Sample records for laser programs highlights

  1. Laser Science & Technology Program Annual Report - 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journalsmore » in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.« less

  2. Laser program. Annual report, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monsler, M.J.; Jarman, B.D.

    1979-03-01

    This volume documents progress in advanced quantum electronics - primarily the quest for advanced rep-rateable short-wavelength lasers with high efficiency. Application studies in electrical energy production and fissile fuel production are also described. Selected highlights of the advanced isotope separation program are also presented. (MOW)

  3. Laser program annual report 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.

    1984-06-01

    In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. Themore » format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.« less

  4. FY16 LLNL Omega Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Ali, S. J.; Benstead, J.

    In FY16, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall, these LLNL programs led 430 target shots in FY16, with 304 shots using just the OMEGA laser system, and 126 shots using just the EP laser system. Approximately 21% of the total number of shots (77 OMEGA shots and 14 EP shots) supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID). The remaining 79% (227 OMEGA shots and 112more » EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports. In addition to these experiments, LLNL Principal Investigators led a variety of Laboratory Basic Science campaigns using OMEGA and EP, including 81 target shots using just OMEGA and 42 shots using just EP. The highlights of these are also summarized, following the ICF and HED campaigns. Overall, LLNL PIs led a total of 553 shots at LLE in FY 2016. In addition, LLNL PIs also supported 57 NLUF shots on Omega and 31 NLUF shots on EP, in collaboration with the academic community.« less

  5. Inertial Confinement Fusion Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.« less

  6. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    NASA Technical Reports Server (NTRS)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  7. FY14 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Fournier, K. B.; Baker, K.

    In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID).more » The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  8. FY15 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Baker, K. L.; Barrios, M. A.

    In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drivemore » Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  9. Laser Programs, the first 25 years, 1972-1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, E.M.

    1998-03-04

    Welcome to Laser Programs. I am pleased that you can share in the excitement of 25 years of history since we began as a small program of 125 people to our current status as a world premier laser and applied science research team of over 1700 members. It is fitting that this program, which was founded on the dream of developing inertial confinement fusion technology, should celebrate this anniversary the same year that the ground is broken for the National Ignition Facility (NIF). Also at the same time, we are feeling the excitement of moving forward the Atomic Vapor Lasermore » Isotope Separation (AVLIS) technology toward private sector use and developing many alternate scientific applications and technologies derived from our core programs. It is through the hard work of many dedicated scientists, engineers, technicians, and administrative team members that we have been able to accomplish the remarkable internationally recognized achievements highlighted here. I hope this brochure will help you enjoy the opportunity to share in the celebration and pride of our scientific accomplishments; state-of-the-art facilities; and diligent, dedicated people that together make our Laser Programs and Lawrence Livermore National Laboratory the best in the world.« less

  10. Accomplishments of the Oak Ridge National Laboratory Seed Money program

    DOE R&D Accomplishments Database

    1986-09-01

    In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the "Seed Money" program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)

  11. Energy and technology review, July--August, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A.K.

    1990-01-01

    This report highlights various research programs conducted at the Lab to include: defense systems, laser research, fusion energy, biomedical and environmental sciences, engineering, physics, chemistry, materials science, and computational analysis. It also contains a statement on the state of the Lab and Laboratory Administration. (JEF)

  12. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  13. Energy and technology review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, W.J.; Canada, J.; de Vore, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  14. Biomedical optics centers: forty years of multidisciplinary clinical translation for improving human health

    NASA Astrophysics Data System (ADS)

    Tromberg, Bruce J.; Anderson, R. Rox; Birngruber, Reginald; Brinkmann, Ralf; Berns, Michael W.; Parrish, John A.; Apiou-Sbirlea, Gabriela

    2016-12-01

    Despite widespread government and public interest, there are significant barriers to translating basic science discoveries into clinical practice. Biophotonics and biomedical optics technologies can be used to overcome many of these hurdles, due, in part, to offering new portable, bedside, and accessible devices. The current JBO special issue highlights promising activities and examples of translational biophotonics from leading laboratories around the world. We identify common essential features of successful clinical translation by examining the origins and activities of three major international academic affiliated centers with beginnings traceable to the mid-late 1970s: The Wellman Center for Photomedicine (Mass General Hospital, USA), the Beckman Laser Institute and Medical Clinic (University of California, Irvine, USA), and the Medical Laser Center Lübeck at the University of Lübeck, Germany. Major factors driving the success of these programs include visionary founders and leadership, multidisciplinary research and training activities in light-based therapies and diagnostics, diverse funding portfolios, and a thriving entrepreneurial culture that tolerates risk. We provide a brief review of how these three programs emerged and highlight critical phases and lessons learned. Based on these observations, we identify pathways for encouraging the growth and formation of similar programs in order to more rapidly and effectively expand the impact of biophotonics and biomedical optics on human health.

  15. Biomedical optics centers: forty years of multidisciplinary clinical translation for improving human health.

    PubMed

    Tromberg, Bruce J; Anderson, R Rox; Birngruber, Reginald; Brinkmann, Ralf; Berns, Michael W; Parrish, John A; Apiou-Sbirlea, Gabriela

    2016-12-01

    Despite widespread government and public interest, there are significant barriers to translating basic science discoveries into clinical practice. Biophotonics and biomedical optics technologies can be used to overcome many of these hurdles, due, in part, to offering new portable, bedside, and accessible devices. The current JBO special issue highlights promising activities and examples of translational biophotonics from leading laboratories around the world. We identify common essential features of successful clinical translation by examining the origins and activities of three major international academic affiliated centers with beginnings traceable to the mid-late 1970s: The Wellman Center for Photomedicine (Mass General Hospital, USA), the Beckman Laser Institute and Medical Clinic (University of California, Irvine, USA), and the Medical Laser Center Lübeck at the University of Lübeck, Germany. Major factors driving the success of these programs include visionary founders and leadership, multidisciplinary research and training activities in light-based therapies and diagnostics, diverse funding portfolios, and a thriving entrepreneurial culture that tolerates risk. We provide a brief review of how these three programs emerged and highlight critical phases and lessons learned. Based on these observations, we identify pathways for encouraging the growth and formation of similar programs in order to more rapidly and effectively expand the impact of biophotonics and biomedical optics on human health.

  16. Fluorescence Spectra of Highlighter Inks

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.; King, Damon

    2018-01-01

    Fluorescence spectra excited by laser pointers have been the subject of several papers in TPT. These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by fluorescent emission. Here we examine the fluorescence spectra of highlighter inks using green and violet laser pointers. We use an RSpec Explorer spectrometer to obtain spectra and compare the emission spectra of blue, green, yellow, orange, pink, and purple highlighters. The website Compound Interest details the chemical composition of highlighter inks; in addition, the site discusses how some base dye colors can be combined to produce the variety commercially available colors. Spectra obtained in this study were qualitatively consistent with the Compound Interest site. We discuss similarities and differences between various highlighter colors and conclude with the relevance of such studies to physics students.

  17. An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  18. Mobile and stationary laser weapon demonstrators of Rheinmetall Waffe Munition

    NASA Astrophysics Data System (ADS)

    Ludewigt, K.; Riesbeck, Th.; Baumgärtel, Th.; Schmitz, J.; Graf, A.; Jung, M.

    2014-10-01

    For some years Rheinmetall Waffe Munition has successfully developed, realised and tested a variety of versatile high energy laser (HEL) weapon systems for air- and ground-defence scenarios like C-RAM, UXO clearing. By employing beam superimposition technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms and now military mobile vehicles were equipped with high energy laser effectors. Our contribution summarises the most recent development stages of Rheinmetalls high energy laser weapon program. We present three different vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V integrated in an M113 tank, the 20 kW class Mobile HEL Effector Wheel XX integrated in a multirole armoured vehicle GTK Boxer 8x8 and the 50 kW class Mobile HEL Effector Container L integrated in a reinforced container carried by an 8x8 truck. As a highlight, a stationary 30 kW Laser Weapon Demonstrator shows the capability to defeat saturated attacks of RAM targets and unmanned aerial vehicles. 2013 all HEL demonstrators were tested in a firing campaign at the Rheinmetall testing centre in Switzerland. Major results of these tests are presented.

  19. Conductive Channel for Energy Transmission

    NASA Astrophysics Data System (ADS)

    Apollonov, Victor V.

    2011-11-01

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of "Impulsar" represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The "Impulsar"—laser jet engine vehicle—propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO2—laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  20. Training and use of lasers in postgraduate orthodontic programs in the United States and Canada.

    PubMed

    Dansie, Chase O; Park, Jae Hyun; Makin, Inder Raj S

    2013-06-01

    This study was designed to determine if orthodontic residents are being trained to use lasers in the postgraduate orthodontic residency programs of the United States and Canada. An anonymous electronic survey was sent to the program director/chair of each of the seventy orthodontic residency programs, and thirty-seven (53 percent) of the programs responded. Of these thirty-seven programs, twenty-eight (76 percent) reported providing patient treatment with lasers in the orthodontic graduate program, eight (22 percent) said they do not provide treatment in the orthodontic graduate program, and one program (3 percent) reported providing laser training but not using lasers on patients. Gingivectomy and canine exposure were reported as the most common procedures that residents perform with a laser, while debonding of orthodontic brackets was the least common procedure performed with a laser. A diode laser was the most common type of laser used. Of the eight programs (22 percent) not offering laser training, four indicated having no plans to begin using lasers or training on their use. The other four indicated that they have plans to incorporate laser use in the future.

  1. An overview of the NASA rotary engine research program

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Hady, W. F.

    1984-01-01

    A brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center are presented. The test results obtained from turbocharged rotary engines and preliminary results from a high performance single rotor engine were discussed. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies were examined. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies was reviewed. Details are presented on single rotor stratified charge rotary engine research efforts, both in-house and on contract.

  2. A NASA high-power space-based laser research and applications program

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  3. European Space Agency lidar development programs for remote sensing of the atmosphere

    NASA Astrophysics Data System (ADS)

    Armandillo, Errico

    1992-12-01

    Active laser remote sensing from space is considered an important step forward in the understanding of the processes which regulate weather and climate changes. The planned launching into polar orbit in the late 1990s of a series of dedicated Earth observation satellites offer new possibilities for flying lidar in space. Among the various lidar candidates, ESA has recognized in the backscattering lidar and Doppler wind lidar the instruments which can most contribute to the Earth observation program. To meet the schedule of the on-coming flight opportunities, ESA has been engaged over the past years in a preparatory program aimed to define the instruments and ensure timely availability of the critical components. This paper reviews the status of the ongoing developments and highlights the critical issues addressed.

  4. How to manage continuing education and retraining programs on optical physics and laser technology at a university: Moscow State experience

    NASA Astrophysics Data System (ADS)

    Zadkov, Victor N.; Koroteev, Nikolai I.

    1995-10-01

    An experience of managing the continuing education and retraining programs at the International Laser Center (ILC) of Moscow State University is discussed. The offered programs are in a wide range of areas, namely laser physics and technology, laser biophysics and biomedicine, laser chemistry, and computers in laser physics. The attendees who are presumably scientists, engineers, technical managers, and graduate students can join these programs through the annual ILC term (6 months), individual training and research programs (up to a year), annual ILC Laser Graduate School, graduate study, and post-docs program, which are reviewed in the paper. A curriculum that includes basic and specialized courses is described in detail. A brief description of the ILC Laser Teaching and Computer Labs that support all the educational courses is given as well.

  5. Investigations of Self-Pumped Phase Conjugate Laser Beams and Coherence Length

    DTIC Science & Technology

    1993-03-01

    experiment was designed at the Naval Postgraduate School. This experimental arrangement involved a smaller argon-ion laser and a laser spectrometer...change in coherence length was observed in a phase conjugate laser beam. Eperimental results obtained in these experiments highlight the fact that

  6. Laser program annual report, 1977. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Jarman, B.D.

    1978-07-01

    An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva. (MOW)

  7. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  8. February 2017 - NIF Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.

    2017-03-13

    February was a very productive month with only 20 shot days on the calendar. There were 41 target shots performed for the HED, ICF, and the Discovery Science (DS) program. The DS program had a week dedicated to their experiments that was extraordinarily fruitful: 14 target shots were performed for five independent teams, each of whom had a unique experimental platform to field. The teams and the facility worked extraordinarily well to pull off this feat! Additionally, the facility developed high-energy laser operations on a demonstration quad to investigate taking NIF to a new level of performance, and the ICFmore » program demonstrated a 40% increase in the yield from a capsule that had a new, 5-μm-diameter fill tube that apparently mitigates some of the issues that have affected implosions to date. Details follow below.« less

  9. Femtosecond Amplifiers and Microlasers in the Deep Ultraviolet

    DTIC Science & Technology

    2013-11-19

    Laser guide stars have applications of growing importance to the DOD, astronomy, and environmental monitoring. However, realizing a laser that is...pump wavelength, photoassociation-pumped lasers hold considerable promise as guide star lasers . The most exciting aspect of these results, however...highlights of several experiments that were mentioned briefly in the last section. A. Dual Wavelength Sodium Laser Pumped By Na-Xe Pair Absorption

  10. Information computer program for laser therapy and laser puncture

    NASA Astrophysics Data System (ADS)

    Badovets, Nadegda N.; Medvedev, Andrei V.

    1995-03-01

    An informative computer program containing laser therapy and puncture methods has been developed. It was used successfully in connection with the compact Russian medical laser apparatus HELIOS-O1M in laser treatment and the education process.

  11. Solid state laser communications in space (SOLACOS) high data rate satellite communication system verification program

    NASA Astrophysics Data System (ADS)

    Pribil, Klaus; Flemmig, Joerg

    1994-09-01

    This paper gives an overview on the current development status of the SOLACOS program and presents the highlights of the program. SOLACOS (Solid State Laser Communications in Space) is the national German program to develop a high performance laser communication system for high data rate transmission between LEO and GEO satellites (Inter Orbit Link, IOL). Two experimental demonstrator terminals are designed and developed in the SOLACOS program. The main development objectives are the Pointing Acquisition and Tracking subsystem (PAT) and the high data rate communication system. All key subsystems and components are straightway developed to be upgraded in follow- on projects to full space qualification. The main design objective for the system is a high degree of modularity which allows to easily upgrade the system with new upcoming technologies. Therefore, all main subsystems are interconnected via fibers to ease replacement of subsystems. The system implements an asymmetric data link with a 650 MBit/s return channel and a 10 MBit/s forward channel. The 650 MBit/s channel is based on a diode pumped Nd:YAG, Integrated Optics Modulator and uses the syncbit transmission scheme. In the syncbit system synchronization information which is necessary to maintain phase lock of the local oscillator of the coherent receiver is transmitted time multiplexed into the data stream. The PAT system comprises two beam detection sensors and three beam steering elements. For initial acquisition and tracking of the remote satellite a high speed CCD camera with an integrated image processing unit, the Acquisition and Tracking Sensor (ATS) is used. In the tacking mode the beam position is sensed via the Fibernutator sensor which is also used to couple the incoming signal into the receiver fiber. Incoming and outgoing beams are routed through the telescopes which are positioned with a 2 axis gimbal mechanism and a high speed beam steering mirror. The PAT system is controlled by a digital signal processor. For beam control advanced PAT algorithms are under development.

  12. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  13. TEA CO 2 Laser Simulator: A software tool to predict the output pulse characteristics of TEA CO 2 laser

    NASA Astrophysics Data System (ADS)

    Abdul Ghani, B.

    2005-09-01

    "TEA CO 2 Laser Simulator" has been designed to simulate the dynamic emission processes of the TEA CO 2 laser based on the six-temperature model. The program predicts the behavior of the laser output pulse (power, energy, pulse duration, delay time, FWHM, etc.) depending on the physical and geometrical input parameters (pressure ratio of gas mixture, reflecting area of the output mirror, media length, losses, filling and decay factors, etc.). Program summaryTitle of program: TEA_CO2 Catalogue identifier: ADVW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: P.IV DELL PC Setup: Atomic Energy Commission of Syria, Scientific Services Department, Mathematics and Informatics Division Operating system: MS-Windows 9x, 2000, XP Programming language: Delphi 6.0 No. of lines in distributed program, including test data, etc.: 47 315 No. of bytes in distributed program, including test data, etc.:7 681 109 Distribution format:tar.gz Classification: 15 Laser Physics Nature of the physical problem: "TEA CO 2 Laser Simulator" is a program that predicts the behavior of the laser output pulse by studying the effect of the physical and geometrical input parameters on the characteristics of the output laser pulse. The laser active medium consists of a CO 2-N 2-He gas mixture. Method of solution: Six-temperature model, for the dynamics emission of TEA CO 2 laser, has been adapted in order to predict the parameters of laser output pulses. A simulation of the laser electrical pumping was carried out using two approaches; empirical function equation (8) and differential equation (9). Typical running time: The program's running time mainly depends on both integration interval and step; for a 4 μs period of time and 0.001 μs integration step (defaults values used in the program), the running time will be about 4 seconds. Restrictions on the complexity: Using a very small integration step might leads to stop the program run due to the huge number of calculating points and to a small paging file size of the MS-Windows virtual memory. In such case, it is recommended to enlarge the paging file size to the appropriate size, or to use a bigger value of integration step.

  14. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  15. Terahertz Time Domain Spectroscopy of Phonon-Depopulation Based Quantum Cascade Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rungsawang, R.; Dhillon, S. S.; Jukam, N.

    2011-12-23

    A 3.1 THz phonon depopulation-based quantum-cascade-laser is investigated using terahertz time domain spectroscopy. A gain of 25 cm{sup -1} and absorption features due to the lower laser level being populated from a parasitic electronic channel are highlighted.

  16. Laser-direct-drive program: Promise, challenge, and path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.

    Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.

  17. Laser-direct-drive program: Promise, challenge, and path forward

    DOE PAGES

    Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.; ...

    2017-03-19

    Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.

  18. The LTS timing analysis program :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Darrell Jewell; Schwarz, Jens

    The LTS Timing Analysis program described in this report uses signals from the Tempest Lasers, Pulse Forming Lines, and Laser Spark Detectors to carry out calculations to quantify and monitor the performance of the the Z-Accelerators laser triggered SF6 switches. The program analyzes Z-shots beginning with Z2457, when Laser Spark Detector data became available for all lines.

  19. Fluorescence Spectra of Highlighter Inks

    ERIC Educational Resources Information Center

    Birriel, Jennifer J.; King, Damon

    2018-01-01

    Fluorescence spectra excited by laser pointers have been the subject of several papers in "TPT". These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by…

  20. A simple approach to industrial laser safety.

    PubMed

    Lewandowski, Michael A; Hinz, Michael W

    2005-02-01

    Industrial applications of lasers include marking, welding, cutting, and other material processing. Lasers used in these ways have significant power output but are generally designed to limit operator exposure to direct or scattered laser radiation to harmless levels in order to meet the Federal Laser Product Performance Standard (21CFR1040) for Class 1 laser products. Interesting challenges occur when companies integrate high power lasers into manufacturing or process control equipment. A significant part of the integration process is developing engineering and administrative controls to produce an acceptable level of laser safety while balancing production, maintenance, and service requirements. 3M Company uses a large number of high power lasers in numerous manufacturing processes. Whether the laser is purchased as a Class 1 laser product or whether it is purchased as a Class 4 laser and then integrated into a manufacturing application, 3M Company has developed an industrial laser safety program that maintains a high degree of laser safety while facilitating the rapid and economical integration of laser technology into the manufacturing workplace. This laser safety program is based on the requirements and recommendations contained in the American National Standard for Safe Use of Lasers, ANSI Z136.1. The fundamental components of the 3M program include hazard evaluation, engineering, administrative, and procedural controls, protective equipment, signs and labels, training, and re-evaluation upon change. This program is implemented in manufacturing facilities and has resulted in an excellent history of laser safety and an effective and efficient use of laser safety resources.

  1. Collaboration in photonics education and training

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith F.; Gladue, Betti J.; Seebeck, Randall G.; Stroup, Margaret H.; Valentin, Marjorie R.

    2004-10-01

    Three Rivers Community College (TRCC), with federal funding from the Connecticut Business & Industry Association (CBIA), partnered with Connecticut's photonics industry to provide an innovative 14.5 credit program in optics, lasers, and fiber optics. This summary highlights the collaborative training effort which provided a distance learning Certificate in Fiber Optics. The program also featured assistance by company mentors. This approach was developed to address training objectives and company goals. In today's global marketplace, companies are looking for ways to stay ahead of the competition. Taking advantage of the latest training and consulting services offered by CBIA is crucial to a company's, and the workforce's, continued growth and prosperity. Hiring and retraining a skilled workforce is one of the most important issues facing employers today. CBIA is the nation's largest statewide business organization, with 10,000 member companies.

  2. A Laser Technology Program Does Not Start with the Speed of Light.

    ERIC Educational Resources Information Center

    Gebert, John H.

    1982-01-01

    Describes the personnel, equipment, and facilities problems encountered by North Central Technical Institute in the development of a laser technician program, and the program's enrollment and job placement rates. Advocates financial support for such programs to meet the national demand for laser and other high technology personnel. (WL)

  3. Development and Implementation of Joint Programs in Laser Ranging and Other Space Geodetic Techniques

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.; Carter, David (Technical Monitor)

    2004-01-01

    This progress report discusses the status and progress made in joint international programs including: 1) WEGENER; 2) Arabian Peninsula program; 3) Asia-Pacific Space Geodynamics (APSG) program; 4) the Fourteenth International Workshop on Laser Ranging; 5) the International Laser Ranging Service; and 6) current support for the NASA network.

  4. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  5. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  6. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  7. Lasers, their development, and applications at M.I.T. Lincoln Laboratory

    NASA Technical Reports Server (NTRS)

    Rediker, R. H.; Melngailis, I.; Mooradian, A.

    1984-01-01

    A historical account of the work on lasers at MIT Lincoln Laboratory is presented. Highlighted are the efforts that led to the coinvention of the semiconductor laser and the Laboratory's later role in establishing the feasibility of GaInAsP/InP semiconductor lasers for use in fiber telecommunications at 1.3-1.5 micron wavelengths. Descriptions of other important developments include tunable lead-salt semiconductor and solid-state lasers for spectroscopy and LIDAR applications, respectively, as well as ultrastable CO2 lasers for coherent infrared radar.

  8. Gasdynamic lasers and photon machines.

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Hertzberg, A.

    1973-01-01

    The basic operational highlights of CO2-N2 gasdynamic lasers (GDL's) are described. Features common to powerful gas lasers are indicated. A simplified model of the vibrational kinetics of the system is presented, and the importance of rapid expansion nozzles is shown from analytic solutions of the equations. A high-power pulsed GDL is described, along with estimations of power extraction. A closed-cycle laser is suggested, leading to a description of a photon generator/engine. Thermodynamic analysis of the closed-cycle laser illustrates in principle the possibility of direct conversion of laser energy to work.

  9. An Integrated Approach to Laser Crystal Development

    NASA Technical Reports Server (NTRS)

    Ries, Heidi R.

    1996-01-01

    Norfolk State University has developed an integrated research program in the area of laser crystal development, including crystal modeling, crystal growth, spectroscopy, and laser modeling. This research program supports a new graduate program in Chemical Physics, designed in part to address the shortage of minority scientists.

  10. LATIS3D: The Goal Standard for Laser-Tissue-Interaction Modeling

    NASA Astrophysics Data System (ADS)

    London, R. A.; Makarewicz, A. M.; Kim, B. M.; Gentile, N. A.; Yang, T. Y. B.

    2000-03-01

    The goal of this LDRD project has been to create LATIS3D-the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications. The purpose of this project was to develop and apply a computer program for laser-tissue interaction modeling to aid in the development of new instruments and procedures in laser medicine.

  11. Department of Defense high power laser program guidance

    NASA Astrophysics Data System (ADS)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  12. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  13. Solid state laser technology - A NASA perspective

    NASA Technical Reports Server (NTRS)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  14. Laser applications to chemical, security, and environmental analysis: introduction to the feature issue.

    PubMed

    Seeger, Thomas; Dreier, Thomas; Chen, Weidong; Kearny, Sean; Kulatilaka, Waruna

    2017-04-10

    This Applied Optics feature issue on laser applications to chemical, security, and environmental analysis (LACSEA) highlights papers presented at the LACSEA 2016 Fifteenth Topical Meeting sponsored by the Optical Society of America.

  15. Blue Laser Induced Retinal Injury in a Commercial Pilot at 1300 ft.

    PubMed

    Gosling, Daniel B; O'Hagan, John B; Quhill, Fahd M

    2016-01-01

    We report what may be the first evidence-based report of a retinal laser injury to a pilot during commercial flight from a laser device on the ground. Given the significant subjective (blind spot) and objective evidence of focal retinal damage, coupled with the distance involved, we suspect the laser had a radiant power of several watts, known to be injurious to the human retina. An airline pilot presented to our department complaining of a blind spot in the upper left area of his visual field in the right eye (right supero-nasal scotoma) following exposure to a laser beam while performing a landing maneuver of a commercial aircraft. At around 1300 ft (396 m), a blue laser beam from the ground directly entered his right eye, with immediate flash blindness and pain. Spectral domain ocular coherence tomography highlighted a localized area of photoreceptor disruption corresponding to a well demarcated area of hypofluorescence on fundus autofluorescence, representing a focal outer retinal laser injury. Fundus examination a fortnight later revealed a clinically identifiable lesion in the pilot's right eye commensurate with a retinal-laser burn. The case reports highlights the growing threat to the ocular health of airline crew and, potentially, passenger safety due to the lack of regulatory oversight of high powered laser devices obtained from the internet. We strongly believe high powered handheld laser devices should not be in the possession of the general public.

  16. Laser induced damage thresholds and laser safety levels. Do the units of measurement matter?

    NASA Astrophysics Data System (ADS)

    Wood, R. M.

    1998-04-01

    The commonly used units of measurement for laser induced damage are those of peak energy or power density. However, the laser induced damage thresholds, LIDT, of all materials are well known to be absorption, wavelength, spot size and pulse length dependent. As workers using these values become divorced from the theory it becomes increasingly important to use the correct units and to understand the correct scaling factors. This paper summarizes the theory and highlights the danger of using the wrong LIDT units in the context of potentially hazardous materials, laser safety eyewear and laser safety screens.

  17. Physics and Entrepreneurship: A Small Business Perspective

    NASA Astrophysics Data System (ADS)

    Cleveland, Jason

    2013-03-01

    DARPA's Microsystems Technology Office, MTO, conceives and develops a wide range of technologies to benefit the US warfighter, from exotic GaN transistors to high-power fiber lasers, highly efficient embedded computer systems to synthetic biology. MTO has world class electrical and mechanical engineers, but we also have a cadre of extremely capable physicists, whose complementary skillset has been absolutely essential to identifying promising technological avenues for the office and for the agency. In this talk I will explain the DARPA model of technology development, using real examples from MTO, highlighting programs where physics-based insights have led to important new capabilities for the Dept of Defense.

  18. Pulsed Submillimeter Laser Program.

    DTIC Science & Technology

    1979-05-15

    number of interrelated subsystems required for a heterodyning FIR radar were investigated. The work focused on optically pumped FIR lasers which... laser pressure. Figure 9 illustrates the effect on optical shape of raising laser pressure. It can be seen that considerable pulse shortening occurs as...range in which single transverse mode operation of a TE CO2 laser has been achieved. For the purposes of this program the optical cavity was

  19. Goddard Technology Efforts to Improve Space Borne Laser Reliability

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2006-01-01

    In an effort to reduce the risk, perceived and actual, of employing instruments containing space borne lasers NASA initiated the Laser Risk Reduction Program (LRRP) in 2001. This program managed jointly by NASA Langley and NASA Goddard and employing lasers researchers from government, university and industrial labs is nearing the conclusion of its planned 5 year duration. This paper will describe some of the efforts and results obtained by the Goddard half of the program.

  20. Academician Basov, high-power lasers, and the antimissile defense problem

    NASA Astrophysics Data System (ADS)

    Zarubin, Peter Vasilievich

    2013-02-01

    A review of the extensive program of the pioneering research and development of high-power lasers and laser radar undertaken in the USSR during the years 1964 to 1978 under the scientific supervision of N.G. Basov is presented. In the course of this program, many high-energy lasers with unique properties were created, new big research and design teams were formed, and the laser production and testing facilities were extended and developed. The program was fulfilled at many leading research institutions and design bureaus of the USSR Academy of Sciences and defense industry.

  1. Note: Digital laser frequency auto-locking for inter-satellite laser ranging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yingxin; Yeh, Hsien-Chi, E-mail: yexianji@mail.hust.edu.cn; Li, Hongyin

    2016-05-15

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  2. Enhanced Damage-Resistant Optics for Spaceflight Laser Systems: Workshop findings and recommendations

    NASA Technical Reports Server (NTRS)

    Schulze, Norman; Cimolino, Marc; Guenther, Arthur; Mcminn, Ted; Rainer, Frank; Schmid, Ansgar; Seitel, Steven C.; Soileau, M. J.; Theon, John S.; Walz, William

    1991-01-01

    NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage.

  3. Laser safety programs in general surgery.

    PubMed

    Lanzafame, R J

    1994-06-01

    General surgery represents a speciality where, while any procedure can be performed with lasers, there are no procedures for which the laser is the sine quo non. The general surgeon may perform a variety of procedures with a multitude of laser wavelengths and technologies. Laser safety in general surgery requires a multidisciplinary approach. Effective laser safety requires the oversight of the hospital's "laser usage committee" and "laser safety officer" while providing a workable framework for daily laser use in a variety of clinical scenarios simultaneously. This framework must be user-friendly rather than oppressive. This presentation will describe laser safety at the Rochester General Hospital, a tertiary care, community-based teaching hospital. The safety program incorporates the following components: input to physician credentialing and training, education and in-servicing of nursing and technical personnel, equipment purchase and maintenance, quality assurance, and safety monitoring. The University of Rochester general surgery residency training program mandates laser training during the PGY-2 year. This program stresses the safe use of lasers and provides the basis for graded hands-on experience during the surgical residency. The greatest challenge for laser safety in general surgery centers on the burgeoning field of minimally invasive surgery. Safety assurance must be balanced so as to maintain a safe operating-room environment while ensuring patient safety and the ability to permit the surgery to proceed efficiently. Safety measures for laparoscopic procedures must be sensitive to the needs of the surgical team while not providing confusing signals for the "gallery" observers. This task is critical for the safe operation of lasers in general surgery. Effective laser safety in general surgery requires constant vigilance tempered with sensitivity to the needs of the surgeon and the patient as laser technology and its applications continue to evolve.

  4. New developments on ChemCam laser transmitter and potential applications for other planetology programs

    NASA Astrophysics Data System (ADS)

    Faure, Benoît; Durand, Eric; Maurice, Sylvestre; Bruneau, Didier; Montmessin, Franck

    2017-11-01

    ChemCam is a LIBS Instrument mounted on the MSL 2011 NASA mission. The laser transmitter of this Instrument has been developed by the French society Thales Optronique (former Thales Laser) with a strong technical support from CNES. The paper will first rapidly present the performance of this laser and will then describe the postChemCam developments realized on and around this laser for new planetology programs.

  5. The Laser Cutter: A Terrific Addition to Your Tech Program

    ERIC Educational Resources Information Center

    Buxton, Richard

    2007-01-01

    A laser cutter has found a very welcome home in the technology program at Thomas Jefferson High School for Science and Technology. It has proven an easy-to-use major addition. Lasers come in different types, sizes and power ratings, which means several things must be taken into consideration when selecting the right one for the technology program.…

  6. Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Alphonse, G. A.; Carlin, D. B.; Ettenberg, M.

    1991-01-01

    The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power.

  7. The effectiveness of laser and radar based enforcement programs for deterrence of speeding

    DOT National Transportation Integrated Search

    1997-02-01

    This report documents the results of a study to determine the community-wide effectiveness of laser-based speed enforcement programs relative to radar-based programs. Jurisdiction-wide speeding enforcement programs were implemented and evaluated in t...

  8. ARPA solid state laser and nonlinear materials program

    NASA Astrophysics Data System (ADS)

    Moulton, Peter F.

    1994-06-01

    The Research Division of Schwartz Electro-Optics, as part of the ARPA Solid State Laser and Nonlinear Materials Program, conducted a three-year study 'Erbium-Laser-Based Infrared Sources.' The aim of the study was to improve the understanding of semiconductor-laser-pumped, infrared (IR) solid state lasers based on the trivalent rare-earth ion erbium (Er) doped into a variety of host crystals. The initial program plan emphasized operation of erbium-doped materials on the 2.8-3.0 micrometers laser transition. Pulsed, Q-switched sources using that transition, when employed as a pump source for parametric oscillators, can provide tunable mid-IR energy. The dynamics of erbium lasers are more complex than conventional neodymium (Nd)-doped lasers and we intended to use pump-probe techniques to measure the level and temporal behavior of gain in various materials. To do so we constructed a number of different cw Er-doped lasers as probe sources and employed the Cr:LiSAF(LiSrAlF6) laser as a pulsed pump source that would simulate pulsed diode arrays. We identified the 970-nm wavelength pump band of Er as the most efficient and were able to make use of recently developed cw and pulsed InGaAs strained-quantum-well diode lasers in the effort. At the conclusion of the program we demonstrated the first pulsed diode bar pumping of the most promising materials for pulsed operation, the oxide garnets YSGG and GGG and the fluoride BaY2F8.

  9. Computer program compatible with a laser nephelometer

    NASA Technical Reports Server (NTRS)

    Paroskie, R. M.; Blau, H. H., Jr.; Blinn, J. C., III

    1975-01-01

    The laser nephelometer data system was updated to provide magnetic tape recording of data, and real time or near real time processing of data to provide particle size distribution and liquid water content. Digital circuits were provided to interface the laser nephelometer to a Data General Nova 1200 minicomputer. Communications are via a teletypewriter. A dual Linc Magnetic Tape System is used for program storage and data recording. Operational programs utilize the Data General Real-Time Operating System (RTOS) and the ERT AIRMAP Real-Time Operating System (ARTS). The programs provide for acquiring data from the laser nephelometer, acquiring data from auxiliary sources, keeping time, performing real time calculations, recording data and communicating with the teletypewriter.

  10. High-energy laser weapons: technology overview

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew

    2004-09-01

    High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.

  11. Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…

  12. Laser Electro-Optic Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary considerations in the organization, operation, and evaluation of a laser electro-optic technology program. An occupational description and program content are presented. A curriculum framework specifies the exact course title, course number, levels of instruction, major course content, laboratory activities,…

  13. Recent Progress on Laser Produced Positron Research At LLN

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hermann, M.; Kalantar, D.; Kemp, A.; Link, A.; Jiang, S.; Martinez, D.; Park, J.; Remington, B.; Sherlock, M.; Williams, Gj; Beg, F.; Edghill, B.; Fedosejevs, R.; Kerr, S.; D'Humieres, E.; Fiuza, F.; Willingale, L.; Fiksel, G.; Nakai, N.; Arikawa, Y.; Morace, A.; Sentoku, Y.

    2017-10-01

    We report the recent results on laser-produced relativistic electron-positron plasma jets. This includes: the prepulse and material dependence of pair generation; time dependent positron acceleration and maximum achieved pair density. We will highlight the results from recent experiments on the Omega EP laser testing nanostructured target to increase pair yield. We will also report on a newly commissioned platform using the NIF ARC lasers which was developed for efficient pair creation using 10 ps laser duration at near relativistic laser intensity. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344, and funded by LDRD (#17-ERD-010).

  14. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  15. Lasers for tattoo removal: a review.

    PubMed

    Choudhary, Sonal; Elsaie, Mohamed L; Leiva, Angel; Nouri, Keyvan

    2010-09-01

    Tattoos have existed and have been used as an expression of art by man for ages-and so have the techniques to remove them. Lasers based on the principle of selective photothermolysis are now being used to remove black as well as colorful tattoos with varying successes. The commonly used lasers for tattoo removal are the Q-switched 694-nm ruby laser, the Q-switched 755-nm alexandrite laser, the 1,064-nm Nd:YAG laser, and the 532-nm Nd:YAG laser. Newer techniques and methods are evolving in tattoo removal with lasers. Choosing the right laser for the right tattoo color is necessary for a successful outcome. Our review aims to understand the principles of laser tattoo removal and their applications for different types and colors of tattoos. The review also highlights the complications that can occur such as dyspigmentation, allergic reactions, epidermal debris, ink darkening, and so on, in this process and how to prevent them.

  16. Theoretical studies of solar lasers and converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    1990-01-01

    The research described consisted of developing and refining the continuous flow laser model program including the creation of a working model. The mathematical development of a two pass amplifier for an iodine laser is summarized. A computer program for the amplifier's simulation is included with output from the simulation model.

  17. Efficient Swath Mapping Laser Altimetry Demonstration Instrument Incubator Program

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A,; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan

    2010-01-01

    In this paper we will discuss our eighteen-month progress of a three-year Instrument Incubator Program (IIP) funded by NASA Earth Science Technology Office (ESTO) on swath mapping laser altimetry system. This paper will discuss the system approach, enabling technologies and instrument concept for the swath mapping laser altimetry.

  18. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  19. Laser safety: regulations, standards, and recommendations

    NASA Astrophysics Data System (ADS)

    Smalley, Penny J.

    1993-07-01

    All healthcare professionals involved in the delivery of laser technology to patients, must develop and monitor clinical laser safety programs that ensure compliance with national, state, and local regulations, professional standards of practice, and national consensus standards. Laser safe treatment environments for patients and for personnel can be established and maintained through understanding the impact of both regulatory and advisory guidelines, comprehensive program planning, appropriate continuing education, and routine safety audits.

