and grooves have been studied. Working within the same laser conditions, it has been shown that these values depend on the thermal, optical and mechanical features of the material processed. We have also studied the variation in the ablation yield when the position of the surface to be machined is modified. Material properties and work conditions are related to the results obtained. We have described and discussed the morphology, composition, microstructure and hardness of the materials processed.

  15. The causes of high power diode laser brazed seams fractures of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Adamiak, Marcin; Czupryński, Artur; Janicki, Damian; Górka, Jacek

    2016-12-01

    Presented in this article are the results of experiments carried out to determine the causes of braze cracking of dissimilar materials brazed with a ROFIN DL 020 high power diode laser with the use of additional powdered EN AW-1070A aluminium alloy to bond thin aluminium sheets with soft, low alloy DC04+ZE75/75 steel plate which was electrolytically coated with zinc on both sides. Presented are the results of metallographic, macroscopic, microscopic, diffractometric phase analyses of the weld joints. Metallurgical problems arising during processing as well as suggestions regarding technical aspects of laser brazing dissimilar materials in regards to their physical characteristics and chemical composition are explored.

  16. Electrically tunable laser based on heliconical cholesteric (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiang, Jie; Varanytsia, Andrii; Minkowski, Fred; Paterson, Daniel A.; Imrie, Corrie T.; Lavrentovich, Oleg D.; Palffy-Muhoray, Peter

    2016-09-01

    STUDENT CONTRIBUTION: Cholesteric liquid crystals (CLC) self-assemble into a periodic supramolecular helical structure with properties of a one-dimensional photonic crystal. The CLCs doped with a fluorescent dye and optical pump enable a distributed feedback cavity and lasing [1]. Although lasing was observed in range of wavelength from near UV to near IR, a practical method of tuning of emission wavelength from a dye-doped CLC without structural destruction of a helix is not demonstrated yet. In this work, we demonstrate an electrically tunable dye-doped CLC laser based on the so-called oblique helicoidal, or heliconical, CLC state [2,3]. In this state, the molecules twist around the helicoidal axis, making an angle smaller than 90 degrees with the axis. Molecular tilt makes the heliconical structure different from the regular CLC (in which the molecules are perpendicular to the axis) and enable electric tunability [2,3]. An electric field applied parallel to the heliconical axis changes the pitch but does not realign the axis. When the field increases, the pitch decreases. As a result, the selective reflection band and a lasing wavelength move towards shorter wavelength. Using heliconical CLC and two laser dyes DCM and LD688, we demonstrate effective tuning of the laser emission wavelength from 574 nm to 722 nm. With appropriate laser dyes, the spectrum can be extended from near UV to near IR. Efficient electric tuning in the broad spectral range and small size of the heliconical cholesteric lasers makes them potentially useful for optical and biomedical applications. [1] P. Palffy-Muhoay, W.Y. Cao, M. Moreira, B. Taheri, A. Munoz, Photonics and lasing in liquid crystal [2] J. Xiang, S.V. Shiyanovskii, C.T. Imrie, O.D. Lavrentovich, Electrooptic Response of Chiral Nematic Liquid Crystals with Oblique Helicoidal Director, Phys Rev Lett, 112 (2014) 217801. [3] J. Xiang, Y.N. Li, Q. Li, D.A. Paterson, J.M.D. Storey, C.T. Imrie, O.D. Lavrentovich, Electrically

  17. A novel laser-based method for controlled crystallization in dental prosthesis materials

    NASA Astrophysics Data System (ADS)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  18. Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.

    2017-03-01

    Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.

  19. Fast spatial-resolved beam diagnostics for material processing by industrial CO2 lasers

    NASA Astrophysics Data System (ADS)

    Martinen, Dirk; Decker, Ingo; Wohlfahrt, Helmut

    1996-09-01

    Due to the increasing range of high-speed and high-accuracy applications in material processing, especially in laser beam welding and cutting, the temporal stability of the laser beam parameters becomes more and more important. In this paper a laser beam diagnostic device is presented, that allows the determination of the intensity-profiles of high- power CO2 lasers with high time-resolution. The detector of this device consists of two linear arrays of room- temperature HgCdTe-detectors, arranged perpendicularly to each other across the center of the beam. The data of the 70 detector elements is acquired simultaneously at rates up to 15 kS/sec for single shot events and several 100 kS/sec for repetitive laser pulses. Due to the use of a digital signal processor (DSP) and an especially adapted software, it is possible to analyze the fluctuations of the intensity distribution on-line. By help of a partially transmitting mirror in the beam delivery system, measurements can be performed during material processing. Therefore, the interaction of the laser beam source itself with the material processing due to beam reflection as well as influences of the industrial environment to the laser can be detected. The calculation of the local variance and mean values enables the dependence of the laser's short- and long-term stability to be investigated due to changes in the resonator alignment, the stability of the power supply, the gas composition etc., as well as to the influence of the processing. For the pulse-mode of a laser, its transient behavior like changes of the intensity distribution can be determined with high time-resolution. For the improvement of drilling processes, the calculation of further statistical functions by the DSP makes it possible to estimate the uniformity of the laser pulses on-line as well.

  20. Optically pumped semiconductor lasers: from nonlinear lensing to solar lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wilcox, Keith G.; Quarterman, Adrian H.; Smyth, Conor J. C. P.; Mirkhanov, Shamil

    2017-03-01

    We report on recent developments in the characterisation of non-linear lensing in semiconductor disk laser gain samples. We find that there is a significant nonlinear lens present and the magnitude and sign of this depend on the conditions under which it is being observed. Under experimental conditions which are, to date, the closest to intra-cavity conditions, with 350 fs pulses at the same wavelength a mode-locked SDL using that gain chip would operate at we find that the lens is always negative and its magnitude is almost independent of pump intensity. We also report on the experimental observation of different mode-locking regimes in SDLs including dual wavelength mode-locking and pulse molecule formation and compare these experimentally observed modes of operation with predictions from microscopic modelling previously reported in by Kilen et. al. [1] [1] I. Kilen et. al. Optica, 1 (4) 192-197 (2014)

  1. Femtosecond laser processing of photovoltaic and transparent materials

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon

    The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such materials since non-linear photochemical mechanisms predominantly occur. In this series of studies, femtosecond (fs) laser processing techniques that include laser drilling on Si wafer, laser scribing on CIGS thin film, laser ablation on Lithium Niobate (LN) crystal, and fabrication of 3D structures in fused silica were studied. The fs laser drilling on Si wafer was performed to fabricate via holes for wrap-through PV devices. For reduction of the number of shots in fs laser drilling process, self-action of laser light in the air was initiated. To understand physical phenomena during laser drilling, scanning electron microscopy (SEM), emission, and shadowgraph images were studied. The result indicated the presence of two mechanisms that include fabrication by self-guided beam and wall-guided beam. Based on our study, we could fabricate ~16 micrometer circular-shaped via holes with ~200 laser pulses on 160-170 micrometer thick c- and mc-Si wafer. For the fs laser scribing on ink jet printed CIGS thin film solar cell, the effect of various parameters that include pulse accumulation, wavelength, pulse energy, and overlapping were elucidated. In our processing regime, the effect of wavelength could be diminished due to compensation between beam size, pulse accumulation, energy fluence, and the absorption coefficient. On the other hand, for high PRF fs laser processing, pulse accumulation effect cannot be ignored, while it can be negligible in low PRF fs laser processing. The result indicated the presence of a critical energy fluence for initiating delamination of CIGS layer. To avoid delamination and fabricate fine isolation lines, the overlapping method can be applied. With this method, ~1 micrometer width isolation lines were fabricated. The fs laser ablation on LN wafer was studied

  2. Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets.

    PubMed

    Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki

    2010-09-15

    We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.

  3. Optical coherence tomography in material deformation by using short pulse laser irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Kim, Youngseop; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping; Jeong, Eun Joo; Kim, Chang-Seok

    2008-02-01

    We demonstrate the feasibility of OCT imaging for the investigation of samples, which are processed by the short pulse laser. The use of short pulse lasers in various material processing have provided the advantages such as a high peak power and a small heat affected zone over conventional methods based on mechanical treatment. However, due to the improper application of the lasers, the unwanted surface or structural deformation of materials and the thermal damages around an irradiation spot can be caused. Thus, the real-time monitoring/evaluation of laser processing performance in-situ is needed to prevent the excessive deformation of the material and to determine optimal processing conditions. As a standard method to investigation of the material processing by using the lasers, the scanning electron microscopy (SEM) or the transmission electron microscopy (TEM) observation of a physically cleaved surface is used although sample damages are given during the cleaving and polishing process. In this paper, we utilized the OCT advantages such as high resolution and non-invasive investigation to evaluate the laser processing performance. OCT images for the deformation monitoring of the ABS plastic present correlation with images obtained from conventional investigation methods. OCT images of the maxillary bone clearly show the difference in the pit formation of the biological sample at different irradiation conditions. We prove the potential of OCT for the evaluation of laser-processed various samples. Integrating OCT system into a laser processing system, we can visualize the effect of laser-based treatments in clinical and industrial fields.

  4. Laser formation of Bragg gratings in polymer nanocomposite materials

    SciTech Connect

    Nazarov, M M; Khaydukov, K V; Sokolov, V I; Khaydukov, E V

    2016-01-31

    The method investigated in this work is based on the laser-induced, spatially inhomogeneous polymerisation of nanocomposite materials and allows control over the motion and structuring of nanoparticles. The mechanisms of nanoparticle concentration redistribution in the process of radical photopolymerisation are studied. It is shown that under the condition of spatially inhomogeneous illumination of a nanocomposite material, nanoparticles are diffused from the illuminated areas into the dark fields. Diffraction gratings with a thickness of 8 μm and a refractive index modulation of 1 × 10{sup -2} are written in an OCM-2 monomer impregnated by silicon nanoparticles. The gratings may be used in the development of narrowband filters, in holographic information recording and as dispersion elements in integrated optical devices. (interaction of laser radiation with matter. laser plasma)

  5. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, W.F.; Payne, S.A.; Chase, L.L.; Smith, L.K.

    1994-01-18

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  6. Laser immunotherapy for metastatic pancreatic cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan

    2017-02-01

    Pancreatic cancer is an extremely malignant disease with high mortality rate. Currently there is no effective therapeutic strategy for highly metastatic pancreatic cancers. Laser immunotherapy (LIT) is a combination therapeutic approach of targeted phototherapy and immunotherapy, which could destroy treated primary tumors with elimination of untreated metastases. LIT affords a remarkable efficacy in suppressing tumor growth in pancreatic tumors in mice, and results in complete tumor regression in many cases. LIT could synergize targeted phototherapy and immunological effects of immunoadjuvant, which represent a promising treatment modality to induce systemic antitumor response through a local intervention, paving the way for the treatment of highly metastatic pancreatic cancers.

  7. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  8. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    EPA Science Inventory

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  9. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    EPA Science Inventory

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  10. PULSED LASER DEPOSITION OF MAGNETIC MULTILAYERS FOR THE GRANT ENTITLED LASER PROCESSING OF ADVANCED MAGNETIC MATERIALS

    SciTech Connect

    Monica Sorescu

    2003-10-11

    Nanostructured magnetite/T multilayers, with T = Ni, Co, Cr, have been prepared by pulsed laser deposition. The thickness of individual magnetite and metal layers takes values in the range of 5-40 nm with a total multilayer thickness of 100-120 nm. X-ray diffraction has been used to study the phase characteristics as a function of thermal treatment up to 550 C. Small amounts of maghemite and hematite were identified together with prevailing magnetite phase after treatments at different temperatures. The mean grain size of magnetite phase increases with temperature from 12 nm at room temperature to 54 nm at 550 C. The thermal behavior of magnetite in multilayers in comparison with powder magnetite is discussed. These findings were published in peer-reviewed conference proceedings after presentation at an international materials conference.

  11. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    SciTech Connect

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2012-03-01

    Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple and optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interface(s), while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials. An existing CPV module (with no PV cells present) was modified to accommodate encapsulation specimens. The module (where nominal concentration of solar flux is 500x for the domed-Fresnel design) has been mounted on a tracker in Golden, CO (elevation 1.79 km). Initial results are reported here for 18 months cumulative exposure, including the hottest and coldest months of the past year. Characteristics observed at intervals during that time include: visual appearance, direct and hemispherical transmittance, and mass. Degradation may be assessed from subsequent analysis (including yellowness index and cut-on frequency) relative to the ambient conditions present during field exposure. The fluorescence signature observed of all the silicone specimens is examined here, including possible factors of causation -- the platinum catalyst used in the addition cured materials as well as the primer used to promote adhesion to the quartz substrate and superstrate.

  12. Nondestructive evaluation of composite materials via scanning laser ultrasound spectroscopy

    NASA Astrophysics Data System (ADS)

    Koskelo, Elise Anne C.; Flynn, Eric B.

    2017-04-01

    Composite materials pose a complex problem for ultrasonic nondestructive evaluation due to their unique material properties, greater damping, and often complicated geometry. In this study, we explored acoustic wavenumber spectroscopy (AWS) as a means of rapid inspection of laminate and honeycomb composites. Each aerospace sample was tested at different ultrasonic frequencies using steady-state excitation via a piezo electric actuator. We measured the velocity response of the composite at each pixel via a raster scan using a laser Doppler vibrometer. We were able to detect radial inserts along corners, delamination, and facing-core separation by analyzing local amplitude and wavenumber responses. For each honeycomb composite, we excited the sample at the first resonant frequency of the individual cells. The local mode shape for each cell was extracted from the local amplitude response. Analyzing local amplitude and phase responses for each cell provided an accurate indication as to the presence, size, shape, and type of defect present in the composite. We detected both delamination and deformation of cells within a honeycomb composite. For the laminar composites, we analyzed the non-resonance steady-state response at several excitation frequencies.

  13. Free electron lasers: Present status and future challenges

    SciTech Connect

    Barletta, W A; Corlett, J N; Emma, P; Huang, Z; Kim, K -J; Lindberg, R; Murphy, J B; Neil, G P; Nguyen, D C; Pellegrini, C; Rimmer, R A; Sannibale, F; Stupakov, G; Walker, R P; Zholents, A A

    2010-06-01

    With the scientific successes of the soft X-ray FLASH facility in Germany and the recent spectacular commissioning of the Linac Coherent Light Source at SLAC, free electron lasers are poised to take center stage as the premier source of tunable, intense, coherent photons of either ultra-short time resolution or ultra-fine spectral resolution, from the far infrared to the hard X-ray regime. This paper examines the state of the art in FEL performance and the underlying enabling technologies. It evaluates the state of readiness of the three basic machine architectures—SASE FELs, seeded FELs, and FEL oscillators—for the major X-ray science user facilities on the 5–10 years time scale and examines the challenges that lie ahead for FELs to achieve their full potential throughout the entire spectral range. In soft and hard X-rays, high longitudinal coherence, in addition to full transverse coherence, will be the key performance upgrade; ideas using laser-based or self-seeding or oscillators can be expected to be qualitatively superior to today's SASE sources. Short pulses, from femtoseconds to attoseconds, can be realistically envisioned. With high repetition rate electron sources coupled to superconducting radiofrequency linear accelerators, unprecedented average beam brightness will be possible and many users would be served simultaneously by a single accelerator complex.

  14. Free electron lasers: Present status and future challenges

    NASA Astrophysics Data System (ADS)

    Barletta, W. A.; Bisognano, J.; Corlett, J. N.; Emma, P.; Huang, Z.; Kim, K.-J.; Lindberg, R.; Murphy, J. B.; Neil, G. R.; Nguyen, D. C.; Pellegrini, C.; Rimmer, R. A.; Sannibale, F.; Stupakov, G.; Walker, R. P.; Zholents, A. A.

    2010-06-01

    With the scientific successes of the soft X-ray FLASH facility in Germany and the recent spectacular commissioning of the Linac Coherent Light Source at SLAC, free electron lasers are poised to take center stage as the premier source of tunable, intense, coherent photons of either ultra-short time resolution or ultra-fine spectral resolution, from the far infrared to the hard X-ray regime. This paper examines the state of the art in FEL performance and the underlying enabling technologies. It evaluates the state of readiness of the three basic machine architectures—SASE FELs, seeded FELs, and FEL oscillators—for the major X-ray science user facilities on the 5-10 years time scale and examines the challenges that lie ahead for FELs to achieve their full potential throughout the entire spectral range. In soft and hard X-rays, high longitudinal coherence, in addition to full transverse coherence, will be the key performance upgrade; ideas using laser-based or self-seeding or oscillators can be expected to be qualitatively superior to today's SASE sources. Short pulses, from femtoseconds to attoseconds, can be realistically envisioned. With high repetition rate electron sources coupled to superconducting radiofrequency linear accelerators, unprecedented average beam brightness will be possible and many users would be served simultaneously by a single accelerator complex.

  15. 3D laser lithography: Quo vadis? (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wegener, Martin

    2017-02-01

    3D printing on the macroscale is a huge trend worldwide. Ultimately, one would like to 3D print anything, including complete functional devices. Apart from boosting printing speed and pushing spatial resolution to the nanometer scale, 3D printing of many different materials poses a major challenge. In 2D graphical printers, thousands of different colors can be printed from just three color cartridges. By analogy, future 3D printers may print thousands of effective (meta-)materials from just a few materials cartridges. These metamaterials should not only be tailored in terms of their optical properties, but also electrical, magnetic, thermodynamic, mechanical, and bio-chemical.

  16. External-cavity solid-state organic lasers: Design rules and application perspectives (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chénais, Sébastien; Gallinelli, Thomas; Mhibik, Oussama; Blanchard, Cédric; Forget, Sébastien

    2016-09-01

    Among various laser architectures currently used to make lasers out of organic materials (distributed feedback lasers or organic vertical cavity surface-emitting lasers, ....), vertical EXTERNAL cavities have several distinctive features that enable making lasers with a high brightness, resulting from a combination of high efficiency and good beam quality, and also offer a superior flexibility to monitor the laser spectrum. In this talk I will highlight a few recent results on external-cavity organic lasers and reveal their potential through the example of a single mode organic laser device with an ultranarrow linewidth (< pm) corresponding to coherence lengths of several meters under diode pumping (typically 2-3 orders of magnitude longer than the state-of-the-art). From the material point of view, I will also show how ink-jet printing can be successfully used in vertical external-cavity organic lasers to make thick and optical-quality films that have the potential to be easily produced with a high throughput.

  17. Cavity nonlinear optics with monolayer materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Majumdar, Arka

    2017-02-01

    Realizing low-power (few-photon) nonlinear optics in a scalable way is important for both fundamental scientific studies to build strongly correlated "quantum fluids of light" and technological applications, including optical information processing. In recent years, such single photon nonlinearity has been reported using cavity coupled single emitters, including quantum dots, and atoms. However, the macroscopic size of atomic physics cavities, and stochastic spatial and spectral nature of quantum dots pose a serious problem for the scalability. In my talk, I will introduce a new platform with cavity coupled to patterned monolayer materials to accomplish this goal. I will present theoretical analysis of a coupled system of cavity-transition metal dichalcogenides and provide some preliminary experimental data on nonlinear optics with cavity and monolayer materials.

  18. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Solidification structures on carbon materials surface-melted by repetitive laser pulses

    NASA Astrophysics Data System (ADS)

    Abramov, D. V.; Arakelyan, Sergei M.; Kutrovskaya, S. V.; Kucherik, A. O.; Prokoshev, V. G.

    2009-04-01

    The solidification morphology of carbon materials surface-melted by laser radiation at atmospheric pressure is studied. Electron microscopy results indicate that melt solidification is accompanied by the formation of surface microstructures, presumably due to the Rayleigh—Taylor instability in the molten carbon. The instability increment and surface tension coefficient of molten carbon are estimated, and the penetration of carbon vapour into the melt during one laser pulse is examined using numerical simulation.

  19. Numerical simulation of laser ablation for photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Stein, P.; García, O.; Morales, M.; Huber, H. P.; Molpeceres, C.

    2012-09-01

    The objective of this work is to help understanding the impacts of short laser pulses on materials of interest for photovoltaic applications, namely aluminum and silver. One of the traditional advantages of using shorter laser pulses has been the attempt to reduce the characteristic heat affected zone generated in the interaction process, however the complex physical problem involved limitates the integration of simplified physical models in standard tools for numerical simulation. Here the interaction between short laser pulses and matter is modeled in the commercial finite-element software Abaqus. To describe ps and fs laser pulses properly, the two-temperature model (TTM) is applied considering electrons and lattice as different thermal transport subsystems. The Material has been modeled as two equally sized and meshed but geometrically independent parts, representing each the electron and the lattice domain. That means, both domains match in number and position of the respective elements as well as in their shape and their size. The laser pulse only affects the electron domain so that the lattice domain remains at ambient temperature. The thermal connection is only given by the electron-phonon coupling, depending on the temperature difference between both domains. It will be shown, that melting and heat affected zones getting smaller with decreasing pulse durations.

  20. Femtosecond laser micromachining of dielectric materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Farson, Dave F.; Choi, Hae Woon; Zimmerman, Burr; Steach, Jeremy K.; Chalmers, Jeffery J.; Olesik, Susan V.; Lee, L. James

    2008-03-01

    Techniques for microfluidic channel fabrication in soda-lime glass and fused quartz using femtosecond laser ablation and ablation in conjunction with polymer coating for surface roughness improvement were tested. Systematic experiments were done to characterize how process variables (laser fluence, scanning speed and focus spot overlap, and material properties) affect the machining feature size and quality. Laser fluence and focus spot overlap showed the strongest influence on channel depth and roughness. At high fluence, the surface roughness was measured to be between 395 nm and 731 nm RMS. At low fluence, roughness decreased to 100 nm-350 nm RMS and showed a greater dependence on overlap. The surface roughness of laser ablation was also dependent on the material properties. For the same laser ablation parameters, soda-lime glass surfaces were smoother than fused quartz. For some applications, especially those using quartz, smoother channels are desired. A hydroxyethyl methacrylate (HEMA) polymer coating was applied and the roughness of the coated channels was improved to 10-50 nm RMS.

  1. X-Lase CoreScriber, Picosecond Fiber Laser Tool for High-Precision Scribing and Cutting of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Kivistö, S.; Amberla, T.; Konnunaho, T.; Kangastupa, J.; Sillanpää, J.

    We have developed various industrial transparent material scribing processes and a laser tool, picosecond MHz-range all- fiber laser X-Lase CoreScriber. The remarkably high peak power, exceptionally good beam quality, and integrability of the X-Lase CoreScriber combined with high achievable material processing speeds provide tempting solutions for high- precision glass processing. Here presented sapphire and Gorilla glass dicing processes are based on transparent material internal modification with short and intense high repetition rate ps-laser pulses. Increased processing speeds and cutting qualities in comparison to other conventional processing methods are presented.