  20. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  1. Narrow linewidth short cavity Brillouin random laser based on Bragg grating array fiber and dynamical population inversion gratings

    NASA Astrophysics Data System (ADS)

    Popov, S. M.; Butov, O. V.; Chamorovski, Y. K.; Isaev, V. A.; Mégret, P.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    We report on random lasing observed with 100-m-long fiber comprising an array of weak FBGs inscribed in the fiber core and uniformly distributed over the fiber length. Extended fluctuation-free oscilloscope traces highlight power dynamics typical for lasing. An additional piece of Er-doped fiber included into the laser cavity enables a stable laser generation with a linewidth narrower than 10 kHz.

  2. Military laser weapons: current controversies.

    PubMed

    Seet, B; Wong, T Y

    2001-09-01

    Military laser weapons systems are becoming indispensable in most modern armies. These lasers have undergone many stages of development, and have outpaced research on eye protection measures, which continue to have inherent limitations. Eye injuries caused by military lasers are increasingly reported, leading to speculation that these would become an important cause of blinding in modern conflicts. As part of the effort to ban inhumane weapons, international laws have been passed to restrict the proliferation of such blinding weapons. However, there are controversies concerning the interpretation, implementation and effectiveness of these laws. The ophthalmic community can play a greater role in highlighting ocular morbidity from military lasers, and in preventing their further proliferation.

  3. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    PubMed

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  4. FALCON reactor-pumped laser description and program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1989-12-01

    The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.

  5. Spaceborne Photonics Institute

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  6. Flight demonstration of laser diode initiated ordnance

    NASA Technical Reports Server (NTRS)

    Boucher, Craig J.; Schulze, Norman R.

    1995-01-01

    A program has been initiated by NASA Headquarters to validate laser initiated ordnance in flight applications. The primary program goal is to bring together a team of government and industry members to develop a laser initiated ordnance system having the test and analysis pedigree to be flown on launch vehicles. The culmination of this effort was a flight of the Pegasus launch vehicle which had two fin rockets initiated by this laser system. In addition, a laser initiated ordnance squib was fired into a pressure bomb during thrusting flight. The complete ordnance system comprising a laser diode firing unit, fiber optic cable assembly, laser initiated detonator, and laser initiated squib was designed and built by The Ensign Bickford Company. The hardware was tested to the requirements of the Pegasus launch vehicle and integrated into the vehicle by The Ensign Bickford Company and the Orbital Sciences Corporation. Discussions include initial program concept, contract implementation, team member responsibilities, analysis results, vehicle integration, safing architecture, ordnance interfaces, mission timeline and telemetry data. A complete system description, summary of the analyses, the qualification test results, and the results of flight are included.

  7. Standoff analysis of laser-produced plasmas using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    We report the use of laser-induced fluorescence (LIF) of laser ablation plumes for standoff applications. The standoff analysis of Al species, as major and minor species in samples, is performed in a nanosecond laser-produced plasma created at a distance ~10 m. The LIF analysis is performed by resonantly exciting an Al transition at 394.4 nm using a continuous wave (cw) tunable laser and by collecting the direct-line fluorescence signal at 396.15 nm. The spectral resolution of LIF is obtained by scanning the cw tunable LIF laser across the selected Al transition. Our results highlight that LIF provides enhanced signal intensity,more » emission persistence, and spectral resolution when compared to thermally-excited emission, and these are crucial considerations for using laser-produced plasma for standoff isotopic analysis.« less

  8. Development of a Curriculum in Laser Technology. Final Report.

    ERIC Educational Resources Information Center

    Wasserman, William J.

    A Seattle Central Community College project visited existing programs, surveyed need, and developed a curriculum for a future program in Laser-Electro-Optics (LEO) Technology. To establish contacts and view successful programs, project staff made visits to LEO technology programs at San Jose City College and Texas State Technical Institute, Center…

  9. Laser Program annual report 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  10. NASA Technical Management Report (533Q)

    NASA Technical Reports Server (NTRS)

    Klosko, S. M.; Sanchez, B. (Technical Monitor)

    2001-01-01

    The objective of this task is analytical support of the NASA Satellite Laser Ranging (SLR) program in the areas of SLR data analysis, software development, assessment of SLR station performance, development of improved models for atmospheric propagation and interpretation of station calibration techniques, and science coordination and analysis functions for the NASA led Central Bureau of the International Laser Ranging Service (ILRS). The contractor shall in each year of the five year contract: (1) Provide software development and analysis support to the NASA SLR program and the ILRS. Attend and make analysis reports at the monthly meetings of the Central Bureau of the ILRS covering data received during the previous period. Provide support to the Analysis Working Group of the ILRS including special tiger teams that are established to handle unique analysis problems. Support the updating of the SLR Bibliography contained on the ILRS web site; (2) Perform special assessments of SLR station performance from available data to determine unique biases and technical problems at the station; (3) Develop improvements to models of atmospheric propagation and for handling pre- and post-pass calibration data provided by global network stations; (4) Provide review presentation of overall ILRS network data results at one major scientific meeting per year; (5) Contribute to and support the publication of NASA SLR and ILRS reports highlighting the results of SLR analysis activity.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellemans, A.

    Space beam weapons and unlimited energy from fusion may have been pipe dreams of the 1980s. But today these dreams are giving birth to practical laboratory tools: tabletop x-ray lasers that may open up whole new areas of chemistry and biology. The first x-ray lasers were energized by nuclear explosions or jolts of light from giant glass lasers built for fusion experiments-hardly bench-top equipment. Now, says Joseph Nilsen, a physicist at Lawrence Livermore National Laboratory (LLNL), {open_quotes}several small university-size places are actually making a lot of progress toward tabletop lasers people can use every day.{close_quotes} This article highlight progress towardsmore » cheap ubiquitous X-ray lasers as described at the 5th International Conference on X-ray Lasers.« less

  12. A computer program for the design of optimum catalytic monoliths for CO2 lasers

    NASA Technical Reports Server (NTRS)

    Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.

    1990-01-01

    Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. The performance criteria and constraints involved in the design of catalyst configurations for use in a closed-cycle laser are discussed, and several design studies performed with a computerized design program that was written are presented. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables are discussed.

  13. Preventing, identifying, and managing cosmetic procedure complications, part 2: lasers and chemical peels.

    PubMed

    Brown, Megan

    2016-08-01

    Part 1 of this series highlighted some of the potential complications that have been associated with soft tissue augmentation and botulinum toxin injections. In part 2, tips for how dermatology residents may prevent, identify, and manage complications from lasers and chemical peels for optimal patient outcomes are provided.

  14. Highlighting the nuances behind interaction of picosecond pulses with human skin: Relating distinct laser-tissue interactions to their potential in cutaneous interventions

    NASA Astrophysics Data System (ADS)

    Uzunbajakava, Natallia E.; Varghese, Babu; Botchkareva, Natalia V.; Verhagen, Rieko; Vogel, Alfred

    2018-02-01

    In recent years, several commercial systems relying on picosecond pulses have been introduced into the field of cutaneous interventions. In parallel with this development, a somewhat distinct research prototype also operating in the picosecond regime was described in literature. Albeit both market-available products and the investigational device employ laser beams of nearly the same pulse duration and were reported to cause laser-induced optical breakdown (LIOB), they are different in terms of wavelength, applied fluence, laser beam quality, optical architecture and related focusing optics, resulting in different histomorphological features (such as e.g. lesion size, location, expression of collagen). Understanding the differences between these systems in relation to implications for clinical results raises a need in highlighting the nuances behind interaction of picosecond pulses with biological tissue. To achieve this, we accentuate the interplay of irradiance levels of picosecond pulses in W/cm2 , absorption properties of a target tissue at a wavelength of a light source and resulting interaction mechanisms with biological object. We also relate these nuances to potential consequences for cutaneous interventions.

  15. Direct laser writing of graphene electronics.

    PubMed

    El-Kady, Maher F; Kaner, Richard B

    2014-09-23

    One of the fundamental issues with graphene for logic applications is its lack of a band gap. In this issue of ACS Nano, Shim and colleagues introduce an effective approach for modulating the current flow in graphene by forming p-n junctions using lasers. The findings could lead to a new route for controlling the electronic properties of graphene-based devices. We highlight recent progress in the direct laser synthesis and patterning of graphene for numerous applications. We also discuss the challenges and opportunities in translating this remarkable progress toward the direct laser writing of graphene electronics at large scales.

  16. Inertial Confinement Fusion Annual Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, Robert L.

    The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3ωmore » light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy density science in DOE's Stockpile Stewardship Program (SSP). In 1997, one beam of Nova was converted to a short pulsed beam producing a petawatt of power in subpicosecond pulses. The petawatt beam was used for pioneering research in short-pulse laser-matter interactions relevant to fast ignitor ICF and short pulsed x-ray, electron, and particle production for use as probes. Nova is being disassembled and the space is being used to support NIF construction. Nova components are being distributed to a number of other laser laboratories around the world for reuse as determined by DOE. This report summarizes the research performed by the ICF Program in FY1999. The report is divided into five sections corresponding to the major areas of program activities. These are sections on (1) ignition target physics experiments theory and modeling, (2) high energy density experimental science, (3) target development, fabrication, and handling, (4) NIF laser development, and (5) optics technology development.« less

  17. Review of Current Laser Therapies for the Treatment of Benign Prostatic Hyperplasia

    PubMed Central

    Choi, Benjamin B.

    2013-01-01

    The gold standard for symptomatic relief of bladder outlet obstruction secondary to benign prostatic hyperplasia has traditionally been a transurethral resection of the prostate (TURP). Over the past decade, however, novel laser technologies that rival the conventional TURP have multiplied. As part of the ongoing quest to minimize complications, shorten hospitalization, improve resection time, and most importantly reduce mortality, laser prostatectomy has continually evolved. Today, there are more variations of laser prostatectomy, each with several differing surgical techniques. Although abundant data are available confirming the safety and feasibility of the various laser systems, future randomized-controlled trials will be necessary to verify which technique is superior. In this review, we describe the most common modalities used to perform a laser prostatectomy, mainly, the holmium laser and the potassium-titanyl-phosphate lasers. We also highlight the physical and clinical characteristics of each technology with a review of the most current and highest-quality literature. PMID:23789041

  18. Nanosecond laser coloration on stainless steel surface.

    PubMed

    Lu, Yan; Shi, Xinying; Huang, Zhongjia; Li, Taohai; Zhang, Meng; Czajkowski, Jakub; Fabritius, Tapio; Huttula, Marko; Cao, Wei

    2017-08-02

    In this work, we present laser coloration on 304 stainless steel using nanosecond laser. Surface modifications are tuned by adjusting laser parameters of scanning speed, repetition rate, and pulse width. A comprehensive study of the physical mechanism leading to the appearance is presented. Microscopic patterns are measured and employed as input to simulate light-matter interferences, while chemical states and crystal structures of composites to figure out intrinsic colors. Quantitative analysis clarifies the final colors and RGB values are the combinations of structural colors and intrinsic colors from the oxidized pigments, with the latter dominating. Therefore, the engineering and scientific insights of nanosecond laser coloration highlight large-scale utilization of the present route for colorful and resistant steels.

  19. Current status of laser applications in urology

    NASA Astrophysics Data System (ADS)

    Knipper, Ansgar; Thomas, Stephen; Durek, C.; Jocham, Dieter

    1993-05-01

    The overall development of laser use in urology is recessing. The reasons are the refinement of methods of radical surgery and the continuing development of alternative technologies involving electric current. Taking the cost factor into account, are lasers still opportune in medicine? The answer is definitely yes. Cost reduction in medical practice without quality loss is only possible with effective methods of minimally invasive surgery. Continuing investigation of cutting, welding, coagulating and ablating instruments is justified. Competition of lasers to other technologies can only be beneficial to the cause. But where are the highlights of laser applications? The unsurpassed utilization of optical properties of lasers lie in the concept of photodynamic therapies and in optical feedback mechanisms for laser applications. The combination of lasers with three dimensional visualization of the treatment area by ultrasound (TULIP-procedure for benign prostatic hyperplasia) is a novel approach in laser application. The further development of these treatment modalities will reveal the true benefit of laser technology in urological applications.

  20. Manufacturing Methods and Technology (MM&T) program. 10.6 micrometer carbon dioxide TEA (Transverely Excited Atmospheric) lasers

    NASA Astrophysics Data System (ADS)

    Luck, C. F.

    1983-06-01

    This report documents the efforts of Raytheon Company to conduct a manufacturing methods and technology (MM&T) program for 10.6 micrometer carbon dioxide TEA lasers. A set of laser parameters is given and a conforming tube design is described. Results of thermal and mechanical stress analyses are detailed along with a procedure for assembling and testing the laser tube. Also provided are purchase specifications for optics and process specifications for some of the essential operations.

  1. Technical challenges for the future of high energy lasers

    NASA Astrophysics Data System (ADS)

    LaFortune, K. N.; Hurd, R. L.; Fochs, S. N.; Rotter, M. D.; Pax, P. H.; Combs, R. L.; Olivier, S. S.; Brase, J. M.; Yamamoto, R. M.

    2007-02-01

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.

  2. Development of Generalizable Educational Programs in Laser/Electro-Optics Technology: Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    The purpose of the Laser/Electro-Optics Technology (LEOT) Project was to establish a pilot educational program, develop a flexible curriculum, prepare and test instructional materials, transport the curriculum and instructional materials into other educational institutions by establishing relevant LEOT programs wherever they are needed, and to…

  3. Initiating an ophthalmic laser program for VA outpatients.

    PubMed

    Newcomb, R D

    1995-08-01

    Administrative and clinical considerations for the establishment of an ophthalmic laser program at a VA Outpatient Clinic are discussed. Outcomes of the first 320 patients treated over a 3-year period of time are presented. The program is evaluated from the perspectives of patient care, safety, maintenance, education, and economics.

  4. Hazard calculations of diffuse reflected laser radiation for the SELENE program

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Babb, Phillip D.

    1993-01-01

    The hazards from diffuse laser light reflections off water clouds, ice clouds, and fog and from possible specular reflections off ice clouds were assessed with the American National Standards (ANSI Z136.1-1986) for the free-electron-laser parameters under consideration for the Segmented Efficient Laser Emission for Non-Nuclear Electricity (SELENE) Program. Diffuse laser reflection hazards exist for water cloud surfaces less than 722 m in altitude and ice cloud surfaces less than 850 m in altitude. Specular reflections from ice crystals in cirrus clouds are not probable; however, any specular reflection is a hazard to ground observers. The hazard to the laser operators and any ground observers during heavy fog conditions is of such significant magnitude that the laser should not be operated in fog.

  5. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  6. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  7. Laser Technician Associate Degree Program. A Proposal Submitted to Wisconsin State Board of Vocational, Technical, and Adult Education. (Curriculum Development.) Final Report.

    ERIC Educational Resources Information Center

    North Central Technical Inst., Wausau, WI.

    This final report contains the program proposal with supporting data for developing curriculum materials for and implementing an associate-degree laser technology program at the North Central Technical Institute. The proposal outline provides this information: (1) objectives for the program designed to prepare a technician to safely operate,…

  8. The economics of surgical laser technology in veterinary practice.

    PubMed

    Irwin, James R

    2002-05-01

    A decision to invest in and develop laser technology should only be made after a thorough investigation and comparison of the available types, vendors, available features, and purchasing options. A sound marketing program must then be used for introducing laser technology to the staff, clients, and colleagues. Without adhering to such a program, a practice will [figure: see text] not experience the necessary profitability following the purchase of a laser. Staff enthusiasm and support will dwindle, and ultimately the laser investment will be viewed unfavorably. When marketed properly, however, the investment in a surgical laser will provide outstanding profitability. The return on investment can be provided by using the support staff for client education, by offering laser technology for routine elective procedures and complex procedures, and by adhering strictly to a fee schedule. Add that to the truly remarkable results obtained using laser surgical techniques, a practice will be greatly enhanced.

  9. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  10. Short Wavelength Laser/Materials Interactions

    DTIC Science & Technology

    1989-12-20

    lasterials interaction phenomena and effects, and 4) materials evaluation. The program has led to major advances in science-based understanding of...3.0 RESULTS 5 3.1 MATERIALS SELECTION and CHARACTERIZATION 5 3.2 DEVELOPMENT of NEW INSTRUMENTATION 8 3.2.1 Laser Sources 8 3.2.2 Multiwavelength ...high temperature during laser irradiation. The program has led to major advances in science-based understanding of materials performance under extreme

  11. Highlights of laser-tissue interaction mechanism

    NASA Astrophysics Data System (ADS)

    Gabay, Shimon

    2001-10-01

    The aim of this paper is to present the fundamentals of good practice when using the laser in medicine and surgery. As a 'good practice' recommendation, the laser beam wavelength and power should be determined to match the desired thermal effect. The energy losses to the surroundings of the initial absorbing volume, caused by the heat diffusion mechanism, are strongly dependent on the exposure time duration. The differences in the absorption and scattering coefficients of some tissue components are used for selectively destroying those components having the higher absorption coefficients. Selective destruction of some tissue components can be achieved even for components having the same absorption coefficient but different dimensions. The laser therapy strategy is discussed: the effective use of lasers in medicine can be achieved only if the physician has an extensive understanding of the laser-tissue interaction mechanisms; continuing education and training is a must for laser surgeons to improve their skill to get clinically optimal results.

  12. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  13. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  14. Laser Communication Demonstration System (LSCS) and Future Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Chen, C. -C.; Lesh, J. R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth Orbit. For future global satellite communication systems using intersatellite links (ISLs), laser communications technology can offer reduced mass , reduced power requirements, and increased channel bandwidths without regulatory restraint. This paper provides comparisons with radio systems and status of the program.

  15. LIMAO: Cross-platform software for simulating laser-induced alignment and orientation dynamics of linear-, symmetric- and asymmetric tops

    NASA Astrophysics Data System (ADS)

    Szidarovszky, Tamás; Jono, Maho; Yamanouchi, Kaoru

    2018-07-01

    A user-friendly and cross-platform software called Laser-Induced Molecular Alignment and Orientation simulator (LIMAO) has been developed. The program can be used to simulate within the rigid rotor approximation the rotational dynamics of gas phase molecules induced by linearly polarized intense laser fields at a given temperature. The software is implemented in the Java and Mathematica programming languages. The primary aim of LIMAO is to aid experimental scientists in predicting and analyzing experimental data representing laser-induced spatial alignment and orientation of molecules.

  16. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    PubMed

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  17. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  18. An Overview of Communications Technology and Development Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report highlights innovative SBIR 2015 Phase I projects specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are fifteen technologies featured with emphasis on a wide spectrum of applications such as novel solid state lasers for space-based water vapor dial; wide temperature, high voltage and energy density capacitors for aerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser for methane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites; a SIC-based microcontroller for high-temperature in-situ instruments and systems; improved yield, performance and reliability of high-actuator-count deformable mirrors; embedded multifunctional optical sensor system; switching electronics for space-based telescopes with advanced AO systems; integrated miniature DBR laser module for Lidar instruments; and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. space-based water vapor dial; wide temperature, high voltage and energy density capacitors foraerospace exploration; instrument for airborne measurement of carbonyl sulfide; high-power tunable seed laser formethane Lidar transmitter; ROC-rib deployable ka-band antenna for nanosatellites.

  19. United States Air Force Summer Faculty Research Program: Program Management Report

    DTIC Science & Technology

    1988-12-01

    Laboratory 64 Realization of Sublayer Relative Dr. Lane Clark Shielding Order in Electromagnetic Topology 65 Diode Laser Probe of Vibrational Dr. David...given. In addition, all possible sublayer topologies with relative shielding order at most 5 are explicitly given. S863 Diode Laser Probe of...dioxide at 193 nm to prepare the SO radicals. High resolution diode laser absorption spectrometry will be used to obtain time-dependent concentrations

  20. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  1. Laser-Based Diagnostic Measurements of Low Emissions Combustor Concepts

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.

    2011-01-01

    This presentation provides a summary of primarily laser-based measurement techniques we use at NASA Glenn Research Center to characterize fuel injection, fuel/air mixing, and combustion. The report highlights using Planar Laser-Induced Fluorescence, Particle Image Velocimetry, and Phase Doppler Interferometry to obtain fuel injector patternation, fuel and air velocities, and fuel drop sizes and turbulence intensities during combustion. We also present a brief comparison between combustors burning standard JP-8 Jet fuel and an alternative fuels. For this comparison, we used flame chemiluminescence and high speed imaging.

  2. Cutting of optical materials by using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Nolte, Stefan; Will, Matthias; Augustin, Markus; Triebel, Peter; Zoellner, Karsten; Tuennermann, Andreas

    2001-11-01

    In the past years, ultrashort pulse lasers have been established as precise and universal tools for the microstructuring of solid materials. Since thermal and mechanical influences are minimized, the application of this technology is also suitable for the structuring of optical materials and opens new possibilities. In this paper, the influence of pulse duration, pulse energy (fluence) and polarization on the cutting quality for glass and silicon will be discussed. As a concrete application, the cutting and micromarking of dielectric coated mirrors for high power fiber lasers will be highlighted.

  3. Engaging the public in the nascent era of gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Hendry, Martin A.

    2015-08-01

    Within the next few years a global network of ground-based laser interferometers will become fully operational. These ultra-sensitive instruments are confidently expected to directly detect gravitational waves from astrophysical sources before the end of the decade. In anticipation of opening this entirely new window on the Universe, the LIGO (Laser Interferometer Gravitational Wave Observatory) Scientific Collaboration has recently developed a substantive program of education and public outreach activities that includes exhibitions, documentary films, social media and interactive games - as well as more traditional modes of science communication such as schools and public lectures.As the gravitational wave 'detection era' unfolds over the next decade, it will present exciting challenges for future public engagement by the LIGO Scientific Collaboration and by other gravitational-wave astronomy collaborations around the world. Perhaps the most interesting opportunities will be in the area of citizen science, building upon the infrastructure already being developed through e.g. the LIGO Open Science Center (see arXiv:1410.4839) and the remarkable success of the Einstein@Home project (www.einsteinathome.org).In this presentation I will give an overview of the LSC education and public outreach program, highlighting its goals, major successes and future strategy - particularly in relation to the release of future LIGO and other gravitational wave datasets to the scientific community and to the public, and the opportunities this will present for directly engaging citizen scientists in this exciting new field of observational astronomy.

  4. Two tools for applying chromatographic retention data to the mass-based identification of peptides during hydrogen/deuterium exchange experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Gershon, P D

    2010-12-15

    Two tools are described for integrating LC elution position with mass-based data in hydrogen-deuterium exchange (HDX) experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (nanoLC/MALDI-MS, a novel approach to HDX-MS). The first of these, 'TOF2H-Z Comparator', highlights peptides in HDX experiments that are potentially misidentified on the basis of mass alone. The program first calculates normalized values for the organic solvent concentration responsible for the elution of ions in nanoLC/MALDI HDX experiments. It then allows the solvent gradients for the multiple experiments contributing to an MS/MS-confirmed peptic peptide library to be brought into mutual alignment by iteratively re-modeling variables among LC parameters such as gradient shape, solvent species, fraction duration and LC dead time. Finally, using the program, high-probability chromatographic outliers can be flagged within HDX experimental data. The role of the second tool, 'TOF2H-XIC Comparator', is to normalize the LC chromatograms corresponding to all deuteration timepoints of all HDX experiments of a project, to a common reference. Accurate normalization facilitates the verification of chromatographic consistency between all ions whose spectral segments contribute to particular deuterium uptake plots. Gradient normalization in this manner revealed chromatographic inconsistencies between ions whose masses were either indistinguishable or separated by precise isotopic increments. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Research of the Aerophysics Institute for the Strategic Technology Office (DARPA)

    DTIC Science & Technology

    1975-06-30

    19. (continued) 6. Unstable Optical Resonator Cavities 7. Laser Metal Screening Program 8. Ultraviolet & Blue-Green Lasers 9. Efficient Metal...Vapor Lasers 10. Atomic Transition Probabilities 11. Computer Modeling of Laser Dynamic 12. Startified Ocean Wakes L0. (continued) In the... laser area, the major task was the screening of atomic vapors, particularly metal vapors, for new, efficient lasers in the visible and ultra

  6. Pulse Height Analyzer Interfacing and Computer Programming in the Environmental Laser Propagation Project

    DTIC Science & Technology

    1976-06-01

    United States Naval Postgraduate School, Monterey , California, 1974. 6. Anton , H., Elementary Linear Algebra , John Wiley & Sons, 1973. 7. Parrat, L. G...CONVERTER ln(laser & bias) PULSE HEIGHT ANALYZER © LINEAR AMPLIFIER SAMPLE TRIGGER OSCILLATOR early ln(laser & bias) SCINTILLOMETERS recent BACKGROUND...DEMODULATOR LASER CALIBRATION BOX LASER OR CAL VOLTAGE LOG CONVERTER LN (LASER OR CAL VOLT) LINEAR AMPLIFIER uLN (LASER OR CAL VOLT) PULSE HEIGHTEN ANALYZER V

  7. Laser Research

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Eastman Kodak Company, Rochester, New York is a broad-based firm which produces photographic apparatus and supplies, fibers, chemicals and vitamin concentrates. Much of the company's research and development effort is devoted to photographic science and imaging technology, including laser technology. Eastman Kodak is using a COSMIC computer program called LACOMA in the analysis of laser optical systems and camera design studies. The company reports that use of the program has provided development time savings and reduced computer service fees.

  8. 20 years of Tm:Ho:YLF and LuLF Laser Development for Global Winds Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Walsh, Brian M.; Yu, Jirong; Petros, Mulugeta; Kavaya, Michael J.; Barnes, Norman P.

    2014-01-01

    NASA Langley Research Center has a long history of developing 2 micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. This article covers the program development from the early research to the present instrumentation. A brief historical perspective of Tm:Ho work by early researchers is also given.

  9. Lasers in Periodontics: Review of Literature

    DTIC Science & Technology

    2015-06-01

    Alex Printed Name Orofacial Pain Fellowship Naval Postgraduate Dental School Program and Program Location Uniformed Services University LASERS IN...PERIODONTICS: REVIEW OF THE LITERATURE By Alex Smith MAJ, DC, USA A thesis submitted to the Faculty of the Orofacial Pain Graduate Program Naval...Department Chair Orofaci I Pain Department Glenn Munro, CAPT, DC, USN Dean, Naval Postgraduate Dental School NAVAL POSTGRADUATE DENTAL SCHOOL BETHESDA

  10. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2015-04-01

    The purpose of the study was to review the existing literature on holmium:yttrium-aluminum-garnet laser lithotripsy regarding lithotripter settings and laser fibers. An online search of current and past peer-reviewed literature on holmium laser lithotripsy was performed on several databases, including PubMed, SciElo, and Google Scholar. Relevant studies and original articles about lithotripter settings and laser fibers were examined, and the most important information is summarized and presented here. We examine how the choice of lithotripter settings and laser fibers influences the performance of holmium laser lithotripsy. Traditional laser lithotripter settings are analyzed, including pulse energy, pulse frequency, and power levels, as well as newly developed long-pulse modes. The impact of these settings on ablation volume, fragment size, and retropulsion is also examined. Advantages of small- and large-diameter laser fibers are discussed, and controversies are highlighted. Additionally, the influence of the laser fiber is examined, specifically the fiber tip preparation and the lithotripter settings' influence on tip degradation. Many technical factors influence the performance of holmium laser lithotripsy. Knowing and understanding these controllable parameters allows the urologist to perform a laser lithotripsy procedure safely, efficiently, and with few complications.

  11. Direct femtosecond laser surface structuring of crystalline silicon at 400 nm

    NASA Astrophysics Data System (ADS)

    Nivas, Jijil JJ; Anoop, K. K.; Bruzzese, Riccardo; Philip, Reji; Amoruso, Salvatore

    2018-03-01

    We have analyzed the effects of the laser pulse wavelength (400 nm) on femtosecond laser surface structuring of silicon. The features of the produced surface structures are investigated as a function of the number of pulses, N, and compared with the surface textures produced by more standard near-infrared (800 nm) laser pulses at a similar level of excitation. Our experimental findings highlight the importance of the light wavelength for the formation of the supra-wavelength grooves, and, for a large number of pulses (N ≈ 1000), the generation of other periodic structures (stripes) at 400 nm, which are not observed at 800 nm. These results provide interesting information on the generation of various surface textures, addressing the effect of the laser pulse wavelength on the generation of grooves and stripes.

  12. The role of lasers and intense pulsed light technology in dermatology

    PubMed Central

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  13. Coherent Laser Radar System Theory.

    DTIC Science & Technology

    1987-11-05

    This program is aimed at developing a system theory for the emerging technology of multifunction coherent CO2 laser radars. It builds upon previous...work funded by U.S. Army Research Office contract DAAG29-80-K-0022. Keywords include: Laser radar theory, Radar system theory , and Laser speckle.

  14. Shallow Water Laser Bathymetry: Accomplishments and Applications

    DTIC Science & Technology

    2016-05-12

    developed specifically to detect underwater mines , such as the Airborne Laser Radar Mine Sensor (ALARMS) built by Optech for the U.S. Defense...borne mine detection based upon an earlier proven ALB receiver configuration, was developed from urgent requirements related to the Persian Gulf War...resolution depiction of a large area which had recently been mined for a neighboring beach restoration project, it highlighted the capability for

  15. Sutureless microvascular anastomosis assisted by an expandable shape-memory alloy stent

    PubMed Central

    Saegusa, Noriko; Sarukawa, Shunji; Ohta, Kunihiro; Takamatsu, Kensuke; Watanabe, Mitsuhiro; Sugino, Takashi; Nakagawa, Masahiro; Akiyama, Yasuto; Kusuhara, Masatoshi; Kishi, Kazuo; Inoue, Keita

    2017-01-01

    Vascular anastomosis is the highlight of cardiovascular, transplant, and reconstructive surgery, which has long been performed by hand using a needle and suture. However, anastomotic thrombosis occurs in approximately 0.5–10% of cases, which can cause serious complications. To improve the surgical outcomes, attempts to develop devices for vascular anastomosis have been made, but they have had limitations in handling, cost, patency rate, and strength at the anastomotic site. Recently, indwelling metal stents have been greatly improved with precise laser metalwork through programming technology. In the present study, we designed a bare metal stent, Microstent, that was constructed by laser machining of a shape-memory alloy, NiTi. An end-to-end microvascular anastomosis was performed in SD rats by placing the Microstent at the anastomotic site and gluing the junction. The operation time for the anastomosis was significantly shortened using Microstent. Thrombus formation, patency rate, and blood vessel strength in the Microstent anastomosis were superior or comparable to hand-sewn anastomosis. The results demonstrated the safety and effectiveness, as well as the operability, of the new method, suggesting its great benefit for surgeons by simplifying the technique for microvascular anastomosis. PMID:28742116

  16. Repurposing mainstream CNC machine tools for laser-based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Jason B.

    2016-04-01

    The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.

  17. Safe laser application requires more than laser safety

    NASA Astrophysics Data System (ADS)

    Frevel, A.; Steffensen, B.; Vassie, L.

    1995-02-01

    An overview is presented concerning aspects of laser safety in European industrial laser use. Surveys indicate that there is a large variation in the safety strategies amongst industrial laser users. Some key problem areas are highlighted. Emission of hazardous substances is a major problem for users of laser material processing systems where the majority of the particulate is of a sub-micrometre size, presenting a respiratory hazard. Studies show that in many cases emissions are not frequently monitored in factories and uncertainty exists over the hazards. Operators of laser machines do not receive adequate job training or safety training. The problem is compounded by a plethora of regulations and standards which are difficult to interpret and implement, and inspectors who are not conversant with the technology or the issues. A case is demonstrated for a more integrated approach to laser safety, taking into account the development of laser applications, organizational and personnel development, in addition to environmental and occupational health and safety aspects. It is necessary to achieve a harmonization between these elements in any organization involved in laser technology. This might be achieved through establishing technology transfer centres in laser technology.

  18. Color-encoded distance for interactive focus positioning in laser microsurgery

    NASA Astrophysics Data System (ADS)

    Schoob, Andreas; Kundrat, Dennis; Lekon, Stefan; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-08-01

    This paper presents a real-time method for interactive focus positioning in laser microsurgery. Registration of stereo vision and a surgical laser is performed in order to combine surgical scene and laser workspace information. In particular, stereo image data is processed to three-dimensionally reconstruct observed tissue surface as well as to compute and to highlight its intersection with the laser focal range. Regarding the surgical live view, three augmented reality concepts are presented providing visual feedback during manual focus positioning. A user study is performed and results are discussed with respect to accuracy and task completion time. Especially when using color-encoded distance superimposed to the live view, target positioning with sub-millimeter accuracy can be achieved in a few seconds. Finally, transfer to an intraoperative scenario with endoscopic human in vivo and cadaver images is discussed demonstrating the applicability of the image overlay in laser microsurgery.

  19. Laser and Light-based Treatment of Keloids – A Review

    PubMed Central

    Mamalis, A.D.; Lev-Tov, H.; Nguyen, D.H.; Jagdeo, J.R.

    2015-01-01

    Keloids are an overgrowth of fibrotic tissue outside the original boundaries of an injury and occur secondary to defective wound healing. Keloids often have a functional, aesthetic, or psychosocial impact on patients as highlighted by quality-of-life studies. Our goal is to provide clinicians and scientists an overview of the data available on laser and light-based therapies for treatment of keloids, and highlight emerging light-based therapeutic technologies and the evidence available to support their use. We employed the following search strategy to identify the clinical evidence reported in the biomedical literature: in November 2012, we searched PubMed.gov, Ovid MEDLINE, Embase, and Cochrane Reviews (1980-present) for published randomized clinical trials, clinical studies, case series, and case reports related to the treatment of keloids. The search terms we utilized were ‘keloid(s)’ AND ‘laser’ OR ‘light-emitting diode’ OR ‘photodynamic therapy’ OR ‘intense pulsed light’ OR ‘low level light’ OR ‘phototherapy.’ Our search yielded 347 unique articles. Of these, 33 articles met our inclusion and exclusion criteria. We qualitatively conclude that laser and light-based treatment modalities may achieve favorable patient outcomes. Clinical studies using CO2 laser are more prevalent in current literature and a combination regimen may be an adequate ablative approach. Adding light-based treatments, such as LED phototherapy or photodynamic therapy, to laser treatment regimens may enhance patient outcomes. Lasers and other light-based technology have introduced new ways to manage keloids that may result in improved aesthetic and symptomatic outcomes and decreased keloid recurrence. PMID:24033440

  20. Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code

    NASA Astrophysics Data System (ADS)

    Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.

    2013-06-01

    Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  1. LaserFest Celebration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Alan Chodos; Elizabeth A. Rogan

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and itsmore » many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.« less

  2. Spinoff 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Innovative Partnerships Program of NASA s Exploration Systems Mission Directorate was established to guarantee the transfer of the Space Program s technical advances. Brimming with examples of technologies that have led to significant improvements in quality of life, NASA s technology transfer program has been the conduit for these achievements. The program excels by maintaining established relationships with commercial industries that include and extend beyond the aerospace sector. Spinoff 2004 highlights the diverse benefits that have grown from NASA s partnerships with U.S. companies. These products span the many disciplines of our society. Included among this year s achievements are a natural, low-calorie sugar that is safe for diabetics and contact lenses that offer the benefits of a laser-corrective eye procedure without the need for surgery. This issue also showcases some of the many research and development activities being conducted by NASA s field centers. These activities continue to fuel the Agency s missions, which collectively contribute to making the Vision for Space Exploration a reality. NASA is focusing on identifying common research interests with industry, enabling both parties to leverage their research and produce a technology that will help both the Agency and the private commercial venture. These dual-use joint ventures support the development of new exploration strategies, vehicles, and technologies, while continuing to bring space technologies back down to Earth.

  3. Improvement of Hungarian Joint Terminal Attack Program

    DTIC Science & Technology

    2013-06-13

    LST Laser Spot Tracker NVG Night Vision Goggle ROMAD Radio Operator Maintainer and Driver ROVER Remotely Operated Video Enhanced Receiver TACP...visual target designation. The other component consists of a laser spot tracker (LST), which identifies targets by tracking laser energy reflecting...capability for every type of night time missions, laser spot tracker for laser spot search missions, remotely operated video enhanced receiver

  4. Laser Pyro System Standardization and Man Rating

    NASA Technical Reports Server (NTRS)

    Brown, Christopher W.

    2004-01-01

    This viewgraph presentation reviews an X-38 laser pyro system standardization system designed for a new manned rated program. The plans to approve this laser initiation system and preliminary ideas for this system are also provided.

  5. High-energy laser-summator based on Raman scattering principle

    NASA Astrophysics Data System (ADS)

    Eugeniy Mikhalovich, Zemskov; Zarubin, Peter Vasilievich; Cook, Joung

    2013-02-01

    This paper is a summary of the history, theory, and development efforts of summator, an all-in-one device that coherently combines multiple high-power laser beams, lowers the beam divergence, and shifts the wavelength based on stimulated Raman scattering principle in USSR from early 1960s to late 1970s. This was a part of the Terra-3 program, which was an umbrella program of highly classified high-energy laser weapons development efforts. Some parts of the Terra-3 program, specifically the terminal missile defense portion, were declassified recently, including the information on summator development efforts.