  2. Pulsed laser processing of electronic materials in micro/nanoscale

    NASA Astrophysics Data System (ADS)

    Hwang, David Jen

    2005-08-01

    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  3. Pre-ignition laser ablation of nanocomposite energetic materials

    SciTech Connect

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-07

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  4. Pre-ignition laser ablation of nanocomposite energetic materials

    NASA Astrophysics Data System (ADS)

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-01

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 × 104 to 1.7 × 107 K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO2 lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO3) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO3 at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  5. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  6. Impact of materials engineering on edge placement error (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Freed, Regina; Mitra, Uday; Zhang, Ying

    2017-04-01

    Transistor scaling has transitioned from wavelength scaling to multi-patterning techniques, due to the resolution limits of immersion of immersion lithography. Deposition and etch have enabled scaling in the by means of SADP and SAQP. Spacer based patterning enables extremely small linewidths, sufficient for several future generations of transistors. However, aligning layers in Z-direction, as well as aligning cut and via patterning layers, is becoming a road-block due to global and local feature variation and fidelity. This presentation will highlight the impact of deposition and etch on this feature alignment (EPE) and illustrate potential paths toward lowering EPE using material engineering.

  7. Cr.sup.4+-doped mixed alloy laser materials and lasers and methods using the materials

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A laser medium includes a single crystal of Cr.sup.4+:Mg.sub.2-xM.sub.xSi.sub.1-yA.sub.yO.sub.4, where, where M is a bivalent ion having an ionic radius larger than Mg.sup.2+, and A is a tetravalent ion having an ionic radius larger than Si.sup.4+. In addition, either a) 0.ltoreq.x<2 and 0laser medium can be used in a laser device, such as a tunable near infrared (NIR) laser.

  8. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  9. A general high-speed laser drilling method for nonmetal thin material

    NASA Astrophysics Data System (ADS)

    Cai, Zhijian; Xu, Guangsheng; Xu, Zhou; Xu, Zhiqiang

    2013-05-01

    Many nonmetal film products, such as herbal plaster, medical adhesive tape and farm plastic film, require drilling dense small holes to enhance the permeability without affecting the appearance. For many medium and small enterprises, a low-cost, high-speed laser drilling machine with the ability of processing different kinds of nonmetal material is highly demanded. In this paper, we proposed a general purpose high-speed laser drilling method for micro-hole production on thin nonmetal film. The system utilizes a rotating polygonal mirror to perform high-speed laser scan, which is simpler and more efficient than the oscillating mirror scan. In this system, an array of closepacked paraboloid mirrors is mounted on the laser scan track to focus the high-power laser onto the material sheet, which could produce up to twenty holes in a single scan. The design of laser scan and focusing optics is optimized to obtain the best holes' quality, and the mirrors can be flexibly adjusted to get different drilling parameters. The use of rotating polygonal mirror scan and close-packed mirror array focusing greatly improves the drilling productivity to enable the machine producing thirty thousand holes per minute. With proper design, the hold uniformity can also get improved. In this paper, the detailed optical and mechanical design is illustrated, the high-speed laser drilling principle is introduced and the preliminary experimental results are presented.

  10. Microstructural and mechanical characterization of laser deposited advanced materials

    NASA Astrophysics Data System (ADS)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  11. New material options for high-power diode laser packaging

    NASA Astrophysics Data System (ADS)

    Zweben, Carl H.

    2004-06-01

    Traditional materials have serious deficiencies in meeting requirements for thermal management and minimization of thermal stresses in high-power laser diode packaging. Copper, the standard material for applications requiring high thermal conductivity, has a coefficient of thermal expansion (CTE) that is much larger than those of ceramics and laser diodes, giving rise to thermal stresses when packages are subjected to thermal excursions. Traditional materials with low CTEs have thermal conductivities that are little or no better than that of aluminum. There are an increasing number of new packaging materials with low, tailorable CTEs and thermal conductivities up to four times those of copper that overcome these limitations. The ability to tailor material CTE has been used to solve critical warping problems in manufacturing, increasing yield from 5% to over 99%. Advanced materials fall into six categories: monolithic carbonaceous materials, metal matrix composites, carbon/carbon composites, ceramic matrix composites, polymer matrix composites, and advanced metallic alloys. This paper provides an overview of the state of the art of advanced packaging materials, including their key properties, state of maturity, using composites to fix manufacturing problems, cost and applications.

  12. Optics and materials considerations for a laser-propelled lightsail

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    The principles of a laser-propelled lightsail for an interstellar probe are discussed. The feasibility of a laser-propelled-lightsail round-trip interstellar mission proposed by Forward (1984) is examined, with special attention given to the issues of optics and materials. It is shown that the large lens and a high lens/target distance required by such a mission result in optical difficulties, requiring positioning tolerance for the 1000-km-diam lens of only 3 m, which is unlikely to be achievable. Techniques and sail materials that would reduce this problem are suggested, including the use of LiF and CaF2 quarter-wave dielectric films and the use of many intermediate lenses spaced between the probe and the source. It is pointed out that, as sail materials, the quarter-wavelength dielectric films have significant advantages over metals.

  13. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  14. Some recent applications of laser ultrasound to the characterisation of materials

    NASA Astrophysics Data System (ADS)

    Scruby, C. B.; Brocklehurst, F. K.; Moss, B. C.; Buttle, D. J.

    1989-07-01

    Laser techniques for ultrasonic generation and reception have potential for a wide range of non-contact measurements, chiefly because they can be used for defect detection and materials characterization at elevated temperatures. However, these techniques have other advantages. Unlike contact transducers, they do not disturb elastic wave propagation by loading the surface of the specimen. They are also capable of much higher temporal and spatial resolution than can be obtained by most conventional techniques. Some recent applications of this technology to a range of materials are presented. The first two exploit the non-contact characteristics of laser ultrasound for surface characterization following, respectively, plasma-sprayed coating and laser hardening. The remaining applications exploit the high temporal and spatial resolution for the acoustic characterization of various composite materials, i.e., glass-fiber and carbon-fiber reinforced plastics, and a metal matrix composite.

  15. Laser micro-structuring of surfaces for applications in materials and biomedical science

    NASA Astrophysics Data System (ADS)

    Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta

    2016-12-01

    Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.

  16. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    NASA Astrophysics Data System (ADS)

    Abd El-Hameed, Afaf M.

    2015-12-01

    The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si), and gallium arsenide (GaAs). These materials are used for receivers' manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  17. An amplified femtosecond laser system for material micro-/nanostructuring with an integrated Raman microscope.

    PubMed

    Zalloum, Othman H Y; Parrish, Matthew; Terekhov, Alexander; Hofmeister, William

    2010-05-01

    In order to obtain new insights into laser-induced chemical material modifications, we introduce a novel combined approach of femtosecond pulsed laser-direct writing and in situ Raman microscopy within a single experimental apparatus. A newly developed scanning microscope, the first of its kind, provides a powerful tool for micro-/nanomachining and characterization of material properties and allows us to relate materials' functionality with composition. We address the issues of light delivery to the photomodification site and show the versatility of the system using tight focusing. Amplified femtosecond pulses are generated by a Ti:sapphire laser oscillator and a chirped-pulse regenerative amplifier, both pumped by a diode-pumped frequency doubled neodymium-doped yttrium orthovanadate (Nd:YVO(4)) laser operating at 532 nm. Results of Raman spectroscopy and scanning electron microscopy images of femtosecond laser micro-/nanomachining on the surface and in the bulk of single-crystal diamond obtained from first trials of this instrument are also presented. This effective combination could help to shed light on the influence of the local structure fluctuations on controllability of the laser processing and the role of the irradiation in the ablation processes ruling out possible imprecisions coming from the use of the two independent techniques.

  18. Excimer laser material processing: state-of-the-art and new approaches in microsystem technology

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Przybylski, M.; Brückner, H. J.

    2006-02-01

    In this paper the current state of the art and new trends in excimer laser processing of polymer materials are presented. Two processing regimes are of general interest: below and above the ablation threshold. The modification of polymer surface can be carried out by laser processing below ablation threshold. This is successfully demonstrated for the fabrication of optical singlemode waveguides in PMMA for the visible optical range and for 1550 nm. The obtained structures reveal absorption losses in the order of 1.4 dB/cm up to 5 dB/cm. Laser exposure using contact masks or direct scanning of planar structures are appropriate methods for the integration of optical waveguides in PMMA sensor devices (Y-branch). Above the ablation threshold excimer laser micromachining is a powerful tool for a rapid manufacturing of complex three-dimensional micro-structures in polymer surfaces with depths between 0.1 μm and 1000 μm and aspect ratios up to 10. Typical application fields are presented in micro-optics, micro-fluidics and rapid tooling. Micro-Laser-LIGA is established in order to fabricate nebulizer membranes, micro-fluidic devices and integrated single mode waveguides. Furthermore, the fabrication of 3d-shapes in metallic mold inserts is successfully demonstrated. Debris formation is completely suppressed. Polymer structuring with a low power short pulse excimer laser with high repetition rates up to 500 Hz is compared to the structuring with a "conventional" high power excimer laser with a repetition rate of about 10-100Hz as well as with a UV-Nd:YAG (1-2 kHz). These "high-repetition-rateexcimer lasers" with relatively small pulse energies but with much shorter laser pulse duration (< 6 ns) provide a significant improvement of pattern quality. Furthermore, the high repetition rate enables a fast material processing which is discussed in detail for several application fields.

  19. High-temperature diode laser pumps for directed energy fiber lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kanskar, Manoj; Bao, Ling; Chen, Zhigang; DeVito, Mark; Dong, Weimin; Grimshaw, Mike P.; Guan, Xinguo; Hemenway, David M.; Martinsen, Robert; Zhang, Jim; Zhang, Shiguo

    2017-05-01

    Kilowatt-class fiber lasers and amplifiers are becoming increasingly important building blocks for power-scaling laser systems in various different architectures for directed energy applications. Currently, state-of-the-art Yb-doped fiber lasers operating near 1060 nm operate with optical-to-optical power-conversion efficiency of about 66%. State-of-the-art fiber-coupled pump diodes near 975 nm operate with about 50% electrical-to-fiber-coupled optical power conversion efficiency at 25C heatsink temperature. Therefore, the total system electrical-to-optical power conversion efficiency is about 33%. As a result, a 50-kW fiber laser will generate 75 kW of heat at the pump module and 25 kW at the fiber laser module with a total waste heat of 100 kW. It is evident that three times as much waste heat is generated at the pump module. While improving the efficiency of the diodes primarily reduces the input power requirement, increasing the operating temperature primarily reduces the size and weight for thermal management systems. We will discuss improvement in diode laser design, thermal resistance of the package as well as improvement in fiber-coupled optical-to-optical efficiency to achieve high efficiency at higher operating temperature. All of these factors have a far-reaching implication in terms of significantly improving the overall SWAP requirements thus enabling DEW-class fiber lasers on airborne and other platforms.

  20. High-power fiber laser/amplifier: present and future

    NASA Astrophysics Data System (ADS)

    Manzur, Tariq; Bastien, Steven P.

    2000-03-01

    As a result of the overwhelming demand for bandwidth, the number of channels offered in commercially available DWDM systems has climbed from 8 to 160 in just a few short years. With the growth in channel counts comes increasing demands placed upon optical amplifiers for the long haul market. High powers, flatter gain profiles, extended bandwidths (both C- and L-band), dispersion compensation, longer distances and greater control at the optical level are all capabilities that future networks will require. Today's optical amplifiers must be capable of supporting these services in advance of their installation to prepare networks for these foreseeable demands. Optigain's expertise and focus on optical amplifiers for the telecommunications industry has enabled it to achieve a technology leadership position in the field of optical amplification. Optigain's leadership position in the development of high power amplifiers based upon fiber laser technology will permit the Company to obtain favorable pricing and to gain significant market share in high growth markets. Figures 1 and 2 show the EDFA future global market shares.

  1. Research of seal materials adhesion to walls of cavity in enamel and dentin formation by Er laser radiation

    NASA Astrophysics Data System (ADS)

    Altshuler, Gregory B.; Belikov, Andrei V.; Vlasova, Svetlana N.; Erofeev, Andrew V.

    1994-12-01

    The present work represents the results of research of mechanical strength formed by submillisecond pulses of Er-laser at the border of enamel-seal and dentine-seal in a cavity. Comparative research of an adhesion of three of the most widespread types of modern seal materials (cement, amalgam, polymer) to walls of the laser cavity are conducted. The comparison of `laser adhesion' with adhesion of these materials to the walls of the cavity has been made by the usual mechanical tools. The dependence of free adhesion energy from the geometry of the cavity and energy density of laser radiation is considered. This work informs the reader about the results of research removal efficiency of some modern seal materials. The influence of water-spray on the efficiency of seal materials laser treatment process is considered.

  2. Laser photopolymerization of dental materials with potential endodontic applications.

    PubMed

    Potts, T V; Petrou, A

    1990-06-01

    Photopolymerizing resins were exposed to three different wavelengths of light emanating from the argon laser. It was determined that the most efficient wavelengths for photopolymerization of camphorquinone-activated resins were at 477 and 488 nm. The 514.5-nm wavelength was relatively ineffective in activating polymerization. Four camphorquinone-activated resins were placed in the root canals of teeth and tested for polymerization depth using a 488-nm wavelength laser beam coupled to an optical fiber 200 microns in diameter. In regard to polymerization depth, these materials ranked as follows: Genesis greater than Prisma-Fil greater than Prisma Microfine greater than Prisma VLC Dycal. Alterations in the positions of the optical fiber and the surface of the resin in the canal made only minor differences in polymerization depth of the samples. The results indicate that an argon laser coupled to an optical fiber could become a useful modality in endodontic therapy.

  3. Capillary Waves And Energy Coupling In Laser Materials Processing

    NASA Astrophysics Data System (ADS)

    Gasser, A.; Herziger, G.; Holtgen, B.; Kreutz, E. W.; Treusch, H. G.

    1987-09-01

    Static and dynamic measurements of the incident laser power, of the diffuse and specular reflected power have been performed in order to determine the absorption behavior of various metals and semiconductors during the interaction with powerful CO2-and Nd:YAG-laser-radiation. The absorptivity of the vapor and laser-induced plasma was probed by high-speed photography and measurements of conductivity transients as a function of intensity, composition, and pressure of the ambient atmosphere. For IIB the intensity-dependent energy coupling is governed by the generation of photon-induced plasma in the surface region in combination with the dynamics of the molten and vaporized material within the interaction zone giving in addition indication for capillary waves.

  4. Material model validation for laser shock peening process simulation

    NASA Astrophysics Data System (ADS)

    Amarchinta, H. K.; Grandhi, R. V.; Langer, K.; Stargel, D. S.

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 106 s-1, which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic-plastic behavior of materials. Elastic perfectly plastic, Johnson-Cook and Zerilli-Armstrong models are used, and the performance of each model is compared with available experimental results.

  5. Study of transport of laser-driven relativistic electrons in solid materials

    NASA Astrophysics Data System (ADS)

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  6. An Overview of Laser in Dermatology: The Past, the Present and … the Future (?)

    PubMed Central

    Gianfaldoni, Serena; Tchernev, Georgi; Wollina, Uwe; Fioranelli, Massimo; Roccia, Maria Grazia; Gianfaldoni, Roberto; Lotti, Torello

    2017-01-01

    The authors discuss a brief history of lasers and their use in dermatology. Although the excellent results achieved by the use of laser in dermatology, this special treatment modality is in continuous evolution. At present, new devices have been under development for the therapy of different kind of diseases, while lasers, already in use, has been changing, in order to be more secure, effective and be useful in many others disorders. PMID:28785350

  7. Evanescently pumped optofluidic distributed feedback lasers with aqueous gain fluids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karl, Markus; Whitworth, Guy L.; Schubert, Marcel; Dietrich, Christof P.; Samuel, Ifor D. W.; Turnbull, Graham A.; Gather, Malte C.

    2017-03-01

    Optofluidic biolasers are an emerging tool for bio-sensing and diagnostics. However, in order to facilitate waveguiding, the most common optofluidic distributed feedback (DFB) laser design relies on high-refractive index gain materials which are usually not biocompatible. We report the realization and characterization of evanescently pumped optofluidic DFB lasers with biocompatible aqueous gain fluids. Record low pump thresholds were achieved by optimizing the mode shape in the waveguide structure. Measuring the photonic band dispersion permits to sense the refractive index of the fluidic gain material. Different biological gain materials were studied on our devices.

  8. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    SciTech Connect

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-28

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites. Published by AIP Publishing.

  9. Evaluation of materials for on-board laser diagnostics

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Thomas, David; Lewis, Jay; Phipps, Claude R.

    2008-05-01

    The AEgis Technologies Group and RTI International are developing microsensors for High Energy Laser (HEL) diagnostic applications. The conformal sensor array will measure the irradiance profile of an incident laser beam, and concomitant rise in surface temperature of the target. The open mesh architecture allows 90% of the beam to impact the surface. A critical part of this program is developing a protective coating that ensures sensor survivability at high irradiance levels for operational lifetimes on the order of 10 seconds. The protective coating must transmit a measurable amount of light to the irradiance sensor. We have conducted experiments to evaluate candidate heat shield materials. In the first round of experiments, a 10kW CO2 laser was used to irradiate pure materials, including metals and carbon foils. Although many of the metal foils were perforated by the laser, no significant amount of material was ablated away. In fact, most of the test samples gained mass, presumably due to oxidation. Analysis of high speed video shows that once the metal melted, surface tension caused the molten metal to coalesce into droplets around the rim of the hole. The second and third rounds of testing, conducted with a 3kW, 1.07μm fiber laser, included samples of highly reflective metals and ceramics, standard plasma-sprayed coatings, and multilayer stacks. We have also measured the performance of temperature sensors and irradiance sensors fabricated from nanoparticle solutions deposited by advanced printing technology and have completed a preliminary investigation of high temperature adhesives.

  10. Radiation damage of laser materials. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Carrigan, B.

    1980-05-01

    Laser beam damage to laser materials such as optical glass, glass fibers, alkali metal halides, metals, mirrors, optical coatings, dielectrics, semiconductors, and matrix materials is studied. The majority of these citations concern infrared laser damage to infrared optical materials. This updated bibliography contains 217 abstracts, 10 of which are new entries to the previous edition.

  11. Laser beam joining of material combinations for automotive applications

    NASA Astrophysics Data System (ADS)

    Schubert, Emil; Zerner, Ingo; Sepold, Gerd

    1997-08-01

    An ideal material for automotive applications would combine the following properties: high corrosion resistance, high strength, high stiffness and not at least a low material price. Today a single material is not able to meet all these requirements. Therefore, in the future different materials will be placed where they meet the requirements best. The result of this consideration is a car body with many different alloys and metals, which have to be joined to one another. BIAS is working on the development of laser based joining technologies for different material combinations, especially for thin sheets used in automotive applications. One result of the research is a joining technology for an aluminum-steel-joint. Using a Nd:YAG laser the problem of brittle intermetallic phases between these materials was overcome. Using suitable temperature-time cycles, elected by a FEM-simulation, the thickness of intermetallic phases was kept below 10 micrometers . This technology was also applied to coated steels, which were joined with different aluminum alloys. Further it is demonstrated that titanium alloys, e.g. used for racing cars, can also be joined with aluminum alloys.

  12. Ultrashort laser pulse cell manipulation using nano- and micro- materials

    NASA Astrophysics Data System (ADS)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander

    2010-08-01

    The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.

  13. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Contactless investigation of porous materials with the aid of He — Ne laser radiation

    NASA Astrophysics Data System (ADS)

    Drobnik, A.; Rozniakowski, K.; Wojtatowicz, T. W.

    1995-07-01

    An experimental investigation was made of the water content of porous materials, which affects physical, physicochemical, and chemical processes. The investigation was based on the fact that water vapour and drops present in the pores of a material can influence the scattering of light by its surface when it is illuminated with a narrow low-intensity laser beam. Measurements were made of the intensity of He—Ne laser radiation reflected by the surface of a moist material (moist gypsum slurry with an internal structure of different types). The scattered-light intensity increased on reduction of the water content of porous materials.

  14. Laser shocking of materials: Toward the national ignition facility

    NASA Astrophysics Data System (ADS)

    Meyers, M. A.; Remington, B. A.; Maddox, B.; Bringa, E. M.

    2010-01-01

    In recent years a powerful experimental tool has been added to the arsenal at the disposal of the materials scientist investigating materials response at extreme regimes of strain rates, temperatures, and pressures: laser compression. This technique has been applied successfully to mono-, poly-, and nanocrystalline metals and the results have been compared with predictions from analytical models and molecular dynamics simulations. Special flash x-ray radiography and flash x-ray diffraction, combined with laser shock propagation, are yielding the strength of metals at strain rates on the order of 107-108 s-1 and resolving details of the kinetics of phase transitions. A puzzling result is that experiments, analysis, and simulations predict dislocation densities that are off by orders of magnitude. Other surprises undoubtedly await us as we explore even higher pressure/strain rate/temperature regimes enabled by the National Ignition Facility.

  15. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4

  16. Femtosecond laser writing of new type of waveguides in silver containing glasses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abou Khalil, Alain; Bérubé, Jean-Philippe; Danto, Sylvain; Desmoulin, Jean-Charles; Cardinal, Thierry; Petit, Yannick G.; Canioni, Lionel; Vallée, Réal

    2017-03-01

    Femtosecond laser writing in glasses is a growing field of research and development in photonics, since it provides a versatile, robust and efficient approach to directly address 3D material structuring. Laser-glass interaction process has been studied for many years, especially the local changes of the refractive index that have been classified by three distinct types (types I, II and III, respectively). These refractive index modifications are widely used for the creation of photonics devices such as waveguides [1], couplers, photonic crystals to fabricate integrated optical functions in glasses for photonic applications as optical circuits or integrated sensors. Femtosecond laser writing in a home-developed silver containing zinc phosphate glasses induces the creation of fluorescent silver clusters distributed around the laser-glass interaction voxel [2]. In this paper, we introduce a new type of refractive index modification in glasses. It is based on the creation of these photo-induced silver clusters allowing a local change in the refractive index Δn = 5×10-3, which is sufficient for the creation of waveguides and photonics devices. The wave guiding process in our glasses along these structures with original geometry is demonstrated for wavelengths from visible to NIR [3], giving a promising access to integrated optical circuits in these silver containing glasses. Moreover, the characterization of the waveguides is presented, including their original geometry, the refractive index change, the mode profile, the estimation of propagation losses and a comparison with simulation results. 1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729-1731 (1996). 2. M. Bellec, A. Royon, K. Bourhis, J. Choi, B. Bousquet, M. Treguer, T. Cardinal, J.-J. Videau, M. Richardson, and L. Canioni, The Journal of Physical Chemistry C 114, 15584-15588 (2010). 3. S. Danto, F. Désévédavy, Y. Petit, J.-C. Desmoulin, A. Abou Khalil, C. Strutynski, M. Dussauze, F

  17. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Efficiency of ablative loading of material upon the fast-electron transfer of absorbed laser energy

    NASA Astrophysics Data System (ADS)

    Gus'kov, Sergei Yu; Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Kalal, M.; Limpouch, J.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Pisarczyk, P.

    2006-05-01

    We present the results of experiments on the short-term irradiation of a solid material by a laser beam. The data testify to a rise in efficiency of the energy transfer from the laser pulse to a shock wave due to the fast-electron energy transfer. The experiments were performed with massive aluminium targets on the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the time of shock decay and crater formation in the target (50-200 ns). The irradiation experiments were carried out using the fundamental laser harmonic (1.315 μm) with an energy of 360 J. The greater part of the experiments were performed for the radiation intensity exceeding 1015 W cm-2, which corresponded to the efficient generation of fast electrons under the conditions where the relatively long-wavelength iodine-laser radiation was employed. The irradiation intensity was varied by varying the laser beam radius for a specified pulse energy.

  18. High-efficiency high-power cw solid state lasers for material processing

    NASA Astrophysics Data System (ADS)

    Weber, Heinz P.; Graf, Thomas; Weber, Rudolf

    2000-02-01

    The maximum power range over which a laser resonator supports stable oscillation is mainly determined by the material constants of the active medium and by the cooling schemes. The power range for stable fundamental-mode operation can be shifted to higher powers with special cavity design and intra-cavity optics but the width of the stability range will be unaffected and can be enlarged only with adaptive optics. We present investigations on a multi- rod laser cavity and a high-power side-pumped laser system. In order to obtain constant beam parameters with varying power we prose a novel self-adaptive method to compensate for the power-dependent thermal lenses in high-power lasers.

  19. Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Hackbarth, Andreas; Berger, Georg; Krüger, Jörg

    2012-07-01

    The surface of a titanium alloy (Ti6Al4V) implant material was covered with a bioactive calcium alkali phosphate ceramic with the aim to accelerate the healing and to form a stronger bond to living bone tissue. To fix the ceramic powder we used a femtosecond laser, which causes a thin surface melting of the metal. It is a requirement to prove that the laser irradiation would not reduce the lifetime of implants. Here we present the results of mechanical stability tests, determined by the rotating bending fatigue strength of sample rods. After describing the sample surfaces and their modifications caused by the laser treatment we give evidence for an unchanged mechanical stability. This applies not only to the ceramic fixation but also to a comparatively strong laser ablation.

  20. Laser-Shock Damage of Iron-Based Materials

    DTIC Science & Technology

    1993-05-30

    paint (sacrificial layer) is shown in Pig. 3.9. The 25 Irm thickness PVDF transducer was bonded to the epoxy mounting cylinder with "Hysol thin - film ... vapor deposition . Figure 2-1 Operation regimes for various laser material processing (21, 221. 7 from low power density/long interaction time...and produces a high pressure , often referred to as a recoil pressure . Because of the presence of a recoil pressure , the plasma vapor is pushed away

  1. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    radiation for radiography, particle beam generation and eventually for a new class of fusion experiments call fast ignition. We have also built a record setting 50 watts of average output from a picosecond class laser and are using this technology for materials processing such as fine hole drilling and safe cutting of munitions. The laser science and technology program has developed and deployed a laser guide star on the Lick telescope on Mt. Hamilton and most recently on the Keck telescope in Hawaii. Our current development work in this area is focused on developing a much more compact all solid state diode pumped laser fiber system. Finally in a program originally initiated by DARPA we have developed a phase conjugated Nd:glass laser system with record setting performance and successfully deployed it for Navy and Air Force satellite imaging applications and have more recently successfully transferred it to industry for use in an emerging technology called laser peening. This laser technology is capable of 25 J to 100 J per pulse, 10 ns to 1000 ns pulse duration, 5 Hz laser. The technology has been industrially deployed and is proving to be highly effective in generating high intensity shocks that induce compressive residual stress into metal components. The compressive stress retards fatigue and stress corrosion cracking and is proving to extend the lifetime of high value components by factors of ten. This processing adds lifetime, enhances safety and can improve performance of aircraft systems. Laser peening is now being evaluated to reduce the weight of aircraft and may play a major role in the future combat system and its air transport by enabling lighter craft, longer range and greater payload. The laser peening technology is also being moved forward in NRC license application as the means to eliminate stress corrosion cracking for Yucca Mountain nuclear waste disposal canisters as well as a broad range of other applications.

  2. Laser-induced chemical changes in art materials

    NASA Astrophysics Data System (ADS)

    Abraham, Margaret H.; Scheerer, Stefanie; Madden, Odile; Adar, Fran

    2001-10-01

    Lasers can induce subtle and not so subtle changes in material structure. We have found that certain pigments can undergo chemical and crystallographic changes and concomitant color shifts. Minerals and the related pigments may experience a loss of hydroxyl groups or other chemical reordering. The organic component of skeletal, keratinaceous, and cellulosic materials can be pyrolized, ablated, or etched. Polymers can discolor, undergo structural weakening, or be volatilized. A few of these processes have been investigated with regards to changes on ivory and bone, selected pigments and the removal of dye-based pen ink from porous substrates.

  3. Marking of organic materials by CO2 laser beam scanning

    NASA Astrophysics Data System (ADS)

    Dumitras, Dan C.; Chitu, Livia; Blanaru, Constantin; Cernat, Ramona C.; Bucatica, Irina Alexandra L.; Puiu, Adriana P.

    2003-11-01

    CO2 laser beam scanning method was used for marking of organic materials (leather, paper, wood) both in continuous wave and in pulsed regime. The computer controlled X-Y galvometric scanner and the software developed for this application control every parameter of irradiation and allow programmable marking of simple marks, logos, alphanumeric characters, filled text, codes, graphics, or highly complex drawings and images. The factors influencing the quality of the marking were analyzed and the irradiation conditions were optimized to produce marks on organic materials with a quality imposed by industry standards.

  4. ICALEO '90: Laser materials processing; Proceedings of the Meeting, Boston, MA, Nov. 4-9, 1990

    SciTech Connect

    Ream, S.L.; Dausinger, F.; Fujioka, Tomoo.

    1991-01-01

    Recent developments in high-power CO2 laser technology used in industrial materials processing are discussed in reviews and reports. Consideration is given to practical beam characterization parameters and a variety of measurement techniques for these lasers. Topics discussed include beam measurements and diagnostics, beam delivery and beam shaping, high-power rod and slab lasers, advances in laser drilling, the maturing of laser cutting, novel processes, laser welding, and surface modification.

  5. Hyperspectral and gated ICCD imagery for laser irradiated carbon materials

    NASA Astrophysics Data System (ADS)

    Roberts, Charles D.; Acosta, Roberto A.; Marciniak, Michael A.; Perram, Glen P.

    2013-02-01

    New optical diagnostics for studying laser ablation and induced combustion for carbon materials are key to monitoring the evolving, spatial distribution of the gas plume. We are developing high speed imaging FTIR and gated ICCD imagery for materials processing, manufacture process control, and high energy laser applications. The results from two projects will be discussed. First, an imaging Fourier Transform Spectrometer with a 320 x 256 InSb focal plane array frames at 1.9 kHz with a spatial resolution of 1 mm and spectral resolution of up to 0.25 cm-1. Gas phase plumes above the surface of laser-irradiated black plexiglass, fiberglass and painted thin metals have been spectrally resolved. Molecular emission from CO, CO2, H2O, and hydrocarbons is readily identified. A line-by-line radiative transfer model is used to derive movies for specie concentrations and temperatures. Second, excimer laser pulsed ablation of bulk graphite into low-pressure (0.05 - 1 Torr) argon generates highly ionized, high speed (M>40) plumes. A gated, intensified CCD camera with band pass filtering has been used to generate plume imagery with temporal resolution of 10ns. The Sedov-Taylor shock model characterizes the propagation of the shock front if the dimensionality of the plume is allowed to deviate from ideal spherical expansion. A drag model is more appropriate when the plume approaches extinction (~10 μs) and extends the characterization into the far field. Conversion of laser pulse energy to the shock is efficient.

  6. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  7. Visualization of the laser treatment processes of materials by a brightness amplifier based on a copper laser

    NASA Astrophysics Data System (ADS)

    Prokoshev, Valerii G.; Klimovskii, Ivan I.; Galkin, Arkadii F.; Abramov, Dmitrii V.; Arakelian, Sergei M.

    1997-04-01

    Reported is the observation of laser treatment processes of materials by the brightness amplifier based upon the copper laser. Provided is an experimental investigation of melting stainless steel under the laser radiation. Real time monitored is the process of surface heating, melting, spreading a melting boundary and the progress of turbulent movement in the melting container.

  8. High-precision machining of materials for manufacturing applications using diode-pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Nikumb, Suwas K.; Islam, M. U.

    2000-02-01

    While developments in the field of diode pumped solid state lasers provide a foundation for precision machining of parts with high accuracy and small feature sizes, this promise can not be realized without considering the interactions of individual processes, systems and material parameters. This paper presents our results on the precision machining of small features in various materials using diode pumped solid state lasers. The machined features are characterized geometrically by using optical inspection techniques and the tolerance data is analyzed statistically. Machining parameters relevant to motion system and tool path compensation are discussed along with their relevance to machined feature geometry. The effect of laser beam polarization on the machined kerf width, kerf surface and feature dimensions is reported.

  9. Laser-based microstructuring of materials surfaces using low-cost microlens arrays

    NASA Astrophysics Data System (ADS)

    Nieto, Daniel; Vara, G.; Diez, J. A.; O`Connor, Gerard M.; Arines, Justo; Gómez-Reino, C.; Flores-Arias, M.

    2012-03-01

    Since frictional interactions in microscopically small components are becoming increasingly important for the development of new products for all modern technology, we present a laser-based technique for micro-patterning surfaces of materials using low-cost microlens arrays. The microlens used were fabricated on soda-lime glass using a laser direct-write technique, followed by a thermal treatment into an oven. By combining laser direct-write and the thermal treatment it was possible to obtain high quality elements using a low cost infrared laser widely implemented in industry which makes this technique attractive in comparison with other more expensive methods. The main advantage of using microlens arrays for micropatterning surfaces is the possibility of fabricating a large number of identical structures simultaneously, leading to a highly efficient process. In order to study the capabilities of the microlens fabricated for microstructuring materials, identical structures and arrays of holes were fabricated over a variety of materials, such us, stainless steel, polymer and ceramic. The minimum diameter of the individual microstructure generated at surface is 5 μm. Different nanosecond lasers operating at Infrared, Green and UV were used. The topography and morphology of the elements obtained were determined using a confocal microscope SENSOFAR 2300 Plμ.

  10. Laser ablation threshold and etch rate comparison between the ultrafast Yb fiber-based FCPA laser and a Ti:sapphire laser for various materials

    NASA Astrophysics Data System (ADS)

    Bovatsek, James M.; Shah, Lawrence; Arai, Alan Y.; Uehara, Yuzuru

    2004-10-01

    Ti:Sapphire lasers remain the most widely used utlrafast laser. However, precise optical alignment and environmental control are necessary for continuous, long-term stable operatoin of the laser. IMRA's FCPA laser is an air-cooled, Yb fiber-based ultrafast laser designed to operate in an industrial environment and provide a stable, high-quality laser beam. In this work, the micromachining performance of the FCPA laser is directly compared with a conventional Ti:Sapphire regenerative amplifier laser. An experimental study was conducted to determine the ablation threshold and etch rate for a variety of materials (including metals, semiconductors, and dielectrics). The materials chosen for the experiments cover a wide range of optical, mechanical and physical properties. Similar focusing conditions were used for both lasers in order to ensure that any differences in the results are primarily due to the different characteristics of each laser. For materials with a relatively low ablation threshold, the full energy of the Ti:Sapphire laser is not needed. Furthermore, it is near the ablation threshold where ultrafast laser processing provides the benefit of minimal thermal damage to the surrounding material. Although the relatively low pulse energy of the FCPA limits its ability to ablate some harder materials, its high repetition rate increases the material processing speed and its good beam quality and stability facilitates tight, efficient focusing for precise machining of small features.

  11. Present status and new perspectives in laser welding of vascular tissues.

    PubMed

    Esposito, G; Rossi, F; Matteini, P; Puca, A; Albanese, A; Sabatino, G; Maira, G; Pini, R

    2011-01-01

    The laser welding of biological tissues is a particular use of lasers in surgery. The technique has been proposed since the 1970s for surgical applications, such as repairing blood vessels, nerves, tendons, bronchial fistulae, skin and ocular tissues. In vascular surgery, two procedures have been tested and optimized in animal models, both ex vivo and in vivo, in order to design different approaches for blood vessels anastomoses and for the repair of vascular lesions: the laser-assisted vascular anastomosis (LAVA) and the laser-assisted vessel repair (LAVR). Sealing tissues by laser may overcome the problems related to the use of conventional closuring methods that are generally associated with various degrees of vascular wall damage that can ultimately predispose to vessel thrombosis and occlusion. In fact, the use of a laser welding technique provides several advantages such as simplification of the surgical procedure, reduction of the operative time, suppression of bleeding, and may guarantee an optimal healing process of vascular structures, very similar to restitutio ad integrum. Despite the numerous preclinical studies performed by several research groups, the clinical applications of laser-assisted anastomosis or vessel repair are still far off. Substantial breakthrough in the laser welding of biological tissues may come from the advent of nanotechnologies. Herein we describe the present status and the future perspectives in laser welding of vascular structures.

  12. Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.

    2017-03-01

    Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.

  13. Space Fission Reactor Structural Materials: Choices Past, Present and Future

    SciTech Connect

    Busby, Jeremy T; Leonard, Keith J

    2007-01-01

    Nuclear powered spacecraft will enable missions well beyond the capabilities of current chemical, radioisotope thermal generator and solar technologies. The use of fission reactors for space applications has been considered for over 50 years, although, structural material performance has often limited the potential performance of space reactors. Space fission reactors are an extremely harsh environment for structural materials with high temperatures, high neutron fields, potential contact with liquid metals, and the need for up to 15-20 year reliability with no inspection or preventative maintenance. Many different materials have been proposed as structural materials. While all materials meet many of the requirements for space reactor service, none satisfy all of them. However, continued development and testing may resolve these issues and provide qualified materials for space fission reactors.

  14. Laser Stabilization and Material Studies for the Laser Interferometer Space Antenna (LISA)

    NASA Astrophysics Data System (ADS)

    Cordes, Amanda; Mueller, G.; Tanner, D. B.; Arsenovic, P.; Livas, J.; Preston, A.; Sanjuan, J.; Reza, S. A.; Mitryk, S.; Eichholz, J.; Spector, A.; Donelan, D.; Spannagel, R.; Korytov, D.

    2011-05-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA project designed to detect gravitational waves. The University of Florida (UF) LISA laboratory is currently implementing and testing much of the instrumentation of the LISA interferometer measurement system to ensure the success of the upcoming LISA mission. LISA will consist of three spacecraft (SC) orbiting the sun in an equilateral triangular formation with an arm length of 5 Gm. Each SC will house two free floating proof-masses, two laser interferometer benches and two telescopes to transmit the laser light between SC. The constellation will trail the earth by 20° and be tilted by 60° with respect to the ecliptic. LISA is designed to detect low frequency gravitational waves (GWs) in the frequency band of .1mHz to 1 Hz with optimal strain sensitivity of 10^-21/sqrt(Hz) at 3 mHz corresponding to sources such as galactic binaries and black hole mergers. The dimensional stability of all optical paths within each interferometer arm is imperative for the success of LISA. Changes larger than a pm/sqrt(Hz) in the distance between optical components in the interferometer would limit the sensitivity of LISA. The UF LISA lab is testing materials with low thermal expansion coefficients which could be used as spacer materials for the telescopes or as the base material for the optical benches. Together with the LISA group at Goddard Space Flight Center we currently also test the dimensional stability of a silicon carbide telescope structure for LISA. The most demanding requirement on material stability is the requirement for the optical reference cavity which is used as the frequency reference for the lasers. We currently test different sensing schemes for the laser frequency stabilization system of LISA and will also report about these experiments. This work is supported by NASA Contract #00078244 and NASA Grant NNX08AG75G.

  15. Treatment of mucocele of the lower lip with diode laser in pediatric patients: presentation of 2 clinical cases.

    PubMed

    Pedron, Irineu Gregnanin; Galletta, Vivian Cunha; Azevedo, Luciane Hiramatsu; Corrêa, Luciana

    2010-01-01

    Mucoceles are common benign lesions of the oral cavity that develop following extravasation or retention of mucous material from salivary glands in the subepithelial tissue. Most dental literature reports a higher incidence of mucocele in young patients, with trauma being a leading cause. Treatment may be performed by conventional surgery, cryotherapy, and, more recently, laser surgery and loser vaporization. The purpose of this report was to describe 2 clinical cases of lower-lip mucoceles treated by excision with a high-intensity diode laser in pediatric patients. Diode laser surgery was rapid, bloodless, and well accepted by patients. Postoperative problems, discomfort, and scarring were minimal. Treatment of mucoceles with high-intensity diode loser provided satisfactory results in the cases presented and allowed for a histopathological examination of the excised tissue.

  16. Hydrogen retention in tungsten materials studied by Laser Induced Desorption

    NASA Astrophysics Data System (ADS)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Reinhart, M.; Möller, S.; Sergienko, G.; Samm, U.; 't Hoen, M. H. J.; Manhard, A.; Schmid, K.; Textor Team

    2013-07-01

    Development of methods to characterise the first wall in ITER and future fusion devices without removal of wall tiles is important to support safety assessments for tritium retention and dust production and to understand plasma wall processes in general. Laser based techniques are presently under investigation to provide these requirements, among which Laser Induced Desorption Spectroscopy (LIDS) is proposed to measure the deuterium and tritium load of the plasma facing surfaces by thermal desorption and spectroscopic detection of the desorbed fuel in the edge of the fusion plasma. The method relies on its capability to desorb the hydrogen isotopes in a laser heated spot. The application of LID on bulk tungsten targets exposed to a wide range of deuterium fluxes, fluences and impact energies under different surface temperatures is investigated in this paper. The results are compared with Thermal Desorption Spectrometry (TDS), Nuclear Reaction Analysis (NRA) and a diffusion model.

  17. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pereira, Mauro F.

    2016-10-01

    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  18. Synthesis of designed materials by laser-based direct metal deposition technique: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Qi, Huan

    investigation of extended solubility in multi-material laser cladding, and a study of DMD manufacturing technology for its impact on energy and environment with the comparison of traditional machining process. Experimental results show the feasibility of depositing multiple materials at arbitrary compositions and forming clad with unlimited solubility and uniform distribution in DMD process. DMD technology presents great potential for reducing energy consumption and environmental impact in parts repairing/remanufacturing and situations where the part to be built has small solid-to-cavity volume ratio.

  19. Micromachining of transparent materials by laser ablation of organic solution

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    2000-11-01

    Transparent materials such as fused silica, quartz, calcium fluoride, and fluorocarbon polymer were etched upon irradiation of organic solution containing pyrene with a conventional KrF excimer laser. Threshold fluence for etching was 240 mJ/cm2 for fused silica. Etch rate remarkably depended on a concentration of pyrene: higher etch rate with the increase of pyrene concentration. It means that pyrene molecules play an important role in this process. The etch rate can be easily controlled through changing a laser pulse number, a laser fluence and a concentration of solution. The mechanism for this process is discussed by cyclic multiphotonic absorption of pyrene in the excited states, thermal relaxation, and formation of super-heated solution. As the results, it is suggested that the process is based on the combination of two processes in the interface between the transparent materials and the liquid: one is a heating process by a super-heated liquid and the other is an attacking process by a high temperature and pressure vapor.

  20. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  1. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Oral Presentation

    SciTech Connect

    Barry, Matthew

    2015-08-19

    This presentation covers data collected on two commercial laser stabilization systems, Guidestar-II and MRC, and two optical imaging systems. Additionally, general information about LCLS-II and how to go about continuing-testing is covered.

  2. Modeling and optimization on Nd:YAG laser turned micro-grooving of cylindrical ceramic material

    NASA Astrophysics Data System (ADS)

    Dhupal, D.; Doloi, B.; Bhattacharyya, B.

    2009-09-01

    Nd:YAG laser turning is a new technique for manufacturing micro-grooves on cylindrical surface of ceramic materials needed for the present day precision industries. The importance of laser turning has directed the researchers to search how accurately micro-grooves can be obtained in cylindrical parts. In this paper, laser turning process parameters have been determined for producing square micro-grooves on cylindrical surface. The experiments have been performed based on the statistical five level central composite design techniques. The effects of laser turning process parameters i.e. lamp current, pulse frequency, pulse width, cutting speed (revolution per minute, rpm) and assist gas pressure on the quality of the laser turned micro-grooves have been studied. A predictive model for laser turning process parameters is created using a feed-forward artificial neural network (ANN) technique utilized the experimental observation data based on response surface methodology (RSM). The optimization problem has been constructed based on RSM and solved using multi-objective genetic algorithm (GA). The neural network coupled with genetic algorithm can be effectively utilized to find the optimum parameter value for a specific laser micro-turning condition in ceramic materials. The optimal process parameter settings are found as lamp current of 19 A, pulse frequency of 3.2 kHz, pulse width of 6% duty cycle, cutting speed as 22 rpm and assist air pressure of 0.13 N/mm 2 for achieving the predicted minimum deviation of upper width of -0.0101 mm, lower width 0.0098 mm and depth -0.0069 mm of laser turned micro-grooves.

  3. A database for solid-state laser, optical, and nonlinear materials

    NASA Technical Reports Server (NTRS)

    Cross, P. L.; Filer, E. D.; Barnes, N. P.; Skolaut, M. W., Jr.

    1990-01-01

    The database contains the physical properties of laser, optical, and nonlinear materials used by the laser models of a laser-modeling software system. The database is subdivided into two parts: spectra and tabulated data. The spectra are ASCII files of laser-material's absorption and emission spectra, and laser-diode's emission spectra. The tabulated data contains physical properties of laser, optical, and nonlinear materials, including crystalline, thermal, and mechanical properties. A menu-driven interface allows the execution from a personal directory where the user can store files containing input parameters for a specific model or the results of model's calculations.

  4. A database for solid-state laser, optical, and nonlinear materials

    NASA Technical Reports Server (NTRS)

    Cross, P. L.; Filer, E. D.; Barnes, N. P.; Skolaut, M. W., Jr.