  6. A program to compute the two-step excitation of mesospheric sodium atoms for the Polychromatic Laser Guide Star Project

    NASA Astrophysics Data System (ADS)

    Bellanger, Véronique; Courcelle, Arnaud; Petit, Alain

    2004-09-01

    A program to compute the two-step excitation of sodium atoms ( 3S→3P→4D) using the density-matrix formalism is presented. The BEACON program calculates population evolution and the number of photons emitted by fluorescence from the 3P, 4D, 4P, 4S levels. Program summaryTitle of program: BEACON Catalogue identifier:ADSX Program Summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Operating systems under which the program has been tested: Win; Unix Programming language used: FORTRAN 77 Memory required to execute with typical data: 1 Mw Number of bits in a word: 32 Number of processors used: 1 (a parallel version of this code is also available and can be obtained on request) Number of lines in distributed program, including test data, etc.: 29 287 Number of bytes in distributed program, including test data, etc.: 830 331 Distribution format: tar.gz CPC Program Library subprograms used: none Nature of physical problem: Resolution of the Bloch equations in the case of the two-step laser excitation of sodium atoms. Method of solution: The program BEACON calculates the evolution of level population versus time using the density-matrix formalism. The number of photons emitted from the 3P, 4D and 4P levels is calculated using the branching ratios and the level lifetimes. Restriction on the complexity of the problem: Since the backscatter emission is calculated after the excitation process, excitation with laser pulse duration longer than the 4D level lifetime cannot be rigorously treated. Particularly, cw laser excitation cannot be calculated with this code. Typical running time:12 h

  7. Fractional CO2 lasers for the treatment of atrophic acne scars: a review of the literature.

    PubMed

    Magnani, Lauren Rose; Schweiger, Eric S

    2014-04-01

    This review examines the efficacy and safety of fractional CO2 lasers for the treatment of atrophic scarring secondary to acne vulgaris. We reviewed 20 papers published between 2008 and 2013 that conducted clinical studies using fractional CO2 lasers to treat atrophic scarring. We discuss the prevalence and pathogenesis of acne scarring, as well as the laser mechanism. The histologic findings are included to highlight the ability of these lasers to induce the collagen reorganization and formation that improves scar appearance. We considered the number of treatments and different laser settings to determine which methods achieve optimal outcomes. We noted unique treatment regimens that yielded superior results. An overview of adverse effects is included to identify the most common ones. We concluded that more studies need to be done using uniform treatment parameters and reporting in order to establish which fractional CO2 laser treatment approaches allow for the greatest scar improvement.

  8. Formation of periodic surface structures on dielectrics after irradiation with laser beams of spatially variant polarisation: a comparative study

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Antonis; Skoulas, Evangelos; Tsibidis, George D.; Stratakis, Emmanuel

    2018-02-01

    A comparative study is performed to explore the periodic structure formation upon intense femtosecond-pulsed irradiation of dielectrics with radially and azimuthally polarised beams. Laser conditions have been selected appropriately to produce excited carriers with densities below the optical breakdown threshold in order to highlight the role of phase transitions in surface modification mechanisms. The frequency of the laser-induced structures is calculated based on a theoretical model that comprises estimation of electron density excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. The influence of the laser wavelength in the periodicity of the structures is also unveiled. The decreased energy absorption for azimuthally polarised beams yields periodic structures with smaller frequencies which are more pronounced as the number of laser pulses applied to the irradiation spot increases. Similar results are obtained for laser pulses of larger photon energy and higher fluences. All induced periodic structures are oriented parallel to the laser beam polarisation.

  9. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.

  10. SITE - EMERGING TECHNOLOGIES: LASER INDUCED PHOTO- CHEMICAL OXIDATIVE DESTRUCTION OF TOXIC ORGANICS IN LEACHATES AND GROUNDWATERS

    EPA Science Inventory

    The technology described in this report has been developed under the Emerging Technology Program of the Superfund Innovative Technology Evaluation (SITE) Program to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an excimer laser. T...

  11. Laser long-range remote-sensing program experimental results

    NASA Astrophysics Data System (ADS)

    Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe

    1995-12-01

    A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.

  12. LLE Review 116 (July-September 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozas, J.A., editor

    2010-03-12

    This issue has the following articles: (1) Optimizing Electron-Positron Pair Production on kJ-Class High-Intensity Lasers for the Purpose of Pair-Plasma Creation; (2) Neutron Yield Study of Direct-Drive, Low-Adiabat Cryogenic D2 Implosions on OMEGA; (3) Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil; (4) A Measurable Lawson Criterion and Hydro-Equivalent Curves for Inertial Confinement Fusion; (5) Pulsed-THz Characterization of Hg-Based, High-Temperature Superconductors; (6) LLE's Summer High School Research Program; (7) FY08 Laser Facility Report; and (8) National Laser Users Facility and External Users Programs.

  13. Final Report for DOE Grant Number DE-SC0001481

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Edison

    2013-12-02

    This report covers research activities, major results and publications supported by DE-SC-000-1481. This project was funded by the DOE OFES-NNSA HEDLP program. It was a joint research program between Rice University and the University of Texas at Austin. The physics of relativistic plasmas was investigated in the context of ultra-intense laser irradiation of high-Z solid targets. Laser experiments using the Texas Petawatt Laser were performed in the summers of 2011, 2012 and 2013. Numerical simulations of laser-plasma interactions were performed using Monte Carlo and Particle-in-Cell codes to design and support these experiments. Astrophysical applications of these results were also investigated.

  14. The African Laser Centre: Transforming the Laser Community in Africa

    NASA Astrophysics Data System (ADS)

    Mtingwa, Sekazi

    2012-02-01

    We describe the genesis and programs of the African Laser Centre (ALC), which is an African nonprofit network of laser users that is based in Pretoria, South Africa. Composed of over thirty laboratories from countries throughout the continent of Africa, the ALC has the mission of enhancing the application of lasers in research and education. Its programs include grants for research and training, equipment loans and donations, student scholarships, faculty grants for visits to collaborators' institutions, conferences, and technician training. A long-term goal of the ALC is to bring a synchrotron light source to Africa, most probably to South Africa. One highly popular program is the biennial conference series called the US-Africa Advanced Studies Institute, which is funded by the ALC in collaboration with the U.S. National Science Foundation and the International Center for Theoretical Physics in Trieste. The Institutes typically bring about thirty faculty and graduate students from the U.S. to venues in Africa in order to introduce U.S. and African graduate students to major breakthroughs in targeted areas that utilize lasers. In this presentation, we will summarize the ALC achievements to date and comment on the path forward.

  15. Pattern-Recognition Algorithm for Locking Laser Frequency

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George

    2006-01-01

    A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.

  16. 8TH International Laser Physics Workshop Lphys󈨧 Budapest, July 2-6, 1999, Program

    DTIC Science & Technology

    1999-07-05

    Gerhard J. MUller (Germany) Rudolf Steiner (Germany) Symposium Status and Future Directions of High-Power Laser Installations Co-Chairs: See Leang...Sciences, Kazan. Russia I.A. Shcherbakov General Physics Institute. Russian Academy of Sciences. Moscow, Russia R. Steiner Institute of Laser Technologies...14.50-15.15 R. Steiner , A. Pohl, A. Bentele, T. Meier (Ulm, Germany) Laser Doppler sensor for laser assisted injection 30 SEMINAR 5 --- LASER METHODS IN

  17. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  18. Development and Implementation of Joint Programs in Laser Ranging and Other Space Geodetic Techniques

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.; Carter, David (Technical Monitor)

    2002-01-01

    On-going activities of the NASA special consultant to WEGENER (Working group of European Geoscientists for the Establishment of Networks for Earth-science Research) program are reported. Topics cover include: the WEGENER 2002 conference in Greece and the International Laser Ranging Service (ILRS).

  19. Pseudo colour visualization of fused multispectral laser scattering images for optical diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Zabarylo, U.; Minet, O.

    2010-01-01

    Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.

  20. Base-Level Management of Laser Radiation Protection Program

    DTIC Science & Technology

    1992-02-01

    safety eyewear . special considerations for medical lasers and optical fibers, and summary evaluations of common Air Force laser systems... optical density of 2. Laser safety eyewear should have the optical density clearly marked for ail wavelengths for which the eyewear provides protection. c...density of protective eyewear . The optical density required for laser safety eyewear is dependent on the irradiance or radiant exposure-of the

  1. Development of Electron Beam Pumped KrF Lasers for Fusion Energy

    DTIC Science & Technology

    2008-01-01

    Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include

  2. Ar-Xe Laser: The Path to a Robust, All-Electric Shipboard Directed Energy Weapon

    DTIC Science & Technology

    2008-12-18

    Krypton Fluoride (KrF) laser for fusion energy and is sponsored by the Department of Energy’s (DOE) High Average Power Laser (HAPL) program. DOE...Electronics Conference, Arlington VA, October 2007. 9. “Electron Beam Pumped Lasers for Fusion Energy and Directed Energy Applications”, presented by

  3. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

    DOE PAGES

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...

    2017-04-19

    Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less

  4. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    PubMed

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  5. Deposition Mechanism and Microstructure of Laser-Assisted Cold-Sprayed (LACS) Al-12 wt.%Si Coatings: Effects of Laser Power

    NASA Astrophysics Data System (ADS)

    Olakanmi, E. O.; Tlotleng, M.; Meacock, C.; Pityana, S.; Doyoyo, M.

    2013-06-01

    Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.

  6. Fiber Based Seed Laser for CO 2 Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuchuan

    A compact and effective 10-micron femtosecond laser with pulse duration <500fs and repetition rate of >100Hz or smaller is desirable by DOE for seeding CO 2 ultrafast laser systems to improve the stability, reliability and efficiency in generating 10-micron laser from GW up to 100TW peak power, which is irreplaceable in driving an accelerator for particle beam generation due to the efficiency proportional to the square of the laser wavelength. Agiltron proposes a fiber based ultrafast 10-micron seed laser that can provide the required specifications and high performance. Its success will directly benefit DOE’s compact proton and ion sources. Themore » innovative technology can be used for ultrafast laser generation over the whole mid-IR range, and speed up the development of mid-IR laser applications. Agiltron, Inc. has successfully completed all tasks and demonstrated the feasibility of a fiber based 10-micron ultrafast laser in Phase I of the Program. We built a mode-locked fiber laser that generated < 400fs ultrafast laser pulses and successfully controlled the repetition rate to be the required 100Hz. Using this mode-locked laser, we demonstrated the feasibility of parametric femtosecond laser generation based on frequency down conversion. The experimental results agree with our simulation results. The investigation results of Phase I will be used to optimize the design of the laser system and build a fully functional prototype for delivery to the DOE in the Phase II program. The prototype development in Phase II program will be in the collaboration with Professor Chandrashekhar Joshi, the leader of UCLA Laser-Plasma group. Prof. Joshi discovered a new mechanism for generation of monoenergetic proton/ion beams: Shock Wave Acceleration in a near critical density plasma and demonstrated that high-energy proton beams using CO 2 laser driven collisionless shocks in a gas jet plasma, which opened an opportunity to develop a rather compact high-repetition rate ion source for medical and other applications which could be significantly cheaper than that based on RF acceleration. We propose an output energy >1 μJ, one order of magnitude higher than the DOE original requirement. The performance of the prototype will be tested at UCLA by directly seeding the CO 2 laser system driving an accelerator.« less

  7. New Possibilities in the Fabrication of Hybrid Components with Big Dimensions by Means of Selective Laser Melting (SLM)

    NASA Astrophysics Data System (ADS)

    Ascari, A.; Fortunato, A.; Liverani, E.; Gamberoni, A.; Tomesani, L.

    The application of laser technology to welding of dissimilar AISI316 stainless steel components manufactured with selective laser melting (SLM) and traditional methods has been investigated. The role of laser parameters on weld bead formation has been studied experimentally, with particular attention placed on effects occurring at the interface between the two parts. In order to assess weld bead characteristics, standardised tensile tests were carried out on suitable specimens and the fracture zone was analysed. The results highlighted the possibility of exploiting suitable process parameters to appropriately shape the heat affected and fusion zones in order to maximise the mechanical performance of the component and minimise interactions between the two parent metals in the weld bead.

  8. What's new in paediatric dentistry?

    NASA Astrophysics Data System (ADS)

    Vitale, M. C.

    2016-03-01

    Since the early 80's, the use of laser has been introduced in the daily dental practice and the technological development has also provided over time to optimize its use. Various types of lasers with different wavelengths have been developed for use in a handy, easy and ergonomic manner. In daily paediatric dentistry, laser could be a very useful medical device which can completely replace the traditional high hand-piece and bur to realize a "micro-invasive" dentistry and a "clean" surgery, without bleeding and sutures. According to the international literature and in the light of recent researches, this work could give an overview on assisted laser therapy in paediatric dentistry, highlighting advantages and disadvantages of this new technology and pointing out the high compliance of the young patient.

  9. Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Goodno, Gregory D.; Book, Lewis D.; Rothenberg, Joshua E.; Weber, Mark E.; Benjamin Weiss, S.

    2011-11-01

    Thulium-doped fiber lasers (TFLs) emitting retina-safe 2-μm wavelengths offer substantial power-scaling advantages over ytterbium-doped fiber lasers for narrow linewidth, single-mode operation. This article reviews the design and performance of a pump-limited, 600 W, single-mode, single-frequency TFL amplifier chain that balances thermal limitations against those arising from stimulated Brillouin scattering (SBS). A simple analysis of thermal and SBS limits is anchored with measurements on kilowatt class Tm and Yb fiber lasers to highlight the scaling advantage of Tm for narrow linewidth operation. We also report recent results on active phase-locking of a TFL amplifier to an optical reference as a precursor to further parallel scaling via coherent beam combining.

  10. High-speed assembly language (80386/80387) programming for laser spectra scan control and data acquisition providing improved resolution water vapor spectroscopy

    NASA Technical Reports Server (NTRS)

    Allen, Robert J.

    1988-01-01

    An assembly language program using the Intel 80386 CPU and 80387 math co-processor chips was written to increase the speed of data gathering and processing, and provide control of a scanning CW ring dye laser system. This laser system is used in high resolution (better than 0.001 cm-1) water vapor spectroscopy experiments. Laser beam power is sensed at the input and output of white cells and the output of a Fabry-Perot. The assembly language subroutine is called from Basic, acquires the data and performs various calculations at rates greater than 150 faster than could be performed by the higher level language. The width of output control pulses generated in assembly language are 3 to 4 microsecs as compared to 2 to 3.7 millisecs for those generated in Basic (about 500 to 1000 times faster). Included are a block diagram and brief description of the spectroscopy experiment, a flow diagram of the Basic and assembly language programs, listing of the programs, scope photographs of the computer generated 5-volt pulses used for control and timing analysis, and representative water spectrum curves obtained using these programs.

  11. Theoretical studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  12. The remote measurement of tornado-like flows employing a scanning laser Doppler system

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.; Bilbro, J. W.; Dimarzio, C.; Sonnenschein, C.; Toomey, D.

    1977-01-01

    The paper deals with a scanning laser Doppler velocimeter system employed in a test program for measuring naturally occurring tornado-like phenomena, known as dust devils. A description of the system and the test program is followed by a discussion of the data processing techniques and data analysis. The system uses a stable 15-W CO2 laser with the beam expanded and focused by a 12-inch telescope. Range resolution is obtained by focusing the optical system. The velocity of each volume of air (scanned in a horizontal plane) is determined from spectral analysis of the heterodyne signal. Results derived from the measurement program and data/system analyses are examined.

  13. Development and qualification testing of a laser-ignited, all-secondary (DDT) detonator

    NASA Technical Reports Server (NTRS)

    Blachowski, Thomas J.; Krivitsky, Darrin Z.; Tipton, Stephen

    1994-01-01

    The Indian Head Division, Naval Surface Warfare Center (IHDIV, NSWC) is conducting a qualification program for a laser-ignited, all-secondary (DDT) explosive detonator. This detonator was developed jointly by IHDIV, NSWC and the Department of Energy's EG&G Mound Applied Technologies facility in Miamisburg, Ohio to accept a laser initiation signal and produce a fully developed shock wave output. The detonator performance requirements were established by the on-going IHDIV, NSWC Laser Initiated Transfer Energy Subsystem (LITES) advanced development program. Qualification of the detonator as a component utilizing existing military specifications is the selected approach for this program. The detonator is a deflagration-to-detonator transfer (DDT) device using a secondary explosive, HMX, to generate the required shock wave output. The prototype development and initial system integration tests for the LITES and for the detonator were reported at the 1992 International Pyrotechnics Society Symposium and at the 1992 Survival and Flight Equipment National Symposium. Recent results are presented for the all-fire sensitivity and qualification tests conducted at two different laser initiation pulses.

  14. Laser pointers and aviation safety.

    PubMed

    Nakagawara, V B; Montgomery, R W

    2000-10-01

    Laser pointers have been used by teachers and lecturers for years to highlight key areas on charts and screens during visual presentations. When used in a responsible manner, laser pointers are not considered to be hazardous. However, as the availability of such devices has increased, so have reports of their misuse. The Food and Drug Administration (FDA) issued a warning in December 1997 on the possibility of eye injury to children from handheld laser pointers. In October 1998, the American Academy of Ophthalmology upgraded an earlier caution to a warning, stating that laser pointers can be hazardous and should be kept away from children, after two reports of eye injuries involving young girls (age 11 and 13 yr). Of particular concern was the promotion of laser products as children's toys, such as those that can project cartoon figures and line drawings. Additionally, there have been reports involving the misuse of laser pointers (e.g., arrests made after police interpreted the red beam to be a laser-sighted weapon, spectators aiming laser lights at athletes during sporting events, cars illuminated on highways, and numerous incidents involving the illumination of aircraft). This technical note discusses physiological effects of exposure from a laser pointer, the regulation and classification of commercial laser products, and how the misuse of these pointers is a possible threat to aviation safety.

  15. Summary Report of Working Group 2: Computation

    NASA Astrophysics Data System (ADS)

    Stoltz, P. H.; Tsung, R. S.

    2009-01-01

    The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) new hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.

  16. Summary Report of Working Group 2: Computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltz, P. H.; Tsung, R. S.

    2009-01-22

    The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) newmore » hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.« less

  17. Semiconductor Laser Joint Study Program with Rome Laboratory

    DTIC Science & Technology

    1994-09-01

    VCSELs 3.3 Laser Wafer Growth by Molecular Beam Epitaxy 8 The VCSEL structures were grown by molecular beam ...cavity surface emittimg lasers ( VCSEL ), Optical 40 interconnects, Moelcular beam epitaxy It CECOOE 17. SECURfTY CLASWICATION SECURFlY CLASSIFICATION 1 Q...7 3.3 Laser Wafer Growth by Molecular Beam Epitax. ............ 8 3.4 VCSEL Fabrication Process ................................................

  18. Extending the performance of KrF laser for microlithography by using novel F2 control technology

    NASA Astrophysics Data System (ADS)

    Zambon, Paolo; Gong, Mengxiong; Carlesi, Jason; Padmabandu, Gunasiri G.; Binder, Mike; Swanson, Ken; Das, Palash P.

    2000-07-01

    Exposure tools for 248nm lithography have reached a level of maturity comparable to those based on i-line. With this increase in maturity, there is a concomitant requirement for greater flexibility from the laser by the process engineers. Usually, these requirements pertain to energy, spectral width and repetition rate. By utilizing a combination of laser parameters, the process engineers are often able to optimize throughput, reduce cost-of-operation or achieve greater process margin. Hitherto, such flexibility of laser operation was possible only via significant changes to various laser modules. During our investigation, we found that the key measure of the laser that impacts the aforementioned parameters is its F2 concentration. By monitoring and controlling its slope efficiency, the laser's F2 concentration may be precisely controlled. Thus a laser may tune to operate under specifications as diverse as 7mJ, (Delta) (lambda) FWHM < 0.3 pm and 10mJ, (Delta) (lambda) FWHM < 0.6pm and still meet the host of requirements necessary for lithography. We discus this new F2 control technique and highlight some laser performance parameters.

  19. Comparative study of high power Tm:YLF and Tm:LLF slab lasers in continuous wave regime.

    PubMed

    Berrou, Antoine; Collett, Oliver J P; Morris, Daniel; Esser, M J Daniel

    2018-04-16

    We report on Tm:YLF and Tm:LLF slab lasers (1.5 x 11 x 20 mm 3 ) end pumped from one end with a high-brightness 792 nm laser diode stack. These two lasers are compared under identical pump conditions in continuous-wave regime. A stronger negative thermal lens in Tm:LLF than in Tm:YLF is highlighted, making it more difficult to operate the Tm:LLF laser under stable lasing conditions. In a configuration where the high reflectivity cavity mirror has a radius of curvature of r = 150 mm, the Tm:YLF (Tm:LLF) laser produces a maximum output power of 150 W (143 W) for 428 W of incident pump power (respectively). For a second cavity configuration where the high reflectivity cavity mirror has a radius of curvature of r = 500 mm, the Tm:YLF laser produces a maximum output power of 164 W for 412 W of incident pump power and a 57% slope efficiency with respect to the absorbed pump power. The emitted wavelength of these two lasers are measured as a function of the output coupler reflectivity and it shows that Tm:LLF laser emits at a longer wavelength than Tm:YLF.

  20. Laser metrology and optic active control system for GAIA

    NASA Astrophysics Data System (ADS)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  1. Laser safety considerations for a mobile laser program

    NASA Astrophysics Data System (ADS)

    Flor, Mary

    1997-05-01

    An increased demand for advanced laser technology, especially in the area of cutaneous and cosmetic procedures has prompted physicians to use mobile laser services. Utilization of a mobile laser service allows physicians to provide the latest treatments for their patients while minimizing overhead costs. The high capital expense of laser systems is often beyond the financial means of individual clinicians, group practices, free-standing clinics and smaller community hospitals. Historically rapid technology turnover with laser technology places additional risk which is unacceptable to many institutions. In addition, health care reform is mandating consolidation of equipment within health care groups to keep costs at a minimum. In 1994, Abbott Northwestern Hospital organized an in-house mobile laser technology service which employs a group of experienced laser specialists to deliver and support laser treatments for hospital outreach and other regional physicians and health care facilities. Many of the hospital's internal safety standards and policies are applicable to the mobile environment. A significant challenge is client compliance because of the delicate balance of managing risk while avoiding being viewed as a regulator. The clinics and hospitals are assessed prior to service to assure minimum laser safety standards for both the patient and the staff. A major component in assessing new sites is to inform them of applicable regulatory standards and their obligations to assure optimum laser safety. In service training is provided and hospital and procedures are freely shared to assist the client in establishing a safe laser environment. Physician and nursing preceptor programs are also made available.

  2. High Average Power Raman Conversion in Diamond: ’Eyesafe’ Output and Fiber Laser Conversion

    DTIC Science & Technology

    2015-06-19

    Eyesafe’ output and fiber laser conversion 5a. CONTRACT NUMBER FA2386-12-1-4055 5b. GRANT NUMBER Grant 12RSZ077_124055 5c. PROGRAM ELEMENT...generating 380 W was demonstrated using a 630 W Ybdoped fiber laser system. In each case the performance was unsaturated and limited by the available pump...converter for conventional high power laser technologies including Nd doped lasers and Yb-doped fiber lasers. Diamond’s power handling capability now

  3. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Technical Reports Server (NTRS)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  4. Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Since the 1970's, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the microscopic level, NDE investigations interrogated composites at the submicron to micron level to understand a composite's microstructure. A novel microfocus CT system was developed as well as the science underlying applications of acoustic microscopy to a composite's component material properties. On the macroscopic scale NDE techniques were developed that advanced the capabilities to be faster and more quantitative. Techniques such as stiffness imaging, ultrasonic arrays, laser based ultrasound, advanced acoustic emission, thermography, and novel health monitoring systems were researched. Underlying these methods has been a strong modeling capability that has aided in method development.

  5. Radar research at the University of Kansas

    NASA Astrophysics Data System (ADS)

    Blunt, Shannon D.; Allen, Christopher; Arnold, Emily; Hale, Richard; Hui, Rongqing; Keshmiri, Shahriar; Leuschen, Carlton; Li, Jilu; Paden, John; Rodriguez-Morales, Fernando; Salandrino, Alessandro; Stiles, James

    2017-05-01

    Radar research has been synonymous with the University of Kansas (KU) for over half a century. As part of this special session organized to highlight significant radar programs in academia, this paper surveys recent and ongoing work at KU. This work encompasses a wide breadth of sensing applications including the remote sensing of ice sheets, autonomous navigation methods for unmanned aerial vehicles (UAVs), novel laser radar capabilities, detection of highenergy cosmic rays using bistatic radar, different forms of waveform diversity such as MIMO radar and pulse agility, and various radar-embedded communication methods. The results of these efforts impact our understanding of the changing nature of the environment, address the proliferation of unmanned systems in the US airspace, realize new sensing modalities enabled by the joint consideration of electromagnetics and signal processing, and greater facilitate radar operation in an increasingly congested and contested spectrum.

  6. LED pumped Nd:YAG laser development program

    NASA Technical Reports Server (NTRS)

    Farmer, G. I.; Kiang, Y. C.; Lynch, R. J.

    1973-01-01

    The results of a development program for light emitting diode (LED) pumped Nd:YAG lasers are described. An index matching method to increase the coupling efficiency of the laser is described. A solid glass half-cylinder of 5.0 by 5.6 centimeters was used for index matching and also as a pumping cavity reflector. The laser rods were 1.5 by 56 millimeters with dielectric coatings on both end surfaces. The interfaces between the diode array, glass cylinder, and laser rod were filled with viscous fluid of refractive index n = 1.55. Experiments performed with both the glass cylinder and a gold coated stainless steel reflector of the same dimensions under the same operating conditions indicate that the index matching cylinder gave 159 to 200 percent improvement of coupling efficiency over the metal reflector at various operating temperatures.

  7. Path toward a high-energy solid-state laser

    NASA Astrophysics Data System (ADS)

    Wood, Gary L.; Merkle, Larry D.; Dubinskii, Mark; Zandi, Bahram

    2004-04-01

    Lasers have come a long way since the first demonstration by Maiman of a ruby crystal laser in 1960. Lasers are used as scientific tools as well as for a wide variety of applications for both commercial industry and the military. Today lasers come in all types, shapes and sizes depending on their application. The solid-state laser has some distinct advantages in that it can be rugged, compact, and self contained, making it reliable over long periods of time. With the advent of diode laser pumping a ten times increase in overall laser efficiency has been realized. This significant event, and others, is changing the way solid-state lasers are applied and allows new possibilities. One of those new areas of exploration is the high energy laser. Solid-state lasers for welding are already developed and yield energies in the 0.5 to 6 kilojoule range. These lasers are at the forefront of what is possible in terms of high energy solid-state lasers. It is possible to achieve energies of greater than 100 kJ. These sorts of energies would allow applications, in addition to welding, such as directed energy weapons, extremely remote sensing, power transfer, propulsion, biological and chemical agent neutralization and unexploded and mine neutralization. This article will review these new advances in solid-state lasers and the different paths toward achieving a high energy laser. The advantages and challenges of each approach will be highlighted.

  8. Laser spectroscopy: Assessment of research needs for laser technologies applied to advanced spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Hurst, G. S.

    1990-05-01

    This report is organized as follows. Section 2 summarizes the current program of DOE's Office of Health and Environmental Research (OHER) and provides some remarks on how laser science and technology could beneficially impact most of the research programs. Section 3 provides a brief global perspective on laser technology and attempts to define important trends in the field. Similarly, Section 4 provides a global perspective on laser spectroscopy and addresses important trends. Thus, Section 5 focuses on the trends in laser technology and spectroscopy which could impact the OHER mission in significant ways and contains the basis for recommendations made in the executive summary. For those with limited familiarity with laser technology and laser spectroscopy, reference is made to Appendix 1 for a list of abbreviations and acronyms. Appendix 2 can serve a useful review or tutorial for those who are not deeply involved with laser spectroscopy. Even those familiar with laser spectroscopy and laser technology may find it useful to know precisely what the authors of this document mean by certain specialized terms and expressions. Finally, a note on the style of referencing may be appropriate. Whenever possible a book or review articles is referenced as the preferred citation. However, we frequently found it useful to reference a number of individual papers of recent origin or those which were not conveniently found in the review articles.

  9. Synthesis and analysis of precise spaceborne laser ranging systems, volume 2. [Spacelab payload

    NASA Technical Reports Server (NTRS)

    Paddon, E. A.

    1978-01-01

    The performance capabilities of specific shuttle-based laser ranging systems were evaluated, and interface and support requirements were determined. The preliminary design of a shuttle-borne laser ranging experiment developed as part of the Spacelab program is discussed.

  10. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; He, Shaolong; Liu, Guodong; Zhao, Lin; Yu, Li; Zhang, Wentao

    2018-06-01

    The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.

  11. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

    PubMed Central

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  12. A systematic review of the use of lasers for the treatment of hidradenitis suppurativa.

    PubMed

    John, Hannah; Manoloudakis, Nikolaos; Stephen Sinclair, J

    2016-10-01

    To conduct a systematic review of the effectiveness of various types of lasers (and light based therapies) for the treatment of hidradenitis suppurativa (HS) and to establish recommendations based on our findings. MEDLINE, Cochrane and PubMed databases. English language studies describing the use of laser for the treatment of HS. Multiple reviewers performed independent extraction and identified 22 studies that met the inclusion and exclusion criteria. Studies were categorised according to grading recommendations based on evidence quality guidelines for systematic reviews. Only 2 studies met criteria to be assigned the highest grade. Nd:YAG laser has been shown to be effective for the treatment of HS, as is intense pulsed light therapy (IPL) using the same principles of laser hair removal. There is weak evidence to recommend the use of carbon dioxide, diode or alexandrite lasers. The need for larger randomized controlled trials is highlighted. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. An evaluation of SAO sites for laser operations

    NASA Technical Reports Server (NTRS)

    Thorp, J. M.; Bush, M. A.; Pearlman, M. R.

    1974-01-01

    Operational criteria are provided for the selection of laser tracking sites for the Earth and Ocean Physics Applications Program. A compilation of data is given concerning the effect of weather conditions on laser and Baker-Nunn camera operations. These data have been gathered from the Smithsonian astrophysical observing station sites occupied since the inception of the satellite tracking program. Also given is a brief description of each site, including its characteristic weather conditions, comments on communications and logistics, and a summary of the terms of agreement under which the station is or was operated.

  14. Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid-IR Probe Spectroscopy

    DTIC Science & Technology

    2016-04-15

    overarching goal of our program was to develop a novel laser and ion spectroscopy system and to use it for the study of strong-field light-matter...are accelerated into the ion TOF by means of a Fig. I.1 Schematic of ion spectroscopy with two color (EUV + mid-IR) laser fields, as constructed at...Abstract The overarching goal of our program was to develop a novel laser and ion spectroscopy system and to use it for the study of strong-field light

  15. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends criticallymore » on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-μm after >100-μm propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser at the University of Texas, Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing simulations codes developed by the National Nuclear Security Administration ICF program. One important aspect of this program was the involvement and training of young scientists including postdoctoral fellows and graduate students. This project generated an impressive forty articles in high quality journals including nine (two under review) in Physical Review Letters during the three years of this grant and five graduate students completed their doctoral dissertations.« less

  16. Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects

    DTIC Science & Technology

    2014-09-01

    based laser systems can be limited by the effects of tumbling, extremely accurate Doppler measurement is possible using a doublet coherent laser ...Doublet pulse coherent laser radar for tracking of resident space objects Narasimha S. Prasad *1 , Van Rudd 2 , Scott Shald 2 , Stephan...Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  17. Status and future prospects of laser fusion and high power laser applications

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki

    2010-08-01

    In Asia, there are many institutes for the R&D of high power laser science and applications. They are 5 major institutes in Japan, 4 major institutes in China, 2 institutes in Korea, and 3 institutes in India. The recent achievements and future prospects of those institutes will be over viewed. In the laser fusion research, the FIREX-I project in Japan has been progressing. The 10kJ short pulse LFEX laser has completed and started the experiments with a single beam. About 1kJ pulse energy will be injected into a cone target. The experimental results of the FIREX experiments will be presented. As the target design for the experiments, a new target, namely, a double cone target was proposed, in which the high energy electrons are well confined and the heating efficiency is significantly improved. Together with the fusion experiments, Osaka University has carried out laboratory astrophysics experiments on photo ionizing plasmas to observe a unique X-ray spectrum from non-LTE plasmas. In 2008, Osaka university has started a new Photon research center in relation with the new program: Consortium for Photon Science and Technology: C-PhoST, in which ultra intense laser plasmas research and related education will be carried out for 10 years. At APRI, JAEA, the fundamental science on the relativistic laser plasmas and the applications of laser particle acceleration has been developed. The application of laser ion acceleration has been investigated on the beam cancer therapy since 2007. In China, The high power glass laser: Shenguan-II and a peta watt beam have been operated to work on radiation hydro dynamics at SIOFM Shanghai. The laser material and optics are developed at SIOFM and LFRC. The IAPCM and the IOP continued the studies on radiation hydrodynamics and on relativistic laser plasmas interactions. At LFRC in China, the construction of Shenguan III glass laser of 200kJ in blue has progressed and will be completed in 2012. Together with the Korean program, I will overview the above Asian programs.

  18. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  19. A comparative evaluation: Oral leukoplakia surgical management using diode laser, CO2 laser, and cryosurgery.

    PubMed

    Natekar, Madhukar; Raghuveer, Hosahallli-Puttaiah; Rayapati, Dilip-Kumar; Shobha, Eshwara-Singh; Prashanth, Nagesh-Tavane; Rangan, Vinod; Panicker, Archana G

    2017-06-01

    The comparatively evaluate the three surgical treatment modalities namely cryosurgery, diode and CO2 laser surgery in terms of healing outcomes on the day of surgery, first and second week post operatively and recurrence at the end of 18 months was assessed. Thirty selected patients were divided randomly into three groups. Each group comprising of ten patients were subjected to one of the three modalities of treatment namely cryosurgery, diode laser or CO2 laser surgery for ablation of OL. Obtained data was analyzed using mainly using Chi-square and Anova tests. Study showed statistical significant differences (p > 0.05) for evaluation parameters like pain, edema and scar. The parameters like infection, recurrence, bleeding showed no statistical significance. Pain was significantly higher in CO2 laser surgery group as compared with diode laser group. There was no recurrence observed at the end of the 6 months follow up period in all the three study groups. Observations from the study highlights that all three surgical modalities used in this study were effective for treatment of OL, and the overall summation of the results of the study showed that laser therapy (CO2 and Diode) seems to offer better clinically significant results than cryotherapy. Key words: Oral premalignant lesion, leukoplakia, cryosurgery, CO2 laser surgery, diode laser surgery.

  20. An extreme ultraviolet Michelson interferometer for experiments at free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, Vinzenz; Fuchs, Silvio; Paulus, Gerhard G.

    2013-09-15

    We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

  1. Selective Laser Treatment on Cold-Sprayed Titanium Coatings: Numerical Modeling and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola; Aprea, Paolo

    2016-12-01

    In this paper, a selective laser post-deposition on pure grade II titanium coatings, cold-sprayed on AA2024-T3 sheets, was experimentally and numerically investigated. Morphological features, microstructure, and chemical composition of the treated zone were assessed by means of optical microscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Microhardness measurements were also carried out to evaluate the mechanical properties of the coating. A numerical model of the laser treatment was implemented and solved to simulate the process and discuss the experimental outcomes. Obtained results highlighted the key role played by heat input and dimensional features on the effectiveness of the treatment.

  2. Flood-Fighting Structures Demonstration and Evaluation Program: Laboratory and Field Testing in Vicksburg, Mississippi

    DTIC Science & Technology

    2007-07-01

    accomplished where possible using a yellow stationary cable suspended about 1 to 2 in. above the levee and a blue strip painted directly on top of...15 Figure 2-7. Lasers and laser targets................................................................ 16 Figure 2-7a. Lasers and...their targets on levee ................................................. 17 Figure 2-7b. Displacement data from laser 0

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less

  4. Laser and optics activities at CREOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stickley, C.M.

    1995-06-01

    CREOL is an interdisciplinary institute with a mission to foster and support research and education in the optical and laser sciences and engineering. CREOL`s principal members are its 21-strong faculty. The faculty are encouraged and supported in developing, maintaining, and expanding innovative and sponsored research programs, especially ones that are coupled to industry`s needs. The CREOL Director and Assistant Director, through empowerment by the CREOL faculty, coordinate and oversee the interactive, interdisciplinary projects of the faculty, the 85 graduate students and the 39 research staff. CREOL integrates these research efforts with the general educational mission and goals of the university,more » develops comprehensive course work in the optical and laser sciences and engineering, provides guidance and instruction to graduate students, administers MS and PhD programs, and provides facilities, funds, and administrative support to assist the faculty in carrying out CREOL`s mission and obtaining financial support for the research projects. CREOL`s specific areas of research activity include the following: IR systems; nonlinear optics; crystal growth; nonlinear integrated optics; new solid-state lasers; tunable far-infrared lasers; thin-film optics; theory; semiconductor lasers; x-ray/optical scattering; laser-induced damage; free-electron lasers; solid-state spectroscopy; x-ray sources and applications; laser propagation; laser processing of materials; optical design; optical limiting/sensor protection; diffractive optics; quantum well optoelectronics; dense plasmas/high-field physics; laser radar and remote sensing; diode-based lasers; and glass science.« less

  5. Applications of the laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, L.

    For those not familiar with lasers, a review of lasers and some remarks on the fascinating new developments in such systems that do affect applications now and in the future are presented. Wave guides to transmit lasers to make them more flexible, the important aspects of measurements, chemistry, bits of botany, and holography are given. The vast expanse of communications, especially through the development of the new and important hybrid discipline of electrooptics is reviewed. The military and law and order programs show their applications; all initiate the study of actual applications. Then follow metalworking, construction, pollution, and a numbermore » of miscellaneous techniques. A critical review of safety programs so necessary for the proper development of laser technology is presented. Then follows the story of the applications in biology, medicine, dentistry, photography, art, and music. Many of the applications cross to other fields. To stimulate the youth to be interested in science, there are brief remarks about the social conscience in laser and, finally, the dreams of the future.« less

  6. Giant Retinal Tear With Retinal Detachment in Regressed Aggressive Posterior Retinopathy of Prematurity Treated by Laser.

    PubMed

    Chandra, Parijat; Tewari, Ruchir; Salunkhe, Nitesh; Kumawat, Devesh; Kumar, Vinod

    2017-06-29

    Rhegmatogenous retinal detachment after successfully regressed retinopathy of prematurity is a rare occurrence. Late onset rhegmatogenous retinal detachment has been reported infrequently. The authors report a case of aggressive posterior retinopathy of prematurity that underwent uneventful regression after laser photocoagulation and later developed an inoperable closed funnel retinal detachment due to a giant retinal tear. This case represents the earliest development of such complications in regressed aggressive posterior retinopathy of prematurity treated by laser. Development of a giant retinal tear has also not been previously reported after laser treatment. This case highlights that successful regression of severe retinopathy of prematurity does not safeguard against future complications and requires frequent long-term follow-up. [J Pediatr Ophthalmol Strabismus. 2017;54:e34-e36.]. Copyright 2017, SLACK Incorporated.

  7. Education and training for technicians in photonics-enabled technologies

    NASA Astrophysics Data System (ADS)

    Hull, Daniel M.; Hull, Darrell M.

    2005-10-01

    Within a few years after lasers were first made operational in 1960, it became apparent that rapid growth in the applications of this new technology in industry, health care, and other fields would require a new generation of technicians in laser/optics engineering. Technicians are the men and women who work alongside scientists and engineers in bringing their ideas, designs, and processes to fruition. In America, most highly qualified technicians are graduates of associate of applied science (AAS) programs in community and technical colleges (two-year postsecondary institutions). Curricula and educational programs designed to prepare technicians in laser/electro-optics technology (LEOT) emerged in the 1970s; today there are over 15 LEOT programs in the United States producing over 100 LEOT graduates each year.

  8. Free-electron laser wavelength-selective materials alteration and photoexcitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tolk, N. H.; Albridge, R. G.; Barnes, A. V.; Barnes, B. M.; Davidson, J. L.; Gordon, V. D.; Margaritondo, G.; McKinley, J. T.; Mensing, G. A.; Sturmann, J.

    1996-10-01

    The free-electron laser (FEL) has become an important tool for producing high-intensity photon beams, especially in the infrared. Synchrotron radiation's primary spectral domains are in the ultraviolet and X-ray region. FEL's are therefore excellent complimentary facilities to synchrotron radiation sources. While FEL's have seen only limited use in experimentation, recently developed programs at Vanderbilt University in Nashville, TN, are swiftly rectifying this situation. This review paper examines practical experience obtained through pioneering programs using the Vanderbilt FEL, which currently hosts one of the largest FEL materials research programs. Results will be discussed in three areas: two-photon absorption in germanium, FEL-assisted internal photoemission measurements of interface energy barriers (FELIPE), and wavelength-specific laser diamond ablation.

  9. Introduction of laser initiation for the 48-inch Advanced Solid Rocket Motor (ASRM) test motors at Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    Zimmerman, Chris J.; Litzinger, Gerald E.

    1993-01-01

    The Advanced Solid Rocket Motor is a new design for the Space Shuttle Solid Rocket Booster. The new design will provide more thrust and more payload capability, as well as incorporating many design improvements in all facets of the design and manufacturing process. A 48-inch (diameter) test motor program is part of the ASRM development program. This program has multiple purposes for testing of propellent, insulation, nozzle characteristics, etc. An overview of the evolution of the 48-inch ASRM test motor ignition system which culminated with the implementation of a laser ignition system is presented. The laser system requirements, development, and operation configuration are reviewed in detail.

  10. Research Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, S. Alan; Ennico, Kimberly; Gladstone, G. Randall

    This collection contains two articles, "NASA's New Horizons Mission to Pluto" and the "Diversity of Chemistry and Geologic Processes Observed by the MSL/Chem Cam Laser Instrument in Gale Crater, Mars". These highlights describe how New Horizons came to be, how the spacecraft got to Pluto, and how the findings are challenging our understanding of ice worlds in the outer solar system; and the ChemCam, one of ten instrument packages on board the rover.

  11. Research Highlights

    DOE PAGES

    Stern, S. Alan; Ennico, Kimberly; Gladstone, G. Randall; ...

    2016-04-01

    This collection contains two articles, "NASA's New Horizons Mission to Pluto" and the "Diversity of Chemistry and Geologic Processes Observed by the MSL/Chem Cam Laser Instrument in Gale Crater, Mars". These highlights describe how New Horizons came to be, how the spacecraft got to Pluto, and how the findings are challenging our understanding of ice worlds in the outer solar system; and the ChemCam, one of ten instrument packages on board the rover.

  12. Focus: Surface Characterization.

    ERIC Educational Resources Information Center

    Winograd, Nicholas

    1985-01-01

    The 38th Annual Summer Symposium on Analytical Chemistry (June 18-20, 1985) focused on the surface characterization of catalytic and electronic materials. Highlights of the symposium are provided, including presentations that considered lasers and microscopy. (JN)

  13. Analysis on laser plasma emission for characterization of colloids by video-based computer program

    NASA Astrophysics Data System (ADS)

    Putri, Kirana Yuniati; Lumbantoruan, Hendra Damos; Isnaeni

    2016-02-01

    Laser-induced breakdown detection (LIBD) is a sensitive technique for characterization of colloids with small size and low concentration. There are two types of detection, optical and acoustic. Optical LIBD employs CCD camera to capture the plasma emission and uses the information to quantify the colloids. This technique requires sophisticated technology which is often pricey. In order to build a simple, home-made LIBD system, a dedicated computer program based on MATLAB™ for analyzing laser plasma emission was developed. The analysis was conducted by counting the number of plasma emissions (breakdowns) during a certain period of time. Breakdown probability provided information on colloid size and concentration. Validation experiment showed that the computer program performed well on analyzing the plasma emissions. Optical LIBD has A graphical user interface (GUI) was also developed to make the program more user-friendly.

  14. Multidisciplinary approaches to radiation-balanced lasers (MARBLE): a MURI program by AFOSR (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sheik-Bahae, Mansoor

    2017-02-01

    An overview of the diverse research activities under the newly funded MURI project by AFOSR will be presented. The main goal is to advance the science of radiation-balanced lasers, also known as athermal lasers, in order to mitigate the thermal degradation of the high-power laser beams. The MARBLE project involves researchers from four universities and spans research activities in rare-earth doped crystals and fibers to semiconductor disc lasers.

  15. Proceedings of the Fourth Laser Hydrography Symposium at Defence Research Centre and Royal Australian Navy Hydrographic Office

    NASA Astrophysics Data System (ADS)

    Penny, M. F.; Phillips, D. M.

    1981-03-01

    At this Symposium, research on laser hydrography and related development programs currently in progress in the United States of America, Canada, and Australia, were reported. The depth sounding systems described include the US Airborne Oceanographic Lidar and Hydrographic Airborne Laser Sounder, the Canadian Profiling Lidar Bathymeter, and the Australian Laser Airborne Depth Sounder. Other papers presented research on blue-green lasers, theoretical modelling, position fixing, and data processing.

  16. One Micron Laser Technology Advancements at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  17. Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGowan, B.J.; Kotowski, M.; Schleich, D.

    1993-11-01

    This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; themore » role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.« less

  18. Injection-seeded operation of a Q-switched Cr,Tm,Ho:YAG laser

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Hale, Charley P.; Magee, James R.

    1991-01-01

    Single-frequency Tm,Ho:YAG lasers operating near 2 microns are attractive sources for several applications including eye-safe laser radar (lidar) and pumping of AgGaSe2 parametric oscillators for efficient generation of longer wavelengths. As part of a program to develop a coherent lidar system using Tm,Ho:YAG lasers, a diode laser-pumped tunable CW single-longitudinal-mode (SLM) Cr:Tm:Ho:YAG laser and a flashlamp-pumped single-transverse-mode Q-switched Cr,Tm,Ho:YAG laser were developed. The CW laser was used to injection-seed the flashlamp-pumped laser, resulting in SLM Q-switched output. Operational characteristics of the CW and Q-switched lasers and injection-seeding results are reported.

  19. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  20. A global station coordinate solution based upon camera and laser data - GSFC 1973

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Douglas, B. C.; Klosko, S. M.

    1973-01-01

    Results for the geocentric coordinates of 72 globally distributed satellite tracking stations consisting of 58 cameras and 14 lasers are presented. The observational data for this solution consists of over 65,000 optical observations and more than 350 laser passes recorded during the National Geodetic Satellite Program, the 1968 Centre National d'Etudes Spatiales/Smithsonian Astrophysical Observatory (SAO) Program, and International Satellite Geodesy Experiment Program. Dynamic methods were used. The data were analyzed with the GSFC GEM and SAO 1969 Standard Earth Gravity Models. The recent value of GM = 398600.8 cu km/sec square derived at the Jet Propulsion Laboratory (JPL) gave the best results for this combination laser/optical solution. Solutions are made with the deep space solution of JPL (LS-25 solution) including results obtained at GSFC from Mariner-9 Unified B-Band tracking. Datum transformation parameters relating North America, Europe, South America, and Australia are given, enabling the positions of some 200 other tracking stations to be placed in the geocentric system.

  1. Program Predicts Performance of Optical Parametric Oscillators

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bowers, Mark

    2006-01-01

    A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.

  2. Physics Division progress report, January 1, 1984-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less

  3. Comparative evaluation of photoablative efficacy of erbium: yttrium-aluminium-garnet and diode laser for the treatment of gingival hyperpigmentation. A randomized split-mouth clinical trial.

    PubMed

    Giannelli, Marco; Formigli, Lucia; Bani, Daniele

    2014-04-01

    The use of lasers in periodontology is a matter of debate, mainly because of the lack of consensual therapeutic protocols. In this randomized, split-mouth trial, the clinical efficacy of two different photoablative dental lasers, erbium:yttrium-aluminum-garnet (Er:YAG) and diode, for the treatment of gingival hyperpigmentation is compared. Twenty-one patients requiring treatment for mild-to-severe gingival hyperpigmentation were enrolled. Maxillary or mandibular left or right quadrants were randomly subjected to photoablative deepithelialization with either Er:YAG or diode laser. Masked clinical assessments of each laser quadrant were made at admission and days 7, 30, and 180 postoperatively by an independent observer. Histologic examination was performed before and soon after treatment and 6 months after irradiation. Patients also compiled a subjective evaluation questionnaire. Both diode and Er:YAG lasers gave excellent results in gingival hyperpigmentation. However, Er:YAG laser induced deeper gingival tissue injury than diode laser, as judged by bleeding at surgery, delayed healing, and histopathologic analysis. The use of diode laser showed additional advantages compared to Er:YAG in terms of less postoperative discomfort and pain. This study highlights the efficacy of diode laser for photoablative deepithelialization of hyperpigmented gingiva. It is suggested that this laser can represent an effective and safe therapeutic option for gingival photoablation.

  4. One can achieve anything with a laser: an educational initiative

    NASA Astrophysics Data System (ADS)

    Davies, Ray K.

    2005-06-01

    Laser Photonics has been highlighted by many as THE Technology of the 21st Century. However, there are few obvious opportunities for students to see a Laser in operation in circumstances beyond some simple low power Laser Interferometry demonstrations, or the use of Laser Pointer Pens. As part of an educational initiative, PION LASER SENSORS within the University of Salford has developed a series of laboratory design and construction Projects that involve both the opportunities for, and the innovative creation of, visually attractive operative applications of low power Laser Photonics. These highly functional Laser Photonics Projects range from the transmission of audio signals to a written alphabetical letter recognition and Braille converter sensor for a visually impaired person; from a Laser speckle eye-sight testing system to a prototype mobile robotic guide for a blind person.; from a novel type of Laser seismograph to an equally novel set of Laser measurement callipers; from a Laser activated pair of walking feet to an optical feedback system to maintain a horizontal surface within a vehicle traversing rough terrain. This type of low power Laser Photonics design and construction Project not only provides the opportunity for students to become involved with some highly creative and innovative laboratory opportunities, but the experience clearly enthuses the students towards many aspects of Physics, Medicine, and Engineering through a sense of personal achievement resulting from a realization of their imaginative thinking sills, combined with their acquired manual skills.

  5. Modeling Laboratory Astrophysics Experiments in the High-Energy-Density Regime Using the CRASH Radiation-Hydrodynamics Model

    NASA Astrophysics Data System (ADS)

    Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.

    2012-10-01

    The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  6. Fiber Laser Arrays

    DTIC Science & Technology

    2006-05-03

    AFRL-DE-PS- AFRL-DE-PS- TR-2006-1059 TR-2006-1059 FIBER LASER ARRAYS Thomas B. Simpson L-3 Communications-Jaycor 3394...LEANNE J HENRY, Lt Col, USAF L. BRUCE SIMPSON, SES Chief, High Power Solid State Laser Branch Director, Directed Energy Directorate...SUBTITLE Fiber Laser Arrays 5c. PROGRAM ELEMENT NUMBER 62605F 5d. PROJECT NUMBER 4866 5e. TASK NUMBER LR 6. AUTHOR(S) Thomas B. Simpson

  7. Semiconductor Reference Oscillator Development for Coherent Detection Optical Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.

    2001-01-01

    The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch-modulation (using a detuned central section to prevent intensity peaking in the center of the cavity) is currently under investigation to achieve the required performance goals.

  8. NASA's Optical Communications Program for 2015 and Beyond

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M.

    2015-01-01

    NASA's Space Communications and Navigation (SCaN) program at NASA headquarters is pursuing a vibrant and wide-ranging optical communications program for further planetary and near-Earth missions following the spectacular success of NASA's Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon in 2013. This invited paper will discuss NASA's new laser communication missions, key scenarios and details, and the plans to infuse this new technology into NASA's existing communications networks.

  9. Spectroscopic and laser characterization of emerald. Final report, April 1983-April 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, S.T.; Chai, B.H.

    1986-08-01

    The spectroscopic characteristics and laser properties of emerald were investigated. The laser measurements showed that the emerald-laser tuning range was 720-842 nm and exhibited a high gain and high efficiency in the 760-790 nm range. Under a crystal growth development program, the laser loss was reduced from 11%/cm to 0.4%/cm. The limiting factor in the laser efficiency is the excited-state absorption (ESA). The ESA was measured by two methods: a laser-pumped single-pass gain method, which is generally applicable to all tunable laser materials, and a laser-pumped laser method. A 76% laser quantum yield was obtained in high-optical-quality emerald. The maximummore » yield is estimated to be 83%, based on the ESA measurements.« less

  10. LLE 2004 annual report, October 2003-September 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2005-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE) conducted during the year, operation of the National Laser Users’ Facility (NLUF), a status report of the new OMEGA Extended Performance (EP) laser project, and programs concerning the education of high school, undergraduate, and graduate students during the year.

  11. Laser Machining Series. Educational Resources for the Machine Tool Industry. Course Syllabi, Instructor's Handbook, [and] Student Laboratory Manual.

    ERIC Educational Resources Information Center

    Texas State Technical Coll. System, Waco.

    This package consists of course syllabi, an instructor's handbook, and a student laboratory manual for a 1-year vocational training program to prepare students for entry-level employment as laser machining technicians. The program was developed through a modification of the DACUM (Developing a Curriculum) technique. The course syllabi volume…

  12. LLE Review 120 (July-September 2009)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgell, D.H., editor

    2001-02-19

    This issue has the following articles: (1) The Omega Laser Facility Users Group Workshop; (2) The Effect of Condensates and Inner Coatings on the Performance of Vacuum Hohlraum Targets; (3) Zirconia-Coated-Carbonyl-Iron-Particle-Based Magnetorheological Fluid for Polishing Optical Glasses and Ceramics; (4) All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation in Highly Terbium Doped Fiber; (5) Femtosecond Optical Pump-Probe Characterization of High-Pressure-Grown Al{sub 0.86}Ga{sub 0.14}N Single Crystals; (6) LLE's Summer High School Research Program; (7) Laser Facility Report; and (8) National Laser Users Facility and External Users Programs.

  13. Three-year program to improve critical 1-micron Qsw laser technology for Earth observation

    NASA Astrophysics Data System (ADS)

    Sakaizawa, Daisuke; Chishiki, Yoshikazu; Satoh, Yohei; Hanada, Tatsuyuki; Yamakawa, Shiro; Ogawa, Takayo; Wada, Satoshi; Ishii, Shoken; Mizutani, Kohei; Yasui, Motoaki

    2012-11-01

    Laser remote sensing technologies are valuable for a variety of scientific requirements. These measurement techniques are involved in several earth science areas, including atmospheric chemistry, aerosols and clouds, wind speed and directions, prediction of pollution, oceanic mixed layer depth, vegetation canopy height (biomass), ice sheet, surface topography, and others. Much of these measurements have been performed from the ground to aircraft over the past decades. To improve knowledge of these science areas with transport models (e.g. AGCM), further advances of vertical profile are required. JAXA collaborated with NICT and RIKEN started a new cross-sectional 3-year program to improve a technology readiness of the critical 1-micron wavelengths from 2011. The efficient frequency conversions such as second and third harmonic generation and optical parametric oscillation/generation are applied. A variety of elements are common issues to lidar instruments, which includes heat rejection using high thermal conductivity materials, laser diode life time and reliability, wavelength control, and suppression of contamination control. And the program has invested in several critical areas including advanced laser transmitter technologies to enable science measurements and improvement of knowledge for space-based laser diode arrays, Pockels cells, advanced nonlinear wavelength conversion technology for space-based LIDIRs. Final goal is aim to realize 15 watt class Q-switched pulse laser over 3-year lifetime.

  14. III International Conference on Laser and Plasma Researches and Technologies

    NASA Astrophysics Data System (ADS)

    2017-12-01

    A.P. Kuznetsov and S.V. Genisaretskaya III Conference on Plasma and Laser Research and Technologies took place on January 24th until January 27th, 2017 at the National Research Nuclear University "MEPhI" (NRNU MEPhI). The Conference was organized by the Institute for Laser and Plasma Technologies and was supported by the Competitiveness Program of NRNU MEPhI. The conference program consisted of nine sections: • Laser physics and its application • Plasma physics and its application • Laser, plasma and radiation technologies in industry • Physics of extreme light fields • Controlled thermonuclear fusion • Modern problems of theoretical physics • Challenges in physics of solid state, functional materials and nanosystems • Particle accelerators and radiation technologies • Modern trends of quantum metrology. The conference is based on scientific fields as follows: • Laser, plasma and radiation technologies in industry, energetic, medicine; • Photonics, quantum metrology, optical information processing; • New functional materials, metamaterials, “smart” alloys and quantum systems; • Ultrahigh optical fields, high-power lasers, Mega Science facilities; • High-temperature plasma physics, environmentally-friendly energetic based on controlled thermonuclear fusion; • Spectroscopic synchrotron, neutron, laser research methods, quantum mechanical calculation and computer modelling of condensed media and nanostructures. More than 250 specialists took part in the Conference. They represented leading Russian scientific research centers and universities (National Research Centre "Kurchatov Institute", A.M. Prokhorov General Physics Institute, P.N. Lebedev Physical Institute, Troitsk Institute for Innovation and Fusion Research, Joint Institute for Nuclear Research, Moscow Institute of Physics and Tecnology and others) and leading scientific centers and universities from Germany, France, USA, Canada, Japan. We would like to thank heartily all of the speakers, participants, organizing and program committee members for their contribution to the conference.

  15. Status of 2 micron laser technology program

    NASA Technical Reports Server (NTRS)

    Storm, Mark

    1991-01-01

    The status of 2 micron lasers for windshear detection is described in viewgraph form Theoretical atmospheric and instrument system studies have demonstrated that the 2.1 micron Ho:YAG lasers can effectively measure wind speeds in both wet and dry conditions with accuracies of 1 m/sec. Two micron laser technology looks very promising in the near future, but several technical questions remain. The Ho:YAG laser would be small, compact, and efficient, requiring little or no maintenance. Since the Ho:YAG laser is laser diode pumped and has no moving part, the lifetime of this laser would be directly related to the diode laser lifetimes which can perform in excess of 10,000 hours. Efficiencies of 3 to 12 percent are expected, but laser demonstrations confirming the ability to Q-switch this laser are required. Coherent laser operation has been demonstrated for both the CW and Q-switched lasers.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Ming-Hung; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; Haung, Chiung-Fang

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples.more » The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.« less

  17. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  18. Non-lethal laser dazzling as a personnel countermeasure

    NASA Astrophysics Data System (ADS)

    Shannon, David C.

    2013-10-01

    Optical distraction is likely one of the original and simpler optical countermeasure concepts with a technology history dating back to the 1800's. The objective is to distract or suppress either equipment or personnel with optical radiation from a safe distance. This paper is intended to review and expand on the concepts presented at the 2012 SPIE Security and Defense meeting; "Non-Lethal Optical Interruption (Dazzling): Technology, Devices, and Scenarios". The information that follows will focus primarily on the technology and techniques associated with the safe laser dazzling of personnel. Key product design guidelines will be highlighted and reviewed. Recent advances in laser technology and their associated impact on hand-held devices will also be discussed. Finally, the author will offer his opinion on the growth rate of military and non-military markets for laser dazzlers.

  19. Power-law scaling of plasma pressure on laser-ablated tin microdroplets

    NASA Astrophysics Data System (ADS)

    Kurilovich, Dmitry; Basko, Mikhail M.; Kim, Dmitrii A.; Torretti, Francesco; Schupp, Ruben; Visschers, Jim C.; Scheers, Joris; Hoekstra, Ronnie; Ubachs, Wim; Versolato, Oscar O.

    2018-01-01

    The measurement of the propulsion of metallic microdroplets exposed to nanosecond laser pulses provides an elegant method for probing the ablation pressure in a dense laser-produced plasma. We present the measurements of the propulsion velocity over three decades in the driving Nd:YAG laser pulse energy and observe a near-perfect power law dependence. Simulations performed with the RALEF-2D radiation-hydrodynamic code are shown to be in good agreement with the power law above a specific threshold energy. The simulations highlight the importance of radiative losses which significantly modify the power of the pressure scaling. Having found a good agreement between the experiment and the simulations, we investigate the analytic origins of the obtained power law and conclude that none of the available analytic theories is directly applicable for explaining our power exponent.

  20. Future World of Illicit Nuclear Trade: Mitigating the Threat

    DTIC Science & Technology

    2013-07-29

    uranium with lasers that is similar to MLIS. 3 Most of the equipment, including four carbon monoxide lasers and vacuum chambers, was delivered. But...Centrifuge Facility 43 Figure 10: Centrifuge Output vs. Goods Required 44 3b Digging Deeper: Laser Enrichment of Uranium 47 Box 3...Major Foreign Assistance to Iran’s Pre-2004 Laser Enrichment Program 50 4. Key Information: The Special Challenge of the Spread of Classified 53

  1. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, C. William

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in {approx}10 cm{sup 2} spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy throughmore » heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.« less

  2. Perspective on One Decade of Laser Propulsion Research at Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Larson, C. William

    2008-04-01

    The Air Force Laser Propulsion Program spanned nearly 10-years and included about 35-weeks of experimental research with the Pulsed Laser Vulnerability Test System of the High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico, WSMR/HELSTF/PLVTS. PLVTS is a pulsed CO2 laser that produces up to 10 kW of power in ˜10 cm2 spot at wavelength of 10.6 microns. The laser is capable of a pulse repetition rate up to 25 Hz, with pulse durations of about 20 microseconds. During the program basic research was conducted on the production of propulsion thrust from laser energy through heating of air and ablation of various candidate rocket propellant fuels. Flight tests with an ablation fuel (Delrin) and air were accomplished with a model Laser Lightcraft vehicle that was optimized for propulsion by the PLVTS at its maximum power output, 10 kW at 25 Hz, 400 J/pulse. Altitudes exceeding 200-feet were achieved with ablation fuels. The most recent contributions to the technology included development of a mini-thruster standard for testing of chemically enhanced fuels and theoretical calculations on the performance of formulations containing ammonium nitrate and Delrin. Results of these calculations will also be reported here.

  3. Laser-based firing systems for prompt initiation of secondary explosives

    NASA Technical Reports Server (NTRS)

    Meeks, Kent D.; Setchell, Robert E.

    1993-01-01

    Motivated by issues of weapon safety and security, laser based firing systems for promptly initiating secondary explosives have been under active development at Sandia National Laboratories for more than four years. Such a firing system consists of miniaturized, Q-switched, solid-state laser, optical detonators, optical safety switches, and elements for splitting, coupling, and transmitting the laser output. Potential system applications pose significant challenges in terms of server mechanical and thermal environments and packaging constraints, while requiring clear demonstration of safety enhancements. The Direct Optical Initiation (DOI) Program at Sandia is addressing these challenges through progress development phases during which the design, fabrication, and testing of prototype hardware is aimed at more difficult application requirements. A brief history of the development program, and a summary of current and planned activities, will be presented.

  4. Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S. D., E-mail: sdpatilphy@gmail.com; Takale, M. V.

    2016-05-06

    This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.

  5. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    NASA Astrophysics Data System (ADS)

    Block, Michael

    2017-11-01

    The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  6. Validity of the paraxial approximation for electron acceleration with radially polarized laser beams.

    PubMed

    Marceau, Vincent; Varin, Charles; Piché, Michel

    2013-03-15

    In the study of laser-driven electron acceleration, it has become customary to work within the framework of paraxial wave optics. Using an exact solution to the Helmholtz equation as well as its paraxial counterpart, we perform numerical simulations of electron acceleration with a high-power TM(01) beam. For beam waist sizes at which the paraxial approximation was previously recognized valid, we highlight significant differences in the angular divergence and energy distribution of the electron bunches produced by the exact and the paraxial solutions. Our results demonstrate that extra care has to be taken when working under the paraxial approximation in the context of electron acceleration with radially polarized laser beams.

  7. PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude

    2008-06-01

    The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) was held on 9-14 September 2007 at Kobe International Conference Center in Kobe, Japan. The host organizations for this conference were Osaka University and the Institute of Laser Engineering (ILE) at Osaka University; and co-organized by the Institute Lasers and Plasmas (ILP) in France, the Commissariatá l'Energie Atomique (CEA), Lawrence Livermore National Laboratory (LLNL), National Institute for Fusion Science (NIFS) in Japan, and Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA). The conference objective was to review the state of the art of research in inertial fusion sciences and applications since the last conference held in Biarritz, France, in 2005. 470 abstracts were accepted, and 448 persons from 18 countries attended the conference. These Proceedings contain 287 of the papers presented at IFSA 2007. This collection of papers represents the manuscripts submitted to and passing the peer review process. The program was organized with some specific features: The reviews of influential programs appeared both at the very beginning and at the very end of the Conference to attract attendance throughout the Conference. Each poster session had the same time period as a single oral session, thereby avoiding overlap with oral talks. The everyday program was structured to be as similar as possible so the attendees could easily recognize the program. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, researchers presented the exciting advances in both traditional hot spot ignition and fast ignition approach, including status report of USA's National Ignition Facility (NIF), French Laser Magajoule (LMJ), Japanese Fast Ignition Realization Experiment (FIREX), and European High Power laser Energy Research (HiPER). A particular emphasis of the meeting was that the `physics of inertial fusion' category was dominated by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that subject are gathered. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2007 an extremely successful conference. The proceedings were published with the support of Dr Y Sakawa, Dr H Homma, Ms S Karasuyama, Ms M Odagiri, and Ms I Kobatake. Kunioki Mima Co-chair Hiroshi Azechi Technical Program Committee Co-chair John Lindl Co-chair Bruce Hammel Technical Program Committee Co-chair Christine Labaune Co-chair Jean-Claude Gauthier Technical Program Committee Co-chair

  8. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA

    NASA Astrophysics Data System (ADS)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao

    2015-10-01

    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  9. Simulation with Python on transverse modes of the symmetric confocal resonator

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hua; Qi, Jing; Ji, Yun Jing; Song, Yang; Li, Zhenhua

    2017-08-01

    Python is a popular open-source programming language that can be used to simulate various optical phenomena. We have developed a suite of programs to help teach the course of laser principle. The complicated transverse modes of the symmetric confocal resonator can be visualized in personal computers, which is significant to help the students understand the pattern distribution of laser resonator.

  10. Designing Birefringent Filters For Solid-State Lasers

    NASA Technical Reports Server (NTRS)

    Monosmith, Bryan

    1992-01-01

    Mathematical model enables design of filter assembly of birefringent plates as integral part of resonator cavity of tunable solid-state laser. Proper design treats polarization eigenstate of entire resonator as function of wavelength. Program includes software modules for variety of optical elements including Pockels cell, laser rod, quarter- and half-wave plates, Faraday rotator, and polarizers.

  11. Laser Crystal

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lightning Optical Corporation, under an SBIR (Small Business Innovative Research) agreement with Langley Research Center, manufactures oxide and fluoride laser gain crystals, as well as various nonlinear materials. The ultimate result of this research program is the commercial availability in the marketplace of a reliable source of high-quality, damage resistant laser material, primarily for diode-pumping applications.

  12. The AFRL Line-Imaging ORVIS

    DTIC Science & Technology

    2013-11-01

    1 3. Safety Considerations...Reduction Techniques,” Sandia Report, SAND82-2918, February 1983. 3. Safety Considerations Since the AFRL Line-Imaging ORVIS is an imaging interferometer...Standard for Safe Use of Lasers. • A thorough review of the optical setup by the facility/site laser safety program. • Continued use of the laser enclosure

  13. The effect of CNC and manual laser machining on electrical resistance of HDPE/MWCNT composite

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Farshbaf Zinati, Reza; Fattahi, A. M.

    2018-05-01

    In this study, electrical conductivity of high-density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composite was investigated after laser machining. To this end, produced using plastic injection process, nano-composite samples were laser machined with various combinations of input parameters such as feed rate (35, 45, and 55 mm/min), feed angle with injection flow direction (0°, 45°, and 90°), and MWCNT content (0.5, 1, and 1.5 wt%). The angle between laser feed and injected flow direction was set via either of two different methods: CNC programming and manual setting. The results showed that the parameters of angle between laser line and melt flow direction and feed rate were both found to have statistically significance and physical impacts on electrical resistance of the samples in manual setting. Also, maximum conductivity was seen when the angle between laser line and melt flow direction was set to 90° in manual setting, and maximum conductivity was seen at feed rate of 55 mm/min in both of CNC programming and manual setting.

  14. Optical Frequency Stabilization and Optical Phase Locked Loops: Golden Threads of Precision Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubman, Matthew S.

    Stabilization of lasers through locking to optical cavities, atomic transitions, and molecular transitions has enabled the field of precision optical measurement since shortly after the invention of the laser. Recent advances in the field have produced an optical clock that is orders of magnitude more stable than those of just a few years prior. Phase locking of one laser to another, or to a frequency offset from another, formed the basis for linking stable lasers across the optical spectrum, such frequency chains exhibiting progressively finer precision through the years. Phase locking between the modes within a femtosecond pulsed laser hasmore » yielded the optical frequency comb, one of the most beautiful and useful instruments of our time. This talk gives an overview of these topics, from early work through to the latest 1E-16 thermal noise-limited precision recently attained for a stable laser, and the ongoing quest for ever finer precision and accuracy. The issues of understanding and measuring line widths and shapes are also studied in some depth, highlighting implications for servo design for sub-Hz line widths.« less

  15. Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick End Labeling (TUNEL) Assay to Characterize Histopathologic Changes Following Thermal Injury

    PubMed Central

    Lee, Ji Min; Park, Ji Hyun; Kim, Bo Young

    2018-01-01

    Background Despite the wide application of lasers and radiofrequency (RF) surgery in dermatology, it is difficult to find studies showing the extent of damage dependent on cell death. Objective We evaluated histopathologic changes following in vivo thermal damage generated by CO2 laser, 1,444 nm long-pulsed neodymium:yttrium-aluminum-garnet (LP Nd:YAG) laser and RF emitting electrosurgical unit. Methods Thermal damage was induced by the above instruments on ventral skin of rat. Specimens were stained with hematoxylin and eosin, along with a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay, to highlight the degree of irreversible cellular injury. Results The volume of vaporization was largest with the CO2 laser. Area of cell death area identified by TUNEL assay, when arranged from widest to narrowest, was 1,444 nm LP Nd:YAG laser, CO2 laser, and RF emitting electrosurgical unit. Conclusion This histopathologic evaluation of the acute characterization of injury across devices may be advantageous for attaining better treatment outcomes. PMID:29386831

  16. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.

    PubMed

    Hinchet, Ronan; Kim, Sang-Woo

    2015-08-25

    In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.

  17. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices.

    PubMed

    Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R

    2017-08-09

    Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.

  18. LASER Tech Briefs, Fall 1994. Volume 2, No. 4

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics in this issue of LASER Tech briefs include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

  19. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast.

    PubMed

    Vaz, Pedro G; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2017-12-29

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  20. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  1. The next generation of LASIK patients.

    PubMed

    Freeman, J Christopher; Chuck, Roy S

    2009-07-01

    With baby boomers aging, and despite a growing global population, there is a decreasing number of potential laser vision correction patients. Some believe that the worldwide economic downturn of these times will limit the number of potential patients as well. This article highlights looking to an alternative segment of the population to identify potential laser vision correction patients and the limitations of reaching this group. The group known as generation Y contains a large number of individuals who may be candidates for laser vision correction. Traditional marketing efforts present challenges in reaching this particular population segment. Many individuals in this group are already patients of eye doctors for contact lenses and glasses and can be reached by these eye doctors to address candidacy and education of laser vision correction. Generation Y represents a large population segment that contains technology-embracing individuals who, although hard to reach with traditional marketing efforts, may be reached by fellow eye doctors already managing these patients. There are many in this age group who would be good laser vision correction candidates.

  2. Effect of static scatterers in laser speckle contrast imaging: an experimental study on correlation and contrast

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro G.; Humeau-Heurtier, Anne; Figueiras, Edite; Correia, Carlos; Cardoso, João

    2018-01-01

    Laser speckle contrast imaging (LSCI) is a non-invasive microvascular blood flow assessment technique with good temporal and spatial resolution. Most LSCI systems, including commercial devices, can perform only qualitative blood flow evaluation, which is a major limitation of this technique. There are several factors that prevent the utilization of LSCI as a quantitative technique. Among these factors, we can highlight the effect of static scatterers. The goal of this work was to study the influence of differences in static and dynamic scatterer concentration on laser speckle correlation and contrast. In order to achieve this, a laser speckle prototype was developed and tested using an optical phantom with various concentrations of static and dynamic scatterers. It was found that the laser speckle correlation could be used to estimate the relative concentration of static/dynamic scatterers within a sample. Moreover, the speckle correlation proved to be independent of the dynamic scatterer velocity, which is a fundamental characteristic to be used in contrast correction.

  3. Coupling effects in the modal emission of colloidal quantum dot microdisk lasers.

    NASA Astrophysics Data System (ADS)

    Lafalce, Evan; Zheng, Qingji; Lin, Chunhao; Smith, Marcus; Malak, Sidney; Jung, Jaehan; Yoon, Young; Lin, Zhiqun; Tsukruk, Vladimir; Vardeny, Z. Valy

    Solution-processed semiconductors such as colloidal quantum dots (CQD) are particularly suited materials for monolithic fabrication of laser microstructures because of their ease of fabrication and compatibility with conventional lithographic techniques. We use the functionality of core/alloyed-shell CQDs to fabricate microdisk lasers of variable size and study the resulting whispering-gallery mode laser emission. In particular we study the effects of near-field coupling on resonant modes of pairs of these lasers with sub-micrometer spacing. We demonstrate the occurrence of lasing modes that originate from the interaction between two such microdisks by means of varying the spatial distribution and magnitude of the gain and loss in the coupled-pair. The transition from emission of modes localized on a single disk to those of the interacting pair is accompanied by coalescence of eigen-frequencies and pump-induced turn-off of lasing, highlighting the role of parity-time symmetry and exceptional point physics. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.