    1990-01-01

    The database contains the physical properties of laser, optical, and nonlinear materials used by the laser models of a laser-modeling software system. The database is subdivided into two parts: spectra and tabulated data. The spectra are ASCII files of laser-material's absorption and emission spectra, and laser-diode's emission spectra. The tabulated data contains physical properties of laser, optical, and nonlinear materials, including crystalline, thermal, and mechanical properties. A menu-driven interface allows the execution from a personal directory where the user can store files containing input parameters for a specific model or the results of model's calculations.

  5. Qualification of diode foil materials for excimer lasers

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  6. Ultrafast Dynamic Ellipsometry And Spectroscopy Of Laser Shocked Materials

    NASA Astrophysics Data System (ADS)

    McGrane, S. D.; Bolme, C. A.; Whitley, V. H.; Moore, D. S.

    2010-10-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  7. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Butkus, S.; Gaižauskas, E.; Paipulas, D.; Viburys, Ž.; Kaškelyė, D.; Barkauskas, M.; Alesenkov, A.; Sirutkaitis, V.

    2014-01-01

    Microfabrication of transparent materials using femtosecond laser pulses has showed good potential towards industrial application. Maintaining pulse energies exceeding the critical self-focusing threshold by more than 100-fold produced filaments that were used for micromachining purposes. This article demonstrates two different micromachining techniques using femtosecond filaments generated in different transparent media (water and glass). The stated micromachining techniques are cutting and welding of transparent samples. In addition, cutting and drilling experiments were backed by theoretical modelling giving a deeper insight into the whole process. We demonstrate cut-out holes in soda-lime glass having thickness up to 1 mm and aspect ratios close to 20, moreover, the fabrication time is of the order of tens of seconds, in addition, grooves and holes were fabricated in hardened 1.1 mm thick glass (Corning Gorilla glass). Glass welding was made possible and welded samples were achieved after several seconds of laser fabrication.

  8. Evolution of surface structure in laser-preheated perturbed materials

    NASA Astrophysics Data System (ADS)

    Di Stefano, C. A.; Merritt, E. C.; Doss, F. W.; Flippo, K. A.; Rasmus, A. M.; Schmidt, D. W.

    2017-02-01

    We report an experimental and computational study investigating the effects of laser preheat on the hydrodynamic behavior of a material layer. In particular, we find that perturbation of the surface of the layer results in a complex interaction, in which the bulk of the layer develops density, pressure, and temperature structure and in which the surface experiences instability-like behavior, including mode coupling. A uniform one-temperature preheat model is used to reproduce the experimentally observed behavior, and we find that this model can be used to capture the evolution of the layer, while also providing evidence of complexities in the preheat behavior. This result has important consequences for inertially confined fusion plasmas, which can be difficult to diagnose in detail, as well as for laser hydrodynamics experiments, which generally depend on assumptions about initial conditions in order to interpret their results.

  9. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect

    Mcgrane, Shawn David; Bolme, Cindy B; Whitley, Von H; Moore, David S

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  10. Advanced Material Developments with Laser Engineered Net Shaping

    NASA Technical Reports Server (NTRS)

    Williams, Glenn A.; Cooper, Ken; McGill, Preston; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The Laser Engineered Net Shaping (LENS(Trademark)) process is a new technology to fabricate three-dimensional metallic components directly from CAD solid models. It directly fabricates metal hardware by injecting the metal powder of choice into the focal point of a 700W Nd:Yag laser as it traces the perimeter and fills of a part. The Rapid Prototype Laboratory at Marshall Space Flight Center is currently operating a OPTOMEC 750 LENS machine in evaluation experiments involving integration of this technology into various manufacturing processes associated with aerospace applications. This paper will cover our research finding about properties of samples created from Inconel 718 & SS316 using this process versus the same materials in cast & wrought conditions.

  11. Ultrafast Dynamic Ellipsometry And Spectroscopy Of Laser Shocked Materials

    SciTech Connect

    McGrane, S. D.; Bolme, C. A.; Whitley, V. H.; Moore, D. S.

    2010-10-08

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  12. Velocity measurements of inert porous materials driven by infrared-laser-ablated thin-film titanium

    SciTech Connect

    Bedeaux, Brett C.; Trott, Wayne M.; Castaneda, Jaime N.

    2010-02-15

    This article presents and interprets a series of experiments performed to measure the velocity of four inert low-density porous materials that were accelerated by an ablated thin-film titanium metal, created by vaporizing a 250-nm-thick layer of titanium with a high-energy, Q-switched, pulsed, and 1.054 {mu}m neodymium-glass laser. Inert powder materials were chosen to match, among other characteristics, the morphology of energetic materials under consideration for use in detonator applications. The observed behavior occurs near the thin-film titanium ablation layer, through complex physical mechanisms, including laser absorption in the metal layer, ablation and formation of confined plasma that is a blackbody absorber of the remaining photon energy, and vaporization of the remaining titanium metal. One-dimensional hydrodynamic modeling provided a basis of comparison with the measured velocities. We found, as predicted in wave-propagation-code modeling, that an Asay foil can indicate total momentum of the driven material that is mechanically softer (lower in shock impedance) than the foil. The key conclusion is that the specific impulse delivered by the laser transfers a corresponding momentum to soft, organic power columns that are readily compacted. Impulse from the laser is less efficient in transferring momentum to hard inorganic particles that are less readily compacted.

  13. Analysis and removal of ITER relevant materials and deposits by laser ablation

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Huber, Alexander; Philipps, Volker; Sergienko, Gennady; Gierse, Niels; Mertens, Philippe; Hai, Ran; Ding, Hongbin

    2014-12-01

    The analysis of the deposition of eroded wall material on the plasma-facing materials in fusion devices is one of the crucial issues to maintain the plasma performance and to fulfill safety requirements with respect to tritium retention by co-deposition. Laser ablation with minimal damage to the plasma facing material is a promising method for in situ monitoring and removal of the deposition, especially for plasma-shadowed areas which are difficult to reach by other cleaning methods like plasma discharge. It requires the information of ablation process and the ablation threshold for quantitative analysis and effective removal of the different deposits. This paper presents systemic laboratory experimental analysis of the behavior of the ITER relevant materials, graphite, tungsten, aluminum (as a substitution of beryllium) and mixed deposits ablated by a Nd:YAG laser (1064 nm) with different energy densities (1-27 J/cm2, power density 0.3-3.9 GW/cm2). The mixed deposits consisted of W-Al-C layer were deposited on W substrate by magnetron sputtering and arc plasma deposition. The aim was to select the proper parameters for the quantitative analysis and for laser removal of the deposits by investigating the ablation efficiency and ablation threshold for the bulk materials and deposits. The comparison of the ablation and saturation energy thresholds for pure and mixed materials shows that the ablation threshold of the mixed layer depends on the concentration of the components. We propose laser induced breakdown spectroscopy for determination of the elemental composition of deposits and then we select the laser parameters for the layer removal. Comparison of quantitative analysis results from laboratory to that from TEXTOR shows reasonable agreements. The dependence of the spectra on plasma parameters and ambient gas pressure is investigated.

  14. Predicting the Performance of Edge Seal Materials for PV (Presentation)

    SciTech Connect

    Kempe, M.; Panchagade, D.; Dameron, A.; Reese, M.

    2012-03-01

    Edge seal materials were evaluated using a 100-nm film of Ca deposited on glass and laminated to another glass substrate. As moisture penetrates the package it converts the Ca metal to transparent CaOH2 giving a clear indication of the depth to which moisture has entered. Using this method, we have exposed test samples to a variety of temperature and humidity conditions ranging from 45C and 10% RH up to 85C and 85% RH, to ultraviolet radiation and to mechanical stress. We are able to show that edge seal materials are capable of keeping moisture away from sensitive cell materials for the life of a module.

  15. DOE Automotive Composite Materials Research: Present and Future Efforts

    SciTech Connect

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  16. Present state of boron-carbon thermoelectric materials

    NASA Technical Reports Server (NTRS)

    Elsner, N. B.; Reynolds, G. H.

    1983-01-01

    Boron-carbon p-type thermoelectric materials show promise for use in advanced thermal-to-electric space power conversion systems. Here, recent data on the thermoelectric properties of boron-carbon materials, such as B9C, B13C2, B15C2, and B4C, are reviewed. In particular, attention is given to the effect of the compositional homogeneity and residual impurity content on the Seeback coefficient, electrical resistivity, and thermal conductivity of these materials. The effect of carbon content for a given level of impurity and degree of homogeneity is also discussed.

  17. Soft-x-ray free-electron-laser interaction with materials.

    PubMed

    Hau-Riege, Stefan P; London, Richard A; Chapman, Henry N; Bergh, Magnus

    2007-10-01

    Soft-x-ray free-electron lasers have enabled materials studies in which structural information is obtained faster than the relevant probe-induced damage mechanisms. We present a continuum model to describe the damage process based on hot-dense plasma theory, which includes a description of the energy deposition in the samples, the subsequent dynamics of the sample, and the detector signal. We compared the model predictions with experimental data and mostly found reasonable agreement. In view of future free-electron-laser performance, the model was also used to predict damage dynamics of samples and optical elements at shorter wavelengths and larger photon fluences than currently available.

  18. Soft-x-ray free-electron-laser interaction with materials

    SciTech Connect

    Hau-Riege, Stefan P.; London, Richard A.; Chapman, Henry N.; Bergh, Magnus

    2007-10-15

    Soft-x-ray free-electron lasers have enabled materials studies in which structural information is obtained faster than the relevant probe-induced damage mechanisms. We present a continuum model to describe the damage process based on hot-dense plasma theory, which includes a description of the energy deposition in the samples, the subsequent dynamics of the sample, and the detector signal. We compared the model predictions with experimental data and mostly found reasonable agreement. In view of future free-electron-laser performance, the model was also used to predict damage dynamics of samples and optical elements at shorter wavelengths and larger photon fluences than currently available.

  19. Interaction of a He-Ne laser light with the moist surface zone of porous material

    NASA Astrophysics Data System (ADS)

    Rozniakowski, Kazimierz; Wojtatowicz, Tomasz W.; Drobnik, Antoni; Jeske, I.

    1995-03-01

    The light scattered from the `rough' surface of a porous body illuminated by a narrow laser beam is carrying the information on geometrical micro structure of this surface. It is possible that the water vapor and water droplets in pores will cause changes in scattered light too. The aim of this paper is to present the results of the experimental investigations of the intensity of a helium-neon laser light reflected by a porous and moist gypsum slurry surface. Experiments show that the scattered light intensity increases with the decrease of the moisture content in porous material.

  20. Ultrashort-pulse laser machining of dielectric materials

    NASA Astrophysics Data System (ADS)

    Perry, M. D.; Stuart, B. C.; Banks, P. S.; Feit, M. D.; Yanovsky, V.; Rubenchik, A. M.

    1999-05-01

    There is a strong deviation from the usual τ1/2 scaling of laser damage fluence for pulses below 10 ps in dielectric materials. This behavior is a result of the transition from a thermally dominated damage mechanism to one dominated by plasma formation on a time scale too short for significant energy transfer to the lattice. This new mechanism of damage (material removal) is accompanied by a qualitative change in the morphology of the interaction site and essentially no collateral damage. High precision machining of all dielectrics (oxides, fluorides, explosives, teeth, glasses, ceramics, SiC, etc.) with no thermal shock or distortion of the remaining material by this mechanism is described.

  1. Thermal Protection Materials and Systems: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2013-01-01

    Thermal protection materials and systems (TPS) protect vehicles from the heat generated when entering a planetary atmosphere. NASA has developed many TPS systems over the years for vehicle ranging from planetary probes to crewed vehicles. The goal for all TPS is efficient and reliable performance. Efficient means using the right material for the environment and minimizing the mass of the heat shield without compromising safety. Efficiency is critical if the payload such as science experiments is to be maximized on a particular vehicle. Reliable means that we understand and can predict performance of the material. Although much characterization and testing of materials is performed to qualify and certify them for flight, it is not possible to completely recreate the reentry conditions in test facilities, and flight-testing

  2. Laser annealing and defect study of chalcogenide photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Bhatia, Ashish

    Cu(In,Ga)Se2 (CIGSe), CuZnSn(S,Se)4(CZTSSe), etc., are the potential chalcogenide semiconductors being investigated for next-generation thin film photovoltaics (TFPV). While the champion cell efficiency of CIGSe has exceeded 20%, CZTSSe has crossed the 10% mark. This work investigates the effect of laser annealing on CISe films, and compares the electrical characteristics of CIGSe (chalcopyrite) and CZTSe (kesterite) solar cells. Chapter 1 through 3 provide a background on semiconductors and TFPV, properties of chalcopyrite and kesterite materials, and their characterization using deep level transient spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). Chapter 4 investigates electrochemical deposition (nonvacuum synthesis) of CISe followed by continuous wave laser annealing (CWLA) using a 1064 nm laser. It is found that CWLA at ≈ 50 W/cm2 results in structural changes without melting and dewetting of the films. While Cu-poor samples show about 40% reduction in the full width at half maximum of the respective x-ray diffraction peaks, identically treated Cu-rich samples register more than 80% reduction. This study demonstrates that an entirely solid-phase laser annealing path exists for chalcopyrite phase formation and crystallization. Chapter 5 investigates the changes in defect populations after pulse laser annealing in submelting regime of electrochemically deposited and furnace annealed CISe films. DLTS on Schottky diodes reveal that the ionization energy of the dominant majority carrier defect state changes nonmonotonically from 215+/-10 meV for the reference sample, to 330+/-10 meV for samples irradiated at 20 and 30 mJ/cm2, and then back to 215+/-10 meV for samples irradiated at 40 mJ/cm2. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior. Chapter 6 compares the electrical characteristics of chalcopyrite and kesterite materials. Experiments reveal CZTSe cell has an

  3. Computing specific intensity distributions for laser material processing by solving an inverse heat conduction problem

    NASA Astrophysics Data System (ADS)

    Völl, Annika; Stollenwerk, Jochen; Loosen, Peter

    2016-03-01

    Laser beam intensity distribution profiles for material processing techniques are most of the time restricted to be either of Gaussian or tophat shape. This often leads to different kind of problems especially at the edges of the laser-heated tracks, examples are energy losses or unnecessary overlaps. Thus, machining quality and process efficiency could be much improved by using application specific intensity profiles to generate optimal temperature distributions in the processed material. In this work, we present a numerical method to derive a specific intensity profile for a given temperature distribution. As this problem belongs to the set of inverse heat conduction problems, which are ill-posed, special regularization algorithms are needed. The only method to solve this inverse problem in reasonable time is the conjugate gradient method which we extend to the given problem of laser material processing applications. This method is an iterative approach where in each step the actual temperature distribution is calculated by using the finite element method. In general, the proposed method is applicable for materials with constant or temperature dependent coefficients, for static and dynamic distributions as well as for plane or complex geometries. However, restricting ourselves to plane geometries, intensity distributions that create tophat- or stepped temperature distributions on the plane surface of the processed material are derived and will be presented. In future work, we intend to verify these results using freeform optics as well as singly addressable V(E)CSEL arrays.

  4. Ultrafast nanomechanics in vertical cavity surface-emitting lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akimov, Andrey V.; Czerniuk, Thomas; Yakovlev, Dmitri R.; Bayer, Manfred

    2017-02-01

    The existence of both optical and sub-THz nanomechanical resonances in the same laser microcavity results in strong photon-phonon interaction, and may be explored for the ultrafast control of vertical lasers. In the talk the experiments involving the injection of picosecond strain pulses into optically and electrically pumped vertical lasers, and monitoring of the modulated output laser intensity will be discussed. The results of three recent experiments will be presented: • In the experiments with an optically pumped quantum dot laser, an increase of the lasing output induced by strain pulses by two orders of magnitude has been observed on a picosecond time scale. Such strong and ultrafast increase is due to the inhomogeneous quantum dot ensemble with a spectral broadening much larger than the optical cavity mode width. Thus, the optical resonance required for lasing is achieved for a tiny dot fraction only while non-resonant dots store optical excitation for long time. The strain pulse brings "non-resonant" quantum dots into the resonance with the cavity mode and the stored energy releases almost simultaneously in a form of the intense laser pulses. • Experiments with electrically pumped micropillar lasers show the modulation of the emission wavelength on the frequencies equal to the resonant GHz nanomechanical modes of the micropillar. • Experiments with a quantum well vertical laser showed intensity modulation with the mechanical resonance frequencies (20-40 GHz) of the optomechanical nanoresonator. Prospective application for nanophotonics are discussed.

  5. Carbon dioxide laser and bonding materials reduce enamel demineralization around orthodontic brackets.

    PubMed

    de Souza-e-Silva, Cíntia Maria; Parisotto, Thaís Manzano; Steiner-Oliveira, Carolina; Kamiya, Regianne Umeko; Rodrigues, Lidiany Karla Azevedo; Nobre-dos-Santos, Marinês

    2013-01-01

    Altering the structure of the enamel surface around the orthodontic bracket by reducing its content of carbonate and phosphate resulting from application of CO(2) laser may represent a more effective strategy in preventing caries in this region. This study aimed at determining whether irradiation with a CO(2) laser combined with fluoride-releasing bonding material could reduce enamel demineralization around orthodontic brackets subjected to cariogenic challenge. Ninety bovine enamel slabs were divided into five groups (n = 18): non-inoculated brain-heart infusion broth group, non-fluoride-releasing composite resin (NFRCR--control group), resin-modified glass ionomer cement (RMGIC), CO(2) laser + Transbond (L+NFRCR) and CO(2) laser + Fuji (L+RMGIC). Slabs were submitted to a 5-day microbiological caries model. The Streptococcus mutans biofilm formed on the slabs was biochemically and microbiologically analysed, and the enamel Knoop hardness number (KHN) around the brackets was determined. The data were analysed by ANOVA and Tukey tests (α = 0.05). Biochemical and microbiological analyses of the biofilm revealed no statistically significant differences among the groups. Lased groups presented the highest KHN means, which statistically differed from NFRCR; however, no difference was found between these lased groups. RMGIC did not differ from NFRCR which presented the lowest KHN mean. The CO(2) laser (λ = 10.6 μm; 10.0 J/cm(2) per pulse) use with or without F-bonding materials was effective in inhibiting demineralization around orthodontic brackets. However, no additional effect was found when the enamel was treated with the combination of CO(2) laser and an F-releasing material.

  6. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  7. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  8. Precursor to damage state quantification in composite materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Patra, Subir; Banerjee, Sourav

    2017-04-01

    Nonlinear damage in the composite materials is developed with the growth of damages in the material under fatigue loading. Nonlinear ultrasonic techniques are sensitive to early stage damages such as, fiber breakages, matrix micro-cracking, and deboning etc. Here, in this work, early stage damages are detected in Unidirectional (UD) carbon fiber composite under fatigue loading. Specimens are prepared according to American Society for Testing and Materials (ASTM) standard. Specimens are subjected to low cycle high load (LCHL) fatigue loading until 150,000 cycles. Sensors are mounted on the specimen used for actuation and sensing. A five count tone burst with low frequency (fc =375 kHz) followed by high frequency (fc =770 kHz) signal, was used as actuation signal. Pitch-catch experiments are collected at the interval of 5,000 cycles. Sensor signals are collected for various excitation voltage (from 5V to 20V, with 5V interval). First Fourier Transform (FFT) of the sensor signals are performed and side band frequencies are observed at around 770 kHz. Severity of damages in the material is quantified from the ratio of amplitude of side band frequencies with the central frequency. Nonlinearity in the material due to damage development is also investigated from the damage growth curve obtained at various excitation amplitude. Optical Microcopy imaging were also performed at the interval of 5,000 to examine developments of damages inside the material. This study has a good potential in detection of early stage damages in composite materials.

  9. Material and fabrication strategies for artificial muscles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spinks, Geoffrey M.

    2017-04-01

    Soft robotic and wearable robotic devices seek to exploit polymer based artificial muscles and sensor materials to generate biomimetic movements and forces. A challenge is to integrate the active materials into a complex, three-dimensional device with integrated electronics, power supplies and support structures. Both 3D printing and textiles technologies offer attractive fabrication strategies, but require suitable functional materials. 3D printing of actuating hydrogels has been developed to produce simple devices, such as a prototype valve. Tough hydrogels based on interpenetrating networks of ionicially crosslinked alginate and covalently crosslinked polyacrylamide and poly(N-isopropylacrylamide) have been developed in a form suitable for extrusion printing with UV curing. Combined with UV-curable and extrudable rigid acrylated urethanes, the tough hydrogels can be 3D printed into composite materials or complex shapes with multiple different materials. An actuating valve was printed that operated thermally to open or close the flow path using 6 parallel hydrogel actuators. Textile processing methods such as knitting and weaving can be used to generate assemblies of actuating fibres. Low cost and high performance coiled fibres made from oriented polymers have been used for developing actuating textiles. Similarly, braiding methods have been developed to fabricate new forms of McKibben muscles that operate without any external apparatus, such as pumps, compressors or piping.

  10. Present status and future outlook of selective metallization for electronics industry by laser irradiation to metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Watanabe, Akira

    2015-03-01

    Recently an alternative to conventional methods based on vacuum processes such as evaporation or sputtering is desired to reduce the energy consumption and the environmental impact. Printed electronics has been developed as a one of the candidates, which is based on wet processes using soluble functional materials such as organic semiconductors, inorganic nanomaterials, organic-inorganic hybrids, and so on. Although inkjet printing has been studied widely as a core technology of printed electronics, the limitation of resolution is around 20 micrometer. The combination of the inkjet printing with other selective metallization process is necessary because the resolution of several micrometers is required in some optical and electrical devices. The laser processing has emerged as an attractive technique in microelectronics because of the fascinating features such as high resolution, high degree of flexibility to control the resolution and size of the micro-patterns, high speed, and a little environmental pollution. In this paper, the present status and future outlook of selective metallization for interconnection and the formation of transparent conductive film based on the laser processing using metal nanoparticles were reported. The laser beam irradiation to metal nanoparticles causes the fast and efficient sintering by plasmon resonance of metal nanoparticle, where the absorbed energy is confined in a nanoparticle and the nanoparticle acts as a nano-heater. The laser irradiation to metal nanoparticles was applied to the laser direct writing of metal wiring and micropatterns using silver and copper nanoparticles.