  4. Ultrashort Pulse (USP) Laser-Matter Interactions

    DTIC Science & Technology

    2013-03-05

    spectroscopy • Frequency/time transfer • High-capacity comms • Coherent LIDAR • Optical clocks • Calibration Material Science ultrashort, high...Laboratory 41 Laser -driven x-rays generation (0.1 – 10 MeV) • Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser ...1 Integrity  Service  Excellence Ultrashort Pulse (USP) Laser – Matter Interactions 5 MAR 2013 Dr. Riq Parra Program Officer AFOSR/RTB

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rui; Su, Rongxin, E-mail: surx@tju.edu.cn; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072

    Highlights: {yields} We compare the structures of insulin upon heating with or without laser irradiation. {yields} Laser irradiation inhibits insulin fibrillation and may be of insert for mechanistic disease studies. {yields} Online laser measurements should be carefully used in the study of amyloid proteins. -- Abstract: Protein aggregation and amyloid fibrillation can lead to several serious diseases and protein drugs ineffectiveness; thus, the detection and inhibition of these processes have been of great interest. In the present study, the inhibition of insulin amyloid fibrillation by laser irradiation was investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), far-UV circularmore » dichroism (far-UV CD), and thioflavin T (ThT) fluorescence. During heat-induced aggregation, the size distribution of two insulin solutions obtained by online and offline dynamic light scattering were different. The laser-on insulin in the presence of 0.1 M NaCl exhibited fewer fibrils than the laser-off insulin, whereas no insulin fibril under laser irradiation was observed in the absence of 0.1 M NaCl for 45 h incubation. Moreover, our CD results showed that the laser-irradiated insulin solution maintained mainly an {alpha}-helical conformation, but the laser-off insulin solution formed bulk fibrils followed by a significant increase in {beta}-sheet content for 106 h incubation. These findings provide an inhibition method for insulin amyloid fibrillation using the laser irradiation and demonstrate that the online long-time laser measurements should be carefully used in the study of amyloid proteins because they may change the original results.« less

  6. High Energy Laser Joint Technology Office: a mission overview

    NASA Astrophysics Data System (ADS)

    Seeley, Don D.; Slater, John M.

    2004-10-01

    The High Energy Laser Joint Technology Office (HEL-JTO) was established in 2000 for the purpose of developing and executing a comprehensive investment strategy for HEL science and technology that would underpin weapons development. The JTO is currently sponsoring 80 programs across industry, academia, and government agencies with a budget of approximately $60 million. The competitively awarded programs are chosen to advance the current state of the art in HEL technology and fill technology gaps, thus providing a broad capability that can be harvested in acquisition programs by the military services.

  7. Laser Heating of Magnetically Confined Plasmas for X-Ray Production.

    DTIC Science & Technology

    1976-04-01

    self atsrm r~ t ion factor (SAF) is an arbitrary program input whose inverse PF2’ IFCT = SA F ’ mul t ip l ies Equation (3.25 ) to set a black body limit...from He-like neon to severa l MW. A detailed hydrodynamic and atomic physics program developed for this project— .~ ~~~ DD ~~~~~~~ 1473 I H I ’ I D...Sciences North- west , Inc . (MSNW) program for DNA , laser heating of magnetically con- fined plasma columns was demonstrated and moderate Z gases (neon

  8. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion accelerationa)

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.

    2014-05-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a0>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.

  9. Method for laser drilling subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1976-08-31

    Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

  10. Featured Invention: Laser Scaling Device

    NASA Technical Reports Server (NTRS)

    Dunn, Carol Anne

    2008-01-01

    In September 2003, NASA signed a nonexclusive license agreement with Armor Forensics, a subsidiary of Armor Holdings, Inc., for the laser scaling device under the Innovative Partnerships Program. Coupled with a measuring program, also developed by NASA, the unit provides crime scene investigators with the ability to shoot photographs at scale without having to physically enter the scene, analyzing details such as bloodspatter patterns and graffiti. This ability keeps the scene's components intact and pristine for the collection of information and evidence. The laser scaling device elegantly solved a pressing problem for NASA's shuttle operations team and also provided industry with a useful tool. For NASA, the laser scaling device is still used to measure divots or damage to the shuttle's external tank and other structures around the launchpad. When the invention also met similar needs within industry, the Innovative Partnerships Program provided information to Armor Forensics for licensing and marketing the laser scaling device. Jeff Kohler, technology transfer agent at Kennedy, added, "We also invited a representative from the FBI's special photography unit to Kennedy to meet with Armor Forensics and the innovator. Eventually the FBI ended up purchasing some units. Armor Forensics is also beginning to receive interest from DoD [Department of Defense] for use in military crime scene investigations overseas."

  11. LASERUT® Technology Development Programs for the Ultrasonic Inspection of Composites in the Aerospace Industry

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Drake, Thomas; Osterkamp, Mark; Yawn, Ken; Kaiser, David; Do, Tho; Maestas, Jeff; Thomas, Michael

    2008-02-01

    A laser-ultrasonic technique developed at Lockheed Martin Aeronautics called LaserUT® is used for the ultrasonic inspection of composite parts in the aeronautic industry and has demonstrated significant reduction in inspection labor and capital expenditure over approximately 20,000 parts so far. Development of new technologies will further increase LaserUT savings: structured-light mapping, improved CO2 laser, mid-infrared generation laser, and new robotic approach. Those different technologies are described and their status relatively to their introduction to production is discussed.

  12. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  13. Research and Development in Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith

    2004-01-01

    A report in the form of lecture slides summarizes the optical-communications program of NASA s Jet Propulsion Laboratory (JPL) and describes the JPL Optical Communications Telescope Laboratory (OCTL) and its role in the program. The purpose of the program is to develop equipment and techniques for laser communication between (1) ground stations and (2) spacecraft (both near Earth and in deep space) and aircraft. The OCTL is an astronomical- style telescope facility that includes a 1-m-diameter, 75.8-m-focal length telescope in an elevation/azimuth mount, plus optical and electronic subsystems for tracking spacecraft and aircraft, receiving laser signals from such moving targets, and transmitting high-power laser signals to such targets. Near-term research at the OCTL is expected to focus on mitigating the effects of atmospheric scintillation on uplinks and on beacon-assisted tracking of ground stations by stations in deep space. Near-term experiments are expected to be performed with retroreflector-equipped aircraft and Earth-orbiting spacecraft techniques to test mathematical models of propagation of laser beams, multiple-beam strategies to mitigate uplink scintillation, and pointing and tracking accuracy of the telescope.

  14. Project LASER

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  15. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  16. U.S. Army High Energy Laser (HEL) technology program

    NASA Astrophysics Data System (ADS)

    Lavan, Michael J.; Wachs, John J.

    2011-11-01

    The US Army is investing in Solid State Laser (SSL) technology to assess counter rocket, artillery, and mortar (C-RAM) and counter unmanned aerial vehicle (C-UAV) capabilities of solid state based HEL systems, as well as other potential applications for HELs of interest to the Army. The Army HEL program thrust areas are systematically moving the technology forward toward weaponization, including solid state laser technologies, advances in beam control technology, and conducting major demonstrations. The High Energy Laser Mobile Demonstrator (HELMD) will be a major step toward demonstrating HEL weapon capability to the soldier. The US Army will continue to pursue technologies that enable more compact systems compatible with, for example, a Stryker tactical vehicle as a crucial part of our strategy to provide a capability to the warfighter that can maneuver with the force.

  17. Compliance of SLAC_s Laser Safety Program with OSHA Requirements for the Control of Hazardous Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Michael; /SLAC

    SLAC's COHE program requires compliance with OSHA Regulation 29CFR1910.147, 'The control of hazardous energy (lockout/tagout)'. This regulation specifies lockout/tagout requirements during service and maintenance of equipment in which the unexpected energization or start up of the equipment, or release of stored energy, could cause injury to workers. Class 3B and Class 4 laser radiation must be considered as hazardous energy (as well as electrical energy in associated equipment, and other non-beam energy hazards) in laser facilities, and therefore requires careful COHE consideration. This paper describes how COHE is achieved at SLAC to protect workers against unexpected Class 3B or Classmore » 4 laser radiation, independent of whether the mode of operation is normal, service, or maintenance.« less

  18. The Use of a Microcomputer Based Array Processor for Real Time Laser Velocimeter Data Processing

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1990-01-01

    The application of an array processor to laser velocimeter data processing is presented. The hardware is described along with the method of parallel programming required by the array processor. A portion of the data processing program is described in detail. The increase in computational speed of a microcomputer equipped with an array processor is illustrated by comparative testing with a minicomputer.

  19. Global knowledge, local implications: a community college's response

    NASA Astrophysics Data System (ADS)

    Valentin, Marjorie R.; Stroup, Margaret H.; Donnelly, Judith F.

    2005-10-01

    Three Rivers Community College (TRCC), with federal funding, provided a customized laser program for Joining Technologies in Connecticut, which offers world-class resources for welding and joining applications. This program addresses the shortage of skilled labor in the laser arena, lack of knowledge of fundamental science of applied light, and an increase in nonperforming product. Hiring and retraining a skilled workforce are important and costly issues facing today's small manufacturing companies.

  20. Microprocessor-Controlled Laser Balancing System

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.

    1985-01-01

    Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.

  1. Photocatalytic activity of titania coatings synthesised by a combined laser/sol–gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adraider, Y.; Pang, Y.X., E-mail: F6098038@tees.ac.uk; Nabhani, F.

    2014-06-01

    Highlights: • Sol–gel method was used to prepare titania coatings. • Titania thin films were coated on substrate surface by dip coating. • Fibre laser was employed to irradiate the titania coated surfaces. • Photocatalytic efficiency of titania coatings was significantly improved after laser processing. - Abstract: Titania coatings were prepared using sol–gel method and then applied on the substrate surface by dip coating. Fibre laser (λ = 1064 nm) in continuous wave mode was used to irradiate the titania coated surfaces at different specific energies. The ATR-FTIR, XRD, SEM, EDS and contact angle measurement were employed to analyse surfacemore » morphology, phase composition and crystalline structure of laser-irradiated titania coatings, whilst the photocatalytic activity was evaluated by measuring the decomposition of methylene blue (MB) after exposure to the visible light for various illumination times. Results showed that the laser-irradiated titania coatings demonstrate significant different composition and microstructure in comparison with the as-coated from the same sol–gel titania. Photocatalytic efficiency of titania coatings was significantly improved after laser processing. The photocatalytic activity of laser-irradiated titania coatings was higher than that of the as-coated titania. The titania coating processed at laser specific energy of 6.5 J/mm{sup 2} exhibited the highest photocatalytic activity among all titania samples.« less

  2. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine.

    PubMed

    Morse, Kaitlyn; Kimizuka, Yoshifumi; Chan, Megan P K; Shibata, Mai; Shimaoka, Yusuke; Takeuchi, Shu; Forbes, Benjamin; Nirschl, Christopher; Li, Binghao; Zeng, Yang; Bronson, Roderick T; Katagiri, Wataru; Shigeta, Ayako; Sîrbulescu, Ruxandra F; Chen, Huabiao; Tan, Rhea Y Y; Tsukada, Kosuke; Brauns, Timothy; Gelfand, Jeffrey; Sluder, Ann; Locascio, Joseph J; Poznansky, Mark C; Anandasabapathy, Niroshana; Kashiwagi, Satoshi

    2017-08-15

    Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC (migDC) populations, specifically increasing and activating the Lang + and CD11b - Lang - subsets in skin, and that the Ab responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave NIR laser adjuvant showed limited effects on the migDC subsets. Our vaccination study demonstrated that the efficacy of the CW NIR laser is significantly better than that of the pulsed wave laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migDCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migDC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by an NIR laser-adjuvanted vaccine. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn.

    PubMed

    Zhang, Yi-Ming; Ruan, Jing; Xiao, Rong; Zhang, Qiong; Huang, Yue-Sheng

    2013-01-01

    Infrared lasers are widely used in medicine, industry, and other fields. While science, medicine, and the society in general have benefited from the many practical uses of lasers, they also have inherent safety issues. Although several procedures have been put forward to protect the skin from non-specific laser-induced damage, individuals receiving laser therapy or researchers who use laser are still at risk for skin damage. This study aims to understand the interaction between laser and the skin, and to investigate the differences between the skin damage caused by 1,064-nm laser and common thermal burns. Skin lesions on Wistar rats were induced by a 1,064-nm CW laser at a maximum output of 40 W and by a copper brass bar attached to an HQ soldering iron. Histological sections of the lesions and the process of wound healing were evaluated. The widths of the epidermal necrosis and dermal denaturalization of each lesion were measured. To observe wound healing, the epithelial gap and wound gap were measured. Masson's trichrome and picrosirius red staining were also used to assess lesions and wound healing. The thermal damage induced by laser intensified significantly in both horizontal dimension and in vertical depth with increased duration of irradiation. Ten days after wounding, the dermal injuries induced by laser were more severe. Compared with the laser-induced skin damage, the skin burn induced by an HQ soldering iron did not show a similar development or increased in severity with the passage of time. The results of this study showed the pattern of skin damage induced by laser irradiation and a heated brass bar. This study also highlighted the difference between laser irradiation and thermal burn in terms of skin damage and wound healing, and offers insight for further treatment.

  4. Final report : for the period of December 1999 through November 30, 2000 : Florida Transit Training Program (1999/2000) : Florida Technical Assistance Program (1999/2000)

    DOT National Transportation Integrated Search

    2000-01-01

    The following progress report is intended to highlight the significant activities of the Florida Transit Training Program and Florida Technical Assistant Program. The following progress report is intended to highlight the significant activities of th...

  5. Hybrid organic semiconductor lasers for bio-molecular sensing.

    PubMed

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  6. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  7. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  8. Numerical simulation of hydrogen fluorine overtone chemical lasers

    NASA Astrophysics Data System (ADS)

    Chen, Jinbao; Jiang, Zhongfu; Hua, Weihong; Liu, Zejin; Shu, Baihong

    1998-08-01

    A two-dimensional program was applied to simulate the chemical dynamic process, gas dynamic process and lasing process of a combustion-driven CW HF overtone chemical lasers. Some important parameters in the cavity were obtained. The calculated results included HF molecule concentration on each vibration energy level while lasing, averaged pressure and temperature, zero power gain coefficient of each spectral line, laser spectrum, the averaged laser intensity, output power, chemical efficiency and the length of lasing zone.

  9. Effects of vacuum exposure on stress and spectral shift of high reflective coatings

    NASA Astrophysics Data System (ADS)

    Stolz, C. J.; Taylor, J. R.; Eickelberg, W. K.; Lindh, J. D.

    1992-06-01

    The Atomic Vapor Laser Isotope Laser Separation (AVLIS) program operates the world's largest average power dye laser; the dye laser beams are combined, formatted, and transported in vacuum. The optical system is aligned at atmosphere, while the system must meet requirements in vacuum. Therefore, coating performance must be characterized in both atmosphere and vacuum. Changes in stress and spectral shift in ambient and vacuum environments are reported for conventional and dense multilayer dielectric coatings.

  10. Laser Plasma Heating.

    DTIC Science & Technology

    The heating of a plasma by a laser is studied, assuming the classical inverse bremsstrahlung mechanism for transfer of energy from laser photons to electron thermal energy. Emphasis is given to CO2 laser heating of the dense plasma focus (DPF) device. Particular attention is paid to the contribution of impurities to the radiation output of the DPF. A steady-state CORONA model is discussed and used to generate a computer program, CORONA, which calculates species densities as a function of electron temperature. (Author)

  11. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  12. Tomsk Cardiology Center program on lasers in cardiovascular: first results

    NASA Astrophysics Data System (ADS)

    Gordov, Eugeni P.; Karpov, Rostislav S.; Dudko, Victor A.; Shipulin, Vladimir M.

    1994-12-01

    Recent progress in biomedical optics resulted in increased activity in this area at a number of different centers. Reported are the first results of the program directed to incorporate at Tomsk Cardiology Center experience gained in Tomsk optical profile research institutions in areas of light-matter interaction, high resolution spectroscopy, laser physics and relevant software and their usage in cardiac therapy, surgery, and diagnostics. To coordinate research work in this direction the special unit-laboratory of laser medicine is organized at the Center. Laboratory activity goes in the following directions: study of spectral properties of vessel walls in norm and atherosclerosis, comparative study of different wavelength laser radiation action on normal and atherosclerotically damaged tissues, novel approach to intravascular imaging, and usage of high sensitive laser spectroscopy for early diagnosis of cardiac diseases. The spectroscopic study of AP and normal tissue is aimed at understanding of differences in internal energy structures and ways of energy migration which are of critical importance for reaching selective laser action on normal and deceased tissues. To compare thermal, mechanical, and photo-chemical variations of tissues caused by laser radiation the XeCl excimer laser with Raman shifting cell and Nd:YAG laser with second, third, and fourth harmonic converters are employed. Fine influence of pulse duration, intensity, and repetition rates on AP removal is considered in laboratory experiments with vessel samples. Preliminary results on theoretical consideration for determination of spectroscopically detectable markers of some cardiac diseases are reported as well.

  13. Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying

    2005-04-01

    Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.

  14. Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers

    DOE PAGES

    Chan, Chun Wang I.; Albo, Asaf; Hu, Qing; ...

    2016-11-14

    Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. Here, we hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challengesmore » that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering.« less

  15. Successful Treatment of Tattoo-Induced Pseudolymphoma with Sequential Ablative Fractional Resurfacing Followed by Q-Switched Nd: YAG 532 nm Laser

    PubMed Central

    Lucinda, Tan Siyun; Hazel, Oon Hwee Boon; Joyce, Lee Siong Siong; Hon, Chua Sze

    2013-01-01

    Decorative tattooing has been linked with a range of complications, with pseudolymphoma being unusual and challenging to manage. We report a case of tattoo-induced pseudolymphoma, who failed treatment with potent topical and intralesional steroids. She responded well to sequential treatment with ablative fractional resurfacing (AFR) followed by Q-Switched (QS) Nd:YAG 532 nm laser. Interestingly, we managed to document the clearance of her tattoo pigments after laser treatments on histology and would like to highlight the use of special stains such as the Grocott's Methenamine Silver (GMS) stain as a useful method to assess the presence of tattoo pigment in cases where dense inflammatory infiltrates are present. PMID:24470721

  16. Laser Geodynamics Satellite- B-roll footage (No Sound)

    NASA Image and Video Library

    2016-05-04

    This 1975 NASA video highlights the development of LAser GEOdynamics Satellite (LAGEOS I). LAGEOS I is a passive satellite constructed from brass and aluminum and contains 426 individual precision reflectors made from fused silica glass. The mirrored surface of the satellite was designed to reflect laser beams from ground stations for accurate ranging measurements. LAGEOS I was launched on May 4, 1976 from Vandenberg Air Force Base, California. The two-foot diameter, 900-pound satellite orbited the Earth from pole to pole, measuring the movements of the Earth's surface relative to earthquakes, continental drift, and other geophysical phenomena. Scientists at NASA's Marshall Space Flight Center in Huntsville, Alabama came up with the idea for the satellite and built it at the Marshall Center.

  17. Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McGill, Matthew J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.

  18. Probing non-collinear magnetism in Ca1-xSrxMn7O12 films by neutron scattering

    NASA Astrophysics Data System (ADS)

    Huon, Amanda; Grutter, Alexander; Kirby, Brian; Disseler, Steven; Borchers, Julie; Liu, Yaohua; Tian, Wei; Herklotz, Andreas; Lee, Ho Nyung; Fitzsimmons, Michael; May, Steven

    CaMn7O12 has been reported to be a single-phase multiferroic quadruple manganite that exhibits both ferroelectricity and helical magnetism below 90 K, but presently no experimental data from bulk or thin films have demonstrated coupling between these two ordering types. Herein, we synthesized epitaxial Ca1-xSrxMn7O12 thin films grown by oxide molecular beam epitaxy and pulsed laser deposition. We utilized neutrons to map out the non-collinear magnetic wavevectors as a function of temperature. To verify whether this coupling is present in our thin films we performed both magnetic and electric field studies. The results highlight the scientific opportunities in using chemical pressure and strain to modify non-collinear magnetism and better understand the link between ferroelectricity and helical magnetism. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under Contract Number DE-SC0014664.

  19. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    PubMed

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  20. Facing the Limitations of Electronic Document Handling.

    ERIC Educational Resources Information Center

    Moralee, Dennis

    1985-01-01

    This essay addresses problems associated with technology used in the handling of high-resolution visual images in electronic document delivery. Highlights include visual fidelity, laser-driven optical disk storage, electronics versus micrographics for document storage, videomicrographics, and system configurations and peripherals. (EJS)

  1. Concept and Practice of Teaching Technical University Students to Modern Technologies of 3d Data Acquisition and Processing: a Case Study of Close-Range Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman

    2016-06-01

    For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  2. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  3. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  4. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.

    2014-10-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.

  5. Laser power beaming applications and technology

    NASA Astrophysics Data System (ADS)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  6. AlGaInN laser diode technology for defence, security and sensing applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2014-10-01

    The latest developments in AlGaInN laser diode technology are reviewed for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., i.e, 380nm, to the visible, i.e., 530nm, by tuning the indium content of the laser GaInN quantum well. Advantages of using Plasma assisted MBE (PAMBE) compared to more conventional MOCVD epitaxy to grow AlGaInN laser structures are highlighted. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW in the 400-420nm wavelength range that are suitable for telecom applications. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Gallium-nitride (GaN) blue laser diode is reported. High power operation of AlGaInN laser diodes is demonstrated with a single chip, AlGaInN laser diode `mini-array' with a common p-contact configuration at powers up to 2.5W cw at 410nm. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. GaN laser bars of up to 5mm with 20 emitters, mounted in a CS mount package, give optical powers up to 4W cw at ~410nm with a common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.or.

  7. 78 FR 52135 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... Tactics Development and Evaluation (TD&E) Program. Multiple munitions (bombs, missiles, and gunner rounds... laser-guided Mk-84 bomb F-16C fighter aircraft. GBU-24 laser-guided Mk-84 bomb F-16C+ fighter aircraft... bomb. GBU-12 laser-guided Mk-82 bomb A-10 fighter aircraft. GBU-38 Joint Direct Attack Munition, global...

  8. Space Qualification of Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Troupaki, Elisavet; Kashem, Nasir B.; Allan, Graham R.; Vasilyev, Aleksey; Stephen, Mark

    2005-01-01

    Laser instruments have great potential in enabling a new generation of remote-sensing scientific instruments. NASA s desire to employ laser instruments aboard satellites, imposes stringent reliability requirements under severe conditions. As a result of these requirements, NASA has a research program to understand, quantify and reduce the risk of failure to these instruments when deployed on satellites. Most of NASA s proposed laser missions have base-lined diode-pumped Nd:YAG lasers that generally use quasi-constant wave (QCW), 808 nm Laser Diode Arrays (LDAs). Our group has an on-going test program to measure the performance of these LDAs when operated in conditions replicating launch and orbit. In this paper, we report on the results of tests designed to measure the effect of vibration loads simulating launch into space and the radiation environment encountered on orbit. Our primary objective is to quantify the performance of the LDAs in conditions replicating those of a satellite instrument, determine their limitations and strengths which will enable better and more robust designs. To this end we have developed a systematic testing strategy to quantify the effect of environmental stresses on the optical and electrical properties of the LDA.

  9. Development of a Dual-Laser Digital Holography Diagnostic for Surface Characterization at ORNL

    NASA Astrophysics Data System (ADS)

    Sawyer, J. C.; Biewer, T. M.; Thomas, C. E.; Zhang, Z.

    2017-10-01

    The Fusion and Materials for Nuclear Systems Division (FMNSD) at Oak Ridge National Laboratory (ORNL), in collaboration with The University of Tennessee, Knoxville and Third Dimension Technologies (TDT), presents continuing progress towards the development of a dual-laser digital holography (DH) technique for 3D imaging of plasma facing component (PFC) surfaces in real time. This update includes results from an ``on the bench'' single-laser DH demonstration. The dual-laser approach utilizes two CO2 lasers tuned to neighboring molecular CO2 lines to extend the 2 π ambiguity of holographic interferograms to 5 mm from the 10 μm wavelength. Reconstruction of the interferogram allows for measurement of changes in surface topology at rates of 2 mm/s. This status of a dual-laser DH system ``on the bench,'' demonstration and implementation on the Proto-MPEX device will be presented. This work was supported by The University of Tennessee JDRD program and the US. D.O.E. contract DE-AC05-00OR22725. Research sponsored by the Laboratory Directed Research and Development Program of ORNL, managed by UT Battelle, LLC, for the U.S. D.O.E.

  10. Lasers as an approach for promoting drug delivery via skin.

    PubMed

    Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2014-04-01

    Using lasers can be an effective drug permeation-enhancement approach for facilitating drug delivery into or across the skin. The controlled disruption and ablation of the stratum corneum (SC), the predominant barrier for drug delivery, is achieved by the use of lasers. The possible mechanisms of laser-assisted drug permeation are the direct ablation of the skin barrier, optical breakdown by a photomechanical wave and a photothermal effect. It has been demonstrated that ablative approaches for enhancing drug transport provide some advantages, including increased bioavailability, fast treatment time, quick recovery of SC integrity and the fact that skin surface contact is not needed. In recent years, the concept of using laser techniques to treat the skin has attracted increasing attention. This review describes recent developments in using nonablative and ablative lasers for drug absorption enhancement. This review systematically introduces the concepts and enhancement mechanisms of lasers, highlighting the potential of this technique for greatly increasing drug absorption via the skin. Lasers with different wavelengths and types are employed to increase drug permeation. These include the ruby laser, the erbium:yttrium-gallium-garnet laser, the neodymium-doped yttrium-aluminum-garnet laser and the CO2 laser. Fractional modality is a novel concept for promoting topical/transdermal drug delivery. The laser is useful in enhancing the permeation of a wide variety of permeants, such as small-molecule drugs, macromolecules and nanoparticles. This potential use of the laser affords a new treatment for topical/transdermal application with significant efficacy. Further studies using a large group of humans or patients are needed to confirm and clarify the findings in animal studies. Although the laser fluence or output energy used for enhancing drug absorption is much lower than for treatment of skin disorders and rejuvenation, the safety of using lasers is still an issue. Caution should be used in optimizing the feasible conditions of the lasers in balancing the effectiveness of permeation enhancement and skin damage.

  11. Laser and Optical Fiber Metrology in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sporea, Dan; Sporea, Adelina

    2008-04-15

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical andmore » optoelectronic parts, tests run under the EU's Fusion Program.« less

  12. LDRD Final Report 15-ERD-037 Matthews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Manyalibo J.

    2017-10-26

    The physics and materials science involved in laser materials processing of metals was studied experimentally using custom-built test beds and in situ diagnostics. Special attention was given to laser-based powder bed fusion additive manufacturing processes, a technology critically important to the stockpile stewardship program in NNSA. New light has been shed on several phenomena such as laser-driven spatter, material displacement and morphology changes. The results presented here and in publications generated by this work have proven impactful and useful to both internal and external communities. New directions in additive manufacturing research at LLNL have been enabled, along with new scientificmore » capabilities that can serve future program needs.« less

  13. Windows Program For Driving The TDU-850 Printer

    NASA Technical Reports Server (NTRS)

    Parrish, Brett T.

    1995-01-01

    Program provides WYSIWYG compatibility between video display and printout. PDW is Microsoft Windows printer-driver computer program for use with Raytheon TDU-850 printer. Provides previously unavailable linkage between printer and IBM PC-compatible computers running Microsoft Windows. Enhances capabilities of Raytheon TDU-850 hardcopier by emulating all textual and graphical features normally supported by laser/ink-jet printers and makes printer compatible with any Microsoft Windows application. Also provides capabilities not found in laser/ink-jet printer drivers by providing certain Windows applications with ability to render high quality, true gray-scale photographic hardcopy on TDU-850. Written in C language.

  14. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    DTIC Science & Technology

    2007-01-01

    found in III-V quantum cascade lasers QCLs. Various groups have obtained electroluminescence from Si-rich Si/SiGe quantum cascade structures,2–4 but...Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions 5c. PROGRAM ELEMENT NUMBER 612305 6. AUTHOR(S) 5d. PROJECT NUMBER...ABSTRACT The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band

  15. Optically Pumped Coherent Mechanical Oscillators: The Laser Rate Equation Theory and Experimental Verification

    DTIC Science & Technology

    2012-10-23

    Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89 [14] Siegman A E 1986 Lasers (Sausalito, CA: University... laser rate equation theory and experimental verification 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...coherent mechanical oscillators: the laser rate equation theory and experimental verification J B Khurgin1, M W Pruessner2,3, T H Stievater2 and W S

  16. Computer Processing Of Tunable-Diode-Laser Spectra

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  17. Manufacturing Methods and Technology (MM&T) Program. 10.6 Micrometer Carbon Dioxide TEA (Transverely Excited Atmospheric) Lasers

    DTIC Science & Technology

    1983-06-01

    TBE LV I R , VA 22060 DISTRIBUTION STATEMENT s Approved for public release, distribution unlimited. Prepared by DR. CLARENCE F. LUCK RAYTHEON COMPANY0...Polaroid photographic records of interferograms of test optical elements. xvii/xviii . i .’’ . r *’. ~ ~ s . -’- * INTRODUCTION/SUMMARY In April 1981...SEPTUM Q LASER-SIDE VALVE PINCH-OFF TUBES O oo LASER EOA-3224 Figure 7. Laser Plumbing 16 I .4. . I 4",’ : ."," , r

  18. ARPA/NRL X-Ray Laser Program - Semiannual Technical Report to Defense Advanced Research Projects Agency, 1 January 1975-30 June 1975

    DTIC Science & Technology

    1975-09-01

    being conducted with highly- stripped carbon ions emitted fron a laser -irradiated surface and ^xpandin- into a background gas . The...obtained from reported measurement s of noble gas lasers indicate that the amplifiers will operate in I depletion mode, providing pulse powers in the...pumping appears to be the easier alternative and it will be pursued. The alternative amplifier approach involving electron beam pumped noble gas lasers

  19. Some aspects of precise laser machining - Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr

    2018-05-01

    The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.

  20. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  1. NASA Lidar system support and MOPA technology demonstration

    NASA Technical Reports Server (NTRS)

    Laughman, L. M.; Capuano, B.; Wayne, R. J.

    1986-01-01

    A series of lidar design and technology demonstration tasks in support of a CO2 lidar program is discussed. The first of these tasks is discussed in Section VI of this report under the heading of NASA Optical Lidar Design and it consists of detailed recommendations for the layout of a CO2 Doppler lidar incorporating then existing NASA optical components and mounts. The second phase of this work consisted of the design, development, and delivery to NASA of a novel acousto-optic laser frequency stabilization system for use with the existing NASA ring laser transmitter. The second major task in this program encompasses the design and experimental demonstration of a master oscillator-power amplifier (MOPA) laser transmitter utilizing a commercially available laser as the amplifier. The MOPA design including the low chirp master oscillator is discussed in detail. Experimental results are given for one, two and three pass amplification. The report includes operating procedures for the MOPA system.

  2. Automated Laser Paint Stripping (ALPS) update

    NASA Astrophysics Data System (ADS)

    Lovoi, Paul

    1993-03-01

    To date, the DoD has played a major role in funding a number of paint stripping programs. Some technologies have proven less effective than contemplated. Others are still in the validation phase. Paint stripping is one of the hottest issues being addressed by the finishing industry since the Environmental Protection Agency (EPA) has mandated that chemical stripping using methylene chloride/phenolic type strippers be stopped. The DoD and commercial aircraft companies are hard-pressed to find an alternative. Automated laser paint stripping has been identified as a technique for removing coatings from aircraft surfaces. International Technical Associates (InTA) was awarded a Navy contract for an automated laser paint stripping system (ALPS) that will remove paint from metallic and composite substrates. For the program, which will validate laser paint stripping, InTA will design, build, test, and install a system for fighter-sized aircraft at both the Norfolk and North Island (San Diego) Aviation Depots.

  3. Laser-induced forward transfer of carbon nanowalls for soft electrodes fabrication

    NASA Astrophysics Data System (ADS)

    Constantinescu, Catalin; Vizireanu, Sorin; Ion, Valentin; Aldica, Gheorghe; Stoica, Silviu Daniel; Lazea-Stoyanova, Andrada; Alloncle, Anne-Patricia; Delaporte, Philippe; Dinescu, Gheorghe

    2016-06-01

    Carbon nanowalls (CNW) are two-dimensional interconnected graphitic nanostructures that have a few μm in length and height, reaching typical thicknesses of a few tens of nm. We present results on such layers synthesized in a low pressure argon plasma jet, injected with acetylene and hydrogen, on transparent substrates (quartz) heated at 600 °C, without catalyst. Thermogravimetric analysis reveals that the CNW are stable up to 420 °C in air, and Raman spectroscopy investigations highlight their graphene-like structure. Finally, using a pulsed Nd:YAG laser device (355 nm, 50 ps), we show that 2D-arrays of CNW (pixels and lines) can be printed by laser-induced forward transfer (LIFT), preserving their architecture and structure. Electrical measurements on 1 μm thick CNW demonstrate typical values in the range of 357.5-358.4 Ω for the samples grown on Au/Cr electrodes, and in the range of 450.1-474.7 Ω for the LIFT printed lines (under positive, negative, and neutral polarization; 1 kHz-5 MHz frequency range; 500 mV and 1 V, respectively). Their morphology is highlighted by means of optical and electronic microscopy. Such structures have potential applications as soft conductive lines, in sensor development and/or embedding purposes.

  4. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.

    2016-01-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the U-235/U-238 ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the U-235/U-238 ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. Development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  5. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  6. Laser acceleration of quasi-monoenergetic MeV ion beams.

    PubMed

    Hegelich, B M; Albright, B J; Cobble, J; Flippo, K; Letzring, S; Paffett, M; Ruhl, H; Schreiber, J; Schulze, R K; Fernández, J C

    2006-01-26

    Acceleration of particles by intense laser-plasma interactions represents a rapidly evolving field of interest, as highlighted by the recent demonstration of laser-driven relativistic beams of monoenergetic electrons. Ultrahigh-intensity lasers can produce accelerating fields of 10 TV m(-1) (1 TV = 10(12) V), surpassing those in conventional accelerators by six orders of magnitude. Laser-driven ions with energies of several MeV per nucleon have also been produced. Such ion beams exhibit unprecedented characteristics--short pulse lengths, high currents and low transverse emittance--but their exponential energy spectra have almost 100% energy spread. This large energy spread, which is a consequence of the experimental conditions used to date, remains the biggest impediment to the wider use of this technology. Here we report the production of quasi-monoenergetic laser-driven C5+ ions with a vastly reduced energy spread of 17%. The ions have a mean energy of 3 MeV per nucleon (full-width at half-maximum approximately 0.5 MeV per nucleon) and a longitudinal emittance of less than 2 x 10(-6) eV s for pulse durations shorter than 1 ps. Such laser-driven, high-current, quasi-monoenergetic ion sources may enable significant advances in the development of compact MeV ion accelerators, new diagnostics, medical physics, inertial confinement fusion and fast ignition.

  7. Multiphoton in vivo imaging with a femtosecond semiconductor disk laser

    PubMed Central

    Voigt, Fabian F.; Emaury, Florian; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-01-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging. PMID:28717563

  8. Rate equation model of laser induced bias in uranium isotope ratios measured by resonance ionization mass spectrometry

    DOE PAGES

    Isselhardt, B. H.; Prussin, S. G.; Savina, M. R.; ...

    2015-12-07

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process between uranium atoms and potential isobars without the aid of chemical purification and separation. The use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of the 235U/238U ratio to decrease laser-induced isotopic fractionation. In application, isotope standards are used to identify and correct bias in measured isotope ratios, but understanding laser-induced bias from first-principles can improve the precision and accuracy of experimental measurements. A rate equationmore » model for predicting the relative ionization probability has been developed to study the effect of variations in laser parameters on the measured isotope ratio. The model uses atomic data and empirical descriptions of laser performance to estimate the laser-induced bias expected in experimental measurements of the 235U/ 238U ratio. Empirical corrections are also included to account for ionization processes that are difficult to calculate from first principles with the available atomic data. As a result, development of this model has highlighted several important considerations for properly interpreting experimental results.« less

  9. Laser induced damage in optical materials: ninth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado.

  10. Low threshold L-band mode-locked ultrafast fiber laser assisted by microfiber-based carbon nanotube saturable absorber

    NASA Astrophysics Data System (ADS)

    Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.

    2018-04-01

    We demonstrate a passively mode-locked erbium-doped fiber laser in L-band wavelength region with low mode-locking threshold employing a 1425 nm pump wavelength. The mode-locking regime is generated by microfiber-based saturable absorber using carbon nanotube-polymer composite in a ring cavity. This carbon nanotube saturable absorber shows saturation intensity of 9 MW/cm2. In this work, mode-locking laser threshold is observed at 36.4 mW pump power. At the maximum pump power of 107.6 mW, we obtain pulse duration at full-width half-maximum point of 490 fs and time bandwidth product of 0.33, which corresponds to 3-dB spectral bandwidth of 5.8 nm. The pulse repetition rate remains constant throughout the experiment at 5.8 MHz due to fixed cavity length of 35.5 m. Average output power and pulse energy of 10.8 mW and 1.92 nJ are attained respectively through a 30% laser output extracted from the mode-locked cavity. This work highlights the feasibility of attaining a low threshold mode-locked laser source to be employed as seed laser in L-band wavelength region.

  11. UV fatigue investigations with non-destructive tools in silica

    NASA Astrophysics Data System (ADS)

    Natoli, Jean-Yves; Beaudier, Alexandre; Wagner, Frank R.

    2017-08-01

    A fatigue effect is often observed under multiple laser irradiations, overall in UV. This decrease of LIDT, is a critical parameter for laser sources with high repetition rates and with a need of long-term life, as in spatial applications at 355nm. A challenge is also to replace excimer lasers by solid laser sources, this challenge requires to improve drastically the lifetime of optical materials at 266nm. Main applications of these sources are devoted to material surface nanostructuration, spectroscopy and medical surgeries. In this work we focus on the understanding of the laser matter interaction at 266nm in silica in order to predict the lifetime of components and study parameters links to these lifetimes to give keys of improvement for material suppliers. In order to study the mechanism involved in the case of multiple irradiations, an interesting approach is to involve the evolution of fluorescence, in order to observe the first stages of material changes just before breakdown. We will show that it is sometime possible to estimate the lifetime of component only with the fluorescence measurement, saving time and materials. Moreover, the data from the diagnostics give relevant informations to highlight "defects" induced by multiple laser irradiations.

  12. Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage – When is a DSB not a DSB?☆

    PubMed Central

    Reynolds, Pamela; Botchway, Stanley W.; Parker, Anthony W.; O’Neill, Peter

    2013-01-01

    The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair. PMID:23688615

  13. Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    NASA Astrophysics Data System (ADS)

    Semyachkina-Glushkovskaya, O. V.; Sokolovski, S. G.; Goltsov, A.; Gekaluyk, A. S.; Saranceva, E. I.; Bragina, O. A.; Tuchin, V. V.; Rafailov, E. U.

    2017-09-01

    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a ;gold key; has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research.

  14. View from... JSAP Spring Meeting: A marriage of materials and optics

    NASA Astrophysics Data System (ADS)

    Horiuchi, Noriaki

    2017-04-01

    A laser-annealing technique for increasing the dopant concentration in semiconductors, the creation of a glass with second-order optical nonlinearity and the realization of optical topological insulators were highlights at the Japan Society of Applied Physics Spring Meeting.

  15. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation.

    PubMed

    Tamang, Rajesh; Varghese, Binni; Mhaisalkar, Subodh G; Tok, Eng Soon; Sow, Chorng Haur

    2011-03-18

    Photoresponse of isolated Nb(2)O(5) nanowires (NW) padded with platinum (Pt) at both ends were studied with global irradiation by a laser beam and localized irradiation using a focused laser beam. Global laser irradiation on individual NW in ambient and vacuum conditions revealed photocurrent contributions with different time characteristics (rapid and slowly varying components) arising from defect level excitations, thermal heating effect, surface states and NW-Pt contacts. With a spot size of < 1 µm, localized irradiation highlighted the fact that the measured photocurrent in this single NW device (with and without applied bias) depended sensitively on the photoresponse at the NW-Pt contacts. At applied bias, unidirectional photocurrent was observed and higher photocurrent was achieved with localized laser irradiation at reverse-biased NW-Pt contacts. At zero bias, the opposite polarity of photocurrents was detected when the two NW-Pt contacts were subjected to focused laser beam irradiation. A reduced Schottky barrier/width resulting from an increase in charge carriers and thermoelectric effects arising from the localized thermal heating due to focused laser beam irradiation were proposed as the mechanisms dictating the photocurrent at the NW-Pt interface. Comparison of photocurrents generated upon global and localized laser irradiation showed that the main contribution to the photocurrent was largely due to the photoresponse of the NW-Pt contacts.

  16. Successful Treatment of Keloid With Fractionated Carbon Dioxide (CO2) Laser and Laser-Assisted Drug Delivery of Triamcinolone Acetonide Ointment in an African-American Man.

    PubMed

    Kraeva, Ekaterina; Ho, Derek; Jagdeo, Jared

    2017-09-01

    Keloids are fibrous growths that occur as a result of abnormal response to dermal injury. Keloids are cosmetically disfiguring and may impair function, often resulting in decreased patient quality-of-life. Treatment of keloids remains challenging, and rate of recurrence is high. We present a case of a 39-year-old African-American man (Fitzpatrick VI) with a 10-year history of keloid, who was successfully treated with eight sessions of fractionated carbon dioxide (CO2) laser immediately followed by laser-assisted drug delivery (LADD) of topical triamcinolone acetonide (TAC) ointment and review the medical literature on fractionated CO2 laser treatment of keloids. To the best of our knowledge, this is the first report of successful treatment of a keloid using combination therapy of fractionated CO2 laser and LADD with topical TAC ointment in an African-American man (Fitzpatrick VI) with excellent cosmetic results sustained at 22 months post-treatment. We believe that this combination treatment modality may be safe and efficacious for keloids in skin of color (Fitzpatrick IV-VI) and other patients. This case highlights the ability of laser surgeons to safely use fractionated CO2 lasers in patients of all skin colors.

    J Drugs Dermatol. 2017;16(9):925-927.

    .

  17. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Aakash A., E-mail: aakash.sahai@gmail.com

    2014-05-15

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparencymore » through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.« less

  18. Solid state laser communications in space (SOLACOS) position, acquisition, and tracking (PAT) subsystem implementation

    NASA Astrophysics Data System (ADS)

    Flemmig, Joerg; Pribil, Klaus

    1994-09-01

    This paper presents the concept and implementation aspects of the Pointing, Acquisition and Tracking Subsystem (PAT) which is developed in the frame of the SOLACOS (Solid State Laser Communications in Space) program.

  19. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  20. Space qualified laser sources

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Schwander, Thomas; Lange, Robert; Smutny, Berry

    2006-04-01

    Tesat-Spacecom has developed a series of fiber coupled single frequency lasers for space applications ranging from onboard metrology for space borne FTIR spectrometers to step tunable seed lasers for LIDAR applications. The cw-seed laser developed for the ESA AEOLUS Mission shows a 3* 10 -11 Allen variance from 1 sec time intervals up to 1000 sec. Q-switched lasers with stable beam pointing under space environments are another field of development. One important aspect of a space borne laser system is a reliable fiber coupled laser diode pump source around 808nm. A dedicated development concerning chip design and packaging yielded in a 5*10 6h MTTF (mean time to failure) for the broad area emitters. Qualification and performance test results for the different laser assemblies will be presented and their application in the different space programs.

  1. The Laser Communications Relay Demonstration Experiment Program

    NASA Technical Reports Server (NTRS)

    Israel, Dave

    2017-01-01

    This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.

  2. The Laser Communications Relay Demonstration Experiment Program

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Edwards, Bernard L.; Moores, John D.; Piazzolla, Sabino; Merritt, Scott

    2017-01-01

    This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO (Geosynchronous Earth Orbit) payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.

  3. Laser Shot Peening Final Report CRADA No. TC-02059-03

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, B. C.; Hackel, L.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Metal Improvement Company, Inc. (MIC), to further develop the laser shot peening technology. This project had an emphasis on laser development and government and military applications including DOE’s natural gas and oil technology program (NGOTP), Yucca Mountain Project (YMP), F-22 Fighter, etc.

  4. X-Ray Laser Program Final Report for FY92

    DTIC Science & Technology

    1993-07-01

    also produced population inversion. Ultra- intense , femtosecond- pulsed laboratory lasers ranging from the ultraviolet to the infrared represent an...with pulse lengths of 650 femtoseconds normally Incident on a 2p. thick planar aluminum slab. Comparisons are made for two laser Intensities , two...prepulse is subsequently irradiated by the main high intensity pulse . The persistence of the heliumlike ground state raises the possibility that a photon

  5. Designing Catalytic Monoliths For Closed-Cycle CO2 Lasers

    NASA Technical Reports Server (NTRS)

    Guinn, Keith; Herz, Richard K.; Goldblum, Seth; Noskowski, ED

    1992-01-01

    LASCAT (Design of Catalytic Monoliths for Closed-Cycle Carbon Dioxide Lasers) computer program aids in design of catalyst in monolith by simulating effects of design decisions on performance of laser. Provides opportunity for designer to explore tradeoffs among activity and dimensions of catalyst, dimensions of monolith, pressure drop caused by flow of gas through monolith, conversion of oxygen, and other variables. Written in FORTRAN 77.

  6. The application of robotics to microlaryngeal laser surgery.

    PubMed

    Buckmire, Robert A; Wong, Yu-Tung; Deal, Allison M

    2015-06-01

    To evaluate the performance of human subjects, using a prototype robotic micromanipulator controller in a simulated, microlaryngeal operative setting. Observational cross-sectional study. Twenty-two human subjects with varying degrees of laser experience performed CO2 laser surgical tasks within a simulated microlaryngeal operative setting using an industry standard manual micromanipulator (MMM) and a prototype robotic micromanipulator controller (RMC). Accuracy, repeatability, and ablation consistency measures were obtained for each human subject across both conditions and for the preprogrammed RMC device. Using the standard MMM, surgeons with >10 previous laser cases performed superior to subjects with fewer cases on measures of error percentage and cumulative error (P = .045 and .03, respectively). No significant differences in performance were observed between subjects using the RMC device. In the programmed (P/A) mode, the RMC performed equivalently or superiorly to experienced human subjects on accuracy and repeatability measures, and nearly an order of magnitude better on measures of ablation consistency. The programmed RMC performed significantly better for repetition error when compared to human subjects with <100 previous laser cases (P = .04). Experienced laser surgeons perform better than novice surgeons on tasks of accuracy and repeatability using the MMM device but roughly equivalently using the novel RMC. Operated in the P/A mode, the RMC performs equivalently or superior to experienced laser surgeons using the industry standard MMM for all measured parameters, and delivers an ablation consistency nearly an order of magnitude better than human laser operators. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  7. Trimodal detection of early childhood caries using laser light scanning and fluorescence spectroscopy: clinical prototype

    PubMed Central

    Kim, Amy S.; Ridge, Jeremy S.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2013-01-01

    Abstract. There is currently a need for a safe and effective way to detect and diagnose early stages of childhood caries. A multimodal optical clinical prototype for diagnosing caries demineralization in vivo has been developed. The device can be used to quickly image and screen for any signs of demineralized enamel by obtaining high-resolution and high-contrast surface images using a 405-nm laser as the illumination source, as well as obtaining autofluorescence and bacterial fluorescence images. When a suspicious region of demineralization is located, the device also performs dual laser fluorescence spectroscopy using 405- and 532-nm laser excitation. An autofluorescence ratio of the two excitation lasers is computed and used to quantitatively diagnose enamel health. The device was tested on five patients in vivo as well as on 28 extracted teeth with clinically diagnosed carious lesions. The device was able to provide detailed images that highlighted the lesions identified by the clinicians. The autofluorescence spectroscopic ratios obtained from the extracted teeth successfully quantitatively discriminated between sound and demineralized enamel. PMID:23986369

  8. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  9. Low level laser therapy in healing tendon

    NASA Astrophysics Data System (ADS)

    Carvalho, P. T. C.; Batista, Cheila O. C.; Fabíola, C.

    2005-11-01

    This study aims to verify the effects of AsGa Laser in the scarring of tendon lesion in rats with low nourishment condition and to analyze the ideal light density by means of histopathologic findings highlighted by light microscopy. After the proposed nutritional condition was verified the animals were divided into 3 groups denominated as follows: GI control group, GII laser 1 J/sq.cm. and GIII laser 4 J/sq.cm. The lesions were induced by means of routine surgical process for tendon exposure: There was a crushing process with Allis pincers followed by saturated incision. The data obtained in relation to the amount of macrophage, leukocyte, fibroblast, vessel neoformation, fibrosis and collagen were submitted to parametric statistic procedures of variance analysis and "Tukey" Test and the result obtained was p < 0,05. According to the obtained results it can be concluded that low power laser therapy proved to be efficient in tendon repairing even though the animals suffered from malnutrition as well as the 1 J energy density proved to be more efficient in this case.

  10. Laser Absorption by Over-Critical Plasmas

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-11-01

    Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  11. 'Design of CO-O2 recombination catalysts for closed-cycle CO2 lasers'

    NASA Technical Reports Server (NTRS)

    Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.

    1989-01-01

    Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. This paper will discuss the performance criteria and constraints involved in the design of monolith catalyst configurations for use in a closed-cycle laser and will present a design study performed with a computerized design program that had been written. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables will be discussed.

  12. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  13. Laser Geodynamics Satellite (LAGEOS)

    NASA Image and Video Library

    2016-05-04

    This 1975 NASA video highlights the development of LAser GEOdynamics Satellite (LAGEOS I) developed at NASA's Marshall Space Flight Center in Huntsville, Alabama. LAGEOS I is a passive satellite constructed from brass and aluminum and contains 426 individual precision reflectors made from fused silica glass. The mirrored surface of the satellite was designed to reflect laser beams from ground stations for accurate ranging measurements. LAGEOS I was launched on May 4, 1976 from Vandenberg Air Force Base, California. The two-foot diameter, 900-pound satellite orbited the Earth from pole to pole, measuring the movements of the Earth's surface relative to earthquakes, continental drift, and other geophysical phenomena. Scientists at NASA's Marshall Space Flight Center in Huntsville, Alabama came up with the idea for the satellite and built it at the Marshall Center.

  14. LASER Tech Briefs, September 1993. Volume 1, No. 1

    NASA Technical Reports Server (NTRS)

    Schnirring, Bill (Editor)

    1993-01-01

    This edition of LASER Tech briefs contains a feature on photonics. The other topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences and books and reports.

  15. An optoelectronic detecting based environment perception experiment for primer students using multiple-layer laser scanner

    NASA Astrophysics Data System (ADS)

    Wang, Shifeng; Wang, Rui; Zhang, Pengfei; Dai, Xiang; Gong, Dawei

    2017-08-01

    One of the motivations of OptoBot Lab is to train primer students into qualified engineers or researchers. The series training programs have been designed by supervisors and implemented with tutoring for students to test and practice their knowledge from textbooks. An environment perception experiment using a 32 layers laser scanner is described in this paper. The training program design and laboratory operation is introduced. The four parts of the experiments which are preparation, sensor calibration, 3D space reconstruction, and object recognition, are the participating students' main tasks for different teams. This entire program is one of the series training programs that play significant role in establishing solid research skill foundation for opto-electronic students.

  16. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-02-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including drive temperature, drive symmetry, and hydrodynamic instability. This paper starts with a review of the NIF target designs that have formed the motivation for the goals of the target physics program. Following that are theoretical and experimental results from Nova and Omega relevant to the requirements of those targets. Some elements of this work were covered in a 1995 review of indirect-drive [J. D. Lindl, ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,'' Phys. Plasmas 2, 3933 (1995)]. In order to present as complete a picture as possible of the research that has been carried out on indirect drive, key elements of that earlier review are also covered here, along with a review of work carried out since 1995.

  17. Laser space communication experiment: Modulator technology

    NASA Technical Reports Server (NTRS)

    Goodwin, F. E.

    1973-01-01

    Results are presented of a contractual program to develop the modulator technology necessary for a 10.6 micron laser communication system using cadmium telluride as the modulator material. The program consisted of the following tasks: (1) The growth of cadmium telluride crystals of sufficient size and purity and with the necessary optical properties for use as laser modulator rods. (2) Develop a low loss antireflection coating for the cadmium telluride rods. (3) Design and build a modulator capable of 300 MHz modulation. (4) Develop a modulator driver capable of a data rate of 300 MBits/sec, 12 W rms output power, and 40 percent efficiency. (5) Assemble and test the modulator system. All design goals were met and the system was built and tested.

  18. Biophotonics Master studies: teaching and training experience at University of Latvia

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2007-06-01

    Two-year program for Master's studies on Biophotonics (Biomedical Optics) has been originally developed and carried out at University of Latvia since 1995. The Curriculum contains basic subjects like Fundamentals of Biomedical Optics, Medical Lightguides, Anatomy and Physiology, Lasers and Non-coherent Light Sources, Basic Physics, etc. Student laboratories, special English Terminology and Laboratory-Clinical Praxis are also involved as the training components, and Master project is the final step for the degree award. Life-long learning is supported by several E-courses and an extensive short course for medical laser users "Lasers and Bio-optics in Medicine". Recently a new inter-university European Social Fund project was started to adapt the program accordingly to the Bologna Declaration guidelines.

  19. Health education of population in conection with widespread use of laser radiation

    NASA Astrophysics Data System (ADS)

    Kashuba, V. A.; Bykhovskiy, A. V.

    1984-06-01

    Rapid development of laser technology and its adaptation in many areas of national economy make it mandatory to develop a state system of laser safety. Due to absence of visible injuries of those working with laser equipment, a certain degree of bravado has developed among the technical personnel servicing laser instruments. There are no courses available for technicians and professionals concerning safety procedures. To solve this problem, a coordinated program must be organized country-wide with cooperation of physicians, labor safety specialists, preventive medicine experts and hygienists. Stressing the preventive aspects, this effort should lead to development of sound habits and proper technical knowhow.

  20. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  1. Space electric power design study. [laser energy conversion

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  2. Developments in the photonics program at OSC

    NASA Astrophysics Data System (ADS)

    Peyghambarian, N.

    2014-10-01

    The photonics program at the College of Optical Sciences started nearly 30 years ago. In 1984, the program was focused on development of femtosecond laser sources and their use in investigating semiconductor carrier dynamics. The program grew into polymer and organic optics in late 1989 and was strengthened by the winning of the CAMP MURI from ONR in 1995 that was focused on multifunctional polymers including photorefractive polymers, organic light emitting diodes and 3D direct laser writing. Also in 1995, the areas of glass waveguide and fiber optic materials and devices were added to the program. In 2008, the optical communication and future internet research was started through winning the CIAN NSF ERC. Expertise in thin films, optical storage and the fundamental aspects of light are elements of the overall research program. Holographic 3D display, autofocus lenses, bio-medical imaging and devices for vision have also been ongoing research areas.

  3. Application of space technology to crustal dynamics and earthquake research

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In cooperation with other Federal government agencies, and the governments of other countries, NASA is undertaking a program of research in geodynamics. The present program activities and plans for extension of these activities in the time period 1979-1985 are described. The program includes operation of observatories for laser ranging to the Moon and to artificial satellites, and radio observatories for very long baseline microwave interferometry (VLBI). These observatories are used to measure polar motion, earth rotation, and tectonic plate movement, and serve as base stations for mobile facilities. The mobile laser ranging and VLBI facilities are used to measure crustal deformation in tectonically active areas.

  4. The 1984 ASEE-NASA summer faculty fellowship program (aeronautics and research)

    NASA Technical Reports Server (NTRS)

    Dah-Nien, F.; Hodge, J. R.; Emad, F. P.

    1984-01-01

    The 1984 NASA-ASEE Faculty Fellowship Program (SFFP) is reported. The report includes: (1) a list of participants; (2) abstracts of research projects; (3) seminar schedule; (4) evaluation questionnaire; and (5) agenda of visitation by faculty programs committee. Topics discussed include: effects of multiple scattering on laser beam propagation; information management; computer techniques; guidelines for writing user documentation; 30 graphics software; high energy electron and antiproton cosmic rays; high resolution Fourier transform infrared spectrum; average monthly annual zonal and global albedos; laser backscattering from ocean surface; image processing systems; geomorphological mapping; low redshift quasars; application of artificial intelligence to command management systems.

  5. Project LASER Volunteer, Marshall Space Flight Center Education Program

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through Marshall Space Flight Center (MSFC) Education Department, over 400 MSFC employees have volunteered to support educational program during regular work hours. Project LASER (Learning About Science, Engineering, and Research) provides support for mentor/tutor requests, education tours, classroom presentations, and curriculum development. This program is available to teachers and students living within commuting distance of the NASA/MSFC in Huntsville, Alabama (approximately 50-miles radius). This image depicts students viewing their reflections in an x-ray mirror with Marshall optic engineer Vince Huegele at the Discovery Laboratory, which is an onsite MSFC laboratory facility that provides hands-on educational workshop sessions for teachers and students learning activities.

  6. NASA direct detection laser diode driver

    NASA Technical Reports Server (NTRS)

    Seery, B. D.; Hornbuckle, C. A.

    1989-01-01

    TRW has developed a prototype driver circuit for GaAs laser diodes as part of the NASA/Goddard Space Flight Center's Direct Detection Laser Transceiver (DDLT) program. The circuit is designed to drive the laser diode over a range of user-selectable data rates from 1.7 to 220 Mbps, Manchester-encoded, while ensuring compatibility with 8-bit and quaternary pulse position modulation (QPPM) formats for simulating deep space communications. The resulting hybrid circuit has demonstrated 10 to 90 percent rise and fall times of less than 300 ps at peak currents exceeding 100 mA.

  7. Cryogenic Yb: YAG Thin-Disk Laser

    DTIC Science & Technology

    2016-09-09

    AFRL-RD-PS- TP-2016-0004 AFRL-RD-PS- TP-2016-0004 CRYOGENIC Yb: YAG THINN-DISK LASER N . Vretenar, et al. 19 August 2011 Technical Paper...Cryogenic Yb: YAG Thin-Disk Laser 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) * N . Vretenar, R. Carson, ***T. Lucas, T. Newell, W.P. Latham...Thin-Disk Laser N . Vretenar,1 T. Carson,2 T. Lucas,3T. Newell,2 W. P. Latham,2 and P. Peterson,3 H. Bostanci,4 J. J. Lindauer4, B. A. Saarloos,4

  8. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    DTIC Science & Technology

    2017-08-01

    accessories for mounting e. Laser power supply f. TEC power supply 12. Optical filters from SEMROCK ®, THORLABS Inc., EDMUND OPTICS® a. 532-nm, laser...line filter ( SEMROCK ®) b. 550-nm, hard-coated, short-pass filter (THORLABS Inc.) c. 532-nm long-pass filter ( SEMROCK ®) d. 808-nm laser-line filter... SEMROCK ®) e. 850-nm /10-nm full width at half maximum (FWHM) bandpass filter ( SEMROCK ®) f. 980-nm bandpass filter ( SEMROCK ®) g. 976-nm laser-line

  9. 7TH International Workshop on Laser Physics (LPHYS󈨦) Berlin, Germany July 6-10, 1998 Program and Book of Abstracts: Volume 2.

    DTIC Science & Technology

    1998-07-01

    Russia)"Laser refractometry of biological media" Tuesday, July 7 Chairs: S. Gonchukov (Russia) and D. Sliney (USA) A. Priezzhev (Moscow, Russia) 11.00...application to the evaluation of blood flow. Optics and Laser Technology, Vol.23, No.4, p.205, 1991. LASER REFRACTOMETRY OF BIOLOGICAL MEDIA S.A. Gonchukov...measuring (fast-action). Refractometry is a classical technique. The sensitivity of traditional measuring is usually 10-4-10-7. That’s no bad. But

  10. SUNLITE program. Sub-Hertz relative frequency stabilization of two diode laser pumped Nd:YAG lasers locked to a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1990-01-01

    Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  11. Small Business Innovation Research (SBIR) Program, FY 1994. Program Solicitation 94.1, Closing Date: 14 January 1994

    DTIC Science & Technology

    1994-01-01

    is to design and develop a diode laser and ssociated driver circuitry with i•eh peak power, high pulse repetition frequency (PRF), and good beam...Computer modeling tools shall be used to design and optimize breadboard model of a multi-terminal high speed ring bus for flight critical applications... design , fabricate, and test a fiber optic interface device which will improve coupling of high energy, pulsed lasers into commercial fiber optics at a

  12. X-Ray Laser Program Report for FY 1989

    DTIC Science & Technology

    1990-05-24

    theoretical photopumped x-ray laser program also involves the use of a neon lasant plasma. However, that is the only similarity to the Na/Ne scheme described...K-shell neon Z pinch photons of energy hv > 900 eV, photoionize inner K-shell electrons from the neutral neon, leading to Auger decay from Ne II to...is generated by electrons which are produced in the photoionization of Ne I. For example, ionization by the Ly-a line produces 150-eV photoelectrons

  13. Laser surface texturing of cast iron steel: dramatic edge burr reduction and high speed process optimisation for industrial production using DPSS picosecond lasers

    NASA Astrophysics Data System (ADS)

    Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris

    2015-07-01

    In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.

  14. Two Micron Laser Technology Advancements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  15. Measurement of Laser Weld Temperatures for 3D Model Input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagel, Daryl; Grossetete, Grant; Maccallum, Danny O.

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defectsmore » and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.« less

  16. A Preliminary Study of Krypton Laser-Induced Fluorescence

    DTIC Science & Technology

    2010-07-01

    Induced Fluorescence 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William A. Hargus, Jr. (AFRL/RZSS) 5d. PROJECT NUMBER R 5e. TASK...replacement for xenon. This study examines the potential applications of laser-induced fluorescence as a plasma diagnostic technique for Kr I and Kr...II. Candidate electronic transitions are examined to determine their suitability for successful routine application of laser-induced fluorescence

  17. The Impact of Artillery Precision Munitions on Army Strategic Objectives

    DTIC Science & Technology

    2006-06-16

    Copperhead.3 Commonly referred to as the artilleryman’s sniper round during development, the Copperhead requires the continuous laser designation of...a target from an observer. These lasers allow the round to “seek” only its programmed code designation. While the Copperhead can engage both...capability to identify laser designations. The Copperhead’s ability to function accurately is also subject to the weather. If clouds, fog, or

  18. Dynamic laser piercing of thick section metals

    NASA Astrophysics Data System (ADS)

    Pocorni, Jetro; Powell, John; Frostevarg, Jan; Kaplan, Alexander F. H.

    2018-01-01

    Before a contour can be laser cut the laser first needs to pierce the material. The time taken to achieve piercing should be minimised to optimise productivity. One important aspect of laser piercing is the reliability of the process because industrial laser cutting machines are programmed for the minimum reliable pierce time. In this work piercing experiments were carried out in 15 mm thick stainless steel sheets, comparing a stationary laser and a laser which moves along a circular trajectory with varying processing speeds. Results show that circular piercing can decrease the pierce duration by almost half compared to stationary piercing. High speed imaging (HSI) was employed during the piercing process to understand melt behaviour inside the pierce hole. HSI videos show that circular rotation of the laser beam forces melt to eject in opposite direction of the beam movement, while in stationary piercing the melt ejects less efficiently in random directions out of the hole.

  19. Guideline Implementation: Energy-Generating Devices, Part 2-Lasers.

    PubMed

    Burlingame, Byron L

    2017-04-01

    Lasers have been used in the OR for many years and are essential tools in many different types of procedures. However, laser beams that come into contact with unintended targets directly or via reflection can cause injury to patients or personnel or pose other hazards, such as fires. The new AORN "Guideline for safe use of energy-generating devices" provides guidance on the use of all energy-generating devices in the OR. This article focuses on key points of the guideline that address the safe use of lasers. These include the components of the laser safety program, the responsibilities of the personnel in roles specific to use of a laser, laser safety measures, and documentation of laser use. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  20. Development of a global backscatter model for NASA's laser atmospheric wind sounder

    NASA Technical Reports Server (NTRS)

    Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron

    1992-01-01

    During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).

  1. X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography.

    PubMed

    Bogan, Michael J

    2013-04-02

    Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences.

  2. Imaging of the optic disk in caring for patients with glaucoma: ophthalmoscopy and photography remain the gold standard.

    PubMed

    Spaeth, George L; Reddy, Swathi C

    2014-01-01

    Optic disk imaging is integral to the diagnosis and treatment of patients with glaucoma. We discuss the various forms of imaging the optic nerve, including ophthalmoscopy, photography, and newer imaging modalities, including optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy (HRT), and scanning laser polarimetry (GDx), specifically highlighting their benefits and disadvantages. We argue that ophthalmoscopy and photography remain the gold standard of imaging due to portability, ease of interpretation, and the presence of a large database of images for comparison. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. CFEL-ASG Software Suite (CASS): usage for free-electron laser experiments with biological focus.

    PubMed

    Foucar, Lutz

    2016-08-01

    CASS [Foucar et al. (2012). Comput. Phys. Commun. 183 , 2207-2213] is a well established software suite for experiments performed at any sort of light source. It is based on a modular design and can easily be adapted for use at free-electron laser (FEL) experiments that have a biological focus. This article will list all the additional functionality and enhancements of CASS for use with FEL experiments that have been introduced since the first publication. The article will also highlight some advanced experiments with biological aspects that have been performed.

  4. Noise induced stabilization of chaotic free-running laser diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virte, Martin, E-mail: mvirte@b-phot.org

    In this paper, we investigate theoretically the stabilization of a free-running vertical-cavity surface-emitting laser exhibiting polarization chaos dynamics. We report the existence of a boundary isolating the chaotic attractor on one side and a steady-state on the other side and identify the unstable periodic orbit playing the role of separatrix. In addition, we highlight a small range of parameters where the chaotic attractor passes through this boundary, and therefore where chaos only appears as a transient behaviour. Then, including the effect of spontaneous emission noise in the laser, we demonstrate that, for realistic levels of noise, the system is systematicallymore » pushed over the separating solution. As a result, we show that the chaotic dynamics cannot be sustained unless the steady-state on the other side of the separatrix becomes unstable. Finally, we link the stability of this steady-state to a small value of the birefringence in the laser cavity and discuss the significance of this result on future experimental work.« less

  5. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances.

    PubMed

    Wiens, Roger C; Sharma, Shiv K; Thompson, Justin; Misra, Anupam; Lucey, Paul G

    2005-08-01

    Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) of solid samples have both been shown to be feasible with sample-to-instrument distances of many meters. The two techniques are very useful together, as the combination of elemental compositions from LIBS and molecular vibrational information from Raman spectroscopy strongly complement each other. Remote LIBS and Raman spectroscopy spectra were taken together on a number of mineral samples including sulfates, carbonates and silicates at a distance of 8.3 m. The complementary nature of these spectra is highlighted and discussed. A factor of approximately 20 difference in intensity was observed between the brightest Raman line of calcite, at optimal laser power, and the brighter Ca I LIBS emission line measured with 55 mJ/pulse laser power. LIBS and Raman spectroscopy have several obstacles to devising a single instrument capable of both techniques. These include the differing spectral ranges and required detection sensitivity. The current state of technology in these areas is discussed.

  6. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: documenting the uptake of elemental toxicants.

    PubMed

    Seltzer, Michaeld; Berry, Kristinh

    2005-03-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  7. Office-based Management of Recurrent Respiratory Papilloma.

    PubMed

    Motz, Kevin M; Hillel, Alexander T

    2016-06-01

    This review will highlight the indications and benefits of office-based therapy for recurrent respiratory papillomatosis (RRP) and discuss the utilization of photo-dynamic lasers and adjuvant medical therapy in office-based settings. Office-based management of RRP allows for more timely interventions, is preferred by the majority of patients, and negates the risk of general anesthesia. Current literature argues for the utilization of KTP laser over CO 2 laser for office-based treatment of RRP. Medical therapies for RRP are limited, but agents such as bevacizumab are promising and have been shown to reduce disease burden. Medical therapies that can induce disease remission are still needed. Office-based procedures save time and healthcare expenses compared to like procedures in the operating room. However, the increased frequency for office-based procedures predicts similar overall healthcare costs for office-based and OR laser excision of RRP. Office-based management of RRP is a feasible and well-tolerated strategy in appropriately selected patients with adequate local anesthesia.

  8. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants

    USGS Publications Warehouse

    Seltzer, M.D.; Berry, K.H.

    2005-01-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  9. The effectiveness of low laser therapy in subacromial impingement syndrome: a randomized placebo controlled double‐blind prospective study

    PubMed Central

    Dogan, Sebnem Koldas; AY, Saime; Evcik, Deniz

    2010-01-01

    OBJECTIVES: Conflicting results were reported about the effectiveness of Low level laser therapy on musculoskeletal disorders. The aim of this study was to investigate the effectiveness of 850‐nm gallium arsenide aluminum (Ga‐As‐Al) laser therapy on pain, range of motion and disability in subacromial impingement syndrome. METHODS: A total of 52 patients (33 females and 19 males with a mean age of 53.59±11.34 years) with subacromial impingement syndrome were included. The patients were randomly assigned into two groups. Group I (n = 30, laser group) received laser therapy (5 joule/cm2 at each point over maximum 5‐6 painful points for 1 minute). Group II (n = 22, placebo laser group) received placebo laser therapy. Initially cold pack (10 minutes) was applied to all of the patients. Also patients were given an exercise program including range of motion, stretching and progressive resistive exercises. The therapy program was applied 5 times a week for 14 sessions. Pain severity was assessed by using visual analogue scale. Range of motion was measured by goniometer. Disability was evaluated by using Shoulder Pain and Disability Index. RESULTS: In group I, statistically significant improvements in pain severity, range of motion except internal and external rotation and SPADI scores were observed compared to baseline scores after the therapy (p<0.05). In Group II, all parameters except range of motion of external rotation were improved (p<0.05). However, no significant differences were recorded between the groups (p>0.05). CONCLUSIONS: The Low level laser therapy seems to have no superiority over placebo laser therapy in reducing pain severity, range of motion and functional disability. PMID:21120304

  10. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  11. Vanderbilt free-electron-laser project in biomedical and materials research. Annual report, 1 February 1987-31 January 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haglund, R.F.; Tolk, N.H.

    The Medical Free Electron Laser Program was awarded to develop, construct and operate a free-electron laser facility dedicated to biomedical and materials studies, with particular emphases on: fundamental studies of absorption and localization of electromagnetic energy on and near material surfaces, especially through electronic and other selective, non-statistical processes; non-thermal photon-materials interactions (e.g., electronic bond-breaking or vibrational energy transfer) in physical and biological materials as well as in long-wavelength biopolymer dynamics; development of FEL-based methods to study drug action and to characterize biomolecular properties and metabolic processes in biomembranes; clinical applications in otolaryngology, neurosurgery, ophthalmology and radiology stressing the usemore » of the laser for selective laser-tissue, laser-cellular and laser-molecule interactions in both therapeutic and diagnostic modalities.« less

  12. Soft-laser use in the preoperative preparation and postoperative treatment of the patients with chronic lung abscesses

    NASA Astrophysics Data System (ADS)

    Ledin, A. O.; Dobkin, V. G.; Sadov, A. Y.; Galichev, K. V.; Rzeutsky, V. S.

    1999-07-01

    We counted expedient to include different methods of the soft-laser use in the preoperative medicinal program and in the postoperative period. During the preoperative preparation the basic group patients together with standard treatment received the combined soft-laser therapy, which included intravenous laser blood irradiation (ILBI) by He-Ve laser and external transcutaneous irradiation of the abscess projection by semi-conductorial arrenite-gallium laser. During postoperative treatment with ILBI remarkable changes were observed in the functional activity of the T- and B- cell. The soft-laser use allowed to achieve improvement of quality and shortening of terms of the preoperative preparation of 1,4 times, to level the immunosuppressive influence of surgery to reduce amount of the postoperative complications in 1,8 times and duration of the postoperative period in 1,5 times.

  13. Software for Use with Optoelectronic Measuring Tool

    NASA Technical Reports Server (NTRS)

    Ballard, Kim C.

    2004-01-01

    A computer program has been written to facilitate and accelerate the process of measurement by use of the apparatus described in "Optoelectronic Tool Adds Scale Marks to Photographic Images" (KSC-12201). The tool contains four laser diodes that generate parallel beams of light spaced apart at a known distance. The beams of light are used to project bright spots that serve as scale marks that become incorporated into photographic images (including film and electronic images). The sizes of objects depicted in the images can readily be measured by reference to the scale marks. The computer program is applicable to a scene that contains the laser spots and that has been imaged in a square pixel format that can be imported into a graphical user interface (GUI) generated by the program. It is assumed that the laser spots and the distance(s) to be measured all lie in the same plane and that the plane is perpendicular to the line of sight of the camera used to record the image

  14. Cosmetic dermatologic surgical training in US dermatology residency programs: identifying and overcoming barriers.

    PubMed

    Bauer, Bruce; Williams, Erin; Stratman, Erik J

    2014-02-01

    The public and other medical specialties expect dermatologists who offer cosmetic dermatology services to provide competent care. There are numerous barriers to achieving cosmetic dermatology competency during residency. Many dermatology residents enter the workforce planning to provide cosmetic services. If a training gap exists, this may adversely affect patient safety. To identify resources available for hands-on cosmetic dermatology training in US dermatology residency training programs and to assess program director (PD) attitudes toward cosmetic dermatology training during residency and strategies, including discounted pricing, used by training programs to overcome barriers related to resident-performed cosmetic dermatology procedures. An online survey in academic dermatology practices among PDs of US dermatology residency programs. Frequency of cosmetic dermatology devices and injectables used for dermatology resident hands-on cosmetic dermatology training, categorizing PD attitudes toward cosmetic dermatology training during residency and describing residency-related discounted pricing models. Responses from PDs were received from 53 of 114 (46%) US dermatology residency programs. All but 3 programs (94%) offered hands-on cosmetic dermatology training using botulinum toxin, and 47 of 53 (89%) provided training with hyaluronic acid fillers. Pulsed dye lasers represented the most common laser use experienced by residents (41 of 52 [79%]), followed by Q-switched Nd:YAG (30 of 52 [58%]). Discounted procedures were offered by 32 of 53 (60%) programs, with botulinum toxin (30 of 32 [94%]) and fillers (27 of 32 [84%]) most prevalent and with vascular lasers (17 of 32 [53%]) and hair removal lasers (12 of 32 [38%]) less common. Various discounting methods were used. Only 20 of 53 (38%) PDs believed that cosmetic dermatology should be a necessary aspect of residency training; 14 of 52 (27%) PDs thought that residents should not be required to perform any cosmetic dermatology procedures. Although almost every program provides hands-on cosmetic dermatology training, there are barriers to training, including patient preferences, costs of procedures and products, and PD attitudes toward cosmetic dermatology training. To promote patient safety, procedural competency is imperative.