  11. Phase-contrast imaging using ultrafast x-rays in laser-shocked materials

    SciTech Connect

    Workman, Jonathan B; Cobble, James A; Flippo, Kirk; Gautier, Donald C; Montgomery, David S; Offermann, Dustin T

    2010-01-01

    High-energy x-rays, > 10-keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in Inertial Confinement Fusion (ICF) and High-Energy Density Physics (HEDP). These same x-rays can also be applied to measurements of low-density materials inside high-density hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200-TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17-keV produced from 2-ps, 100-J laser interactions with a 12-micron molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1-mm thick polystyrene target using 2-ns, 250-J, 532-nm laser drive with phase plates. X-ray images of shocks compare well to 1-D hydro calculations, HELIOS-CR.

  12. Material morphological characteristics in laser ablation of alpha case from titanium alloy

    NASA Astrophysics Data System (ADS)

    Yue, Liyang; Wang, Zengbo; Li, Lin

    2012-08-01

    Alpha case (an oxygen enriched alloy layer) is commonly formed in forged titanium alloys during the manufacturing process and it reduces the service life of the materials. This layer is normally removed mechanically or chemically. This paper reports the feasibility and characteristics of using a short pulsed laser to remove oxygen-enriched alpha case layer from a titanium alloy (Ti6Al4V) substrate. The material removal rate, i.e., ablation rate, and ablation threshold of the alpha case titanium were experimentally determined, and compared with those for the removal of bulk Ti6Al4V. Surface morphologies of laser processed alpha case titanium layer, especially that of cracks at different ablated depths, were carefully examined, and also compared with those for Ti6Al4V. It has been shown that in the alpha case layer, laser ablation has always resulted in crack formation while for laser ablation of alpha case free Ti6Al4V layers, cracking was not present. In addition, the surface is rougher within the alpha case layer and becomes smoother (Ra - 110 nm) once the substrate Ti-alloy is reached. The work has demonstrated that laser is a feasible processing tool for removing alpha case titanium, and could also be used for the rapid detection of the presence of alpha case titanium on Ti6Al4V surfaces in aerospace applications.

  13. Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material.

    PubMed

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Krüger, Jörg; Berger, Georg

    2010-08-01

    Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 Jcm(-2). In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance.

    PubMed

    Gottfried, Jennifer L; Bukowski, Eric J

    2017-01-20

    A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10  μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

  15. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    SciTech Connect

    Colvin, Jeffrey; Shestakov, Aleksei; Stolken, James; Vignes, Ryan

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  16. Development of a high-power blue laser (445  nm) for material processing.

    PubMed

    Wang, Hongze; Kawahito, Yosuke; Yoshida, Ryohei; Nakashima, Yuya; Shiokawa, Kunio

    2017-06-15

    A blue diode laser has a higher absorption rate than a traditional laser, while the maximum power is limited. We report the structure and laser beam profile of a 250 W high-power blue laser (445 nm) for material processing. The absorption rate of the blue laser system for the steel was 2.75 times that of a single-mode fiber laser system (1070 nm). The characteristics of the steel after laser irradiation were determined, validating the potential of this high-power blue laser for material processing, such as heat treatment and cladding. The cost of the developed laser system was lower than that of the existing one. To the best of our knowledge, this is the first blue laser with a power as high as 250 W.

  17. Measurement of thermal energy coupling to metallic materials in millisecond laser based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua; Zhang, Hongchao

    2017-05-01

    A method which is based on the theory of Fraunhofer diffraction, thermal expansion effect, as well as lumped parameter approximation is presented to measure the laser absorptance of metallic materials under the irradiation of pulse laser. Experiments were made in a vacuum condition, using a Q-switched Nd: YAG laser at wavelength of 1064 nm and pulse duration of 0.4 ms. Fine copper wires with bare and oxidized surfaces were respectively studied as samples. In order to eliminate the complicated influence of laser ablation, the intensities used in this work were all below the damage threshold of copper. With this approach the quantitative result of coupling efficiency is obtained by analyzing the fringe spacing of diffraction without the temperature measurement. The experimental result shows a dramatic increase in laser absorptance from 0.03 (bare copper) to 0.09 (oxidized copper), implying that the efficiency of laser energy coupling to metals can be influenced significantly by surface oxidation. In addition, the average temperature rise and diameter variation of samples are calculated by the proposed method and compared with the results of simulation. Furthermore, an additional test that painted sample wire get a permanent damage is performed and discussed.

  18. Femtosecond laser ablation of wide band-gap materials

    NASA Astrophysics Data System (ADS)

    Takayama, Hidetoshi; Maruyama, Toshiro

    2012-11-01

    A plasma model proposed by Jiang and Tsai was applied to the experimental results for wide band-gap materials. The model fairly well predicted the laser-fluence dependences of the hole depth and diameter. The analytical threshold fluence represented the pulse-duration dependence very well. However, the model was insufficient to express the crater shape and to predict the threshold fluence. Deviations from the measurements suggest that the effect of ponderomotive force should be taken into account to improve the expression for the crater shape and that the surface energy needed to be additionally taken into account to predict the threshold fluence quantitatively.

  19. Multi-wavelength laser sensor surface for high frame rate imaging refractometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kristensen, Anders; Vannahme, Christoph; Sørensen, Kristian T.; Dufva, Martin

    2016-09-01

    A highly sensitive distributed feedback (DFB) dye laser sensor for high frame rate imaging refractometry without moving parts is presented. The laser sensor surface comprises areas of different grating periods. Imaging in two dimensions of space is enabled by analyzing laser light from all areas in parallel with an imaging spectrometer. Refractive index imaging of a 2 mm by 2 mm surface is demonstrated with a spatial resolution of 10 μm, a detection limit of 8 10-6 RIU, and a framerate of 12 Hz, limited by the CCD camera. Label-free imaging of dissolution dynamics is demonstrated.

  20. Toward compact and ultra-intense laser driven soft x-ray lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sebban, Stéphane

    2017-05-01

    We report here recent work on an optical-field ionized (OFI), high-order harmonic-seeded EUV laser. The amplifying medium is a plasma of nickel-like krypton obtained by optical field ionization focusing a 1 J, 30 fs, circularly- polarized, infrared pulse into a krypton-filled gas cell or krypton gas jet. The lasing transition is the 3d94p (J=0) --> 3d94p (J=1) transition of Ni-like krypton ions at 32.8 nm and is pumped by collisions with hot electrons. The polarization of the HH-seeded EUV laser beam was studied using an analyzer composed of three grazing incidence EUV multilayer mirrors able to spin under vacuum. For linear polarization, the Malus law has been recovered while in the case of a circularly-polarized seed, the EUV signal is insensitive to the rotation of the analyzer, bearing testimony to circularly polarized. The gain dynamics was probed by seeding the amplifier with a high-order harmonic pulse at different delays. The gain duration monotonically decreased from 7 ps to an unprecedented shortness of 450 fs FWHM as the amplification peak rose from 150 to 1,200 with an increase of the plasma density from 3 × 1018 cm-3 up to 1.2 × 1020 cm-3. The integrated energy of the EUV laser pulse was also measured, and found to be around 2 μJ. It is to be noted that in the ASE mode, longer amplifiers were achieved (up to 3 cm), yielding EUV outputs up to 14 μJ.

  1. Direct diode lasers and their advantages for materials processing and other applications

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength

  2. Generalized sub-Schawlow-Townes laser linewidths via material dispersion

    NASA Astrophysics Data System (ADS)

    Pillay, Jason Cornelius; Natsume, Yuki; Stone, A. Douglas; Chong, Y. D.

    2014-03-01

    A recent S-matrix-based theory of the quantum-limited linewidth, which is applicable to general lasers, including spatially nonuniform laser cavities operating above threshold, is analyzed in various limits. For broadband gain, a simple interpretation of the Petermann and bad-cavity factors is presented in terms of geometric relations between the zeros and poles of the S matrix. When there is substantial dispersion, on the frequency scale of the cavity lifetime, the theory yields a generalization of the bad-cavity factor, which was previously derived for spatially uniform one-dimensional lasers. This effect can lead to sub-Schawlow-Townes linewidths in lasers with very narrow gain widths. We derive a formula for the linewidth in terms of the lasing mode functions, which has accuracy comparable to the previous formula involving the residue of the lasing pole. These results for the quantum-limited linewidth are valid even in the regime of strong line pulling and spatial hole burning, where the linewidth cannot be factorized into independent Petermann and bad-cavity factors.

  3. CIGS Material and Device Stability: A Processing Perspective (Presentation)

    SciTech Connect

    Ramanathan, K.

    2012-03-01

    This is a general overview of CIGS material and device fundamentals. In the first part, the basic features of high efficiency CIGS absorbers and devices are described. In the second part, some examples of previous collaboration with Shell Solar CIGSS graded absorbers and devices are shown to illustrate how process information was used to correct deviations and improve the performance and stability.

  4. 3D printing functional materials and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  5. Photoelectron Spectroscopy of Energetic Materials and Catalytic Clusters with a 26.5 eV Tabletop Laser

    DTIC Science & Technology

    2015-04-03

    Photoelectron Spectroscopy of Energetic Materials and Catalytic Clusters with a 26.5 eV Tabletop Laser This DURIP grant was for the design and...catalytic clusters . The apparatus is now finished and presently acquiring data on representative sample in both areas.We present data for FeO2 as an...initial first experiment for mass spectra and PES of a known sample. The clusters are generated by laser ablation and the electrons are collected

  6. Welding of transparent materials with ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Richter, Sören; Döring, Sven; Zimmermann, Felix; Lescieux, Ludovic; Eberhardt, Ramona; Nolte, Stefan; Tünnermann, Andreas

    2012-03-01

    The realization of stable bonds between different glasses has attracted a lot interest in recent years. However, conventional bonding techniques are often problematic due to required thermal annealing steps which may lead to induced stress, whereas glue and other adhesives tend to degrade over time. These problems can be overcome by using ultrashort laser pulses. When focussed at the interface, the laser energy is deposited locally in the focal volume due to nonlinear absorption processes. While even single pulses can lead to the formation of bonds between transparent glass substrates, the application of high repetition rates offers an additional degree of freedom. If the time between two pulses is shorter than the time required for heat diffusion out of the focal volume, heat accumulation of successive pulses leads to localized melting at the interface. The subsequent resolidification finally yields strong and robust bonds. Using optimized processing parameters, we achieved a breaking strength up 95% of the pristine bulk material. In this paper, we will detail the experimental background and the influence of the laser parameters on the achievable breaking strength.

  7. Microfabrication of transparent materials using filamented femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Butkus, S.; Paipulas, D.; Gaižauskas, Eugenijus; KaškelytÄ--, D.; Sirutkaitis, V.

    2014-05-01

    Glass drilling realized with the help of femtosecond lasers attract industrial attention, however, desired tasks may require systems employing high numerical aperture (NA) focusing conditions, low repetition rate lasers and complex fast motion translation stages. Due to the sensitivity of such systems, slight instabilities in parameter values can lead to crack formations, severe fabrication rate decrement and poor quality overall results. A microfabrication system lacking the stated disadvantages was constructed and demonstrated in this report. An f-theta lens was used in combination with a galvanometric scanner, in addition, a water pumping system that enables formation of water films of variable thickness in real time on the samples. Water acts as a medium for filament formation, which in turn decreases the focal spot diameter and increases fluence and axial focal length. This article demonstrates the application of a femtosecond (280fs) laser towards rapid cutting of different transparent materials. Filament formation in water gives rise to strong ablation at the surface of the sample, moreover, the water, surrounding the ablated area, adds increased cooling and protection from cracking. The constructed microfabrication system is capable of drilling holes in thick soda-lime, hardened glasses and sapphire. The fabrication time varies depending on the diameter of the hole and spans from a few to several hundred seconds. Moreover, complex-shape fabrication was demonstrated.

  8. Present and Future Automotive Composite Materials Research Efforts at DOE

    SciTech Connect

    Warren, C.D.

    1999-07-03

    Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

  9. Influences of pulse laser parameters on properties of AISI316L stainless steel thin-walled part by laser material deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xinlin; Deng, Dewei; Yi, Hongli; Xu, Haiyan; Yang, Shuhua; Zhang, Hongchao

    2017-07-01

    Laser material deposition (LMD) which combines laser cladding and rapid prototyping technique has been widely used to build full density metal parts directly without using modules or tools. There are many parameters affecting the quality and properties of the LMD parts through changing the energy distribution. Pulse laser provides the user an added degree of controlling over the energy distribution which seriously affects the solidification of molten pool and eventual part formation. In the present study, a series of AISI316L stainless steel thin-walled parts are successfully produced by LMD with different pulse laser parameters to investigate the effects of energy distribution on characteristics (microstructure, hardness, residual stress and tensile properties). The results show that the characteristics of LMD parts are obviously influenced by laser mode (pulse or continuous wave laser) and pulse laser parameters (T_pulse and T_pause). The microstructure of parts presents various grain sizes with the different pulse laser parameters. The different value (D-value) between the hardness of edge and central region varies considerably with the pulse laser parameters. The maximum D-value of hardness is presented in the part deposited by continuous wave laser. The maximum hardness is presented in item 4 (T_pulse=10 ms, T_pause=10 ms) and the minimum hardness is presented in part fabricated by continuous wave laser where the residual stress on Z-component presents tensile stress at the edge region and compress stress at the central region but opposite trend happens to the residual stress on Y-component. Tensile stress on Z-component at the edge region increases even presents compress tensile with the decrease of T_pulse. The stress on Y-component presents a periodic variation between tensile stress and compress stress in the Y-direction of the part fabricated by pulse laser. The ultimate tensile strength (UTS) of the part fabricated using pulse laser is higher than the

  10. Compact high-brightness and high-power diode laser source for materials processing

    NASA Astrophysics Data System (ADS)

    Treusch, Hans-Georg; Harrison, Jim; Morris, Robert; Powers, Jeff J.; Brown, Dennis; Martin, Joey

    2000-03-01

    A compact, reliable semiconductor laser source for materials processing, medical and pumping applications is described. This industrial laser source relies on a combination of technologies that have matured in recent years. In particular, effective means of stacking and imaging monolithic semiconductor laser arrays (a.k.a., bars), together with advances in the design and manufacture of the bars, have enabled the production of robust sources at market-competitive costs. Semiconductor lasers are presently the only lasers known that combine an efficiency of about 50% with compact size and high reliability. Currently the maximum demonstrated output power of a 10-mm-wide semiconductor laser bar exceeds the 260 W level when assembled on an actively cooled heat sink. (The rated power is in the range of 50 to 100 W.) Power levels in the kW range can be reached by stacking such devices. The requirements on the stacking technique and the optic assembly to achieve high brightness are discussed. Optics for beam collimation in fast and slow axis are compared. An example for an optical setup to use in materials processing will be shown. Spot sizes as low as 0.4 mm X 1.2 mm at a numerical aperture of 0.3 and output power of 1 kW are demonstrated. This results in a power density of more than 200 kW/cm2. A setup for further increase in brightness by wavelength and polarization coupling will be outlined. For incoherent coupling of multiple beams into a single core optical fiber, a sophisticated beam-shaping device is needed to homogenize the beam quality of stacked semiconductor lasers.

  11. Advances in micro/nano scale materials processing by ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Fotakis, Costas

    2009-03-01

    Materials processing by ultrafast lasers offers several attractive possibilities for micro/nano scale applications based on surface and in bulk laser induced modifications. The origin of these applications lies in the reduction of undesirable thermal effects, the non-equilibrium surface and volume structural modifications which may give rise to complex and unusual structures, the supression of photochemical effects in molecular substrates, the possibility of optimization of energy dissipation by temporal pulse shaping and the exploitation of filamentation effects. Diverse applications will be discussed, including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by multiphoton stereolithography. Two examples will be presented in this context: A new approach for the development of superhydrophobic, self-cleaning surfaces [1,2] and the fabrication of functional scaffolds for tissue engineering applications [3-5]. [4pt] References: [0pt] [1] V. Zorba et al., ``Biomimetic artificial surfaces quantitatively reproduce the water repellency of a Lotus leaf'', Advanced Materials 20, 4049 (2008).[0pt] [2] V. Zorba et al., ``Tailoring the wetting response of silicon surfaces via fs laser structuring'', Applied Physics A 93, 819 (2008).[0pt] [3] V. Dinca et al., ``Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer'', Biomedical Microdevices 10, 719 (2008).[0pt] [4] B. Hopp et al., ``Laser-based techniques for living cell pattern formation'', Applied Physics A 93, 45 (2008).[0pt] [5] V. Dinca et al., ``Directed three-dimensional patterning of self-assembled peptide fibrils'', Nano Letters 8, 538 (2008).

  12. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.

    SciTech Connect

    Kearney, Sean Patrick; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

    2014-11-01

    We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

  13. Laser annealed in-situ P-doped Ge for on-chip laser source applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Srinivasan, Ashwyn; Pantouvaki, Marianna; Shimura, Yosuke; Porret, Clement; Van Deun, Rik; Loo, Roger; Van Thourhout, Dries; Van Campenhout, Joris

    2016-05-01

    Realization of a monolithically integrated on-chip laser source remains the holy-grail of Silicon Photonics. Germanium (Ge) is a promising semiconductor for lasing applications when highly doped with Phosphorous (P) and or alloyed with Sn [1, 2]. P doping makes Ge a pseudo-direct band gap material and the emitted wavelengths are compatible with fiber-optic communication applications. However, in-situ P doping with Ge2H6 precursor allows a maximum active P concentration of 6×1019 cm-3 [3]. Even with such active P levels, n++ Ge is still an indirect band gap material and could result in very high threshold current densities. In this work, we demonstrate P-doped Ge layers with active n-type doping beyond 1020 cm-3, grown using Ge2H6 and PH3 and subsequently laser annealed, targeting power-efficient on-chip laser sources. The use of Ge2H6 precursors during the growth of P-doped Ge increases the active P concentration level to a record fully activated concentration of 1.3×1020 cm-3 when laser annealed with a fluence of 1.2 J/cm2. The material stack consisted of 200 nm thick P-doped Ge grown on an annealed 1 µm Ge buffer on Si. Ge:P epitaxy was performed with PH3 and Ge2H6 at 320oC. Low temperature growth enable Ge:P epitaxy far from thermodynamic equilibrium, resulting in an enhanced incorporation of P atoms [3]. At such high active P concentration, the n++ Ge layer is expected to be a pseudo-direct band gap material. The photoluminescence (PL) intensities for layers with highest active P concentration show an enhancement of 18× when compared to undoped Ge grown on Si as shown in Fig. 1 and Fig. 2. The layers were optically pumped with a 640 nm laser and an incident intensity of 410 mW/cm2. The PL was measured with a NIR spectrometer with a Hamamatsu R5509-72 NIR photomultiplier tube detector whose detectivity drops at 1620 nm. Due to high active P concentration, we expect band gap narrowing phenomena to push the PL peak to wavelengths beyond the detection limit

  14. Laser-optical treatment for toothbrush bristles (nylon, synthetic, and polymeric materials, etc.)

    NASA Astrophysics Data System (ADS)

    Ma, Yangwu

    1994-08-01

    On the basis of the principle of laser radiation and materials interaction, a laser-optical treatment method for toothbrush bristles (nylon et al., synthetic and polymeric materials) is provided. In this process, laser irradiation is stopped during melting and followed by cooling, so the free end of each bristle of toothbrush is formed for a smooth globe. The toothbrush with laser-optical end-globed bristles have many remarkable functions.

  15. Quantum dots as active material for quantum cascade lasers: comparison to quantum wells

    NASA Astrophysics Data System (ADS)

    Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian

    2016-03-01

    We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.

  16. Molecular materials for high performance OPV devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jones, David J.

    2016-09-01

    We recently reported the high performing molecular donor for OPV devices based on a benzodithiophene core, a terthiophene bridge and a rhodamine acceptor (BTR) [1]. In this work we optimized side-chain placement of a known chromophore by ensuring the thiophene hexyl side-chains are regioregular, which should allow the chromophore to lie flat. The unexpected outcome was a nematic liquid crystalline material with significantly improved performance (now 9.6% PCE), excellent charge transport properties, reduced geminate recombination rates and excellent performance with active layers up to 400nm. Three phase changes were indicated by DSC analysis with a melt to a crystalline domain at 175 oC, transition to a nematic liquid crystalline domain at 186 oC and an isotropic melt at 196 oC. In our desire to better understand the structure property relationships of this class of p-type organic semiconductor we have synthesized a series of analogues where the length of the chromophore has been altered through modification of the oligothiophene bridge to generate, the monothiophene (BMR), the bisthiophene (BBR), the known terthiophene (BTR), the quaterthiophene (BQR) and the pentathiophene (BPR). BMR, BBR and BPR have clean melting points while BQR, like BTR shows a complicated series of phase transitions. Device efficiencies after solvent vapour annealing are BMR (3.5%), BBR (6.0%), BTR (9.3%), BQR (9.4%), and BPR (8.7%) unoptimised. OPV devices with BTR in the active layer are not stable under thermal annealing, however the bridge extended BQR and BPR form thermally stable devices. We are currently optimising these devices, but initial results indicate PCEs >9% for thermally annealed devices containing BQR, while BPR devices have not yet been optimised and have PCEs > 8%. In order to develop the device performance we have included BQR in ternary devices with the commercially available PTB7-Th and we report device efficiencies of over 10.5%. We are currently optimising device

  17. A novel "gain chip" concept for high-power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Mingzhong; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang; Cui, Xudong; Zhang, Xiaomin

    2017-05-01

    High-power lasers, including high-peak power lasers (HPPL) and high-average power lasers (HAPL), attract much interest for enormous variety of applications in inertial fusion energy (IFE), materials processing, defense, spectroscopy, and high-field physics research. To meet the requirements of high efficiency and quality, a "gain chip" concept is proposed to properly design the pumping, cooling and lasing fields. The gain chip mainly consists of the laser diode arrays, lens duct, rectangle wave guide and slab-shaped gain media. For the pumping field, the pump light will be compressed and homogenized by the lens duct to high irradiance with total internal reflection, and further coupled into the gain media through its two edge faces. For the cooling field, the coolant travels along the flow channel created by the adjacent slabs in the other two edge-face direction, and cool the lateral faces of the gain media. For the lasing field, the laser beam travels through the lateral faces and experiences minimum thermal wavefront distortions. Thereby, these three fields are in orthogonality offering more spatial freedom to handle them during the construction of the lasers. Transverse gradient doping profiles for HPPL and HAPL have been employed to achieve uniform gain distributions (UGD) within the gain media, respectively. This UGD will improve the management for both amplified spontaneous emission (ASE) and thermal behavior. Since each "gain chip" has its own pump source, power scaling can be easily achieved by placing identical "gain chips" along the laser beam axis without disturbing the gain and thermal distributions. To detail our concept, a 1-kJ pulsed amplifier is designed and optical-to-optical efficiency up to 40% has been obtained. We believe that with proper coolant (gas or liquid) and gain media (Yb:YAG, Nd:glass or Nd:YAG) our "gain chip" concept might provide a general configuration for high-power lasers with high efficiency and quality.