  15. An overview of the laser ranging method of space laser altimeter

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Chen, Yuwei; Hyyppä, Juha; Li, Song

    2017-11-01

    Space laser altimeter is an active remote sensing instrument to measure topographic map of Earth, Moon and planetary. The space laser altimeter determines the range between the instrument and laser footprint by measuring round trip time of laser pulse. The return pulse reflected from ground surface is gathered by the receiver of space laser altimeter, the pulsewidth and amplitude of which are changeable with the variability of the ground relief. Meantime, several kinds of noise overlapped on the return pulse signal affect its signal-to-noise ratio. To eliminate the influence of these factors that cause range walk and range uncertainty, the reliable laser ranging methods need to be implemented to obtain high-precision range results. Based on typical space laser altimeters in the past few decades, various ranging methods are expounded in detail according to the operational principle of instruments and timing method. By illustrating the concrete procedure of determining time of flight of laser pulse, this overview provides the comparison of the employed technologies in previous and undergoing research programs and prospect innovative technology for space laser altimeters in future.

  16. A Maxwell-Schrödinger solver for quantum optical few-level systems

    NASA Astrophysics Data System (ADS)

    Fleischhaker, Robert; Evers, Jörg

    2011-03-01

    The msprop program presented in this work is capable of solving the Maxwell-Schrödinger equations for one or several laser fields propagating through a medium of quantum optical few-level systems in one spatial dimension and in time. In particular, it allows to numerically treat systems in which a laser field interacts with the medium with both its electric and magnetic component at the same time. The internal dynamics of the few-level system is modeled by a quantum optical master equation which includes coherent processes due to optical transitions driven by the laser fields as well as incoherent processes due to decay and dephasing. The propagation dynamics of the laser fields is treated in slowly varying envelope approximation resulting in a first order wave equation for each laser field envelope function. The program employs an Adams predictor formula second order in time to integrate the quantum optical master equation and a Lax-Wendroff scheme second order in space and time to evolve the wave equations for the fields. The source function in the Lax-Wendroff scheme is specifically adapted to allow taking into account the simultaneous coupling of a laser field to the polarization and the magnetization of the medium. To reduce execution time, a customized data structure is implemented and explained. In three examples the features of the program are demonstrated and the treatment of a system with a phase-dependent cross coupling of the electric and magnetic field component of a laser field is shown. Program summaryProgram title: msprop Catalogue identifier: AEHR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 507 625 No. of bytes in distributed program, including test data, etc.: 10 698 552 Distribution format: tar.gz Programming language: C (C99 standard), Mathematica, bash script, gnuplot script Computer: Tested on x86 architecture Operating system: Unix/Linux environment RAM: Less than 30 MB Classification: 2.5 External routines: Standard C math library, accompanying bash script uses gnuplot, bc (basic calculator), and convert (ImageMagick) Nature of problem: We consider a system of quantum optical few-level atoms exposed to several near-resonant continuous-wave or pulsed laser fields. The complexity of the problem arises from the combination of the coherent and incoherent time evolution of the atoms and its dependence on the spatially varying fields. In systems with a coupling to the electric and magnetic field component the simultaneous treatment of both field components poses an additional challenge. Studying the system dynamics requires solving the quantum optical master equation coupled to the wave equations governing the spatio-temporal dynamics of the fields [1,2]. Solution method: We numerically integrate the equations of motion using a second order Adams predictor method for the time evolution of the atomic density matrix and a second order Lax-Wendroff scheme for iterating the fields in space [3]. For the Lax-Wendroff scheme, the source function is adapted such that a simultaneous coupling to the polarization and the magnetization of the medium can be taken into account. Restrictions: The evolution of the fields is treated in slowly varying envelope approximation [2] such that variations of the fields in space and time must be on a scale larger than the wavelength and the optical cycle. Propagation is restricted to the forward direction and to one dimension. Concerning the description of the atomic system, only a finite number of basis states can be treated and the laser-driven transitions have to be near-resonant such that the rotating-wave approximation can be applied [2]. Unusual features: The program allows the dipole interaction of both the electric and the magnetic component of a laser field to be taken into account at the same time. Thus, a system with a phase-dependent cross coupling of electric and magnetic field component can be treated (see Section 4.2 and [4]). Concerning the implementation of the data structure, it has been optimized for faster memory access. Compared to using standard memory allocation methods, shorter run times are achieved (see Section 3.2). Additional comments: Three examples are given. They each include a readme file, a Mathematica notebook to generate the C-code form of the quantum optical master equation, a parameter file, a bash script which runs the program and converts the numerical data into a movie, two gnuplot scripts, and all files that are produced by running the bash script. Running time: For the first two examples the running time is less than a minute, the third example takes about 12 minutes. On a Pentium 4 (3 GHz) system, a rough estimate can be made with a value of 1 second per million grid points and per field variable.

  17. Evaluation of Patient Perceptions After Vestibuloplasty Procedure: A Comparison of Diode Laser and Scalpel Techniques

    PubMed Central

    Farista, Sana; Koppolu, Pradeep; Baroudi, Kusai; Uppada, Udaykiran; Mishra, Ashank; Savarimath, Abhishek; Lingam, Amara Swapna

    2016-01-01

    Introduction Inadequate vestibular depth results in poor plaque control owing to an insufficient width of keratinized gingiva. Vestibuloplasty provides the necessary vestibular depth and can be performed either with a scalpel, electrocautery or lasers. Aim To evaluate the patient perceptions related to pain and discomfort on the 1st, 3rd and the 7th day post vestibuloplasty and also assess the healing outcomes related to the treatment of inadequate vestibular depth either with the diode laser or the scalpel. Materials and Methods Twenty patients who had inadequate vestibular depth and required vestibuloplasty were assigned randomly to undergo the procedure either with the scalpel or the laser. The data obtained was analysed for intergroup comparison with an independent paired t-test and intragroup comparison was determined by a paired t-test. Results Intragroup comparison within the laser group for VAS scores of pain and discomfort within all the reported days exhibited a significant difference (p<0.05). Inter group comparison revealed that the patients in the laser group had lower VAS cores for pain and discomfort compared to the scalpel group (p<0.05). Analysis of the three pointer scale for healing revealed that the patients in the laser group exhibited better healing outcomes on the 1st, 3rd and the 7th day compared to the scalpel group. Conclusion Observations from the study highlight the opinion that laser can be a safe and effective alternative to traditional vestibuloplasty performed with the scalpel. PMID:27437370

  18. Mobile Laser Doppler System Checkout and Calibration : Volume 1. Text

    DOT National Transportation Integrated Search

    1977-06-01

    A program has been carried out to make modifications to the Lockheed-Huntsville Mobiel Laser Doppler Velocimeter(LDV)system; to calibrate and operate the system at the John F. Kennedy (JFK) Airport; to obtain a data base of wind, wind shear, and wake...

  19. Mobile Laser Doppler System Checkout and Calibration : Volume 2. Appendixes.

    DOT National Transportation Integrated Search

    1977-06-01

    A program has been carried out to make modifications to the Lockheed-Huntsville Mobiel Laser Doppler Velocimeter(LDV)system; to calibrate and operate the system at the John F. Kennedy (JFK) Airport; to obtain a data base of wind, wind shear, and wake...

  20. Comparison of Alexandrite and Diode Lasers for Hair Removal in Dark and Medium Skin: Which is Better?

    PubMed Central

    Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh

    2014-01-01

    Introduction: To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. Methods: The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. Result: In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam–skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Conclusion: Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer. PMID:25653820

  1. Comparison of Alexandrite and Diode Lasers for Hair Removal in Dark and Medium Skin: Which is Better?

    PubMed

    Mustafa, Farhad Hamad; Jaafar, Mohamad Suhimi; Ismail, Asaad Hamid; Mutter, Kussay Nugamesh

    2014-01-01

    To improve laser hair removal (LHR) for dark skin, the fluence rate reaching the hair follicle in LHR is important. This paper presents the results of a comparative study examining the function of wavelength on dark skin types using 755 nm alexandrite and 810 nm diode lasers. The structure of the skin was created using a realistic skin model by the Advanced Systems Analysis Program. In this study, the alexandrite laser (755 nm) and diode laser (810 nm) beam-skin tissue interactions were simulated. The simulation results for both lasers differed. The transmission ratio of the diode laser to the dark skin dermis was approximately 4% more than that of the alexandrite laser for the same skin type. For the diode laser at skin depth z = 0.67 mm, the average transmission ratios of both samples were 36% and 27.5%, but those for the alexandrite laser at the same skin depth were 32% and 25%. Both lasers were suitable in LHR for dark skin types, but the diode laser was better than the alexandrite laser because the former could penetrate deeper into the dermis layer.

  2. A status of progress for the Laser Isotope Separation (LIS) process

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1976-01-01

    An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.

  3. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  4. Laser-driven ion acceleration at BELLA

    NASA Astrophysics Data System (ADS)

    Bin, Jianhui; Steinke, Sven; Ji, Qing; Nakamura, Kei; Treffert, Franziska; Bulanov, Stepan; Roth, Markus; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Schenkel, Thomas; Leemans, Wim

    2017-10-01

    BELLA is a high repetiton rate PW laser and we used it for high intensity laser plasma acceleration experiments. The BELLA-i program is focused on relativistic laser plasma interaction such as laser driven ion acceleration, aiming at establishing an unique collaborative research facility providing beam time to selected external groups for fundamental physics and advanced applications. Here we present our first parameter study of ion acceleration driven by the BELLA-PW laser with truly high repetition rate. The laser repetition rate of 1Hz allows for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 PW. Furthermore, the long focal length geometry of the experiment (f ∖65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  5. Implementing AORN Recommended Practices for Laser Safety.

    PubMed

    Castelluccio, Donna

    2012-05-01

    Lasers used in the OR pose many risks to both patients and personnel. AORN's "Recommended practices for laser safety in perioperative practice settings" identifies the potential hazards associated with laser use, such as eye damage and fire- and smoke-related injuries. The practice recommendations are intended to be used as a guide for establishing best practices in the workplace and to give perioperative nurses strategies for implementing the recommended safety measures. A laser safety program should include measures to control access to laser use areas; protect staff members and patients from exposure to the laser beam; provide staff members and patients with the appropriate safety eyewear for use in the laser use area; and protect staff members and patients from surgical smoke, electrical, and fire hazards. Measures such as using a safety checklist or creating a laser cart can help perioperative nurses successfully incorporate the practice recommendations. Patient scenarios are included as examples of how to use the document in real-life situations. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  6. Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra

    2008-01-01

    A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.

  7. NASA's Contribution to Global Space Geodesy Networks

    NASA Technical Reports Server (NTRS)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br; Teleginski, Viviane; Santos, Kelly dos

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-raymore » diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.« less

  9. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2015-09-30

    liquid crystals for infrared laser beam steering applications. To suppress the optical loss in MW1R and LW1R, we have investigated following...dielectric anisotropy, and low optical loss nematic liquid crystals for infrared laser beam steering applications. To suppress the optical loss in MWIR and...modulators. 1. Objective The main objective of this program is to develop low-loss liquid crystals for electronic laser beam steering in the infrared

  10. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1994-01-01

    This interim report consists of two reports: 'Space Radiation Effects on Si APDs for GLAS' and 'Computer Simulation of Avalanche Photodiode and Preamplifier Output for Laser Altimeters.' The former contains a detailed description of our proton radiation test of Si APD's performed at the Brookhaven National Laboratory. The latter documents the computer program subroutines which were written for the upgrade of NASA's GLAS simulator.

  11. U.S. Navy Program Guide 2017

    DTIC Science & Technology

    2017-01-01

    LRASM) . . . . . . . . . . . . . . . . 26 Paveway II Laser-Guided Bomb (LGB) / Dual-Mode LGB (GBU-10/12/16) and Paveway III (GBU-24) LGB . . 26...system (INS) guidance kit to improve the precision of existing 500-pound, 1,000-pound, and 2,000-pound general-purpose and penetrator bombs in all...pound dual-mode weapon that couples the GPS/INS precision of the JDAM and laser-des- ignated accuracy of the laser-guided bomb into a single weapon

  12. Effect of 808 nm Diode Laser on Swimming Behavior, Food Vacuole Formation and Endogenous ATP Production of Paramecium primaurelia (Protozoa).

    PubMed

    Amaroli, Andrea; Ravera, Silvia; Parker, Steven; Panfoli, Isabella; Benedicenti, Alberico; Benedicenti, Stefano

    2015-01-01

    Photobiomodulation (PBM) has been used in clinical practice for more than 40 years. To clarify the mechanisms of action of PBM at cellular and organism levels, we investigated its effect on Paramecium primaurelia (Protozoa) irradiated by an 808 nm infrared diode laser with a flat-top handpiece (1 W in CW). Our results led to the conclusion that: (1) the 808 nm laser stimulates the P. primaurelia without a thermal effect, (2) the laser effect is demonstrated by an increase in swimming speed and in food vacuole formation, (3) the laser treatment affects endogenous adenosine triphosphate (ATP) production in a positive way, (4) the effects of irradiation dose suggest an optimum exposure time of 50 s (64 J cm(-2) of fluence) to stimulate the Paramecium cells; irradiation of 25 s shows no effect or only mild effects and irradiation up to 100 s does not increase the effect observed with 50 s of treatment, (5) the increment of endogenous ATP concentration highlights the positive photobiomodulating effect of the 808 nm laser and the optimal irradiation conditions by the flat-top handpiece. © 2015 The American Society of Photobiology.

  13. Effective Management of a pregnancy tumour using a soft tissue diode laser: a case Report.

    PubMed

    Sharma, Ambika; Mathur, Vijay Prakash; Sardana, Divesh

    2014-12-27

    Pregnancy tumours (PTs) are a non-neoplastic, reactive, inflammatory conditional gingival enlargement which occurs in the oral cavity during pregnancy. The lesion most frequently occurs on the gingiva but may also develop on the lip, tongue, oral mucosa and palate. When a large PT develops, it can interfere with mastication, speech, maintenance of oral hygiene and can be aesthetically disfiguring. The treatment of PTs depends upon the size of the lesion; smaller lesions can regress after parturition however large lesions need to be surgically removed. Conventional surgical techniques have the disadvantage of more bleeding from the surgical site and delay in healing of the scar tissue. The diode laser is a relatively new alternative to conventional surgical technique in intra-oral areas with the added advantage of bloodless procedures and rapid healing. The purpose of the present study is to highlight the management of a PT in a 25-year-old female using a diode laser delivering a painless, bloodless procedure with rapid postoperative healing. Diode laser excision of a persistent pregnancy tumour in a postpartum patient was safe and effective with minimal bleeding, good coagulation, and good wound healing. Among other lasers, the diode laser can therefore be considered for excisional treatment of persistent PTs.

  14. Laser-based direct-write techniques for cell printing

    PubMed Central

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  15. Physician assessments of the value of therapeutic information delivered via e-mail

    PubMed Central

    Grad, Roland; Pluye, Pierre; Repchinsky, Carol; Jovaisas, Barbara; Marlow, Bernard; Marques Ricarte, Ivan L.; Galvão, Maria Cristiane Barbosa; Shulha, Michael; de Gaspé Bonar, James

    2014-01-01

    Abstract Problem addressed Although e-learning programs are popular and access to electronic knowledge resources has improved, raising awareness about updated therapeutic recommendations in practice continues to be a challenge. Objective of program To raise awareness about and document the use of therapeutic recommendations. Program description In 2010, family physicians evaluated e-Therapeutics (e-T) Highlights with a Web-based tool called the Information Assessment Method (IAM). The e-T Highlights consisted of information found in the primary care reference e-Therapeutics+. Each week, family physicians received an e-mail containing a link to 1 Highlight from a different chapter of e-Therapeutics+. Family physicians received continuing medical education credits for each Highlight they rated with the IAM. Of the 5346 participants, 85% of them were full-time or part-time practitioners. A total of 31 429 Highlights ratings were received in 2010 (median of 2 ratings per participant, range 1 to 49). Among participants who rated more than 2 Highlights, the median number of ratings was 7 (mean 11.9). The relevance of the information from individual Highlights varied widely; however, for 90% of the rated Highlights participants indicated total or partial relevance of the information for at least 1 patient. For 41% of rated Highlights, participants expected patient health benefits to result from implementing the recommendation, such as avoiding an unnecessary or inappropriate treatment, or a preventive intervention. Conclusion This continuing medical education program stimulated family physicians to rate therapeutic recommendations that were delivered weekly via e-mail. The process of rating e-T Highlights with the IAM raised awareness about treatment recommendations and documented self-reported use of this information in practice. PMID:24829020

  16. Single, composite, and ceramic Nd:YAG 946-nm lasers

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  17. Homodyne BPSK-based optical inter-satellite communication links

    NASA Astrophysics Data System (ADS)

    Lange, Robert; Smutny, Berry

    2007-02-01

    Summer 2007, Tesat will verify laser communication terminals based on homodyne BPSK (binary phase shift keying) in-orbit. A 5.625 Gbps LEO-LEO laser communication link, established between the German satellite TerraSAR-X and the US satellite NFIRE, shall demonstrate the performance and advantages of laser communication. End of 2006, a further program has been kicked-off to demonstrate the performance of ~2 Gbps LEO-GEO laser communication links. The link is part of a data relais from the German LEO satellite TanDEM-X via a Geo satellite to ground. The LEO-to-GEO laser commmunication link can be extended to further ~2 Gpbs GEO-GEO, and GEO-to-ground links.

  18. LAMA Preconference and Program Highlights.

    ERIC Educational Resources Information Center

    Library Administration & Management, 1988

    1988-01-01

    Highlights events of the Library Administration and Management Association 1988 conference, including presentation of awards and programs on: (1) transfer of training; (2) hiring; (3) mentoring; (4) acquisitions automation; (5) library building consultation; and (6) managing shared systems. (MES)

  19. A novel polishing technology for epoxy resin based on 355 nm UV laser

    NASA Astrophysics Data System (ADS)

    Meng, Xinling; Tao, Luqi; Liu, Zhaolin; Yang, Yi; Ren, Tianling

    2017-06-01

    The electromagnetic shielding film has drawn much attention due to its wide applications in the integrated circuit package, which demands a high surface quality of epoxy resin. However, gaseous Cu will splash and adhere to epoxy resin surface when the Cu layer in PCB receives enough energy in the process of laser cutting, which has a negative effect on the quality of the shielding film. Laser polishing technology can solve this problem and it can effectively improve the quality of epoxy resin surface. The paper studies the mechanism of Cu powder spraying on the compound surface by 355 nm ultraviolet (UV) laser, including the parameters of laser polishing process and the remains of Cu content on compound surface. The results show that minimal Cu content can be realized with a scanning speed of 700 mm/s, a laser frequency of 50 kHz and the distance between laser focus and product top surface of -1.3 mm. This result is important to obtain an epoxy resin surface with high quality. Project supported by the National Natural Science Foundation of China (Nos. 61574083, 61434001), the National Basic Research Program (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002), the Special Fund for Agroscientic Research in the Public Interest of China (No 201303107), the support of the Independent Research Program of Tsinghua University (No. 2014Z01006), and Advanced Sensor and Integrated System Lab of Tsinghua University Graduate School at Shenzhen (No. ZDSYS20140509172959969).

  20. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    NASA Technical Reports Server (NTRS)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  1. Field demonstration of an eight-element fiber laser hydrophone array

    NASA Astrophysics Data System (ADS)

    Foster, Scott; Tikhomirov, Alexei; Harrison, Joanne; van Velzen, John

    2014-05-01

    We have developed an 8-element fibre laser seabed array demonstrating state-of-the art performance characteristics for a fibre laser sensing system and highlighting the advantage this technology provides in the underwater sensing domain. The system employs sea-state-zero sensitivity hydrophones with a flat acoustic response over a bandwidth exceeding 5kHz and very low inertial sensitivity. The system contains no outboard electronics and few metal components making it extremely light, compact, and low complexity. The array may be deployed up to 4 km from a land or sea based platform to a depth of up to 80m. Power delivery and telemetry for all 8 sensors is achieved via a single 2mm diameter optical fibre cable weighing less than 5kg per km. We report here results of the first field trials of this system.

  2. The 8th International Conference on Laser Ablation (COLA' 05); Journal of Physics: Conference Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Wayne P.; Herman, Peter R.; Bauerle, Dieter W.

    2007-09-01

    Laser ablation encompasses a wide range of delicate to extreme light interactions with matter that present considerably challenging problems for scientists to study and understand. At the same time, laser ablation also represents a basic process of significant commercial importance in laser material processing—defining a multi-billion dollar industry today. These topics were widely addressed at the 8th International Conference on Laser Ablation (COLA), held in Banff, Canada on 11–16 September 2005. The meeting took place amongst the majestic and natural beauty of the Canadian Rocky Mountains at The Banff Centre, where delegates enjoyed many inspiring presentations and discussions in amore » unique campus learning environment. The conference brought together world leading scientists, students and industry representatives to examine the basic science of laser ablation and improve our understanding of the many physical, chemical and/or biological processes driven by the laser. The multi-disciplinary research presented at the meeting underlies some of our most important trends at the forefront of science and technology today that are represented in the papers collected in this volume. Here you will find new processes that are producing novel types of nanostructures and nano-materials with unusual and promising properties. Laser processes are described for delicately manipulating living cells or modifying their internal structure with unprecedented degrees of control and precision. Learn about short-pulse lasers that are driving extreme physical processes on record-fast time scales and opening new directions from material processing applications. The conference papers further highlight forefront application areas in pulsed laser deposition, nanoscience, analytical methods, materials, and microprocessing applications.« less

  3. All solid-state high power visible laser

    NASA Technical Reports Server (NTRS)

    Grossman, William M.

    1993-01-01

    The overall objective of this Phase 2 effort was to develop and deliver to NASA a high repetition rate laser-diode-pumped solid-state pulsed laser system with output in the green portion of the spectrum. The laser is for use in data communications, and high efficiency, short pulses, and low timing jitter are important features. A short-pulse 1 micron laser oscillator, a new multi-pass amplifier to boost the infrared power, and a frequency doubler to take the amplified infrared pulsed laser light into the green. This produced 1.5 W of light in the visible at a pulse repetition rate of 20 kHz in the laboratory. The pulses have a full-width at half maximum of near 1 ns. The results of this program are being commercialized.

  4. [The optimization of an early rehabilitation program for cerebral stroke patients: the use of different methods of magneto- and laser therapy].

    PubMed

    Kochetkov, A V; Gorbunov, F E; Minenkov, A A; Strel'tsova, E N; Filina, T F; Krupennikov, A I

    2000-01-01

    Magnetotherapy and laser therapy were used in complex and complex-combined regimens in 75 patients after cerebral ischemic or hemorrhagic stroke starting on the poststroke week 4-5. Clinico-neurologic, neurophysiological and cerebrohemodynamic findings evidence for the highest effectiveness of neurorehabilitation including complex magneto-laser therapy in hemispheric ischemic and hemorrhagic stroke of subcortical location in the absence of marked clinico-tomographic signs of dyscirculatory encephalopathy. Complex-combined magneto-laser therapy is more effective for correction of spastic dystonia. Mutual potentiation of magnetotherapy and laser therapy results in maximal development of collateral circulation and cerebral hemodynamic reserve (84% of the patients). Complex effects manifest in arteriodilating and venotonic effects. Complex magneto-laser therapy is accompanied by reduction of hyperthrombocythemia and hyperfibrinogenemia.

  5. CO2 laser preionisation

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1991-01-01

    The final report for work done during the reporting period of January 25, 1990 to January 24, 1991 is presented. A literature survey was conducted to identify the required parameters for effective preionization in TEA CO2 lasers and the methods and techniques for characterizing preionizers are reviewed. A numerical model of the LP-140 cavity was used to determine the cause of the transverse mode stability improvement obtained when the cavity was lengthened. The measurement of the voltage and current discharge pulses on the LP-140 were obtained and their subsequent analysis resulted in an explanation for the low efficiency of the laser. An assortment of items relating to the development of high-voltage power supplies is also provided. A program for analyzing the frequency chirp data files obtained with the HP time and frequency analyzer is included. A program to calculate the theoretical LIMP chirp is also included and a comparison between experiment and theory is made. A program for calculating the CO2 linewidth and its dependence on gas composition and pressure is presented. The program also calculates the number of axial modes under the FWHM of the line for a given resonator length. A graphical plot of the results is plotted.

  6. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    NASA Astrophysics Data System (ADS)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  7. Development of an Experimental Airborne Laser Remote Sensor for Oil Detection and Classification in Spills

    DOT National Transportation Integrated Search

    1975-02-01

    A study and measurements program to determine the feasibility of using laser-excited oil fluorescence as a means of detecting and classifying oils in spills in the marine environment was undertaken at the DOT/Transportation System Center. The study c...

  8. Environmental Assessment for Employment of a Mobile Laser Evaluator System (LES-M) for the 20th Fighter Wing at Shaw Air Force Base, South Carolina

    DTIC Science & Technology

    2004-05-01

    Environmental Assessment for Employment of a Mobile Laser Evaluator System (LES-M) for the 20th Fighter Wing at Shaw Air Force Base, South Carolina...Mobile Laser Evaluator System (LES-M) for the 20th Fighter Wing at Shaw Air Force Base, South Carolina 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...a Mobile Laser Evaluator System (LES-M) for the 20’’ Fighter Wing (20 fW) at Shaw Air Force Base (AFB), South Carolir.a DESCRIPTION OF THE PROPOSED

  9. Development of high-power dye laser chain

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.

  10. [Low-level laser therapy in osteoarticular diseases in geriatric patients].

    PubMed

    Giavelli, S; Fava, G; Castronuovo, G; Spinoglio, L; Galanti, A

    1998-04-01

    Laser light absorption through the skin causes tissue changes, targeting the nervous, the lymphatic, the circulatory and the immune systems with an antalgic, anti-inflammatory, anti-edemic effect and stimulating tissue repair. Therefore low level laser therapy is now commonly used in numerous rehabilitation centers, including the "Istituto Gerontologico Pio Albergo Trivulzio", Milan, Italy. However, to activate the treatment program, the basic medical research results must always be considered to choose the best optical wavelength spectrum, technique and dose, for rehabilitative laser therapy. We analyzed the therapeutic effects of different wavelengths and powers in various treatment schedules. In particular, a protocol was designed to test such physical parameters as laser type, doses and individual schedule in different pathologic conditions. We report the results obtained with low level laser therapy in the rehabilitation of geriatric patients, considering the various physical and technical parameters used in our protocol. We used the following laser equipment: an HeNe laser with 632.8 nm wavelength (Mectronic), a GaAs Laser with 904 nm wavelength (Mectronic) and a CO2 Laser with 10,600 nm wavelength (Etoile). To evaluate the patient clinical status, we use a different form for each involved joint; the laser beam is targeted on the region of interest and irradiation is carried out with the sweeping method or the points technique. Irradiation technique, doses and physical parameters (laser type, wavelength, session dose and number) are indicated on the form. The complete treatment cycle consists of 5 sessions per week--20 sessions in all. At the end of the treatment cycle, the results were scored on a 5-grade semiquantitative scale--excellent, good, fair, poor and no results. We examined 3 groups of patients affected with gonarthrosis (149 patients), lumbar arthrosis (117 patients), and algodystrophy (140 patients) respectively. In gonarthrosis patients, the statistical analysis of the results showed no significant differences between CO2 laser and GaAs laser treatments (p = .975), but significant differences between CO2 laser and HeNe laser treatments (p = .02) and between GaAs laser and HeNe laser treatments (p = .003). In lumbar arthrosis patients treated with GaAs or HeNe laser, significant differences were found between the two laser treatments and the combined sweeping-points techniques appeared to have a positive trend relative to the sweeping method alone, especially in sciatic suffering. In the algodystrophy syndrome, in hemiplegic patients, significant differences were found between CO2 and HeNe laser treatments (p = .026), between high and low CO2 laser doses (p = .024), and between low CO2 laser dose and high HeNe laser dose (p = .006). Low level laser therapy can be used to treat osteoarticular pain in geriatric patients. To optimize the results, the diagnostic picture must be correct and a treatment program defining the physical parameters used (wavelength, dose and irradiation technique) must also be designed.

  11. Laser Cooling the Diatomic Molecule CaH

    NASA Astrophysics Data System (ADS)

    Velasquez, Joe, III; Di Rosa, Michael

    2014-06-01

    To laser-cool a species, a closed (or nearly closed) cycle is required to dissipate translational energy through many directed laser-photon absorption and subsequent randomly-directed spontaneous emission events. Many atoms lend themselves to such a closed-loop cooling cycle. Attaining laser-cooled molecular species is challenging because of their inherently complex internal structure, yet laser-cooling molecules could lead to studies in interesting chemical dynamics among other applications. Typically, laser-cooled atoms are assembled into molecules through photoassociation or Feschbach resonance. CaH is one of a few molecules whose internal structure is quite atom-like, allowing a nearly closed cycle without the need for many repumping lasers. We will also present our work-to-date on laser cooling this molecule. We employ traditional pulsed atomic/molecular beam techniques with a laser vaporization source to generate species with well-defined translational energies over a narrow range of velocity. In this way, we can apply laser-cooling to most species in the beam along a single dimension (the beam's axis). This project is funded by the LDRD program of the Los Alamos National Laboratory.

  12. National Jet Fuels Combustion Program - overall program integration and analysis, Area #7.

    DOT National Transportation Integrated Search

    2017-01-01

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the referee combustor (WPAFB, Bldg. 490, RC 152) selected by the ASCENT National Fuel Combustion Program. We will conduct advanced spatially resolve...

  13. Theory and simulent design of a type of auto-self-protecting optical switches

    NASA Astrophysics Data System (ADS)

    Li, Binhong; Peng, Songcun

    1990-06-01

    As the use of lasers in the military and in the civilian economy increases with each passing day, it is often necessary for the human eye or sensitive instruments to observe weak lasers, such as the return waves of laser radar and laser communications signals; but it is also necessary to provide protection against damage to the eye from the strong lasers of enemy laser weapons. For this reason, it is necessary to have a kind of automatic optical self-protecting switch. Based upon a study of the transmitting and scattering characteristics of multilayer dielectric optical waveguides, a practical computer program is set up for designing a type of auto-self-protecting optical switch with a computer model by using the nonlinear property of dielectric layers and the plasma behavior of metal substrates. This technique can be used to protect the human eye and sensitive detectors from damage caused by strong laser beams.

  14. A Review to the Laser Cladding of Self-Lubricating Composite Coatings

    NASA Astrophysics Data System (ADS)

    Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, Farazila; Masjuki, H. H.; Arslan, A.

    2016-06-01

    Liquid lubricants are extremely viable in reducing wear damage and friction of mating components. However, due to the relentless pressure and the recent trend towards higher operating environments in advanced automotive and aerospace turbo-machineries, these lubricants cease to perform and hence, an alternate system is required for maintaining the self-lubricating environment. From the viewpoint of tribologist, wear is related to near-surface regions and hence, surface coatings are considered suitable for improving the functioning of tribo-pairs. Wear resistant coatings can be fabricated with the addition of various solid lubricants so as to reduce friction drag. In order to protect bulk substrates, self-lubricating wear resistant composite coatings have been fabricated by employing various surface coating techniques such as electrochemical process, physical and chemical vapor depositions, thermal and plasma spraying, laser cladding etc. Studies related to laser-based surface engineering approaches have remained vibrant and are recognized in altering the near surface regions. In this work, the latest developments in laser based self-lubricating composite coatings are highlighted. Furthermore, the effect of additives, laser processing parameters and their corresponding influence on mechanical and tribological performance is briefly reviewed.

  15. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  16. Deriving exposure limits

    NASA Astrophysics Data System (ADS)

    Sliney, David H.

    1990-07-01

    Historically many different agencies and standards organizations have proposed laser occupational exposure limits (EL1s) or maximum permissible exposure (MPE) levels. Although some safety standards have been limited in scope to manufacturer system safety performance standards or to codes of practice most have included occupational EL''s. Initially in the 1960''s attention was drawn to setting EL''s however as greater experience accumulated in the use of lasers and some accident experience had been gained safety procedures were developed. It became clear by 1971 after the first decade of laser use that detailed hazard evaluation of each laser environment was too complex for most users and a scheme of hazard classification evolved. Today most countries follow a scheme of four major hazard classifications as defined in Document WS 825 of the International Electrotechnical Commission (IEC). The classifications and the associated accessible emission limits (AEL''s) were based upon the EL''s. The EL and AEL values today are in surprisingly good agreement worldwide. There exists a greater range of safety requirements for the user for each class of laser. The current MPE''s (i. e. EL''s) and their basis are highlighted in this presentation. 2. 0

  17. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    PubMed Central

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  18. Towards System Calibration of Panoramic Laser Scanners from a Single Station

    PubMed Central

    Medić, Tomislav; Holst, Christoph; Kuhlmann, Heiner

    2017-01-01

    Terrestrial laser scanner measurements suffer from systematic errors due to internal misalignments. The magnitude of the resulting errors in the point cloud in many cases exceeds the magnitude of random errors. Hence, the task of calibrating a laser scanner is important for applications with high accuracy demands. This paper primarily addresses the case of panoramic terrestrial laser scanners. Herein, it is proven that most of the calibration parameters can be estimated from a single scanner station without a need for any reference information. This hypothesis is confirmed through an empirical experiment, which was conducted in a large machine hall using a Leica Scan Station P20 panoramic laser scanner. The calibration approach is based on the widely used target-based self-calibration approach, with small modifications. A new angular parameterization is used in order to implicitly introduce measurements in two faces of the instrument and for the implementation of calibration parameters describing genuine mechanical misalignments. Additionally, a computationally preferable calibration algorithm based on the two-face measurements is introduced. In the end, the calibration results are discussed, highlighting all necessary prerequisites for the scanner calibration from a single scanner station. PMID:28513548

  19. Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, J.P., E-mail: jp.oliveira@campus.fct.unl

    Although laser welding is probably the most used joining technique for NiTi shape memory alloys there is still a lack of understanding about the effects of laser welding parameters on the microstructural induced changes: in both the heat affected and fusion zones martensite may be present, while the base material is fully austenitic. Synchrotron X-ray diffraction was used for fine probing laser welded NiTi joints. Through Rietveld refinement the martensite and austenite phase fractions were determined and it was observed that the martensite content increases towards the weld centreline. This is related to a change of the local transformation temperaturesmore » on these regions, which occurs due to compositional variation in those regions. The martensite phase fraction in the thermally affected regions may have significant implications on functional properties on these joints. - Highlights: •Synchrotron X-ray diffraction was used for fine probing of the microstructure in laser welded NiTi joints. •Rietveld refinement allowed to determine the content of martensite along the heat affected and fusion zones. •The martensite content increases from the base material towards the weld centreline.« less

  20. The theory of optical black hole lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaona-Reyes, José L., E-mail: jgaona@fis.cinvestav.mx; Bermudez, David, E-mail: dbermudez@fis.cinvestav.mx

    The event horizon of black holes and white holes can be achieved in the context of analogue gravity. It was proven for a sonic case that if these two horizons are close to each other their dynamics resemble a laser, a black hole laser, where the analogue of Hawking radiation is trapped and amplified. Optical analogues are also very successful and a similar system can be achieved there. In this work we develop the theory of optical black hole lasers and prove that the amplification is also possible. Then, we study the optical system by determining the forward propagation ofmore » modes, obtaining an approximation for the phase difference which governs the amplification, and performing numerical simulations of the pulse propagation of our system. - Highlights: • We develop the conditions to obtain the kinematics of the optical black hole laser. • We prove the amplification of Hawking radiation for the optical case. • We derive the forward propagation of modes and check the result of the backward case. • A model is proposed to calculate the phase difference and the amplification rate. • We perform numerical simulations of a pulse between two solitons forming a cavity.« less

  1. Laser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture

    PubMed Central

    Bitelli, Gabriele; Simone, Andrea; Girardi, Fabrizio; Lantieri, Claudio

    2012-01-01

    The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the “texture” appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional indicators, act as guidelines to satisfy the performance requirements. This paper describes an experiment on the use of laser scanner techniques on various types of asphalt for texture characterization. The use of high precision laser scanners, such as the triangulation types, is proposed to expand the analysis of road pavement from the commonly and currently used two-dimensional method to a three-dimensional one, with the aim of extending the range of the most important parameters for these kinds of applications. Laser scanners can be used in an innovative way to obtain information on areal surface layer through a single measurement, with data homogeneity and representativeness. The described experience highlights how the laser scanner is used for both laboratory experiments and tests in situ, with a particular attention paid to factors that could potentially affect the survey. PMID:23012535

  2. Determination of the plasma impedance of a glow discharge in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kiselev, A. S.; Smirnov, E. A.

    2017-07-01

    In this work an expression for the dynamic resistance of a glow discharge flowing in long tubes is obtained and analyzed. The expression describes the physical processes occurring in the positive column of a glow discharge. The frequency dependences of the active and reactive components as well as the dynamic resistance module for the discharge conditions corresponding to CO2-lasers have been calculated. Based on the simulation results developed a computer program in the C# programming language for modeling the dynamic resistance discharge of glow discharge lasers.

  3. Alternative Refractive Surgery Procedures

    MedlinePlus

    ... alternative refractive surgery procedures to LASIK . Wavefront-Guided LASIK Before surgery, the excimer laser is programmed with ... precise "sculpting" of each unique cornea. In conventional LASIK , this programming is based on the patient's vision ...

  4. A Feasibility Experiment for a Soft X-Ray Laser

    DTIC Science & Technology

    1976-09-01

    has embarked on a large scale laser fusion program initially aimed at achieving sufficient thermometric yield from a single pellet to initiate a...gold, aluminum ). The report suggests that 10 to 20 percent of the incident laser energy can be converted to X rays below 1 keV. A Lawrence Livermore...Computa- tions of the population inversion for the inner shell electrons, as found in 3 I-.--I~ . . AFWL-TR-76-107 aluminum , indicate a favorable

  5. Optical Characterization of Pulse Laser Deposition of Thin Films of Hard Materials Using RHEED and AFM Techniques

    DTIC Science & Technology

    2011-12-20

    diamond thin-film generation. PLD is initiated by laser ablation, which is essentially evaporation of a material by a high - powered laser. Subsequently...COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

  6. Strategic Defense Initiative Program: Extent of Foreign Participation

    DTIC Science & Technology

    1990-02-07

    the Air Force to a West German company, . Chemical Lasers project, for fabrication of a lightweight hig mirror . The firished product will be a 70...centimeter mirror lightweight, uncool"P glass ceramic material with no tus.rm. Two contracts, totaling $1.7 million, were au-arded under th Definition...Ground-Based Free The ground-based laser system concept is to fire a free electrru Electron Laser Project beam generated on the ground to a mirror relay

  7. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 6, 1976

    DTIC Science & Technology

    1976-06-01

    6 Laser- Powered Rocket Model 1 High- Power CO2 Laser Radiation Effect in SF6 1 Tests With 9-Beam Laser Fusion Systems 1 Focusing Optics For...Boundary Layer 6 Deformation Theory of Artif.cial Muscles . 6 Dolphin Swimming Stereophotogrammetry 7 Stable Spark Gap for High- Power Pulsers 7...8 Resume of Soviet Tokamak Program .............. 9 First Measurements of Tokamak-10 Plasma , . . 10 Electrochemical Power Generation 11

  8. Satellite Relative Motion Control for MIT’s SPHERES Program

    DTIC Science & Technology

    2012-03-01

    rates of the SPHERES position and velocity are modeled. Section 2.5.2 illustrates how to deter- mine the quaternions and the angular rates to...velocity components are determined following the process described in Section 2.4.5. Once the feedback gains are deter- mined the switch line of the bang...Using Lasers in Space: Laser Orbital Debris Removal and Asteroid Deflection,” 2000. 17. Rogers, M. E., “Lasers in Space: Technological Options for

  9. Energy Partitioning in the Dissociation of Cyanogen at 193nm,

    DTIC Science & Technology

    1981-11-19

    r AD-AlA? 773 HOWARD UNIV WASHINGTON DC LASER CHEMISTRY DIV FIG 7/5 ENERGY PARTITIONING IN THE DISSOCIATION OF CYANOGEN AT 193NM. CU) NOV 81 W M...DRFSS 10. PROGRAM ELEMENT. PROJECT, TASK Laser Chemistry Division . AREA & WORK UNIT tUMaeRS Department of Chemistry Howard University Washington, D. C... Chemistry . 19. KEY OOROS (Continue on reverse aide If necessary and Identify by block number) Photodissociation, laser photodissociation, cyanogen C’ m 20

  10. Mid infrared LHS system packaging using flexible waveguides

    NASA Technical Reports Server (NTRS)

    Yu, Chung

    1987-01-01

    As mid IR fiber optic systems are rapidly approaching a reality, so is the feasibility of fiber optic laser heterodyne systems. Laser heterodyne spectroscopy for high resolution monitoring of atmospheric gaseous pollutants is necessarily in the mid IR, the region in which the absorption signature of gaseous species is most prominent. It so happens that the lowest theoretical loss due to Rayleigh-Brillouin scattering also lies in the mid IR. Prospects of highly efficient laser heterodyne systems are thus very good. Such fibers are now beginning to be commercially available, and a test program is being conducted for such fibers with ambient temperature ranging from cryogenic to above room, and stringest mechanical flexibility requirements. Preliminary results are encouraging. A program is being started to explore the possibility of mid IR fiber optic device applications, by taking advantage of this phonon rich region. The potential long interaction length in fibers coupled with predicted extremely low losses point to stimulated Brillouin scattering based devices in the mW range. The generation of backscattered sBs at low laser powers is significant not only as an ultimate power limiting factor for laser transmission in fibers in the mid IR, but also the presence of frequency-shifted multiple order sBs Stokes and antiStokes lines will certainly have severe effect on the laser beats crucial in high resolution heterodyne spectroscopy.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohe, Daniel Peter

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be investedmore » to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.« less

  12. Validation and verification of the laser range safety tool (LRST)

    NASA Astrophysics Data System (ADS)

    Kennedy, Paul K.; Keppler, Kenneth S.; Thomas, Robert J.; Polhamus, Garrett D.; Smith, Peter A.; Trevino, Javier O.; Seaman, Daniel V.; Gallaway, Robert A.; Crockett, Gregg A.

    2003-06-01

    The U.S. Dept. of Defense (DOD) is currently developing and testing a number of High Energy Laser (HEL) weapons systems. DOD range safety officers now face the challenge of designing safe methods of testing HEL's on DOD ranges. In particular, safety officers need to ensure that diffuse and specular reflections from HEL system targets, as well as direct beam paths, are contained within DOD boundaries. If both the laser source and the target are moving, as they are for the Airborne Laser (ABL), a complex series of calculations is required and manual calculations are impractical. Over the past 5 years, the Optical Radiation Branch of the Air Force Research Laboratory (AFRL/HEDO), the ABL System Program Office, Logicon-RDA, and Northrup-Grumman, have worked together to develop a computer model called teh Laser Range Safety Tool (LRST), specifically designed for HEL reflection hazard analyses. The code, which is still under development, is currently tailored to support the ABL program. AFRL/HEDO has led an LRST Validation and Verification (V&V) effort since 1998, in order to determine if code predictions are accurate. This paper summarizes LRST V&V efforts to date including: i) comparison of code results with laboratory measurements of reflected laser energy and with reflection measurements made during actual HEL field tests, and ii) validation of LRST's hazard zone computations.

  13. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank

    2006-01-01

    High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.

  14. Efficacious insect and disease control with laser-guided air-assisted sprayer

    USDA-ARS?s Scientific Manuscript database

    Efficacy of a newly developed air-assisted variable-rate sprayer was investigated for the control of arthropod pests and plant diseases in six commercial fields. The sprayer was integrated with a high-speed laser scanning sensor, a custom-designed signal processing program, an automatic flow control...

  15. Investigation of Laser Generation and Detection of Ultrasound in Ceramic Matrix Composites and Intermetallics

    NASA Technical Reports Server (NTRS)

    Ehrlich, Michael J.

    1998-01-01

    The goal of this program is to assess the feasibility of using laser based ultrasonic techniques for inspecting and characterizing materials of interest to NASA, specifically those used in propulsion and turbomachinery applications, such as ceramic composites, metal matrix composites, and intermetallics.

  16. A Pulsed Laser and Molecular Beam Apparatus for Surface Studies

    DTIC Science & Technology

    1985-03-01

    will be carried out are in part described in the proposal A Pulsed Laser and Molecular Beam Apparatus for Surface Studies submitted by Howard ... University in November 1982 for review by AFOSR, under the DOD University Instrumentation Program. This report describes the progress made during the

  17. CASS—CFEL-ASG software suite

    NASA Astrophysics Data System (ADS)

    Foucar, Lutz; Barty, Anton; Coppola, Nicola; Hartmann, Robert; Holl, Peter; Hoppe, Uwe; Kassemeyer, Stephan; Kimmel, Nils; Küpper, Jochen; Scholz, Mirko; Techert, Simone; White, Thomas A.; Strüder, Lothar; Ullrich, Joachim

    2012-10-01

    The Max Planck Advanced Study Group (ASG) at the Center for Free Electron Laser Science (CFEL) has created the CFEL-ASG Software Suite CASS to view, process and analyse multi-parameter experimental data acquired at Free Electron Lasers (FELs) using the CFEL-ASG Multi Purpose (CAMP) instrument Strüder et al. (2010) [6]. The software is based on a modular design so that it can be adjusted to accommodate the needs of all the various experiments that are conducted with the CAMP instrument. In fact, this allows the use of the software in all experiments where multiple detectors are involved. One of the key aspects of CASS is that it can be used either 'on-line', using a live data stream from the free-electron laser facility's data acquisition system to guide the experiment, and 'off-line', on data acquired from a previous experiment which has been saved to file. Program summary Program title: CASS Catalogue identifier: AEMP_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence, version 3 No. of lines in distributed program, including test data, etc.: 167073 No. of bytes in distributed program, including test data, etc.: 1065056 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-64. Operating system: GNU/Linux (for information about restrictions see outlook). RAM: >8 GB Classification: 2.3, 3, 15, 16.4. External routines: Qt-Framework[1], SOAP[2], (optional HDF5[3], VIGRA[4], ROOT[5], QWT[6]) Nature of problem: Analysis and visualisation of scientific data acquired at Free-Electron-Lasers Solution method: Generalise data access and storage so that a variety of small programming pieces can be linked to form a complex analysis chain. Unusual features: Complex analysis chains can be built without recompiling the program Additional comments: An updated extensive documentation of CASS is available at [7]. Running time: Depending on the data size and complexity of analysis algorithms. References: [1] http://qt.nokia.com [2] http://www.cs.fsu.edu/~engelen/soap.html [3] http://www.hdfgroup.org/HDF5/ [4] http://hci.iwr.uni-heidelberg.de/vigra/ [5] http://root.cern.ch [6] http://qwt.sourceforge.net/ [7] http://www.mpi-hd.mpg.de/personalhomes/gitasg/cass

  18. Thin EFG octagons

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-01-01

    Mobil Solar Energy Corporation currently practices a unique crystal growth technology for producing crystalline silicon sheet, which is then cut with lasers into wafers. The wafers are processed into solar cells and incorporated into modules for photovoltaic applications. The silicon sheet is produced using a method known as Edge-defined Film-fed growth (EFG), in the form of hollow eight-sided polygons (octagons) with 10 cm faces. These are grown to lengths of 5 meters and thickness of 300 microns, with continuous melt replenishment, in compact furnaces designed to operate at a high sheet area production area of 135 sq cm/min. The present Photovoltaic Manufacturing Technology (PVMaT) three-year program seeks to advance the manufacturing line capabilities of the Mobil Solar crystal growth and cutting technologies. If successful, these advancements will provide significant reductions in already low silicon raw material usage, improve process productivity, laser cutting throughput and yield, and so lower both individual wafer cost and the cost of module production. This report summarizes the significant technical improvements in EFG technology achieved in Phase 1 of this program. Technical results are reported for each of the three main program areas: (1) thin octagon growth (crystal growth) -- to reduce the thickness of the octagon to an interim goal of 250 microns during Phase 1, with an ultimate goal of achieving 200 micron thicknesses; (2) laser cutting -- to improve the laser cutting process, so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and (3) process control and product specification -- to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  19. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2002-10-09

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the studentsmore » often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that included parents, teachers, and members of LIX. Each student spoke for approximately ten minutes and answered questions.« less

  20. A Lunar Laser Retroreflector for the FOR the 21ST Century (LLRRA-21): Selenodesy, Science and Status

    NASA Astrophysics Data System (ADS)

    Currie, D. G.; Delle Monache, G.; Dell'Agnello, S.

    2010-12-01

    The Lunar Laser Ranging Program using the Apollo Cube Corner Retroreflector (CCR) Arrays [1] has operated as the only active experiment on the lunar surface for the past 4 decades. During this time it has provided control points for the lunar coordinate system, contributed to the determination of the physical properties of the moon and provided some of the best tests of General Relativity [2]. In terms of the physical properties of the moon, Lunar Laser Ranging (LLR) has detected, evaluated the shape and the frictional behavior of the boundaries of the liquid core. This and other areas will be addressed. The LLR Program has evaluated the PPN parameters, addressed the possible changes in the gravitational constant and the properties of the self-energy of the gravitational field. Initially the Apollo CCRs contributed a negligible fraction of the ranging error. Over the decades, the ground stations have improved by more than a factor of 200. Now, the existing Apollo retroreflector arrays contribute a significant fraction of the limiting errors in the range measurements due to the lunar librations tilting of the array of CCRs and thus contribution to the spreading of the return laser pulse. The University of Maryland, as the Principal Investigator for the original Apollo arrays, is now proposing a new approach to the Lunar Laser Array technology [3]. The investigation of this new technology, by two teams with Professor Currie as PI, is currently being supported by two NASA programs, the LSSO and LUNAR. The LUNAR program at the University of Colorado the is funded through the NLSI. Both LSSO and the LUNAR programs are in collaboration with the INFN-LNF in Frascati, Italy. After the proposed installation during the next lunar landing, the new arrays will support ranging observations that are a factor 100 more accurate than the current Apollo Cube Corner Retroreflector (CCR) Arrays. The new fundamental selenodetic, cosmological physics and the lunar physics [3] that this new LLRRA-21 can provide will be described. In the initial design of the new array, there are three major challenges: 1) Validate the ability to fabricate the required CCR; 2) Address the thermal and optical effects of the absorption of solar radiation within the CCR; 3) Validate an emplacement technique for the CCR package on the lunar surface to remain stable over the lunar day/night cycle and the long term. References: [1] C. O. Alley 1, R. F. Chang 1, D. G. Currie 1, Apollo 11 Laser Ranging Retro-Reflector: Initial Measurements from the McDonald Observatory Science 23 January 1970: Vol. 167. no. 3917, pp. 368 - 370 [2] P. L. Bender, D. G. Currie, S. K. Poultney The Lunar Laser Ranging Experiment Science 19 October 1973: Vol. 182. no. 4109, pp. 229 - 238 [3] D. G. Currie; S. Dell-Agnello; G. Delle Monache. A LUNAR LASER REFLECTOR FOR THE 21ST CENTURY Acta Astronatica to be published

  1. Subscale Ship Airwake Studies Using Novel Vortex Flow Devices with Smoke, Laser-Vapor-Screen and Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Landman, Drew; Swift, Russell S.; Parikh, Paresh C.

    2007-01-01

    Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.

  2. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Mechanistic Studies and Methods for Improving the Structural Identification of Carbohydrates

    PubMed Central

    Lai, Yin-Hung; Wang, Yi-Sheng

    2017-01-01

    Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed. PMID:28959517

  3. Impact damage detection in sandwich composite structures using Lamb waves and laser vibrometry

    NASA Astrophysics Data System (ADS)

    Lamboul, B.; Passilly, B.; Roche, J.-M.; Osmont, D.

    2013-01-01

    This experimental study explores the feasibility of impact damage detection in composite sandwich structures using Lamb wave excitation and signals acquired with a laser Doppler vibrometer. Energy maps are computed from the transient velocity wave fields and used to highlight defect areas in impacted coupons of foam core and honeycomb core sandwich materials. The technique performs well for the detection of barely visible damage in this type of material, and is shown to be robust in the presence of wave reverberation. Defect extent information is not always readily retrieved from the obtained defect signatures, which depend on the wave - defect interaction mechanisms.

  4. Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies

    PubMed Central

    VARDAXIS, N. J.; BRANS, T. A.; BOON, M. E.; KREIS, R. W.; MARRES, L. M.

    1997-01-01

    The structure of porcine skin as examined by light microscopy is reviewed and its similarities to and differences from human skin are highlighted. Special imaging techniques and staining procedures are described and their use in gathering morphological information in porcine skin is discussed. Confocal laser scanning microscopy (CLSM) was employed to examine the structure of porcine skin and the findings are presented as an adjunct to the information already available in the literature. It is concluded that CLSM provides valuable additional morphological information to material examined by conventional microscopy and is useful for wound healing studies in the porcine model. PMID:9183682

  5. Sapphire shaped crystals for laser-assisted cryodestruction of biological tissues

    NASA Astrophysics Data System (ADS)

    Shikunova, I. A.; Dubyanskaya, E. N.; Kuznetsov, A. A.; Katyba, G. M.; Dolganova, I. N.; Mukhina, E. E.; Chernomyrdin, N. V.; Zaytsev, K. I.; Tuchin, V. V.; Kurlov, V. N.

    2018-04-01

    We have developed cryo-applicators based on the sapphire shaped crystals fabricated using the edge-defined film-fed growth (EFG) and noncapillary shaping (NCS) techniques. Due to the unique physical properties of sapphire: i.e. high thermal, mechanical, and chemical strength, impressive thermal conductivity and optical transparency, these cryo-applicators yield combination of the tissue cryo-destruction with its exposure to laser radiation for controlling the thermal regimes of cryosurgery, and with the optical diagnosis of tissue freezing. We have applied the proposed sapphire cryo-applicators for the destruction of tissues in vitro. The observed results highlight the prospectives of the sapphire cryo-applicators in cryosurgery.

  6. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  7. Experimental approach to interaction physics challenges of the shock ignition scheme using short pulse lasers.

    PubMed

    Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C

    2013-12-06

    An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15)  W/cm2, or short pulses with intensities up to 5×10(16)  W/cm2 as well as with 2D particle-in-cell simulations.

  8. Demonstrated Efficient Quasi-Monoenergetic Carbon-Ion Beams Approaching Fast Ignition (FI) Requirements

    NASA Astrophysics Data System (ADS)

    Fernández, Juan C.; Palaniyappan, S.; Huang, C.; Gautier, D. C.; Santiago, M.

    2015-11-01

    Using massive computer simulations of relativistic laser-plasma interactions, we have identified a self-organizing scheme that exploits persisting self-generated plasma electric (~TV/m) and magnetic (~104 Tesla) fields to reduce the ion energy spread of intense laser-driven ion beams after the laser exits the plasma. Consistent with the scheme, we have demonstrated on the LANL Trident laser carbon-ion beams with narrow spectral peaks at 220 MeV, with high conversion efficiency (~ 5%). These parameters are within a factor of 2 of FI requirements. The remaining gap may be bridged by increasing the laser intensity by a factor of 4, according to our data. We also discuss how this beam may be focused, to address the remaining requirement for FI, besides the total laser energy. This work is sponsored by the LANL LDRD Program.

  9. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  10. Medical free-electron laser: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Bell, James P.; Ponikvar, Donald R.

    1994-07-01

    The free electron laser (FEL) has long been proposed as a flexible tool for a variety of medical applications, and yet the FEL has not seen widespread acceptance in the medical community. The issues have been the laser's size, cost, and complexity. Unfortunately, research on applications of FELs has outpaced the device development efforts. This paper describes the characteristics of the FEL, as they have been demonstrated in the U.S. Army's FEL technology development program, and identifies specific medical applications where demonstrated performance levels would suffice. This includes new photodynamic therapies for cancer and HIV treatment, orthopedic applications, tissue welding applications, and multiwavelength surgical techniques. A new tunable kilowatt class FEL device is described, which utilizes existing hardware from the U.S. Army program. An assessment of the future potential, based on realistic technology scaling is provided.

  11. System for training and evaluation of security personnel in use of firearms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, H.F.

    This patent describes an interactive video display system comprising a laser disc player with a remote large-screen projector to view life-size video scenarios and a control computer. A video disc has at least one basic scenario and one or more branches of the basic scenario with one or more subbranches from any one or more of the branches and further subbranches, if desired, to any level of programming desired. The control computer is programmed for interactive control of the branching, and control of other effects that enhance the scenario, in response to detection of when the trainee has drawn anmore » infrared laser handgun from his holster, fired his laser handgun, taken cover, advanced or retreated from the adversary on the screen, and when the adversary has fired his gun at the trainee.« less

  12. System for training and evaluation of security personnel in use of firearms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, H.F.

    An interactive video display system comprising a laser disc player with a remote large-screen projector to view life-size video scenarios and a control computer. A video disc has at least one basic scenario and one or more branches of the basic scenario with one or more subbranches from any one or more of the branches and further subbranches, if desired, to any level of programming desired. The control computer is programmed for interactive control of the branching, and control of other effects that enhance the scenario, in response to detection of when the trainee has drawn an infrared laser handgunmore » from high holster, fired his laser handgun, taken cover, advanced or retreated from the adversary on the screen, and when the adversary has fired his gun at the trainee. 8 figs.« less

  13. System for training and evaluation of security personnel in use of firearms

    DOEpatents

    Hall, Howard F.

    1990-01-01

    An interactive video display system comprising a laser disc player with a remote large-screen projector to view life-size video scenarios and a control computer. A video disc has at least one basic scenario and one or more branches of the basic scenario with one or more subbranches from any one or more of the branches and further subbranches, if desired, to any level of programming desired. The control computer is programmed for interactive control of the branching, and control of other effects that enhance the scenario, in response to detection of when the trainee has (1) drawn an infrared laser handgun from his holster, (2) fired his laser handgun, (3) taken cover, (4) advanced or retreated from the adversary on the screen, and (5) when the adversary has fired his gun at the trainee.

  14. Effectiveness of an aquatic exercise program and low-level laser therapy on articular cartilage in an experimental model of osteoarthritis in rats.

    PubMed

    Milares, Luiz Paulo; Assis, Lívia; Siqueira, Amanda; Claudino, Vitoria; Domingos, Heloisa; Almeida, Thais; Tim, Carla; Renno, Ana Claudia

    2016-09-01

    The aim of this study was to evaluate the effects of an aquatic exercise program and low-level laser therapy (LLLT) (associated or not) on degenerative modifications and inflammatory mediators on the articular cartilage using an experimental model of knee OA. Forty male Wistar rats were divided into 4 groups: knee OA - without treatment (OA); OA plus exercise program group (OAE); OA plus LLLT (OAL); OA plus exercise program associated with LLLT (OAEL). Trained rats performed a water-jumping program carrying a load equivalent to 50-80 % of their body mass strapped to their chest. The laser irradiation was used either as the only method or after the exercise training had been performed, at 2 points contact mode (medial and lateral side of the left joint). The treatments started 4 weeks after the surgery, 3 days/week for 8 weeks. The results revealed that all treated groups (irradiated or not) exhibited a better pattern of tissue organization, with less fibrillation and irregularities along the articular surface and improved chondrocytes organization. Also, a lower cellular density and structural damage (OARSI score) and higher thickness values were observed in all treated groups. Additionally, OAE and OAEL showed a reduced expression in IL-1β and caspase-3 as compared with OA. Furthermore, a statistically lower MMP-13 expression was only observed in OAEL as compared with OA. These results suggest that aquatic exercise program and LLLT were effective in preventing cartilage degeneration. Also, physical exercise program presented anti-inflammatory effects in the knees in OA rats.

  15. In service inspection and repair of sodium cooled ASTRID prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baque, F.; Jadot, F.; Marlier, R.

    2015-07-01

    In the frame of the large R and D work which is performed for the future ASTRID sodium cooled prototype, In Service Inspection and Repair (ISI and R) has been identified as a major issue to be taken into account in order to enlarge the plant safety, to consolidate its availability and to protect the associated investment. After the first part of pre-conceptual design phase (2008-2012), the running second part of pre-conceptual phase (2013-2015) allows to increase the ISI and R tool ability for immersed sodium structures of ASTRID, at about 200 deg. C, on the basis of consolidated specificationsmore » and thanks to their qualification through more and more realistic laboratory tests and simulation with CIVA code. ISI and R items are being developed and qualified during a pluri-annual program which mainly deals with the reactor block structures, the primary components and circuit, and the Power Conversion System. It ensures a strong connection between the reactor designers and inspection specialists, as the optimization of inspectability and repairability is looked at: this already induced specific rules for design, in order to shorten and ease the ISI and R operations, which have been merged into RCC-MRx rules. In the frame of increasing technology readiness level with corresponding performance demonstration, this paper presents R and D dealing with the ISI and R items: it highlights the sensor development (both ultrasonic and electromagnetic concepts, compatible with sodium at 200 deg. C), then their applications for ASTRID structure control (under sodium telemetry, imaging and NDE). Activity for repair is also presented (a single laser tool for sodium sweeping, machining and welding), and finally the effort for associated robotic (generic program for ASTRID applications, specific technological tools for sodium medium, tight immersed bell). The main results of testing and simulation are given for telemetry, vision, NDE applications, laser process repair and under sodium sealing. (authors)« less

  16. Heat shock protein expression as guidance for the therapeutic window of retinal laser therapy

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Huie, Philip; Dalal, Roopa; Lee, Seungjun; Tan, Gavin; Lee, Daeyoung; Lavinksy, Daniel; Palanker, Daniel

    2016-03-01

    Unlike conventional photocoagulation, non-damaging retinal laser therapy (NRT) limits laser-induced heating to stay below the retinal damage threshold and therefore requires careful dosimetry. Without the adverse effects associated with photocoagulation, NRT can be applied to critical areas of the retina and repeatedly to manage chronic disorders. Although the clinical benefits of NRT have been demonstrated, the mechanism of therapeutic effect and width of the therapeutic window below damage threshold are not well understood. Here, we measure activation of heat shock response via laser-induced hyperthermia as one indication of cellular response. A 577 nm laser is used with the Endpoint Management (EpM) user interface, a titration algorithm, to set experimental pulse energies relative to a barely visible titration lesion. Live/dead staining and histology show that the retinal damage threshold in rabbits is at 40% of titration energy on EpM scale. Heat shock protein 70 (HSP70) expression in the retinal pigment epithelium (RPE) was detected by whole-mount immunohistochemistry after different levels of laser treatment. We show HSP70 expression in the RPE beginning at 25% of titration energy indicating that there is a window for NRT between 25% and 40% with activation of the heat shock protein expression in response to hyperthermia. HSP70 expression is also seen at the perimeter of damaging lesions, as expected based on a computational model of laser heating. Expression area for each pulse energy setting varied between laser spots due to pigmentation changes, indicating the relatively narrow window of non-damaging activation and highlighting the importance of proper titration.

  17. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans.

    PubMed

    Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F

    2017-03-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Nonlinear excitation fluorescence microscopy: source considerations for biological applications

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.

    2008-02-01

    Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.

  19. Brief state-of-the-art review on optical communications for the NASA ISES workshop

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.

    1990-01-01

    The current state of the art of optical communications is briefly reviewed. This review covers NASA programs, DOD and other government agency programs, commercial aerospace programs, and foreign programs. Included is a brief summary of a recent NASA workshop on optical communications. The basic conclusions from all the program reviews is that optical communications is a technology ready to be accepted but needed to be demonstrated. Probably the most advanced and sophisticated optical communications system is the Laser Intersatellite Transmission Experiment (LITE) system developed for flight on the Advanced Communications Technology Satellite (ACTS). Optical communications technology is available for the applications of data communications at data rates in the under 300 MBits/sec for nearly all applications under 2 times GEO distances. Applications for low-earth orbiter (LEO) to ground will allow data rates in the multi-GBits/sec range. Higher data rates are limited by currently available laser power. Phased array lasers offer technology which should eliminate this problem. The major problem of cloud coverage can probably be eliminated by look ahead pointing, multiple ground stations, and knowledge of weather conditions to control the pointing. Most certainly, optical communications offer a new spectral region to relieve the RF bands and very high data communications rates that will be required in less than 10 years to solve the communications problems on Earth.

  20. United States Air Force Summer Faculty Research Program. Management Report. Volume 2

    DTIC Science & Technology

    1988-12-01

    Weapons Laboratory 64 Realization of Sublayer Relative Dr. Lane Clark Shielding Order in Electromagnetic Topology 65 Diode Laser Probe of Vibrational Dr...34Tunable Diode Laser Measurements of Air-Broadened Linewidths in the v6 Band of H202," AppI. Opt. 25, 1844 (1986). 18. M. A. H. Smith, G. A. Harvey, G...Varghese and R. K. Hanson, "Tunable Diode Laser Measurements of Spectral Parameters of HCN at Room Temperature," J. Quant. Spectrosc. Radiat. Transfer 31

  1. Introduction to the Laser-HANE Experiment and Summary of Low-Pressure Interaction Results.

    DTIC Science & Technology

    1984-02-22

    NUMBER ORGANIZATION Efi .FFUcablej Defense Nuclear Agency r____________________ S. ADDRESS IC0lY.7f ande~ ZIP Code# 10. SOURCE O FUNDING NOS. PROGRAM...of Atmospheric Effects (RAAE), initiated a laser-target HANE-simulation experiment at the Naval Research Laboratory in early 1982. The objective of...The experiment involves focusing beams from the NRL-Pharos II Nd-laser (1.05 ljm wavelength) onto a small (< 1 rmm dia, few-microns thick foil ) solid

  2. The 3D laser radar vision processor system

    NASA Astrophysics Data System (ADS)

    Sebok, T. M.

    1990-10-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  3. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  4. AFOSR (Air Force Office of Scientific Research) Chemical & Atmospheric Sciences Program Review (27th).

    DTIC Science & Technology

    1983-06-01

    34Molecular Collision Processes in the Presence of Picosecond Laser Pulses ," H. W. Lee and T. F. George, 3. Phys. Chem., 83, 928 (1979). "High- Energy ...which is present in the hydrogen analog. Pulsed laser photolysis of ClN3 at the e~cimer wavelengths of 193 and 249 nm produced the photofragment, NCI...Department of Chemical AFOSR-82-0302 Engineering Princeton University Princeton, NJ 08544 Picosecond Laser Studies of Richard R. Cavanagh Energy Transfer in

  5. Laser paint removal

    NASA Astrophysics Data System (ADS)

    Mallets, T.

    1983-12-01

    The Laser Paint Stripper program is a three phase effort which includes: feasibility demonstration; prototype optimization; and implementation at our Air Logistic Centers (depots) by FY88. Major technical areas that make up the automated system include: (1) laser device with power and uptime to handle the number and size of aircraft (F-16 vs C-5A); (2) the beam transport and manipulation system; (3) controls for beam/aircraft safety, alignment, and surface condition sensors; (4) integration software; and (5) cleanup of residue products.

  6. High Power Dye Lasers

    DTIC Science & Technology

    1975-09-30

    sphere is greatly reduced when compared to the axial flow dye cell. This is because the focusing optics can only direct light from a limited angle into...Distribution in Flashlamp . . . „ [ [ TTIH Flashlamp Cooling and Thermal Limits [ [ [ ii~ik Optical Characteristics ’,,: •*••••••••••• il-ib...Tracing Program e Dye Pumping System Laser Tests ! 1 i * * TTT’I Laser Output Fall Off !!!.’!!!" ’ TTT’H Single Shot Optical Distortion TTT’I

  7. Alliance for NanoHealth Competitive Research Program

    DTIC Science & Technology

    2008-10-01

    changes for skin rejuvenation .32,33 2.3 Measurement of ABR Thresholds Sine wave stimuli were generated using a digital signal pro- cessing system. The...lasers for noninva- sive skin rejuvenation and toning,” Arch. Dermatol. 13910, 1265– 1276 2003. 33. M. H. Tan, J. S. Dover, T. S. Hsu, K. A. Arndt, and...B. Stewart, “Clinical evaluation of enhanced nonablative skin rejuvenation using a combination of a 532 and a 1,064 nm laser,” Lasers Surg. Med. 345

  8. High-precision laser distance measurement in support of lunar laser ranging at Haleakala, Maui, 1976-1977

    NASA Technical Reports Server (NTRS)

    Berg, E.; Carter, J. A.; Harris, D.; Laurila, S. H.; Schenck, B. E.; Sutton, G. H.; Wolfe, J. E.; Cushman, S. E.

    1978-01-01

    The Hawaii Institute of Geophysics has implemented a comprehensive geodetic-geophysical support program to monitor local and regional crustal deformation on the island of Maui. Presented are the actual laser-measured line lengths and new coordinate computations of the line terminals, and the internal consistency of the measured line lengths is discussed. Several spacial chord lengths have been reduced to a Mercator plane, and conditioned adjustments on that plane have been made.

  9. Preliminary studies concerning Hadfield steel behavior during laser beam welding in pulsating regime

    NASA Astrophysics Data System (ADS)

    David, Ion; Şerban, Viorel-Aurel

    2007-08-01

    This work proposes to analyze the behavior of austenitic manganese - Hadfield steel during laser beam welding in continuous regime. In order to limit the number of experiments, a 2 4 type factorial experiment was used, with 16 assays, after a frequently used program matrix for these situations. Fusion lines at different service regimes, as well as head to head welds were performed. Microhardness measurements and microstructure modifications that appear as an effect of laser irradiation are also analyzed.

  10. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  11. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE PAGES

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    2017-05-30

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  12. Fourth User Workshop on High-Power Lasers at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolme, Cindy Anne; Mackinnon, Andy; Glenzer, Siegfried

    The fourth international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA, on October 3–4, 2016. The workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory (SLAC), and garnered the attendance of more than 110 scientists. Participants discussed the warm dense matter and high-pressure science that is being conducted using high-power lasers at the LCLS Matter in Extreme Conditions (MEC) endstation. During the past year, there have been seven journal articles published from research at the MEC instrument. Here, the specific topics discussed at thismore » workshop were experimental highlights from the past year, current status and future commissioning of MEC capabilities, and future facility upgrades that will enable the expanded science reach of the facility.« less

  13. The effect of picosecond laser pulses on redox-dependent processes in mice red blood cells studied in vivo

    NASA Astrophysics Data System (ADS)

    Voronova, Olga; Gening, Tatyana; Abakumova, Tatyana; Sysolyatin, Aleksey; Zolotovskiy, Igor; Antoneeva, Inna; Ostatochnikov, Vladimir; Gening, Snezhanna

    2014-02-01

    The study highlights the effect of different modes of in vivo laser irradiation of mice using a PFL8LA laser with λ = 1560 nm, pulse duration of 1,4•10-12 s, peak power of 3,72•103 W and average output power of 20•10-3 W on the lipid peroxidation parameters: conjugated dienes, ketodienes and conjugated trienes, malondialdehyde, Schiff bases and the activity of antioxidant enzymes - catalase, glutathione -S-transferase and superoxide dismutase in erythrocytes and plasma of mice. Two groups of mice received a total dose of 3.8 J/cm2 per group, but the 1st group was irradiated only once, while the 2nd - four times. Significant differences in the parameters of the 1st and 2nd groups indicate different effects of the irradiation modes on redox-dependent processes in red blood cells of mice.

  14. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques.

    PubMed

    Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit

    2017-10-13

    The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.

  15. Design of miniaturized illumination for transvaginal co-registered photoacoustic and ultrasound imaging.

    PubMed

    Salehi, Hassan S; Wang, Tianheng; Kumavor, Patrick D; Li, Hai; Zhu, Quing

    2014-09-01

    A novel lens-array based illumination design for a compact co-registered photoacoustic/ultrasound transvaginal probe has been demonstrated. The lens array consists of four cylindrical lenses that couple the laser beams into four 1-mm-core multi-mode optical fibers with optical coupling efficiency of ~87%. The feasibility of our lens array was investigated by simulating the lenses and laser beam profiles using Zemax. The laser fluence on the tissue surface was experimentally measured and was below the American National Standards Institute (ANSI) safety limit. Spatial distribution of hemoglobin oxygen saturation (sO2) of a mouse tumor was obtained in vivo using photoacoustic measurements at multiple wavelengths. Furthermore, benign and malignant ovaries were imaged ex vivo and evaluated histologically. The co-registered images clearly showed different patterns of blood vasculature. These results highlight the clinical potential of our system for noninvasive photoacoustic and ultrasound imaging of ovarian tissue and cancer detection and diagnosis.

  16. Laryngeal amyloidosis: diagnosis, pathophysiology and management.

    PubMed

    Phillips, N M; Matthews, E; Altmann, C; Agnew, J; Burns, H

    2017-07-01

    Laryngeal amyloidosis represents approximately 1 per cent of all benign laryngeal lesions, and can cause variable symptoms depending on anatomical location and size. Treatment ranges from observation through to endoscopic microsurgery, laser excision and laryngectomy. To highlight the diversity of presentations, increase awareness of paediatric amyloidosis and update the reader on current management. Five cases are illustrated. Four adult patients were female, and the one child, the second youngest in the literature, was male. Amyloid deposits were identified in all laryngeal areas, including the supraglottis, glottis and subglottis. Treatment consisted of balloon dilatation, endoscopic excision, laser cruciate incision, and resection with carbon dioxide laser, a microdebrider and coblation wands. Laryngeal amyloidosis remains a rare and clinically challenging condition. Diagnosis should be considered for unusual appearing submucosal laryngeal lesions. Treatment of this disease needs to be evaluated on a case-by-case basis and managed within an appropriate multidisciplinary team.

  17. Prospects of very high power CO{sub 2} laser in welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goussain, J.C.; Vire, S.

    1996-12-31

    A 45 kW laser system was recently installed at Institut de Soudure (IS) in France in order to evaluate the possibilities of such high power beams in welding. Some results of welding various materials (Ta6V, C-steel, Cr-Ni alloys), different thicknesses (>30 mm) and large components (several meters) are presented. Some recent installations of high power laser equipment already integrated into production site or under development in shipbuilding and steel fabrication are described. Finally the objectives of an important R and D program launched recently for exploring the different aspects of laser welding in thick section steel fabrication is outlined.

  18. Teaching of laser medical topics: Latvian experience

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2002-10-01

    Pilot program for Master's studies on Biomedical Optics has been developed and launched at University of Latvia in 1995. The Curriculum contains several basic subjects like Fundamentals of Biomedical Optics, Medical Lightguides, Anatomy and Physiology, Lasers and Non-coherent Light Sources, Optical Instrumentation for Healthcare, Optical Methods for Patient Treatment, Basic Physics, etc. Special English Terminology and Laboratory-Clinical Praxis are also involved, and the Master Theses is the final step for the degree award. Recently a new extensive short course for medical laser users "Lasers and Bio-optics in Medicine" has been prepared in the PowerPoint format and successfully presented in Latvia, Lithuania and Sweden.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.L.; Rosen, M.D.

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widelymore » known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.« less

  20. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in laser/electro-optics technology. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

Top