  18. Picosecond pulsed laser processing of polycrystalline diamond and cubic boron nitride composite materials

    NASA Astrophysics Data System (ADS)

    Warhanek, Maximilian G.; Pfaff, Josquin; Meier, Linus; Walter, Christian; Wegener, Konrad

    2016-03-01

    Capabilities and advantages of laser ablation processes utilizing ultrashort pulses have been demonstrated in various applications of scientific and industrial nature. Of particular interest are applications that require high geometrical accuracy, excellent surface integrity and thus tolerate only a negligible heat-affected zone in the processed area. In this context, this work presents a detailed study of the ablation characteristics of common ultrahard composite materials utilized in the cutting tool industry, namely polycrystalline diamond (PCD) and polycrystalline cubic boron nitride composite (PCBN). Due to the high hardness of these materials, conventional mechanical processing is time consuming and costly. Herein, laser ablation is an appealing solution, since no process forces and no wear have to be taken into consideration. However, an industrially viable process requires a detailed understanding of the ablation characteristics of each material. Therefore, the influence of various process parameters on material removal and processing quality at 10 ps pulse duration are investigated for several PCD and PCBN grades. The main focus of this study examines the effect of different laser energy input distributions, such as pulse frequency and burst pulses, on the processing conditions in deep cutting kerfs and the resulting processing speed. Based on these results, recommendations for efficient processing of such materials are derived.

  19. Surface roughness analysis after laser assisted machining of hard to cut materials

    NASA Astrophysics Data System (ADS)

    Przestacki, D.; Jankowiak, M.

    2014-03-01

    Metal matrix composites and Si3N4 ceramics are very attractive materials for various industry applications due to extremely high hardness and abrasive wear resistance. However because of these features they are problematic for the conventional turning process. The machining on a classic lathe still requires special polycrystalline diamond (PCD) or cubic boron nitride (CBN) cutting inserts which are very expensive. In the paper an experimental surface roughness analysis of laser assisted machining (LAM) for two tapes of hard-to-cut materials was presented. In LAM, the surface of work piece is heated directly by a laser beam in order to facilitate, the decohesion of material. Surface analysis concentrates on the influence of laser assisted machining on the surface quality of the silicon nitride ceramic Si3N4 and metal matrix composite (MMC). The effect of the laser assisted machining was compared to the conventional machining. The machining parameters influence on surface roughness parameters was also investigated. The 3D surface topographies were measured using optical surface profiler. The analysis of power spectrum density (PSD) roughness profile were analyzed.

  20. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency.

    PubMed

    Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ.

  1. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  2. Pulsed Laser-Induced Effects in the Material Properties of Tungsten Thin Films

    NASA Astrophysics Data System (ADS)

    Evans, R.; Camacho-López, S.; Camacho-López, M. A.; Sánchez-Pérez, C.; Esparza-García, A.

    2007-04-01

    In this work we present evidence of photo-induced effects on crystalline Tungsten (W) films. A frequency doubled Nd:YAG (5ns) laser was used in our experiments. The W thin films were deposited on silicon substrates by the DC-sputtering technique using W (Lesker, 99.95% purity) targets in an argon atmosphere. The crystalline phase of the deposited W films was determined by X-ray diffraction. Our experimental results show clear evidence that several events take place as a consequence of exposure of the W films to the laser nanosecond pulses. One of those events has a chemical effect that results in a significant degree of oxidation of the film; a second event affects the structural nature of the initial W material, resulting into a material phase change; and a third event changes the initially homogeneous morphology of the film into an unexpected porous material film. As it has been confirmed by the experiments, all of these effects are laser fluence dependent. A full post exposure analysis of the W thin films included Energy Dispersive Spectrometry to determine the degree of oxidation of the W film; a micro-Raman system was used to explore and to study the transition of the crystalline W to the amorphous-crystalline WO3 phase; further analysis with Scanning Electron Microscopy showed a definite laser-induced porosity which changes the initial homogeneous film into a highly porous film with small features in the range from 100 to 300 nm.

  3. Microfabrication of through holes in polydimethylsiloxane (PDMS) sheets using a laser plasma EUV source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki

    2017-03-01

    Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.

  4. Coherence switching of a vertical-cavity semiconductor-laser for multimode biomedical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cao, Hui; Knitter, Sebastian; Liu, Changgeng; Redding, Brandon; Khokha, Mustafa Kezar; Choma, Michael Andrew

    2017-02-01

    Speckle formation is a limiting factor when using coherent sources for imaging and sensing, but can provide useful information about the motion of an object. Illumination sources with tunable spatial coherence are therefore desirable as they can offer both speckled and speckle-free images. Efficient methods of coherence switching have been achieved with a solid-state degenerate laser, and here we demonstrate a semiconductor-based degenerate laser system that can be switched between a large number of mutually incoherent spatial modes and few-mode operation. Our system is designed around a semiconductor gain element, and overcomes barriers presented by previous low spatial coherence lasers. The gain medium is an electrically-pumped vertical external cavity surface emitting laser (VECSEL) with a large active area. The use of a degenerate external cavity enables either distributing the laser emission over a large ( 1000) number of mutually incoherent spatial modes or concentrating emission to few modes by using a pinhole in the Fourier plane of the self-imaging cavity. To demonstrate the unique potential of spatial coherence switching for multimodal biomedical imaging, we use both low and high spatial coherence light generated by our VECSEL-based degenerate laser for imaging embryo heart function in Xenopus, an important animal model of heart disease. The low-coherence illumination is used for high-speed (100 frames per second) speckle-free imaging of dynamic heart structure, while the high-coherence emission is used for laser speckle contrast imaging of the blood flow.

  5. Alternative materials lead to practical nanophotonic components (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kinsey, Nathaniel; Ferrera, Marcello; DeVault, Clayton; Kim, Jongbum; Kildishev, Alexander V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2015-09-01

    Recently, there has been a flurry of research in the field of alternative plasmonic materials, but for telecommunication applications, CMOS compatible materials titanium nitride and doped zinc oxides are among the most promising materials currently available. TiN is a gold-like ceramic with a permittivity cross-over near 500nm. In addition, TiN can attain ultra-thin, ultra-smooth epitaxial films on substrates such as c-sapphire, MgO, and silicon. Partnering TiN with CMOS compatible silicon nitride enables a fully solid state waveguide which is able to achieve a propagation length greater than 1cm for a ~8μm mode size at 1.55μm. Utilizing doped zinc oxide films as a dynamic material, high performance modulators can also be realized due to the low-loss achieved by the TiN/Si3N4 waveguide. Simply by placing a thin layer of aluminum doped zinc oxide (AZO) on top of the waveguide structure, a modulator with very low insertion loss is achieved. Our recent work has investigated optical tuning of AZO films by the pump-probe method, demonstrating a change in the refractive index of -0.17+0.25i at 1.3μm with an ultrafast response of 1ps. Assuming this change in the refractive index for the AZO film, a modulation of ~0.7dB/μm is possible in the structure with ~0.5dB insertion loss and an operational speed of 1THz. Further optimization of the design is expected to lead to an increased modulation depth without sacrificing insertion loss or speed. Consequently, nanophotonic technologies are reaching a critical point where many applications including telecom, medicine, and quantum science can see practical systems which provide new functionalities.

  6. Optical response of phase change material for metasurface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chu, Cheng Hung; Tseng, Ming Lun; Chen, Jie; Wu, Hui Jun; Wang, Hsiang-Chu; Chen, Ting-Yu; Tsai, Din Ping

    2016-09-01

    Phase change materials are used as the recording layer in optical data storage, electronic storage and nanolithography due to the enormous physical difference between crystalline and amorphous states. In recent years, they are demonstrated to exploit in various tunable plasmonic devices, such as perfect absorber, planar lenses, plasmonic antenna, Fano resonance and so on. However, in these researches, the phase change material merely plays a role as a refractive index switchable substrate. In this paper, we study the intrinsic optical properties of phase change material Ge2Sb2Te5 (GST) in the near-infrared regime. A clear insight into the dipole resonance system of GST is provided. The reflection phase retardation and intensity of each unit cells depending on the phase state and geometry are estimated. Further, we introduce the concept of reconfigurable gradient metasurface, which has different anomalous reflection angles by switching the combination of nanorods with different geometries and phase states. The research has great potential in the area of tunable metamaterial device (metadevice) in the future.

  7. New advanced characterization tools for PW-class lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2017-05-01

    Spatio-temporal couplings (STC) of laser beams are ubiquitous in ultrafast optics. In the femtosecond range, chirped-pulse amplification (CPA), the key technology of amplified ultrashort pulses, relies on the use of massive STCs induced at different locations in laser systems (for instance by gratings or prisms), which should all eventually perfectly cancel out at the laser output. Residual STCs, for example resulting from imperfect compensation, decrease the peak intensity at focus by increasing both the focal spot size and the pulse duration. This is particularly detrimental for ultrahigh-intensity (UHI) lasers, which aim for the highest possible peak intensities. However, it is precisely with these lasers that such uncontrolled defects are most likely to occur, due to the complexity of these systems and the large diameters of the output beams. Accurately measuring STCs is thus essential in ultrafast optics. Significant progress has been made in the last decade, and several techniques are now available for the partial or complete spatiotemporal characterization of near-visible femtosecond laser beams. However, none of these has yet been applied to UHI femtosecond lasers, due to the difficulty of handling these large and powerful beams. As a result, all UHI lasers are currently characterized under the unjustified and unverified assumption of the absence of STCs, using separate measurements in space and time. This situation is now becoming a major bottleneck for the development of UHI lasers and their applications. In particular, the optimal and reliable operation of PW-class lasers now available or under construction all around the world will simply not be possible without a proper spatiotemporal metrology. In this talk, we present the first complete spatiotemporal experimental reconstruction of the field E(t,r) for a 100 TW peak-power laser, obtained using self-referenced spatially-resolved Fourier transform spectroscopy [1,2], and thus reveal the spatiotemporal

  8. New infrared solid state laser materials for CALIOPE

    SciTech Connect

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1994-08-01

    Tunable infrared laser light may serve as a useful means by which to detect the presence of the targeted effluents. Since optical parametric oscillators (OPOs) have proven to be a versatile method of generating coherent light from the ultraviolet to the mid-infrared, this technology is a promising choice by which to service the CALIOPE applications. In addition, since some uncertainty remains regarding the precise wavelengths and molecules that will be targeted, the deployment of OPOs retains the greatest amount of wavelength flexibility. Another approach that the authors are considering is that of generating tunable infrared radiation directly with a diode-pumped solid state laser (DPSSL). One important advantage of a DPSSL is that it offers flexible pulse format modes that can be tailored to meet the needs of a particular application and target molecule. On the other hand, direct generation by a tunable DPSSL will generally be able to cover a more limited wavelength range than is possible with OPO technology. In support of the CALIOPE objectives the authors are exploring the potential for laser action among a class of materials comprised of transition metal-doped zinc chalcogenide crystals (i.e., ZnS, ZnSe and ZnTe). The Cr{sup 2+}, Co{sup 2+} and Ni{sup 2+} dopants were selected as the most favorable candidates, on the basis of their documented spectral properties in the scientific literature. Thus far, the authors have characterized the absorption and emission properties of these ions in the ZnS and ZnSe crystals. The absorption spectra are used to determine the preferred wavelength at which the crystal should be pumped, while the emission spectra reveal the extent of the tuning range potentially offered by the material. In addition, measurements of the emission lifetime as a function of temperature turn out to be quite useful, since this data is suggestive of the room temperature emission yield.

  9. Investigation of laser-induced ablation of ceramic materials for spaceborne applications

    NASA Astrophysics Data System (ADS)

    Schroeder, H.; Hippler, M.; Allenspacher, P.; Riede, W.; Ciapponi, A.; Mateo, A. B.; Ivanov, T.; Alves, J.; Piris, J.; Heese, C.; Wernham, D.

    2016-12-01

    In this work tests for determination of ablation thresholds of various ceramic materials for pulsed laser irradiations at wavelengths of 355 nm and 1064 nm in vacuum are presented. For comparison tests with copper and aluminium are also reported. The ablation process was monitored insitu by long-distance microscopy. The morphology of ablation spots was exsitu inspected by scanning electron microscopy. Furthermore, the redeposition of potentially released particles on optics in the vicinity to the target was examined.

  10. Femtosecond laser processing of transparent materials for assembly-free fabrication of photonic microsensors

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Zhang, Yinan; Huang, Jie; Liu, Jie; Song, Yang; Zhang, Qi; Lei, Jincheng; Xiao, Hai

    2016-03-01

    In this paper, we summarize our recent research progresses on the understanding, design, fabrication, characterization of various photonic sensors for energy, defense, environmental, biomedical and industry applications. Femtosecond laser processing/ablation of various glass materials (fused silica, doped silica, sapphire, etc.) will be discussed towards the goal of one-step fabrication of novel photonic sensors and new enabling photonic devices. A number of new photonic devices and sensors will be presented.

  11. Simulation study on thermal effect of long pulse laser interaction with CFRP material

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Jin, Guangyong; Yuan, Boshi

    2016-10-01

    Laser machining is one of most widely used technologies nowadays and becoming a hot industry as well. At the same time, many kinds of carbon fiber material have been used in different area, such as sports products, transportation, microelectronic industry and so on. Moreover, there is lack of the combination research on the laser interaction with Carbon Fiber Reinforced Polymer (CFRP) material with simulation method. In this paper, the temperature status of long pulse laser interaction with CFRP will be simulated and discussed. Firstly, a laser thermal damage model has been built considering the heat conduction theory and thermal-elasto-plastic theory. Then using COMSOL Multiphysics software to build the geometric model and to simulate the mathematic results. Secondly, the functions of long pulse laser interaction with CFRP has been introduced. Material surface temperature increased by time during the laser irradiating time and the increasing speed is faster when the laser fluence is higher. Furthermore, the peak temperature of the center of material surface is increasing by enhanced the laser fluence when the pulse length is a constant value. In this condition, both the ablation depth and the Heat Affected Zone(HAZ) is larger when increased laser fluence. When keep the laser fluence as a constant value, the laser with shorter pulse length is more easier to make the CFRP to the vaporization material. Meanwhile, the HAZ is becoming larger when the pulse length is longer, and the thermal effect depth is as the same trend as the HAZ. As a result, when long pulse laser interaction with CFRP material, the thermal effect is the significant value to analysis the process, which is mostly effect by laser fluence and pulse length. For laser machining in different industries, the laser parameter choose should be different. The shorter pulse length laser is suitable for the laser machining which requires high accuracy, and the longer one is better for the deeper or larger

  12. DNA-based materials and their device applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rau, Ileana; Kajzar, François; Grote, James G.

    2016-10-01

    In the last decade a lot of interest was paid to DNA materials in view of their practical applications in photonics and in electronics. This aspect is especially due to the fact that this polymer is eco-friendly, originating from renewable resources and can be obtained from any animal or vegetable waste. In this respect many studies have shown that DNA is an intriguing biopolymer which can find applications in many fields. In this paper we will review and discuss the functionalization of DNA and some practical applications.

  13. Nanoindentation in Materials Research: Past, Present, and Future

    SciTech Connect

    Oliver, Warren; Pharr, George Mathews

    2010-01-01

    The method we introduced in 1992 for measuring hardness and elastic modulus by nanoindentation testing has been widely adopted and used in the characterization of mechanical behavior at small scales. Since its original development, the method has undergone numerous refinements and changes brought about by improvements to testing equipment and techniques, as well as advances in our understanding of the mechanics of elastic-plastic contact. In this article, we briefly review the history of the method, comment on its capabilities and limitations, and discuss some of the emerging areas in materials research where it has played, or promises to play, an important role.

  14. Advanced Material Presentation: A Study in Technology and Ergonomics.

    DTIC Science & Technology

    1998-03-01

    other things, included the Instructional Television System, a point-to-point microwave and a fibre -optic telecommunications system (MacBrayne, 1992...presentation software, such as Powerpoint, Lotus Freelance Graphics or Harvard Graphics, are powerful tools that also can create a very refined presentation

  15. Widely tunable, high peak power ultrafast laser sources in biological imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Klein, Julien

    2017-02-01

    Widely tunable ultrafast lasers have enabled a large number of biological imaging techniques including point scanning multiphoton excited fluorescence (MPEF), SHG/THG and stimulated Raman imaging. Tunable ultrafast lasers offer spectral agility, covering the entire relative transparency window in live tissue (700-1300nnm) and flexibility with multi-color, synchronized outputs to support sophisticated label free techniques (e.g. stimulated Raman modalities). More recently newly available high peak power lasers based on Ytterbium technology drive advances in two-photon light-sheet, 3 photon excited fluorescence and holographic patterning for optogenetics photo-stimulation. These laser platforms offer a unique blend of compactness, ease of use and cost efficiency, and ideally complement tunable platforms typically based on Ti:Sapphire and IR optical parametric oscillators (OPO). We present various types of ultrafast laser architectures, link their optical characteristics to key bio-imaging requirements, and present relevant examples and images illustrating their impact in biological science. In particular we review the use of ultrafast lasers in optogenetics and fast in-vivo Calcium imaging deep in mouse brain.

  16. Laser ablation of polymeric materials at 157 nm

    NASA Astrophysics Data System (ADS)

    Costela, A.; García-Moreno, I.; Florido, F.; Figuera, J. M.; Sastre, R.; Hooker, S. M.; Cashmore, J. S.; Webb, C. E.

    1995-03-01

    Results are presented on the ablation by 157 nm laser radiation of polytetrafluoroethylene (PTFE), polyimide, polyhydroxybutyrate (PHB), poly(methyl methacrylate) (PMMA), and poly(2-hydroxyethyl methacrylate) with 1% of ethylene glycol dimethacrylate as a crosslinking monomer. Direct photoetching of PHB and undoped PTFE is demonstrated for laser fluences ranging from 0.05 to 0.8 J/cm2. The dependence of the ablation process on the polymer structure is analyzed, and insight into the ablation mechanism is gained from an analysis of the data using Beer-Lambert's law and the kinetic model of the moving interface. Consideration of the absorbed energy density required to initiate significant ablation suggests that the photoetching mechanism is similar for all the polymers studied.

  17. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation

  18. Briefing Materials for Technical Presentations, Volume A: The LACIE Symposium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Tables, charts, and outlines of various segments within the Large Area Crop Inventory Experiment are presented. Experiment design, system implementation and operations, and data processing system design were considered.

  19. Benzoylpyridine-carbazole based TADF materials and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Chien-Hong

    2016-09-01

    In this report, several benzoylpyridine-carbazole based fluorescence materials bearing carbazolyl or 4-(t-butyl)carbazolyl groups at the ortho, meta and para carbons of the benzoyl ring, were synthesized and studied for their TADF properties. Some of these molecules show very small ΔEST < 0.05 eV and transient PL characteristics indicate that they are thermally activated delayed fluorescence (TADF) materials. In general, they show low fluorescence efficiencies in solutions, but the efficiencies increase drastically in the thin films with some reaching more than 90%. For examples, o- and m-dicarbazolyl substituted DCBPy (2,5-di(9H-carbazol-9-yl)phenyl)(pyridin-4-yl)methanone) and DTCBPy ((3,5-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)(pyridin-4-yl)methanone) in cyclohexane show fluorescence efficiencies of 14 and 36%, but in the thin films, the values increase to 88.0 and 91.4%, respectively. Based on the TDDFT calculation, the HOMOs of DCBPy and DTCBPy are mainly distributed over the two carbazolyl groups and slightly extended to the phenyl ring. The LUMOs are mostly localized on the BPy core and slightly extended to the phenyl ring. There is a small degree of spatial overlap between the HOMO and LUMO in these two molecules. The OLEDs using DCBPy and DTCBPy as dopants emit blue and green light with EQEs of 24.0 and 27.2%, respectively, and with low efficiency roll-off at practical brightness level. The crystal structure of DTCBPy reveals a substantial interaction between the ortho donor (carbazolyl) and acceptor (4-pyridylcarbonyl) unit. The interaction between donor and acceptor substituents likely plays a key role to achieve very small ΔEST with high photoluminescence. In addition to the above two compounds, we also prepared a series of different benzoylpyridine-carbazole derivatives, the results will also be reported.

  20. Ab-initio calculations for energy transfer from ultrashort laser pulse to dielectrics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yabana, Kazuhiro

    2017-05-01

    Ab-initio density functional theory (DFT) has been successful for calculations of ground state properties of various materials. Time-dependent density functional theory (TDDFT) is an extension of the DFT and can describe electron dynamics in molecules, nano-structures, and solids induced by optical electric fields. We have been developing a computational method to describe electron dynamics in a crystalline solid under an irradiation of an ultrashort laser pulse, solving the time-dependent Kohn-Sham equation in real time. The method can be used for an ab-initio description of light-matter interactions. We further couple the electron dynamics calculation with the macroscopic Maxwell equations in a multiscale implementation. It can describe laser pulse propagation in dielectrics and, in particular,the energy transfer from the laser pulse to electrons in dielectrics without any empirical parameters. We apply the method to analyze recent experiments utilizing attosecond spectroscopy methods. We show a few examples. One is for the ultrafast changes of dielectric properties of diamond during the irradiation of an intense few-cycle laser pulse. We mimic the pump-probe measurement employing the multiscale Maxwell + TDDFT simulation. We clarified that the dynamical Franz-Keldysh effect is responsible for the mechanism. The other is to identify the onset of the energy transfer from the laser pulse to SiO_2 when we increase the intensity of the laser pulse. We are currently extending the analysis to obtain a clear and intuitive understanding for the initial stage of laser damage processes.

  1. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    DTIC Science & Technology

    2016-07-07

    AFRL-AFOSR-JP-TR-2016-0059 Optical material researches for frontier optical ceramics and visible fiber laser technologies Yasushi Fujimoto Osaka...07-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Optical material researches for frontier...are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY

  2. High-speed surface functionalization by direct laser interference patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dyck, Tobias; Lasagni, Andrés.-Fabián.

    2017-03-01

    The material processing by two or more interfering laser beams, is referred to as Direct Laser Interference Patterning (DLIP). The periodic intensity pattern of the overlapping laser beams is used to ablate or modify the material so a functionalization of the surface is achieved. By adjusting the number, direction, intensity and polarization of the interfering beams, the detailed geometry of the intensity pattern can be shaped and the realizable feature sizes can be continuously adjusted within the micro- and submicrometer range. Consequently, the surface texture can be engineered and tailored to perfectly suit the needs of a given application. Typical applications of DLIP range from in- and out coupling of light in solar cells or organic LEDs over improvement of tribological properties in engine parts to security markings and decoration applications due to the shimmering effect of the periodic textures. On laboratory scale, an improvement over unprocessed surfaces has been demonstrated in all of these mentioned applications. However, so far the feed rates have not sufficed to allow an industrial application of the technology. Now, in a joint project of laser manufacturer, optics designer and engineering company, a machine platform has been developed which allows high surface processing speeds in an industrial environment. Feed rates in the range of square meters per minute (corresponding to about one billion features per second) can be achieved. With the help of this platform, DLIP can finally be lifted to industrial application.

  3. Material removal during double-pulsed (ms and ns) laser drilling

    NASA Astrophysics Data System (ADS)

    Wang, Zicheng; Qin, Yuan; Yang, Sen; Shi, Bang; Wang, Heming; Chen, Hanyu

    2017-05-01

    Laser drilling is one of the processing approaches in aerospace industry. However, drilling with ms laser is unstable since the drilled hole is easy to be blocked by re-solidified molten material. To solve this problem, two different pulsed lasers (millisecond and nanosecond) are used in our experiments. The shock wave produced by the ns laser is introduced to increase the migration mass. With the help of shock wave, the depth and quality of the hole get higher. The influences of the interval time, the ms laser energy and the laser pulse duration time on the quality of drilled holes are also discussed. The results show that the hole is deep and clean if the ns laser is added shortly after the beginning of ms laser. The ms laser energy and the laser duration time determine the depth of the hole.

  4. Laser vibrometry for investigation of tympanic membrane implant materials

    NASA Astrophysics Data System (ADS)

    Zahnert, Thomas; Kuster, Manfred; Vogel, Uwe; Hofmann, Gert; Huettenbrink, Karl-Bernd

    1996-12-01

    The human tympanic membrane has reasonably good sound sensing properties. A destroyed tympanic membrane due to middle ear diseases or traumata may be repaired by different types of grafts. Middle ear surgery mostly uses autologous temporal fascia, cartilage, or cartilage perichondrium transplants. We have investigated the acoustical and mechanical properties of these materials and compared them with human tympanic membrane by constructing an ear canal model completed by an artificial tympanic membrane. Circular stretched human fascia, perichondrium, and cartilage preparations were exposed to static pressures up to 4 kPa and white noise sound pressure levels of 70 dB. The vibrational amplitudes and displacements due to static pressure of the graft material were measured by laser Doppler vibrometry and compared. The thin materials temporal fascia and perichondrium show similar amplitude frequency responses compared to the tympanic membrane for dynamic excitation. The displacement of these materials at static pressures above 4 kPA yields a higher compliance than tympanic membrane. The acoustical and mechanical properties of cartilage transplants change with the thickness of the slices. However, the thinner the cartilage slice combined with lower stability, the more similar is the frequency response with the intact tympanic membrane. The vibration amplitudes decrease more and more for layer thicknesses above 500 micrometers. Cartilage acts as an excellent transplant material which provides a better prognosis than different materials in cases of ventilation disorders with long-term middle ear pressure changes. Large cartilage slice transplants should not exceed layer thicknesses of 500 micrometer in order to prevent drawbacks to the transfer characteristics of the tympanic membrane.

  5. High power laser heating of low absorption materials

    SciTech Connect

    Olson, K.; Talghader, J.; Ogloza, A.; Thomas, J.

    2014-09-28

    A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO₂ and SiO₂were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm², on 500 μm diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 μm to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m²) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W/m∙ tan⁻¹(√(t)/m) in the transition region between the two.

  6. Mechanics of composite materials - Past, present and future

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1989-01-01

    Composite mechanics disciplines are presented and described at their various levels of sophistication and attendant scales of application. Correlation with experimental data is used as the prime discriminator between alternative methods and level of sophistication. Major emphasis is placed on: (1) where composite mechanics has been; (2) what it has accomplished; (3) where it is headed, based on present research activities; and (4) at the risk of being presumptuous, where it should be headed. The discussion is developed using selected, but typical examples of each composite mechanics discipline identifying degree of success, with respect to correlation with experimental data, and problems remaining. The discussion is centered about fiber/resin composites drawn mainly from the author's research activities/experience spanning two decades at Lewis.

  7. Mechanics of Composite Materials: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1984-01-01

    Composite mechanics disciplines are presented and described at their various levels of sophistication and attendant scales of application. Correlation with experimental data is used as the prime discriminator between alternative methods and level of sophistication. Major emphasis is placed on: (1) where composite mechanics has been; (2) what it has accomplished; (3) where it is headed, based on present research activities; and (4) at the risk of being presumptuous, where it should be headed. The discussion is developed using selected, but typical examples of each composite mechanics discipline identifying degree of success, with respect to correlation with experimental data, and problems remaining. The discussion is centered about fiber/resin composites drawn mainly from the author's research activities/experience spanning two decades at Lewis.

  8. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    SciTech Connect

    Gallais, L. Douti, D.-B.; Commandré, M.; Batavičiūtė, G.; Pupka, E.; Ščiuka, M.; Smalakys, L.; Sirutkaitis, V.; Melninkaitis, A.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thin film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.

  9. Doping transition metal ions into laser host crystals by hot isostatic pressing (HIP) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barnes, Jacob O.; Stites, Ronald W.; Cook, Gary; McDaniel, Sean; Krein, Douglas M.; Guha, Shekhar; Goldsmith, John

    2017-05-01

    This paper describes using a hot isostatic pressing (HIP) to improve II-VI crystal characteristics and diffuse metal ions into laser host crystals. Thin layers of metal are sputtered onto the surface of zinc selenide and zinc sulfide crystals prior to being HIP treated. The pre and post treatment optical properties for these materials are measured using various methods and at a variety of dopant concentrations.

  10. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    SciTech Connect

    Tanaka, Nozomi Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi

    2015-09-14

    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9–25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ∼10{sup 9 }W/cm{sup 2}. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  11. Dual-beam laser thermal processing of silicon photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Simonds, Brian J.; Teal, Anthony; Zhang, Tian; Hadler, Josh; Zhou, Zibo; Varlamov, Sergey; Perez-Würfl, Ivan

    2016-03-01

    We have developed an all-laser processing technique by means of two industrially-relevant continuous-wave fiber lasers operating at 1070 nm. This approach is capable of both substrate heating with a large defocused beam and material processing with a second scanned beam, and is suitable for a variety of photovoltaic applications. We have demonstrated this technique for rapid crystallization of thin film (~10 μm) silicon on glass, which is a low cost alternative to wafer-based solar cells. We have also applied this technique to wafer silicon to control dopant diffusion at the surface region where the focused line beam rapidly melts the substrate that then regrows epitaxially. Finite element simulations have been used to model the melt depth as a function of preheat temperature and line beam power. This process is carried out in tens of seconds for an area approximately 10 cm2 using only about 1 kW of total optical power and is readily scalable. In this paper, we will discuss our results with both c-Si wafers and thin-film silicon.

  12. Ultraprecision grinding of optical materials for high-power lasers

    NASA Astrophysics Data System (ADS)

    Namba, Yoshiharu; Yoshida, Kunio; Yoshida, Hidetsugu; Nakai, Sadao

    1998-04-01

    Grinding is considered to be a rough machining process in the field of optics; a polishing process must follow the grinding process for getting optical-quality surfaces. An ultraprecision surface grinder with hydrostatic oil bearings and a glass-ceramic spindle of extremely low thermal expansion was developed to get smooth optical surfaces without any polishing process. Various optical materials such as NbF1, BK7, LHG08 fused silica, KTP, KDP and CLBO were ground into optical surfaces after empirically determining the conditions required to attain ductile-mode grinding. An extremely smooth surface less than 0.1 nm rms was obtained on BK7 glass by the ultraprecision grinding process. The laser-induced damage threshold was measured on variously finished LHG-8 laser glass at (lambda) equals 1.053 micrometers and 1-ns pulse width. The damage threshold was measured at 22.2 J/cm2 on a ground surface with the polarization parallel to the grinding direction. This number is higher than that obtained by optical polish. The damage threshold of 293 J/cm2 was also obtained on a ground LHG-8 glass surface at (lambda) equals 1.053 micrometers and 30-ns pulse width.

  13. Results of UV laser application on biological material

    NASA Astrophysics Data System (ADS)

    Alifano, P.; Nassisi, Vincenzo; Pompa, Pier P.; Candido, A.

    2002-08-01

    In this paper we report on the biological effects of XeCL laser irradiation on Staphylococcus epidermidis and Escherichia coli. UV interaction with cellular systems is responsible for photochemical, photothermal or photodecomposition processes. When short-wavelength UV radiation strikes biological material, the DNA is damaged causing cell killing, mutagenesis or carcinogenesis. We report on different effects of XeCl laser irradiation on two microbial systems; collection strain of Staphylococcus epidermidis (in suspension) and collection strains of Eschericha coli proficient or deficient in DNA recombination/repair pathways (irradiated on solid surfaces). In S epidermidis the 308 nm radiation can significantly enhanced the proliferation rates. In wild type E. coli cells the radiation did not stimulate the growth rates. Surprisingly, the 308 nm radiation elicited a very strong lethal effect on DNA recombination/repair-defective strains (harbouring the recA56 null mutation), even more pronounced than irradiation with a UV 254 nm germicidal lamp. The unknown mechanism responsible for this biological response is currently under investigation.

  14. Photoemissive materials for 0.35 Micron laser fiducials in X-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Hale, C. P.; Medecki, H.; Lee, P. H. Y.

    Using a soft X-ray streak camera, materials are tested for suitability as transmission photocathodes when irradiated by 0.35 micron laser pulses. Preliminary measurements of sensitivity, dynamic range and temporal resolution are reported. A practical fiber optic fiducial under development for laser fusion X-ray diagnostics on the LLNL Nova laser system is described.

  15. Recent progress made in testing laser diodes and optical materials subjected to exposure in space

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.

    2011-09-01

    In this paper, progress made so far in the performance testing of waveguide laser components sent by NASA Langley Research Center on MISSE 6 mission will be discussed. The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. The results of post-testing of several optical materials that were recently returned back after more than one year of exposure on the International Space Station (ISS) will be presented. The items were part of the MISSE 6 mission that was transported to the ISS via STS 123 on March 11, 2008 and returned to the Earth via STS 128 that was launched on August 2009. The materials experienced no visible damage during lengthy exposure in space. In the case of laser diode, a comparison of elemental analysis with pre-flight conditions will be presented. Furthermore, the optical components sent on MISSE 7 mission via STS-129 and later retrieved by STS-134 will be briefly discussed.

  16. Next-generation high-reliability laser light engine by glass phosphor-converted layer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Peng; Chang, Jin-Kai; Cheng, Wei-Chih; Liu, Chun-Nien; Chen, Li-Yin; Cheng, Wood-Hi

    2016-09-01

    A new scheme of high-reliability laser light engine (LLE) employing a novel glass-based phosphor-converted layer is proposed and demonstrated. The LLE module consists of a high-power blue light laser array and a color wheel, which includes two glass-based phosphor-converted layers of yellow Ce:YAG and green Ce:LuAG and a micro motor. The combinations of blue, yellow, and green lights produce high-purity phosphor-converted white-laser-diodes (PC-WLDs). The lumen degradation and chromaticity shift in the glass-based phosphor-converted layer under different laser powers are presented and compared with those of silicon-based PC-WLDs. The results showed that the glass based PC-WLDs exhibited in lower lumen loss and less chromaticity shifts than the silicon-based PC-WLDs. The long term reliability study evaluation in glass- and silicone-based PC-WLDs under high-power 120 W at room temperature for 20,000 hours is also presented and compared. The result showed that the silicone-based PC-WLDs exhibited 50% in lumen decay which failed in operation, while the glass-based PC-WLDs only exhibited 2% in lumen decay. This indicates that the proposed LLE modules are benefit to employ in the area where the silicone-based material fails to stand for long and strict reliability is highly required. This study demonstrates the advantages of adapting novel glass as a phosphor-converted color wheel in the LLE modules that provide unique high-reliability as well as better performance for use in the next-generation laser projector system.

  17. X-ray diffraction tomography of polycrystalline materials: present and future (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Almer, Jonathan D.; Birkedal, Henrik

    2016-10-01

    Scattered x-radiation can be used for computed tomographic reconstruction of the distribution of crystallographic phases within the interior of specimens, and diffraction patterns can be measured for each volume element (voxel) within a reconstructed slice. This modality has been applied to systems as diverse as mineralized tissues and inorganic composites. Use of high energy x-rays (E < 40 keV) offers advantages including the ability to study volumes deep with specimens and to sample large ranges of reciprocal space, i.e., many reflections. The bases of diffraction tomography are reviewed, and the power of the technique is illustrated by the results obtained for specimens containing: a) different materials (SiC/Al composite), b) different polytypes (calcite/aragonite in a bivalve attachment system); c) mixtures of nanocrystalline and amorphous phases; d) a single phase, but volumes with different lattice parameters (hydroxyapatite, hAp, the mineral in bone and tooth); e) a single phase containing a spatial distribution of crystallographic texture (bone); a single phase with a spatial distribution of strains produced by in situ loading (bone). Finally, challenges and future directions are discussed.

  18. Nd:YAG laser in endodontics: filling-material edge bordering on a root channel laser cavity

    NASA Astrophysics Data System (ADS)

    Belikov, Andrei V.; Sinelnik, Yuri A.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1997-12-01

    For the very first time it is represented a study of filling material edge bordering upon root channel cavity modified with a laser. As a filling material it is used a glass ionomer cement. It is demonstrated that Nd:YAG laser radiation effects on increase of grade of edge bordering on the average of 20 - 30% at temperature rise of no more than 2 - 3 degrees in periodontium area in a period of operation.

  19. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    DOE PAGES

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-12-06

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less

  20. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials

    SciTech Connect

    Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.

    2016-12-06

    This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.

  1. Laser-Induced Damage in Optical Materials: 2005, Proceedings of SPIE,

    SciTech Connect

    Exarhos, Gregory J.; Guenther, Arthur H.; Ristau, Detlev; Lewis, Keith L.; Soileau, M. J.; Stolz, Christopher J.

    2005-12-27

    This volume contains papers presented at the 37th Annual Symposium on Optical Materials for High-Power Lasers that was held at the National Institute of Standards and Technology in Boulder, Colorado, 19-21 September 2005. The symposium was cosponsored by Lawrence Livermore National Laboratory (USA), and the Pacific Northwest National Laboratory (USA). Cooperating organizations were the Center for High Technology Materials at the University of New Mexico (USA), Laser Zentrum Hannover e.V. (Germany), the National Institute of Standards and Technology (USA), QinetiQ (United Kingdom), and the College of Optics and Photonics, CREOL and FPCE, University of Central Florida (USA). The symposium, was attended by 145 scientist and engineers from China, France, Lithuania, Russia, France, Germany, Japan, the Netherlands, Russia, the United States, and the United Kingdom. One-third of the attendees and nearly half of the presentations were from abroad. A mini-symposium on Tuesday afternoon, that addressed damage issues associated with petawatt lasers, highlighted our growing interest in the emerging area. Including the mini-symposium, 87 papers were presented in oral and poster sessions.

  2. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  3. High-energy density experiments on planetary materials using high-power lasers and X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ozaki, Norimasa

    2015-06-01

    Laser-driven dynamic compression allows us to investigate the behavior of planetary and exoplanetary materials at extreme conditions. Our high-energy density (HED) experiments for applications to planetary sciences began over five years ago. We measured the equation-of-state of cryogenic liquid hydrogen under laser-shock compression up to 55 GPa. Since then, various materials constituting the icy giant planets and the Earth-like planets have been studied using laser-driven dynamic compression techniques. Pressure-volume-temperature EOS data and optical property data of water and molecular mixtures were obtained at the planetary/exoplanetary interior conditions. Silicates and oxides data show interesting behaviors in the warm-dense matter regime due to their phase transformations. Most recently the structural changes of iron were observed for understanding the kinetics under the bcc-hcp transformation phenomena on a new HED science platform coupling power-lasers and the X-ray free electron laser (SACLA). This work was performed under the joint research project at the Institute of Laser Engineering, Osaka University. It was partially supported by a Grant-in-Aid for Scientific Research (Grant Nos. 20654042, 22224012, 23540556, and 24103507) and also by grants from the Core-to-Core Program of JSPS on International Alliance for Material Science in Extreme States with High Power Laser and XFEL, and the X-ray Free Electron Laser Priority Strategy Program of MEXT.

  4. Pump-induced phase aberrations in Yb3+-doped materials(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keppler, Sebastian; Tamer, Issa; Hornung, Marco; Körner, Jörg; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte C.

    2017-05-01

    Optical pumping of laser materials is an effective way to create a population inversion necessary for laser operation. However, a fraction of the pump energy is always transfered as heat into the laser material, which is mainly caused by the quantum defect. For Yb3+-doped materials, the small energy difference between the pump level and the laser level and the pumping with narrowband high-power laser diodes result in a quantum defect of approx. 9%, which is significantly lower compared to other dopants e.g. Ti3+ (33%) or Nd3+ (24%). Due to the low heat introduction, high optical-to-optical efficiency and high repetition rate laser systems based on diode-pumping are well-suited for a number of applications. Here, however, laser beam quality is of crucial importance. Phase distortions and beam profile modulations can lead to optical damages as well as a significant reduction of the focal spot intensity. Pump-induced phase aberrations are the main cause for phase distortions of the amplified laser beam. The heat transferred to the material causes a change of the refractive index (dn/dT), thermal expansion and stress within the laser material, eventually leading to spatial phase aberrations (also called `thermal lens'). However, the spatially dependent distribution of the population inversion itself also leads to spatial phase aberrations. Since electron excitation directly leads to a change in the charge distribution of the laser active ions, the dynamic response of the material to external fields changes. These electronic phase aberrations (also called `population lens') are described by a change in the polarizability of the material. Due to the low quantum defect of Yb3+-doped materials, this effect becomes more important. We show the first comprehensive spatio-temporal characterization of the pump-induced phase aberration including both effects. A high-resolution interference measurement was carried out with time steps of 50µs for times during the pump period and

  5. Electron beam/laser glazing of iron-base materials

    NASA Astrophysics Data System (ADS)

    Strutt, P. R.; Lewis, B. G.; Kurup, M.

    1981-07-01

    Research on directed energy source processing of hard-iron base materials demonstrates the effect of environment, alloy chemistry and processing parameters on the nature of the crystal structure, distribution, and compositional variation of phases. In molybdenum high speed steels, for example, it is found that segregation resulting from convective and turbulent flow during glazing may either result in large scale phase separation or compositional variation within a phase. Another example of the importance of processing conditions is a clear demonstration of the effect of small oxide particles in inducing martensite during laser processing. A detailed analysis has been made to determine the effect of deflection coil parameters on the distortion of surface area glazing patterns. This is particularly important in developing techniques for preparing uniform rapidly solidified layers. In studying molybdenum base high speed steels the value of the carbon content is found to be important in determining delta ferrite formation and the peritectic reaction of this phase to uniform austenite and carbide phases. In contrast to M2 (where the carbon concentration is 0.85wt%) a homogeneous gamma/alpha phase mixture forms in materials with a carbon content of > or = 1wt%, i.e. the alloys M7, and M42. However in these two materials combined convective and turbulent flow during glazing results in a significant composition variation of the refractory elements. Tempering largely removes this inhomogeneity and results in the formation of a homogeneous tempered martensite structure. A most important effect observed in M2, M7, and M42 was the shift to longer tempering times of material glazed at moderate to high beam velocities.

  6. Precision shaping of transparent materials for optical devices with VUV laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian J.

    2004-04-01

    The precision machining of glass by laser ablation has been expanded with the short wavelength of the 157 nm of the F2 excimer laser. The high absorption of this wavelength in any optical glass, especially in UV-grade fused silica, offers a new approach to generate high quality surfaces, addressing also micro-optical components. In this paper, the machining of basic diffractive and refractive optical components and the required machining and process technology is presented. Applications that are addressed are cylindrical and rotational symmetrical micro lenses and diffractive optics like phase transmission grating and diffractive optical elements (DOEs). These optical surfaces have been machined into bulk material as well as on fiber end surfaces, to achieve compact (electro)-optical elements with high functionality and packaging density. The short wavelength of 157 nm used in the investigations require either vacuum or high purity inert gas environments. The influence of different ambient conditions is presented.

  7. Ho:Tm:Lu(3)Al(5)O(12) As An Infrared-Laser Material

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Morrison, Clyde A.; Filer, Elizabeth D.

    1995-01-01

    Material selected on basis of quantum-mechanical modeling of lasing properties. Ho:Tm:Lu(3)Al(5)O(12) features relatively low thermal occupation of lower laser level because this level higher than corresponding levels of most other available laser materials. In addition, it has reasonably large effective cross section for stimulated emission because of contribution of several transitions around central strong transition. Yet another desirable property is its calculated rate of upconversion is lower than those of other laser materials. Inasmuch as upconversion detracts from efficiency of laser, this lower rate of upconversion is highly desirable.

  8. Development of optically pumped DBR-free semiconductor disk lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Albrecht, Alexander R.; Cederberg, Jeffrey G.; Sheik-Bahae, Mansoor

    2017-03-01

    Semiconductor disk lasers (SDLs) are attractive for applications requiring good beam quality, wavelength versatility, and high output powers. Typical SDLs utilize the active mirror geometry, where a semiconductor DBR is integrated with the active region by growth or post-growth bonding. This imposes restrictions for the SDL design, like material system choice, thermal management, and effective gain bandwidth. In DBR-free geometry, these restrictions can be alleviated. An integrated gain model predicts DBR-free geometry with twice the gain bandwidth of typical SDLs, which has been experimentally verified with active regions near 1 μm and 1.15 μm. The lift-off and bonding technique enables the integration of semiconductor active regions with arbitrary high quality substrates, allowing novel monolithic geometries. Bonding an active region onto a straight side of a commercial fused silica right angle prism, and attaching a high reflectivity mirror onto the hypotenuse side, with quasi CW pumping at 780 nm, lasing operation was achieved at 1037 nm with 0.2 mW average power at 1.6 mW average pump power. Laser dynamics show that thermal lens generation in the active region bottlenecks the laser efficiency. Investigations on total internal reflection based monolithic ring cavities are ongoing. These geometries would allow the intracavity integration of 2D materials or other passive absorbers, which could be relevant for stable mode locking. Unlike typical monolithic microchip SDLs, with the evanescent wave coupling technique, these monolithic geometries allow variable coupling efficiency.

  9. Real-time measurement of materials properties at high temperatures by laser produced plasmas

    NASA Technical Reports Server (NTRS)

    Kim, Yong W.

    1990-01-01

    Determination of elemental composition and thermophysical properties of materials at high temperatures, as visualized in the context of containerless materials processing in a microgravity environment, presents a variety of unusual requirements owing to the thermal hazards and interferences from electromagnetic control fields. In addition, such information is intended for process control applications and thus the measurements must be real time in nature. A new technique is described which was developed for real time, in-situ determination of the elemental composition of molten metallic alloys such as specialty steel. The technique is based on time-resolved spectroscopy of a laser produced plasma (LPP) plume resulting from the interaction of a giant laser pulse with a material target. The sensitivity and precision were demonstrated to be comparable to, or better than, the conventional methods of analysis which are applicable only to post-mortem specimens sampled from a molten metal pool. The LPP technique can be applied widely to other materials composition analysis applications. The LPP technique is extremely information rich and therefore provides opportunities for extracting other physical properties in addition to the materials composition. The case in point is that it is possible to determine thermophysical properties of the target materials at high temperatures by monitoring generation and transport of acoustic pulses as well as a number of other fluid-dynamic processes triggered by the LPP event. By manipulation of the scaling properties of the laser-matter interaction, many different kinds of flow events, ranging from shock waves to surface waves to flow induced instabilities, can be generated in a controllable manner. Time-resolved detection of these events can lead to such thermophysical quantities as volume and shear viscosities, thermal conductivity, specific heat, mass density, and others.

  10. High-speed cutting of thin materials with a Q-switched laser in a water-jet versus conventional laser cutting with a free running laser

    NASA Astrophysics Data System (ADS)

    Wagner, Frank R.; Boillat, Christophe; Buchilly, Jean-Marie; Spiegel, Akos; Vago, Nandor; Richerzhagen, Bernold

    2003-07-01

    Cutting of thin material, c.f. stencils, stents and thin wafers, is an important market for laser machining. Traditionally this task is performed using flash-lamp pumped, free-running Nd:YAG lasers. Using the water-jet guided laser technology, we experienced that the use of Q-switched lasers leads to superior results while cutting a variety of thin materials. In this technique, the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. Utilizing this system, we obtain burr-free, slightly tapered cuts at the same speed as the classical laser cutting and without distinguishable heat affected zone. The main difference is, except the water-jet usage, the pulse duration which is approximately 400 ns instead of 20 to 200 μs in the case of free running lasers. Up to 40'000 high quality apertures per hour can be achieved in stencil mask cutting with the new system. We will compare qualitatively the two possibilities: conventional laser cutting with free-running lasers and water-jet guided laser cutting with Q-switched lasers. The results will be discussed in terms of the different physical effects involved in the material removal upon both methods. In particular the importance of molten material expulsion by the water-jet will be pointed out and compared to the action of the assist-gas. The mentioned effects show that the combination of short pulse laser and water-jet will be beneficial for the production of a wide range of precision parts.

  11. Computational modelling of Er(3+): Garnet laser materials

    NASA Technical Reports Server (NTRS)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  12. Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials

    DTIC Science & Technology

    2015-05-01

    Technical Report ARWSB-TR-15003 Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials Mark E. Todaro...SUBTITLE Customer Overview of Pulsed Laser Heating for Evaluation of Gun Bore Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  13. Influence Pulse Duration Methodical Error of Determination of Thermal Translucent Materials Laser Flash Method

    NASA Astrophysics Data System (ADS)

    Katz, Mark M.; Katz, Ilija M.

    2016-02-01

    The analysis of errors in the determination of thermal diffusivity of a typical semiconductor material - Germany, due to radiative energy transfer in the heated layer of material, under conditions consistent with the implementation of the method under the influence of the laser pulse on the surface of the collimated laser pulse of finite duration.

  14. Direct laser writing of three-dimensional network structures as templates for disordered photonic materials

    NASA Astrophysics Data System (ADS)

    Haberko, Jakub; Muller, Nicolas; Scheffold, Frank

    2013-10-01

    In the present article we substantially expand on our recent study about the fabrication of mesoscale polymeric templates of disordered photonic network materials [Haberko and Scheffold, Opt. Expr.OPEXFF1094-408710.1364/OE.21.001057 21, 1057 (2013)]. We present a detailed analysis and discussion of important technical aspects related to the fabrication and characterization of these fascinating materials. Compared to our initial report we were able to reduce the typical structural length scale of the seed pattern from a=3.3μm to a=2μm, bringing it closer to the technologically relevant fiber-optic communications wavelength range around λ˜1.5μm. We have employed scanning electron microscopy coupled with focused ion beam cutting to look inside the bulk of the samples of different heights. Moreover, we demonstrate the use of laser scanning confocal microscopy to assess the real space structure of the samples fabricated by direct laser writing. We address in detail questions about scalability, finite size effects, and geometrical distortions. We also study the effect of the lithographic voxel shape, that is, the ellipsoidal shape of the laser pen used in the fabrication process. To this end we employ detailed numerical modeling of the scattering function using a discrete dipole approximation scheme.

  15. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  16. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  17. Transition from congress abstract to full publication for clinical trials presented at laser meetings.

    PubMed

    Akbari-Kamrani, Marjan; Shakiba, Behnam; Parsian, Sana

    2008-07-01

    The present study aims to identify (1) what proportion of abstracts of clinical trials presented at The American Society for Laser Medicine and Surgery (ASLMS) annual meetings are published as full reports, (2) time to publication, and (3) factors that may predict the publication of research in peer-reviewed journals. Two investigators independently hand-searched all abstracts of the ASLMS meetings to identify all reports of clinical trials. Details of sample size, the country of origin, topic of research, type of presentation, type of laser, direction of outcome, and statistical significance were recorded for each abstract. To determine the full publication status of each study, The Cochrane Central Register of Controlled Trials, PubMed, and EMBASE was searched. A total of 198 abstracts were identified. Of these, 87 abstracts (44%) have been fully published. The average time from presentation at the meeting to full publication was 57 months (95% confidence interval = 52-61), and the estimated rate of abstracts published at 1, 2, and 4 years was 15, 30, and 38%, respectively. There is significant tendency for being fully published in high-power laser studies, with USA as country of origin, and orally presented. Our findings supports this opinion that conference abstracts can be an important source for systematic reviews and failure to identify trials presented in congresses might threaten the validity of systematic reviews.

  18. Combinatorial materials approach to accelerate materials discovery for transportation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tong, Wei

    2017-04-01

    Combinatorial material research offers fast and efficient solutions to identify promising and advanced materials. It has revolutionized the pharmaceutical industry and now is being applied to accelerate the discovery of other new compounds, e.g. superconductors, luminescent materials, catalysts etc. Differing from the traditional trial-and-error process, this approach allows for the synthesis of a large number of compositionally diverse compounds by varying the combinations of the components and adjusting the ratios. It largely reduces the cost of single-sample synthesis/characterization, along with the turnaround time in the material discovery process, therefore, could dramatically change the existing paradigm for discovering and commercializing new materials. This talk outlines the use of combinatorial materials approach in the material discovery in transportation sector. It covers the general introduction to the combinatorial material concept, state of art for its application in energy-related research. At the end, LBNL capabilities in combinatorial materials synthesis and high throughput characterization that are applicable for material discovery research will be highlighted.

  19. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  20. Pulsed laser vaporization synthesis of boron loaded few layered graphene (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tennyson, Wesley D.; Tian, Mengkun; More, Karren L.; Geohegan, David B.; Puretzky, Alexander A.; Papandrew, Alexander B.; Rouleau, Christopher M.; Yoon, Mina

    2017-02-01

    The bulk production of loose graphene flakes and its doped variants are important for energy applications including batteries, fuel cells, and supercapacitors as well as optoelectronic and thermal applications. While laser-based methods have been reported for large-scale synthesis of single-wall carbon nanohorns (SWNHs), similar large-scale production of graphene has not been reported. Here we explored the synthesis of doped few layered graphene by pulsed laser vaporization (PLV) with the goal of producing an oxidation resistant electrode support for solid acid fuel cells. PLV of graphite with various amounts of boron was carried out in mixtures in either Ar or Ar/H2 at 0.1 MPa at elevated temperatures under conditions typically used for synthesis of SWNHs. Both the addition of hydrogen to the background argon, or the addition of boron to the carbon target, was found to shift the formation of carbon nanohorns to two-dimensional flakes of a new form of few-layer graphene material, with sizes up to microns in dimension as confirmed by XRD and TEM. However, the materials made with boron exhibited superior resistance to carbon corrosion in the solid acid fuel cell and thermal oxidation resistance in air compared to similar product made without boron. Mechanisms for the synthesis and oxidation resistance of these materials will be discussed based upon detailed characterization and modeling. •Synthesis science was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Material processing and characterization science supported by ARPA-E under Cooperative Agreement Number DE-AR0000499 and as a user project at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

  1. Ion Acceleration by Laser Plasma Interaction from Cryogenic Micro Jets - Oral Presentation

    SciTech Connect

    Propp, Adrienne

    2015-08-25

    possibility of transforming our liquid cryogenic jets into droplet streams. This type of target should solve our problems with the jet as it will prevent the flow of exocurrent into the nozzle. It is also highly effective as it is even more mass-limited than standard cryogenic jets. Furthermore, jets break up spontaneously anyway. If we can control the breakup, we can synchronize the droplet emission with the laser pulses. In order to assist the team prepare for an experiment later this year, I familiarized myself with the physics and theory of droplet formation, calculated values for the required parameters, and ordered the required materials for modification of the jet. Future experiments will test these droplet streams and continue towards the goal of ion acceleration using cryogenic targets.

  2. Efficient production by laser materials processing integrated into metal cutting machines

    NASA Astrophysics Data System (ADS)

    Wiedmaier, M.; Meiners, E.; Dausinger, Friedrich; Huegel, Helmut

    1994-09-01

    Beam guidance of high power YAG-laser (cw, pulsed, Q-switched) with average powers up to 2000 W by flexible glass fibers facilitates the integration of the laser beam as an additional tool into metal cutting machines. Hence, technologies like laser cutting, joining, hardening, caving, structuring of surfaces and laser-marking can be applied directly inside machining centers in one setting, thereby reducing the flow of workpieces resulting in a lowering of costs and production time. Furthermore, materials with restricted machinability--especially hard materials like ceramics, hard metals or sintered alloys--can be shaped by laser-caving or laser assisted machining. Altogether, the flexibility of laser integrated machining centers is substantially increased or the efficiency of a production line is raised by time-savings or extended feasibilities with techniques like hardening, welding or caving.

  3. Selective laser sintering of calcium phosphate materials for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Lee, Goonhee

    Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as

  4. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams.

    PubMed

    Bang, W; Albright, B J; Bradley, P A; Vold, E L; Boettger, J C; Fernández, J C

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E∼20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  5. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE /E ˜20 %, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. The robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  6. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  7. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  8. Research and application of surface heat treatment for multipulse laser ablation of materials

    NASA Astrophysics Data System (ADS)

    Cai, Song; Chen, Genyu; Zhou, Cong

    2015-11-01

    This study analysed a laser ablation platform and built heat transfer equations for multipulse laser ablation of materials. The equations include three parts: laser emission after the material melt and gasification; end of laser emission after the material melts and there is the presence of a super-hot layer and solid-phase heat transfer changes during material ablation. For each of the three parts, the effects of evaporation, plasma shielding and energy accumulation under the pulse interval were considered. The equations are reasonable, and all the required parameters are only related to the laser parameters and material properties, allowing the model to have a certain versatility and practicability. The model was applied for numerical simulation of the heat transfer characteristics in the multipulse laser ablation of bronze and diamond. Next, experiments were conducted to analyse the topography of a bronze-bonded diamond grinding wheel after multipulse laser ablation. The theoretical analysis and experimental results showed that multipulse laser can merge the truing and dressing on a bronze-bonded diamond grinding wheel. This study provides theoretical guidance for optimising the process parameters in the laser ablation of a bronze-bonded diamond grinding wheel. A comparative analysis showed that the numerical solution to the model is in good agreement with the experimental data, thus verifying the correctness and feasibility of the heat transfer model.

  9. Quantitative estimate of fs-laser induced refractive index changes in the bulk of various transparent materials

    NASA Astrophysics Data System (ADS)

    Mermillod-Blondin, A.; Seuthe, T.; Eberstein, M.; Grehn, M.; Bonse, J.; Rosenfeld, A.

    2014-05-01

    Over the past years, many applications based on laser-induced refractive index changes in the volume of transparent materials have been demonstrated. Ultrashort pulse lasers offer the possibility to process bulky transparent materials in three dimensions, suggesting that direct laser writing will play a decisive role in the development of integrated micro-optics. At the present time, applications such as 3D long term data storage or embedded laser marking are already into the phase of industrial development. However, a quantitative estimate of the laser-induced refractive index change is still very challenging to obtain. On another hand, several microscopy techniques have been recently developed to characterize bulk refractive index changes in-situ. They have been mostly applied to biological purposes. Among those, spatial light interference microscopy (SLIM), offers a very good robustness with minimal post acquisition data processing. In this paper, we report on using SLIM to measure fs-laser induced refractive index changes in different common glassy materials, such as fused silica and borofloat glass (B33). The advantages of SLIM over classical phase-contrast microscopy are discussed.

  10. WC/Ni bronze composite material formation by combined methods of laser cladding and cold spraying

    NASA Astrophysics Data System (ADS)

    Ryashin, N. S.; Malikov, A. G.; Gulyaev, I. P.; Klinkov, S. V.; Kosarev, V. F.; Orishich, A. M.

    2016-10-01

    Formation of composite material containing anti-friction bronze CuAl8.5Fe4Ni5Mn1.5 and reinforced by inner bulk profiled frame of WC/Ni was considered. Combined methods of laser cladding and cold spraying were used. Reinforced cold spraying copper-bronze blend deposits on profiled frames of WC/Ni produced by laser cladding were obtained. Dependence of bronze weight concentration in cold spraying copper-bronze deposit on bronze weight part in powder blend was analyzed. Results of non-contact profiling of reinforcing WC/Ni frame, EDS analysis and microhardness tests of obtained reinforced copper-bronze-WC/Ni composites were presented.

  11. Laser-assisted cavity preparation and adhesion to erbium-lased tooth structure: part 2. present-day adhesion to erbium-lased tooth structure in permanent teeth.

    PubMed

    De Moor, Roeland Jozef Gentil; Delme, Katleen Ilse Maria

    2010-04-01

    With the introduction of the Er:YAG laser, it has become possible to remove enamel and dentin more effectively and efficiently than with other lasers. Thermal damage is reduced, especially in conjunction with water spray. Since FDA (Federal Drug Administration) approval of the Er:YAG laser in 1997--for caries removal, cavity preparation and conditioning of tooth substance - there have been many reports on the use of this technique in combination with composite resins. Moreover, cavity pretreatment with Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. Reports evaluating the adhesion of glass-ionomer cements to Er:YAG-lased tooth substance are scarce. This article reviews the literature regarding adhesion and sealing efficacy using different (pre)treatment protocols in association with Er:YAG laser preparation. Recent research has shown that lasing of enamel and dentin may result in surface and subsurface alterations that have negative effects on both adhesion and seal. It is concluded that at present, it is advisable to respect the conventional pretreatment procedures as needed for the respective adhesive materials. Although the majority of present day reports show that microleakage and bond strength are negatively influenced by laser (pre)treatment (compared with conventional preparation), there is ongoing discussion of how adhesion is best achieved on Er:YAG-lased surfaces.

  12. Micro structuring of transparent materials with NIR ns-laser pulses

    NASA Astrophysics Data System (ADS)

    Zehnder, S.; Schwaller, P.; von Arx, U.; Bucher, G.; Neuenschwander, B.

    A current challenge in laser processing is high precision micromachining of transparent materials, e.g. to manufacture microoptical elements. This can be achieved amongst others by using laser induced backside wet etching. Research has been done by several groups in the last years. Most of the published results were obtained by using UV excimer lasers. Our approach deals with the implementation of the technique for NIR laser sources. We investigated the effects of different pulse widths and repetition rates on laser induced back side wet etching for 1064 nm wavelength and for different absorbers.

  13. Femtosecond laser fabricated integrated chip for manipulation of single cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Keloth, Anusha; Jimenez, Melanie; Bridle, H.; Paterson, Lynn; Markx, Gerard H.; Kar, Ajoy K.

    2016-03-01

    Optical micromanipulation techniques and microfluidic techniques can be used in same platform for manipulating biological samples at single cell level. Novel microfluidic devices with integrated channels and waveguides fabricated using ultrafast laser inscription combined with selective chemical etching can be used to enable sorting and isolation of biological cells. In this paper we report the design and fabrication of a three dimensional chip that can be used to manipulate single cells in principle with a higher throughput than is possible using optical tweezers. The capability of ultrafast laser inscription followed by selective chemical etching to fabricate microstructures and waveguides have been utilised to fabricate the device presented in this paper. The complex three dimensional microfluidic structures within the device allow the injected cell population to focus in a hydrodynamic flow. A 1064 nm cw laser source, coupled to the integrated waveguide, is used to exert radiation pressure on the cells to be manipulated. As the cells in the focussed stream flow past the waveguide, optical scattering force induced by the laser beam pushes the cell from out of the focussed stream to the sheath fluid, which can be then collected at the outlet. Thus cells can be controllably deflected from the focussed flow to the side channel for downstream analysis or culture.

  14. High-speed imaging and evolution dynamics of laser induced deposition of conductive inks (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makrygianni, Marina; Papazoglou, Symeon; Zacharatos, Filimonas; Chatzandroulis, Stavros; Zergioti, Ioanna

    2017-02-01

    During the last decade there is an ever-increasing interest for the study of laser processes dynamics and specifically of the Laser Induced Forward Transfer (LIFT) technique, since the evolution of the phenomena under investigation may provide real time metrology in terms of jet velocity, adjacent jet interaction and impact pressure. The study of such effects leads to a more thorough understanding of the deposition process, hence to an improved printing outcome and in these frames, this work presents a study on the dynamics of LIFT for conductive nanoparticles inks using high-speed imaging approaches. Moreover, in this study, we investigated the printing regimes and the printing quality during the transfer of copper (Cu) nanoink, which is a metallic nanoink usually employed in interconnect formation as well as the printing of silver nanowires, which provide transparency and may be used in applications where transparent electrodes are needed as in photovoltaics, batteries, etc. Furthermore, we demonstrate the fabrication of an all laser printed resistive chemical sensor device that combines Ag nanoparticles ink and graphene oxide, for the detection of humidity fabricated on a flexible polyimide substrate. The sensor device architecture was able to host multiple pairs of electrodes, where Ag nanoink or nanopaste were laser printed, to form the electrodes as well as the electrical interconnections between the operating device and the printed circuit board. Performance evaluation was conducted upon flow of different concentrations of humidity vapors to the sensor, and good response (500 ppm limit of detection) with reproducible operation was observed.

  15. Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan S.; Barnard, John; Vincenti, Henri; Schenkel, Thomas; Esarey, Eric H.; Leemans, Wim P.

    2017-05-01

    We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ˜[5×10]^19 Wcm-2 at spot size of 0=53 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  16. New techniques for high-temperature melting measurements in volatile refractory materials via laser surface heating.

    PubMed

    Manara, D; Sheindlin, M; Heinz, W; Ronchi, C

    2008-11-01

    An original technique for the measurement of high-temperature phase transitions was implemented based on a laser-heating method, enabling chemically unstable, refractory materials to be melted under controlled conditions. This technique includes two independent but correlated methods: In the first, fast multichannel pyrometry is employed to measure thermograms and spectral emissivity; in the second, a low-power probe laser beam is used for the detection of reflectivity changes induced by phase transitions on the sample surface. The experiments are carried out under medium ( approximately 10(2) kPa) or high ( approximately 10(2) MPa) inert-gas pressures in order to kinetically suppress evaporation in volatile or chemically instable samples. Two models for the simulation of the laser-heating pulses are as well introduced. Some results are presented about the successful application of this technique to the study of the melting behavior of oxides such as UO(2+x), ZrO(2), and their mixed oxides. The method can be extended to a broad class of refractory materials.

  17. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    NASA Astrophysics Data System (ADS)

    Latinovic, Z.; Sreckovic, M.; Janicijevic, M.; Ilic, J.; Radovanovic, J.

    2014-09-01

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode.

  18. UV laser-surface interactions relevant to analytic spectroscopy of wide bandgap materials

    SciTech Connect

    Dickinson, J.T.

    1993-12-31

    Laer ablation has application in materials analysis, surface modification, and thin film deposition. Processes that lead to emission and formation of particles when wide band gap materials are irradiated with pulsed uv laser light. These materials are often difficult to transport into the gas phase for analysis. Such materials are alkali halides, MgO.

  19. High-speed laser-assisted cutting of strong transparent materials using picosecond Bessel beams

    NASA Astrophysics Data System (ADS)

    Bhuyan, M. K.; Jedrkiewicz, O.; Sabonis, V.; Mikutis, M.; Recchia, S.; Aprea, A.; Bollani, M.; Trapani, P. Di

    2015-08-01

    We report single-pass cutting of strong transparent glass materials of 700 μm thickness with a speed up to 270 mm/s using single-shot nanostructuring technique exploiting picosecond, zero-order Bessel beams at laser wavelength of 1030 nm. Particularly, we present results of a systematic study of cutting of tempered glass which has high resistance to thermal and mechanical shocks due to the inhomogeneous material properties along its thickness, and homogeneous glass that identify a unique focusing geometry and a finite pitch dependency, for which cutting with high quality and high reproducibility can be achieved. These results represent a significant advancement in the field of high-speed cutting of technologically important transparent materials.

  20. Laser-Induced Damage in Optical Materials: 2000, Proceedings of SPIE,

    SciTech Connect

    Exarhos, Gregory J.; Guenther, Arthur H.; Kozlowski, Mark R.; Lewis, Keith L.; Soileau, M. J.

    2001-04-12

    These proceedings contain the papers presented at the Thirty-Second Symposium on Optical Materials for High-Power Lasers, held at the National Institute of Standards and Technology in Boulder, Colorado, 16-18 October 2000. The symposium was sponsored by the Lawrence Livermore National Laboratory (USA). Cooperating organizations were Cierra Photonics, Inc. (USA), the School of Optics at the University of Central Florida (USA, the Center for High Technology Materials at the University of New Mexico (USA), the Defence Evaluation and Research Agency (UK), National Institute of Standards and Technology (USA), and SPIE-The International Society for Optical Engineering. The symposium was attended by more than 110 participants from Belgium, Canada, France, Germany, Italy, Japan, Latvia, Russia, the United States, the United Kingdom, and Uzbekistan. Almost one-half of the attendees and more than half of the presentations were from abroad. The purpose of this series of symposia is to exchange information about optical materials for high-power/high-energy lasers. The editors welcome comments and criticism relevant to this purpose from all interested readers.